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Method

Hybrid assembly of the large and highly repetitive
genome of Aegilops tauschii, a progenitor of bread
wheat, with the MaSuRCA mega-reads algorithm

Aleksey V. Zimin,'? Daniela Puiu,' Ming-Cheng Luo,> Tingting Zhu,? Sergey Koren,*
Guillaume Marcais, %> James A. Yorke,?® Jan Dvorak,* and Steven L. Salzberg'~’

"Center for Computational Biology, McKusick-Nathans Institute of Genetic Medlicine, Johns Hopkins School of Medicine, Baltimore,
Maryland 21205, USA; 2Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, USA;
3 Department of Plant Sciences, University of California, Davis, California 95616, USA; “National Human Genome Research Institute,
National Institutes of Health, Bethesda, Maryland 20892, USA; *Department of Computational Biology, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213, USA; Departments of Mathematics and Physics, University of Maryland, College Park, Maryland
20742, USA; 7 Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore,

Maryland 21218, USA

Long sequencing reads generated by single-molecule sequencing technology offer the possibility of dramatically improving
the contiguity of genome assemblies. The biggest challenge today is that long reads have relatively high error rates, current-
ly around 15%. The high error rates make it difficult to use this data alone, particularly with highly repetitive plant genomes.
Errors in the raw data can lead to insertion or deletion errors (indels) in the consensus genome sequence, which in turn
create significant problems for downstream analysis; for example, a single indel may shift the reading frame and incorrectly
truncate a protein sequence. Here, we describe an algorithm that solves the high error rate problem by combining long,
high-error reads with shorter but much more accurate lllumina sequencing reads, whose error rates average <1%. Our hy-
brid assembly algorithm combines these two types of reads to construct mega-reads, which are both long and accurate, and
then assembles the mega-reads using the CABOG assembler, which was designed for long reads. We apply this technique to
a large data set of Illumina and PacBio sequences from the species Aegilops tauschii, a large and extremely repetitive plant ge-
nome that has resisted previous attempts at assembly. We show that the resulting assembled contigs are far larger than in any
previous assembly, with an N50 contig size of 486,807 nucleotides. We compare the contigs to independently produced
optical maps to evaluate their large-scale accuracy, and to a set of high-quality bacterial artificial chromosome (BAC)-based

assemblies to evaluate base-level accuracy.

[Supplemental material is available for this article.]

Long-read sequencing technologies have made significant advanc-
es in the past few years, with read lengths rapidly increasing while
costs steadily dropped. Current technology can yield reads with av-
erage lengths of 5-10 kilobases (kb) and a throughput that can
reach a gigabase (Gb) from a single Pacific Biosciences (PacBio)
SMRT cell. Although this technology remains more expensive
and has lower throughput than Illumina sequencing, it is now fea-
sible to generate deep coverage of a large plant or animal genome at
a modest cost. The long read lengths are extremely valuable for de
novo genome assembly, allowing assemblers to overcome many of
the problems caused by repeated sequences that are longer than
Mlumina reads. This is particularly true for plant genomes, in
which transposable elements with lengths >1 kb are pervasive, of-
ten occupying over half of the genome. In the absence of other
linking information, any near-exact repeat longer than a read
will create a break in an assembly.

Traditionally, the primary strategy for spanning long repeats
has been to create paired-end libraries from long DNA fragments,
ranging in size from 2-10 kb, or from even longer fosmids (~40
kb) or BACs (~125-150 kb). These strategies yield valuable long-
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range linking information, but they require more complex and
more expensive methods of preparing DNA so that both ends
can be sequenced. In contrast, when a single read spans a repeat
and contains unique flanking sequences, the repeat can be directly
incorporated into the assembly without the need to use paired-end
information.

Recently, several assembly techniques have been developed
for de novo assembly of a large genome from high-coverage (50x
or greater) PacBio reads. These include: the PBcR assembler, which
employs the MHAP algorithm (Berlin et al. 2015) together with the
CABOG assembly system; the HGAP assembler (Chin et al. 2013);
the Canu assembler (Koren et al. 2017), which also uses MHAP;
and the FALCON assembler developed at Pacific Biosciences
(https://github.com/PacificBiosciences/FALCON). Other methods
employ a hybrid assembly strategy, in which short Illumina reads
are used to correct errors in longer PacBio reads (Koren et al. 2012;
Hackl et al. 2014; Salmela and Rivals 2014).

In this paper, we describe a new hybrid assembly technique
that can produce highly contiguous assemblies of large genomes

©2017 Ziminetal. This article is distributed exclusively by Cold Spring Harbor
Laboratory Press for the first six months after the full-issue publication date (see
http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is avail-
able under a Creative Commons License (Attribution-NonCommercial 4.0 Inter-
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using a combination of PacBio and Illumina reads. The new meth-
od extends Illumina reads into super-reads (Zimin et al. 2013) and
then combines these with the PacBio data to create mega-reads, es-
sentially converting each PacBio read into one or more very long,
highly accurate reads. The mega-reads software, which is now in-
corporated into the MaSuRCA assembler, can handle hybrid as-
semblies of almost any plant or animal genome, including
genomes as large as the 22-Gbp loblolly pine. The memory usage
of the hybrid assembly algorithm scales linearly with the size of
the genome, and its execution time scales linearly with the depth
of coverage in PacBio reads. One terabyte of memory is sufficient
for most genomes under 10 Gbp in length. Here, we use this meth-
od to produce an assembly of the large and complex genome of
Aegilops tauschii, one of the three diploid progenitors of bread
wheat. The Ae. tauschii genome is unusually repetitive and has
proven extremely difficult to assemble using short-read data.

Ae. tauschii is a self-pollinating inbred grass species whose ge-
nome is nearly homozygous, making it an excellent asset for eval-
uation of error rates in assembly. To this end, we have generated an
optical BioNano genome (BNG) map for the Ae. tauschii genome,
which provided a sequence-independent means of evaluating
the large-scale accuracy of the assembly, as we discuss below. We
have also independently sequenced the Ae. tauschii genome using
an ordered BAC-clone sequencing approach, which provides a
means of evaluating the base-level accuracy of the assembly.

Methods

Sequencing data requirements

Our hybrid assembly algorithm expects at least 100x genome cov-
erage by paired Illumina reads of 100-250 bp, combined with at
least 10x coverage in PacBio reads. Based on preliminary data, we
expect that generating deeper PacBio coverage, up to 60x, is likely
to improve the final results. Deeper [llumina coverage may also
be beneficial. The mega-reads algorithm has the following main
steps.

Super-read construction

We first transform Illumina paired-end reads into super-reads, as de-
scribed previously (Zimin et al. 2013). The super-reads algorithm
builds a database of all sequences of a user-specified length k,
and then extends these k-mers in both directions as long as the ex-
tensions are unambiguous. In most cases, the super-reads will be
much longer than the original [llumina reads, typically averaging
400 bp or more, depending on the repetitiveness of the genome.
Subsequent steps of our algorithm use the longer but much lower
coverage (usually 2-4x) super-reads, thus providing a very substan-
tial degree of data compression. Super-reads are longer and have
fewer errors than Illumina reads; thus, they can be mapped to
high-error PacBio reads more reliably and therefore provide a better
vehicle for error correction.

For the next two steps, we treat each PacBio read as a template
to which super-reads can be attached, as illustrated in Figure 1.

Approximate alignment along a PacBio read

We create approximate alignments of the super-reads to each
PacBio read using 15-mers that the PacBio read has in common
with super-reads. We used 15-mers so that we would have a suffi-
cient number of “seeds” along most PacBio reads; smaller k-mers
might also work but could increase the spurious match rate.
Note that the choice of k=15 for this step can be changed for dif-
ferent data sets. We first build a database of all 15-mers in the su-
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Figure 1. Overview of the mega-reads algorithm. Low-error rate lllumina
reads (top left) are used to build longer super-reads (green lines), which in
turn are used to construct a database of all 15-mers in those reads. PacBio
reads (purple lines) and super-reads are then aligned, using the 15-mer in-
dex. Inconsistent super-reads are shown as kinked lines; these are discard-
ed, and the remaining super-reads are merged, using the PacBio read as a
template, to produce pre-mega-reads (yellow). These are further merged to
produce the final mega-reads and to generate linking mates across gaps.

per-reads and use this database to compute, for each super-read,
its approximate start and end positions on each PacBio read.
This approach is similar (although different in many details) to
both MHAP (Berlin et al. 2015) and minimap (Li 2016), in that
both these other algorithms find chains of “seed” alignments in
long PacBio reads. Our method does not compute a full alignment.

For each PacBio read P, we walk down the read looking at each
15-mer. We use the 15-mer database to determine (in constant
time for each 15-mer) which 15-mers are found in super-reads.
Once we have the super-reads that match P, for each such super-
read S we look for ordered subsequences of the 15-mers that both
P and § have in common. (The 15-mers can be overlapping.) We
then assign a score to each super-read S, where the score is the
number of 15-mers in the longest common subsequence (LCS)
of 15-mers in the two reads. We label an alignment as plausible
if the score of S exceeds some specified minimum. For each plausi-
ble alignment, we compute an approximate position of S along P
based on the positions of the LCS 15-mers in P and S.

Note that a super-read can align to many different PacBio
reads; the number will depend on the depth of coverage of the
PacBio data.

Graph traversal for a PacBio read

Let K denote the k-mer size that was used to generate the super-
reads. After super-reads are constructed, we record all exact
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overlaps of pairs of super-reads for which the length of the overlap
is at least K.

Using all super-read positions on a PacBio read P, we create
possible paths of (plausible) super-reads along P. Each path con-
sists of a sequence of super-reads where two adjacent super-reads
must have an exact overlap of at least K bases and also must have
positions on P that make it possible for them to overlap. We com-
pute an LCS score for each path.

A path might span only part of P, and conversely, subse-
quences of P might not be covered by any path. We then form a
graph consisting of the paths along P, where super-reads are the
nodes and K-overlaps are the edges. For each connected compo-
nent of paths (or more precisely, a connected graph of super-
reads), we compute the LCS score and we choose the path with
the highest score. We call each such path a pre-mega-read. The se-
quence of a mega-read is essentially a long, high-quality “read”
that covers part or all of the original PacBio read P.

At this point, each connected component is a directed acyclic
graph (DAG) of super-reads that overlap by at least K bases and that
align to P. The approximate positions of the super-reads on P im-
pose a topological order on the DAG. We impose an overall direc-
tion on the DAG from the 5’ end toward the 3’ end of P.

Tiling

We tile the PacBio read P with the pre-mega-reads in a greedy fash-
ion, beginning with the longest pre-mega-read, and disallowing
overlaps longer than K bases (Fig. 1). We choose the pre-mega-
reads for P by maximizing the total of all LCS scores in the tiling.

Many PacBio reads will be tiled by more than one pre-mega-
read; i.e., the tiling has gaps. Gaps might be caused by lack of
Mlumina read coverage for parts of the genome, or by long
stretches of poor-quality sequence in a PacBio read, or (rarely)
by chimeric PacBio reads. Even though we have PacBio sequence
spanning these gaps, we choose not to simply merge the pre-
mega-reads using raw PacBio read sequence because that might
create stretches of low-quality sequence in the mega-reads.
However, if multiple PacBio reads overlap one another for the se-
quence in one of these gaps, we can sometimes fill the gap be-
tween pre-mega-reads. We only use raw PacBio read sequence to
join neighboring pre-mega-reads if (1) the tilings for at least three
PacBio reads have nearly identical gaps, (2) the pre-mega-reads
surrounding the gap have identical sequence, and (3) the gap
lengths are nearly identical. Here, gap length is determined by
the length of the PacBio sequence between the aligned pre-
mega-reads. If these conditions are met, we compute the gap-fill-
ing sequence from the original PacBio reads that span the gap.
The consensus step in the CABOG assembler then creates the fi-
nal version of the sequence. For the Ae. tauschii assembly, the av-
erage length of filled-in gaps was 206 bp, and the final assembly
contained a total of 14 Mbp (0.03%) that resulted from filling
gaps, of which 5.8 Mb (0.014%) was covered by the minimum
of three PacBio reads.

It is also possible that a gap in the tiling is not a gap at all but
instead is an erroneous insertion in the PacBio read. In these cases,
the pre-mega-reads flanking the gap may overlap one another. If
the pre-mega-reads overlap by at least 37 bp, then we merge
them to close the gap.

Note that the user can set the maximum gap size for the gap-
filling procedure, and the algorithm will not attempt to fill gaps
larger than this maximum. If one sets the maximum gap size to
zero, the mega-reads assembler will not use raw PacBio sequence
at all and will only join pre-mega-reads when they have an exact
overlap of 37 bases or more. For Ae. tauschii, the maximum gap
size was 750 bp.

The result of this tiling and gap-filling process is the final set
of mega-reads.

Creating linking pairs

When mega-reads cannot be merged and a gap remains, we create
a linked pair of “reads” that spans the gap. We extract two 500-bp
sequences from the mega-reads flanking the gap and link them to-
gether as mates (Fig. 1). (If either mega-read is <500 bp, we create a
shorter linking read.) The assembler uses these sequences in its
scaffolding step to ensure that all mega-reads from the same
PacBio read are kept adjacent in the assembly; i.e., they are placed
into the same scaffold. We call these artificial mates the linking
pairs.

Assembly

Finally, we assemble the mega-reads along with the linking pairs
into contigs and scaffolds using the CABOG assembler (Miller
et al. 2008). For this step, we can also use other linking informa-
tion, if available, for scaffolding.

Results

Data sets

We generated over 19 million PacBio reads, equivalent to ~38x ge-
nome coverage, using the SMRT P6-C4 chemistry. We also gener-
ated a total of 177x coverage on an Illumina HiSeq 2500 in
paired 200-bp reads and an Illumina MiSeq with paired 250-bp
reads (Table 1). These data sets were the only input used for our hy-
brid assembly of Ae. tauschii.

Ae. tauschii assembly

The methods described above produced 16.7 M super-reads (using
a k-mer length of 127) from the Illumina data, and 18.7 M mega-
reads from the super-reads and PacBio reads (Table 2). We used
the CABOG assembler (version wgs-8.3rc2) in the MaSuRCA
mega-reads pipeline to produce an initial assembly of the mega-
reads. This assembly contained 128,898 scaffolds totaling 4.778
Gbinlength. We then manually ran a post-processing step that in-
cluded four rounds of aligning each scaffold to all others, in order
to remove scaffolds that were either duplicated or that were
completely contained within other scaffolds. For this alignment
step, we ran BWA-MEM (Li 2013) with parameters -k127 —e and
then used NUCmer (Delcher et al. 2002) to find and remove dupli-
cate alignments. This procedure identified a total of 75,338 scaf-
folds (most of them very small) that were contained in other
scaffolds and could be safely removed. Total computational time
for all steps of the assembly was approximately 110,000 CPU
hours, with about 72,000 CPU hours for computing super-reads

Table 1. Input data used for the Ae. tauschii hybrid assembly

Average
Number of read length Genome
Sequence data type reads (bp) coverage
lllumina HiSeq paired-end 1.98 x 10° 200 93.2x
lllumina MiSeq paired-end ~ 1.41 x 10° 250 83.6x
PacBio SMRT P6-C4 1.92x107 8519 38.5x

Coverage is computed based on an estimated genome size of 4.25 Gb.
Paired lllumina reads were generated from fragments whose lengths av-
eraged 450-500 bp.
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Table 2. Statistics for super-reads and mega-reads

Error
Average N50 rate

Number Coverage length (bp) (bp) (%)
Super-reads  16.7 x 10° 1.9% 474 749 <0.09
Mega-reads 18.7 x 106 27.8x 6319 9378 <0.23

Super-reads were constructed from lllumina data, and mega-reads were
constructed as described in the main text. Coverage is based on an esti-
mated genome size of 4.25 Gbp. Error rates were computed by
mapping the reads against lllumina-only contigs.

and mega-reads, and the remaining time spent in assembly of con-
tigs and scaffolds. The code is highly parallelized so that most pro-
cedures were run in parallel on large computing grids.

The resulting Ae. tauschii assembly, version Aet_MR.1.0, con-
tains 53,560 scaffolds with a total span of 4.338 Gb, a contig N50
size of 486,807 bp, and a scaffold N50 size of 521,653 bp (Table 3).
As described above, scaffolding was minimal because it used only
the linking pairs created from mega-reads that flanked gaps in
the original PacBio reads. Thus, for every gap internal to a scaffold,
we have at least one PacBio read spanning the gap. The principal
benefit of PacBio reads and of the mega-reads algorithm is the
much larger contigs that result, ~30 times larger than the contigs
from an Illumina-only assembly (Table 3).

We also created a whole-genome assembly with the PacBio
reads only, using the Canu assembler (Berlin et al. 2015). For this
assembly, we generated additional data to bring the PacBio cover-
age up to 55x. The Canu assembly had a total length of 4.06 Gb
and an NS50 size (using 4.25 Gb as the genome size) of 311,860
bp (Table 3). It is worth noting here that the Aet_MR.1.0 assembly
has many more contigs than the Canu assembly, but this is due to
alarge number of small contigs in the tail of the distribution and to
the fact that the Aet_MR.1.0 assembly is ~264 Mb larger. If we se-
lect contigs from the Aet_MR.1.0 assembly whose sizes total 4.06
Gb (the same total as the Canu assembly), we need only 24,309
contigs, almost exactly the same number as in the Canu assembly,
and the smallest such contig is 15,911 bp. The total computation
time for the Canu assembly was 38,000 CPU hours, while the
mega-reads assembly took 110,000 hours. However, expected im-
provements in these algorithms suggest that the two assemblers
would take less computational time today and will likely continue
to improve.

Evaluation of assembly quality

We evaluated the quality of the output contigs using two metrics:
large-scale contiguity and consensus sequence accuracy. To evalu-
ate large-scale accuracy, we used an independently constructed
BioNano Genomics (BNG) map. This technology, developed by
BioNano Genomics, allows the construction of accurate maps
based on restriction enzymes, in which DNA molecules are passed
through a nanochannel and fluorescently tagged restriction sites
are detected (Lam et al. 2012). This process creates many small re-
striction-mapped regions that can span several megabases each.
BNG maps have recently been used to improve the assembly of
portions of several highly repetitive plant genomes, including
one arm of the bread wheat genome (Stankova et al. 2016), a 2-
Mb fragment of Ae. tauschii (Hastie et al. 2013), and six small but
complex regions of the maize genome (Dong et al. 2016). To use
these maps to assess quality of a sequence assembly, the distances

and positions of the same restriction sites along the BNG map are
compared with a restriction map constructed computationally.

Here, we used the Ae. tauschii BNG map only to evaluate the
correctness of Aet_ MR.1.0; it was not used to construct or modify
the assembly. We aligned our contigs to the BNG map using the
restriction sites in the contigs, and searched for regions of disagree-
ment, which indicate either an error in the BNG map or a misas-
sembled contig. We only considered alignments that shared at
least 15 restriction sites, which in most cases meant the aligned
contigs were longer than 140 kb. Note that the BNG map does
not contain sequence, and the only errors this procedure can
detect are relatively large-scale rearrangements, insertions, or
deletions.

We found 572 locations where a contig disagreed with the
BNG map. All disagreements were apparent chimeric joins in the
contigs with respect to the BNG map. A typical signature of a mis-
assembly is a sharp drop in coverage, indicating a possible “weak”
overlap holding the contig together. Given that the average cover-
age in mega-reads was ~28x (Table 2), we flagged as a possible mis-
assembly any disagreement with the BNG map where the coverage
was <4; this analysis flagged 342 locations. We examined a small
set of the higher-coverage discrepancies manually, and in each
case the assembly appeared correct (based on underlying support
from paired Illumina reads); thus, we concluded that these are like-
ly to represent errors in the BNG map rather than in Aet_MR.1.0.
Therefore, for the full assembly of 4.28 Gb, we estimate approxi-
mately one assembly error per 12.5 Mb.

To estimate base-level accuracy, we aligned a subset of the
PacBio reads (50,000 randomly sampled reads), the super-reads,
the mega-reads, and the final set of assembled contigs to the previ-
ously released Ae. tauschii assembly, version 0.4 (ftp://ftp.ccb.jhu.
edu/pub/data/Aegilops_tauschii). That assembly was built from
5216 pools of bacterial artificial chromosomes (BACs), with each
pool containing eight overlapping BACs spanning approximately
1 Mb. (Each BAC was a haploid sequence averaging ~120 kb in
length.) These pools were independently assembled from 250-bp
[llumina MiSeq reads using SOAPdenovo2 (Luo et al. 2012). The
reads used for the BAC pool assemblies were a subset of reads
used for creating the mega-reads. For alignment, we used the
NUCmer program from the MUMmer package (Delcher et al.
2002; Kurtz et al. 2004) with a minimum match length of 127
bp to anchor each alignment.

The average identity of the alignments was 85.1%, 99.91%,
and 99.77% for the PacBio reads, super-reads, and mega-reads, re-
spectively. From this, we estimate that the error rates for super-

Table 3. Assembly statistics for Ae. tauschii Aet_MR.1.0 compared to
other assemblies

MaSuRCA

Assembler mega-reads Canu SOAPdenovo®

Total assembly 4,328,138,807 4,064,667,949 2,691,663,445
length (bp)
N50 contig size (bp) 486,807

Number of contigs 68,565

311,860 2105
24,115 1,107,056

N50 numbers were computed using an estimated genome size of 4.25
Gb. The Canu assembly used PacBio data only but at deeper coverage,
55x. The SOAPdenovo (Li et al. 2010) assembly reported in Jia et al.
(2013) used 94x coverage in lllumina and Roche 454 sequences. The
MaSuRCA mega-reads assembly used only the short-fragment lllumina
pairs plus the PacBio data.

Yia et al. 2013.
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reads and mega-reads were <0.09% and 0.23%, respectively (Table
2). The mega-reads have a higher error rate because some of them
include small patches of sequence computed from alignments of
PacBio-only data. The PacBio error rate of 14.9% was consistent
with previous reports on this technology.

For the final assembly, we computed the average identity for
all alignments longer than 10 kb, which is long enough to span al-
most all repeats in the genome. This yielded 10,597 alignments
covering 1,629,700,561 bp, with an average identity of 99.96%
(one mismatch every 2500 bases), with values ranging from
99.24% to 100%. Thus, the base-level accuracy of the assembly ap-
pears very high: note that some differences between the haploid
BAC assemblies and the diploid whole-genome assembly are likely
due to haplotype differences rather than errors. In support of this
hypothesis, if we consider only the alignments at 99.99% identity,
which presumably come from regions of the whole-genome as-
sembly whose haplotype matches the BAC sequence, these cover
650,572,225 bp (40%) of the aligned regions. Note that we also
evaluated the base-level accuracy of the Canu assembly using the
same procedure, which yielded a rate of 99.32% identity between
the contigs and the BAC assemblies.

Assembly quality as a function of sequencing depth

To evaluate how the mega-reads assembly method performs with
varying amounts of PacBio data, we performed a series of experi-
ments on a data set from Arabidopsis thaliana Ler-0. We used a hy-
brid data set for this genome generated previously (Lee et al. 2014),
which includes over 100x coverage by PacBio reads using P5-C4
chemistry and 110x coverage by paired, 300 bp Illumina MiSeq
reads. We sampled the PacBio data to create six data sets ranging
from 10x to 60x coverage and combined each of these with 100x
coverage in MiSeq reads. Figure 2 shows how the resulting assem-
bly NS5O size varies with PacBio coverage. The N50 size was greatest
at a depth of 60x. Note that because this genome is far less repeti-
tive than Ae. tauschii, the assembly was much more contiguous;
also note that with newer P6-C4 chemistry, which produces longer
reads, the results with lower PacBio coverage would very likely
improve.

10000000
9000000
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7000000
6000000
5000000

4000000

N50 contig size

3000000
2000000
1000000

0
0 10 20 30 40

PacBio coverage

Figure 2. Change in the N50 contig size of genome assemblies using the mega-reads algorithm with
varying PacBio coverage and 100x lllumina coverage for the Arabidopsis thaliana genome. At 60x, the
N50 size of 9.15 Mb approaches the maximum possible N50 contig size for this genome, which is de-

termined by the sizes of the chromosome arms.

Discussion

Both Ae. tauschii and its close relative, hexaploid wheat (Triticum
aestivum), have proven difficult to assemble because of their un-
usually high proportion of repetitive sequences. A previously pub-
lished version of Ae. tauschii (Jia et al. 2013) yielded only 2.69 Gbp
(~63% of the genome) spread across 1.1 million contigs. Attempts
to assemble T. aestivum have met with similar problems: a massive
effort to sequence T. aestivum chromosome-by-chromosome yield-
ed only 61% of the genome in very small contigs with N50 sizes
from 1.7 to 8.9 kb (International Wheat Genome Sequencing
2014). Most of the repeats in Ae. tauschii and in other plants consist
of transposons (Lisch 2013), which occur in thousands of copies,
many of them nearly identical, throughout the genome.
Assembly algorithms can find the correct location for these ele-
ments if the input data include reads that are long enough to con-
tain the entire span of a repeat plus unique flanking regions on
either side.

The PacBio reads generated in this study, with an average read
length of 8520 bp, are easily long enough to span most transpos-
able elements, which are usually 2-3 kb in length (though some
can be longer). However, the high error rate of PacBio reads re-
quires some form of error correction before these sequences can
be used in a final assembly. The mega-reads introduced here solve
both these problems: with an average length of 6319 bp, they are
long enough to contain the ubiquitous 2-3 kb repeats in the Ae.
tauschii genome, and they are accurate enough—much more accu-
rate than raw I[llumina reads—to be used to generate a high-quality
assembly. Using these mega-reads, we have generated a whole-ge-
nome assembly of Ae. tauschii with an NS5O contig size of 486,807
bp, more than 20 times longer than any previous assembly. The
unprecedented contiguity of this assembly provides a strong foun-
dation for additional mapping and assembly work to create a far
more complete picture of this important plant genome. The strat-
egy described here, using deep coverage Illumina sequencing with
moderate coverage PacBio sequencing, demonstrates a cost-effec-
tive approach to generating highly contiguous, accurate assem-
blies of large genomes, even when those genomes contain large

numbers of long, near-identical repeats.

Software availability

The MaSuRCA mega-reads software is
freely available from http://genome.
umd.edu/masurca.html and as Supple-
mentary Material.

Data access

The Ae. tauschii assembly (Aet_MR.1.0) as
well as the Illumina and PacBio sequenc-
ing data from this study have been sub-
mitted to NCBI BioProject (https:/www
.ncbi.nlm.nih.gov/bioproject/) under ac-
cession number PRJNA329335.
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