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Abstract

Rationale and Objectives—Computer-aided methods have been widely applied to diagnose 

lesions on breast MRI. The first step was to identify abnormal areas. A deep learning Mask 

R-CNN was implemented to search the entire set of images and detect suspicious lesions.

Materials and Methods—Two DCE-MRI datasets were used, 241 patients acquired using 

non-fat-sat sequence for training, and 98 patients acquired using fat-sat sequence for testing. All 

patients have confirmed unilateral mass cancers. The tumor was segmented using FCM clustering 

algorithm to serve as the ground truth. Mask R-CNN was implemented with ResNet-101 as the 

backbone. The neural network output the bounding boxes and the segmented tumor for evaluation 

using the Dice Similarity Coefficient (DSC). The detection performance, and the trade-off between 

sensitivity and specificity, was analyzed using free response ROC.

Results—When the pre-contrast and subtraction image of both breasts were used as input, the 

false positive from the heart and normal parenchymal enhancements could be minimized. The 

training set had 1,469 positive slices (containing lesion) and 9,135 negative slices. In 10-fold 

cross-validation, the mean accuracy=0.86 and DSC=0.82. The testing dataset had 1,568 positive 
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and 7,264 negative slices, with accuracy=0.75 and DSC=0.79. When the obtained per-slice results 

were combined, 240/241 (99.5%) lesions in the training and 98/98 (100%) lesions in the testing 

datasets were identified.

Conclusions—Deep learning using Mask R-CNN provided a feasible method to search breast 

MRI, localize, and segment lesions. This may be integrated with other AI algorithms to develop a 

fully-automatic breast MRI diagnostic system.

Keywords

Breast MRI; Fully-Automatic Detection; Deep Learning; Mask R-CNN

INTRODUCTION

Breast cancer is one of the most common cancers worldwide and a leading cause of cancer 

death in women. Detection and treatment in its early stage can increase patient survival (1). 

Breast MRI is a well-established clinical imaging modality for diagnosis of breast cancer, 

and also for screening of high-risk women (2–5).

In the clinical setting, the evaluation is done by radiologists’ visual interpretation. The 

suspicious abnormality should be identified first, and then further characterized for 

diagnosis. Since many sequences with thin slices are acquired to cover the entire breast 

with hundreds of images, radiologists need to spend time to carefully evaluate the entire 

dataset. Therefore, the reading is usually done with the assistance of computer-aided 

diagnosis (CAD) software, which is used to generate subtraction images, maximum intensity 

projection (MIP), color-coded DCE wash-out maps, and DCE time course, etc., and displays 

them together on the workstation for evaluation. The morphological and DCE temporal 

information is then interpreted by a radiologist and combined to determine the level of 

malignancy based on BI-RADS descriptors (6).

The diagnostic sensitivity and specificity of breast MRI can be affected by several factors, 

e.g. radiologists’ experience (7, 8), magnetic field strength (9), and DCE-MRI protocol (10–

12). The current CAD can improve workflow efficiency and diagnostic accuracy, especially 

for patients with multiple or satellite lesions (13). Many CAD studies have further attempted 

to characterize abnormal lesions and give a final diagnosis (14–17). Most of them apply 

computer algorithms to extract features and build a diagnostic model, but not very successful 

due to the limited information provided by pre-defined features (18). For developing a 

fully-automatic CAD system, the first required task is to detect abnormal areas, which is 

rarely reported.

In recent years, artificial intelligence (AI) algorithms, particularly deep learning, have 

demonstrated remarkable progress in medical image analysis for performing many clinical 

tasks. Convolutional Neural Network (CNN) is a common deep learning method that can 

be applied to give a probability of malignancy for identified lesions (19,20). It can be 

further applied to perform a search in the entire MRI dataset to detect abnormal lesions 

(18,21,22). Patch-based CNN is used to discriminate whether each patch (a small portion 

of images) belongs to a lesion or not (21,23–25). Another approach uses CNN (26,27) or 
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Mask Regional-Convolutional Neural Network (R-CNN) (28–30) to search the whole image 

or feature map to detect and localize the lesion.

The purpose of this study is to implement Mask R-CNN to search and detect suspicious 

lesions in breast MR images (29,30). The architecture provides a flexible and efficient 

framework for parallel evaluation of region proposal (attention), object detection, and 

segmentation (30–32). After the location of the lesion is detected, the tumor is further 

segmented, and the result is compared to the ground truth.

MATERIALS AND METHODS

Patients and datasets

The Institutional Review Board approved this retrospective study, and the requirement of 

informed consent was waived. The inclusion criteria were consecutive patients receiving 

breast MRI for diagnosis or staging of suspicious lesions, and confirmed to have 

histologically-proven cancer. Only patients with unilateral mass lesions in one breast were 

selected, to ensure that the contralateral breast was normal and could serve as a good 

reference based on symmetry. The exclusion criteria were patients who received prior 

procedure or treatment (e.g. neoadjuvant chemotherapy or hormonal therapy) before MRI. 

Two well-curated datasets were used to perform this study. A dataset obtained from one 

hospital with 241 patients (mean age 49 y/o, range 30–80 y/o) was used for training. 

Another dataset from a different hospital with 98 patients (mean age 49 y/o, range 22–

67 y/o) was used for testing. Since only mass lesions were considered, the invasive 

ductal carcinoma (IDC) was the dominating histological subtype. The patient and tumor 

information, and the composition of positive and negative images in both datasets, are listed 

in Table 1.

MR protocols

For the training dataset, breast MRI was performed on a 3T scanner (Siemens Trio-Tim, 

Erlangen, Germany). The DCE-MRI consisted of 7 frames, including one pre-contrast 

and six post-contrast acquisitions using non-fat-sat sequence, with TR/TE=280/2.6 msec, 

flip angle=65°, matrix size=512×343, field of view=34cm, and slice thickness=3mm. The 

testing dataset was acquired using a 1.5T scanner (Siemens Magneton Skyra, Erlangen, 

Germany). DCE-MRI was acquired using a fat-suppressed three-dimensional fast low angle 

shot (3D-FLASH) sequence with one pre-contrast and four post-contrast frames, with TR/

TE=4.50/1.82 msec, flip angle=12°, matrix size=512×512, field of view=32cm, and slice 

thickness=1.5mm.

Tumor Segmentation

The tumor was segmented on the subtraction image generated by subtracting the pre-contrast 

image from the 2nd DCE post-contrast image, using the fuzzy c-means (FCM) clustering 

algorithm (33). This DCE frame was selected based on the high tissue contrast between the 

boundary of the mass lesion (often showing strong peripheral enhancement) and the adjacent 

normal tissue. A square ROI was placed on maximum intensity projection to indicate the 

location. The tumor within the selected ROI was enhanced using an un-sharp filter with 

Zhang et al. Page 3

Acad Radiol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a 5×5 kernel constructed using the inverse of the two-dimensional Laplacian filter. FCM 

was applied to obtain the membership map of all voxels indicating the likelihood of each 

voxel belonging to the tumor or the non-tumor cluster. Then, the 3-dimensional connected-

component labeling and whole filling was applied to finalize the ROI. The result was 

verified by an experienced radiologist and corrected if necessary. Based on the segmented 

tumor mask, the smallest bounding box covering the lesion was computed for evaluating the 

deep learning detection result.

Deep learning network

The deep learning detection algorithm was implemented using a custom architecture derived 

from the Mask R-CNN (29,30), shown in Figure 1. This method has been successfully 

implemented for the detection of hemorrhage on non-contrast brain CT, and detailed 

methods were described there (30). Firstly, various pre-defined shapes and distribution of 

bounding boxes were placed to identify a potential abnormality in the entire image. Then the 

bounding boxes were ranked based on the likelihood. Several bounding boxes on each slice 

with the highest probabilities were extracted to generate region proposals to locate specific 

regions. These composite region proposals were pruned using non-maximum suppression 

and used as input into a classifier to determine whether these regions belonged to lesion 

or non-lesion. For the detected lesion, a segmentation network was added to determine the 

tumor boundary with binary masks. In this study, we used ResNet101 as the feature pyramid 

network (FPN) to work as the backbone (34). The number of input channel was 3. The 

inputs from the FPN bottom-up pathway were added to the feature maps of the top-down 

pathway using a projection operation to match matrix dimensions, as shown in Figure 1. 

The final loss function was focal loss including a term for L2 regularization of the network 

parameters (35). All models were trained with Adam optimization. The learning rate was set 

to 0.0001 with momentum term 0.5 to stabilize training (36). This study was implemented 

in Python 3.6 using the open-source TensorFlow 1.4 library (Apache 2.0 license) (37). 

Experiments were performed on a GPU-optimized workstation with four NVIDIA GeForce 

GTX Titan X cards (12GB, Maxwell architecture).

Training and evaluation

In the training dataset, 10-fold cross-validation was used to evaluate the performance. The 

final trained network was applied to the independent dataset for testing. Since it was not 

reliable to detect a very small lesion < 3 mm, if a lesion was detected only on a single slice 

without involving any of the neighboring slices, it was dismissed.

Evaluation of tumor localization and segmentation

After a lesion was identified, the Intersection over Union (IoU), defined as the ratio between 

the predicted tumor bounding box and the ground truth box, was calculated. On the positive 

slice which contained lesion, the prediction was true positive (TP) if IoU was ≥ 0.5. The 

case with IoU < 0.5 was false negative (FN). On the image slice which did not contain 

lesion, if no bounding box was detected, the prediction was true negative (TN); if any lesion 

was detected, it was false positive (FP). After the per-slice results were obtained, they were 

combined to give per-lesion detection. If any positive slice in a lesion was identified, the 

lesion was determined as positive.
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The detection performance was evaluated using the free response ROC analysis (38). First, 

the FROC was plotted using the TP rate (correctly localized lesions in all lesions) vs. 

the number of FP per image by varying the threshold, which could be used to assess the 

detection sensitivity at different levels of false-positives, and thus, to evaluate the trade-off. 

Then, the Alternative FROC (AFROC) was plotted using the TP rate vs. the probability of 

FP images in all negative images, and the AUC was extracted for evaluating the overall 

performance. To investigate the performance in lesions of different sizes, they were divided 

into two groups, above and below the median tumor area, and performed separate analysis. 

For each true positive lesion, the segmented tumor was compared to ground truth using the 

Dice Similarity Coefficient (DSC).

RESULTS

Determination of three inputs into network

The Mask R-CNN architecture allows 3 input channels. Initially, the pre-contrast image, 

post-contrast image, and the subtraction image of the diseased breast were used as inputs. 

Figure 2 shows an example acquired using the fat-sat sequence in the testing dataset, in 

which the strong parenchymal enhancements in bilateral breasts are identified as possible 

lesions. When the post-contrast image was replaced by the subtraction image from the 

contralateral normal breast, the symmetry could be used to eliminate the false detection 

of bilateral parenchymal enhancements. After exploration using different images as inputs 

and comparing the results, finally the three inputs were determined as pre-contrast image 

(used to identify chest region), and the subtraction images from the diseased breast and the 

contralateral normal breast.

Performance in the training dataset

For the training set, the performance was evaluated using 10-fold cross-validation, 9-fold for 

training and 1-fold for validation. The final results from all cases were combined. Based on 

the IoU, there were 1,245 TP, 7,834 TN, 1,301 FP, and 224 FN cases. The sensitivity of 

tumor detection was 0.85, the specificity was 0.86, and the overall accuracy was 0.86. In the 

1,245 true positives, the tumor was segmented and compared to the ground truth to calculate 

the DSC. The mean value was 0.82, ranging from 0.64 to 0.97 in 10-fold cross-validation. 

All performance results are summarized in Table 2. Figures 3–5 show three case examples 

in the training dataset acquired using the non-fat-sat sequence, illustrating different detection 

results.

Performance in the testing dataset

The testing dataset was acquired using the fat-sat sequence, and the difference can be 

compared between Figure 2 and Figures 3–5. Although the tissue contrast in the breast 

on images acquired using fat-sat and non-fat-sat sequences is different, the contrast in the 

junction between the chest wall muscle and the lung is similar. The other two inputs are 

subtraction images, which do not vary much between fat-sat and non-fat-sat sequences. 

Therefore, the model developed from the training set was directly applied to the testing set. 

The results showed 1,254 TP, 5,396 TN, 1,895 FP, and 314 FN slices. The sensitivity was 
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0.80, the specificity was 0.74, and the overall accuracy was 0.75. In true positive cases, the 

range of DSC for segmented tumors was 0.31–0.97, with the mean of 0.79.

Factors associated with false detection

To understand the possible factors leading to false predictions, we further analyzed tumor 

size, tumor enhancement, parenchymal enhancement, and tumor locations in the different 

diagnostic groups. The small tumor was difficult to be detected, which was the main 

reason for FN prediction. The mean tumor area calculated from all slices was significantly 

larger in TP compared to FN groups (area 3.55 cm2 vs. 0.42 cm2, p<0.01). Although we 

used subtraction images of both breasts as inputs, and indeed it helped to eliminate the 

parenchymal enhancements that showed clear symmetry (as shown in Figure 2), yet not 

all parenchymal enhancements could be eliminated in this way, especially for the enhanced 

tissues in small areas, as illustrated in the false positive example shown in Figure 4d. For the 

tumor segmentation, the difference between the predicted tumor and the ground truth was 

mainly coming from the parenchymal enhancement, especially for cases with severe field 

inhomogeneity from a strong bias field.

Free Response ROC analysis

The FROC and Alternative FROC (AFROC) results are shown in Figure 6. In FROC, when 

using the false positive of 2 lesions per image as the reference, the detection sensitivity 

was 0.83 in the training set and 0.81 in the testing set. The AUC in AFROC was 0.82 in 

the training and 0.71 in the testing sets, respectively. We also performed analyses in large 

and small lesion groups, separated using the median tumor area, 1.94 cm2 in the training 

and 2.42 cm2 in the testing datasets, and the results are listed in Table 2. As expected, the 

performance was better in the large lesion group.

Per-Patient diagnosis

All deep learning analysis was done using per-slice basis. The detected lesions from all 

slices were combined to give per-patient diagnosis. This was usually done based on the most 

aggressive finding. If there was a positive detection with IoU ≥ 0.5 found on any slice in 

a lesion, the lesion was determined as a cancer. In the training set, 240/241 cancers were 

identified, and the detection sensitivity was 99.5%. The only missing case as one mildly 

enhanced 7 mm DCIS. In the testing set, all 98/98 cancers were identified, with sensitivity of 

100%. Therefore, although the sensitivity analyzed using per-slice basis in the training and 

testing datasets was 0.80–0.85, when the results were combined to give per-lesion diagnosis, 

the sensitivity was approaching 100%.

DISCUSSION

In this study, we implemented a fully automatic deep learning method using Mask R-CNN 

for detection of breast cancer by searching the entire set of MR images. Many studies 

have investigated the value of machine learning, including radiomics and deep learning, 

for differentiation of benign and malignant lesions. These studies mainly focused on 

characterization of already identified abnormal lesions. The detection was a much more 

challenging task, especially in MRI where many images were acquired to cover the entire 
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breast. Our results showed that Mask R-CNN was a feasible method. In per-slice analysis, 

the mean accuracy was 0.86 and 0.75 in the training and testing datasets, respectively. When 

the per-slice results were combined to give per-lesion results, the cancer detection sensitivity 

was 99.5% in the training dataset and 100% in the testing dataset. In detected lesions, the 

segmented tumor was also in good agreement with the ground truth, with DSC of 0.82 in the 

training dataset and 0.79 in the testing dataset.

The chest region includes the enhancement from the heart. While it is very easy for a 

human reader to dismiss this, the task is difficult for the computer. One commonly used 

strategy is to segment the breast first and only perform the search within the breast (21,27), 

but this requires one more pre-processing step and not easy to achieve a clean breast 

segmentation. Deep learning offers a fully-automatic strategy. We demonstrated that by 

including the pre-contrast image as one input, which demarcated the background and the 

chest region well, it provided anatomic information and helped to dismiss enhancements 

from the heart in the chest region. The results also demonstrated that by including the 

contralateral subtraction image as one input, it helped to eliminate false positives coming 

from parenchymal enhancements, as shown in Figure 2. Using bilateral breast symmetry 

is very important in radiologists’ visual interpretation, and it can be implemented in deep 

learning as well, by including the contralateral breast as one input.

Deep learning is an emerging method that has been shown capable of searching and 

detecting abnormalities in pathology images. For example, Bejnordi et al. (39) used multiple 

AI methods to detect breast cancer lymph node metastases on pathology whole-slide images. 

For radiology, the earliest application is for detecting pneumonia on chest X-Ray (40). For 

breast lesions, most studies were for 2D mammography and then extended to DBT. Kooi 

et al. applied a patch-based method to mammography (24), which divided the whole image 

into many small portions for local recognition. Samala et al. applied the method to DBT 

by using a pre-trained model from mammography (25). Besides the patch-based method, 

another feasible method is weakly supervised learning. Kim et al. utilized this method to 

detect and localize lesions from the 4-view digital mammograms (26), similar to the reading 

of radiologists in clinics. A residual neural network was implemented with input of 4 views. 

The feature maps before the global pooling layers were extracted to give the probability 

maps, indicating the detected lesion location and the level of suspicion. After the lesion was 

identified, it could be further segmented and characterized to make a diagnosis as benign 

or malignant. This streamlined procedure has been implemented as a commercial product. 

Ribli et al. implemented the faster R-CNN algorithm using VGG16 as a backbone network 

to detect lesions on digital mammograms (28) and reached a sensitivity of 0.9.

For lesion detection on breast MRI, because many images were acquired with different 

pulse sequences, it was much more challenging compared to the detection on mammography 

and DBT. Wang et al. (41) designed a Siamese Network to detect metastatic lesions in 

the spine using the patch-based method. Dalmış et al. applied the patch-based method to 

localize breast lesions on DCE-MRI (21). The candidate areas for patch extraction were 

first identified by U-net, and then a Siamese neural network was applied for detection, 

using the 3D patch and the symmetrical patch from the contralateral breast as inputs. This 

method obtained a sensitivity of 0.83 for mass tumors. Although this work was for breast 
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MRI, the main goal was to characterize the identified candidate lesions and make correct 

diagnosis as cancers vs. benign/normal tissues, thus the major effort was to solve a diagnosis 

problem not a detection problem. Interestingly, they also included the symmetric area in the 

contralateral normal breast as the reference for comparison to improve diagnostic accuracy. 

Another strategy was to implement weakly supervised learning to predict the presence of 

cancer in DCE-MRI, by Zhou et al. (27). A dense net was applied within the segmented 

breast areas, and the suspicious lesion locations were calculated from the feature maps. 

Based on the detection results, a conditional random field was employed to estimate the 

tumor boundary, but the DSC was only 0.51. This approach was aiming to predict the 

presence of suspicious areas, not using the labeled lesions for supervised training. The Mask 

R-CNN used in our study was different from these studies, thus the results could not be 

directly compared. The region proposal network was applied to search suspicious regions 

within the entire image, which has been shown as a sensitive approach, as in (28); and also, 

including the contralateral normal breast as one input could utilize the symmetry to improve 

the specificity, as in (21). The Mask R-CNN used in the present study has been applied 

to search, detect, and diagnose brain hemorrhage on head CT, and achieved a very high 

accuracy of 0.97 (30).

For most object detection algorithms, a high sensitivity is associated with high false 

positives. The Mask R-CNN is not a single shot algorithm, and thus can increase specificity 

(29). In all of the selected regions, they were ranked to extract those with high probabilities. 

Then the bounding boxes were regressed to generate lesion masks. Furthermore, if a lesion 

was only detected on a single slice without involving neighboring slices, it was smaller than 

3 mm and unlikely to be a true lesion. These additional processing steps could improve 

specificity while maintaining a reasonable sensitivity. The drawback was that, compared to 

other architectures, the training became much more complicated, and might take longer and 

need more training cases.

The major limitation was the small case number and the unbalanced data. For each patient, 

the number of positive imaging slices containing the lesion was much smaller than the 

negative slices, which was an inherent problem for lesion detection on MRI. The unbalanced 

input might lead to unstable training. Second, the training dataset was non-fat-sat images, 

and the testing dataset was fat-sat images. Although this represented a realistic clinical 

scenario, not an optimal setting for evaluating the performance of the developed model. 

However, since both fat-sat and non-fat-sat images showed a good contrast between chest 

wall and lung, and the subtraction images were of similar quality, the developed model using 

non-fat-sat images could be applied to fat-sat images and achieved reasonable accuracy. 

For different datasets, such as images acquired using different protocols or different MR 

systems, transfer learning could be applied, i.e. to use part of the testing dataset to re-tune 

the developed model (42). Third, only histologically confirmed cancer cases were analyzed 

in our study, which was the very first step to prove that Mask R-CNN detection is feasible. 

The method will need to be tested in more realistic breast MRI datasets that include benign 

findings and completely normal examinations, e.g. from a screening population. After an 

abnormal lesion is identified, it can be further characterized to rule out malignancy, and deep 

learning can also be applied to differentiate cancers from benign lesions and normal tissues 

(43–44). Lastly, we only included mass lesions in this study, so the major histological type 
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was IDC. DCIS and ILC were more likely to present as non-mass-like enhancements and 

excluded, thus their case number was too small to perform a separate subtype analysis. For 

non-mass-like enhancements, since the exact pathological extent of the lesion is unclear, it 

is difficult to be accurately segmented by computer algorithms to provide ground truth for 

calculating DSC, thus they are excluded in this work as an initial proof-of-principle study. 

Nonetheless, we anticipate that the developed model can also be used to detect non-mass 

lesions when the tissue enhancement contrast is high. If they can be detected, even if the 

tumor ROI cannot be precisely segmented, the information may be sufficient for radiologists 

and oncologists to decide an optimal treatment plan.

CONCLUSION

In summary, we implemented a deep learning method using Mask R-CNN algorithm to 

search the entire set of breast MRI to detect abnormal lesions. The algorithm allowed the 

search on the whole image without prior breast segmentation, and reached the accuracy of 

0.86 in per-slice basis analysis in the training dataset. The inclusion of the pre-contrast 

image and the contralateral subtraction image as inputs could help to eliminate false 

positives coming from the heart and the normal parenchymal enhancements, and achieved a 

high specificity of 0.86. In the detected lesions, the DSC of the segmented tumor compared 

to ground truth was 0.82. The model developed from non-fat-sat images could be applied 

to fat-sat images acquired using a different MR system. When the obtained per-slice results 

from one lesion were combined to give per-lesion result, 240/241 lesions in the training, and 

98/98 lesions in the testing datasets were correctly identified. The results suggest that Mask 

R-CNN has the potential to be implemented for the detection of candidate lesions in breast 

MRI, which can be further integrated with lesion characterization algorithms to develop a 

fully-automatic, deep learning-based, breast MRI diagnosis system.

ACKNOWLEDGEMENT

This study was supported in part by NIH/NCI R01 CA127927 and R21 CA208938.

List of Abbreviations:

3D-FLASH three-dimensional fast low angle shot

AFROC Alternative Free-response ROC

AI Artificial Intelligence

BI-RADS Breast Imaging Reporting and Data System

CAD Computer-Aided Diagnosis

CNN Convolutional Neural Network

DCE Dynamic Contrast-Enhanced

DSC Dice Similarity Coefficient

FCM Fuzzy C-Means
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FPN Feature Pyramid Network

FROC Free-response ROC

IoU Intersection over Union

MIP Maximum Intensity Projection

TE Echo Time

TR Repetition Time

R-CNN Regional Convolutional Neural Network

ROC Receiver Operating Characteristic

ROI Region Of Interest
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Figure 1. 
Mask R-CNN architecture. Hybrid 3D-contracting (middle block) and 2D-expanding (right 

block) fully convolutional feature-pyramid network architecture used for the mask R-CNN 

backbone. The architecture incorporates both traditional 3 ×3 filters as well as bottleneck 

1×1–3×3–1×1 modules (left block). The contracting arm is composed of 3D operations and 

convolutional kernels. The number of input channel is 3.
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Figure 2. 
One case example from a 62-year-old patient with a small mass lesion in the testing dataset, 

who also shows strong parenchymal enhancements in both breasts. (a) Pre-contrast image 

acquired using fat-sat sequence; (b) The post-contrast image; (c) The subtraction image; 

(d) Tumor detection result searched by the algorithm when using pre-contrast, post-contrast 

and subtraction images as inputs. Two large blue boxes are the detection output from Mask 

R-CNN. The box in the left breast (right side of image) correctly encloses the cancer, but 

it also contains the surrounding parenchymal enhancements much larger than the size of 

the cancer. Another blue box in the right breast (left side of image) wrongly detects the 

parenchymal enhancements, thus a false positive result. (e-g) When the subtraction image, 

contralateral subtraction image, and pre-contrast images are used as inputs, the small cancer 

is correctly diagnosed with probability=0.87.
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Figure 3. 
True positive case example from a 41-year-old patient with a strongly enhanced mass lesion 

in the training dataset. (a) Post-contrast image acquired using non-fat-sat sequence; (b) The 

subtraction image; (c) Tumor detection result searched by the algorithm. The segmented 

tumor is highlighted by green color, and used as the ground truth. The red box is the output 

from Mask R-CNN, which correctly detects the location of the cancer with probability=0.99, 

a true positive result. (d) The subtraction image of the contralateral normal breast. (e) The 

pre-contrast image, used as one input to identify the breast region, so the enhancements from 

the heart can be excluded. (c-e) are used as the 3 inputs into the Mask R-CNN.
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Figure 4. 
True positive and false positive case example from a 39-year-old patient with a strongly 

enhanced mass lesion in the training dataset. (a) Post-contrast image acquired using non-

fat-sat sequence; (b) The subtraction image; (c) Tumor detection result searched by the 

algorithm. The red box is the output from Mask R-CNN, which correctly detects the location 

of the cancer with probability=0.99. (d) The subtraction image of the contralateral normal 

breast. In this breast, an area with probability=0.54 is detected, a false positive result. (e) 

The pre-contrast image, used as one input to identify the breast region.
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Figure 5. 
False Negative case example from a 57-year-old patient with a mildly enhanced, but 

pathologically confirmed cancer in the training dataset. (a) Post-contrast image acquired 

using non-fat-sat sequence; (b) The subtraction image of the breast which contains the 

tumor; (c) Tumor detection result searched by the algorithm. The segmented tumor is 

highlighted by green color, and used as the ground truth. The red box is the result of Mask 

R-CNN, with the malignant probability=0.42, a false negative result. However, other slices 

of this lesion show probability >0.5, so the FN detection on this slice does not affect the 

final per-lesion accuracy. (d) The subtraction image of the contralateral normal breast. A true 

negative result, with probability=0.08, is marked as an example. (e) The pre-contrast image, 

used as one input to identify the breast region.
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Figure 6. 
(a) The free response ROC curve calculated using all lesions in the training and testing 

datasets, by plotting the true positive rate (correctly localized lesions in all lesions) vs. the 

number of false-positives per image. When using the false positive of 2 lesions per image 

as the reference, the detection sensitivity is 0.83 in the training set and 0.81 in the testing 

set. (b) The Alternative FROC (AFROC) curve by plotting the true positive rate vs. the 

probability of false-positive images in all negative images.
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Table 1:

Summary of lesions and image compositions in the training and testing datasets

Training (N=241) Testing (N=98)

Age Range, years old 30 – 80 (mean 49) 22 – 67 (mean 49)

1-D Tumor Size Range 0.6 – 6 cm 0.5 – 5 cm

Invasive Ductal Cancer (IDC) % 82.0 % 77.6 %

MR System (DCE sequence) Siemens 3T (non-fat-sat) Siemens 1.5 T (fat-sat)

Total Image Number 10,604 8,832

Positive Image Number (with lesion) 1,469 1,568

Negative Image Number (without lesion) 9,135 7,264

2-D Tumor Area Range on Positive Slices 0.35 – 13.1 (median 1.94) cm2 0.26 – 11.0 (median 2.42) cm2
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Table 2:

Summary of lesion detection and segmentation performance using Mask R-CNN in the training and testing 

datasets, using per-slice based analysis

Training (N=241) Testing (N=98)

Per-Lesion Detection Rate 240/241 (99.5%) 98/98(100%)

Per-Slice Detection Sensitivity (%) 1,245 / 1,469 (85%) 1,254 / 1,568 (80%)

Per-Slice Detection Specificity (%) 7,834 / 9,135 (86%) 5,396 / 7,264 (74%)

Per-Slice Detection Accuracy (%) 9,079 / 10,604 (86%) 6,650 / 8,832 (75%)

Lesion Segmentation Dice Score Range 0.64 – 0.97 (mean 0.82) 0.31 – 0.97 (mean 0.79)

AFROC AUC (all lesions) 0.82 0.71

AFROC AUC (large lesions above median) 0.93 0.85

AFROC AUC (small lesions below median) 0.67 0.54

FROC Sensitivity at 2 FP/Image (all lesions) 0.83 0.81

FROC Sensitivity at 2 FP/Image (large lesions) 0.94 0.88

FROC Sensitivity at 2 FP/Image (small lesions) 0.69 0.63
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