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Optimizing campus‑wide COVID‑19 
test notifications with interpretable 
wastewater time‑series features 
using machine learning models
Tuo Lin 1, Smruthi Karthikeyan 2, Alysson Satterlund 3, Robert Schooley 4, Rob Knight 5,6,7, 
Victor De Gruttola 8, Natasha Martin 4 & Jingjing Zou 8*

During the COVID‑19 pandemic, wastewater surveillance of the SARS CoV‑2 virus has been 
demonstrated to be effective for population surveillance at the county level down to the building level. 
At the University of California, San Diego, daily high‑resolution wastewater surveillance conducted at 
the building level is being used to identify potential undiagnosed infections and trigger notification of 
residents and responsive testing, but the optimal determinants for notifications are unknown. To fill 
this gap, we propose a pipeline for data processing and identifying features of a series of wastewater 
test results that can predict the presence of COVID‑19 in residences associated with the test sites. 
Using time series of wastewater results and individual testing results during periods of routine 
asymptomatic testing among UCSD students from 11/2020 to 11/2021, we develop hierarchical 
classification/decision tree models to select the most informative wastewater features (patterns of 
results) which predict individual infections. We find that the best predictor of positive individual level 
tests in residence buildings is whether or not the wastewater samples were positive in at least 3 of the 
past 7 days. We also demonstrate that the tree models outperform a wide range of other statistical 
and machine models in predicting the individual COVID‑19 infections while preserving interpretability. 
Results of this study have been used to refine campus‑wide guidelines and email notification systems 
to alert residents of potential infections.

The ongoing spread of SARS CoV-2 creates an urgent need for rapid detection of the SARS CoV-2 virus that 
aids in development of effective decision making to contain its transmission in communities—particularly those 
with high density congregate living such as university  campuses1–3. Campus-wide surveillance systems capable 
of rapid detection of new infections remain an important public health  priority4–7.

Wastewater surveillance has been demonstrated to be a cost-effective approach to monitoring viral spread, 
by virtue of its ability to (1) detect individual infections at early stages in some settings, (2) identify variants 
of concern, and (3) provide a less biased assessment of population infection dynamics–particularly in settings 
where infections are underreported to health  departments8–16,19,20.

As part of the “Return to Learn” (RTL) program of the University of California, San Diego (UCSD), a campus-
wide GIS (geographic information systems)-enabled wastewater surveillance system has been implemented for 
the detection of SARS CoV-2 since Fall  202017,18,34. Currently, the program has 131 samplers collecting daily 
from > 340 buildings (both residential and non-residential). A previous study at UCSD from 2020 showed that 
the wastewater surveillance system was highly sensitive in detecting individual infections (85% of the buildings 
where a residential student was diagnosed with SARs-COV-2 had a positive wastewater signal prior to individual 
identification). Additionally, notification of building residents that their building had a positive signal doubled 
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testing rates among residents, even during a period of routine asymptomatic  testing19. Information on wastewater 
results is provided on the UCSD public daily dashboard, and targeted email notifications are sent to those living 
or working in buildings with concerning signals.

A key question challenging programs using wastewater for early detection is when targeted notifications, 
including email notifications, should be issued to populations at risk in order to increase testing or enhance 
other mitigation efforts to contain potential transmissions. Crucial to answering this question is quantitative 
assessment of the relationship between the risk of individual COVID-19 infections and the wastewater test 
results from associated samplers. There is a recognized need for real-time analysis of the wastewater results to 
inform decision making 56.

Results from correlative studies have demonstrated a significant relationship between the viral load in waste-
water and individual COVID-19 PCR-based test results. Vallejo et al.21 used a linear model for the relationship 
between COVID test cases and viral load detected in the wastewater in A Coruña, Spain. Bar-Or et al.22 also 
applied a linear model and concluded that the concentration of the virus RNA in the Bnei Brak sewage correlates 
with the number of COVID-19 positive individuals in the city. Agrawal et al.23 found a significant correlation 
between COVID-19 incidence and viral load observed in wastewater in the Frankfurt metropolitan area. Li et al.24 
performed a meta-analysis for multi-national wastewater data and compared three different models, multiple 
linear regression, artificial neural network, and adaptive neuro fuzzy inference system for predicting COVID-19 
community prevalence (# of infections per 100,000 people) based on wastewater-based quantities including the 
SARS-CoV-2 RNA concentration.

Several studies utilized not only wastewater results from single time points but also longitudinal time series 
of wastewater data. Krivoňáková et al.25 found a high correlation between the number of viral particles in waste-
water and the number of individual cases tested 2 weeks later in data from Bratislava. Cao et al.26 analyzed the 
time series of wastewater results using the vector autoregression model to model the weekly variations on the 
SARS-CoV-2 wastewater concentrations and COVID-19 cases in the Borough of Indiana, PA. Ai et al.27 com-
pared different time-series and non-time-series machine learning and deep learning models including linear 
model, gradient-boosting decision tree, feed-forward deep neural networks, Facebook Prophet and long short-
term memory for the predictive performance of COVID-19 cases in central Ohio. Their results indicated that 
time-series models outperformed non-time-series models. Other  studies28–30 have also compared advanced 
neural networks to predict COVID-19 cases. However, few existing studies focused on extracting interpretable 
predicting features from time series wastewater results and using them to predict individual test results, which 
is crucial for facilitating transparent and informed community-level decision making as well as evaluations of 
the reliability and robustness of the decisions. Comparing to black-box type models, models that can identify 
the importance of features are particularly advantageous because they provide decision makers with a clear 
understanding of the factors that contribute to the model’s predictions, allowing for more targeted interventions 
and informed decision making.

In this study, we propose a new pipeline for feature extraction of longitudinal wastewater-based testing results 
and predicting individual COVID-19 infections with the features. As we discuss below, wastewater testing is 
one example of pooled  testing31–33. What is different in our setting is that in standard pooling, investigators can 
control and standardize how many samples are pooled and how much sample from each person is contributed. 
In our setting, these factors are impacted by the design of wastewater systems and depend on processes that 
experimenters do not control. But some principles remain the same; and our analyses are examples of evaluation 
of diagnostic tests—in our case wastewater tests—based on their properties: sensitivity, specificity, positive and 
negative predictive values. Wastewater test results are used to predict the outcome at the level of sets of residence 
buildings that are associated with manholes in which samplers have been installed. The outcome we seek to 
predict is whether or not at least one person is infected in the set of buildings associated with a given sampler. 
We use machine learning to make use of longitudinal time series of wastewater tests to develop optimal rules 
for notification based on the test properties.

Specifically, we develop hierarchical classification/decision tree models to select important features from the 
longitudinal series of tests that should trigger notification—that is, that makes it likely that at least one resident 
is positive. Our analyses of the data on wastewater tests and infections among residents at UCSD derive from 
information collected in the period from Nov. 2020 to Nov. 2021, covering approximately a whole academic 
year. Results indicate that by leveraging single-day, long-term and short-term features extracted from the time 
series of wastewater results, the classification tree model can predict the presence of a positive resident with high 
sensitivity and satisfactory specificity. Important wastewater features are identified in a hierarchical manner; 
the most important feature is having a positive wastewater test in at least 3 out of 7 past days. If fewer than 3 
out of 7 past days have positive wastewater test results, then the next most important feature is whether 1 out 
of 5 past days have positive wastewater tests. When applying the model to a set-apart testing set, the prediction 
accuracy is 72.3%. We also compare the performance of the proposed model to that of random forest models as 
a benchmark and other commonly used statistical and machine learning models; results indicate the proposed 
model can predict outcomes with equal or better accuracy while maintaining a high level of interpretability.

Findings derived from the proposed approach have been used to evaluate and refine the current notification 
system at UCSD. This system sends out timely email notifications to alert residents to a positive wastewater sam-
ple associated with their residence buildings and recommend individual COVID-19 tests to contain transmissions 
at early  stages19. As a result of this study, in 2021 UCSD modified the email notification system to notify after 
3 days of a positive signal. However, during the Omicron surge the email notifications were issued after 2 positive 
days due to the short viral kinetics, indicating the need for ongoing analysis as the virus and epidemiology change.

Our study addresses the urgent need for real-time analysis of data from wastewater surveillance systems 
and predictive models using wastewater features to predict COVID-19 infections. Results of our study facilitate 
informed decision making for community-level recommendations and policies intended to contain and prevent 
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transmissions of COVID-19. The approach proposed here provides accurate prediction of individual COVID-
19 infection and interpretable feature engineering and can be readily implemented and applied to other similar 
systems.

Data processing and model
Pre‑processing of wastewater test results
As part of the UCSD return-to-learn program, a total number of 140 commercial auto-samplers have been 
deployed in manholes across the UCSD campus, covering teaching, administrative, and residence buildings, 
including four isolation buildings for students who test positive for COVID-19. In this study, we focus on the 
data from the 73 manholes covering the 239 residence buildings and their ~ 9700 residents. Figure 120 shows the 
structure of manholes associated with residence buildings. Twenty-four-hour composite wastewater samples are 
collected daily from the manholes and analyzed in the laboratory for viral concentration. SARS-CoV-2 signatures 
are screened via real-time quantitative PCR (RT-qPCR) for the N1, N2, and the E  genes8. Results are integrated 
with the campus GIS database to traceback from the manholes to associated upstream residence buildings and 
identify potential sources of any positive SARS-CoV-2 signals.

As mentioned above, wastewater tests are used to estimate the sensitivity and specificity of different rules 
for predicting that at least one person will test positive among residents in a set of buildings associated with a 
given sampler. This requires tracing the source of positive signals back to buildings in a way that accounts for the 
upstream/downstream structure of the sewer network: only the buildings that can contribute to the wastewater 
are matched to a given manhole. Shown in Fig. 1 is the structure of manholes connecting to residence  buildings20. 
However, the set of buildings associated with a sampler can depend on the results of the wastewater tests. For 
example, if wastewater from sampler B tests positive but that from an upstream sampler A tests negative, only the 
buildings contributing wastewater into the sewer between samplers A and B are considered relevant for analysis of 
signals in sampler B. By contrast, if both samplers are positive, then all buildings associated with either A or B are 
included in the analysis. The spatially enabled sewer network and subsequent trace of samplers to buildings were 
stored in and performed by ArcGIS Pro 2.7 (Esri). More details about the sewer network and tracing of samplers 
can be found  in19 and the interactive web interface at https:// retur ntole arn. ucsd. edu/ dashb oard/ index. html.

Our analysis focuses on the time period of 11/23/20–11/13/21, which covers the majority of the academic 
year 2020–2021 and the first quarter of year 2021–2022. A total of 23,282 wastewater daily samples were col-
lected during this period, and a cutoff of the quantification cycle [Cq] values  398,20 was used to categorize these 
samples as positive (< 39) vs. negative (> = 39). Among the samples, 3488 were positive and 19,794 were negative.

Figure 1.  Locations of autosamplers installed in manholes (orange circles) connected to UCSD buildings (grey 
blocks)20.

https://returntolearn.ucsd.edu/dashboard/index.html
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Ascertainment of individual tests results of COVID‑19
During the COVID-19 pandemic, UCSD student residents were required to take individual COVID-19 tests 
weekly (reduced to bi-weekly after Spring 2021). In addition, in an effort to alert individuals of potential infec-
tions in their buildings and encourage them to be tested in one of the on-campus diagnostic testing sites or self-
administered test-kit vending machines, targeted email notifications were sent to residents of associated source 
buildings when positive wastewater SARS-CoV-2 signals were detected in manholes. Notices were also sent to 
the UCSD campus when a potentially positive building contained a common access area open to the  public19. 
Tests are sent to UC San Diego Health labs for processing and the results are saved in an electronic health record 
(EHR)  system17,34. Results of individual tests are available within one day of testing.

Daily individual diagnostic COVID-19 test results of residents in each building are aggregated and merged 
with the daily wastewater results from manholes associated with the buildings. After excluding all the missing 
observations, there are a total of 8853 daily wastewater test records in the merged data, of which 1212 are positive 
and 7641 are negative. The corresponding COVID-19 individual diagnostic test results among students residing 
in campus housing indicate 170 are positive and 8683 are negative.

Of the 170 COVID-19 individual diagnostic positive test results among students residing in campus hous-
ing, only 54.7% have a tested-positive wastewater sample from the associated manhole on the same day of the 
individual test, indicating using daily wastewater test results alone cannot achieve satisfactory prediction of 
individual infections of COVID-19 in associated buildings. Potential reasons for the observed discrepancy 
between individual tests and wastewater results include delays in being tested or getting results among those 
who had become infected. For example, among infected residents, there could be a delay in the manifestation of 
symptoms or absence of symptoms; for those reasons or others, the individual tests may not take place until a few 
days after the actual onset of the infection. There can also be false negative wastewater test results arising from 
low viral concentration, even if one or more residents in associated buildings have become infected. In addition, 
there is a possibility of false positives in the wastewater results. To understand the implications of the wastewater 
samples and to optimize the utility of the wastewater surveillance system in detecting individual infections, a 
definition of the outcome of individual infections that accounts for potential lags between the wastewater and 
individual test results is needed.

Here we propose a 3-day time window approach to define the outcome of individual infections. Using the 
date of wastewater test as an anchor point, for each manhole we examine individual diagnostic test results of 
residents in associated buildings in the 3-day window including the date of wastewater test and the day before 
and after the wastewater test. This outcome is defined as positive for an individual-level test if there exists at least 
one positive individual COVID-19 test result among residents in associated buildings in this time window. The 
proposed time window addresses the time lag between the wastewater and individual tests by including posi-
tive individual tests in intervals of one day before to one day after the detection of a positive wastewater test. A 
sensitivity analysis using a longer window of 6 days has also been conducted and its results are described in the 
Appendix; this choice of window leads to a similar model as does the analysis with a 3-day window.

Model for predicting individual COVID‑19 infections using wastewater results
To detect individual COVID-19 infections, we use multiple interpretable features extracted from wastewater time 
series data, which include both single-day test results and short-term/long-term trends, to provide a compre-
hensive characterization of different aspects of the wastewater test results. The features integrated in the model 
are: (1) a list of features includes single-day wastewater results up to five days before the day in question, (2) 
counts of positive signals among the past days including whether at least 1 out of the past 3 days, 1, (or 2, 3) out 
of the past 4 days, 1 (or 2, 3) out of the past 5 days and 2 (or 3) out of the past 7 days contains positive wastewater 
signals, and (3) features characterizing trends in the past days such as whether wastewater results are all positive 
in the past 3 consecutive days.

We adopt a machine learning approach–classification trees–35–37,42,57, to predict individual COVID-19 infec-
tions defined using the 3-day window with the above features extracted from wastewater signals. The classifica-
tion tree derives from a hierarchical model that predicts outcomes with recursive binary partitions based on 
an ordering of the importance of the predictors. At each node/leaf of the classification tree, the feature capable 
of reducing the maximal amount of Gini impurity, a criterion to measure the mixture of different classes of the 
outcome, is selected to partition the  data38–40. Predictors that appear in earlier nodes are considered more impor-
tant in predicting the  outcome42,57. The ordering of importance of predictors is crucial in our study, as we aim 
to accurately predict the presence of infections in residence buildings and to reveal important and interpretable 
features from wastewater test results to aid in decision making for campus-wide recommendations and mandates. 
To avoid overfitting and improve interpretability, we apply constraints on the model complexity using a penalty 
parameter cp41,43,44,57. In addition, the classification tree mitigates collinearity among predictors as a result of its 
variable selection mechanism based on feature  importance50.

We also incorporate a re-weighting mechanism in our model to address the important issue of imbalance in 
the outcome. There are many more negative than positive individual test results in the data, which represents a 
typical imbalance in the outcome of individual testing of COVID-19 in similar communities. Models optimizing 
prediction accuracy when trained with the data without any adjustment tend to classify all outcomes as negative 
due to over-representation of the negative outcomes. To address this issue, we re-weight the data by allocating 
larger weights to positive than to negative outcomes in training the classification tree models. This approach is 
similar to over-sampling the minority class and under-sampling the majority class, which has been shown to 
achieve good classifier  performance45–47.

To evaluate the performance of the proposed approach, we partition the data from 11/23/20 to 11/13/21 into 
a training and a testing set. The training set includes data from 11/23/20 to 04/30/21 and the testing set includes 
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data from 06/30/21 to 11/13/21. The partition of the dataset is not random: it preserves the chronological order-
ing of the dates of the test results as definitions of the features extracted from the wastewater samples rely on 
the chronological ordering of the dates. In addition, results in the same period are expected to behave similarly 
as the policies, circulating variants, and other pandemic conditions vary with the chronologic time of measure-
ment. Comparing model performance in the training and testing sets also provides insight into the influence of 
these factors on the effectiveness of the wastewater surveillance system. We exclude the samples in May and June 
due to potential data quality issues; further investigation of the wastewater results during this period is needed. 
In the Appendix, we present a sensitivity analysis that includes data from this period, and we obtain the same 
model as described in the following section. This analysis serves to demonstrate the robustness of our results.

Results
Classification tree trained with the training set
Figure 2 shows the result of classification tree trained with the training set. From the top (root) to the bottom 
(leaves) of the tree, we show the features selected to predict the outcome; features closer to the root are consid-
ered to be more important. The branches of each node, visualized by the arrows, describe the features and the 
two possible conditions used for binary partitioning of the data according to which condition is satisfied. The 
color of each node indicates the predicted outcome for records partitioned into the category corresponding to 
the node: red indicates a positive predicted outcome of at least one infection in associated buildings, and blue, 
a negative predicted outcome. The value in the circle of each node indicates the percentage of the partitioned 
data records in the whole data.

The model in Fig. 2 indicates the most important feature in predicting the outcome is whether fewer than 
(<) 3 days in the last 7 had positive wastewater test results. The outcome is predicted to be positive if wastewater 
results are positive in at least 3 out of the past 7 days, and negative otherwise. Given positive wastewater results 
on fewer than 3 out of the past 7 days, the second most important feature is whether none of the past 5 days 
have positive wastewater results. If yes then the outcome is predicted to be negative, otherwise to be positive.

The classification/decision tree in Fig. 2 is fitted with weights of positive outcomes equal to (2/# positive 
classes) and weights of negative outcomes equal to (1/number # of negative classes).

Note the weights are standardized by the total number of positive and negative outcomes, respectively, and 
then multiplied by scalers based on the importance placed on correctly predicting the positive and negative out-
comes. Our choice of weights reflects the priority of sensitivity (true positive rate) over specificity (true negative 

Figure 2.  Classification tree model trained with the training set only. Wastewater time series features are used 
to predict individual COVID-19 test results. The red node means a positive predicted outcome and the blue 
node means a negative predicted outcome. The value inside each node denotes the percentage of the total data 
records that falls in the category of the node. “+” means number of positive wastewater results. For example: 
“ +  < 3 in last 7 days” means there were less than ( <) 3 days of positive wastewater results in the last 7 days of 
wastewater testing.
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rate) in predicting positive individual infections. A sensitivity analysis using weights equal to the reciprocal of 
class sizes for both classes is performed in Appendix. The value of the penalty parameter on model complexity 
cp = 0.02 is chosen to balance optimal performance in the training set as suggested by cross-validation while 
maintaining a small number of nodes in the tree for model interpretability. A sensitivity analysis using cp = 0.001 
to train the model is available in the Appendix to further investigate the influence of model complexity on the 
prediction performance and the trade-off between model complexity and interpretability.

Table 1 shows the confusion matrix of the predictions when applying the model to the training set. The sen-
sitivity (True Positive Rate, TPR = TP/(TP + FN)) is 83.7% and the specificity (True Negative Rate, TNR = TN/
(TN + FP)) is 58.5%. Note that the calculations of sensitivity and specificity are unaffected by the weights allocated 
to positive and negative outcome classes as the weights appear in both numerators and denominators and cancel 
out. The overall weighted prediction accuracy is 75.3%, which is calculated by

where wi denotes the weight of sample i , I
(

predict positive|positive
)

 denotes the indicator function that sample 
i has a positive outcome that is predicted to be positive, and I

(

predict negative|negative
)

 denotes the indicator 
function of sample i has a negative outcome that is predicted to be negative. It is expected to observe a higher 
estimated sensitivity than specificity as we are over-sampling the positive outcome class compared to the nega-
tive class.

To evaluate the prediction performance of the classification tree, we then apply the model to the set-apart 
testing set in the period of 06/30/21–11/13/21. The confusion matrix is provided in Table 2. For the testing set, the 
sensitivity decreased from 83.7 to 77.1% while the specificity increased from 58.5 to 62.8%. The overall weighted 
prediction accuracy is 72.3%. The testing set contains the period in which most of the student residents had 
already received vaccination and the wave of the highly infectious SARS-CoV-2 Omicron variant had not yet 
 arrived49. Therefore, fewer infected cases were observed and thus underrepresented the total population. Despite 
the evolving nature of the pandemic, the model performed well and was able to predict individual infections with 
satisfactory accuracy and high sensitivity. We also trained a model on the testing set alone and compared it with 
the model trained with the training set; the comparison of results is available in the Appendix.

Influence of weights
In this section we investigate the role of relative weights of positive and negative outcomes in the prediction. For 
simplicity of notation, we denote a relative weight of (a/#positive classes): (b/#negative classes) for positive vs. 
negative outcomes as a:b. For example, the model in Fig. 2 is trained with weights 2:1; this weighting places a 
double amount of emphasis on records with positive outcomes compared to those with negative outcomes after 
standardizing by the total numbers of positive and negative outcomes. The trained classification tree model for 
relative weights 1:1 is available in the Appendix as a sensitivity analysis.

Figure 3 displays the receiver operating characteristics (ROC)  curve48,51, which demonstrates a trade-off 
between sensitivity and specificity; the x-axis indicates one minus the specificity, and the y-axis indicates the 
sensitivity. This curve permits a comparison of the performance of models trained with varying weights. Detailed 
results are provided in Table 3. With relative weights on the positive class as small as 0.2:1, all the outcomes 
are predicted to be negative; hence, the sensitivity is 0 and the specificity is 1. As the weight for positive class 
increases, the sensitivity also increases, and the specificity decreases. With relative weights of 4:1 or greater, all 
outcomes are predicted to be positive, yielding sensitivity of 1 and specificity of 0.

Table 4 summarizes the importance of features in models trained with different weights given by orders of 
nodes appearing in the classification trees. For results to be comparable, cp value of 0.02 is used in training all 
models with different weights; this approach leads to different numbers of nodes under different weight settings. 
For all models, the root nodes are defined by whether or not fewer than 3 out of the past 7 days have positive 

∑n
i=1 wi

[

I
(

predict positive|positive
)

+ I
(

predict negative|negative
)]

∑n
i=1 wi

Table 1.  Confusion matrix of results obtained from applying the model (trained with the training set) to the 
training set.

Predict positive (%) Predict negative (%)

Actual positive 83.7 16.3

Actual negative 41.5 58.5

Table 2.  Confusion matrix of results obtained from applying the model (trained with training set only) to the 
testing set.

Predict positive (%) Predict negative (%)

Actual positive 77.1 22.9

Actual negative 37.2 62.8
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wastewater signals; this is consistently the most predictive wastewater feature for predicting individual COVID-
19 infections. In all models with a lower level node/leaf, the next most important feature is whether or not none 
of the previous 5 days have positive wastewater signals. Combined with the result of the root node, a predictive 
model that is robust to the choice of weights consistently includes the dichotomous features: 3 or more out of 
7 days wastewater positive (yes/no) and 1 to 5 of the previous days wastewater positive (vs 0 days). This model 
leverages features characterizing wastewater results both in a long-term trend of 7 days and in shorter periods 
of 5 days.

Prediction with random forest model as a benchmark
To further evaluate the prediction performance of the proposed classification tree model, we apply a weighted 
random forest  model52 consisting of an ensemble of 1000 individual weighted classification trees. As in the clas-
sification tree model, weights are applied for oversampling the positive individual cases. The random forest is 
known for its high prediction accuracy but lacks the interpretability of the classification trees. Comparing the 
performance of the proposed model to that of the random forest enables us to assess the proposed model with 
a reliable benchmark and to understand the trade-off between the interpretability and prediction accuracy of 
models.

Detailed results are provided in Tables 5 and 6. The proposed classification tree models generally outperform 
the random forest models in the same weight settings, especially when the relative weights of positive vs. negative 
outcomes are high. For the random forest approach, a choice of weight ratio that leads to high sensitivity and 
relatively high specificity, is 3:1. In this case, sensitivity equals to 72.9% and specificity equals to 68.5%, leading 
to a 71.7% prediction accuracy, while the proposed classification tree model has a prediction accuracy of 73.5% 
(at the same 3:1 weight ratio). One possible reason for the random forest to under-perform compared to the 
proposed classification tree is that the random forest is based on bootstrap (or subsampling) of the data, which 
breaks the chronological structure of the time series in the data and thereby potentially affects the prediction 
performance. Another possible reason is that given the relatively small feature space and the limited number of 
positive COVID infections in the data, the increased complexity of the random forest model introduces more risk 
of overfitting, which likely contributed to its decreased accuracy when applied to unseen test data. Furthermore, 

Figure 3.  ROC (Receiver Operating Characteristic) curves of models trained with different relative weights for 
positive and negative outcome classes using data of the training set only. The left panel shows results obtained 
from applying the models to the training data. The right panel shows results of applying the models trained with 
the training set to the testing set.

Table 3.  Detailed values of sensitivity and (1−Specificity) for ROC curves in Fig. 3.

Relative weight (positive vs. 
negative outcome)

Sensitivity (training set 
performance)  (%)

1−Specificity (training set 
performance)  (%)

Sensitivity (testing set 
performance)  (%)

1−Specificity (testing set 
performance)  (%)

0.2:1 0 0 0 0

0.5:1 68.1 20.4 43.8 14.5

1:1 68.1 20.4 43.8 14.5

1.5:1 80.7 33.8 58.3 28.0

2:1 83.7 41.5 77.1 37.2

3:1 83.7 41.5 77.1 37.2

4:1 100 100 100 100
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the random forest model is not the preferred choice in our study due to its reduced interpretability and transpar-
ency, particularly for the purpose of guiding campus-wide policies.

Comparisons to other statistical and machine learning models
Besides the random forest models, we also assess the proposed classification tree model against various com-
monly used statistical and machine learning models, thoroughly evaluating their predictive performance and 
interpretability. All of these models are fitted using identical features extracted from the wastewater signals, 
same training and testing data partitioning, and the same weight ratios of positive vs. negative outcomes as 
for the classification tree models, ensuring a fair comparison. Results listed in this section focus on the model 
performance under the weight ratio of 2:1 as in the proposed classification tree model. Complete results under 
a variety of weight ratios can be found in Tables 5 and 6.

First, we apply both the logistic regression model and the logistic regression with LASSO  regularization53 for 
variable selection to our preprocessed data. The ten-fold cross-validation is used to determine the value of the 
penalty parameter lambda for LASSO. The threshold of 0.5 for the predicted probability of positive individual 
infection is used to determine the binary predicted outcome. Logistic regression without variable selection 
produce a relatively low prediction accuracy of 67.7% with sensitivity of 66.7% and specificity of 69.8% when 
applying the model fitted using the training set to the set-aside test set. The observed under-performance of 
prediction in the test set may be due to its higher model complexity, which can lead to overfitting. Logistic 
regression with LASSO yields improved accuracy of 72.3% with sensitivity of 77.1% and specificity of 62.8% in 
the test set. Variables selected using LASSO include indicators of positive wastewater signals in at least 3 days 

Table 4.  Importance of features extracted from wastewater time series given by models trained with different 
relative weights. “a_out_b” in the table represents the dichotomous feature of whether there were at least a out 
of the previous b days with positive wastewater test results.

Relative weights 0.5:1 1:1 1.5:1 2:1 3:1

1st level feature 3_out_7 3_out_7 3_out_7 3_out_7 3_out_7

2nd level feature 1_out_5 1_out_5 1_out_5

3rd level feature 2_out_7

Table 5.  TPR (Sensitivity) and FPR (1−Specificity) for different machine learning models under different 
relative weights, calculated from applying models trained from the training set to the testing set. The (%) sign 
is omitted for space saving.

Relative weights

Classification tree
Logistic 
regression

Logistic 
regression 
(LASSO) SVM

Neural 
network

Random 
forests

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

0.2:1 0 0 4.2 0.4 0 0 0 0 0 0 0 0

0.5:1 43.8 14.5 29.2 10.1 39.6 10.3 37.5 8.8 37.5 9.2 35.4 9.2

1:1 43.8 14.5 54.2 20.2 43.8 14.5 54.2 18.0 47.9 16.1 52.1 13.9

1.5:1 58.3 28.0 64.6 26.6 77.1 37.2 68.8 29.4 64.6 28.2 64.6 25.6

2:1 77.1 37.2 66.7 30.2 77.1 37.2 72.9 32.6 70.8 32.5 70.8 30.6

3:1 77.1 37.2 75.0 34.4 77.1 37.2 100 100 66.7 29.6 72.9 31.5

4:1 100 100 97.9 97.7 100 100 100 100 87.5 92.6 95.8 95.5

Table 6.  Weighted prediction accuracy for different machine learning models under different relative weights, 
calculated from applying models trained from the training set to the testing set.

Relative weights Classification tree (%) Logistic regression (%)
Logistic regression 
(LASSO) (%) SVM (%) Neural network (%)

Random forests 
(%)

0.2:1 83.3 83.7 83.3 83.3 82.9 83.3

0.5:1 71.6 69.7 73.0 73.3 74.6 72.4

1:1 64.6 67.0 64.6 68.1 67.5 68.8

1.5:1 63.8 68.1 71.4 69.5 68.1 68.4

2:1 72.3 67.7 72.3 71.1 69.0 70.3

3:1 73.5 72.7 73.5 75.0 67.6 71.7

4:1 80.0 78.8 80.0 80.0 71.7 77.7
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out of past 7 days, at least 1 day out of past 5 days and at least 1 day out of past 3 days, largely overlapping with 
the important features selected by the classification tree model and hence the similar results. Although LASSO 
selects one additional variable, compared to the decision tree method, it has a very similar prediction perfor-
mance (exactly the same in 3 decimal digits). This is because the variable whether wastewater signals are positive 
in at least 1 day out of past 3 days has a regression coefficient very close to 0 (despite not exactly equal to 0). As 
a popular variable selection method, LASSO is considered a comparable approach to the decision tree in our 
study, but it is less intuitive in terms of ranking the variable importance in prediction, which is a critical factor 
we consider in our policy making process.

We also apply several machine learning models including the Support Vector Machine (SVM) with linear 
kernel and Feedforward Neural Network (FNN) with single hidden  layer54,55. Both traditional SVM and FNN 
do not support variable selection and have limited interpretability. Furthermore, the prediction performance of 
these two methods falls short of the classification tree method in the test set (SVM: accuracy: 71.1%, sensitivity: 
72.9%, specificity: 67.4%; FNN: accuracy: 69.0%, sensitivity: 70.8%, specificity: 67.5%). Notably, FNN exhibits 
impressive performance in the training set, achieving an accuracy of 78.1%. This underscores that complex 
machine learning methods can excel at fitting the training data but may encounter overfitting issues when applied 
to unseen testing dataset. Furthermore, when the weight ratio of positive vs. negative increases to 3:1, the SVM 
loses its effectiveness, resulting in a specificity of 0 and predicting all outcomes as positive.

Tables 5 and 6 include detailed results of sensitivity vs. (1-specificity) when applying training-set-fitted mod-
els with different weight ratios to the test data, using each of the models in comparison. The classification tree 
methods and logistic regression with LASSO are the two approaches that strike a good balance between inter-
pretability and high sensitivity, particularly when using weight ratios of 2:1 and/or 3:1. Overall, the proposed 
classification tree model still possesses the best prediction accuracy. Given its good prediction performance and 
interpretability of results, the logistic regression with LASSO can serve as a viable alternative to the classification 
tree model. Nevertheless, from the perspective of policy makers, the classification tree may still hold an advantage 
due to its intuitive feature importance ranking. Further details on prediction accuracy, sensitivity and specificity 
for training models can be found in the Appendix.

Positive predictive value (PPV) and negative predictive value (NPV)
We further examine the positive predictive value (PPV) and negative predictive value (NPV) of the predictions 
of individual infections as defined below:

where TP and FP are numbers of true and false positives and TN and FN are numbers of true and false negatives 
in the prediction, and the prevalence is the proportion of true positives among all tested units of observation 
(which could be, for example, at a building or individual level).

These quantities can be particularly useful in developing policies regarding control of the COVID-19 epi-
demic. In the case of pooled tests, results can help in using testing resources more efficiently—by focusing inten-
sive testing where cases are most likely to reside. In addition, the tests can provide an early warning about the 
potential for at least one resident of a building unit to be infected. To make best use of the wastewater tests, we 
estimate the probability that there is at least one infected person in a residence given a positive wastewater test. 
This estimate will aid in evaluating the cost–benefit of different strategies for testing the residents. In addition, 
knowledge of the relationship between the timing of positive wastewater tests and positive individual-level tests 
can inform us about when—or at what schedule—it is best to offer the latter to residents.

Our testing setting is a little more complex than usual, because the wastewater test is a pooled test that 
aggregates results of buildings associated with the same manholes; hence, the number who contribute to the 
pool varies across tests—which are done at the residence level. Furthermore, the prevalence of interest is at the 
residence level; as noted above, we define a residence to be a true positive if there is at least 1 infected resident 
in the residence. Like the wastewater itself, this definition is at the residence building level.

The prevalence at the residence building level pc can be estimated from the prevalence p at the individual level 
given the number of residents (n), under the assumption of independence across infection events across them: 
pc = prob of (> = 1 infected resident) = 1−(1−p)n where p is individual-level prevalence. Because most detected 
infection events we observed are only in a single person, we believe that violation of this assumption has little 
effect on our estimates. As the prevalence of COVID-19 and the number of residents vary with date, the esti-
mates of PPV and NPV will vary with date as well. There are also possible dilution effects that could affect the 
estimations. For example, the detectability of SARS CoV-2 genetic material may depend on the total number of 
residents living in the upstream of the manholes.

Positive predictive value (PPV) of wastewater (WW) test

=
Sensitivity of WW test ∗ prevalence

{(

sensitivity ∗ prevalence
)

+
(

1− specificity
) (

1− prevalence
)}

= TP/(TP+ FP)

Negative predictive value (NPV) of WW test

=
Specificity of WW test ∗

(

1− prevalence
)

{

specificity ∗
(

1− prevalence
)

+
(

1− sensitivity
) (

prevalence
)}

= TN/(TN + FN)
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Here we provide approximate building-level estimates of the PPV and NPV and demonstrate how they are 
affected by the number of residents in buildings associated with manholes. We focus on the period of the week 
before Fall 2021 quarter begins, as most student residents are in the process of moving back onto campus during 
that week, and are required to take individual-level tests as soon as they move into their residences. The curves 
of PPV and NPV as a function of the number of people in residence buildings are shown in Fig. 4. We note 
that the PPV and NPV are quite sensitive to the number of residents; the usefulness of wastewater tests must be 
considered in this context. Negative tests are less reassuring as the number climbs near 1000; whereas PPV only 
approaches 50% when the number of residents is near 250.

Sensitivity analysis
Furthermore, we conduct a comprehensive sensitivity analysis designed to assess the model’s performance. We 
systematically vary sampling settings and model parameters and compare the proposed approach to other models 
and methods and evaluate the results. Specifically, the sensitivity analysis includes: (1) altering the time-window 
length in defining the outcome of individual COVID-19 infection, (2) applying different weight ratios of positive 
vs. negative outcomes in fitting the models, (3) varying model complexity including number of predictive features 
selected, (4) fitting a separate classification tree model using only the test set, (5) examining data from May and 
June 2021, (6) training proposed model on data including only Fall 2020, when the vaccines are still not publicly 
available, (7) varying the sampling frequency of wastewater signals, and (8) conducting a comparative analysis 
of the proposed classification tree model against other statistical and machine learning models. Details of the 
sensitivity analysis and results are available in the Appendix. Based on results from the above sensitivity analyses, 
we conclude that the proposed model and method stand as the overall best choice in the context of for our study. 
When applying the model, we recommend that researchers leverage our model for their own studies and carry out 
a similar sensitivity analysis to refine the parameter settings tailored to the specifics of their individual models.

Concluding remarks
This paper proposes an innovative approach for predicting the presence of infections in residence buildings using 
results from wastewater surveillance systems. The goal of this study is to make use of wastewater test results to 
inform decision making regarding notification of wastewater results to guide public health strategies intended 
to control the spread of individual COVID-19 infections in communities. To this end, we extract features that 
characterize wastewater test results over time, develop classification/decision tree models to select important 
features, use them to predict probabilities that there is at least one individual infection in residences, and finally 
optimize the COVID-19 test notification strategy.

We used the classification tree to analyze data from the wastewater surveillance system and individual-level 
COVID-19 tests of residents on UCSD campus from Nov 2020 to Nov 2021. Results reveal that the best predictor 
of positive individual level tests in residence buildings is whether or not the wastewater results were positive in 
at least 3 of the past 7 days. Using a set-apart testing set, we demonstrate the accuracy of these predictions. Our 
results suggest that the proposed analysis approach can be useful in using wastewater to guide policies around 
notifications for building residents to seek individual-level testing. Features included in the model are robust to 
changes in weights of positive and negative individual test results, and the features discovered to be most impor-
tant are consistent across different weight settings in balancing the positive and negative outcomes in the data.

Our study contributes to the UCSD wastewater surveillance system by introducing a more streamlined and 
effective methodology for utilizing wastewater test data to inform campus-wide decision-making efforts aimed 
at reducing virus transmission and preventing outbreaks. We leverage advanced statistical and machine learn-
ing techniques to identify key features from time series of wastewater test results, optimizing the cost-effective 

Figure 4.  PPV and NPV curves as functions of numbers of residents in buildings associated with manholes.
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utilization of the surveillance system’s capabilities. Discoveries from the analysis have been useful in assisting 
decision making in the UCSD campus-wide Return-to-Learn program and have been incorporated into the 
UCSD email notification system.

Although our approach is motivated by and developed for the UCSD Return-to-Learn program, it can be 
readily applied to similar wastewater surveillance systems to predict individual COVID-19 infections in com-
munities and to facilitate decision making processes in making community-wide guidelines, mandates and poli-
cies for containing transmission of the virus. In applying the proposed approach, several aspects of the model 
may need to be adjusted by researchers and/or policymakers according to pandemic conditions at the time of 
analysis. Detailed discussions regarding the potential limitations of the proposed approach when applied to other 
scenarios are presented in the following section.

Discussion
This study has potential limitations which may affect the effectiveness of the proposed approach when applied 
in other scenarios. Here we discuss each of the limitations and provide directions to possible solutions. First, in 
defining the outcome of individual COVID-19 infections, we introduced a time window of 3 days to account 
for potential lags from onset of infections to testing and mismatches between the individual infections and the 
wastewater results. If the required test frequency changes, the optimal performance of wastewater tests may 
require that the time window be adjusted accordingly.

Second, conditions of the pandemic vary over time because of the regular appearance of new variants and 
changes in people’s behavior as responding to masking and other mandates and mitigation strategies. Further-
more, coverage rates of vaccinations may improve over time in some communities, but the effectiveness of older 
vaccines constantly wanes. Such external factors can influence the effectiveness of the model using wastewater 
test results. A possible solution to ensure the model reflects and adapts to these changing factors is to use the 
online learning approach and continuously update the model training as new data becomes available over time. 
Sensitivity analysis can also be conducted to examine the influence and importance of these factors.

Third, an important consideration is the trade-off between the cost and benefit of different wastewater testing 
strategies, which may vary in different applications. In our study, we utilized all available daily wastewater data. 
However, in some other scenarios, collecting daily wastewater signals can be costly. One possible solution is to 
adjust the data collection frequency to strike a balance between cost and benefit. We have presented a sensitiv-
ity analysis in the Appendix to assess the impact of different sampling frequencies. However, it’s important to 
note that when working with data sampled at a different frequency, adjustments must be made to the feature 
engineering methods, as features derived from daily wastewater measurements may not be applicable with less 
frequent data collection. The trade-off between the sampling cost and the prediction accuracy of the model 
should also be examined carefully.

Another aspect of the cost–benefit trade-off is the choice between wastewater epidemiology and individual 
clinical COVID tests. At UCSD, the test costs approximately the same for wastewater samples and clinical 
samples: though technical costs are higher for wastewater due to an additional concentration step, labor costs 
are higher for clinical due to the need for licensed personnel, resulting in a rough balance. The samplers were 
roughly evenly distributed between residential and non-residential areas, with approximately 70 samplers serv-
ing 10,000 residents. When clinically testing 10,000 people twice a week, it results in 20,000 tests per week. In 
contrast, utilizing daily wastewater surveillance for a group of 70 individuals for a week totals 490 tests per week, 
illustrating substantial cost savings at this scale. Additionally, while one could argue that antigen tests are less 
expensive than qPCR, it’s essential to consider the data capture costs, which are notably high. This is primarily 
because there is no automated method for individuals to report their test results, and they generally do not do 
so. The trade-off between cost and benefit can be its own topic and can be included as a potential future direction 
for research in this area. While we aim to provide some useful discussion here, we recommend that researchers 
conduct cost–benefit analyses and/or explore the long-term sustainability of wastewater surveillance for COVID-
19 within the context of their own situation.

Finally, ethical and privacy concerns need to be addressed when applying the proposed approach to other 
scenarios. Ethical and privacy concerns are minimal in our application as wastewater was collected at the build-
ing level and does not contain identifiable information to trace back to specific individuals. Therefore, while 
the wastewater testing component helped improve the timeliness of email notifications, it did not introduce any 
additional data elements that could jeopardize privacy. However, these measures may not be universally appli-
cable. Researchers seeking to replicate our approach should carefully consider the ethical implications specific 
to their context and adhere to relevant privacy regulations.

Ethics declarations
The Institutional Review Board (IRB) of University of California, San Diego provided approval for human subject 
protection oversight of the data obtained by the EXCITE laboratory for the campus clinical samples. Informed 
consent was obtained from all participants included in the study, and the appropriate institutional forms have 
been archived, and any sample identifiers included were de-identified. The wastewater component of this project 
was discussed with our IRB and was not deemed to be human subject research as it did not record personally 
identifiable information. All methods were carried out in accordance with relevant guidelines and regulations.

Data availability
All raw wastewater sequencing data are available via the NCBI Sequence Read Archive under the BioProject 
ID PRJNA819090. Consensus sequences from clinical and wastewater surveillance are all available on GISAID. 
Spike-in sequencing data are available via Google cloud (https:// conso le. cloud. google. com/ stora ge/ brows er/ 

https://console.cloud.google.com/storage/browser/search-reference_data
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search- refer ence_ data). The UCSD campus dashboard can be accessed at https:// retur ntole arn. ucsd. edu/ dashb 
oard/. The SEARCH genomic surveillance dashboard is available at https:// searc hcovid. info/ dashb oards/ seque 
ncing- stati stics/. The wastewater time series features are available to researchers for non-commercial use per 
request.

Code availability
The code for all analysis involved in this manuscript is hosted publicly on GitHub repository (https:// github. 
com/ tuoli n123/ Waste water_ UCSD).
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