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Abstract 

The reaction path on the potential energy surface of a polyatomic 

molecule is the steepest descent path (if mass-weighted cartesian coordinates 

are used) connecting saddle points and minima. For an N-atom system in 3-d 

space it is shown how the 3N-6 internal coordinates can be chosen to be the 

reaction coordinate s, the arc length along the reaction path, plus (3N-7) 

normal coordinates that describe vibrations orthogonal to the reaction path. 

The classical (and quantum) Hamiltonian is derived in terms of these coordinates 

and their conjugate momenta for the general case of an N-atom system with a 

given non-zero value of the total angular momentum. One of the important 

facts that makes this analysis feasible (and therefore interesting) is that 

all the quantities necessary to construct this Hamiltonian, and thus permit 

dynamical studies, are obtainable from a relatively modest number of ab initio 

quantum chemistry calculations of the potential energy surface. As a simple 

example, it is shown how the effects of reaction path curvature can be 

incorporated in the vibrationally adiabatic approximation, and application 

to the collinear and 3-d H + Hz ~ Hz + H reaction shows that the tunneling 

probabilities given within this approximation are considerably improved 

when these curvature effects are included. 
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I. Introduction 

Much progress has been made over the last 10-15 years in dynamically 

rigorous theoretical treatments of elementary processes in chemical dynamics. 

Within the realm of classical mechanical descriptions, for example, numerical 

trajectory calculations1 of atom-diatom collision processes, e.g. • 

A+ BC + AB + C (1.1) 

are now essentially routine, and considerable progress is also being made 

in the quantum mechanical description2 of such processes. Similar progress 

has also been made in describing intramolecular dynamics. 3 Furthermore, a 

4 
number of potential energy surfaces for triatomic systems have been calculated 

from first principles by the methods of quantum chemistry, so that the 

primitive beginnings of an "ab initio chemical dynamics" is becoming a 

reality. 

Most of the systems treated to date, however, have been of the three-

atom variety, and one of the reasons for this becomes apparent if one 

considers obtaining the potential energy surface (i.e., the Born-Oppenheimer 

electronic energy) by the methodology of ab initio quantum chemistry (e.g., 

Hartree-Fock, configuration interaction, etc.). Since the potential surface 

for an N-atom system depends on 3N-6 coordinates and since one would need 

~ 10 points on the surface for each coordinate in order to characterize it 

3N-6 completely, this would require ~ 10 ab initio quantum chemistry calculations. 

Indeed, the triatomic potential surfaces (e.g., F-H-H) that have been 

accurately determined4 this way have typically required ~ 103 calculations 

(if no allowance is made for symmetry). For N > 3 one immediately sees that 

the number of calculations required becomes out of the question. For some 
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applications, of course, one does not need to know the potential surface 

in all regions of the (3N-6)-dimensional configuration space, and although 

this does indeed help the situation, for N > 4 or so matters nevertheless 

become essentially hopeless. 

Quantum chemists ~ able, however, to make usefully accurate ab initio 

calculations for many-atom systems, simply not the enormous number of such 

calculations required to determine the potential energy surface completely. 

Thus one of the questions which has motivated this paper is how one can best 

3N-6 use a reasonable number (i.e., << 10 ) of such calculations for purposes 

of studying the molecular dynamics, e.g., chemical reactions, of the 

molecular system. Karplus and co-workers5 have been concerned with this 

question and have implemented one version of a solution: in computing classical 

trajectories for a many-atom system, they calculate the force on the nuclei--

i.e., the gradient of the potential energy surface--at each point as it is 

required along the classical trajectory. This still requires many calcula-

tions of the potential surface, however, and at present necessitates the 

use of relatively simple quantum chemistry methods. 

This paper considers another response to this question of how a modest 

number of calculations of the potential energy surface of a many-atom (N > 3) 

system can best be used for dynamical purposes. The key idea that has led 

to progress is noting that it has become feasible in recent years for 

quantum chemists 
6 

to compute the reaction path on a potential energy surface. 

This is the path of steepest descent (if mass-weighted coordinates are used) 

from a saddle point on the potential surface to various minima, and it is 

relatively easy to perform such calculations because efficient algorithms 

7 
have been developed to evaluate the gradient of the potential energy 
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surface. It has also been reported8 that efficient algorithms have 

recently been developed and implemented which evaluate the second derivative 

matrix of the potential energy with respect to nuclear coordinates. 

These reaction path calculationsare usually performed using the full 

set of 3N cartesian coordinates of the N atoms, so that the path of steepest 

descent, i.e., the reaction path, is obtained by starting at a saddle point 

and carrying out calculations at a sequence of nuclear positions determined 

by following the gradient vector (in mass-weighted coordinates), 

av 
(1. 2) viy = - c 

axiy 

where c is a constant to normalize the 3N-dimensional vector v. to unity. 
1y 

Here i = 1, .•• , N labels the atoms andy= x,y,z the cartesian components, 

-+ 
xi = ~ ri are the mass-weighted cartesian coordinates (i.e., r. is the y 1 y 1 

position vector for atom i), m. is the mass of atom i, and Vis the Born-
1 

Oppenheimer electronic energy as a function ofthe atomic positions, i.e., 

the potential energy surface. At saddle points and minima of potential 

surfaces it is common to carry out normal mode analyses, i.e., to diagonalize 

the 3N x 3N second derivative matrix K whose matrix elements are 

Kiy,i'y' ax. ax. 1 1 
1y 1 Y 

(1. 3) 

2 
There are 3N-6 non-zero eigenvalues of the matrix, {wk }, k = 1, ••. , 3N-6, 

and 6 zero eigenvalues corresponding to overall translation and overall 

rotation. 
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The only essentially new kind of quantum chemistry calculatJon needed 

to implement the approach described in this paper is a normal mode analysis 

~~sequence of points along the reaction path. Thus if the 3N-dimensional 

vector a = {a. } is a point~ the reaction path, then for general points x 
~y 

near a one has 

V(x) = V(a) + av(a) • ~ + ! ~ 
aa - 2 -

• K • ~ (1.4) 

where K is the force constant matrix defined by Eq. (1.3) and ~ is the 
:::: 

displacement vector 

~ = x-a 

For displacements ~ that are orthogonal in the 3N-dimensional vector space 

to the gradient vector the linear term in Eq. (1.4) is absent and the 

potential is thus quadratic in the displacements. To define normal coordinates 

for vibrations orthogonal to the reaction path, however, it is also necessary 

to restrict the displacements ~ to be orthogonal to the six 3N-dimensional 

vectors which correspond to infinitesimal rotations and translations of the 

complete N-atom system. At each point a on the reaction path one thus defines 

normal modes for vibration by diagonalizing the projected force constant matrix 

KP, -
(1. Sa) 

where K is the 3N x 3N matrix of Eq. (1.3) and P the projector, a 3N x 3N 

matrix, whose elements are 

p 
iy,i 1 Y1 = 

3N 
E L. k L. I I k 

k=3N-6 ~y, ~ y , 
(l.Sb) 
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where {Liy,k}, k=3N-6, •.• , 3N-l are the six 3N-dimensional unit vectors 

that correspond to infinitesimal rotations and translations of the N-atom 

system, and L. JN = v. is the unit vector that points along the reaction 1y, 1y 

path. An explicit expression for this projector is given in Section IV. 

(In conventional rotational-vibrational analysis about the minimum of a 

potential energy surface, the eigenvectors for infinitesimal rotations, say, 

emerge automatically when the unprojected force constant matrix K is diagonalized, 

but this is true only because K is evaluated at a minimum on the potential 
:::: 

surface (or at a saddle point). At a general point on the reaction path 

this will not be the case, so for the present analy'sis it is necessary to 

project out of K not only the direction along the reaction path but also the 

directions corresponding to infinitesimal rotations and translations.) It 

is clear that Kp will have seven zero eigenvalues corresponding to infinitesimal 
::: 

rotations, translations, and motion along the reaction coordinate, with eigen-

vectors 

values, 

{L. k}, k=3N-6, 1y, 
2 

{wk } , k=l, ... , 

•.• , 3N. There will also be 3N-7 non-zero eigen-

3N-7, which give the frequencies for vibrations 

orthogonal to the reaction path, with eigenvectors {Li k}, k=l, ... , 3N-7, y, 

in terms of which the normal coordinates for vibration are defined by 

= E 
i,y .. 

k=l, ... , 3N-7. 

The quantities provided by such quantum chemistry calculations would be 

{a. (s)}, the mass-weighted cartesian coordinates of the reaction path, 
1Y 

v0(s), the potential energy on the reaction path, the (3N-7) frequencies 

{wk(s)}, and theeigenvectors {L. k(s)} of the projected force constant 1Y, 
matrix, all as a function of the reaction coordinate s, the arc length along 
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the reaction path. This information provides the following approximation 

to the potential energy surface, 

3N-7 
= vo(s) + E 

k=l 
(1. 6) 

in terms of the 3N-6 internal coordinates s, {Qk}' k=l, •.• , 3N-7, and has 

the form of a "harmonic valley" about the reaction path. For many purposes 

one expects this to be the relevant part of the potential energy surface. 

The remaining, more difficult task is to express the kinetic energy of the 

system in terms of these coordinates and their conjugate momenta, so as 

to obtain a complete Hamiltonian which will then permit dynamical studies. 

Most of this paper is concerned with this task of obtaining the kinetic 

energy in terms of the reaction path variables. 

The reader will recognize that these variables are essentially an 

9 extension of the "natural collision coordinates" introduced by Marcus for 

A + BC collision systems (although these were not necessarily restricted to 

the steepest descent path). For the collinear A+ BC system, for example, 

the classical Hamiltonian obtained by Marcus is (incorporating the harmonic 

approximations to the potential about the reaction path) 

H(p ,s,P,Q) 
s 

1 2 2 
= 2 ps /[l+QK(s)] + v0 (s) 

(1. 7) 
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where K(s) is the curvature of the reaction path at position s, and (ps,P) 

are the momenta conjugate to (s,Q). One of the goals of this paper is thus to 

obtain the classical Hamiltonian analogous to the above for the general case 

of an N-atom system in 3-d space. 

Having obtained the form of the classical Hamiltonian, one can carry 

out dynamical studies; classical trajectory calculations can be made, or 

one may consider the dynamics within various approximations. For 

example, the Hamiltonian has the form of one special, or "interesting" 

degree of freedom, i.e., the reaction coordinates, coupled to a number of 

harmonic modes, suggesting models which formally eliminate the harmonic 

degrees of freedom and obtain a reduced equation of motion for only the s 

10 
degree of freedom. Another standard approximation is that of vibrational 

d · b · · 9•11 · h h 3N 7 h . d f f d a 1a at1c1ty, 1.e., to assume tat t e - armon1c egrees o ree om 

remain in the same adiabatic quantum state (or classically, conserve their 

action variables) along the reaction coordinate s. It will be seen in Section 

III, for example, that the vibrationally adiabatic approximation is actually 

a much better description of tunneling in the collinear H + H2 reaction 

than had been previously believed, provided that the effects of curvature 

of the reaction path are properly taken into account. 

The practical feature which makes this general approach feasible (and 

therefore interesting) for polyatomic systems is that it requires a 

relatively modest number of quantum chemistry calculations to obtain all 

the quantities necessary to construct the classical Hamiltonian. Suppose, 

for example, that one requires ~ 10 calculations along the reaction path 

to determine the functions v0 (s), {wk(s)}, {a. (s)}, and {L. k(s)}. 
1Y 1Y, 

Estimates
8 

are that calculation of the gradient vector and force constant 
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matrix of Eqs. (1.2) and (1.3) requires ~ 10 times the effort of a single 

quantum chemistry calculation, so that only the equivalent of ~ 100 quantum 

chemistry calculations would be required to determine all the necessary 

quantities, independent of the number of atoms N. Of course the larger the 

number of atoms, the larger the number of electrons, and the more difficult 

the quantum chemistry calculations. Nevertheless, a useful description of the 

dynamical system is achieved with a reasonably modest number of such 

calculations. 

The structure of the paper is as follows: Section II first shows how 

th~ Hamiltonian is expressed in terms of reaction path coordinates and their 

conjugate momenta for a "generic cartesian" system, i.e., one for which the 

complications of 3-d space and the requisite conservation of total 

angular momentum are ignored. The result obtained actually 

~oes describe real molecular systems for the special 

case of zero total angular momentum and with the neglect of 

rotation-vibration coupling. Section III then briefly discusses the 

vibrationally adiabatic approximation, and for the example of tunneling in 

the collinear H + H2 ~ H2 + H reaction, shows that if curvature of the 

reaction path is taken into account, the approximation works considerably 

better than had been heretofore believed. 

Section IV, the main body of the paper, then derives the classical 

Hamiltonian in terms of reaction path variables for the general case of an 

N-atom system in 3-d space with non-zero total angular momentum. It is 

seen how the simpler results of Section II are recovered if certain approxi­

mations are introduced, and the special case that the reaction path corresponds 

to a linear molecule is also treated. As a simple example, the vibrationally 
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adiabatic approximation to this reaction path Hamiltonian is used to compute 

reaction probabilities for the 3-d H + H
2 
~ H2 + H reaction, and the results 

are seen to be in reasonably good agreement with the correct quantum 

mechanical results. Finally, it is shown in Section V how the quantum mechanical 

Hamiltonian operator in these variables can be obtained from the expression 

for the classical Hamiltonian. 

In concluding this Introduction it should be noted that this reaction path 

model for the Hamiltonian will not always be useful. For example, in the asymptotic 

region of the potential surface where the N-atom system fragments into two 

subsystems some of the 3N-7 vibrations become rotations, i.e., some of the 

frequencies go to zero, and the harmonic approximation to the potential about 

the reaction path thus fails. It should be quite useful, however, for 

describing intramolecular dynamics, e.g., unimolecular isomerizations, or in 

general in describing the dynamics in the saddle point region of the potential 

energy surface. It should thus be useful in any kind of generalized transi-

tion state theory which requires knowledge of the dynamics only in the saddle 

point region and, in particular, in calculating tunneling corrections to such 

theories. The quantum mechanical form of the Hamiltonian may also be of use 

in carrying out quantum scattering calculations in the saddle point region. 
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II. Reaction Path Hamiltonian for Generic Cartesian Systems. 

a. General Derivation 

Before considering an actual molecular system it is useful to treat 

a general F-dimensional cartesian-like Hamiltonian without the complications 

of angular momentum considerations. Thus let {x.}, i = 1, •.. , F, be mass-
1 

weighted cartesian-like coordinates, and the Hamiltonian for the system be 

H(p,x) (2.1) 

where V is the potential energy. 

Suppose that the reaction path has been determined and the normal mode 

analysis carried out along it; this would be the "output" of an ab initio 

quantum chemistry calculation. One thus knows {a.(s)}, i=l, ••. , F, the 
1 

cartesian coordinates of the reaction path as a function of the reaction 

coordinate s, the arc length along the reaction path, the potential energy 

v0 (s) along the reaction path, the normal mode frequencies {wk(s)}, k=l, ..• , 

F-1, and the matrix of eigenvectors {L. k(s)}, i,k = 1, ... , F which result 
1, 

from diagonalizing the projected force constant matrix.· (In this case the 

projector P is the one-dimensional projector P = •v v•, i.e., its matrix 
..::: 

elements are P .. , = v.v.,.) The potential energy is given, within a 1,1. 1 1 

harmonic approximation about the reaction path, by 

F-1 
= Vo(s) + L 

k=l 
(2.2) 

where the term k=F is absent from the sum because this is the zero eigen-

value corresponding to the direction along the reaction path; i.e., the 

Fth . . h d e1genvector 1s t e normalized gra ient vector, 



-10-

L. F(s) 
~, 

we note also that 

L. F(s) = a.' (s) 
~, ~ 

which follows by definition of arc length, i.e., 

F 

E 
i=l 

2 (dx.) 
~ 

(2.3a) 

(2.3b) 

for displacements along the reaction path. The task is to determine the 

kinetic energy in terms of s, {Qk}, and their conjugate momenta ps, {Pk}. 

One must thus carry out a canonical transformation
12 

from the 2F "old" 

variables (x.,p.), 
~ ~ 

i = 1, ... , F, to the 2F "new" variables (s,p ), s 

.... , F-1, where the "old" cartesian coordinates {x.} 
~ 

are given in terms of the "new" reaction path coordinates (s,{Qk}) by 

x. 
~ 

F-1 
= a . ( s) + E L . k ( s) Qk 

~ k=l ~, 

(2.4) 

i.e. , the cartesian coordinates {x.} of a general point in configuration 
~ 

space are given by the cartesian coordinates of a point on the reaction 

path, {ai(s)}, plus F-1 displacements {Qk} orthogonal to the reaction path. 

Since the "old" coordinates are a function only of the "new" coordinates 

and not the "new" momenta, the canonical transformation is a point 

f . d f f . . . by12 
trans ormat~on an the F

3
-type generating unction or ~t ~s g~ven 
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= -

F F-1 
= - E p . [a . ( s) + E L"' , k ( s) Qk] • ( 2 • 5) 

i=l ~ ~ k=l • 

The transformation is defined in terms of the generating function by the 

f 11 . . 12 o ow~ng equat~ons: 

= 
aF

3 x. - api ~ 
,i=l, •.• ,F (2.6a) 

pk 
aF

3 = 
- aqk , k = 1, ••. , F-1 (2.6b) 

aF
3 

Ps - Ts (2.6c) 

Eq. (2.6a) is satisfied by construction, and Eqs. (2.6b) and (2.6c) give 

F 
pk = E pi 1 i,k(s) k = 1, ... ' F-1 

i=l 

F F-1 
Ps = E p. [ai' (s) + E L. k'(s) Qk] 

i=l ~ k=l ~. 

Since the kinetic energy T is given in terms of the "old" momenta by 

F 1 2 
T = E 2 pi 

i=l 

(2.7a) 

(2. 7b) 

(2. 8) 

the task is to solve Eq. (2.7) for the "old" momenta {pi} in terms of the 

"new" variables (s,ps), (Qk,Pk), and then Eq. (2.8) can be used to obtain 

the expression for the kinetic energy in terms of the "new" variables. 
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In light of Eq. (2.3), Eq. (2.7b) can also be written as 

F F-1 
Ps = L P · [v · + L 

i=l 1. 1. k=l 

To solve Eq. (2.7) for {p.}, one first multiplies Eq. (2.7a) by 
1. 

L. k(s) and sums over k: 
J, 

F-1 F F-1 
E L. k(s) pk = 
k=l J, 

E PiE 
i=l k=l 

L. k(s) L. k(s) 
J , 1., 

But unitarity of {L. k} implies that 
1., 

F-1 F 
E L. k(s) L. k(s) 
k=l J, 1

' 
1: L. k(s) L. k(s) - L. F(s) L. F(s) 
k= 1 J , . 1., J , 1., 

=6' -v.v. 
j,i J 1. 

so that Eq. (2.9) becomes 

F-1 F 
E L. k(s) pk 
k=l J, 

= p. - v. L p.v. 
J J i=l 1. 1. 

Eq. (2.10) shows that the "old" momenta {p.} are given by 
1. 

(2 • 7b I) 

(2.9) 

(2.10) 

(2.11) 

where cis unknown (bec&use it depends on {p.}). cis now determined by 
1. 

substituting Eq. (2.11) into Eq. (2.7b'): 
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F ~1 ~1 

ps = L [ L L. n ( s) P n + c v. ][vi + L L . k' ( s) Qk] 
i=1 1=1 1,N N 1 k=1 1, 

F 
E v.L. 

1
(s) 

i=l 1 1, 

F 

E 
i=l 

F 

2 
v. = 1 

1 

E L. F(s) L. R. (s) = on,F = 0 
i=l 1, 1, N 

for R. = 1, .•. , F-1, Eq. (2.12) gives c as 

F-1 
Ps- L QkPR. Bk R.(s) 

k R.=l , 
c = --...;.;...J'"--'-:::~-----

F-1 
1 + L Qk Bk F(s) 

k=l , 

where 

F 
= E L. k'(s) L. 1 (s) 

i=1 1, 1, 

(2.12) 

(2.13) 

(2.14) 

Using Eq. (2.13) in Eq. (2.11) gives the "old" momenta explicitly in terms 

of the "new" variables: 

(2.15) 
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Using the unitarity of {L. k} again, it is easy to obtain from Eqs. (2.15) 
1, 

and (2.8) the following final result for the kinetic energy in terms of the 

"new" variables: 

F-1 
T E 

k=l 

.! p 2 
2 k (2.16) 

Eq. (2.16) is the desired result. Together with the potential energy, 

Eq. (2.2), it provides the classical Hamiltonian in terms of the reaction 

path coordinates and their conjugate momenta: 

F-l 1 2 1 2 2 L (- P + -2 wk ( s) Qk ) 
k=l 2 k 

.(2.17) 

Central to the structure of this Hamiltonian are the coupling elements 

Bk £(s) which are defined by Eq. (2.14). If the eigenvectors of the 
• 

projected force constant matrix are denoted in pseudo-Dirac notation by 

l~k> and vector products by bra-kets, then one sees that 

(2.18) 

i.e., it has the same form as the non-adiabatic coupling elements in the 

Born-Oppenheimer approximation. The terms k,£ = 1, ... , F-1 in the numerator 

,. 
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of the last term in Eq. (2.17) thus describe the coupling between the 

different (F-1) vibrational modes induced by motion along the reaction 

coordinate, and the elements Bk,F(s) in the denominator are the direct 

coupling between the reaction coordinate (the Fth degree of freedom) and 

the various F-1 vibrational modes. We note that in general the matrix 

{Bk ~} is skew-symmetric, , 

(2.19) 

b. Simple Examples. 

It is easy to show that Marcus' result for the collinear A+ BC 

system, Eq. (1.7), is recovered in the limit F = 2. In this case the 

(F-1) x (F-1) = 1 x 1 matrix {Bk ~(s)} in the numerator of the last term , 
in the Hamiltonian of Eq. (2.17) is zero by virtue of Eq. (2.19), so that 

Eq. (2.17) becomes 

1 2 1 2 2 H(p,s,P,Q) = 2 P + 2 w(s) Q + v
0

(s) + (2.20) 

Furthermore, it is not hard to show that B1 , 2 (s) is K(s), the curvature of 

the reaction path, so that Eq. (1. 7) is obtained. In the general F-

dimensional case one can show that the curvature of the reaction path, 

K(s), is given by 

(2. 21) 
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so one sees that the curvature is "partitioned" among the different 

vibrational modes in the general case. 

To illustrate the nature of the coupling in the numerator of the 

last term in the Hamiltonian of Eq. (2.17), consider the three dimensional 

case, F = 3, where the reaction path is the z-axis. (Here we denote the 

three cartesian coordin~tes x
1

, x2 , and x
3 

as x, y, and z.) In this case/· 

there can be no effect of curvature because the reaction path is straight, 

but there is still the possibility of coupling because Q
1 

and Q2 can change 

with s. Q1 and Q2 are in general a linear combination of x and y, so that 

in this case the 3 x 3 unitary matrix {L. k} has the form 
l., 

L(s) = 
cosr2 

(-sinr2 

0 

sinr2 

cosr2 

0 

~ ) (2.22) 

1 

where Q = Q(s). It is then easy to show that the coupling matrix Bk,t(s) 

is 

-1 

0 

0 

0 

0 )Q'(s) 

0 

The Hamiltonian of Eq. (2.17) then takes the form 

(2.23) 

(2.24) 

The term (Q
1

P2-Q
2
P

1
) may be interpreted as an angular momentum about the 

z-axis, so that the coupling between the normal modes and motion along the 

,t;· 
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reaction coordinate has the form of a coriolis coupling due to the fact 

that the normal mode directions wind about the reaction path as the angle 

n(s) varies with s. 

In general, therefore, the coupling elements {Bk,~} in the numerator 

of Eq. (2.17) are coriolis-like interactions, and the elements{Bk F} in the 
• 

denominator of Eq. (2.17) describe the effects of reaction path curvature. 
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III. Vibrational Adiabaticity; Effect of Including Reation Path Curvature. 

For many purposes, e.g., to describe tunneling through the saddle 

point region of a potential energy surface, it is useful to approximate 

the motion of the system as one dimensional motion along the s degree of 

freedom in an effective one-dimensional potential. The most obvious approxi-

mation of this type is to assume that the normal modes perpendicular to the 

reaction path are adiabatic, and this vibrationally adiabatic model was 

introduced by Marcus 9•11 number of years ago. Here we give a somewhat different 

treatment of it, showing how the effects of reaction path curvature and part 

of the effect of non-adiabaticity can be incorporated in a relatively simple 

manner. To keep the presentation clear, the collinear case (F=2) is treated 

explicitly first, and then generalized to the F-dimensional case. 

a. Collinear Case, F=2. 

The Hamiltonian for the F=2 case is given in terms of the reaction path 

variables by Eq. (1.7). To introduce the vibrationally adiabatic approximation 

one first makes a canonical transformation to replace the normal mode coordinate 

and momentum (Q,P) by the harmonic action-angle variables (n,q). The F2 
12 generator · for the complete transformation is 

(3.1) 

where the first term is the identity generator for the s-degree of freedom, 

and 
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1 -1 Q";;;'r g_ 1 1 2 2 . = (n +2)sin [v~ Q] + 2 J2 [ (n +2)w(s) - 2 w(s) Q ] 

The classical action variable n has "i" added to it for well-known 

semiclassical reasons, and units areused so that h = 1; n is thus the 

(3.2) 

classical counterpart to the vibrational quantum number. The canonical 

transformation from the "old" variables (p ,s,P,Q) to the "new" variables s 

(ps 1 ,s 1 ,n,q) is specified by the following equations: 

aF2 1 L 1 2 2' 
P = - = v 2 [ (n +-)w ( s) - -

2 
w ( s) Q ] 

aQ 2 
(3.3a) 

aF
2 sin 

-1 [jj(s) 'q] q = -- = 
an 2n+l 

(3. 3b) 

sl 
aF2 

= ap I 
= s 

s 
(3.3c) 

aF2 I + 
af2(Q,n;s) 

ps = -- = ps as as 
(3.3d) 

Inverting these relations gives the "old" variables in terms of the "new" 

ones: 

s = s 1 (3.4a) 

Q ~sinq (3.4b) 
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E = /(2n+1)w(s)
1 

cosq (3. 4c) 

+ 1 w'(s) 
ps = ps' (n+2) w(s) sinq cosq (3. 4d) 

so that the Hamiltonian of Eq. (1. 7) is given in terms of the "new" 

varibles by 

1 1 w' (s) . 2 

H(p ,s,n,q) 
s 

2 [ps + (n +z) w(s) s~nq cosq] 1 
= ----;..-...... -~_,;;2~.r------ + (n +2) w < s) + v 

0 
(s) , 

[·1 
+ /<2n+l) K(s) . 

1
2 

V~ ( ) s~nq w s 

where the prime has been dropped from p ' and s'. 
s 

(3.5) 

Eq. (3.5) is still dynamically exact, and the idea of the vibrationally 

adiabatic approximation is to assume that the "quantum number" n is conserved, 

i.e., a constant of the motion. This will be a good approximation if the 

Q-motion is fast compared to the s-motion, i.e., this is a kind of Born~ 

Oppenheimer approximation with the Q-degree of freedom playing the role of 

the electrons. The effective potential for the s-degree of freedom is obtained 

within this approximation by averaging the classical Hamiltonian, Eq. (3.5), 

over the angle variable q. This corresponds to a time average over the fast 

motion, and it has recently been used13 to derive classical pseudo-potentials 

for electronic degrees of freedom. By averaging the Hamiltonian over q one 

obtains a Hamiltonian which is independent of q and for which n is thus a constant 

of the motion. 

The vibrationally adiabatic Hamiltonian for the s-motion is thus given 

by 



... 
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The integrals are elementary, and one obtains 

where 

H (p ,s) = l p 2/[l-A(s)] 312 + 
1 2 2 

(n +z> w' (s) 

n s 2 s 

1 + (n +2)w(s) + v 
0 

(s) 

2 
A = (2n +1) K(s) 

w(s) 

f(A) 

2 
2w(s) 

(3.6) 

f(A) 

(3.7) 

(3. Sa) 

(3.8b) 

1 For small A, i.e., small curva~ure, f(A) + B' Eq. (3.7) gives the effective 

one-dimensional Hamiltonian for the most rigorous version of the vibrationally 

adiabatic approximation. The effective potential "seen" by the s degree of 

freedom is 

1 2 2 
(n +2) w' (s) 

2 2w(s) 
f(A) (3. 9) 

of which the respective terms are identified as the actual potential. along 

the reaction path, the adiabatic vibrational energy of the transverse 

oscillator, and the diagonal part of the non-adiabatic coupling. In most 

cases the non-adiabatic correction to the adiabatic potential is assumed to 

be small and thus discarded, giving 
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(3.9') 

The curvature is also seen to affect the kinetic energy term in the 

Hamiltonian of Eq. (3.7) via the multiplicative factor 

[1- A(s)]-312 > 1 (3 .10) 

This may be thought of as lowering the effective mass for the s-motion, so 

that it increases ~probability Qt tunneling through the barrier. 

Specifically, the tunneling probability is given semiclassically (i.e., 

within the WKB approximation) by 

P(E) = e -28(E) 

where 8(E) is the imaginary action integral through the barrier: 

8(E) = fis Im p (s,E) s 

ps(s,E) is determined by energy conservation, 

yielding 

H (p ,s) = E n s 

Setting A(s) = 0 in Eq. (3.llc) is the vibrationally adiabatic zero 

curvature approximation (VAZC), and one sees that A(s) > 0 reduces the 

value of 8(E) and thus increases the tunneling probability. 

(3.11a) 

(3 .llb) 

(3.llc) 

• 



• 
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14 
Truhlar and Kuppermann carried out a fairly extensive test of the 

vibrationally adiabatic zero curvature (VAZC) approximation with regard 

to the collinear H + H2 ~ H2 + H reaction and found it to be quite poor, 

giving reaction probabilities one to two orders of magnitude too small in 

the tunneling region. This is perhaps not too surprising since the 

transverse vibrational motion is actually not a great deal faster than 

motion along the reaction coordinate. It is nevertheless amusing to note 

that the vibrationally adiabatic (VA) model works considerably better for 

this example if the "zero curvature" part of the approximation is not 

made. 

Figure 1 shows the exact quantum mechanical (QM) and vibrationally 

14 
adiabatic zero curvature (VAZC) results obtained by Truhlar and Kuppermann, 

compared to the vibrationally adiabatic (VA) results obtained from the same 

potential energy surface if the zero curvature approximation is not made. 

(These latter results were obtained from Eqs. (3.9') and (3.11) with n=O. 

To check the reliability of the semiclassical approximation, calculations 

were also carried out this way but with A(s) = 0, and the VAZC results of 

reference 14 were reproduced to within 20%.) One sees that lifting the 

zero curvature part of the VAZC approximation goes more than half way (in 

a logarithmic sense) to correcting the deficiencies of this model. 

b. General Case, F > 2. 

The approach of Section Ilia can also be applied to the Hamiltonian of 

Eq. (2.17) for the general F-dimensional case. To simplify matters, the 

diagonal parts of the non-adiabatic corrections will be omitted since they 

are usually ignored in applications. It is then easy to show that one obtains 

the following effective one-dimensional Hamiltonian for motion along the reaction 
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coordinate, 

where~={~}, k = 1, •.• , F-1 are the adiabatic vibrational quantum 

numbers, and the correction factor A(s) which multiplies the kinetic 

energy is 

A(s) 
F-1 _

2 
<[1 +I: Qk Bk,F(s)] > 

k=l 

(3 .12) 

( l) 2TI 2n F-1 _2 
= (2n)- F- ( dql . . . (

0 
dqF-l [1 + I: Qk Bk,F(s)] 

~ ~ k=l 
(3 .13a) 

where 

(3 .13b) 

It has not been possible .to find a closed-form expression for A(s), but a 

convergent series representation is 

00 00 

A(s) 
(2£1 + ... + 2£F-l + 1)! 

(£1! £2! ... £F-1!)
2 

(3 .13c) 

.. 



-25-

IV. Reaction Path Hamiltonian for Polyatomic Systems in Three Dimensions. 

The reaction path Hamiltonian given by Eq. (2.17) of Section II is 

suggestive but not directly useable since it takes no account of the 

rotational symmetry of an N-atom system in 3-d space and the resulting 

conservation of total angular momentum. The purpose of this section is to 

do this, i.e., to derive the reaction path Hamiltonian for anN-atom 

system in 3-d space with a given non-zero value of the total angular 

momentum. As before, it is assumed that one knows all the quantities 

which would result from a quantum chemistry calculation of the 

reaction path: the nuclear coordinates of the reaction path, 

the potential energy along it, and the eigenvalues (i.e., frequencies) and 

eigenvectors that result from diagonalizing the projected force constant 

matrix. 

To accomplish this we revert to the classic treatment of the general 

rotating-vibrating molecule given by Wilson, Decius and Cross.
15 

The 

difference here is that the reaction coordinate is a special coordinate to 

be treated differently from the remaining normal coordinates. Unlike the 

latter, which have small changes, the reaction coordinate must be considered 

in a parallel fashion to the rotational coordinates (i.e., Euler angles) 

which can take on large values. A related problem has been treated by the 

theoretical vibration-rotation spectroscopists: typically one of the 

internal coordinates undergoes large amplitude motions and can therefore 

not be accurately described by the standard vibration-rotation theory.
15 

Simple examples are the bending coordinate in HCN, or the out of plane 

bending angle of CH2 in excited states of HCHO. For such problems Hougen. 
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Bunker,and Johns1 ~HBJ) have derived a Hamiltonian which treats this bending 

coordinate apart from all the other internal coordinates. By considering 

this special coordinate to be the reaction coordinate, it is possible to 

borrow much of their analysis to achieve our present goal. The presentation 

below thus omits some of the details that are identical to that of HBJ, and 

to simplify matters we have also used mass-weighted cartesian coordinates 

and notation that coincides as closely as possible with that of Section II. 

Regarding notation, three-dimensional vectors and matrices whose components 

are the cartesian directions x, y, and z, will be denoted with arrows, while 

the four dimensional vectors and matrices that appear below will be denoted 

by bold-face type. We also switch between vector notation and component 

notation to use whichever seems to be clearest in the particular situation. 

a. Derivation for the General Case of a Non-Linear Reaction Path. 

+ + 
{Xi} and {xi}, i = 1, .•. , N, are the mass-weighted cartesian coordinate 

vectors of the N atoms in a space-fixed axis OXYZ and molecule-fixed axis 

Oxyz, respectively. 
+ + 

(I.e., if {R,} and {r.} are the actual cartesian 
1 1 

coordinates in these coordinate systems, then X. = ~ R. and;,=~~., 
1 1 1 1 1 1 

where {m.} are the atomic masses.) 
1 

The cartesian coordinates in these 

two different axis systems are related by 

(4 .1) 

• 
+ 

where RCOM is the coordinate of the center of mass and is the origin of both 
+ 

coordinate systems, and s-1
cx,8,¢) is the matrix of direction cosines relating 

the molecule-fixed axes to the space-fixed axes through the Euler angles 

x,e, and ¢. It is convenient to express the coordinates in the molecule-fixed 

system as 
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+ 
x. = 
~ 

~. (s) + t 
~ ~ 

(4. 2) 

+ 
where {a.(s)} are the mass-weighted coordinates of the reaction path, which 

~ 

depend parametrically on the reaction coordinate s (the arc length along 

+ 
the reaction path), and where{~.} are the mass-weighted displacements away 

~ 

from the reaction path. 

With Eq. (4.2) substituted into Eq. (4.1), there are 3N variables on 

+ + + 
the LHS, {Xi}' and (3N+7) variables on the RHS, RCOM' x. 8, ¢, {~i}, and 

s. Therefore seven relations must be specified between the (3N+7) 

varibles on the RHS to remove this inconsistency. One is at liberty to 

choose the relations in the computationally most convenient way, and these 

appear to be 

N 

I: .Jm: ti + 
= 0 

. 1 ~ 
~= 

(4.3a) 

N + + 
I: a. (s) x!. = 0 
i=l ~ ~ 

(4.3b) 

N 
r: + + 

a. 1 (s)•C = 0 
i=l ~ ~ 

( 4. 3c) 

Relation (4.3a) is a center of mass condition; relation (4.3b) is commonly 

called the Eckart condition and assures that infinitesimal displacements do 

not contribute to the angular momentum. Since {~. 1 (s)} :: {a. 1 (s)} is the 
~ ~y 

3N-dimens ional 

relation (4.3c) 

reaction path. 

unit vector viy which points along the reaction path, 

+ 
states that the displacements {~.} are orthogonal to the 

~ 

+ 
The relations (4.1)-(4.3) insure that a set of {X.} will 

1 

+ + 
correspond uniquely to a set of RCOM' X• ¢, 8, {si}, s, and vice-versa. 
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-+ 
In HBJ the reference positions {a.(s)} are chosen such that 

]. 

N 

E 
i=l 

-+ -+ 
a.(s) x a. 1 (s) 

]. l. 
(4.4) 

and we show that this relation is automatically satisfied when s is the 

-+ 
reaction coordinate. Since {a. 1 (s)} is the 3N-dimensional unit vector 

l. 

which points along the reaction path, Eq. (1.2) implies that 

where c is a constant. 

internuclear distances 

-+ 
a. 1 (s) 

l. 

-+ 
a. 1 (s) 

l. 

But 

x .. -
l.J 

= - c 

av = -c~l ax. 
1. x=a 

the potential energy v 

I-+ -+ x.-x.l, so that 
l. J 

N a.-a. 
...£Y_I ~ 

l. J 
li.-a.l ax .. j=l l. J l.J x=a 

It is then easy to see that Eq. (4.4) follows. 

is a function only 

(4.5) 

of 

(4.6) 

Normal coordinates {Qk} can be defined, for any fixed value of s, by 

by diagonalizing the projected force constant matrix of Eq. (1.5). If 

-+ 
{L. k(s)} = {L. k(s)}, y = x,y,z, k=l, 

J., l.Y, 
... ' 3N-7, are the eigenvectors 

with the non-zero eigenvalues {wk(s) 2}, then for a fixed value of s the 

(3N-7) normal mode vibrational coordinates are defined in terms of the 

-+ 
cartesian displacements {~i} by 

N 
~ 1: 

-+ -+ 
Qk t_;iy 1iy ,k · = ~i·Li k (4. 7) 

i;,· i=l ' 

.. 
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for k=l, •.. , 3N-7. The coordinates for the seven "normal modes" which 

correspond to infinitesimal rotations, translations, and motion along the 

reaction coordinate are given by
15 

-+ 
R -

N 

I: 
i=l 

-+ -+ 
a. x C 
~ ~ 

-+ 
-+ 

where the inertia tensor r 0 (s) is defined below [Eq. (4.17b)J; 

-+ 
T -

where 

M = 

and 

s - Q3N = 

N 

I: 
i=l 

N 

E 
i=l 

m. 
~ 

N /5. -+ 
= I: M ~i 

i=l 

-+ -+ 
ai'(s)·~i 

(4.8a) 

(4. 8b) 

( 4. 8c) 

-+ -+ 
Because T, R, and S are associated with zero frequencies, their equations 

of motion for infinitesimal displacements have constants as solutions, so 

it is appropriate to set 

s = 0 (4. 9) 

In this way the relations in Eq. (4.3) are seen to be reasonable constraint 

equations. 

Eqs. (4.8) are also equivalent to stating that the eigenvectors 

corresponding to infinitesimal rotations, translations, and motion along 

the reaction coordinate are given, respectively, by 
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(4 .lOa) 

for k=3N-6, 3N-5, 3N-4 which correspond, respectively, to A= x,y,z (EaSy 

is the usual totally asymmetric cartesian. tensor); 

(4 .lOb) 

for k = 3N-3, 3N-2, 3N-l which correspond, respectively, to A = x,y,z; and 

L. )N (s) = a. ' ( s) 
~y, ~y 

It is then easy to show that the matrix elements of the projector in 

Eq. (l.Sb) are given explicitly by 

p. • 1 I (S) 
~y .~ y +

Jriiimi'
1

;: 
=a. '(s)a '(s) u 

~y i'y' M y,y' 

(4.10c) 

:: -1 + :I: £ 0 a. 0 (s) (I0 (s) ) , £ , 0 , , a., 0 ,(s).(4.11) 
aS a'S' a~y ~~ a,a a ~ Y ~ ~ 

The orthogonality relations for the vibrational eigenvectors {L. k(s)}, 
~y, 

k=l, .•• , 3N-7, may then be written concisely as 

N 
+ + E L. k(s)•L. ~(s) = ok ~ 

i=l ~. ~. ' 

N + L,F L. k(s) 
i=l ~ ~. 

= 0 

N 
~ + + + 
~ a.(s) x L. k(s) = 0 
i=l ~ ~. 

(4.12a) 

(4.12b) 

(4.12c) 
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N 
~+I + 
Ll a. (s)•L. k(s) = 0 
i=l l. l., 

(4.12d) 

for k,.R. 1, ••. , 3N-7, and 

3N-7 
l~i Liy,k(s) Li'y',k(s) = oi,i' oy'y'- piy,i'y'(s) (4.12e) 

Furthermore, these orthogonality relations can be used with Eq. (4.9) 

to invert Eqs. (4.7) and express the cartesian coordinates explicitly in 

terms of the reaction path coordinates: 

+ + 
x. = a.(s) + 

l. l. 

3N-7 
+ E 1 · k(s) Qk 

k=l l.' 

which is analogous to Eq. (2.4) of Section IIa. 

The theory has now reached the stage where it is identical in 

17 
fashion to that of Moule and Ramachandra Rao, who introduced the 

16 
more systematic notation into the work of HBJ, and we can derive the 

expression for the kinetic energy in terms of the canonical variables 

by following the procedure in Sections 2-4 of Chapter 11 of reference 

15 almost identically. The result one obtains for the kinetic energy 

T is 

with 

3N-7 
T= E 

k=l 

.!. p 2 
2 k + T 

s 

(4.13) 

(4.14a) 

(4.14b) 
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where ~ and ~ are 4-dimensional vectors, and ; 0 and ~ 4-dimensional symmetric 

matrices, of which the first three elements are cartesian componettts related to 

rotation in 3-d space and the fourth a scalar component related to the 

reaction coordinate. These quantities are defined explicitly by Eqs. (4.15)-

(4.18): 

-+ 
IT = (J,ps) = (J J J P ) x' y' z' s (4.15) 

-+ 
where J is the total angular momentum vector of the N-atom system and p the s 

momentum conjugate to the reaction coordinate s; 

(4.16a) 

with 

~k,~(s) = (4.16b) 

where 

-+ N -+ -+ 
Bk,~(s) = L L. k (s) x L. ~(s) (4.16c) 

i=l 1., 1., 

N 
-+' 

-+ s I: (s) •L. ~ (s) ( 4 .16d) Bk,~(s) = 1 i k 
i=l ' 

1., 



-33-
-+ -+ 

= (r~0 (s) !o(s) ~ 
(4.17a) 

-+ -+ where r
0

(s) is the inertia tensor on the reaction path, 

N -+ -+-+ -+ 
= E [1 ai (s) •ai (s) 

i=l 

-+ -+ 
•a. (s) a. (s) •] 

l. l. 

(4.17b) 

(4.18a) 

with 

(4.18b) 

where 

-+ N -+ 
-+ E 

-+-+ -+ -+ -+ 
bk (s) = [1 L. k(s)•a.(s) - •1. k(s) ai(s)•] 

i=l l.' l. 1., 

(4.18c) 

N -+ -+s E 
-+ -+ 

bk(s) = L. k(s) x Li,3N(s) = Bk,3N(s) 
i=l 1., 

(4.18d) 

N 
~ -+ I -+ 
~ Li k (s)•L. 3N(s) 
i=l ' 1., 

(4.1Be) 

By differentiating Eq. (4.12C) with respect to s, one can show that bks 

of Eq. (4.18d) is also given by 
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N 

=E 
i=1 

-+ -+ 
a.(s) x L. '(s) 

l. l.,k 
(4.18f) 

Eq. (4.14b) forT can be made more explicit by partitioning the 4 x 4 
s 

matrices and vectors into 3 x 3 and 1 x 1 components. This is reasonably 

straight-forward, and one obtains the following result: 

where 

T s 

-+ -+ 

-+ -+ 
1 -+ -+ -+1-l -+ -+ 1 -+ -+ -1 -+ 2 

= (J-'IT). I • (J-TI) + - (l+b •I I •b )P 
2 2 s s s 

-+ 
-+ -+ -1 -+ -+ 

-b•I' •(J-rr)P 
s s 

p = 
s 

-+ -+ 
-t- -+ -+ -1 -+ -+ 

p -rr -o •(I +b) •(J-'IT) 
s s s 0 

-+ '* ~ -1-+ l+b -b • (I +b) •b ss s 0 s 

-+ -+ -+b b -+ with I
0

, b, , , 'IT, and 'IT given by Eqs. (4.16)-(4.18). 
s ss s 

To complete the specification of the classical Hamiltonian for an 

(4.19a) 

(4.19b) 

(4.19c) 

arbitrary value of the total angular momentum, one must express the three 

-+ 
components of J in terms of the canonical variables for rotation. These 

. 1 k 18 b 1 bl (J ) are most conven1.ent y ta en to e the action-ang e varia es ,qJ , 

-+ 
(M,qM), and (K,qK), where J is the magnitude of J, M is its projection onto 

the space-fixed Z-axis, and K its projection onto the body-fixed z-axis; 



.. 
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qJ, qM, and qK are their conjugate angle variables. J and Mare conserved 

quantities, so the Hamiltonian is not a function of qJ and qM, and because 

of the isotropy of space, the Hamiltonian is also independent of M. The 

Hamiltonian does, however, depend on qK, so that K is not .conserved. For 

a given value of J, therefore, the Hamiltonian is a function of 3N-5 pairs 

of canonically conjugate variables: ... ' 3N-7, and 

-+ 
The three cartesian components and J are given in terms of K and qK 

I 2 2 1 

Jx = VJ -K cosqK (4.20a) 

J 2 2
1 

Jy = J -K sinqk (4.20b) 

Taking into account the harmonic approximation to the potential energy 

about the reaction path, the final complete expression for the Hamiltonian 

in reaction path variables for total. angular momentum J is 

where T is given by Eq. (4.19). 
s 

We now consider several aspects of this result. 

( 4. 21) 
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b. Simplified Approximate Expressions 

Since 

Eq. (4.19) 

-+ 
the 3-d vector n = (n , n , n ) of Eq. (4.16a) enters 

X y Z 
-+ -+ ..... 

as .(J-n), where J is the total angular momentum 

15 vector, it is often referred to as the "vibrational angular momentum". 

It is also often neglected, which we now do to obtain a simplified 

Hamiltonian. 

If one first neglects sll the terms in T which involve the vibrational s 
-+ 

{Qk}, 
-+ -+ b and also then Eq. (4.19) coordinates i.e., sets b, 7T to zero, bs' ss' s 

becomes 

(4.22) 

the two termsof which are recognized as the energy of a rigid asymmetric 

-+ 
rotor with geometry {a.(s)} and the kinetic energy for motion along the 

1 

reaction coordinate, respectively. This is the usual model of separable 

rotation and internal motion. 

-+ 
Still neglecting n, a simple but more accurate approximation to T in . s 

-+ 
Eq. (4.19) can be obtained for the case J=O by retaining n and the b-dependence 

s 

through quadratic terms: 

(4.23a) 

By using Eqs. (4.18f) and (4.10a), the following useful expression for the 

quadratic term can be obtained: 

-+ ':t -1 -+ 
b ·1 •b s 0 s = 

3N-4 3N-7 2 1: [}: Qk Bk,k'(s)] 
k'=3N-6 k=l 

(4.23b) 



.. 
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If this quadratic term is also neglected, then one obtains 

T s 

1 2 
- (p -1T ) 
2 s s 

(l+b )
2 

ss 

(4.23c) 

and by making the following identifications with the notation of Section 

II, 

3N-6 F 

one sees that the Hamiltonian obtained by using approximation (4.23c) in 

Eq. (4.21) is identical to that of the "generic cartesian" system, Eq. (2.17), 

of Section II. All of the results and discussion of Section II thus apply to 

real molecular systems for the case of zero total angular momentum and within 

the approximation of Eq. (4.23c). 

One can obtain more accurate approximate· 'expressions for the rotating case, 
-+ 

-+J~ -+ -+ r 0, by expanding the various terms in Eq. (4.19) in powers of TI, n , b, s 
-+ 
b , and b Since the n's are quadratic in the vibrational variables, and 

s ss 

the b's linear, a consistent approximation would be to retain all terms that 

are linear in the 1T's and linear or quadratic in the b's. 

c. Modifications for Linear Reaction Paths (e.g., H + H2~2 +H) 

The above expressions are not valid if the reaction path gives a 

linear geometry for the molecule, because one row and column of Jo will be 

zero and its inverse thus non-existent. 
20 

Watson showed how to extend the 

ordinary vibration-rotation theory to linear molecules, but there has been 

no extension of this theory to cover the case when the large amplitude 

motion is associated with changes in linear geometry. 



-38-

The special considerations :=~ri RP from the .fact t.ha t. 
-+ 

(ai)y = aiy = aiz oy,z (4.24) 

if the z axis is the linear molecule's axis. In this case the Eckart 

conditions (4.3b) become only two conditions 

( 4 .25 ) 

The orientation of the x and y axes about the z axis is not specified, and 

thus only two Euler angles can be determined, the third being assigned an 

arbitrary value. There will thus be 3N-6 vibrational coordinates Qk in this 

case. 

The implications of Eq. (4.21) are that 

-+ -+ 
-+ r

0
(s) = 

-+ 
r 0(s)(l- ·Z~·) ( 4 .26a) 

where 

N 2 r
0

(s) = I: a. (s) 
i=l 1Z 

(4.26b) 

and furthermore that 

-+ -+ N 
-+ (! - • ZZ•) I: ai (s) L. k(s) bk (s) 

i=l 
Z 1Z, 

(4.27a) 

b~'z(s) = 0 (4.27b) 

N 
b~'x(s) = I: Li k (s) L. 3N(s) 

i=l y, 1Z, 
(4.27c) 

N 
bs,y (s) = - E L . k ( s) L . JN ( s) k i=l 1X, 1Z, 

(4.27d) 

N 
b~'s(s) = I: 1 iz:k(s) 1 iz,3N(s) 

i=l 
(4.27e) 

.. 
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The projector Piy,i'y' of Eq. (4.11) becomes in this case 

.Jm.m., 1 

P. . , , (s) = 1M1 6 , + a. '(s) a. 1 '(s) 6 1y,1 Y y,y "1Z 1 z y,z 

a. ( s) ai, ( s) 
+ 1Z Z 

r
0

(s) 
(6y,y' - 6Y 6 , > ,z y ,z 

and the orthogonality relations of Eq. (4.12 ) become 

N N 
l: a. (s) L. k(s) = 
i=l 1Z 1X, 

E a. (s) L. k(s) 
i=l 1Z 1y, 

for k=l, ... , 3N~6, and 

3N-6 
E L. k(s) Li, 1 k(s) 
k=l 1Y, y ' 

- p 
iY,i 1Y1 

6 y I, z 

0 

(4.28) 

(4.29a) 

(4.29b) 

(4. 29c) 

Using the above relations and proceeding in a manner directly analogous 

to that in Section IVa, one obtains the following expression for the kinetic 

energy in terms of the canonical variables: 

3N-6 
T= E 

k=l 
(4.30) 
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where Ts is given still by Eq. (4.14b) except that here IT and n, and ; 0 

and b, are the 3-dimensional vectors and matrices, respectively, in the 

indices (x,y,s) as. defined above. As in Section IVa, this expression for 
-+ 

-+ -+ -+ 
T can be put in the form given by Eq. (4.19), where now J, TI, I

0
(s), 

s -+ -+ 
etc., 

-+ -+ 
are 2 X 2 matrices and vectors in the indices (x,y). Since Io and b are both 

scalar quantities times the 2 x Z unit matrix, Eq. (4.19) will have a 

considerably simpler structure in the linear case. Approximations essentially 

identical to those in Section IVb can also be developed for the linear case. 

d. Vibrationally Adiabatic Approximation for Tunneling in 3-d H + Hz~z + H. 

To test some aspects of the 3-d reaction path Hamiltonian we have computed 

reaction probabilities in the tunneling region for the 3-d H + Hz -+ Hz + H 

reaction within the vibrationally adiabatic approximation. This is the 3-d 

version of the calculation described in Section III, and for simplicity only 

the J=O case has been treated. 

We thus first carried out the reaction path calculation for the H + Hz 

Zl system using the Porter-Karplus potential energy surface. Figures Z and 

3 show the potential v
0

(s) along the reaction path and the "symmetric" stretch 

and bending frequencies, respective!~ which result from diagonalizing the 

projected force constant matrix. (The "symmetric" stretch mode is only 

symmetric at the saddle point, s=O.) The coupling elements Bk ~(s) were also , 
computed. If k=l denotes the stretch mode, k = Z and 3 the x and y bending 

modes (which are degenerate), respectively, and k = 4 and 5 the x andy 

rotational modes, respectively, then for this linear reaction path with 

N=3 the only non-zero coupling elements are B1 , 3N(s) and Bz. 4 (s) = B
3

,
5
(s), 

and these are shown in Figure 4. 
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Because Bk, 3N(s) ~ 0 for only the one mode k=l, within the simplest 

approximation to the term Ts in the Hamiltonian, Eq. (4.23c), the vibrationally 

adiabatic Hamiltonian for the present 3-d case is the same as that for the 

collinear case of Section III with 

(4.3la) 

and with the effective potential modified to include the bending modes, 

(4.3lb) 

With these modifications, Eq. (3.11) can then be used to compute the 

tunneling probability. 

Figure 5 shows the semiclassical tunneling probability given by Eqs. 

(3.11) and (4.31), for n
1 

= n2 = n3 = 0, compared to the correct quantum 

2a mechanical results of Schatz and Kuppermann. The result of making the 

zero curvature approximation, i.e., setting B
1

, 3N(s) = 0, is also shown 

to emphasize that including reaction path curvature makes a significant 

improvement to the vibrationally adiabatic approximation. The comparisons 

seen in Figure 5 are quite similar to those in Figure 1 for the collinear 

case, except that the vibrationally adiabatic approximation seems to work 

better in 3-d than in 1-d. 

To assess the effect of rotation-vibration coupling, the more accurate 

approximation to T given by Eq. (4.23a) was also considered within the s 

vibrationally adiabatic approximation. Using Eq. (4.23b), the vibrationally 

adiabatic approximation to Eq. (4.23a)--suitably modified for the current 
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linear case--is thus 

(4.32) 

where 

(4.33a) 

with 

2nk+l 
wk(s) sinqk (4.33b) 

Eq. (3.llc) of Section III then reads 

(4.34) 

If B2 4 (s) ~ 0, it is clear that Eqs. (4.32)-(4.34) revert to the collinear-, 
like formulas. 

As seen in Figure 4, however, for the present example the rotation-

vibration coupling element B2 4
(s) is much smaller than the direct coupling , 

B1 , 3N(s) between the stretch mode and the reaction coordinate, and the tunnel­

ing probabilities calculated using Eqs. (4.32)-(4.34) are only slightly 

larger (32% at E
0 

= 0.1 eV and 7% at E
0 

= 0.3 eV) than if B2, 4 is completely 

neglected. Happily, therefore, it seems that rotation-vibration coupling 

is not a large effect in the present case. 
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V. Quantum Mechanical Hamiltonian 

Once a classical Hamiltonian is given in terms of conjugate coordinates 

and momenta, it is a relatively straightforward matter to derive the corresponding 

quantum mechanical Hamiltonian operator. If the volume element for normalization 

is 

dQ1 dQ2 ... dQ3N-l ds d6 sinS d~dX 

15 then, following Wilson, Decius and Cross, HBJ show that the classical 

"' kinetic energy T of Eq. (4.14) becomes the operator T given by 

"' 1/4 1/2 1/4 3N-l 1/4 "' -1/2 ~ 1/4 
2T = ~ (TI-TI)·~-~- cfi-TI)~ + ~ ~ Pk ~ Pk ~ 

with 

and 

"' In Eq. (5.2) II 

operators, and 

~ k=l 

~ = det(~) 

"' A A A A ~ 

- (J ,J ,J ,p ), where J are the usual angular momentum 
X y Z S 

a 
= -ih aq 

k 

Eq. (5.2) is anr exact representation of the kinetic energy operator in 

these coordinates. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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Equation (4.14b) may be used to simplify Eq. (5.2) somewhat: 

where 

I" = det(~0 + ~) 

In the ordinary vibration-rotation problem with no reaction coordinate. 

Watson2~urther simplified (5.6) using quadratic sum rules involving the 

I 

bks, obtaining 

A A ~ A A 

A -+-+ -+-+-+ 
2T = (J-TI)•~(J-TI) + 

Some simplifications of Eq. (5.6) may likewise be possible using the 

d . 1 d . d b 1 d R h d R ll b · qua rat1c sum ru es er1ve y Mou e an amac an ra ao, ut 1t 

cannot be expected to take as tidy a form because of the dependence of 

~ on s. 

A useful approximation to Eq. (5.6) would be an expansion in Qk 

through quadratic terms (the potential is only assumed to be known 

through quadratic terms). This can be achieved by the expansion of~. 

~. and I". 

There are other quantum mechanical Hamiltonians in the literature 

(5.6) 

(5. 7) 

(5.8) 

9 23 
which involve a reaction coordinate, notably those due to Marcus and Wyatt 
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for the A+ BC ~ AB + C reactive collisions. For the special case of 

three atoms and to the extent that the potential surface is approximated 

as harmonic about the reaction path, these Hamiltonians should be equivalent. 
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VI. Concluding Remarks. 

The principal result of the paper is Eq. (4.21), the reaction path 

Hamiltonian for a general polyatomic molecule in 3-d space with a given 

value of the total angular momentum. The kinetic energy part of the 

Hamiltonian is exact, and the potential energy is approximated as a harmonic 

valley about the reacti~n path. It has been emphasized that all the 

quantities necessary to construct this Hamiltonian are available from a 

relatively small number of calculations of the Born-Oppenheimer electronic 

energy of the N~atom system. 

The classical dynamics of the molecular system may be determined 

exactly by computing trajectories with this Hamiltonian, or it may be 

desirable to treat the dynamics by simpler approximate models. Several 

aspects of the vibrationally adiabatic approximation have been considered, 

and in particular it was seen that the approximation is substantially better 

if the effect of reaction path curvature is included in the manner described. 

A more significant application of this nature would be to tunneling in the 

unimolecular decomposition of formaldehyde, 

24 which has recently been considered at a much more primitive level. As 

soon as the quantum chemistry information about the reaction path is 

available, the approach described in this paper should provide a more 

quantitatively reliable value for the unimolecular rate constant in the 

tunneling region. 
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Figure Captions 

1. Reaction probability for the collinear H + Hz ~ Hz + H reaction as 

a function of initial translational energy. QM and VAZC are the correct 

quantum mechanical and vibrationally adiabatic zero curvature results 

of reference 14, and VA are the present results computed from Eq. 

(3.11). 

Z. The potential energy along the reaction path of the Porter-Karplus 

potential surface for H + Hz ~ Hz + H, as a function of the mass­

weighted reaction coordinate. 

3. The bending and stretch frequencies for vibrations orthogonal to the 

reaction path of the Porter-Karplus potential surface, as a function 

of the mass-weighted reaction coordinate. 

4. Coupling elements Bk t(s) for the Porter-Karplus H +Hz potential , 
surface, as a function of the mass-weighted reaction coordinate. The 

larger of the two is Bl,3N(s)' the coupling between the "synunetric" 

stretch mode and the reaction coordinate, and the smaller is BZ, 4 (s), 

the coupling between rotation and the bending vibration. 

5. Reaction probability for the 3-d H + Hz ~ Hz + H reaction for 

J=O, as a function of initial translational energy. The solid curve 

is the correct quantum mechanical result of ref. Za (Figure 19, p. 

468Z), the dotted curve the vibrationally adiabatic result given by 

Eqs. (4.31) and (3.11), and the dashed curve the result of making the 

additional approximation of zero-curvature, i.e., setting Bl,JN(s) to 

zero. 
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