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Abstract

We derive anomaly constraints for Abelian and non-Abelian discrete symmetries using the path inte-
gral approach. We survey anomalies of discrete symmetries in heterotic orbifolds and find a new relation
between such anomalies and the so-called ‘anomalous’ U(1).
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Symmetries play a key role in the understanding of fundamental laws of physics. Apart from
continuous, in particular gauge, symmetries, discrete symmetries provide a useful tool in field-
theoretic model building and arise often in top–down models.

Very much like continuous symmetries, discrete symmetries can be broken by quantum ef-
fects, i.e. have an anomaly [1]. If this is the case, one expects that the corresponding conservation
laws be violated through non-perturbative effects. The criteria for discrete symmetries to be
non-anomalous, and thus to be exact, have been extensively studied in the Abelian (ZN ) case
[2,3]. Anomaly criteria for non-Abelian discrete symmetries have been discussed first in specific
examples [4]. Here, we use the path integral approach [5,6] to derive anomaly constraints on
non-Abelian discrete symmetries. We follow the discussion of [7], and extend it such as to in-
clude gravitational anomaly constraints. We further re-derive the conditions for Abelian discrete
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symmetries to be anomaly-free, using the path integral method. This derivation allows for an
alternative, perhaps more intuitive understanding of the criteria, which does not rely on contri-
butions from heavy states.

We explore the issue of discrete anomalies in string compactifications, focusing on heterotic
orbifolds. The question we seek to clarify is whether discrete anomalous symmetries can appear
in string-derived models [3,8]. The discrete symmetries on orbifolds reflect certain geometrical
symmetries of internal space. Since the geometrical operations, i.e. space group transformations,
are embedded into the gauge group, one might suspect that the discrete anomalies are related
to gauge anomalies. We find that this is indeed the case, specifically we find that the so-called
‘anomalous’ U(1), which occurs frequently in heterotic orbifolds, determines the anomalies of
discrete symmetries.

The paper is organized as follows. In Section 2 we first re-derive anomaly constraints for
Abelian discrete symmetries and then derive the constraints for non-Abelian discrete symmetries,
using the path integral approach. In Section 3 we consider heterotic orbifolds and identify a
geometric operation on the orbifold, which we would like to refer to as ‘anomalous space group
element’, as the source of all discrete anomalies. Section 4 contains our conclusions. We also
include four appendices where we present the calculation of anomalies of the dihedral group
D4 (A), D4 anomalies in a concrete model from the literature (B) and the anomaly coefficients
in two concrete string models (C & D).

2. Anomaly-free discrete symmetries

2.1. A few words on symmetries

Consider a theory described by a Lagrangean L with a set of fermions Ψ = [ψ(1), . . . ,ψ(M)],
where ψ(m) denotes a field transforming in the irreducible representation (irrep) R(m) of all
internal symmetries. A general transformation Ψ → UΨ or, more explicitly,

(1)

⎡
⎢⎣

ψ(1)

...

ψ(M)

⎤
⎥⎦→

⎛
⎜⎝

U(1) 0
. . .

0 U(M)

⎞
⎟⎠
⎡
⎢⎣

ψ(1)

...

ψ(M)

⎤
⎥⎦ ,

which leaves L invariant (up to a total derivative) denotes a classical symmetry. By Noether’s
theorem, continuous symmetries imply, at the classical level, conserved currents, Dμjμ = 0. For
instance, in the case of an Abelian continuous symmetry one can define the charge Q = ∫ d3x j0

which satisfies the conservation law d
dt

Q = 0.
In the case of a discrete symmetry, the situation is similar. Consider, for simplicity, an Abelian

discrete symmetry, i.e. ZN . Under this symmetry, the fermions of the theory transform as

(2)ψ(m) → e2π iq(m)/Nψ(m),

where (by convention) the discrete charges q(m) are integer and only defined modulo N . If (2) is
a symmetry of L , the corresponding charge q(m) is conserved modulo N .1

1 A familiar example for such a conservation law is due to R-parity, which implies that superpartners can only be
produced in pairs.
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(a) (b)

Fig. 1. Triangle diagrams. (a) U(1)–G–G. (b) D–G–G.

2.2. Basics of anomalies

Classical chiral symmetries can be broken by quantum effects, i.e. have an anomaly. Specifi-
cally, consider a chiral transformation

(3)Ψ (x) → Ψ ′(x) = exp(iαPL)Ψ (x),

where α = αATA with TA denoting the generators of the transformation, and PL is the left-chiral
projector. It is well known that at the quantum level the classically conserved current jμ(x) is
not necessarily conserved any more, that is (cf. e.g. [9])

(4)
〈
Dμjμ(x)

〉=A(x;α) �= 0.

The anomaly A(x;α) can be derived using Fujikawa’s method, i.e. by calculating the transfor-
mation of the path integral measure [5,6], which in our case reads

(5)DΨDΨ̄ → J (α)DΨDΨ̄ ,

where the Jacobian of the transformation is given by

(6)J (α) = exp

{
i
∫

d4xA(x;α)

}
.

The anomaly function A decomposes into a gauge and a gravitational part [10–12],

(7)A=Agauge +Agrav.

The gauge part Agauge corresponds to the triangle diagram α–gauge–gauge (Fig. 1). This
anomaly is given by2

(8)Agauge(x;α) = 1

32π2
Tr
[
αFμν(x)F̃μν(x)

]
.

Here Fμν = [Dμ,Dν] is the field strength of the gauge symmetry, such that Fμν = g(∂μAν −
∂νAμ) for a U(1) symmetry, and F̃μν = εμνρσFρσ denotes its dual. The trace ‘Tr’ runs over all
internal indices.

2 Note that there is a factor 1/2 discrepancy to Fujikawa’s result [5,6] because we are considering only fermions of one
chirality (cf. e.g. [13] and [9, p. 271]).
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Analogously, the gravitational part Agrav is the mixed α–gravity–gravity anomaly. It is known
that it takes the form [10–12]

(9)Agrav = −AWeyl fermion
grav

∑
m

tr
[
α
(
R(m)

)]
,

where the summation runs over the (spin-1/2) fermions in the representations R(m). The sub-
script ‘m’ indicates that each representation R(m) appears only once in the sum. α(R(m))

denotes αATA(R(m)) in the representation R(m), and might therefore be thought of as a
dimR(m) × dimR(m) matrix such that ‘tr’ is the standard (matrix) trace. The contribution of
a single Weyl fermion to the gravitational anomaly is given by [10–12]

(10)AWeyl fermion
grav = 1

384π2

1

2
εμνρσ Rμν

λγ Rρσλγ .

To evaluate the anomaly (7), we split the set of all generators TA into generators of continuous
symmetries ta and those of discrete symmetries τi . Therefore, we shall discuss separately the two
cases:

(i) anomalies of continuous symmetries with α = αa ta ;
(ii) anomalies of discrete symmetries with α = αiτi .

Note that we (implicitly) assume that all symmetries are gauged.
For the evaluation of the anomalies, it is useful to recall the powerful index theorems [10,11],

which imply

(11a)
∫

d4x
1

32π2
εμνρσ F a

μνF
b
ρσ tr[ta tb] ∈ Z,

(11b)
1

2

∫
d4x

1

384π2

1

2
εμνρσ Rμν

λγ Rρσλγ ∈ Z,

where ta are in the fundamental representation of a particular gauge factor G. Note that in our
conventions tr[ta tb] = 1

2δab . The factor 1
2 in Eq. (11b) follows from Rohlin’s theorem [14], as

discussed in [15].

2.3. Anomaly constraints for continuous symmetries

We start by reviewing the anomaly constraints for the continuous symmetries. They arise
from demanding that A(x;αa ta) vanish for arbitrary αa in order for the Jacobian J (α) to be
trivial. Consider first the mixed U(1)–G–G anomaly, where G is a non-Abelian gauge factor
with generators ta . Representations under G are denoted by r(f ). This anomaly can be related to
Fig. 1(a). From Eq. (8) and the index theorem (11a), one finds that it only vanishes if

(12)AU(1)–G–G ≡
∑
r(f )

q(f )�
(
r(f )

)= 0.

In analogy to Eq. (9), ‘
∑

r(f ) ’ means that each representation r(f ) is only summed once.3 q(f )

denote the respective U(1) charges. The Dynkin indices �(r(f )) are defined by

(13)�
(
r(f )

)
δab = tr

[
ta
(
r(f )

)
tb
(
r(f )

)]
.

3 Of course, the dimensions of representations w.r.t. further symmetry factors have to be taken into account.
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Our conventions are such that �(M) = 1/2 for SU(M) and �(M) = 1 for SO(M). Consider next
the U(1)–grav–grav anomaly, Eq. (9). From the index theorem (11b), it vanishes if

(14)AU(1)–grav–grav ≡
∑
f

q(f ) =
∑
m

q(m) dim
(
R(m)

)= 0.

The sum ‘
∑

f ’ indicates a plain summation over all fermions.
In summary, we see that the continuous symmetries are non-anomalous if and only if the

Jacobian (6) is trivial for arbitrary α.

2.4. (Re-)derivation of anomaly constraints for ZN symmetries

Now consider a discrete symmetry, i.e. α = αiτi where, by convention, αi takes only the
discrete values 2π/Ni and the eigenvalues of τi are integer. Like before, we demand that J (α) be
trivial. It is now important to note that the Jacobian can also be trivial for non-zero arguments of
the exponential. Let us specify the conditions for this to happen. Consider first the Abelian case,
i.e. a ZN symmetry with α = 2πτ/N . From the gauge and gravitational parts of the anomaly
function, equations (8) and (9), and the index theorems (11), we see that the Jacobian is trivial
if

(15a)AZN –G–G = 1

N

∑
r(f )

q(f )
(
2�
(
r(f )

)) ∈ Z,

(15b)AZN –grav–grav = 2

N

∑
m

q(m) dimR(m) ∈ Z.

The factor 2 in front of the Dynkin index in (15a) is due to our conventions (tr[ta tb] = 1
2δab).

This means that the constraints for a ZN symmetry to be anomaly-free are

(16a)ZN–G–G:
∑
r(f )

q(f )�
(
r(f )

)= 0 modN/2,

(16b)ZN–grav–grav:
∑
m

q(m) dimR(m) = 0 modN/2.

If N is odd, we can always make the ZN charges even by shifting them by integer multiples of N .
This explains why the sums in (16a) and (16b) can always be made integer. Hence in the case of
an odd N one can replace N/2 by N after a suitable shift of the charges. The constraints (16a)
and (16b) coincide with the ones of the literature [2,3,15–19]. We would like to emphasize that, in
our derivation, we did not invoke the contributions from heavy Majorana fermions.4 Rather, the
anomaly constraints (including the condition mod N/2) are a consequence of the index theorems
and follow from demanding that the Jacobian be trivial. We also note that in our approach one
immediately sees that there are no cubic anomaly constraints for discrete symmetries, which is
in agreement with [3].

4 The mod N/2 condition for even N has been justified as follows [2]: one can always introduce Majorana fermions ψ

with ZN charges N/2. Their contribution to the sum is N/2, on the other hand the Majorana mass term mψψ is allowed
by the discrete symmetry. Since m can be arbitrarily large, ψ can be ‘removed from the theory’. While the argument leads
to the correct result, one might nevertheless wonder if the anomaly conditions change if one considers more constrained
settings (such as string-derived theories) where extra degrees of freedom cannot be introduced at will. Our derivation
shows that the anomaly conditions remain unchanged.
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2.5. Anomalies of non-Abelian discrete symmetries

We now turn to non-Abelian discrete symmetries D. Consider a specific transformation U .
Since we are considering a discrete symmetry, there is a positive integer N such that UN = 1, i.e.
U is generating a ZN symmetry; we take N to be the smallest such integer. Denote the (discrete)
representations of D by d(f ). Moreover, an element U ∈ D in a representation d(f ) is given by
U(d(f )) = eiα(d(f )) with α(d(f )) = 2πτ(d(f ))/N and τ(d(f )) having integer eigenvalues. In the
evaluation of the anomaly functions, Eqs. (8) and (9), we note that tr[τ(d(f ))] takes the role of
the ZN charge. This charge, denoted by δ(f ), can be expressed in terms of the group elements
U(d(f )) as (cf. [7])

(17)δ(f ) ≡ tr
[
τ
(
d(f )

)]= N
ln detU(d(f ))

2π i
.

As usual, the ZN charges δ(f ) are defined modulo N only (such that they can consistently be
expressed through the multi-valued logarithm).

From the index theorems (11), we find that demanding that the Jacobian be trivial amounts to
requiring

(18a)
∑

(r(f ),d(f ))

δ(f ) · �(r(f )
) != 0 mod

N

2
,

(18b)
∑
d(f )

δ(f ) != 0 mod
N

2
,

where the sum ‘
∑

(r(f ),d(f ))
’ indicates that only over representations is summed which are non-

trivial w.r.t. both G and D; the symbol ‘
∑

d(f ) ’ in (18b) means that the sum extends over all
non-trivial representations d(f ).

These constraints have to be fulfilled for each discrete transformation U separately. However,
elements with detU = 1 do not lead to anomalies, cf. Eq. (17).

Non-Abelian discrete groups D have more than one element. Assume that we have verified
that the constraints (18) are fulfilled for U,U ′ ∈ D. It is then obvious that this implies that for
both elements U ′′ = U · U ′ and U ′′′ = U ′ · U Eqs. (18) hold as well. This means that in practice
one only has to check anomaly constraints for the generators of D. In Appendix A, we discuss
D4 anomalies as an example for non-Abelian discrete anomalies. In Appendix B we present a
sample calculation.

2.6. Summary of anomaly constraints

The anomaly constraints for discrete symmetries can be summarized as follows:

(i) Anomalies of ZN symmetries

(19a)ZN–G–G:
∑
r(f )

q(f ) · �(r(f )
) != 0 mod

N

2
,

(19b)ZN–grav–grav:
∑
m

q(m) · dimR(m) != 0 mod
N

2
.
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(ii) Anomalies of non-Abelian discrete symmetries D: one has to verify that for all generators
of D the following two equations hold

(20a)D–G–G:
∑

(
r(f ),d(f ))

δ(f ) · �(r(f )
) != 0 mod

N

2
,

(20b)D–grav–grav:
∑
d(f )

δ(f ) != 0 mod
N

2
.

Here, the sum
∑

d(f ) extends over all non-trivial representations of D, δ(f ) is defined in
Eq. (17), and N denotes the order of the generator.

2.7. Consequences of discrete anomalies

Now we turn to study the implications of an anomalous discrete symmetry. One might en-
visage several scenarios in which such a symmetry appears. In what follows, we focus on a
particular one: we start with a so-called ‘anomalous’ U(1) and break it to a discrete subgroup.
Later, in Section 3, where we investigate string-derived models, we will attempt to realize differ-
ent situations.

In a fundamental theory, anomalies of a continuous symmetry are not acceptable. However,
there is the well-understood situation in which a U(1) factor appears ‘anomalous’, i.e. the usual
anomaly conditions seem not to be satisfied. This is the case when the anomaly is canceled by
the Green–Schwarz (GS) mechanism [20]. To discuss this scenario, consider a supersymmet-
ric gauge theory. Under the (‘anomalous’) U(1)anom transformation, the chiral superfields Φ(f )

containing the chiral fermions ψ(f ) and the vector superfield V transform as

(21)Φ(f ) → e−iq(f )ΛΦ(f ), V → V + i(Λ − Λ̄).

The anomaly is canceled by the transformation of the dilaton S (or possibly a different chiral
field), which gets shifted under the U(1)anom transformation as

(22)S → S + i

2
δGSΛ,

where δGS is proportional to the trace of the generator of U(1)anom, tr tanom, (see below). The
tree-level Kähler potential for the dilaton is

(23)Kdilaton(S + S̄) = − ln(S + S̄).

As usual, the kinetic terms for the scalar components of S arise from the corresponding D-term,
[Kdilaton(S + S̄)]D , i.e.

(24)
1

4s2

(
∂μs∂μs + ∂μa∂μa

)
,

where s = ReS and a = ImS. Consider now the axionic shift (22),

(25)a → a + θ/2.

The kinetic term (24) is invariant under this shift when θ is constant. However, as the parameter θ

depends on x for U(1)anom transformations, the kinetic term (24) is not invariant under U(1)anom.
To make it invariant, we have to introduce the terms, Aμ∂μa and AμAμ, in the Stückelberg form.
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That implies the U(1)anom-invariant Kähler potential for the dilaton is

(26)Kdilaton

(
S + S̄ − δGS

2
V

)
,

which also includes the s-dependent Fayet–Iliopoulos (FI) D-term.
It is convenient to define a normalized U(1)anom generator t̃anom, whose charges q̂anom fulfill

the consistency conditions (cf. [21])

(27)
1

3

∑
f

(
q̂

(f )
anom

)3 = 1

24

∑
f

q̂
(f )
anom =: 8π2δGS.

Our conventions are such that δGS is positive. (As before,
∑

f means plain summation.) The
mixed U(1)anom–G–G anomaly coefficients, as defined in (12), have to satisfy the consistency
conditions

(28)
1

k
AU(1)anom–G–G = 8π2δGS,

where k denotes the Kač–Moody level of G. For the Green–Schwarz mechanism to work, this
relation has to hold for all gauge group factors.

The first question is whether U(1)anom can be used to forbid couplings. To answer this ques-
tion, consider a product of fields, Φ(1) · · ·Φ(n), with

∑
i qi < 0. In the case of a usual U(1)

symmetry, Φ(1) · · ·Φ(n) cannot denote an allowed coupling. However, in the case of U(1)anom,
this conclusion does not apply; instead one finds that the non-perturbative coupling

(29)e−pS/δGSΦ(1) · · ·Φ(n)

with an appropriate p can be induced (cf. [3,22,23]). In other words, the field Σ = e−pS/δGS

transforms under the U(1) with a charge that is opposite to trqanom. That means that U(1)anom
does not forbid products of fields with

∑
i qi < 0.

What can one say about products of fields Φ(1) · · ·Φ(n) with
∑

i qi > 0? Here the answer is
that an anomalous U(1) implies the existence of a FI D-term (cf. Eq. (26)). To obtain a supersym-
metric vacuum, the FI term has to be canceled. That is, certain fields with net negative anomalous
charge have to attain a VEV in the vacuum. Multiplication of Φ(1) · · ·Φ(n) by such fields can
lead to allowed couplings, hence in supersymmetric vacua couplings of the type Φ(1) · · ·Φ(n)

will generically be allowed.
Given these considerations, it is also clear what happens if one breaks U(1)anom to a discrete,

anomalous subgroup. Since U(1)anom is violated by terms of the form (29), also the discrete
subgroup is expected not to be exact.5

An anomaly of an Abelian discrete symmetry does not necessarily signal an inconsistency
of the model. Symmetries might just be accidental or approximate, and, therefore, need not to
be gauged. Further, if the anomalies are universal, they can be canceled by a Green–Schwarz
mechanism. In practice, this means that they are broken by the VEVs of certain fields; in addi-
tion there are non-perturbatively induced terms with hierarchically small coefficients, as in (29).

5 A special situation arises if U(1)anom gets broken to a ZN subgroup which, however, is non-anomalous by the criteria
(16). Here, either the terms (29) appear nevertheless, or there is a subclass of terms, which are forbidden by the non-
anomalous ZN , and where the coefficient happens to be zero. That is, if the second possibility is true, non-perturbative
effects break U(1)anom to an non-anomalous ZN subgroup. To find out which situation is realized would be, by itself, an
interesting question, which is, however, beyond the scope of this study.
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These small corrections might turn out to be a virtue rather than a problem in concrete mod-
els.

2.8. A comment on the ‘SUSY zero mechanism’

We conclude this section by commenting on supersymmetric texture zeros [24,25], which go
sometimes also under the term ‘SUSY zero mechanism’. It is stated that, due to holomorphicity
of the superpotential, an anomalous U(1) symmetry can enforce absence of certain couplings
even though the symmetry is broken in supersymmetric vacua, where the FI D-term is canceled.
Let us briefly review the argument: cancellation of the FI term requires certain field with cer-
tain, say negative, sign of ‘anomalous’ charge to attain a vacuum expectation value (VEV). Now
one might envisage a situation in which only fields with non-positive charges get a VEV. Con-
sider then a combination of some other fields, Φ(1) · · ·Φ(n), which has total negative anomalous
charge. To be neutral w.r.t. the U(1)anom symmetry, this combination needs to be multiplied by
fields with positive U(1)anom charge. However, so the argument goes, those fields do not attain
VEVs, and hence Φ(1) · · ·Φ(n) cannot denote an allowed coupling. That is, couplings of the type
Φ(1) · · ·Φ(n) appear to be absent. On the other hand, in many applications of the ‘SUSY zero
mechanism’ it is not possible to specify a symmetry that forbids those couplings.

With what we have discussed above, we are able to resolve the puzzle: Σ = e−pS/δGS carries
positive charge and hence couplings of the form ΣΦ(1) · · ·Φ(n) can arise. The induced effective
coupling is suppressed (so that, as far as textures are concerned, a ‘zero’ can be a good approxi-
mation), however, in contrast to what is often assumed, in general it is not related to the scale of
supersymmetry breakdown.

3. Anomalies in heterotic orbifold models

An interesting question is whether discrete anomalies occur in top–down constructions, in
particular in string compactifications [3,8]. Since string theory is believed to be UV complete,
one would expect that there are no (uncanceled) anomalies in this framework. While this has
been extensively checked for continuous gauge symmetries, the case of discrete symmetries is
somewhat more subtle. Construction of string models exhibiting discrete anomalies would lead
to a playground in which the ‘quantum gravity effects’, which are commonly believed to spoil
the discrete conservation laws, can be specified in somewhat more detail than usual.

Specifically, we study anomalies of discrete symmetries in heterotic orbifold models. In our
presentation, we mainly focus on the Z6-II orbifold, yet in our computations we also considered
different orbifolds, so that our results are more generally valid. We start with a very brief review
on orbifolds, summarize the essentials of (discrete) string selection rules, continue by relating
the so-called ‘anomalous U(1)’ to a discrete transformation in compact space, which we refer to
as the ‘anomalous space group element ganom’, and conclude by relating anomalies in discrete
symmetries to the anomaly in the discrete transformation ganom.

3.1. Orbifold basics

A heterotic orbifold emerges by dividing a six-dimensional torus T
6 by one of its symmetries

θ [26,27] (see [28] for a recent review). T
6 can be parametrized by three complex coordinates zi

(i = 1,2,3). Then we denote θ = diag(e2π iv1 , e2π iv2 , e2π iv3). For example, in Z6-II orbifolds one
has vi = (1/6,1/3,−1/2). A model is defined by the compactification lattice, the twist vector
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vi , the shift V and the Wilson lines Wα . Given these data, the massless spectrum (at the orbifold
point) is completely determined (for recent explicit examples see e.g. [29,30]). A rather common
feature of these constructions is the occurrence of a so-called ‘anomalous U(1)’, U(1)anom, [21,
31] (cf. Section 2.7), which implies that, at one-loop, a FI D-term is induced [32]. As we shall
see, the ‘anomalous’ U(1) plays a prominent role in the discussion of discrete anomalies.

3.2. Stringy discrete symmetries

Couplings on heterotic orbifolds are governed by certain selection rules [33,34] (see also
[29,30,35,36]), some of which can be interpreted as discrete symmetries of the effective field
theory emerging as ‘low-energy’ limit in these constructions. These symmetries fall into two
classes, depending on whether they reflect space group rules or R-charge (or H -momentum)
conservation.

3.2.1. Space group rules
The space group selection rules are stated by

(30)
∏
r

(
θk(r)

, n(r)
α eα

)� (1,0),

where we label the states entering the coupling by r . (θk(r)
, n

(r)
α eα) is the space group element

representing the string boundary condition with n
(r)
α = integer, eα are lattice vectors defining T

6,
and ‘�’ means that the product on the l.h.s. lies in the same equivalence class as the identity
element. The rotational part of (30) gives rise to the point group selection rule, and here we refer
to it as the k-rule, which in Z6-II orbifolds reads

(31)
∑

r

k(r) = 0 mod 6.

The translational part can be rewritten as

(32a)SO(4) plane:
n∑

r=1

k(r)n
(r)
2 = 0 mod 2,

(32b)
n∑

r=1

k(r)n
(r)′
2 = 0 mod 2,

(32c)SU(3) plane:
n∑

r=1

k(r)n
(r)
3 = 0 mod 3.

The quantum numbers n
(r)
3 , n

(r)
2 and n

(r)′
2 specify the localization of the states on the orbifold;

we follow the conventions of [30].
The space group rules (32) can be interpreted as Z2 × Z

′
2 × Z3 flavor symmetries, denoted

Z
flavor
2 × Z

flavor′
2 × Z

flavor
3 in what follows. Under this symmetry, each state comes with two Z2

charges and one Z3 charge,

(33a)Z
flavor
2 : q2 = kn2 mod 2,

(33b)Z
flavor′
2 : q ′

2 = kn′
2 mod 2,

(33c)Z
flavor: q3 = kn3 mod 3.
3
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In models where certain Wilson lines are absent, these symmetries combine with permutation
symmetries of equivalent fixed points to non-Abelian discrete flavor symmetries [29,37]. As we
are interested in anomalies, we focus on the Abelian subgroups of these discrete symmetries (cf.
Section 2.5).

3.2.2. Discrete R-symmetries
The discrete R-symmetries in Z6-II orbifolds based on the Lie lattice G2 × SU(3) × SO(4)

are expressed by [29,30]

(34a)
n∑

r=1

R
(r)
1 = −1 mod 6,

(34b)
n∑

r=1

R
(r)
2 = −1 mod 3,

(34c)
n∑

r=1

R
(r)
3 = −1 mod 2.

Hereby, R
(r)
i denotes the ith component of the H -momentum of the bosonic components of

chiral superfields,

(35)Ri = qsh,i − �Ni,

where qsh,i denote the SO(6) shifted momenta of bosonic states and �Ni = Ñi − Ñ∗
i is the

difference of oscillator numbers Ñi, Ñ
∗
i . For twisted sectors, it can be shown that qsh,i = kvi −

int(kvi), with int(kvi) being the smallest integer, such that int(kvi) � kvi .

3.2.3. Modular symmetries
In orbifold constructions, T -duality transformations act as discrete reparametrizations of the

moduli space. In general, there are three T -moduli Ti (i = 1,2,3), each of which corresponds to
the ith complex plane zi . For example, the modulus, T1, T2 and T3, in Z6-II orbifolds correspond
to the overall sizes of G2, SU(3) and SO(4) tori, respectively. Modular symmetry is in a sense
different from other symmetries, where moduli Ti are singlets. Under the modular symmetry, the
moduli Ti transform as

(36)Ti → aiTi − ibi

iciTi + di

,

where ai , bi , ci , di ∈ Z and ad − bc = 1. The Kähler potential Kmatter of matter fields Φ(f )

depends in general on the Ti moduli as

(37)Kmatter =
∏
i

(Ti + T̄i )
mi
∣∣Φ(f )

∣∣2,
where the so-called modular weights mi are given by [39–41]

(38)mi =
⎧⎨
⎩

1, if qsh,i = −1,

0, if qsh,i = 0,

qsh,i + 1 − �Ni, if qsh,i �= 0,−1.
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We require that the Kähler potential Kmatter be invariant under (36). This implies that the matter
fields with the modular weight mi transform under (36) as the following chiral rotation6:

(39)Φ(f ) → Φ(f )
∏
i

(iciTi + di)
mi .

Once the Ti attain vacuum expectation values, these symmetries are (in general) completely
broken. That is, the T -duality symmetries are not expected to contribute to discrete symmetries
which survive to low energies.

3.3. Discrete anomalies on orbifolds

According to the various discrete symmetries described in the previous subsections, we now
define the corresponding anomaly coefficients. We further conduct a scan over many models,
based on several orbifold geometries, and elicit whether there the symmetries of Section 3.2 are
anomalous or not.

3.3.1. Z
flavor
n anomalies

Let us start by studying anomalies in the Z
flavor
n symmetries. A special class of Z

flavor
n anoma-

lies is given by

(40)AZflavor
n –G–G = 1

n

∑
r(f )

q
(f )
n 2�

(
r(f )

)
,

where the sum extends over all non-trivial representations r(f ) of a non-Abelian gauge fac-
tor G and the q

(f )
n are defined in (33). AZflavor

n −G−G is only defined up to twice the smallest

non-vanishing Dynkin index �min = min{�(r(f ))} that appears, i.e. up to 1 if fundamental repre-
sentations of SU(N) groups are present.

We have investigated various heterotic orbifolds, and find that, in general, they exhibit flavor
anomalies (see Appendices C and D for specific examples).

3.3.2. Discrete R anomalies
The R anomalies are given by [38]

(41)A
Ri

G = −c2(G) +
∑
r(f )

(
R

(f )
i + 1

2

)
2�
(
r(f )

)
,

with c2 denoting the quadratic Casimir. The sum extends over all irreps r(f ) denoting the repre-
sentation of the field f w.r.t. the gauge factor G. The discrete R charges in this orbifold are only
defined modulo (6,3,2). Therefore, the anomalies can only be specified up to (6,3,2) times
twice the smallest non-vanishing Dynkin index �min appearing in the sum in (41).

We find empirically that the R anomalies are not universal (for specific examples see Appen-
dices C and D).

6 The Kähler potential of moduli fields, Kmoduli = −∑i ln(Ti + T̄i ) is not invariant under (36). T -duality invariance

requires that the holomorphic superpotential W transform as W → W
∏

i (Ti + T̄i )
−1, such that the combination G =

Kmoduli + Kmatter + ln |W |2, which appears in the supergravity Lagrangean, is invariant.
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3.3.3. T -duality anomalies
By considering the one-loop effective supersymmetric Lagrangean, one finds that the gauge

coupling constant is not invariant under the discrete modular group of T -duality transformations.
The coefficients of this T -duality anomaly are given by [38,40–42]

(42)A
Ti

G = 2c2(G) +
∑
r(f )

(
2m

(f )
i − 1

)
2�
(
r(f )

)
,

where m
(f )
i denotes the modular weight of the state Φ(f ) w.r.t. the plane i (cf. (38)).

As is well known, T -duality anomalies can be canceled in two different ways. One part of it is
removed by the Green–Schwarz mechanism whereas a second part only disappears after consid-
ering one-loop threshold corrections to the gauge coupling constants. Only universal anomalies,
i.e. those A

Ti

G in (42) with fixed i whose values do not depend on G, can be canceled by the
Green–Schwarz mechanism. In contrast, cancellation of non-universal T -duality anomalies re-
quires additionally threshold corrections. According to [41], in orbifold models the anomaly
associated to the modulus Ti is non-universal only if any of the orbifold twists acts trivially on
the corresponding ith complex plane of the underlying six-torus. This means in particular, that
for Z6-II orbifolds the anomalies of T2 and T3 are non-universal and therefore the associated
moduli appear in the threshold corrections. Further, since the orbifold twist acts non-trivially
on the first complex plane, the T1-anomaly must be universal to be completely canceled by the
Green–Schwarz mechanism.

We have conducted a scan over T -anomaly in Z6-II orbifold models, and confirm that only
the T1-anomalies are universal (for our conventions for labeling the two-tori see [29,30,36]).
However, this does not imply that there are uncanceled T -anomalies in the other tori. Rather,
as we shall see in the next section, some T -anomalies are inherited from what we will call the
‘k-anomaly’, which can be canceled by the Green–Schwarz mechanism.

Discrete anomalies can also be canceled by the Green–Schwarz mechanism, just like in the
U(1)anom case [3,22]. Under discrete transformation, the dilaton S (more precisely the axion)
gets shifted according to (22), (25). Note that for the discrete transformation, the shift Λ and θ

are constant (cf. [7]), while for the anomalous U(1)anom the shift Λ(x) and θ(x) are x-dependent.
Hence, both forms of the Kähler potential (23) and (26) are invariant under the anomalous dis-
crete transformation. This implies that the term Σ = e−aS has a definite charge under the discrete
transformation. Then, stringy non-perturbative effects induce terms of the form Φ1 · · ·Φn · e−aS ,
where the Φi transform under (anomalous) discrete symmetries. These terms transform trivially
(although they appear to be forbidden by the discrete symmetry) because the transformation of
the fields gets compensated by the dilaton [3,22]. Note that a superpotential term Φ1 · · ·Φn ·e−aS

has to transform trivially both for the anomalous U(1)anom and anomalous discrete symme-
tries. Furthermore, anomaly cancellation by the Green–Schwarz mechanism requires that discrete
anomalies be universal for different gauge group up to modulo the structure (27). We will exam-
ine the universality conditions for discrete anomalies in Section 3.4.4.

3.4. Relations between discrete anomalies

In orbifolds there are certain quantum numbers like k (denoting the twisted sector), psh
(shifted E8 × E8 momentum), qsh (shifted SO(8) momentum) and oscillator numbers. From
these, one can derive other useful quantum numbers such as the discrete R-charges and mod-
ular weights, as defined in Eqs. (35) and (38). It is hence clear that the derived quantum numbers
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are related. On the other hand, the discrete R-charges and modular weights represent discrete
charges relevant for the string selection rules. Clearly, since the Zn charges derive from the same
set of quantum numbers, the different Zn symmetries entailing different string selection rules
cannot be completely independent.

To see what this means, consider the discrete R-charges and the corresponding selection rule.
At first sight, one might think that the R1, R2 and R3 rules in Z6-II orbifolds entail Z36, Z9 and
Z4 symmetries, respectively. However, it is obvious that, once the k-rule (31) is satisfied, the
discrete R symmetries boil down to Z6 ×Z3 ×Z2 discrete symmetries. That is, one can factorize
this subset of discrete symmetries as

(43)Z
k
6 × [Z6 × Z3 × Z2]R.

3.4.1. A k-anomaly
This raises the question whether the Z

k
6 symmetry (which is implied by the selection rule (31))

has an anomaly. To clarify this, define the k-anomalies as

(44)A
Z

k
6–G–G = 1

6

∑
r(f )

k(f )2�
(
r(f )

)
,

where the sum extends over all non-trivial representations of G. Similarly as for the flavor anoma-
lies, the k-anomaly is only defined modulo twice the smallest non-vanishing Dynkin index �min
appearing in the sum in (44). Condition (15a) implies that, if A

Z
k
6–G–G is not integer, one has a

Z
k
6 anomaly.

3.4.2. R- vs. k-anomalies
Now let us evaluate the R1 anomaly, using the prescription of [38]. One has

A
R1
G = −c2(G) +

∑
r(f )

(
R

(f )

1 + 1
2

)
2�
(
r(f )

)

= −c2(G) +
∑
r(t)

(
k(t)v1 − int

(
k(t)v1

)
︸ ︷︷ ︸

=1

−�N
(t)
1 + 1

2

)
2�
(
r(t)
)

+
∑
r(u)

(
R

(u)
1 + 1

2

)
2�
(
r(u)
)

(45a)= A
Z

k
6–G–G − c2(G) −

∑
r(t)

(
�N

(t)
1 + 1

2

)
2�
(
r(t)
)+∑

r(u)

(
R

(u)
1 + 1

2

)
2�
(
r(u)
)
,

where we have used that v1 = 1/6. The summations
∑

r(u) and
∑

r(t) extend, respectively, over
untwisted and twisted representations of the gauge factor G. This calculation shows that A

R1
G and

A
Z

k
6–G–G are related. Repeating the calculation for R2 and R3 yields

A
R2
G = 2A

Z
k
6–G–G − c2(G) +

∑
r(t)

(
−�N

(t)
2 + 1

2
− int

(
k(t)v2

))
2�
(
r(t)
)

(45b)+
∑

(u)

(
R

(u)
2 + 1

2

)
2�
(
r(u)
)
,

r
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A
R3
G = 3A

Z
k
6–G–G − c2(G) +

∑
r(t)

(
−�N

(t)
3 + 1

2
− int

(
k(t)v3

))
2�
(
r(t)
)

(45c)+
∑
r(u)

(
R

(u)
3 + 1

2

)
2�
(
r(u)
)
.

That is, whenever A
Z

k
6–G–G is non-zero, the Ri anomalies can be fractional.

3.4.3. An ‘anomalous space group element’
In this subsection, we put the k- and Z

flavor
3 anomalies into a greater perspective. It turns out

that they can be related to the so-called ‘anomalous U(1)’ direction. Denote the corresponding
generator by tanom.7 Obviously, tanom is a function of the input, i.e. shift and Wilson lines,

(46)tanom = tanom
(
V, {Wα}).

This direction is fixed up to rescaling, our conventions are to normalize tanom such that (for
tanom �= 0)

(47)
∑

i

tanom · p(i)
sh

tanom · tanom
= 12,

where the sum extends over all states.8 Together with the other properties U(1)anom, this implies

(48)tanom = 1

12

∑
i

p
(i)
sh .

Now perform a Weyl rotation of the input,

(49)
(
V, {Wα})→ (

ΩV, {ΩWα})
with Ω ∈W and W denoting the Weyl group. This is nothing but a change of the basis, hence

(50)tanom → Ω tanom

under (49). This fixes tanom to be a linear superposition of V and the Wα with coefficients that
are invariant under Weyl transformations. Because we are working on the lattice ΛE8×E8 , this
relation holds only up to lattice vectors, i.e.

(51)tanom = kanomV +
∑
α

nanom
α Wα + λ,

where λ ∈ ΛE8×E8 is a lattice vector. This relation between tanom and the orbifold parameters
indicates that the presence of an anomalous U(1) can be attributed to a geometrical operation in
the six dimensional compactified space. This transformation is then encoded in the space group
element ganom = (θkanom

, nanom
α eα).

7 In heterotic orbifolds, the normalization of tanom is determined, so that the first equality sign in (27) represents a
non-trivial condition which can be used to check the consistency of the model.

8 This normalization differs from the one used in Section 2.7 above Eq. (27). In heterotic orbifolds, one can use the

scalar product of the E8 × E8 lattice, which also appears in (47). With this scalar product, t̂anom fulfills t̂anom · t̂anom =
1/2.
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We would like to comment that one cannot trade kanom for nanom
α (and vice versa) as long as

0 � kanom < N and 0 � nanom
α < Nα with Nα denoting the order of the Wilson line. That is, the

coefficients kanom and nanom
α are fixed mod N and Nα , respectively. Further, if tanom ∈ ΛE8×E8 ,

one has kanom = nanom
α = 0, i.e. if kanom or nanom

α are non-zero, one can infer that tanom �= 0, but
the converse is in general not true.

As we shall see in the next section, it turns out that the coefficients kanom and nanom
α are related

to the k- and flavor anomalies. We have verified that the decomposition (51) is possible, i.e. that
there exist kanom and nanom

α such that [tanom − (kanomV +∑α nanom
α Wα)] ∈ ΛE8×E8 , for several

ZN and ZN × ZM orbifolds with and without Wilson lines.

3.4.4. Survey of anomaly relations
As we have seen, not all discrete anomalies are independent in orbifold constructions. Specif-

ically, we found that the k- and R-anomalies are related by (45). Given the decomposition (51),
one is tempted to suspect that discrete anomalies are related to and determined by the coefficients
kanom and nanom

α . To figure out whether this is so, we have conducted a scan over several thou-
sands of models with various geometries and have calculated the k-, R- and T -duality anomalies.
We obtain the following (empirical) relations:

• Relation between the k-anomaly and kanom:

(52)A
Z

k
6–G–G = kanom

6
mod 1.

In particular, the A
Z

k
6–G–G anomalies are universal. Furthermore, the mixed Z

k
6–grav–grav

anomaly

(53)A
Z

k
6−grav−grav =

∑
m

k(m) · dimR(m)

turns out to be always 0 mod 3, thus consistent with the anomaly constraints (19).
• Relation between AZflavor

α –G–G and nanom
α :

(54)A
Z

flavor
3 –G–G = nanom

3

3
mod 1,

(55)A
Z

flavor
2 –G–G = nanom

2

2
mod 1.

These anomalies turn out to be universal for different gauge groups in the models under consid-
eration.

• Relation between the k- and Ri -anomalies: Only if there is a k-anomaly, the R-anomalies
can be fractional. We find that the Ri -anomalies are ‘inherited’ from the k-anomaly, specifically

(56a)A
R1
G = A

Z
k
6–G–G mod 1,

(56b)A
R2
G = 2A

Z
k
6–G–G mod 1,

(56c)A
R3
G = 3A

Z
k
6–G–G mod 1.

• Relation between the k- and T -duality anomalies. Similarly to (56), we have found that the
T -duality anomaly is related to the k-anomaly by

(57a)A
T1 = 2A k mod 1,
G Z6–G–G
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(57b)A
T2
G = 4A

Z
k
6–G–G mod 1,

(57c)A
T3
G = 6A

Z
k
6–G–G mod 1.

These statements apply also to the models presented in Appendices C and D.
• Relation between the k-, T -duality and Ri -anomalies. The previous relations (56) and (57)

imply

(58a)A
T1
G − A

R1
G = A

Z
k
6–G–G mod 1,

(58b)A
T2
G − A

R2
G = 2A

Z
k
6–G–G mod 1,

(58c)A
T3
G − A

R3
G = 3A

Z
k
6–G–G mod 1.

To summarize, we have conducted a search for discrete anomalies in heterotic orbifolds. As
in previous searches [3,8],9 we find that all basic discrete anomalies are universal in the mod-
els we studied, and all anomalies can be canceled by the discrete Green–Schwarz mechanism.
We identify previously unknown relations between the occurrence of discrete anomalies and
the so-called ‘anomalous U(1)’. The anomalous U(1) is in one-to-one correspondence to the
‘anomalous space group element’ ganom, whose gauge embedding is the generator of the ‘anoma-
lous’ U(1). T -duality anomalies can be canceled by two ways: the Green–Schwarz mechanism
and T -dependent threshold corrections as said in Section 3.3.3. It is widely believed [41] that
T -dependent threshold corrections would be non-universal and there would be no certain rela-
tion among T -duality anomalies for Ti , which appear in threshold corrections, e.g. T2 and T3
in Z6-II orbifolds. On the other hand, our (empirical) results (57), which have been checked in
several thousands of models with different geometries, show that there exist certain relations
among T -duality anomalies. That is, T -duality anomalies are related to some basic anomalies
that are cancelled only by the Green–Schwarz mechanism. This issue will be studied in more
detail elsewhere.

3.5. Breaking of anomalous U(1) and discrete symmetries

As already mentioned, an ‘anomalous’ U(1) implies the existence of a FI term, which needs
to be canceled in supersymmetric vacua (as well as in settings with low-energy supersymme-
try). That means that certain fields which have negative U(1)anom charges need to attain vac-
uum expectation values; hence U(1)anom is broken in (almost) supersymmetric vacua. In other
words, there are no ‘anomalous-looking’ unbroken U(1) factors. The requirement of keeping the
D-terms of the other symmetries zero leads typically to a situation in which more than one field
attains a VEV and in which the various VEVs are related. Achieving D-flatness translates in the
construction of gauge invariant monomials which carry net negative anomalous charge [43,44]
(see [30,36,45] for more details).

One may wonder if one could break U(1)anom by canceling the FI term as usual while leaving
the anomalous flavor symmetries intact. We have tried to do this in a large set of models with
‘anomalous’ U(1) (including the models presented in [46]), i.e. we searched for gauge invari-
ant monomials with net negative charge under U(1)anom whose constituents transform trivially
under the anomalous discrete symmetries. In most models it is hard, if not impossible, to find

9 Our findings are not completely consistent with the relations presented in [38].
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such a monomial. In other words, according to what we find, the requirement of keeping super-
symmetry unbroken forces one not only to break the ‘anomalous’ U(1), as is well known, but
generically also implies that ‘anomalous’ discrete symmetries get broken (which is somewhat
surprising because they do of course not have a D-term). However, in a couple of models we did
find a monomial whose constituents transform trivially under some of the anomalous discrete
symmetries. In these models, an anomalous Z2 subgroup of the original Z

k
6 remains unbroken.

We posted the details of the model at a web site [47]. Implications will be studied elsewhere.

4. Conclusions

We have studied various aspects of discrete anomalies. We started by reproducing the well-
known anomaly constraints for ZN symmetries, taking a different route than usual, namely using
the path integral approach. Unlike in the conventional approach, our derivation does not rely
on contributions from heavy Majorana fermions; only massless fermions enter the computation.
We have used the path integral approach to derive anomaly constraints for non-Abelian discrete
symmetries; the constraints are given in Eq. (20).

In the second part of the study, we have explored discrete anomalies in string-derived mod-
els, focusing on heterotic orbifolds. We find that discrete anomalies can only occur if there is an
‘anomalous’ U(1). One can then rotate the anomalous symmetries into two basic symmetries,
corresponding to the rotational and translational part of the space group selection rules, i.e. the
k rule and nα rules. All other anomalies, such as Ri -anomalies and T -duality anomalies, derive
from these basic anomalies. The coefficients of the basic anomalies are connected to an ‘anoma-
lous space group element’, whose gauge embedding arises from the generator of the ‘anomalous
U(1)’. We find that the basic anomalies are always universal, such that they might be canceled
by the same Green–Schwarz mechanism that cancels the U(1) anomaly.

We have also searched for models where the ‘anomalous’ U(1) symmetry can be broken (i.e.
the FI term can be canceled) without breaking the ‘anomalous’ discrete symmetries. While it is
hard to find a model with these properties, we could find a few examples in which an anomalous
Z2 symmetry survives. The implication of these anomalous Z2 symmetries will be discussed
elsewhere.

Of course, discrete and continuous symmetries that are broken by a suppressed VEV, as is
the case in the ‘anomalous’ U(1), are known to be a useful tool in model building. Indeed,
our results indicate that in string models discrete cousins of ‘anomalous’ U(1) symmetries are
frequently present, whereby, according to what we find, cancellation of the FI term triggers sym-
metry breakdown. Since the FI term is loop suppressed, the vacuum expectation value of the
field that breaks the symmetry can be small. The emerging approximate symmetries can play an
important role in understanding the observed pattern of fermion masses and mixings.
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Appendix A. Anomalies of discrete non-Abelian D4 symmetry

In this appendix, we discuss anomalies of the discrete symmetry D4. The D4 symmetry is one
of the simplest non-Abelian discrete symmetries.10

The non-Abelian finite group D4 has eight elements, which can be written as products of the
two generators g and h, i.e.

(A.1)GD4 = {1, g,h, gh,hg,hgh,ghg,ghgh}.
D4 has five irreps: 2, 1++, 1+−, 1−+ and 1−−. The action of g and h on these irreps is

2: g =
(

1 0
0 −1

)
, h =

(
0 1
1 0

)
,

1++: g = 1, h = 1,

1+−: g = 1, h = −1,

1−+: g = −1, h = 1,

(A.2)1−−: g = −1, h = −1.

According to our discussion in Section 2.5, all we need to do for D4 anomalies is to study the
anomalies for the group elements g and h (or another combination).

The D4 flavor symmetry can appear from Z6-II orbifold models [29,37] (and other orbifold
models whose compact spaces include the 1D Z2 sub-orbifold). In Z6-II orbifold models, the
group element g corresponds to Z

flavor
2 or Z

flavor′
2 . There are two fixed points on the 1D Z2 sub-

orbifold. Massless spectra on these two fixed points are degenerate, when there is no Wilson
line on the 1D Z2 sub-orbifold. Then, these modes correspond to 2 and the group element h

corresponds to the permutation of these modes. In Z6-II orbifold models, only the doublet 2 and
the trivial singlet 1++ can appear as fundamental modes. In this case, anomalies are constrained.
We denote

(A.3)h′ =
(

0 −1
1 0

)
.

Now note that h = h′g for the doublet 2 and deth′ = 1. Thus, all eight elements of the D4
group can be written as products of g and h′, and the generator h′ does not lead to anomalies.
That implies that all of D4 anomalies originate from Z

flavor
2 anomalies, that is, D4 anomalies,

e.g. anomalies for the permutation h, appear in Z6-II orbifold models only if there are Z
flavor
2

anomalies, i.e. anomalies for the group element g. The situation is the same for D4 anomalies in
heterotic orbifold models with the 1D Z2 sub-orbifold such as Z2 × ZM .

The situation would change if we had heterotic orbifold models including non-trivial singlets
of the D4 flavor symmetry, in 1+− and 1−+, because in these representation the determinants of

10 The D4 flavor symmetry happens to occur in certain, potentially realistic string models [29,30,36,46], which have
been constructed recently within the framework of heterotic orbifolds.
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Table 1
Transformation properties of the lepton and Higgs fields in [48]

De (Dμ,Dτ ) eR νeR (μR, τR) (νμR, ντR) φ1, φ2 φ3 (χ1, χ2)

D4 1++ 2 1++ 2 1++ 1+− 2
SU(2)L 2 2 1 1 2 2 1

g and h differ. Indeed, in heterotic orbifold models including the 2D Z4 sub-orbifold, non-trivial
singlets can appear as fundamental modes [37]. However, massless states corresponding to 1+−
and 1−+ are always degenerate. This can only be changed by introducing a Wilson line, which,
however, breaks the D4 flavor symmetry. Thus, in these models, non-trivial singlets 1+− and 1−+
do not contribute to anomalies. Therefore, the situation is the same as Z6-II orbifold models, that
is, all of D4 anomalies originate from Z

flavor
2 anomalies.

Appendix B. Sample calculation of discrete anomalies

In this appendix we present a sample calculation in order to demonstrate how the anomaly
constraints can be applied. We will base the calculations on the Grimus–Lavoura model [48],
which is not supersymmetric. The lepton and Higgs fields are assigned the transformation prop-
erties displayed in Table 1. φ2,3 are extra SU(2)L doublet Higgs fields and χ1,2 are extra gauge
singlet Higgs fields. All quark fields are assumed to be trivial D4 singlets, i.e. to transform as
1++.

Let us now calculate the anomaly coefficients of the mixed anomaly D4–SU(2)L–SU(2)L.
According to our discussion in Section 2.5, all we need to do is to study the generators, i.e.
the group elements g and h, in order to check whether this model is anomalous or not. As
g2 = h2 = 1, this then amounts to checking the conditions for Z2 anomalies. For g and h, only
(Dμ,Dτ ) contributes to the calculation of the anomaly. Hence we find

(B.1)Z
g

2–SU(2)L–SU(2)L:
∑

(r(f ),d(f ))

2 ln detg(d(f ))

2π i
�
(
r(f )

)= 1

2
mod 1,

(B.2)Z
h
2–SU(2)L–SU(2)L:

∑
(r(f ),d(f ))

2 ln deth(d(f ))

2π i
�
(
r(f )

)= 1

2
mod 1.

Therefore, the symmetry generated by g and, hence, the D4 symmetry of this model is anoma-
lous.

Repeating the calculation for U(1)Y yields

(B.3)Z
g

2–U(1)Y –U(1)Y :
∑

(r(f ),d(f ))

2 ln detg(d(f ))

2π i

(
q

(f )
Y

2

)2

= 1

2
mod 1,

(B.4)Z
h
2–U(1)Y –U(1)Y :

∑
(r(f ),d(f ))

2 ln deth(d(f ))

2π i

(
q

(f )
Y

2

)2

= 1

2
mod 1,

where the summation runs over all non-trivial D4 representations with non-zero hypercharge.
We close by stating that the anomalies do not necessarily invalidate the model. As discussed in
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Table 2
Summary of R anomalies in the KRZ model

G R1 R2 R3

SU(4) 13
3 mod 6 5

3 mod 3 1 mod 2

SU(2)L
13
3 mod 6 8

3 mod 3 1 mod 2

SU(2)R
13
3 mod 6 5

3 mod 3 1 mod 2

SO(10) 7
3 mod 12 17

3 mod 6 3 mod 4

SU(2)′ 7
3 mod 6 2

3 mod 3 1 mod 2

the conclusions, it just means that the symmetry gets broken by certain fields attaining VEVs,
which can be suppressed.

Appendix C. Anomalies in the KRZ model

This appendix summarizes the discrete anomalies in the KRZ model A1 [29].

C.1. R anomalies

We obtain for the R anomalies

(C.1a)A
	R

SU(4) = (13/3,5/3,1),

(C.1b)A
	R

SU(2)L
= (13/3,8/3,1),

(C.1c)A
	R

SU(2)R
= (13/3,5/3,1).

The anomalies are only fixed up to (6,3,2). Here, the R3 anomalies match while the others do
not. They satisfy only

(C.2)A
R2
SU(4) = A

R2
SU(2)R

�= A
R2
SU(2)L

mod 3.

One can repeat the analysis for the non-Abelian subgroups of the second E8. This leads again
to the result that anomalies are not universal. The R anomalies for the KRZ model are summa-
rized in Table 2.

C.2. Flavor anomalies in the KRZ model

Let us calculate the flavor anomalies in the KRZ model. The Z3 symmetry is anomalous, but
the G–G–Z3 anomalies are universal (see Table 3). Note, however, that there is no gravitational
Z3 anomaly if one considers the charged fields only. This means that there is an uncharged
(modulus) field that contributes to the gravitational anomaly.

C.3. T -duality anomalies

The T-duality anomalies are calculated according to Eq. (38) of [38]; the result is listed in
Table 4.
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Table 3
Summary of Zn anomalies in the KRZ model

G Z2 Z
′
2 Z3

SU(4) 0 mod 1 0 mod 1 1
3 mod 1

SU(2)L 0 mod 1 0 mod 1 1
3 mod 1

SU(2)R 0 mod 1 0 mod 1 1
3 mod 1

SO(10) 0 mod 2 0 mod 2 4
3 mod 2

SU(2)′ 0 mod 1 0 mod 1 1
3 mod 1

Table 4
Summary of T -duality anomalies in the KRZ model

SU(4) SU(2)L SU(2)R SO(10) SU(2)′

( 62
3 ,− 14

3 ,−2) ( 62
3 ,− 14

3 ,−2) ( 62
3 ,− 14

3 ,−2) ( 62
3 , 34

3 ,−6) ( 62
3 ,− 14

3 ,−18)

C.4. Anomalous U(1)

The coefficients of the anomalous U(1) (cf. Eq. (51)) are (kanom, nanom
2 , nanom

3 ) = (2,0,1).

Appendix D. Calculation of anomalies in the BHLR model

D.1. R anomalies

Let us now consider the model described in [30]. Let us focus on the non-Abelian subgroups
of the first E8 factor, i.e. SU(3) and SU(2). Start with SU(3). We have 10 3-plets and 10 3̄-plets
under SU(3) (quark doublets give rise to two 3-plets each). By performing the sum (41), one
obtains (cf. Table 5)

(D.1)A
Ri

SU(3) = (0,1,1) mod(6,3,2).

Continue with SU(2). We have 30 2-plets. By performing the sum (41), one obtains

(D.2)A
Ri

SU(2) = (0,0,1) mod(6,3,2).

While A
R1
SU(3) = A

R1
SU(2) mod 6 and A

R3
SU(3) = A

R3
SU(2) mod 2, one finds

(D.3)A
R2
SU(3)

�= A
R2
SU(2)

mod 3.

D.2. Anomalies of discrete flavor symmetries

The flavor anomalies (cf. Eq. (40)) in this model are

(D.4a)A
(Z2,Z

′
2,Z3)

SU(3)
=
{

0,0,
2

3

}
,

(D.4b)A
(Z2,Z

′
2,Z3)

SU(2) =
{

0,0,
2

3

}
.
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Table 5
Summary of R anomalies in the BHLR model

G R1 R2 R3

SU(3) 0 mod 6 1 mod 3 1 mod 2
SU(2) 0 mod 6 0 mod 3 1 mod 2
SU(4) 3 mod 6 0 mod 3 1 mod 2
SU(2)′ 0 mod 6 1 mod 3 1 mod 2

Table 6
Summary of Zn anomalies in the BHLR model

G Z2 Z
′
2 Z3

SU(3) 0 mod 1 0 mod 1 2
3 mod 1

SU(2) 0 mod 1 0 mod 1 2
3 mod 1

SU(4) 0 mod 1 0 mod 1 2
3 mod 1

SU(2)′ 0 mod 1 0 mod 1 2
3 mod 1

Table 7
Summary of T -duality anomalies in the BHLR model.

SU(3) SU(2) SU(4) SU(2)′

(10,10,−6) (10,10,−6) (10,10,−6) (10,2,−2)

That is, the Z3 symmetry has anomalies, but they appear to be universal. This applies also to
Z3–G–G anomalies where G denotes a subgroup of the second E8 (see Table 6). Notice, on the
other hand, that the gravitational Z3 anomalies seem to vanish.

D.3. T -duality anomalies

The T -duality anomalies are calculated according to Eq. (38) of [38]; the result is listed in
Table 7.

D.4. Anomalous U(1)

The coefficients of the anomalous U(1) (cf. Eq. (51)) are (kanom, nanom
2 , nanom

3 ) = (0,0,2).
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