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Abstract
Listeners track distributions of speech sounds along percep-
tual dimensions. We introduce a method for evaluating hy-
potheses about what those dimensions are, using a cognitive
model whose prior distribution is estimated directly from speech
recordings. We use this method to evaluate two speaker nor-
malization algorithms against human data. Simulations show
that representations that are normalized across speakers predict
human discrimination data better than unnormalized representa-
tions, consistent with previous research. Results further reveal
differences across normalization methods in how well each
predicts human data. This work provides a framework for
evaluating hypothesized representations of speech and lays the
groundwork for testing models of speech perception on natural
speech recordings from ecologically valid settings.
Keywords: speech perception, speaker normalization,
Bayesian modeling, approximate inference

Listeners track statistical distributions of sounds in their
language. Adults are sensitive to these distributions when per-
ceiving speech (Clayards, Tanenhaus, Aslin, & Jacobs, 2008),
and infants’ discrimination is influenced by these distributions
(Maye, Werker, & Gerken, 2002). Statistical properties of the
input can differ depending on the dimensions that listeners
extract from the speech signal. For example, acoustic char-
acteristics of vowels are highly variable when represented by
their formant frequencies, but the variability is greatly reduced
when they are represented by the z-score of their formant
frequencies relative to other vowels by the same speaker (Fig-
ure 1; see also Cole, Linebaugh, Munson, & McMurray, 2010).
Because the distributional characteristics of speech depend so
heavily on the dimensions used, understanding the dimensions
that listeners extract from the speech signal is a critical part of
understanding phonetic learning and perception.

In this paper we introduce a novel approach to evaluating
hypotheses about the dimensions that support listeners’ per-
ception. We adopt a cognitive model of speech perception
from Feldman, Griffiths, and Morgan (2009), which predicts
that listeners’ perception is biased toward peaks in the acoustic
distribution of sounds in their input. This model provides a
formal link between the distribution of sounds in the input
and listeners’ discrimination abilities. We measure the input
from a speech corpus and use the model to predict listeners’
discrimination behavior. Different ways of representing the
speech signal imply different distributions of sounds in the
corpus, yielding different predictions about listeners’ discrimi-
nation. We are interested in learning which representations of
speech best predict listeners’ actual discrimination.

We model AX discrimination tasks, in which listeners de-
cide whether two sounds are acoustically identical. Previous
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Figure 1: Acoustic characteristics of vowels produced in hVd
contexts by men, women, and children from Hillenbrand et
al. (1995), plotted as raw formant frequencies (top) and z-
scored formant frequencies (bottom). If listeners’ perception
is biased toward peaks in these distributions, these feature
spaces make different predictions about listeners’ performance
in perceptual discrimination tasks.

approaches to evaluating speech dimensions have instead fo-
cused on categorization tasks, in which listeners decide which
category a sound belongs to (Apfelbaum & McMurray, 2015;
McMurray & Jongman, 2011). Discrimination provides sev-
eral advantages over categorization: it is a more fine-grained
measure than categorization, and can be reliably measured
in both adults and infants, even when listeners do not have
well-formed categories for a given set of sounds. In addi-
tion, whereas building a categorization model requires speech
recordings to have been labeled with phoneme identities, build-
ing a discrimination model does not, as we explain below.

As an initial case study, we examine speech dimensions
defined by two speaker normalization techniques: z-scoring,
which has been proposed in the cognitive science literature
(e.g., Lobanov, 1971), and vocal tract length normalization
(VTLN), which is widely used in automatic speech recognition
(ASR) systems (e.g., Wegmann, McAllaster, Orloff, & Peskin,
1996). We find that both normalization methods yield a robust
improvement over unnormalized representations in predicting
listeners’ discrimination, consistent with previous research.
We also find that VTLN predicts human data better than z-
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scoring, despite being less effective at eliminating speaker
variability. These results illustrate our method for evaluating
these dimensions against discrimination data and provide clues
to the dimensions that guide listeners’ perception. Adapting a
cognitive model to operate over speech recordings also lays the
groundwork for testing models of speech perception in more
ecologically valid settings, by enabling cognitive scientists to
make use of the same rich corpus data that is often used by
researchers working in automatic speech recognition.

Speaker normalization
We begin by characterizing the speech representations tested
in this paper. Speech contains commingled effects of linguis-
tic, paralinguistic, and purely physical sources of variation.
The goal of speaker normalization is to find representations
that diminish some of the variability in the speech signal, like
that from the speaker’s body, while retaining task-appropriate
information such as the variability that represents different
phonemes. While some models have questioned whether lis-
teners normalize across speakers (Johnson, 1997), most ev-
idence suggests some degree of normalization. Normalized
representations have been found to improve phonetic catego-
rization (Cole et al., 2010; Nearey, 1978), increase a catego-
rization model’s match with human behavior (Apfelbaum &
McMurray, 2015; McMurray & Jongman, 2011), and improve
the performance of speech recognizers (Wegmann et al., 1996;
Povey & Saon, 2006). We test the effects of two specific meth-
ods for speaker normalization, z-scoring and vocal tract length
normalization, in a cognitive model of vowel discrimination.

Within-speaker z-scoring (Lobanov, 1971) has been sug-
gested for descriptive sociolinguistic research (Adank, Smits,
& Hout, 2004), as it highlights learned linguistic content while
removing speaker-body confounds from vowel formants. A
related manipulation, linear regression, has also been shown to
improve cognitive models of fricative perception (Apfelbaum
& McMurray, 2015; McMurray & Jongman, 2011).

Vocal tract length normalization (VTLN) is a technique de-
veloped for automatic speech recognition. VTLN compensates
for speaker differences in vocal tract length by stretching or
compressing the frequency axis of the productions of each
speaker (Wegmann et al., 1996). The aim of VTLN is to ad-
just the corpus so that it is as if all the speakers had identical
vocal tract lengths. VTLN is widely successful in ASR sys-
tems, where it substantially decreases the word error rate (e.g.,
Giuliani, Gerosa, & Brugnara, 2006). In performing this nor-
malization, we use a procedure from Wegmann et al. (1996)
adapted for an unsupervised setting, which selects frequency
adjustments for speakers on the basis of their /i/ productions
by maximising the similarity of all /i/ tokens across speakers.

We apply both normalization methods to vowels that are
represented by mel frequency cepstral coefficients (MFCCs;
Davis & Mermelstein, 1980). MFCCs are widely employed
as an input representation in ASR systems (although we do
not implement an ASR system here). MFCCs are a 12-
dimensional vector that describe a timepoint of speech by

Table 1: Effect of normalization on K-L divergence.
MFCCS Z-score VTLN

(unnormalized) normalized normalized
Gender KLDiv 7.84 4.58 6.14
Dialect KLDiv 4.41 2.09 4.19

capturing information about the spectral envelope, reflecting
vocal tract shape. Thus, they capture information similar to
formant frequencies, but have the advantage that they can be
computed automatically from the speech signal, without being
subject to the error inherent in automatic formant tracking.1

Effects of normalization Our method for testing hypoth-
esized representations of speech against human perception
relies on the idea that different representations of speech yield
different distributions of sounds in the input. To examine
the distribution of sounds in the input, we computed MFCCs,
z-scored MFCCs, and MFCCs with VTLN from vowel record-
ings in the Vowels subcorpus of the Nationwide Speech Project
(NSP; Clopper & Pisoni, 2006). This corpus contains ten dif-
ferent vowels pronounced in the context hVd (hid, had, etc.)
by 5 female and 5 male speakers from each of 6 dialect regions
of the United States. Each of these 60 speakers repeats each
of the 10 hVd words 5 times, for a total of 3000 hVd tokens
balanced across vowel, gender, and dialect.2

We characterize the effects of each normalization method
on the distribution of vowels in the NSP corpus by computing
symmetrized Kullback-Leibler divergence, a measure of differ-
ence between two probability distributions (Wang, Kulkarni,
& Verdú, 2006). Lower K-L divergence indicates greater simi-
larity between two distributions. We estimated K-L divergence
across gender and across dialect (averaged over 15 pairwise
comparisons of 6 dialect regions). Male and female speakers
differ in their vocal tract lengths, and thus normalization algo-
rithms would be expected to increase similarity between their
vowel productions. Dialects also differ in their pronunciations
of different vowels; although this variation is not related to
vocal tract length, it may nevertheless be impacted by normal-
ization algorithms that seek to neutralize speaker differences.

K-L divergence between genders and between dialect pairs
is highest in MFCCs with no speaker normalization, reflecting
the effects these factors have on the original acoustic signal
(Table 1). Both VTLN and z-scoring reduce K-L divergence
between genders, as predicted, so that male and female speak-
ers saying the same vowel appear more similar after either of
these normalizations than they are in unnormalized MFCCs.
Z-scoring using all 10 NSP vowels also reduces K-L diver-
gence between dialect pairs. In contrast, VTLN matching

1Z-scoring has previously been applied to formant frequencies,
but we show in the next section that it is also effective at normalizing
across speakers when applied to MFCCs. Vowel-intrinsic normal-
ization methods such as formant ratios were not tested here because
they are not straightforward to apply to MFCCs.

2While this corpus does not correspond exactly to listeners’ ex-
perience with language, conducting initial simulations with a corpus
of vowels in neutral contexts allows us to investigate algorithms for
speaker normalization while sidestepping issues of how listeners
generalize across phonological contexts.
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Figure 2: Model fit to human data, when generalizing to familiar speakers (left) and new speakers (right). Results for
1-dimensional features are not shown on this scale as they are extremely poor, with log likelihoods of −1300 to −1600.

across speakers on the basis of /i/, which differs little across
the dialects (Clopper & Pisoni, 2006), has minimal effects
on dialect K-L divergence: cross-dialect differences remain
nearly as distinct after VTLN. Overall, when z-scoring by
speaker K-L divergence is lowest (though nonzero; gender
and dialect information remains in the representation); VTLN
removes somewhat less of the gender and dialect variation.

In summary, MFCCs, z-scored MFCCs, and MFCCs with
VTLN each correspond to different distributions of vowels in
the input, with z-scoring being the most effective at increasing
the overlap between the distributions of vowels spoken by dif-
ferent speakers. The next section describes a cognitive model
that uses these input distributions to quantitatively predict
listeners’ vowel discrimination in the laboratory.

Cognitive model
The model of discrimination we adopt has been shown to
accurately predict listeners’ discrimination of both vowels
and consonants (Feldman et al., 2009; Kronrod, Coppess, &
Feldman, 2012), but has not yet been implemented directly on
speech recordings. The model formalizes speech perception as
an inference problem. Listeners perceive sounds by inferring
the acoustic detail of a speaker’s target production through
a noisy speech signal. Because listeners need to correct for
uncertainty in the speech signal, their perception is biased
toward acoustic values that have high probability under their
prior distribution. This creates a dependency between the
listeners’ prior distribution and their perception of sounds.

Formally, speakers and listeners share a prior distribution
over possible acoustic values that can be produced in the lan-
guage, p(T ). Prototypical sounds in the language have highest
probability under this distribution, but the distribution is non-
zero over a wide range of acoustic values, corresponding to
all the ways in which speech sounds might be realized. When
producing a sound, speakers are assumed to sample a target
production T from this distribution. The target production
can carry meaningful information aside from category identity,
such as dialect information or coarticulatory information about
upcoming sounds, making its acoustic value something that
listeners wish to recover. The stimulus S heard by listeners
is similar to the target production T , but is assumed to be

corrupted by a noise process defined by a Gaussian likelihood
function, p(S|T )=N (T,ΣS). Both T and S are d-dimensional
vectors, where d is the dimensionality of the feature space. In
our simulations, the feature space is defined by either MFCCs,
z-scored MFCCs, or MFCCs with VTLN.

Listeners hear S and reconstruct T by drawing a sample
from the posterior distribution, p(T |S) ∝ p(S|T )p(T ). We
refer to a listener’s sample from the posterior distribution as
a percept. The percept is a continuous acoustic value, rather
than a category label; this is consistent with a large body of
evidence showing that listeners recover fine-grained acoustic
detail from the speech signal (e.g., Pisoni & Tash, 1974).

The model can be used to predict listeners’ discrimination
behavior in the laboratory. In AX discrimination tasks, listen-
ers hear two stimuli and decide whether they are acoustically
identical. The model assumes that for each stimulus, listen-
ers sample a percept from their posterior distribution, p(T |S).
They then compute the distance between their percepts of the
two stimuli and compare it to a threshold ε. If the percepts
are separated by a distance less than ε, listeners respond same;
otherwise they respond different. Given these assumptions,
the proportion of same responses for two stimuli, S1 and S2, is
predicted to follow a binomial distribution whose parameter is
the probability that the percepts for the two sounds are within
a distance ε of each other, p(|T1−T2|<ε|S1,S2). The noise
covariance ΣS and the response threshold ε are free parameters
which are optimized to best predict discrimination data.

Whereas previous work with this model has estimated lis-
teners’ prior distribution from perceptual categorization data,
here we estimate listeners’ prior distribution directly from
production data in the NSP corpus; we make the simplify-
ing assumption that the prior distribution directly mirrors the
distribution of sounds in the input. Previous work has also
assumed that listeners’ prior distribution is a mixture of Gaus-
sians, with one Gaussian distribution corresponding to each
phonetic category. We avoid making this assumption by using
an exemplar-based implementation of the model.

Shi, Griffiths, Feldman, and Sanborn (2010) showed that
exemplar models provide a way of approximating Bayesian
inference. Specifically, exemplar models implement a form
of approximate inference known as importance sampling. To
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use importance sampling for our simulations, we need a set
of exemplars {T (i)} that are sampled from listeners’ prior dis-
tribution p(T ). We assume the vowels in the NSP constitute
this set of exemplars. We then weight each exemplar by its
likelihood with respect to a stimulus S, p(S|T (i)), and select
an exemplar according to its weight. An exemplar from the
corpus sampled in this way behaves as though it were drawn
from the posterior distribution p(T |S). This method does not
require us to know a parametric form for the prior distribu-
tion p(T ), because the prior distribution is represented only
through exemplars. In addition, it does not require the exem-
plars from the corpus to have category labels, as the weights
p(S|T (i)) are defined by the model’s Gaussian likelihood func-
tion, corresponding to the speech signal noise.

We estimate the model’s probability of responding same on
each trial by using importance sampling to obtain 100 pairs of
percepts corresponding to the pair of stimuli presented in that
trial. The proportion of these pairs of percepts that are within
distance ε of each other provides an estimate3 of the probabil-
ity of responding same on that trial. We use these probabilities
to predict listeners’ actual same-different responses in an exper-
iment. We implement the model several times with different
speech representations: MFCCs, z-scored MFCCs, or MFCCs
with VTLN. Comparing model likelihoods across the three
speech representations allows us to ask which representations
best predict listeners’ discrimination.

Simulations
Simulations implemented the perceptual model with normal-
ized and unnormalized representations, comparing model pre-
dictions to human discrimination data. To the extent that
different representations of speech yield different distributions
of sounds in a corpus, they should make different predictions
about the biases that listeners will exhibit in a speech percep-
tion experiment. Representations that yield more accurate
predictions can be assumed to contain information more simi-
lar to the dimensions that listeners use in speech perception.

Human perceptual data We use vowel discrimination data
from an AX discrimination task conducted by Feldman et al.
(2009) in quiet listening conditions. Twenty participants heard
a continuum of 13 isolated vowels that were synthesized to
simulate a male speaker. First and second formants of these
stimuli ranged linearly in mels from /i/ (as in ‘beet’) to /e/ (as
in ‘bait’). Participants heard all ordered pairs of stimuli and
judged whether each pair was acoustically identical. MFCCs,
z-scored MFCCs, and MFCCs with VTLN computed from
these thirteen stimuli serve as input to the model, as the stim-
ulus S. Model predictions are then compared with listeners’
same-different responses to each pair of stimuli.

Speech representations The exemplars that serve as the
model’s prior distribution are vowels from the Vowels subcor-
pus of the NSP. Vowels were represented either as MFCCs,
z-scored MFCCs, or MFCCs with VTLN, computed at their

3We use add-one smoothing to compute this estimate.

midpoint. Although speech recognition systems typically use
12 MFCC dimensions, we additionally include simulations
that omit subsets of the higher dimensions, as the lower di-
mensions are better able to capture information from formants
traditionally used to describe vowel quality.

The NSP is an ideal case for the z-scoring normalization,
because each speaker says the same tokens the same number
of times. However, MFCCs for the stimulus ‘speaker’ were
only available for the /i/-/e/ vowel continuum. Because the
stimuli were originally synthesized according to average for-
mant values for male speakers, we handled this missing data
by normalizing the stimuli according to average z-scoring fac-
tors of the 30 male NSP speakers. Due to the reliance of our
VTLN procedure on only /i/ tokens, this normalization was
straightforward to apply to the stimuli.

Fitting parameters The NSP corpus was divided into two
balanced, equally sized sets of exemplars. Two methods were
used for dividing the corpus. In one case, the two halves
contained different exemplars from the same speakers, while
in the other case the two halves contained exemplars from
different speakers (balanced for gender and dialect region).
Each division of the corpus was created once, and used for
simulations with all speech feature types.

In each simulation, one set of exemplars was used to fit
parameters: the response threshold ε and the noise variance ΣS
(constrained to be diagonal) were selected using Markov chain
Monte Carlo to maximize model likelihoods given perceptual
data.4 The other set of exemplars was used to compute model
likelihoods at test. The roles of the two sets of exemplars were
then reversed, resulting in 2-fold cross-validation. Each set of
exemplars served as a test set for 10 simulations. Points and er-
ror bars in Figures 2 and 4 represent means and standard error
calculated across all 20 simulations; the relatively small error
bars indicate that results were consistent across replications.5

Results Model performance is assessed by computing the
log likelihood of the model, given the human data. Higher log
likelihoods indicate a closer match to perceptual data.

Previous work with categorization models suggests that
normalized representations are more consistent with listeners’
perception than unnormalized representations (Apfelbaum &
McMurray, 2015; McMurray & Jongman, 2011) . We replicate
this result with our method: in almost all cases, unnormalized
MFCCs have the lowest likelihoods among the three represen-
tations tested (Figure 2). We also find that MFCCs normalized
by VTLN outperform z-scored MFCCs, although z-scoring
within speakers neutralizes more inter-speaker variation as
measured by K-L divergence (Table 1). Thus, the better per-
formance of the VTLN models is not merely an artifact of
acoustic similarity among vowels in the corpus; this also may
imply that human representations underlying vowel discrimi-

4Z-scoring and VTLN were applied prior to parameter fitting;
therefore neither adds free parameters to the model, and no optimiza-
tion to fit human data is involved in their application.

5Numerical values fit for model parameters were also consistent
across the 20 replications for each speech feature type.
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Human data MFCC

z-scored VTLN

Figure 3: Confusion matrices for how often each pair of stim-
uli is judged to be the same (black) vs. different (white) by
humans and by 4-dimensional models tested on familiar speak-
ers. Axis labels denote stimulus numbers from an AX trial.

nation do not completely normalize across speakers. Examples
of same-different responses from models using each type of
feature are shown in Figure 3, together with human data.

Models using speech representations of one dimension are
always extremely poor; the first cepstral coefficient on its
own does not provide enough information for the perceptual
task. In some simulations, such as for z-scored features, test
likelihood decreases with higher numbers of dimensions be-
yond a certain point, likely due to overfitting of parameters to
particular exemplars.6 It appears that the lower MFCC dimen-
sions, particularly the second dimension, contain information
relevant to listeners’ discrimination of an /i/-/e/ continuum.

Although the NSP’s speaker and phoneme labels are not
used by our cognitive model, we take advantage of this in-
formation in analyses for insight on the types of exemplars
sampled as percepts by the model. Across all models, the
100 percepts drawn from the posterior distribution for each
stimulus contained on average 30 different exemplars, indicat-
ing that a number of exemplars (from different speakers) are
treated as linguistically similar to each other. As a measure of
model quality and interpretability, we examine the identity of
the exemplars sampled by the model during each perceptual
judgment (Figure 4). The percentage of samples that belong to
the classes of vowels along the /i/-/e/ continuum (NSP ‘heed’,
‘hayed’, and ‘hid’ tokens; henceforth referred to as high front
vowels) gives information on model quality, because all the
stimuli are perceived by US English speakers as falling along
this continuum. The proportion of times a model samples
female exemplars to recover the linguistic target for this ex-
periment’s male-speaker stimuli gives an indication of the
model’s ability to generalize linguistic content across genders.

Models using unnormalized MFCCs tend to make the least

6The corresponding training likelihoods for z-scored dimensions
remained stable or even increased at higher numbers of dimensions.
Similarly, the low likelihood observed at six dimensions for MFCCs
was due to several runs that achieved high likelihood on the training
exemplars and low likelihood on the test exemplars.

use of female exemplars, indicating that this representation
does not recognize very much similarity between male and
female speakers saying the same vowel. Models with z-scored
features are closest to sampling 50% female exemplars; this
confirms that the z-scored representation is highly effective at
neutralizing difference between speakers of different genders
(Table 1), although it is not the representation that gives the
best match to human perceptual performance (Figure 2).

While simulations with 2 through 6 dimensions consistently
treated the experimental stimuli as being most similar to high
front vowels in the corpus, simulations with higher orders of
cepstral coefficients did not (Figure 4), reinforcing the impor-
tance of the lower MFCC dimensions in capturing listeners’
perception of these stimuli. We suspect that this behavior
emerged due to the artificial synthesis of the experimental
stimuli, which resulted in these high front vowel stimuli being
most similar to low back vowels from the corpus in two of
the higher MFCC dimensions. This can cause the model to
perceive stimuli as low back vowels in cases where it general-
izes along those dimensions. This underscores the difficulty
of bringing together ecologically valid speech corpora with
the type of controlled stimuli typically used in experimental
settings, and illuminates areas in which future research may
provide insight by addressing these challenges.

Finally, we can compare the log likelihoods from Figure 2
to a benchmark showing ideal model performance. Feldman et
al. (2009) estimated listeners’ prior distributions for the /i/ and
/e/ categories from perceptual categorization data, rather than
from speech recordings. Using their estimate, the model yields
average log likelihood of -233, somewhat higher than those
obtained here. A corpus-based model should approach this
value as the distribution of sounds in the corpus approaches
the prior distribution that listeners use in perceptual tasks.

Discussion
In this paper a novel method was introduced for evaluating hy-
potheses regarding the dimensions that guide listeners’ speech
perception. A cognitive model of AX discrimination was im-
plemented directly on speech recordings and used to evaluate
two speaker normalization methods. Both normalization meth-
ods improved the model’s fit to perceptual data, consistent with
previous research. Between the two normalization methods,
VTLN outperformed z-scoring, despite being less effective at
collapsing gender and dialect differences.

The advantage of VTLN over z-scoring in modeling human
perceptual data suggests that VTLN allows the model to gen-
eralize across speakers in a way that is more similar to human
perceivers. For example, listeners may track statistical distribu-
tions of speech in ways that allow them to collapse across gen-
der while retaining differences across dialects. Nevertheless,
a prior distribution estimated from perceptual categorization
data still outperforms the prior distributions measured from
a corpus; none of the three representations tested here match
human perception exactly. Instead, these simulations provide
initial clues to the dimensions that guide listeners’ perception
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Figure 4: Secondary evaluations, showing how often the stimuli were correctly perceived as high front vowels (left) and how
often the model based perceptions on female exemplars (right). Data are averaged across the familiar and new speaker test cases,
which were very similar on these measures.

while also allowing us to validate a novel method for assessing
speech representations against human data.

Our method provides a general tool for investigating propos-
als regarding the dimensions that guide listeners’ perception.
The model’s prior distribution can in principle be estimated
from any speech corpus, and does not require phoneme labels.
This ability to make use of unlabeled corpora provides an ad-
vantage over evaluation methods that rely on categorization.
In addition, the importance sampling approximation used here
can be implemented on any speech representation for which a
likelihood function p(S|T ) can be computed between stimuli
and exemplars and for which a distance metric between exem-
plars in the corpus can be compared to a threshold ε, and thus
can be used even for representations that lack a fixed or finite
set of dimensions. This flexibility makes it a promising tool
for exploring cross-linguistic differences in listeners’ sensitiv-
ity to perceptual dimensions, as well as for evaluating theories
of dimension learning against children’s discrimination data.

To our knowledge, this is also the first time the model from
Feldman et al. (2009) has been implemented on speech record-
ings. Modifying models to operate over corpora of natural
speech allows them to make use of ecologically valid datasets,
and can thus facilitate a richer understanding of the way in
which listeners’ perception is shaped by their environment.
Acknowledgments We thank Josh Falk for help piloting the model,
Phani Nidadavolu for help computing speech features, and Hynek
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