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ABSTRACT OF THE DISSERTATION 

 

Profiling Multi-Omic Biomarkers using Particle Counters and Spectral-FLIM 
Microscopy 

 
By 

 

Tam Vu 

Doctor of Philosophy in Biomedical Engineering 

University of California, Irvine, 2021 

Professor Weian Zhao, Chair 

 

Profiling multiomic biomarkers in bulk and in situ provides critical information which 

enables basic research and clinical applications. Unfortunately, most existing profiling methods 

are limited due to either low multiplexing, sensitivity, costs, or assay complexity. This thesis aims 

to develop two core technologies that address 1) bulk profiling issues with sensitivity and low 

throughput as well as 2) in situ profiling issues with low multiplexing capabilities, costs, and 

limited throughput. To address the first issue, this work introduces a novel liquid biopsy approach 

that utilizes a platform technology called Integrated Comprehensive Droplet Digital Detection 

(IC3D). This integrated approach combines microfluidic droplet partitioning technology, 

fluorescent multiplexed PCR chemistry, and our own unique and rapid particle counting 

technology to deliver ultrasensitive and ultrafast detection of colorectal cancer-specific genomic 

biomarkers from minimally processed blood samples.  



xv 
 

To address the second issue, this work introduces a new spatial multi-omics technology 

termed Multi Omic Single-scan Assay with Integrated Combinatorial Analysis (MOSAICA) that 

integrates a) in situ labeling of molecular markers (e.g. mRNA, proteins) in cells or tissues with 

combinatorial fluorescence spectral and lifetime encoded probes, and b) spectra and time-

resolved fluorescence imaging and analysis to enable rapid, high-throughput, and cost-effective 

spatial profiling of multi-omics biomarkers. By utilizing both time and intensity domains for 

labeling and imaging, this technology seeks to discriminate a vast repertoire of lifetime and 

spectral components simultaneously within the same pixel or image of a sample to enable highly 

increased multiplexing capabilities with standard optical systems. Overall, these two 

technologies represent simple, versatile, and scalable tools which enable more rapid, sensitive, 

and/or multiplexed protein/transcriptomic analysis.
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CHAPTER 1: 
BACKGROUND AND INTRODUCTION 

 

1.1 Introduction  

Conventional tools for bulk and in situ profiling of mRNA and protein biomarkers include 

PCR, southern/western blots, fluorescence in situ hybridization (FISH) for DNA or RNA analysis, 

and/or immunohistochemistry (IHC) for protein detection. These assays are expensive and 

especially difficult to scale as large libraries of potential epitopes and/or genetic targets against 

different tissues are required to be screened and validated [1-6]. Moreover, these traditional 

approaches encounter issues with low throughput and multiplexing capabilities because of 

complicated/limited assay workflows and/or limited number of spectrally available channels [6-

9]. For bulk RNA detection, more recent iterations such as the droplet digital PCR platforms 

attempts to address issues of low throughput and sensitivity issues with partitioning but remain 

inadequate for profiling ultra-rare targets due to low sensitivity or scanning speed.  

As for in situ profiling, the more recent spatial transcriptomic methods that are based on 

sequential labeling, stripping, and imaging (e.g. seqFISH, MERFISH), branched amplification (e.g. 

SABER), or barcoded labeling with down-stream sequencing (e.g. Slide-seq) can achieve 

substantially greater multiplexing capabilities but encounter issues such as being time-

consuming, laborious and costly to scale up and often are limited to few specialized laboratories 

[10-13]. Furthermore, for proteomic methods including Imaging Mass Cytometry (IMC) and 

CODEX where higher multiplexing can be achieved over conventional immunohistochemistry 
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methods, there remains a tradeoff with decreased sensitivity, throughput, accessibility and/or 

high cost [14-16]. 

This thesis aims to develop two core technologies to address bulk profiling issues with 

sensitivity and low throughput and in situ profiling issues with low multiplexing capabilities, costs, 

and limited throughput. To address the first issue, this work introduces a platform technology 

called the Integrated Comprehensive Droplet Digital Detection (IC3D) approach. This integrated 

approach combines microfluidic droplet partitioning technology, fluorescent multiplexed PCR 

chemistry, and our own unique and rapid particle counting technology to deliver ultrasensitive 

detection of genetic or mRNA biomarkers in plasma, serum, or minimally processed blood 

samples. When catered to detect CRC-specific genomic biomarkers from patients, this tool has 

the potential to serve as a liquid biopsy test for clinicians/oncologists who are interested in 

interrogating a panel of genetic markers from patients for routine monitoring of disease such as 

minimal residual disease and attaining critical info for treatment stratification. To address the 

second issue, this work introduces a new spatial multi-omics technology termed Multi Omic 

Single-scan Assay with Integrated Combinatorial Analysis (MOSAICA) that integrates a) in situ 

labeling of molecular markers (e.g. mRNA, proteins) in cells or tissues with combinatorial 

fluorescence spectral and lifetime encoded probes, and b) spectra and time-resolved 

fluorescence imaging and analysis to enable rapid, high-throughput, and cost-effective spatial 

profiling of multi-omics biomarkers. This method utilizes both time and intensity domains for 

labeling and imaging and seeks to discriminate a vast repertoire of lifetime and spectral 

components simultaneously within the same pixel or image of a sample to enable highly 

increased multiplexing capabilities with standard optical systems. 
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1.2 Need for rapid and ultra-sensitive bulk profiling tools  

Colorectal cancer (CRC) is the third deadliest cancer worldwide, causing an estimated 

774,000 deaths in 2015 (WHO). A major contributing factor to this is the lack of available clinical 

methods that are effective at monitoring cancer recurrence at early stages when treatment is 

most effective. For example, even after initial treatment with a combination of targeted 

radiation, chemotherapy, and/or biologics, patients who achieved remission still face a 30 - 50% 

chance of relapsing. Monitoring for minimal residual disease (MRD) or cancer relapse is, thus, a 

vital component for effective clinical management of colorectal cancer progression by allowing 

physicians to stratify treatment successfully. Unfortunately, current conventional clinical 

methods (e.g. surgical biopsy, carcinoembryonic antigen test, histology, and radiological imaging) 

to monitor MRD suffer from poor sensitivity and/or specificity, tumor heterogeneity issues, and 

the requirement of repeated invasive sampling and have limited success in predicting MRD early. 

An alternative approach which can address these issues while providing rapid to sample results 

turnaround time will have considerable value in the oncology scene.  

To address these issues, this thesis introduces a novel liquid biopsy approach that utilizes 

the IC3D platform technology. This integrated approach combines microfluidic droplet 

partitioning technology, fluorescent multiplexed PCR chemistry, and our own unique and rapid 

particle counting technology to deliver ultrasensitive detection of CRC-specific genomic 

biomarkers from minimally processed blood samples. Through this strategy, we demonstrated 

that the IC3D liquid biopsy system can detect oncogenic KRAS G12D mutant alleles against a 

background of wild-type genomes at a sensitivity of 0.00125-0.005% which is 50 to 1000× more 
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sensitive than existing commercial liquid biopsy ddPCR and qPCR platforms, respectively. 

Furthermore, we have also collaborated with the Laboratory of Fluorescence Dynamics (LFD) at 

UCI to adapt fluorescence lifetime imaging to this system in order to greatly improve our 

multiplexing capabilities to examine many more cancer mutations simultaneously. Lastly, we are 

currently leveraging this system in clinical studies to evaluate the performance of our system 

against current conventional and state-of-art diagnostic methods in predicting MRD from CRC 

patients. We aspire to one day provide clinicians with a powerful decision-making tool to monitor 

and treat MRD with unprecedented sensitivity for earlier stage intervention. 

1.3 Need for in situ validation of biomarkers 

Multiplexed mRNA profiling in the spatial context provides important new information 

enabling basic research and clinical applications. Unfortunately, most existing spatial 

transcriptomics methods are limited due to either low multiplexing or assay complexity. Here, 

we introduce MOSAICA as a tool that integrates in situ labeling of mRNA markers in cells or tissues 

with combinatorial fluorescence spectral and lifetime encoded probes, spectral and time-

resolved fluorescence imaging, and machine learning-based target decoding. This technology is 

the first application combining the biophotonic techniques; Spectral and Fluorescence Lifetime 

Imaging and Microscopy (FLIM), to the field of transcriptomics. By integrating the time dimension 

with conventional spectrum-based measurements, MOSAICA enables direct, highly multiplexing 

of in situ spatial biomarker profiling in a single round of staining and imaging while providing 

error correction removal of background autofluorescence. We first demonstrate mRNA encoding 

using combinatorial spectral and lifetime labeling and target decoding and quantification using a 
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phasor-based image segmentation and machine learning clustering technique. We then 

showcase MOSAICA’s multiplexing scalability in detecting 10-plex targets in fixed colon cancer 

cells using combinatorial labeling of only five fluorophores with facile error-correction and 

removal of autofluorescent moieties. MOSAICA’s analysis is strongly correlated with sequencing 

data (Pearson’s r = 0.9) and was further benchmarked using RNAscopeTM and LGC StellarisTM. We 

further apply MOSAICA for multiplexed analysis of clinical melanoma Formalin-Fixed Paraffin-

Embedded (FFPE) tissues that have a high degree of tissue scattering and intrinsic 

autofluorescence, demonstrating the robustness of the approach. MOSAICA represents a simple, 

versatile, and scalable tool for targeted spatial transcriptomics analysis that can find broad utility 

in constructing human cell atlas, elucidating biological and disease processes in the spatial 

context, and serving as companion diagnostics for stratified patient care.  

As summarized in Table 1.1, several key capabilities and advantages of the proposed 

technology for spatial omics compared to existing technologies are expected, including a) capable 

of direct, in situ spatial profiling of all labeled biomarkers in a single round of hybridization and 

imaging in contrast to existing approaches where many iterations of sample re-labeling, imaging, 

indexing, and image registration are often required, b) eliminating sample autofluorescence (by 

choosing probes with lifetimes different from autofluorescent moieties) and therefore improving 

detection sensitivity, signal-to-noise ratio (SNR), and detection efficiency as well as preclude the 

need for additional complicated, harsh, and time laborious processing steps, and c) highly 

multiplexing. As standard in situ fluorescence staining reagents and protocols which are 

compatible across different target molecular species are used, this platform strives to 

simultaneously profile multi-omics (e.g. genome, epigenome, proteome, transcriptome, 
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epigenome, and metabolome) in the same sample. Integrated multi-omics analysis can be critical 

to provide greater insights in how molecular information translates to functions in biology and 

diseases. Most existing spatial technologies are unfortunately employed only by a few 

laboratories, due to their laborious procedures and the need for highly specialized equipment. 

By contrast, the proposed technology seeks to utilize standard labeling reagents and protocols 

and requires only a fluorescence microscope that is either integrated with or equipped with a 

low-cost lifetime imaging unit which is offered by numerous microscope manufacturers (e.g. 

Leica, Olympus, Nikon, Zeiss and ISS). This proposed technology, once developed, is anticipated 

to be quickly and broadly adopted in the scientific community to address many unsolved 

biological questions at an affordable cost. 

 

Table 1.1. Expected quantitative advances of the proposed Spectral-FLIM technology over state-
of-the-art technology.  
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2.1 Abstract 

Current cancer detection systems lack the required sensitivity to reliably detect minimal 

residual disease (MRD) and recurrence at the earliest stages when treatment would be most 

effective. To address this issue, we present a novel liquid biopsy approach that utilizes an 

integrated comprehensive droplet digital detection (IC3D) digital PCR system which combines 

microfluidic droplet partitioning, fluorescent multiplex PCR chemistry, and our rapid 3D, large-

volume droplet counting technology. The IC3D ddPCR assay can detect cancer-specific, ultra-rare 

genomic targets due to large sample input and high degree of partitioning. We first demonstrate 

our droplet digital PCR assay can robustly detect common cancer mutants including KRAS G12D 

spiked in wild-type genomic background or isolated from patient samples with 100% specificity. 

We then demonstrate that the IC3D ddPCR system can detect oncogenic KRAS G12D mutant 

alleles against a background of wild-type genomes at a sensitivity of 0.00125–0.005% with a false 

positive rate of 0% which is 50 to 1,000× more sensitive than existing commercial liquid biopsy 

ddPCR and qPCR platforms, respectively. In addition, our technology can uniquely enable 

detection of circulating tumor cells using their genetic markers without a pre-enrichment step, 

and analysis of total tumor DNA isolated from blood samples, which will increase clinical 

sensitivity and specificity, and minimize inter-assay variability.  

Therefore, our technology holds the potential to provide clinicians with a powerful decision-

making tool to monitor and treat MRD with unprecedented sensitivity for earlier stage 

intervention. 

 

 



10 
 

2.2 Introduction 

At some point during their lifetimes, approximately 38.4% of men and women will be 

diagnosed with cancer [1]. Colorectal cancer (CRC), in particular, is the third most commonly 

diagnosed cancer, and the third most common cause of cancer-related deaths in the United 

States. In 2018, it is estimated that 140, 000 people were diagnosed with CRC, and 50, 000 people 

succumbed to the disease [2]. Despite major advances in treatment (i.e., surgery, radiation 

therapy, chemotherapy, biologic/immune therapy) and resultant improved outcomes over time, 

colorectal cancer survivors with potentially curable (non-metastatic) disease still face a 10–50% 

risk of relapse. Relapse carries an extremely high mortality risk, as most relapses are not curable 

by current methods, except in cases of oligometastatic disease, where surgical resection of 

limited areas of tumor burden may result in cure. As such, monitoring for minimal residual 

disease (MRD) in CRC survivors has become a major investigational focus, as advances in MRD 

detection are expected to lead to early intervention and improved outcomes for this deadly 

disease. National Comprehensive Cancer Center Network (NCCN) Guideline-based surveillance 

monitoring with clinical exams, serial serum carcinoembryonic antigen testing, annual imaging 

assessments, and regular colonoscopic evaluations, however, lack the required sensitivity and/or 

specificity to reliably detect MRD at the earliest stages when treatment would be most effective 

[3].  

Mounting evidence has recently demonstrated that “liquid biopsy” blood tests for cancer 

biomarkers, i.e., circulating tumor cells (CTC), circulating cell-free tumor DNA (ctDNA), and 

exosomes, can serve as a non-invasive, cost effective and viable alternative for cancer detection, 
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surveillance monitoring of MRD, and drug response evaluation [4-5]. The use of liquid biopsy can 

1) avoid invasive and repeated tumor sampling involved in conventional tissue biopsy or toxic 

radiation exposure involved in conventional imaging modalities, and 2) better recapitulate real-

time genetic profiles in the tumor as a whole, which can be missed in traditional biopsies due to 

intra-tumor heterogeneity. Several liquid biopsy tests have been FDA-approved, including the 

CellSearch system for CTC and the PCR-based Cobas® EGFR mutation test v2 for non-small cell 

lung cancer [6]. Many other methodologies including various CTC isolation and enrichment 

methods, digital PCR (dPCR) and next-generation sequencing (NGS) for cell-free DNA (cfDNA) are 

being developed and validated in the pipeline by both academia and industry worldwide, as 

surveyed in recent reviews [7-8]. Early clinical validation of these liquid biopsy approaches has 

led to promising results as it can provide actionable information to potentially improve clinical 

outcome. For instance, Diehl et al. [9] demonstrated that PCR measurements of cfDNA 

aberrations (e.g., APC, TP53 and KRAS) in the plasma could be used to reliably detect residual 

disease and monitor tumor dynamics in CRC patients who were undergoing surgery or 

chemotherapy. Furthermore, Tie et al. [10] demonstrated that sequencing of cfDNA after stage 

II CRC resection could identify patients at high risk for recurrence to help stratify treatment 

decisions. 

Despite these early promises, detecting and monitoring cancer via liquid biopsy assays 

have yet to transform routine practice in clinical oncology. A major current limitation is the poor 

sensitivity of existing platforms to efficiently and effectively detect low-abundance circulating 

cancer biomarkers especially for early-stage cancers, MRD, and recurrence [11]. For instance, the 

abundance of cfDNA and CTCs in patients with early stage disease is known to be significantly 
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lower (10-fold) than those in patients with more advanced stages. Various reports have also 

demonstrated that CTCs can exist in low numbers in blood (<1–100 CTC per ml) [8, 12]. As a 

result, it was estimated that only 30–40% of stage I and II cancers could be detected using current 

methods. For cell surface protein capture approaches, the use of single or multiple surface 

protein markers (e.g., EpCAM) in the CellSearch system and other methods are inadequate to 

capture and detect all CTCs. Alternatively, detection of CTCs using direct genetic analyses has 

been largely impractical due to the vast background of genomic, wild-type (WT) DNA contributed 

from white blood cells; therefore, an enrichment step is inevitably needed prior to their analysis. 

Indeed, the current assays for tumor DNA detection including qPCR (e.g., PNA clamp-PCR and 

ARMS), digital PCR (e.g., BEAMing and Bio-Rad droplet digital PCR (ddPCR)), and NGS have been 

confirmed to possess a sensitivity of only 0.01–1% [13]. The challenges with detection of CTCs 

have resulted in a shift in the field to the detection of cfDNA in plasma. However, for cfDNAs that 

exist in low total quantities (typically 10 s ng ml−1) and are surrounded by excess WT DNA in 

plasma, these assays have been notably inadequate to detect these rare targets in early stage 

cancer patients. Furthermore, recent studies have suggested that CTCs, cfDNAs, and other 

circulating cancer markers including exosomes are distinct entities; therefore, each of them alone 

may not be adequate to reveal complete profiles of cancer [14-17]. Additionally, different 

isolation and sample processing kits and protocols for each of these cancer marker subtypes have 

created large variabilities and inconsistences between different settings, which represent a major 

roadblock to fully realize liquid biopsy's potential to cancer management in the clinic. 

We reason the sensitivity and robustness of cancer liquid biopsy tests that use circulating 

tumor DNA as markers can be greatly improved using a dPCR platform that can accommodate 1) 
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much larger DNA sample input, 2) greater numbers of partitions, and 3) total DNA isolated from 

blood samples regardless of their origins in a single assay. dPCR formats permit absolute 

quantitation of target DNA with improved sensitivity and precision compared to qPCR assays. The 

compartmentalization of target DNA in droplets or microwells significantly increases the effective 

target concentration following PCR while reducing interference from background (WT genomic 

DNA), to permit absolute, digital (“1” or “0”) quantification without the need for calibration 

curves. Despite these advances, existing dPCR assays still lack the required sensitivity for rare 

target DNA detection in the context of early stages of cancer, MRD, and recurrence due to their 

limited input sample content and number of partitions. For instance, Bio-Rad's QX-200 ddPCR 

assay can only handle 20 μL sample volumes (approximately 20 000 droplets) at a time with 

typically 0–66 ng of intact DNA input per single reaction [18-20]. Each run can thus accommodate 

only a small fraction of the total DNA isolated from several mls of blood samples, an amount 

typically required in order to detect rare targets effectively without subsampling issues [21-23].  

We recently developed a platform technology called integrated comprehensive droplet 

digital detection (IC3D) that can selectively detect biomarkers from large volumes of biological 

samples such as bacteria in blood or circulating miRNA in plasma at single-cell or single-molecule 

sensitivity with a limit of detection (LOD) of single-digit number of targets per ml of measurement 

volume [24-25]. Our system integrates target-specific fluorescent chemistry, droplet 

microfluidics, and a high throughput 3D particle counting system. Unlike conventional particle-

counting systems (e.g., flow cytometry and 1D on-chip droplet counting in the Bio-Rad ddPCR 

system) that have low throughput and, therefore, can only accommodate a small sample volume 

or require multiple runs and much longer time to analyze greater sample volume, the IC3D 
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system can robustly detect fluorescent particles from ml volumes (tens of millions of droplets) at 

single-particle sensitivity within several minutes by collecting droplets in a cuvette and analyzing 

them in bulk using a high throughout 3D particle counter (Fig. 2.1). In this study, we evaluated 

IC3D as a novel ddPCR platform for ctDNA detection in cancer liquid biopsy. We demonstrated 

that the unique capabilities of rapid and large volume (ml) analysis of IC3D allow us to 

accommodate a significantly higher amount of DNA (20 μg ml−1) and greater numbers of 

partitions (18 million reactions per ml), compared to commercial assays such as Bio-Rad ddPCR 

and qPCR. As a proof of concept, we demonstrated that our system can achieve a sensitivity 

improvement of at least 50- to 1,000-fold compared to Bio-Rad ddPCR and qPCR, respectively. In 

addition, we demonstrated cancer cells spiked in blood (modelling CTCs) can be directly analyzed 

with IC3D ddPCR using their genetic markers without the need for pre-enrichment. Therefore, 

unlike previous studies that have to profile cfDNA, CTCs, or other ctDNA carriers  

separately, the IC3D system provides additional ability to analyze these markers together 

in a single assay from the same blood draw to greatly increase clinical sensitivity and specificity 

and reduce inter-assay variability. 

 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig1
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Fig. 2.1 IC3D ddPCR workflow diagram for a typical clinical sample. The IC3D technology involves 
partitioning a sample into millions of picoliter-sized droplets, thermocycling the droplets to 
amplify specific fluorescent signals, and detecting/quantifying droplets that are positive for one 
or more specific targets. Unlike commercial dPCR systems, the IC3D technology can analyze large 
sample volumes with great number of partitions, which can collectively improve sensitivity of 
ctDNA detection. 
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2.3 Materials and methods 

2.3.1 Materials 

Phosphate-buffered saline (PBS, 10×) without Ca2+ and Mg2+ salts and bovine serum 

albumin (BSA) were purchased from Sigma-Aldrich (Saint Louis, MO). RPMI 1640 and DMEM 

with L-glutamine, were purchased from VWR (Radnor, PA). Fetal bovine serum (FBS), and 

penicillin/streptomycin (PS) were purchased from Invitrogen (Carlsbad, CA). All primers and 

probes used for this study were purchased from LGC Biosearch Technologies and Integrated DNA 

Technologies (IDT) and their sequences are listed in Table S2.1.† Synthetic and HPLC-purified 

KRAS G12D and BRAF V600E mutants were synthesized as double-stranded gBlocks® gene 

fragments and verified by IDT to guarantee the accuracy of the sequences (details regarding the 

synthetic gene fragments are listed in Table S2†). PerfeCTa qPCR ToughMix was purchased from 

Quanta BioSciences. Nuclease-free water, Rox reference dye (50×) and Countess cell counting 

chamber slides (for microscopic imaging of the droplets) were purchased from Thermo-Fisher 

Scientific (Waltham, MA). SU-8 2075 negative photoresist and developer were purchased from 

Microchem (Newton, MA). Silicon 4 in wafers were purchased from University Wafer (South 

Boston, MA). Photomasks were purchased from CAD/Art Services (Bandon, OR). Sylgard 184 

polydimethylsiloxane (PDMS) and curing agent were purchased from Ellsworth Adhesives 

(Concord, CA). PFPE-based surfactant was prepared by Velox Biosystems with our proprietary 

formulation. HFE-7500 fluorocarbon oil was purchased from 3M (St. Paul, MN). 

 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#fn1
https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#fn1


17 
 

2.3.2 Primers, probes, and gBlocks preparation 

Primers and probes from LGC Biosearch Technologies and IDT were centrifuged at 8000 

rpm for 1 minute and reconstituted to a final concentration of 100 μM in TE buffer (10 mM Tris, 

0.1 mM EDTA, pH 8.0). Following IDT recommended procedures, KRAS c.35G>A (G12D) and  BRAF 

c.1799T>A (V600E) gBlocks® gene fragments were reconstituted to a final concentration of 10–

20 ng μl−1 in TE buffer. A NanoDrop 2000 spectrophotometer (Life Technologies) was used to 

assess the purity, quality, and concentrations of gene fragments. Primers, probes, and gene 

fragments were stored in DNA LoBind tubes at −20 °C prior to experiments. 

2.3.3 Cell-lines and DNA sample preparation 

The human colon adenocarcinoma cell line, LS174T (CL-188), and human T-cell 

lymphoblast cell line, Jurkat E6-1 (TIB-152), were obtained from the American Type Culture 

Collection (ATCC). LS174T cells were cultured in DMEM media while Jurkat cells were cultured in 

RPMI 1640 media, both supplemented with L-glutamine, 10% FBS, and 1% PS. All cells were 

cultured at 37 °C with 5% atmospheric CO2 in a humidified incubator. Prior to ddPCR or blood 

spiking experiments, cells were cultured in flasks until sub-confluence, trypsinized (if adherent), 

resuspended in PBS, and then subjected to either genomic DNA (gDNA) extraction protocols or 

to whole blood titration experiments. For gDNA extraction, QIAamp Blood DNA miniprep kit 

(Qiagen) was used according to manufacturer's instructions, and a NanoDrop 2000 

spectrophotometer (Life Technologies) was used to assess the purity and quality of these  

purified gDNA samples. Only DNA samples with absorbance ratios of A260/280 and A260/230 greater 
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than 1.8 were used for this study. 

2.3.4 Healthy donor samples 

De-identified and healthy donor blood samples used in this study were obtained with 

informed consent from donors and approval from the Institutional Review Board (IRB 2012-

9023) via the Blood Donor Program at the UCI Institute for Clinical and Translational Science 

(ICTS). Samples were collected in lavender top (K2EDTA) vacutainer tubes using venipuncture 

under sterile conditions and processed within several hours for downstream experiments. 

2.3.5 CRC patient samples 

A clinical pilot study was completed to validate the ability of our system to detect and 

quantify SNP cancer mutations in patient plasma. IRB-exempted and de-identified plasma 

samples from patients diagnosed with CRC (n = 7, average age = 59, stages I to III) were purchased 

from BioIVT (Westbury, NY). These samples were pre-determined to be positive for KRAS G12D 

by genetic sequencing by the vendor. As negative controls, non-screened plasma samples from 

healthy patients were obtained from the aforementioned ICTS donor program. In brief, cfDNA 

was extracted from 1 ml of patient plasma samples using a QIAamp Circulating Nucleic Acid kit 

(Qiagen, Cat#: 55114), following manufacturer's protocols. Purified cfDNA was eluted with 

Qiagen AE buffer and stored at −20 °C in DNA LoBind tubes prior to ddPCR assays. For ddPCR 

assays, purified cfDNA samples were mixed with a PCR master mix containing 0.5 μM primers 

and 0.25 μM probe specific against KRAS G12D (Table S2.1†) before droplet encapsulation using 

a flow-focusing microfluidic device. Droplet PCR conditions for this set of experiments were 95 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#fn1


19 
 

°C for 3 min (1 cycle), 95 °C for 20 s and 60 °C for 20 s (40 cycles), and 4 °C (hold) using a C1000 

Touch thermal cycler (Bio-Rad). After thermocycling, droplets were imaged on a fluorescent 

microscope as described below and median droplet fluorescence intensity was measured. 

Droplets were defined to be positive for KRAS G12D if they had a minimum signal-to-noise ratio 

of 3.0 compared to background non-fluorescent droplets. 

2.3.6 IC3D digital droplet system 

The IC3D platform technology has been utilized for a number of different applications 

including the detection of bacterial species-specific targets in blood using DNAzyme sensors and 

detection of circulating miRNA in plasma using EXPAR probes [24-25]. Without modifying the 

scanning instrumentation, we have adapted this platform into a droplet digital PCR assay by 

employing and optimizing several technical parameters including droplet size, DNA loading 

content, and the use of propynyl-dC (pdC) and propynyl-dU (pdU) modified dual-labelled PCR 

probes in order to detect ultra-rare circulating tumor DNA targets with high sensitivity and SNP-

specific selectivity in this present study. 

2.3.7 Microfluidic chip design and fabrication 

We employed a custom microfluidic chip design with the architectures and operating 

mechanism described in Fig. 2.2. The fabrication for this four-nozzle droplet generation platform 

was based on a modified version of an established soft lithography procedure [24]. Microchannel 

architectures were designed using AutoCAD (Autodesk, San Rafael, CA, USA) and sent to CAD/ART 

services (Bandon, OR, USA) who provided high-resolution photomasks. SU-8 master molds were 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig2
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produced with the recommended protocol from Micro-Chem. After wafer fabrication, PDMS was 

mixed in a 1 : 10 ratio of curing agent to elastomer and subsequently degassed and poured onto 

the SU-8-on-Si wafer master. PDMS was cured in an oven for 4 hours at 95 °C. Once cured, PDMS 

layers were peeled off and punched with a 1 mm diameter biopsy punch (Kay Industries Co., 

Tokyo, Japan) to create inlets and outlets. To bond PDMS to glass, both surfaces were treated 

with oxygen plasma in a PDC-32G Harrick Plasma cleaner (Harrick Plasma, Ithaca, NY) for 30 s and 

bound together. Finally, the droplet generation devices were post-baked in a convective oven at 

95 °C for at least 24 hours. 

 

 



21 
 

 

Fig. 2.2 High-throughput droplet generation and thermocycling stability. a) Schematic of custom droplet generation 
chip with inlets and outlets identified. b) Close-up view of three important features including: integrated sample and 
oil filter, droplet generating nozzle array (flow-focusing principle), and droplet collection region. c) Brightfield 
microscope images of a 2D monolayer of droplets in a hemocytometer, i) 50 μm droplets pre-PCR, ii) 50 μm droplets 
post-PCR, iii) 90 μm droplets pre-PCR, iv) 90 μm droplets post-PCR. Scale bar = 500 μm. d) Quantitative 
measurements of individual droplet diameters demonstrate robust droplet stability before and after thermocycling 
across a range of gDNA concentrations from 0–20 μg ml−1. 

2.3.8 Droplet generation 

Samples were emulsified with the use of 3M™ Novec™ HFE-7500 Engineered Fluid 

(fluorinated oil) containing 2% PFPE surfactant. For the disperse phase, aqueous solutions 

containing PCR reagents and DNA sample were loaded into syringes on top of 200 μl of HFE-7500 

fluorocarbon oil without surfactant to displace sample volume and ensure full encapsulation of 

the aqueous layer. A second syringe was loaded with fluorinated oil with 2% PFPE surfactant to 
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serve as the continuous phase. Both syringes were mounted onto PHD Ultra™ syringe pumps 

(Harvard Apparatus) and connected to the respective aqueous and oil inlets on the microfluidic 

chip. Droplet generation was monitored with optical microscopes (Celestron® LCD digital 

microscope) to ensure consistent droplet production. Droplets were prepared for each sample 

using separate devices to avoid contamination and were collected in sterile collection tubes. 

2.3.9 Microscope evaluation of droplet PCR assay performance 

Microscope images of a 2D monolayer of droplets were recorded to evaluate droplet 

generation uniformity, droplet thermal stability, and PCR efficiency. Approximately 10 μl of 

droplets were dispensed onto a disposable hemocytometer (Invitrogen™ Countess cell counting 

chamber slides) prior to analysis. Quantitative measurements for each of these evaluations 

included average droplet diameter and % CV before and after thermocycling (using brightfield 

imaging at 10× magnification) and signal-to-noise ratios computed from median fluorescence 

signal intensity of droplets from a positive control sample (using fluorescence imaging (FITC) at 

10× magnification). 

2.3.10 Sample preparation for droplet partitioning experiment 

To demonstrate the effects of rainfall on assay performance as higher concentrations of 

wild-type gDNA are loaded, 300 μl of PCR reaction mixture containing (PerfeCTa qPCR ToughMix 

reagent (1×), NP-40, forward and reverse primers (1 μM each), mutant probe (0.25 μM)), and 

225,000 copies of synthetic KRAS G12D mutant were mixed with 0.1, 0.5, 1, 2.5, 5 or 10 μg of 

gDNA isolated from Jurkat cells. Additionally, a blank sample (which does not contain wild-type 
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Jurkat gDNA and KRAS G12D mutant) was also prepared as a non-template control. Fluorescent 

signal suppression (“rainfall”) was assessed via quantitative intensity measurements of 2-

dimensional droplet microscopy images (described above). 

2.3.11 Sample preparation for multiplex droplet digital PCR study 

To demonstrate the capacity of multiplex droplet digital PCR to detect mutant alleles (MT) 

in the presence of wild-type genome backgrounds (WT) using 90 μm droplets, 100 μl of PCR 

reaction mixture (PerfeCTa qPCR ToughMix reagent (1×), NP-40, forward and reverse primers (1 

μM each), wild-type probe (0.25 μM), mutant probe (0.25 μM)), containing 75,000 copies of 

synthetic targets (or 0 as negative control) were mixed with 250 ng of Jurkat gDNA (equivalent 

to 75,757 haploid genome copies) to reach an mutant allele frequency of ∼50% (or 0% for 

negative control). For calculating gene copy number in gDNA, haploid copy number dilutions 

were calculated based on the molecular weight of one normal haploid female genome equaling 

3.3 pg [26].  

2.3.12 Sample preparation for synthetic KRAS G12D study 

For our test trial to assess the analytical sensitivity of our IC3D platform using 90 μm 

droplets, 850 μl of PCR reaction mixture (PerfeCTa qPCR ToughMix reagent (1×), NP-40, forward 

and reverse primers (1 μM each), mutant probe (0.25 μM)) containing different amounts of 

synthetic KRAS G12D targets (0, 68, 680, 3,400, 6,800, 34,000, 637,500 copies) were mixed with 

2.125 μg of Jurkat gDNA (equivalent to 643,939 haploid genome copies) to reach mutant allele 

frequencies of 0, 0.01, 0.1, 0.5, 1, 5, and 50%, respectively. 
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2.3.13 Sample preparation for LS174T spiked blood experiment 

To demonstrate the potential of our IC3D platform to detect CTCs in whole blood without 

pre-enrichment, we used the human colorectal adenocarcinoma model cell line, LS174T, to 

assess the analytical sensitivity of our assay. We spiked varying numbers of LS174T cells into 1 ml 

whole blood sample aliquots obtained from a healthy donor. Serial dilutions of LS174T prepared 

at 400k, 100k, 25k, 6.4k, 1.6k, 400, and 100 cells were spiked into each respective blood sample 

to establish a titration series that spans a broad dynamic range of sensitivity (Table S2.3†). To 

determine the wild-type leukocyte background of each sample, a set of three 1 ml blood samples 

from the same donor were lysed with an ACK lysis buffer kit (Thermo-Fisher). Red blood cells 

were fractionated and removed during the process while white blood cells were fully retained to 

allow precise and accurate leukocyte quantification on a hemocytometer. In short, 1 ml of EDTA-

treated whole blood was diluted with ACK lysis buffer at a ratio of 1 : 10 and allowed to incubate 

at RT for 5 minutes for each replicate. The remaining leukocytes were centrifuged at 300 × g for 

7 min at RT, washed with 4 °C cold PBS, centrifuged at 300 × g for 7 min at 4 °C, and resuspended 

with 4 °C cold PBS. Following ACK lysis, leukocytes were mixed with trypan-blue and loaded into 

a Hausser Scientific 3100 hemocytometer (Thermo-Fisher). White blood cells were counted and 

averaged from 4 quadrants for each replicate and were determined to have an expected 

background concentration of 3.95 × 106 cells per ml. A QIAamp Blood DNA miniprep kit (Qiagen) 

was then used, according to manufacturer's instructions, to purify and isolate all gDNA from the 

LS174T-spiked whole blood samples. This kit contains the proteolytic agent, proteinase K, which 

lyses all cells in the blood samples and allows us to perform downstream PCR-based molecular 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#fn1
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detection without CTC loss. Purified gDNA samples were eluted with Qiagen AE buffer and stored 

at −20 °C in DNA LoBind tubes prior to experiments. Lastly, these samples were analyzed on a 

NanoDrop and determined to have absorbance ratios of A260/280 and A260/230 greater than 1.8. For 

IC3D experiments, each PCR condition utilized 6 μg of gDNA as template and had a final reaction 

volume of 300 μl. The PCR reactions contained PerfeCTa qPCR ToughMix reagent (1×), NP-40, 

forward and reverse primers (1 μM each), and mutant probe (0.5 μM). Due to the high 

concentration of background gDNA, samples were encapsulated in smaller 50 μm droplets in 

order to increase the fraction of binary droplets. 

2.3.14 Droplet PCR 

Prior to thermocycling, droplet samples were transferred to thin-walled PCR tubes, each 

containing 30 μL Novec™ 7500 oil with surfactant and 70 μL of droplets. For droplet PCR, the 

following PCR protocol was used: (1) 3 min at 95 °C (initial denaturation), (2) 20 s at 95 °C 

(denaturation), (3) 60 s at 58.1 °C, (4) repeat steps 2 & 3 for 40 cycles, and (5) an infinite 12 °C 

hold. Following thermocycling, samples were assessed via fluorescence microscopy (described 

above) and 3D fluorescent scanning (described below). 

2.3.15 Droplet detection using 3D particle counter 

The droplet scanning instrument used in this study consisted of a bench-top, horizontal-

geometry confocal microscope. In this embodiment, a visible-wavelength excitation laser beam 

(λ = 469 nm with ∼2.2 mW typical output power) was focused by an under-filled low numerical 

aperture 20× objective (MV-20×, Newport) inside a cylindrical cuvette (Abbott) containing the 
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droplet sample. Slow (5 mm s−1) vertical translation and fast (200 rpm) rotation of the cuvette 

transported the target fluorescent droplets across the Gaussian-shaped excitation volume. The 

emitted fluorescence signal was collected by the same objective, transmitted through a dichroic 

filter and collimated onto the sensitive area of a photomultiplier tube (H9305-04 PMT, 

Hamamatsu) for the time-trace acquisition. 

Droplet samples for IC3D scanning were manually transferred from the individual PCR 

tubes of each sample into thoroughly cleaned, borosilicate glass cuvettes containing 1.5 ml of 

3M™ Novec™ 7500 engineered fluid (fluorinated oil) with 2% surfactant and scanned for 2 

minutes. Raw fluorescent time trace data collected from the droplet scanning instrument was 

analyzed using SimFCS (Laboratory for Fluorescence Dynamics, Irvine, CA, USA: 

http://www.lfd.uci.edu). To achieve high specificity while counting the number of detection 

events, the fluorescence time trace data was fit to a pre-determined Gaussian profile of fixed 

standard deviation and amplitude. Hits were only counted if the chi-square value of the shape-

fit was statistically significant (X2 < 0.003) and the peak amplitude was between a user-defined 

minimum and maximum threshold. Parameters were determined based on the highest 

concentrated sample in each of the following experiments to correctly identify hits with 

consistent widths and amplitudes and applied to remaining data (synthetic KRAS G12D study: 

SDV = 24, minimum amplitude threshold = 510 mV, maximum amplitude threshold = 3000 mV, 

chi-square threshold = 0.003, LS174T cell-spiking study: SDV = 16, minimum amplitude threshold 

= 200 mV, maximum amplitude threshold = 5000 mV, chi-square threshold = 0.01) (an SDV of 24 

corresponds to a Gaussian peak of width equal to 145 data points, which at a sampling frequency 

of 64 kHz is approximately 2.26 milliseconds). Though the shape-fitting algorithm utilized in the 



27 
 

IC3D system can accurately differentiate positive, fluorescent droplets from other non-specific 

fluctuations in the recorded fluorescence signal, it does not exclude the possibility of false 

positives due to rare PCR false positive amplification. 

2.3.16 qPCR for KRAS G12D mutant detection 

Per 20 μl reaction volume, different amount of synthetic KRAS G12D targets (0, 16, 80, 

160, 800, 1,700, 15,000 copies) and 50 ng of Jurkat gDNA were added to a PCR reaction mixture 

that included the following components: PerfeCTa PCR ToughMix reagent (1×), NP-40, forward 

and reverse primers (1 μM each), mutant probe (0.25 μM), wild-type probe (0.25 μM) and 1× 

Rox. Each sample condition was run in quadruplicate (20 μl in each well) with 7900 HT fast real-

time PCR system (Applied Biosystems) using the same PCR thermal cycling condition as droplet 

PCR. 

2.3.17 Assessing analytical sensitivity of Bio-Rad ddPCR QX-200 platform with LS174T 
spiked whole blood samples 

To compare the performance of IC3D with the leading commercial ddPCR platform, we 

utilized the Bio-Rad QX-200 digital PCR system (Bio-Rad Laboratories, Hercules, CA, USA) to 

assess the analytical sensitivity of this commercial ddPCR system in detecting CTCs in whole blood 

without pre-enrichment, using samples of LS174T spiked in whole blood. In brief, ddPCR reaction 

master mixes were made containing 10 μl of 2× ddPCR Supermix, 1 μl of 20× human mutant KRAS 

p.G12D (c.35G>A) ddPCR FAM probe (dHsaCP2500596), 1 μl of 20× human KRAS wild-type for 

p.G12D (c.35G>A) ddPCR HEX probe (dHsaCP2000002), 7 μl of nuclease-free water, and 1 μl of 

purified gDNA for each reaction. LS174T spiked whole blood samples were prepared in duplicates 
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and at a concentration of 66 ng μl−1 based on manufacturer's recommendations for loading intact 

genomes.  

Furthermore, according to Bio-Rad's calculations and estimates of 1 haploid genome 

weighing 3.3 pg, 66 ng of DNA should contain 20,000 haploid genome equivalents (or gene copies 

if homozygous) [21,26]. Each reaction mixture was then loaded into DG8 cartridges along with 

droplet generation oil to partition the samples using the QX-200 droplet generator. Thermal 

cycling conditions for this set of experiments were 95 °C for 10 min (1 cycle), 94 °C for 30 s and 

55 °C for 1 min (40 cycles), 98 °C for 10 min (1 cycle) and 4 °C (hold). The QX-200 droplet reader 

was then used to assess droplets as positive or negative based on fluorescence amplitude and a 

set threshold. Data analysis was performed as recommended using the QuantaSoft Software 

version 1.7.4 and their Rare Mutation Best Practices Guidelines. A threshold of 2500 was used 

for both mutant and WT channels to determine the fractional abundance of KRAS G12D for each 

LS174T spiked whole blood sample. 

2.3.18 Validating KRAS G12D mutant allele frequency of LS174T with Bio-Rad QX-200 
ddPCR 

Upon contacting ATCC, we discovered that there has been no previous validation study 

conducted by the vendor to determine the mutant allele frequency (AF) of KRASG12D for the 

clonal cell line, LS174T. Based on existing independent reports and to our best knowledge, LS174T 

has been confirmed to express KRAS G12D but at variable frequencies depending on lab settings 

[27-29]. This prompted us to use the Bio-Rad QX-200 Digital PCR system (Bio-Rad Laboratories, 

Hercules, CA, USA) in order to accurately and precisely determine the percent mutant zygosity of 

our cell source.  
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In brief, ddPCR reaction master mixes were made containing 10 μl of 2× ddPCR Supermix, 

1 μl of 20× human mutant KRAS p.G12D (c.35G>A) ddPCR FAM probe (dHsaCP2500596), 1 μl of 

20× human KRAS wild-type for p.G12D (c.35G>A) ddPCR HEX probe (dHsaCP2000002), 7 μl of 

nuclease-free water, and 1 μl of cell line gDNA for each reaction. LS174T or Jurkat (negative 

control) gDNA was prepared at a concentration of 12 ng μl−1 and added to PCR reaction mixtures 

in duplicates. As previously mentioned, with 1 haploid genome weighing 3.3 pg, 12 ng of DNA 

was expected to contain 3636 haploid genome equivalents (or gene copies if homozygous). The 

same droplet generation, PCR, and scanning conditions used on the Bio-Rad QX-200 platform 

described earlier were used for this set of experiments. For mutant zygosity confirmation, data 

analysis was performed as recommended by the manufacturer using the QuantaSoft software 

version 1.7.4. Threshold was determined by comparing ddPCR results between Jurkat, LS174T, 

and a no template control (nuclease-free water). 

2.4 Results and discussion 

2.4.1 High-throughput droplet generation 

The ability of the IC3D system to efficiently analyze large sample volumes is enabled by 

the combination of high-throughput droplet generation and rapid, three-dimensional scanning. 

While other design strategies have been utilized to demonstrate ultrahigh-throughput droplet 

generation [30-31], the flow-focusing 4-nozzle droplet generator used in this study was chosen 

due to its ability to robustly generate precise droplets that maintain stability during 

thermocycling and its simple, single-layer fabrication and assembly (Fig. 2.2a). In order to 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig2
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improve device robustness by lowering the risk of nozzle clogging, a series of micro-posts with 

variable spacing were integrated into the aqueous and oil inlets to serve as an in-line filter (Fig. 

2.2b). By altering the channel geometry at the nozzle region, devices were designed to produce 

droplets of various diameters. In this study, devices were fabricated to produce droplets with 

average diameters of 50 and 90 μm (Fig. 2.2c). 

Flow rates for the aqueous and oil streams to produce stable 90 μm droplets were 50 μl 

min−1 and 75 μl min−1, respectively and 15 μl min−1 and 80 μl min−1, respectively for the 

production of stable 50 μm droplets. These flow rates correspond to droplet generation times of 

66 min and 20 min for a 1 ml aqueous sample for 50 μm and 90 μm droplets, respectively. Droplet 

stability was assessed before and after 40 cycles of thermocycling by measuring droplet 

diameters in a 2-dimensional monolayer on a hemocytometer. Over a range of background gDNA 

content from 0–20 μg ml−1, average diameters for the 50 μm before and after thermocycling were 

50.11 μm (% CV = 3.73%) and 49.98 μm (% CV = 4.31%), respectively, while the 90 μm droplets 

averaged 91.56 μm (% CV = 3.60) before thermocycling and 91.62 μm (% CV = 3.28%) after 

thermocycling (Fig. 2.2) (data from 20 unique fields of view with approximately 900–1000 

droplets per field for 50 μm droplets and 200–300 droplets per field for 90 μm droplets). 

2.4.2 Droplet PCR assay 

Somatic point mutations within tumoral DNA are highly specific biomarkers that can 

distinguish cancer cells from normal cells. These biomarkers have been shown to be applicable 

for cancer diagnosis, prognosis, selection of rational combination therapies, and monitoring of 

patients, but have yet to become routine assays employed in clinical oncology due to the unmet 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig2
https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig2
https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig2
https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig2
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need for a more highly sensitive strategy that can discriminate tumor-specific mutations in a large 

excess of non-mutated DNA from normal cells. Nevertheless, the sensitivity of traditional 

approaches to SNP detection (techniques such as Sanger sequencing or TaqMan PCR) possess 

only a sensitivity of 1–10% [32-33], thereby suffering from false negatives and limited 

reproducibility. A combination of conventional target-specific TaqMan PCR and a droplet 

microfluidic system allows the partitioning of bulk PCR solution into a massive number of picoliter 

droplets in which each partition contains one or no target molecules. Partitioning of target 

mutant DNA away from highly homologous wild-type DNA permits absolute digital quantification 

of mutant targets with single-molecule sensitivity, reduces interference from background DNA, 

and, therefore greatly increases sensitivity over conventional approaches. 

We first demonstrated the capacity of our system for multiplexed droplet digital PCR 

detection of different targets by detecting mutant alleles in the presence of wild-type genomic 

backgrounds (Fig. 2.3). Primers and probes used for different SNP mutation detection (KRAS 

G12D and BRAF V600E, genetic markers among the most prevalent for CRCs and many other 

types of cancer) were designed and optimized to have the same annealing temperature for 

droplet digital PCR. Gene fragments carrying KRAS G12D or BRAF V600E were synthesized and 

sequence-verified by IDT, whereas background genomic DNAs harbouring wild-type KRAS and 

BRAF alleles were isolated and purified from Jurkat cells. In a 100 μl PCR volume, 250 ng of Jurkat 

gDNA was mixed with 75,000 mutant copies to reach approximately an equal molar ratio of wild-

type to mutant copies. Using the droplet generation approach described previously, mutant 

copies as well as background DNA were compartmentalized in 90 μm droplets together with FAM 

probe specific for mutant targets and CAL560 probes specific for corresponding wild-type targets. 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig3
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Droplets were then thermocycled and the fluorescence signal of droplets was measured. The 

amplification of mutant DNA resulted in a green-fluorescent droplet while the amplification of 

wild-type DNA resulted in a red-fluorescent droplet. As shown in Fig. 2.3, in the wild-type only 

control, only red-fluorescent droplets but not green-fluorescent droplets were observed. For 

samples containing both wild-type and mutant genes, the fluorescent droplets were either red 

(due to amplification of a wild-type gene), green (due to amplification of a mutant gene) or yellow 

(due to amplification of both a mutant and wild-type gene). This result suggests that we could 

specifically discriminate mutant alleles from wild-type alleles via a droplet digital PCR assay. 

While multiplex detection and analysis is possible with the IC3D system, the following studies 

demonstrate IC3D performance on SNP detection, using single-color mutation detection assays 

targeting KRAS G12D, one of the key and most prevalent cancer mutations associated in many 

different cancers for the remaining experiments [34].  

 

 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig3


33 
 

 

Fig. 2.3 Fluorescent microscope images of droplets with different target mutations. RGB 
multichannel images composed of brightfield droplet image (grey), MT-specific probe (FAM 
fluorophore) (green), and WT-specific probe (CAL560 fluorophore) (red). Scale bar = 500 μm. 

2.4.3 Analysis of KRAS G12D CRC patient samples 

Furthermore, a pilot study using KRAS G12D mutant-positive (pre-determined by 

sequencing) CRC patient plasma samples (n = 7) and healthy donor samples (n = 5) demonstrated 

that our droplet PCR assay targeting KRAS G12D can accurately identify these cancer cases with 

100% clinical sensitivity and specificity (Fig. 2.4). 

 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig4
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Fig. 2.4 Analysis of KRAS G12+ CRC patient plasma samples using our droplet PCR assay. a) 
Representative fluorescent microscope images of droplets following PCR from a stage IIA cancer 
patient (i – BF, ii – fluorescent) and a control healthy patient (iii – BF, iv – fluorescent) (scale bar 
= 500 μm). Positive droplets were defined as those with a signal-to-noise ratio (SNR) greater than 
3.0 and then enumerated in group (b) or as individual patient (c). Y axis = number of detected 
droplets in 100 μl final volume. 

2.4.4 Demonstration of partitioning effect on assay sensitivity  

Unlike commercially available dPCR systems, the IC3D technology can uniquely analyze 

large sample volumes, resulting in two key advantages: (1) the ability to load more volume (or 

DNA content) from a clinical sample per assay, and (2) the ability to achieve a higher degree of 

sample partitioning. To demonstrate the relationship between detection sensitivity and the 

degree of sample partitioning, an experiment was performed using increasing amounts of 

genomic wild-type gDNA and measuring the total fraction of droplets that reached peak signal 

amplification. The increasing concentration of wild-type gDNA simulates the effect of generating 

fewer partitions for the same sample. Theoretical calculations for estimating the percent of 

“rainfall” (defined as the number of intermediate-intensity droplets divided by the total number 

of positive droplets) were based on partitioning statistics for a Poisson distribution as described 
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in Milbury et al. [35] This theory estimates the probability of k targets in one droplet given an 

average “loading” of λ targets per droplet (λw = WT loading, λm = MT loading) as: 

                                                            

Therefore, the rainfall fraction can be determined as the number of droplets containing 

both MT and WT copies divided by the total number of droplets containing MT copies, 

or NDual/NMT: 

                                                   

In theory, for digital PCR to be truly digital, a sample must be partitioned into only empty 

droplets and single-copy droplets (i.e. 0's and 1's, respectively) to achieve single-copy 

amplification. As seen in Fig. 2.5, as the amount of WT gDNA background increases (and 

consequently the fraction of truly binary droplets decreases), the fraction of droplets at maximal 

PCR amplification decreases accordingly. This phenomenon, commonly referred to as “rainfall”, 

exists when the binary partitioning condition is not met. In these scenarios, absolute 

quantification can result in inaccurate measurements. Additionally, as in the case of SNP 

detection where wild-type and mutant sequences are amplified with the same primer sequence, 

incomplete partitioning can yield droplets containing both mutant and wild-type copies which 

results in compromised detectable signal. 

 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig5
https://pubs.rsc.org/image/article/2019/LC/c8lc01399c/c8lc01399c-t1_hi-res.gif
https://pubs.rsc.org/image/article/2019/LC/c8lc01399c/c8lc01399c-t2_hi-res.gif
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Fig. 2.5 Effect of number of partitions on assay performance. a) Calculated percent rainfall 
(intermediate droplet fraction/total positive droplet fraction) from droplet intensity data in panel 
b. b. Dashed red lines refer to the lower and upper boundaries of the “intermediate-intensity” 
zone, where droplets are distinguished from empty (“negative”) droplets and fully amplified 
droplets. b) Raw fluorescence intensity data collected for partitioning experiment. c) Agreement 
with partitioning theory. Solid circles represent calculated percent rainfall from panel a. Dotted 
red lines refers to upper and lower 95% confidence interval for theoretical percent rainfall given 
MT and WT copy numbers and an average droplet diameter of 90 μm. With its ability to 
accommodate very large sample volumes, the IC3D system can efficiently generate and analyze 
significantly more partitions than competing dPCR systems. Though different strategies exist for 
increasing the throughput of droplet detection in the context of ddPCR assays including large 2-
dimensional arrays [36] and optofluidic devices [37-38], the simplicity of the 3-dimensional 
droplet analysis technique presented here allows IC3D to scale easily to accommodate large 
sample volumes while maintaining exceptional sensitivity. In applications that require high 
concentrations of gDNA to be analyzed, the ability to interrogate significantly more partitions 
results in a higher fraction of truly binary droplets, which has the potential to greatly improve 
assay sensitivity. 
 
 
 
 
 
 
 
 
 



37 
 

2.4.5 IC3D ddPCR detection of synthetic KRAS G12D mutant in Jurkat gDNA 

Plasma cell-free DNA (cfDNA) as a liquid biopsy assay has been shown to be a valuable 

surrogate specimen for detecting tumor-specific aberrations. However, detection of tumor-

derived cfDNA has proven to be challenging in clinics, because tumor derived cfDNA often 

represents a small fraction (<1%) of total cfDNA [32]. We aimed to explore the clinical utility of 

detecting cfDNA isolated from plasma using IC3D. As a proof of concept, various copies of 

synthetic KRAS G12D mutant fragments were spiked into Jurkat gDNA (serving as the background 

of normal DNA), resulting in a wide range of mutant allele frequencies from 0.01% to 5%. In order 

to analyze these samples on the IC3D system, they were first encapsulated into 90 μm droplets 

(ensuring a high fraction of truly binary droplets), thermocycled to amplify the fluorescence signal 

from droplets containing the KRAS G12D target, and transferred to a cuvette for rapid 3-

dimensional fluorescent scanning. Following scanning, the fluorescent time trace data was fit to 

a pre-determined shape fitting algorithm corresponding to the signal from true positive droplets 

and events were enumerated (Fig. 2.6). As WT-containing droplets exhibit a dimly fluorescent 

signal in between the intensity of empty droplets and MT-containing droplets, stringent shape 

fitting algorithm parameters were selected to successfully differentiate positive droplets 

containing mutant targets (Fig. 2.6C) from other non-specific fluctuations in the recorded 

fluorescence signal (Fig. 2.6B). 
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Fig. 2.6 Detection of synthetic KRAS G12D mutant in Jurkat gDNA by IC3D. Panels a–f: raw 
fluorescent time trace data (y-axis = PMT signal (mV), x-axis = 5 seconds acquisition time): a) 
blank, b) 0% AF, c) 0.1% AF, d) 0.5% AF, e) 1% AF, f) 5% AF. Orange circles denote confirmed 
positive droplet. g) Concentration curve of detected positive droplets versus % AF. Points 
represent combined average of three replicates (error bars denote ± standard deviation, n = 3). 

 

We demonstrated that the full range of allele frequencies from 0.01% to 5% can be 

consistently detected with the IC3D system across three independent replicates (Fig. 2.6). 

Furthermore, the aggregate response of all 3 replicates demonstrated a strong linear relationship 

between the sample concentration (0.01–5% AF) and the number of IC3D hits (adjusted R2 = 

0.9723). With a false positive rate of 0%, the IC3D system was able to detect all 3 replicates of 

the 0.01% AF sample. This experiment effectively demonstrated clinical feasibility of using IC3D 

for detecting cfDNA isolated from plasma. 

For comparison, a conventional real-time PCR assay was performed for detection of 

synthetic KRAS G12D mutant allele frequencies of 0% (negative control), 0.1%, 0.5%, 1%, 5%, 10% 

and 50% in the presence of the same amount of background WT Jurkat gDNA (50 ng/20 μl). The 

KRAS G12D and WT targets were amplified with common primers, but differentiated by separate 

fluorescence-labelled BHQplus probes. The FAM-labelled probe targeted the KRAS G12D allele, 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig6
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while the CAL Fluor Orange560-labeled probe (VIC alternative probe) targeted the WT allele. In 

four replications per real-time PCR reaction, VIC fluorescence was detected in all samples 

with CT (cycle threshold) values ranging between 25.1–25.7, indicating that a consistent level of 

WT background was present in all tested conditions. With regard to mutant detection, no FAM 

fluorescence was observed for the negative samples, but successful detection was observed in 

samples with 50% and 10% mutant allele frequencies (Fig. S2.2). However, no FAM fluorescence 

was detected for samples with 1%, 0.5%, and 0.1% mutant allele frequencies. For the 5% allele 

frequency sample, weak fluorescence was detected in two replications only, whereas no 

fluorescence was detected in the other two replications (Fig. S2.2). Hence, stable amplification 

was only observed for 10% mutant allele frequency samples or higher, indicating the lowest limit 

of detection by conventional real-time PCR for KRAS G12D detection with these study conditions 

is between 5% and 10% mutant allele frequency. By comparison, the IC3D system demonstrated 

a 500-fold increase in sensitivity by detecting an allele frequency of 0.01% in an equivalent assay. 

2.4.6 IC3D ddPCR detection of spiked LS174T cells in whole blood 

We next evaluated the potential of IC3D ddPCR in analyzing total DNA isolated from blood 

specimens. Because the amount of cfDNA is negligible compared to DNA isolated from white 

blood cells, for simplicity, our model used healthy donor blood samples spiked with cancer cells 

in this set of experiments. Therefore, this study further allowed us to evaluate whether IC3D 

ddPCR can directly detect CTCs using genetic markers without a pre-enrichment step, which was 

largely impossible before due to the interference of WT gDNA background. 
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In this experiment, cancer cells harboring the KRAS G12D mutation were spiked into 

aliquots of unprocessed, whole blood. To accommodate this large genomic background, we 

utilized smaller droplets with an average diameter of 50 μm (compared to 90 μm in previous 

experiments) to achieve efficient partitioning of samples with a high background of gDNA 

(approx. 20 μg ml−1), resulting in the detection of between 100–400 cancer cells per ml of whole 

blood in this study (Fig. 2.7) (false positive rate = 0%). By loading significantly more gDNA than 

demonstrated in the previous synthetic KRAS G12D detection study, an equivalent allele 

frequency between 0.00125–0.005% was detected in this experiment. Furthermore, increasing 

number of cells corresponded with an increase in the number of detected IC3D hit events and 

agreed well with results from the synthetic KRAS G12D detection study. 

 

 

 

 

 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig7
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Fig. 2.7 Detection of spiked LS174T in whole blood using IC3D. Panels a and b represent raw 
fluorescent time trace data recorded on IC3D for a positive sample (1600 cells per ml) and 
negative sample, respectively. The inset in panel a is of a representative positive event where the 
shape-fitting algorithm criteria was met and displayed over an x-axis of 6 ms. Panels c and d 
demonstrate the sensitivity of the Bio-Rad ddPCR and IC3D systems for the detection of KRAS 
G12D mutations as a genetic approach for quantifying CTCs in whole blood extractions. c) Bio-
Rad ddPCR results; y-axis = log reported Poisson MT-positive droplets, red dashed line = false 
positive rate based on events detected in WT-only negative control, error bars = relative error 
bar (for symmetrical display on log-scale), defined as ±0.434*stDev/y across 2 replicate wells. d) 
IC3D results; y-axis = log events (per 120 s), error bars = relative error (described above) across 3 
independent sample replicates. 

2.4.7 Comparison to Bio-Rad ddPCR 

In order to determine the detection limit of the leading commercial ddPCR system using 

the same approach for KRAS G12D genetic detection of CTCs, a similar experiment was 

performed with samples from the same cell spiking dilution from above using the Bio-Rad QX-

200 ddPCR system. Like many other conventional particle counting systems, droplets in the Bio-

Rad ddPCR system are counted on a 1D, flow-based, on-chip system that operates at ∼100 s of 

particles per s with a relatively small number of parallel reactions (20 μL sample volume or 20,000 
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droplets) [21, 39, 40]. Based on published guidelines for the Bio-Rad system, the maximum 

number of intact genomic DNA copies per 20 μl reaction volume is approximately 20,000 copies 

(or 66 ng per 20 μl reaction volume), above which the PCR reaction is inhibited [21, 41]. We have 

found that the sensitivity of the Bio-Rad system is approximately 0.08 to 0.33% (i.e., 16 to 66 

targets in 20,000 copies of genomic DNA) (Fig. 2.7c), which agrees with published studies from 

multiple groups concerning the detection of KRAS G12D [42-45].  

2.4.8 Data analysis and statistics 

In order to assess the analytical performance of the IC3D and Bio-Rad ddPCR systems in 

terms of quantitation limit, we employed a simple definition of the analytical cutoff as the lowest 

measured concentration where the lower relative error bar does not cross the average false 

positive rate. Similar to the analytical cutoff used in the Bio-Rad's Rare Mutation Best Practice 

Guidelines, this metric establishes a straight-forward way of empirically determining the limit of 

detection of each assay based on actual tested mutant positive and negative controls without 

contingency on theoretical extrapolation. For both systems, we defined the false positive rate as 

the average number of positive detection events (i.e. droplets) for negative control samples that 

contain an equivalent amount of WT but without the addition of LS174T cells. 

Since the Bio-Rad's QuantaSoft software analysis tool allows for user-defined 

thresholding to define the acceptance criteria for positive events, we set a conservative threshold 

at 2,500, validated by the strong agreement of higher mutant fraction samples with expected 

mutant fractions (Fig. S2.1†) [MF = 0.33–4.76%, confidence level > 96.9%]. Applying this same 

threshold to wells containing the wild type only negative control samples resulted in a false 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#imgfig7
https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#fn1


43 
 

positive rate equivalent to a mutant fraction of approximately 0.07%, which agrees well with 

reported false positive rates exceeding 0.02% for KRAS G12D [42-45]. Due to this high false 

positive rate, the limit of detection for detecting CTCs spiked in whole blood on the Bio-Rad 

ddPCR system is 6,400 cells per ml (approximately 0.08% in allele frequency). Conversely, the 

high specificity of the IC3D detection and analysis platform facilitated by a robust shape-fitting 

algorithm resulted in a false positive rate of 0%, indicating a limit of detection of less than 400 

cells per ml (approximately 0.005% in allele frequency). As a result, 2/3 replicates of 100 cells per 

ml (0.00125% allele frequency) and 3/3 replicates of 400 cells per ml (0.005% allele frequency) 

were in a detectable range above the negative control line. This suggests that our IC3D system 

can be used as a powerful tool to detect ctDNA from total DNA isolated from blood specimens 

with an allele frequency sensitivity at least 50-fold higher than the Bio-Rad ddPCR system per 

run. For additional context, the performance and throughput of the IC3D system as 

demonstrated in this study are compared to two commercial ddPCR systems in Table 

S2.6.† Therefore, we emphasize that droplet counting throughput is a critical performance metric 

which IC3D outperforms existing digital PCR systems. 

2.5 Conclusions 

We demonstrated that the IC3D platform can greatly improve the sensitivity of ctDNA 

tests (i.e. at least 50 to 1000× more sensitive than current dPCR and qPCR assays, respectively) 

due to larger sample input, and greater numbers of partitions. The IC3D platform uniquely 

enables analysis of total tumor DNA isolated from blood samples regardless of their origins 

(i.e. cfDNA, CTC DNA, or exosomal DNA), which will increase clinical sensitivity and specificity, 

https://pubs.rsc.org/en/content/articlehtml/2019/lc/c8lc01399c#fn1
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and minimize biases of individual biomarkers and inter-assay variability due to pre-analytical 

preparations of individual markers. In fact, this is one of the first demonstrations that CTCs can 

be directly detected and profiled using their genetic markers without a pre-enrichment step, 

therefore eliminating the technical issues related to the efficiency of CTC purification and 

enrichment [46,47]. We expect our assay sensitivity can be further improved through genomic 

DNA digestion (more input sample loading), smaller droplets (more partitioning, as 

demonstrated by Pekin et al., 2011 [26]) and the use of competitive probes such as PNA and XNA 

(higher SNR). We acknowledge that the Bio-Rad ddPCR and other systems can analyse large 

amount of DNA to achieve similar sensitivity if they run many parallel assays for a single sample 

(e.g. Bio-Rad ddPCR's 96 well-plate format), however, such implementation will incur 

significantly increased assay time and cost. For instance, the Bio-Rad ddPCR system would need 

to run ∼50 reactions (half of a 96 well-plate) to analyze 1 ml of blood in 2 hours, which would 

only require a single run using the IC3D system in several minutes. 

The inability of current technologies to sufficiently identify target ctDNA from a vast 

excess of wild-type counterparts especially in early-stage (stages 0, I and II) cancers has limited 

the use of liquid biopsy for early detection and screening, prognosis, and treatment stratification. 

With this unprecedented high sensitivity, our IC3D assay has the potential to change how we 

detect, treat, and monitor cancer patients at an early stage when interventions are most 

effective. We are currently evaluating the prognostic implications of this IC3D ctDNA assay for 

MRD and recurrence detection in samples from early stage patients with CRC in an ongoing 

clinical study. In this study, we will have primary tumors genetically profiled and then run a 

targeted pre-defined tumor genetic panel using IC3D to guide personalized cancer monitoring 
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and treatment. We emphasize that the IC3D technology intends to offer new capabilities (i.e., 

unprecedented high sensitivity) and to complement, rather than replace, existing technologies 

including NGS that can analyze broader genetic profiles. Finally, IC3D ddPCR assays can be applied 

to other areas where large sample input is required for rare target detection including HIV 

reservoir analysis, prenatal screening, and study of transplanted cells ex vivo in cell therapy. 
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Supplementary Table 2.1. List of primers and probes used in this paper 
 

 
 

*pdC: propynyl-dC; pdU: propynyl-dU 
 
 
 
 
 

Supplementary Table 2.2. Summary of synthetic KRAS G12D and BRAF V600E gBlocks® gene 
fragments 
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Supplementary Figure 2.1. Determining KRASG12D mutant allele frequency of LS174T via Bio-
Rad QX-200 ddPCR 

 

 
 

*n = 2 for all sample types. Blank = no template control (nuclease-free water). 
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Supplementary Figure 2.2. Amplification plots for qPCR data (parallel to synthetic KRAS G12D 
detection experiment) 
 

 

 

Supplementary Table 2.3. Blood spiking conditions with LS174T cells and theoretical mutant and 
wild-type copies calculations 
 

 

* An expected background of 3.95 x 106 leukocytes cells per ml were determined with a 
hemocytometer. 50.69% mutant zygosity was used to calculate the theoretical # of KRASG12D 
copies contribution from LS174T. 
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Supplementary Table 2.4. IC3D hit counts for synthetic KRAS G12D experiment 
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Supplementary Table 2.5. IC3D hit counts for LS174T cell-spiking experiment 
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Supplementary Figure 2.3. Bio-RAD QX-200 ddPCR for LS174T cell-spiking experiment 
 

 
 

*n = 3 for WT and NF H20 controls; n = 2 for all other samples 
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Supplementary Table 2.6. Droplet throughput comparison of Velox prototype IC3D system to 
commercial ddPCR systems 
 

 

 
a) Reported empirical LOD of 0.0022% AF for KRAS G12D (3.5 E7 WT copies) [C. A. Milbury, Q. 
Zhong, J. Lin, M. Williams, J. Olson, D. R. Link and B. Hutchison, Biomol Detect Quantif, 2014, 1, 
8–22.]  
b) Recommended DNA loading up to 10% target occupancy (RainDrop® assay guidelines), which 
for a 25 µl reaction (5E6 droplets) is approximately 500,000 DNA molecules, which is the 
equivalent of approximately 1.5 µg gDNA  
c) Approximately 5E6 droplets per 25 µl reaction (RainDrop® assay guidelines) 
d) Approximately 30 minutes to generate droplets from 1 chip (8 wells) (ThunderBolts™ 
System/RainDance Source Operator’s Manual)  
e) Droplet scanning time for 8 wells = 2 hours (fast mode); 4 hours (standard mode) (RainDrop® 
Sense Operator’s manual)  
f) “Recommendations for Optimal Results” (ddPCR™ Supermix for Probes): “The concentration 
of intact human genomic DNA should be ≤ 66 ng per 20 µl reaction”  



53 
 

g) Approximately 20,000 droplets per sample (“QX100/QX200 Workflow / Droplet 
Generation”): “Droplet Digital™ PCR Applications Guide.” Bulletin 6407 Ver B. Bio-Rad 
Laboratories, Inc.)  
h) Approximately 45 minutes to generate droplets for 96 wells (“1.3 Installation and General 
Operation”, pg. 4): “Automated Droplet Generator.” Instruction Manual. Catalog #1864101. 
BioRad © 2018)  
i) Approximately 120 minutes to read/analyze droplets from one 96-well plate [S. H. Te, E. Y. 
Chen and K. Y.-H. Gin, Appl. Environ. Microbiol., 2015, 81, 5203.], [E. Mazaika and J. Homsy, 
Current protocols in human genetics / editorial board, Jonathan L. Haines ... [et al.], 2014, 82, 
7.24.1-7.24.13.]  
* IC3D performance and throughput estimates are solely based on this proof-of-concept study 
and do not represent limitations of the technology. ** Droplet thermocycling and droplet 
transfer steps not included 
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3.1 Background Information 

3.1.1. Probe Labeling Strategy  

In situ hybridization was first invented by Gall and Purdue in 1969 using radioisotopes and 

was then modified for easier use with any standard commercial fluorophores by Femino et al. in 

1998 [1-2]. Termed single molecule FISH (smFISH), smFISH decorates each mRNA transcript with 

multiple fluorescent oligonucleotide probes and allows users to visualize and detect labeled 

transcripts under a fluorescent microscope. For this approach, using many probes (10 – 50 per 

transcript) was required to attain a sufficient signal-to-noise ratios to differentiate specific 

decorated signals from the nonspecific signals which bound everywhere (Figure 3.1A) [3]. 

Currently, there are many variants of smFISH (Figure 3.1). 
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Figure 3.1. Variants of single molecule FISH methods. (A) Conventional single molecule FISH 
(smFISH). (B) Single molecule indirect FISH. Nonfluorescent primary probes are first conjugated 
to mRNA and then subsequently bound to fluorescent secondary probes (C) FISH with Sequential 
Tethered and Intertwined ODN Complexes (FISH-STICS) utilizes an additional round of labeling to 
grow out probe tree. (D) Branched DNA (bDNA) utilizes contiguous pairs (ZZ pairs) of 
oligonucleotides to facilitate specific binding. E) Hybridization chain reaction (HCR) utilizes 
metastable hairpins to amplify and laterally grow out oligonucleotide labels. F) Padlock probes 
forms a closed loop upon binding to the transcript and amplifies read out sequences with circle 
amplification (RCA). Pichon et al. Molecular Cell. 2019 [3].  
 

Of particular interest are the indirect labeling schemes where nonfluorescent primary 

probes are first conjugated to mRNA which are then subsequently bound to fluorescent 

secondary probes (Figure 3.1B). Since unconjugated oligonucleotide probes can be easily 

programmed to target any complementary regions on the RNA transcript, building an 

inexpensive library of probes towards many different genes become highly scalable and cost-
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effective. The more expensive secondary conjugated fluorophores can then be designed to 

hybridize to a “readout” region on the primary probes and used as a common/shared set to save 

costs. Furthermore, this indirect labeling method can be further modified to decorate mRNA 

transcripts with more complex and creative labeling schemes (Figures 3.1B–1E). As a preliminary 

study, this thesis utilizes the labeling scheme depicted in Figure 3.1B to demonstrate how 

combinatorial labeling with a common panel of fluorophores can be integrated with spectra-FLIM 

microscopy to achieve greater multiplexed detection and error-correction. However, this 

approach is not restricted to only this labeling technique and should be compatible with any of 

the aforementioned labeling techniques, opening many exciting avenues for future work on this 

project. To examine the effects of different FISH hybridization and probe design parameters on 

RNA-FISH signal, a model cell line, mNeon Green HEK293T, was employed. 

3.1.2 mNeonGreen HEK293T cells 

A cell line with stable expression is required to validate the labeling and detection of 

transcripts. For this cell line, the expectation is: 1) it needs to have consistent expression of 

transcript; 2) the expression level needs to be easy to confirm under a fluorescent microscope, 

e.g. a fluorescent protein. For these reasons, a stable mNeonGreen expression in HEK293T cells 

was engineered. MNeonGreen is a monomeric yellow-green fluorescent protein, which was first 

published in 2013. It is derived from the cephalochordate Branchiostoma lanceolatum. Its 

excellent performance has been well validated under various microscope systems. The excitation 

wavelength of mNeonGreen is 506 nm, while its emission wavelength is 517 nm [4]. Any cell with 

mNeonGreen protein inside will show green fluorescence. In addition to visualizing the cells, in 

our case, the expression of mNeonGreen protein provides a great option for FISH probe design. 
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 3.1.4 Construction of mNeonGreen HEK293T cells 

To ensure the consistent expression of mNeonGreen protein, Human embryonic kidney 

(HEK293T) cells were transfected with an engineered mNeonGreen plasmid (Fig. 3.1A). First a 

plasmid with mNeonGreen sequence (GenBank: KC295282.1) was constructed. The plasmid was 

then transfected into HEK293T cells with FuGENE HD Transfection Reagent. One day later, the 

cells were checked under a fluorescence microscope and exhibited heterogeneity in 

mNeonGreen expression. Not every cell has mNeonGreen protein inside. Therefore, three days 

after transfection, the cells were selected with puromycin and Zeocin. One day after selection, 

the cells were checked again. This time all the cells show the green fluorescence. They are 

identified as positive cells, while the normal HEK293T cells are negative ones. In the following 

experiments, both positive and negative cells were mixed to form a cell mixture called mixed 

mNeonGreen HEK293T cells. And the ratio of two types of cells is around 1:1. Therefore, both 

positive results and negative controls are available in the same region of interest (ROI) (Fig. 

3.2B,C).  
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Figure 3.2 mNeonGreen HEK293T cells. A) Construction of mNeonGreen HEK293T cells. B&C) 
Mixed mNeonGreen cells under the microscope. The images in bright field and FITC channel were 
merged. Scale bar = 10 μm. 
 

3.2.1 Probe design 

The indirect binding method mentioned above was also applied into the following RNA-

FISH design. The primary probes consist of a target sequence (complimentary to a part of target 

mRNA), a binding site for secondary probes and a TTT linker in between to allow the flexibility of 

the probe. The number of each component in a primary probe can be adjusted as needed. Alexa 

647 was chosen as the fluorophore for secondary probes. In a set of primary probes for a certain 
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mRNA, each target sequence is unique, targeting the different regions of the mRNA, while the 

binding site for secondary probes is the same. 

All target sequences were designed via the Stellaris® Probe Designer version 4.2, targeting 

the coding sequence of mNeonGreen [5]. Previous research [6,7] have shown that a narrow range 

of the melting temperature (Tm) and GC content of probes allows high hybridization efficiency. 

Specifically, Tm and GC% determines when the denaturation (unbinding) occurs between the 

target and probes. Therefore, if these two metrics are in a narrow range, the possibility of 

denaturation would be lower. For this reason, any sequence which deviates from the main range 

of the Tm and GC% was removed. Additionally, any sequences including four or more consecutive 

bases of the same kind (e.g. GGGG) were dropped to eliminate the presence of quadruplet 

structure. To further ensure the specificity of probes, an online BLAST query was also run on each 

sequence against the human transcriptome. After these selections, 14 binding sequences with 

mNeonGreen mRNA were designed. Each sequence has 27 nucleotides (nt).  

For the design of a binding site for secondary probes, the design of readout sequences 

was borrowed from the Zhuang Lab [8]. These 20-nt sequences were designed randomly, with 

the possibility of 50% G, 25% A and 25% T per base. The three-letter readout sequences are 

artificial, so it is less likely to bind randomly on the sample. This helped to decrease their 

nonspecific binding. Sequences including four or more consecutive G bases (e.g. GGGG) were 

removed. And these readout sequences have been BLAST against human transcriptome.  

Finally, each probe includes a 27-nt target sequence, a TTT linker and a 20-nt readout 

sequence. It is: 

target sequence (27-nt) —TTT— readout sequence (20-nt) 
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The specificity of these 14 probes was checked against human genome again via BLAST. 

The range of GC content was 40-50%.   

The secondary probe includes a 20-nt sequence, which is the reverse complement of the 

readout sequences in primary probes, and one Alexa 647 fluorescence molecule: 

/5Alex647N/ readout sequence* (20-nt) 

* means the reverse complement. 

Later, based on the results from parameter optimization, these probe designs were 

improved. Currently each primary probe includes a 27-nt target sequence, two TTT linkers and 

two 20-nt readout sequences. And each secondary probe is attached with two Alexa 647 

fluorescence molecules (schematic shown in Fig. 3.3). 

 

Figure 3.3 The schematic of probe binding. Red dots represent Alexa 647 fluorescence 
molecules. 
 

 

3.2.2 Validation  

Although the expression of mNeonGreen protein can be confirmed under the microscope, 

the hybridization efficiency of probes in mixed mNeonGreen HEK293T cells requires optimization. 

Therefore, a validation experiment was conducted to visualize the location of mNeonGreen 
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transcript to assess the hybridization efficiency. The images were based on the optimized 

experiment parameters (Fig. 3.4A). Figure 3.4B shows the detection of mNeonGreen mRNA. The 

signal from Alexa 647 was specifically located around the HEK293T cells expressing mNeonGreen 

protein, indicating the accuracy of probe design and the specificity of target sequences (individual 

images in each channel shown in Fig. 3.4C & D & E). 
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Figure 3.4 Validation of hybridization efficiency in mixed mNeonGreen HEK293T cells. A) The 
schematic showing the workflow of RNA-FISH. B) Merged image showing the detection of 
mNeonGreen transcript. Four channels were shown, bright field, DAPI (blue), FITC (green), Cy5 
(red). Scale bar = 10 μm. 
 

In this experiment, RNA-FISH was performed on three types of control. In the scramble 

control (Fig. 3.5A), the target sequences of the primary probes were designed for a mouse gene, 

while their readout sequence was still complementary to the secondary probe labeled with Alexa 
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647. This control indicates any nonspecific primary probe binding. The negative control (Fig. 3.5B) 

is the condition with no primary probes adding, indicating any nonspecific binding of the 

secondary probe alone. The blank control (Fig. 3.5C) is the condition without any probes added. 

Very few red signals came from scramble control (Fig. 3.5D), while there was no red signal in 

negative control (Fig. 3.5E) and blank control (Fig. 3.5F). 

 

 

Figure 3.5 Scramble control, negative control, and blank control for validation. A) The schematic 
of scramble control. B) The schematic of negative control. C) The schematic of blank control. D) 
Merged image of scramble control. Three channels were shown, DAPI (blue), FITC (green), Cy5 
(red). Scale bar = 10 μm. E) Merged image of negative control. Three channels were shown, DAPI 
(blue), FITC (green), Cy5 (red). Scale bar = 10 μm. F) Merged image of blank control. Three 
channels were shown, DAPI (blue), FITC (green), Cy5 (red). Scale bar = 10 μm. 
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Based on the results above, the hybridization efficiency and specificity of mNeonGreen 

probes was validated in mixed mNeonGreen HEK293T cells. The strong specific signal from the 

probe set for the mNeonGreen transcript indicates the high labeling efficiency of this RNAFISH 

method for the detection of mNeonGreen mRNA transcripts.  

3.2.4 Detection of multiplex target  

To test the multiplexing capability of this RNA-FISH platform, a probe set for the UBC 

transcript was designed (Fig. 3.6A). UBC (ubiquitin C, NM_021009.7) is a housekeeping gene in 

the human genome and is one of the recommended genes by RNAscope® to be used as positive 

control for medium or high expression. The 14 target sequences for UBC mRNA were designed in 

the same way as the target sequences which were used for mNeonGreen mRNA. Sequences with 

four or more consecutive G bases or deviating from the main range of the Tm and GC% were 

removed. Its assigned fluorophore is Atto 565, using a different readout sequence and its reverse 

complement.  

Figure 3.6B showed the detection of multiplex transcripts in mixed mNeonGreen HEK293T 

cells. As shown, UBC was expressed in all the HEK293T cells (Fig. 3.6E), while only the cells 

showing green fluorescence expressed the mNeonGreen transcript (Fig. 3.6F). According to the 

individual images in each channel (Fig. 3.6C & D & E & F), there was no interference between the 

two detection channels. Therefore, with more detection channels equipped, it is possible to 

further improve the multiplexing capability. 
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Figure 3.6 Detection of multiplex transcripts in mixed mNeonGreen HEK293T cells. A) The 
schematic showing the workflow of RNA-FISH for UBC transcript. B) Merged image showing the 
detection of both UBC and mNeonGreen transcripts. Four channels were shown, DAPI (blue), FITC 
(green), TRITC (yellow) and Cy5 (red). Scale bar = 10 μm. C) All the HEK293T cells in DAPI channels. 
Scale bar = 10 μm. D) mNeonGreen cells in FITC channel. Scale bar = 10 μm. E) Detection of UBC 
transcripts in TRITC channel. Scale bar = 10 μm. F) Detection of UBC transcripts in mNeonGreen 
channel. Scale bar = 10 μm. 
 

3.2.5 Parameter optimization  

Using the mNeonGreen HEK293T cell model and the probe set for mNeonGreen 

transcript, the effects of different probe design and hybridization parameters were tested. The 

results were analyzed to indicate the optimal conditions. Here, noise refers to the fluorescence 
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dots from the cells not expressing the mNeonGreen protein or the baseline levels of nonspecific 

binding. 

3.2.6 Primary probe structure  

Previous research from Yin Lab [9] has shown, as the number of readout sequences on 

primary probes increased, the signal intensity also improved. However, it remained unknown 

whether the increase would reach a maximum limitation when primary probes were 

continuously extended. To test this hypothesis, three sets of primary probes were designed, 

which only differed in the number of readout sequences (schematics shown in Fig. 3.7A). On each 

primary probe in set 1, there was only one readout sequence. In set 2, the number was doubled. 

This number was further increased to four in set 3.  

The results showed that set 2, primary probes with two readout sequences, provided the 

strongest signal, 949 relative fluorescent intensity (RFI) (±213), despite the high variation (Fig. 

3.7B). The SNR in set 2 was highest as well, reaching 3.52 (±0.73) (Fig. 3.7C). The intensity of 

average noise in each condition was similar, suggesting that noise mainly came from the 

nonspecific binding of secondary probes. Based on the result, primary probes with two readout 

sequences were chosen for use in the following tests. 

The high variation in intensity in set 2 and 3 resulted from the nonspecific binding of 

several secondary probes. A reason why the ones with the four readouts sequences failed to 

further increase the signal might be the structure. The probes were too long (119 nucleotides) to 

efficiently diffuse and bind with the target transcript in a limited time. Also, since each probe has 

a binding region of only 27 nucleotides out of 119 nucleotides bound, it was less difficult to wash 

off with repetitive washing after the primary probe hybridization. 
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Figure 3.7 Influence of primary probe structure on the detection of mNeonGreen transcripts. 
A) (from left to right) Merged images showed detection of mNeonGreen transcript using primary 
probes with one, two, and four readout sequences, respectively. The schematics of binding were 
shown above the figures. Three channels were shown, DAPI (blue), FITC (green), and Cy5 (red). 
Scale bar = 10 μm. B) Scatter plot showing the signal intensity on three conditions. n=30 puncta. 
C) Scatter plot showing the signal-to-noise ratio (SNR) on three conditions. n=30 puncta.  
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3.2.7 Fluorophore probe structure  

Based on the results on the effects of primary probe structure on transcript detection, 

secondary probe structures were assessed as well. Secondary probes with different structures 

were tested. Secondary probe 1 was the reverse complement of the readout sequence, attached 

with one Alexa 647 molecule, while secondary probe 2 has the same DNA sequence but with one 

Alexa 647 molecule at each end (schematics shown in Fig. 3.8A). 
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Figure 3.8 Influence of secondary probe structure on the detection of mNeonGreen transcripts. 
A) (from left to right) Merged images showed detection of mNeonGreen transcript using 
secondary probes with one, and two readout sequences, respectively. The schematics of binding 
were shown above the figures. Three channels were shown, DAPI (blue), FITC (green), and Cy5 
(red). Scale bar = 10 μm. B) Scatter plot showing the signal intensity on three conditions. n=30 
puncta. C) Scatter plot showing the signal-to-noise ratio (SNR) on three conditions. n=30 puncta. 
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The signal intensity from the condition using secondary probe 2 was 1826 RFI (±281) (Fig. 

3.8B), significantly higher than the one using secondary probe 1. However, the two-fluorophore 

structures also led to higher noise. This was consistent with the conclusion from the tests of 

primary probe structure that noise should primarily come from the nonspecific binding of 

secondary probes. The difference in SNR between secondary probe 1 and 2 was smaller, but 

secondary probe 2 still showed high SNR (Fig. 3.8C). Therefore, to maximize the difference in the 

signal intensity, secondary probe 2 was preferred in these tests. 

3.2.8 Blocking buffer  

FISH is based on the specific binding between the mRNA targets and DNA probes. 

However, nonspecific binding occurs, affecting overall SNR of transcript detection. To lower the 

noise, a blocking buffer can be exploited before (optional) and along the incubation with probes. 

In general, an effective blocking buffer should [3]: 1) bind with the surface firmly, stronger than 

nonspecific binding, but still weaker than the specific binding; 2) not impede the specific binding 

and the fluorescence signal (no cross-reaction, no depression effect); 3) not bring any undissolved 

large particles or contamination like bacteria; 4) be not sensitive to temperature change (avoid 

denaturation); 5) perform consistently across various batches. With the application of a blocking 

buffer, the interference from the background should decrease, while the signal intensity remains 

the same in order to improve hybridization efficiency and thus improve the SNR. 

Currently, most blocking buffers that have been applied in FISH are mixed solutions of 

irrelevant nucleotide fragments, like yeast tRNA and herring sperm DNA, along with many other 

compounds. The DNA fragments were chemically and physically hydrolyzed into short base pairs 

to nonspecifically bind everywhere. Their application before the incubation with probes can pre-
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bind with the sample surface. However, since these fragments do not contain a readout region 

to the secondary fluorescent probe, their binding with the target transcript should deter any 

subsequent specific labeling with the primary probes. 

In addition to irrelevant nucleotide fragments, many other reagents might also help to 

improve the performance of FISH. For example, dextran sulfate was widely used [6-9], to 

accelerate the hybridization of probes with nucleic acid. Alternatively, ethylene carbonate might 

help the diffusion of probes [7]. BSA, bovine serum albumin, has often been used as a blocker of 

nonspecific sites. 

Based on these chemistry information, three blocking buffers were designed and tested. 

Blocking buffer #3 (BB #3) was the simplest one, with only dextran sulfate and ethylene 

carbonate. Blocking buffer 2 (BB #2) has one more component, herring sperm DNA fragments, 

while blocking buffer #1 (BB #1) had one more component, BSA, and doubled the concentration 

of each component in BB #2. Condition 1, 2 and 3 refers to the conditions in which BB #1, #2 and 

#3 were used, respectively. 
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Figure 3.9 Influence of different blocking buffer on the detection of mNeonGreen transcripts. 
A) (from left to right) Merged images showed detection of mNeonGreen transcript with different 
blocking buffers used. Three channels were shown, DAPI (blue), FITC (green), and Cy5 (red). Scale 
bar = 10 μm. B) Scatter plot showing the signal intensity on three conditions. BB represents a 
blocking buffer. n=30 puncta. C) Scatter plot showing the signal-to-noise ratio (SNR) on three 
conditions. n=30 puncta. 
 

In the condition 3, although the average signal intensity was highest (Fig. 3.9B), the noise 

was strongest as well, leaving a red background in the right image (Fig. 3.9A) and a lowest SNR 

(Fig. 3.9C). Some nonspecific binding even occurred on glass surface. Therefore, BB #3 was not a 

good choice of blocking buffer. Instead, with relatively high signal and normal noise, condition 2 

showed the best SNR. In condition 1, the signal from mNeonGreen transcript was much lower 

but still detectable. However, the protein was hard to observe under the microscope. This 

suggested this blocking buffer might have impeded the hybridization as well as damaged the 
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fluorescent proteins expressed in these cells. So, in the following experiment, blocking buffer #2 

was used. 

3.2.9 Primary probe concentration  

The concentration of primary probes varies depending on the RNA-FISH platforms [6-9]. 

To determine the best working concentration, five conditions were tested, with 100 nM, 50 nM, 

20 nM, 5 nM, and 1 nM primary probes. Here, the term concentration referred to the 

concentration of each primary probe, instead of the overall one. Based on these experiments, it 

appears that the higher the concentration of primary probes was used, the higher the noise, 

especially in the condition with 100 nM of each probe (Fig. 3.10A). As seen in this image, several 

large clusters of puncta might have resulted from the aggregation of primary probes, which later 

bound with the secondary probes. In the conditions with 100 nM and 50 nM primary probes, the 

range of signal intensity was similar. This might result from the fluorescence saturation of each 

puncta. Based on the analysis on signal intensity (Fig. 3.10B) and SNR (Fig. 3.10C), 5 nM was found 

to be the best working concentration per probe. 
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Figure 3.10 Influence of primary probe concentration on the detection of mNeonGreen 
transcript. A) (from left to right, top to bottom) Merged images showed detection of 
mNeonGreen transcript using 100, 50, 20, 5, and 1 nM primary probes, respectively. Three 
channels were shown, DAPI (blue), FITC (green), and Cy5 (red). Scale bar = 10 μm. B) Scatter plot 
showing the signal intensity on three conditions. n=30 puncta. C) Scatter plot showing the signal-
to-noise ratio (SNR) on three conditions. n=30 puncta.  
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4.2.10 Incubation time of primary probes  

Longer incubation time with primary probes is recommended by many research groups 

[6-9], to ensure the binding maximum and thus achieve the highest signal. To confirm this idea, 

mixed mNeonGreen cells were incubated with primary probes for 4, 8 and 16 hours (Fig. 3.11A). 

 

Figure 0.11 Influence of incubation time on the detection of mNeonGreen transcript. A) (from 
left to right) Merged images showed detection of mNeonGreen transcript with 4, 8, and 16-hour 
incubation of primary probes, respectively. Three channels were shown, DAPI (blue), FITC 
(green), and Cy5 (red). Scale bar = 10 μm. B) Scatter plot showing the signal intensity on three 
conditions. n=30 puncta. C) Scatter plot showing the signal-to-noise ratio (SNR) on three 
conditions. n=30 puncta.  
 

Despite the great variations in signal intensity, the 16-hour incubation condition had the 

strongest signal (Fig. 3.11B) and highest SNR (Fig. 3.11C). However, the ones with 8-hour 

incubation failed to show much higher intensity than those with 4-hour incubation. The uneven 
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concentration of primary probes might account for this as well as the great variations in intensity. 

The different detection efficiency was clear in the mixed mNeonGreen cells with 4-hour 

incubation (Fig. 3.11A). Even in the same field of view, the number of fluorescent dots around 

each mNeonGreen cell differed significantly, suggesting the uneven concentration of primary 

probes in.  

Thus, overall, we first investigated the specificity of our labeling condition using a simple 

cell mixture model comprising wild-type HEK293T-X cells and HEK293T-X cells engineered with 

mNeonGreen (Fig. S3.12A) by detecting mNeonGreen mRNA as the target gene. Since only 

fluorescent mNeonGreen positive cells can express the corresponding mRNA transcripts, this cell 

mixture model provides a straightforward tool to assess specificity and nonspecific binding. Using 

a Nikon epifluorescence microscope to image the samples following staining with primary and 

secondary probes, we detected on average 43.5 puncta per mNeonGreen positive cell (n = 76 

cells) and 0.25 puncta per wild-type cell (n = 164) (Fig. S3.12,C), indicating minimal nonspecific 

binding with our probe labeling strategy. To further validate the baseline level of nonspecific 

binding, we included a negative control with the primary probe designed towards dopachrome 

tautomerase (DCT), a gene in the mouse genome that is not expressed in our HEK293T-X model 

system, along with a condition with secondary probes only. Similarly, an average of 43.5 puncta 

per cell was detected for the mNeonGreen cells while the wild type and negative controls a mean 

of 2.5 puncta per cell was detected with a lower signal to noise (Fig. S3.13B,C). We next optimized 

labeling efficiency by testing the number of primary probes and incubation times of primary 

probes and secondary probes. We determined our optimal condition to comprise a minimal of 

least 12 primary probes for each target mRNA (Fig. S3.13A,B) (in practice, we always maximize 
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the number of primary probes per mRNA depending on the size of mRNA. Indeed, 40 primary 

probes per channel per mRNA were subsequently used in this study) with incubation time of 16 

hours for primary probe hybridization and 1 hour for secondary probe hybridization, respectively 

(Fig. S3.13C,D), which were used in subsequent experiments. 
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Supplementary Figure 3.12. Validation of probe hybridization in mNeonGreen cells. A) 
Schematic of engineering of mNeonGreen HEK293T-X cells. Engineered mNeonGreen plasmids 
were transfected into HEK293T-X cells with FuGENE HD Transfection Reagent. Three days after 
transfection, the cells were then selected with Puromycin and Zeocin. B) Schematic and 
representative images of each condition. The primary probes were designed to be 
complementary to mNeonGreen transcripts. A dopachrome tautomerase (DCT) primary probe 
negative control, which uses primary probes targeting sequences not present in the mNeonGreen 
HEK-293T-X cells but can still bind to secondary fluorescent oligonucleotides, was used to indicate 
any nonspecific binding which can occur with primary probe labeling. A negative control where 
only secondary probes were added but no primary probes were added was used as a reference 
for nonspecific binding from secondary probes alone. For each condition, the concentration of 
each primary probe (14 in total) was 1 nM and the secondary probe was 5 nM. Scale bar = 10 µm. 
C) Plots to quantify the detected puncta per cell and signal-to-noise (SNR) ratio under different 
conditions. Left, scatter plot showing puncta number per cell (n=755 cells). Right, signal-to-noise 
ratio (SNR). SNR=each signal intensity/the mean of background noise (n=3,860 puncta). 
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Figure 3.13. Optimization parameters of in situ hybridization conditions. A) Representative 
images of mNeonGreen cells with different numbers of primary probes. Conditions included 2, 4, 
6, 8, 10, 12, and 14 mNeonGreen primary probes to the HEK293T-X mNeonGreen and WT model. 
The concentration of each primary probe is constant (5 nM). Scale bars are 10 µm. B) Intensity 
distribution of detected puncta shows the effects of the number of primary probes on signal 
intensity (total n ≈ 64k puncta). C) Representative images of mNeonGreen cells with different 
incubation time of probes. The primary probes hybridization incubation times consisted of 4, 8, 
and 16 hours. For secondary fluorophore probes, incubation times tested were 1, 2, and 4 hours. 
Scale bars are 10 µm. D) Intensity distribution of detected puncta as a function of incubation 
time. Top, primary probe incubation time (total n ≈ 26k puncta). Bottom, secondary probe 
incubation time (total n ≈ 20k puncta). Pairwise t-test resulted in p-values <104 for conditions 
marked with ****. 
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4.1 Spectral and FLIM Microscopy 

Fluorescence imaging is the visualization of fluorescent dyes or proteins as labels for 

molecular processes or structures. It enables a wide range of experimental observations including 

the location and dynamics of gene expression, protein expression and molecular interactions in 

cells and tissues. The most common way that biologists use fluorescence to study cells and tissues 

is to measure light intensity produced by fluorophores or fluorescent reporters. However, 

intensity is only one dimension of fluorescence. Intrinsic to each fluorophore, is also its 

fluorescence lifetime which is a measure of how long a fluorophore remains on average in its 

excited state before returning to the ground state by emitting a fluorescence photon (Figure 4.1). 

This parameter may change with the probe’s conformational state and has often been exploited 

by researchers to probe a fluorophore’s surrounding molecular environment for its composition, 

such as ion concentration, pH, lipophilicity or viscosity [1-2].  
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[3] 

Figure 4.1. Principle of fluorescence lifetime detection. (A)  Fluorescence mechanism. (B) The 
distribution of time delays can be measured by repeatedly exciting and detecting fluorescence 
photons in multiple time bins. (C) From the number of photons detected in each time bin, the 
characteristic lifetime decay can be determined. (D) This data can be quantified on in the 2D 
phasor space by plotting the lifetime phase and modulation of the measured signal on a polar 
plot.  

 

To measure a fluorophore’s lifetime, specialized software and hardware are required [3]. 

A typical FLIM setup is shown in Figure 4.2. A pulsed/modulated light source is used to illuminate 

the sample for digital frequency domain (DFD) lifetime measurement. Instead of modulating the 

detector by time gating or gain modulation, the entire signal is collected. A time gate is then 

applied digitally by splitting the detected signal into several (typically 4, 8 or 16) windows, each 

covering a specific portion of the excitation pulse period. By applying a slight, incremental phase 

shift to the position of those windows with respect to the excitation pulse, the fluorescence decay 

of the dye molecules, can be recovered with high (~10 ps) resolution. From this data, the position 

of the lifetime phase and modulation can be calculated and presented as a position on the phasor 

plot, a 2D histogram of all pixel lifetimes (Figure 4.2). The phasor method draws from the digital 

frequency domain hardware and software that permits using all the photons detected from a 

sample [4]. Additionally, the representation of the decay data using polar coordinates allows the 
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precise measurement of many lifetime components simultaneously without performing fits of 

the decay data. This allows automatic detection of a plurality of molecular species in the same 

field of view. 

 

 

 

 

 

 

 

 

 

                           

 

                                                       

                                                    Hedde et al. Biomed Opt Express. 2019 [3]. 

 

Figure 4.2. A typical optical setup for fluorescence lifetime measurement and analysis. A light 
source such as a laser excites the samples that are stained with probes and the emission is 
collected by the detector(s) which can be photomultipliers or cameras. Individual photon counts 
are registered by the lifetime imaging electronic device (FLIMBox) which in turn uses the clock 
from the light source or an internal clock to establish the time of arrival of the photons with 
respect to the excitation. If a scanner is used, it also provides a trigger signal to synchronize the 
spatial origin of each photon. 

 

Fluorescence lifetime imaging microscopy (FLIM) is an especially powerful method that 

can supplement intensity-based measurements with a whole new dimension of data. 

Fluorophores which have the same excitation and emission spectra but different lifetimes can be 

differentiated with FLIM, opening up a new avenue for multiplexing capabilities [5]. Table 4.1 

provides a small list of commonly used fluorophores which can be separated by spectral or 
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lifetime properties. Many multiplexing capabilities are possible with these fluorophores but to 

be able to successfully image and differentiate them in spatial multiomics has yet to be done. 
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Table 4.1. List of Commonly Used Fluorophores Differing in Spectra or FLIM Characteristics 
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 In addition, autofluorescent moieties/artifacts in cells and tissue have characteristic 

lifetime signatures which occupy different positions that are easily distinguishable on a FLIM 

phasor plot (Figure 4.3). Through intensity measurements, these moieties are inseparable from 

each other or from a labeled fluorophore but through FLIM measurements, these moieties can 

be easily corrected or removed out from analysis via the phasor approach [6].   

 

                     

Figure 4.3. A representative phasor plot of multiple autofluorescent moieties. Cells and tissues 
have autofluorescence artifacts with unique characteristic lifetime signatures. These signatures 
occupy distinct positions on the phasor plot which can be removed from analysis. Stringari et al. 
PNAS. 2011[6]. 
 

4.2 Imaging and phasor analysis 

Lifetime imaging is a tool that measures the spatial distribution of probes with different 

fluorescence lifetime. Samples are stimulated with modulated or pulsed lasers at a particular 

frequency, typically around the 40 to 80 MHz, which allows the fluorescence to decay within the 

stimulated period, typically in the ns range. After acquiring for sufficient time, i.e., after enough 
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laser pulses or periods, one can construct a histogram of photon arrival times at each pixel. The 

shape of this histogram has a rapid rise, followed by a faster or slower decay which is 

characteristic of the fluorescent molecule(s) present in the pixel. To model this decay data, an 

exponential decay model can be fitted or alternatively one can make use of the fit-free phasor 

approach [7-8]. We used this second approach because it requires no a priori knowledge of an 

underlying model (i.e. number of fluorescent species at the pixel) and it is computationally 

inexpensive in virtue of the Fast Fourier Transform algorithm. The phasor transform extracts two 

values from the decay curve that characterize the shape (and importantly not the size, so that 

the transform is independent of the amount of photons) and these two values, namely S and G, 

correspond to the two coordinates of the pixel on the phasor plot (see equations in the 

supplemental material). The values are obtained by an integral of the product of the decay of the 

two trigonometric functions, sine and cosine, fit in the stimulation period, and they correspond 

to the first order terms of the Fourier Series decomposition of the decay curve.  

Similarly, if one uses a spectral detector, i.e., a separate detector for different spectral 

bands, then for each pixel, one can obtain another histogram, in this case with the number of 

photons arriving in each channel, i.e., at each wavelength. This curve can also be transformed to 

an analogous spectral phasor space to map the recorded spectra at each pixel onto the 2D 

spectral phasor space [9]. Combining the lifetime measurement with a spectral detector, one 

effectively has a 5-dimensional space in which to characterize each pixel. On top of the spatio-

temporal coordinates (x,y,z,t), each pixel now carries information in 5 additional coordinates: its 

intensity value (however many photons arrived at that pixel), the two phasor coordinates for the 

lifetime phasor transform, and the two phasor coordinates for the spectral phasor transform. A 
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typical image, on the order of 106 pixels, obtained with this method provides 106 points in this 

5D space [10]. If the sample presents different populations of fluorescent molecules at different 

locations, the pixel phasor data at these different locations map to different positions in this 

phasor space and a clustering technique can be used to resolve each population. 

Figure 4.4 depicts the spectral/lifetime analogy for fluorescence microscopy using the 

phasor approach. As an example, it uses a hypothetical experiment where 4 different target 

genes are targeted with 4 fluorescent species. Of the 4 species, we construct the example so that 

two fluorescent species emit in one color and the other two in another color. At the same time, 

within each color, one has a short lifetime and the other has a long lifetime. This hypothetical 

sample is excited, and the individual photons are detected at each pixel (Fig. 4.4A). In each pixel, 

we accumulate enough photons to build a spectral histogram and a lifetime histogram (Fig. 4.4B). 

These curves are phasor-transformed to reveal two distinct populations in the phasor space, 

corresponding to the two colors and the two lifetimes. By means of our previously published 

automatic clustering using machine learning [11], we identify these populations and return to 

the image space to label each pixel depending on the group it belongs to in the phasor space (Fig. 

4.4C). By combining the spectral and lifetime information, we have automatically segmented the 

image into regions, i.e., identified the pixels that belong to the different species (Fig. 4.4D). Again, 

note that in this example in Figure 2, we have chosen the probes to be the most convoluted case 

possible; one couple shares a similar spectrum and the other couple shares another spectrum. 

At the same time, one of the members of either couple share a similar lifetime and the other two 

members of either couple share another lifetime. This is the reason why even if there are four 

distinct fluorescent probes, only two spectral populations are detected both in the spectral and 
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lifetime phasor space, and the combinations of these two populations yield to the four distinct 

groups. The four probes cannot be resolved unless both the lifetime and spectral information are 

accessed. 

 

 
 

Figure 4.4. Imaging and phasor analysis with Spectral-FLIM. A) As an example, four different 
probes are used to target four different genes. The fluorescence is collected using the spectral-
FLIM instrument to form images where each pixel carries information of the spectra and lifetime. 
B) At each pixel we compute the photon distribution in the spectral and temporal dimension. The 
lifetime phasor transform maps these distributions in each pixel to a position on the phasor 
space. C) The lifetime phasor plots are built by transforming every pixel in the image to reveal 
the presence of different populations. These populations are identified and then mapped back 
to the original image. D) We color code the pixels based on the combination of the two 
properties. This allows us to separate by lifetime probes that were emitting with similar spectra 
and vice-versa, separate by spectra probes that fluoresce with similar lifetimes. 
 

4.3 Combinatorial target spectral and lifetime encoding and decoding  

In the previous section, we showed how by combining the time dimension with the 

spectral dimension, we can increase the number of possibilities and therefore enhance the 

multiplexing capabilities squaring the number of targets that can be resolved. To further increase 

multiplexing and improve detection efficiency, we employ combinatorial labeling, a method in 

which targets are labeled with two or more unique fluorophores, to greatly increase the base 

number of targets we can label with a given number of fluorophores/probes. To illustrate this 
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concept, here we demonstrate a minimal exemplary working example of combinatorial labeling 

where two probes are used to label three targets. In this situation, each probe labels one target 

and the third target is labeled with both probes simultaneously. Figure 4.5 shows a real case with 

such configuration, both for spectra and for lifetime. In Figure 4.5A, the cartoon represents the 

case of using two probes with distinct spectra. When imaging this sample, we can use two 

spectral channels, Figure 4.5B/C, where some targets appear in only one channel, other targets 

appear in only the other channel and the target that is labeled with both probes appears in both 

channels. All targets are then detected and color-coded depending on their presence in one 

channel, the other or the two simultaneously (Fig. 4.5D) and the overall counts of each 

combination in the field of view can be provided (Fig. 4.5E). 
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Figure 4.5. Working example of combinatorial labelling of three mRNA targets with two probes. 
A) Three different target genes are tagged using two probes with different spectra. Targets 1 and 
3 are tagged each with one probe, Target 2 is tagged with both simultaneously. B,C) The 
fluorescence is collected in the two expected spectral channels for the known emission of the 
two probes. D) The maximum projection of the two channels is shown and pseudocolored 
depending on the presence in the respective channels (as an inset within the whole field of view. 
E) The actual counts of each target within the whole field of view. F) As a parallel example, three 
different target genes are tagged using two probes with different lifetime. Targets 1 and 3 are 
tagged each with one probe, Target 2 is tagged with both simultaneously. G) The phasor plot 
presents three populations, corresponding to the pixels with the three combinations; the two 
components by themselves plus the linear combination falling in the middle. H) Machine learning 
clustering technique is used to identify the groups (Gaussian mixture model). I) The 
multicomponent method is used to extract the fraction of one of the components in each 
detected puncta. J) The same inset is shown with the pseudocoloring now depending on the 
lifetime clustering. K) The counts for each lifetime cluster in the whole field of view. L) The 
combination of the information in both the spectral and the lifetime dimension yields a final 6-
plex. M) The overall counts for the 6-plex detection including POLR2A (Alexa647 & ATTO565), 
MTOR (ATTO647 & ATTO565), KI67 (Alexa647 & ATTO647), BRCA1 (Alexa647), NCOA2 
(ATTO647), NCOA3 (ATTO565) with the appropriate genes that correspond to each combination. 
Experiments were conducted with cultures of mNeon green cells.  

 

Similarly, we show a case in which the targets are now labeled with two probes that have 

similar spectra but different lifetimes (Fig. 4.5F). In this case, we also introduce the use of the 

phasor approach to reveal the three expected populations, the pixels that contain both probes 
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appear in the midpoint between the phasor positions of the pixels that contain only one of the 

probes. Figure 4.5G shows the phasor distribution obtained from the same field of view as in the 

spectral example, in which we also show the theoretical locations of the probes (corresponding 

to Alexa647 and ATTO647 with respective lifetimes of 1 ns and 3.5 ns). As is expected in real 

experimental conditions, there are additional fluorescent components in the sample. We broadly 

refer to the bulk of these additional components as autofluorescence, which pulls the data away 

from the expected positions and converges to the mean phasor position of the autofluorescent 

components. We have previously shown that the Gaussian Mixture Models is the most optimal 

machine learning clustering algorithm to model phasor data [11], and we use this machine 

learning technique to infer the phasor locations of the probe combinations (Fig. 4.5H). We can 

now successfully classify each pixel of the original image into one of the clusters and obtain a 

probability of belonging to each, i.e., the posterior probability of the model. This allows us to 

color-code the transcripts depending on their assignment to one of the 3 clusters (Fig. 4.5J) and 

obtain the counts of the three lifetime components (Fig. 4.5K). Additionally, we apply our lifetime 

multicomponent analysis technique [12] in which for each detected puncta, we estimate the 

presence of one of the lifetime components, in this case lifetime1 (Alexa647, purple in the figure), 

to obtain the expected result; that there are clearly three populations with respective fractions 

centered around [0, ½ and 1] (Fig. 4.5I).  

In the general case, we combine the lifetime and spectral dimensions, and we perform 

the clustering of the data in a 4D spectral/lifetime phasor space. The clustering technique has the 

power to not only identify which puncta belong to each cluster but also to assign a probability of 

belonging to that cluster, which can be used to quantify the certainty of the labeling. For example, 
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in the inset in Figure 4.5J, we show two cases of puncta that have relatively low confidence in the 

cluster assignment; they are depicted with blended colors because they fall in the regions of the 

phasor space where the two clusters are merging. In this combinatorial example in Figure 4.5, 

the three clusters in the lifetime domain multiplexed with the channel-based in the spectral 

domain yield a 6-plex image using only 3 probes (Fig. 4.5L,M). The specific genes targeted for this 

experiment with the combined probes were POLR2A (Alexa647 & ATTO565), MTOR (ATTO647 & 

ATTO565), KI67 (Alexa647 & ATTO 647), BRCA1 (Alexa647), NCOA2 (ATTO647), NCOA3 

(ATTO565). In the general combinatorial experiment using couples of N probes the total number 

of possible target genes grows quadratically: 

(
N
2

) =
N!

2(N-2)!
=

N2-N

2
 (1) 

 

4.4 Image Processing  

A custom set of scripts were written in MATLAB to process the acquired image stacks, 

identify individual transcripts and assign each of them to each gene. After reconstructing the 

images out of the digital list of photons, the analysis runs in parallel a 3D blob detection pipeline 

on the intensity image stacks to identify each transcript and on the other a clustering pipeline on 

the phasor-transformed lifetime/spectral phasor data to detect distinct spectral/lifetime 

populations. A classifier then assigns pixels as belonging to a particular gene. The whole pipeline 

is depicted in Figure 4.6. 

Briefly, the intensity 3D stacks are run through a blob detection algorithm that was 

developed in order to identify each transcript. The images can be seen as a 3D space where the 
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transcripts appear as spherically symmetric locations with a radial increase in intensity, namely 

puncta. The algorithm first computes the low frequency background noise by means of a median 

filter with a kernel 10 times the size of the expected puncta (the diffraction limit of the 

instrument, in our case around 250 nm). This low frequency background is subtracted from the 

high-pass filtered data obtained by convolving by a gaussian filter of the expected size of the 

puncta. This on one hand enhances the puncta in the image by giving a prominence value at each 

pixel with respect to the surrounding regions and on the other suppresses noise in the images. A 

search for local maxima is performed by finding the locations where the gradient goes to zero 

and the divergence of the gradient is negative. Once the centers in the 3D coordinate space are 

obtained the size, absolute brightness and prominence of each puncta is measured.  

In parallel, the raw photon counts are used to construct the photon arrival time histogram 

and photon spectral histogram at each pixel. Phasor transforms are applied to each pixel in each 

image of the 3D stack in order to construct the stacks’ phasor plot. This phasor data is in general 

a 4-dimensional, each pixel in the intensity image has four additional coordinates; two for the 

spectral phasor transform plus two for the lifetime phasor transform. The phasor coordinates are 

clustered using Gaussian Mixture Models47. We used an initial experiment tagging house-keeping 

genes in order to guarantee that all expected populations were present and we trained the 

Gaussian Mixture Model using this initial experiment. This pretrained model is then applied to 

the new sets of data in order to classify each pixel into one of the clusters allowing for the 

presence of empty clusters. The number of clusters N intuitively should be the number of distinct 

fluorescent probes or different combinations of probes used to tag the sample, but one must 

allow for additional populations in the sample, e.g., autofluorescent species. For this reason, in 
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the training of the Gaussian Mixture Models we allowed for one additional cluster to account for 

autofluorescence and noise. 

Finally, by computing the mean phasor coordinates of the pixels within each detected 

puncta, we can compute the phasor position of each puncta and assign a gene label to it by a 

priori knowing the expected positions of each combination of probes depending on the spectra 

and lifetime of the probes. DAPI image stacks are segmented by means of simple thresholding, 

estimating the threshold value by hard splitting of the histogram of photon counts in the channel. 

The 3D segmented nuclei are then iteratively grown by convolution by a minimal 3x3x3 kernel. 

This convolution is applied at each pixel of the edge of the segmented volume until no available 

space is left in between the segmented volumes. This yields a division of the imaged volume into 

a number of polyhedra where each face is exactly in the plane bisecting the two closest nuclei 

edges. This process is analogous to a Voronoi tessellation using the surface of the nuclei instead 

of points. 
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Figure 4.6. Automated pipeline of the processing and analysis. Raw data consists of a list of 

detected photons with their times of arrivals. Using the acquisition parameters, dwell time, 

number of pixels, number of repetitions per image etc. the image stacks are reconstructed. 

Knowing the laser frequency, a photon histogram for each voxel is built and the phasor transform 

is applied. The two custom made algorithms work in parallel, one identifying clusters in the 

phasor space, the other identifying puncta in the intensity space. The two then recombine to 

result in each transcript being identified, assigned to a particular gene and its morphological 

properties measured. 
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Chapter 5.1 Probe design and labeling and detection strategy 

To exploit the many benefits that Spectral-FLIM microscopy provides, the following probe 

labeling and detection strategy is proposed (Figure 5.1). 

 

 

            Artwork by Josh Gu 

Figure 5.1. Schematic of the Spectral-FLIM technology for spatial multi-omics analysis. (A) 
Sample(s) comprise cells and target molecules. (B) Primary probes are added to the sample to 
bind to targets (e.g. nucleic acids, proteins). (C) Secondary label probes are added to bind to the 
primary labels through a “readout” domain to label each target molecule with a unique 
combinatorial fluorescence spectrum and lifetime encoded signature. (D) Labeled targets are 
imaged under a microscope (in this case, a SPIM) to interrogate both spectrum and lifetime using 
phasor analysis (E). (F) Labeled targets eliciting the encoded spectrum and lifetime signatures are 
automatically identified and quantified in a highly multiplexed fashion in 3D tissues using a 
codebook.  
 

Starting with a fixed sample, primary probes designed to bind specifically to mRNA targets 

at a complementary target region were added. In parallel, for protein detection, primary 

antibodies conjugated with oligonucleotides were also added (Figure 5.1A-B). Both sets of 
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primary probes were designed to contain an adaptor region called a readout region which can 

hybridize to complementary secondary fluorescent probes. For each gene and protein biomarker, 

a different combination of readout regions is utilized to encode each biomarker with a unique 

fluorescent signature. Following incubation with fluorescent oligonucleotides, each type of 

biomarker will exhibit a distinct fluorescent signature (Fig. 5.1C). To detect these signatures 

simultaneously without numerous rounds of stripping and re-hybridization of probes or image 

registration, a microscope with spectral-FLIM capabilities was used (Figure 5.1D). Since each 

image contains both spectral and lifetime information, each pixel can be replotted onto a 2D 

phasor plot to decode and identify the fluorophore species present at each point (Figure 

5.1E).  Using a pre-designed codebook, each mRNA puncta or protein to generate an encoded 

image that provided the target gene xyz location and abundance (Fig. 5.1F). 

To rapidly design oligo FISH probes for each gene, the validated python platform, 

OligoMiner, is used (Figure 5.2A) [1]. Briefly, after entering the accession number for the target 

gene, the program will obtain the input sequence. The blockParse script will screen the input 

sequence and output a file with candidate probes while allowing users to maintain consistent and 

customized length, GC, melting temp, spacing, and prohibited sequences. Using Bowtie2, the 

candidate probes are rapidly aligned to the genome to provide specificity information that is used 

by the outputClean script to generate a file of unique candidates only. The primary probes 

comprise complementary sequence of typically 27-30 nucleotides (nt) and are designed mostly 

within the coding sequence (CDS), which has fewer variation than the untranslated region (UTR) 

[2]. Furthermore, primary probe “read-out” domains and secondary probes (typically 15 to 20 nt 

long) will be designed to be orthogonal to each other to avoid off-target binding. Libraries and 
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databases of over 200,000 orthogonal sequences are available online and we will simply use 

those that have been previously validated [3]. Fluorophores exhibiting distinct spectrum 

(typically with excitation/emission spectra in the 400-700 nm range) and lifetimes (typically in 

the 0.3-10 ns range) can be conjugated to oligos which will be obtained through vendors such as 

IDT, Sigma, or Genscript. Lastly, to further ensure the specificity of probes, an online BLAST query 

was also run on each sequence against the human transcriptome (Figure 5.2B). After these 

selections, Sigma Oligoevaluator is implemented to screen for secondary structures and any 

potential primer dimers (Figure 5C). 

 

Figure 5.2. Probe Design Workflow. (A)  OligoMiner is a validated probe design pipeline which 

can rapidly screen and generate tens to hundreds of probes per gene target following specific 

chosen parameters. (B) NCBI Blast is utilized to screen for probes which target only one specific 

transcript. (C) Sigma Oligoevalutor calculates any potential secondary structure or primer dimer.  
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5.2 Implementing Spectral-FLIM microscopy for detection and analysis 

 While this approach is designed to eventually work with many commercial (e.g. Leica 

FALCON, PicoQuant rapidFLIM, ISS FastFLIM) and custom microscope platforms, this technology 

was first validated and demonstrated on the ISS Alba STED FLIM microscope. The Alba-STED 

system is a confocal microscope equipped with a pulsed white laser system where the excitation 

wavelength(s) can be tailored to any combination of fluorescent probes. Single photons are 

detected with ultra-sensitive avalanche photodiode detectors and lifetimes are measured with 

the SPARTAN 6 FPGA-based 4-channels ultra-high speed (640 MHz) electronics. Imaging is 

achieved by fast beam scanning with galvo mirrors and 3D stacks of images can be acquired with 

a z-piezo stage. Spectral and lifetime data were analyzed using the phasor approach with simFCS 

software developed by Dr. Enrico Gratton. The phasor space is extremely useful to visually 

resolve different, heterogeneous spectrum and lifetime populations with each population 

representing a target molecule of interest.  

 For validation, fluorophores used for probe labeling were first prepared as a calibration 

solution to measure each fluorophore's expected spectral and lifetime properties. Samples 

containing cells expressing a particular mRNA target (e.g. mNEONGreen HEK293T) were then 

labeled accordingly and measured for its fluorescent and autofluorescence signatures and 

compared against nonlabeled samples and the corresponding fluorophore calibration files. For 

these same measurements, the corresponding spectral measurements alone taken under similar 

conditions will be compared against the FLIM measurements to assess the advantages conferred 

by FLIM. 
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5.3 Tissue Validation with Spectral-FLIM 

 Ideally, this technology should work with all tissues of origins (mouse, human, drosophila, 

etc.) and preservation matrices (OCT, FFPE, fresh frozen, etc). To validate the general applicability 

of this approach to these various types of samples, a panel of positive (e.g. housekeeping genes 

such as POLR2A) and negative control (e.g. genes from soil bacteria, DapB) markers will need to 

be assessed using this platform vs. a more validated gold-standard platform such as RNAScope. 

For each experiment, multiple replicates and matching positive and negative control tissues will 

be run for enough statistical rigor. Each experiment will also be repeated enough times to ensure 

reproducibility. In addition, unlabeled tissue samples will be imaged to determine the amount of 

autofluorescence inherent in each sample and then compared against a labeled sample.  

5.4 Combinatorial labeling for greater multiplexing capabilities 

Combinatorial labeling scales by (nCr) and can greatly confer greater multiplexing 

capabilities with each incremental increase in the number of fluorophores. For each fluorophore 

added to the panel, its spectral and lifetime characteristics will be assessed as a calibration 

solution in PBS or DI water as well as in cells and tissues to determine the expected lifetime shift. 

Its combination with other fluorophores will also be measured to determine if any unexpected 

interaction will occur between the neighboring fluorophores. To validate large panels of genes, 

it becomes crucially important to work with cells or tissues which have been pre-sequenced to 

determine if the correct ratio of genes is being detected as well as the expected variance. 

Preferably, the samples that will be worked with will have both bulk sequencing and single cell 

sequencing data as a benchmark comparison. Prior to detecting a larger panel of genes such as a 

100-plex panel, smaller panels will be scaled up gradually, e.g. 6 to 16 to 32 to 100.  
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Moreover, several combinatorial-based labelling approaches (Figure 5.3) is proposed. 

First, transcripts can be labeled with one type of fluorophores (ALEXA 647 or ATTO 647) or a 

blend of fluorophores (ALEXA 647 and ATTO 647) with similar spectra but different lifetimes to 

elicit distinct fluorescence signatures (Figure 5.3A). Second, they can also be labeled with 

different combinations of or 3 to scale by (nCr) as long as each fluorophroe has a distinct spectral 

or lifetime signature (Figure 5.3B). Third, FLIM-FRET interactions resulting from two adjacent 

donor and acceptor can be elicited to create unique fluorescence signatures (acceptor lifetimes 

are proportionally decreased in response to donor quenching ability) (Figure 5.3C). Lastly, FRET 

lifetimes decay in proportion to the 6th power of the Forster radius, and the distance between 

the fluorophores can be modulated to program different FRET-dependent lifetimes combinations 

(Figure 5.3D). Uniquely, this molecular programming approach, using nucleic acids to direct FRET 

behavior, allows sub-5nm precision to resolve different lifetimes. Collectively, these approaches 

can occur synergistically to generate different fluorescent barcodes for greater multiplexing 

capabilities. For each proposed approach, validation will occur as previously described. Panels of 

positive and negative control genes and cell lines will be required and tested against a benchmark 

test such as RNAScope or sequencing to confirm.  
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Figure 5.3. Combinatorial labeling schemes. (A) Transcripts can be labeled with one type of 
fluorophores (Alexa 647 or Atto 647) or a blend of fluorophores (Alexa 647 and Atto 647) to elicit 
distinct fluorescence signatures. (B) Transcripts can be labeled with different combinations of 
fluorophores to increase the number of unique signatures combinatorically. (C) Different FRET 
pairs can be used to label transcripts to create fluorescent labels which differs in spectra and/or 
lifetime. (D) Varying the distance between FRET pairs will elicit changes in both spectral and 
lifetime to further enable greater multiplexing. 
 

5.5 Validating Protein and mRNA co-detection 

Simultaneous detection of protein and transcript levels will reveal the genotypic and 

phenotypic heterogeneity and provide enriched information for fundamental biology and disease 

diagnosis at many length scales (sub-cellular to whole tissue sections). Few existing commercial 

and academic technologies can profile both RNA and protein within the same sample either due 

to limitations of detection and/or sample processing. A key challenge is to harmonize upstream 

protocols to maintain the viability of both the target RNA sequence and target protein structure, 

while permeabilizing the sample enough such that targets can be detected [4-5]. For target 

retrieval, several approaches will be needed to test based on manufacturer's recommendations 
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and recent literature to determine if antigen structure of the expressed proteins can still be 

recognized through multiplexed immunofluorescence after RNA transcripts are labelled.  

While RNA and protein detection will be imaged simultaneously using the fluorescence 

spectral and lifetime imaging approach, RNA and protein staining will be tested simultaneously 

as well as sequentially in both orders. First, target retrieval (RNA and protein) are crucial steps 

and will be performed using existing mild approaches described previously [6]. Protein staining 

reactions will then be performed (dye-conjugated antibodies) which will require a blocking and 

binding step. Following this, RNA staining will be performed as described previously. Each 

condition will have matching tissue and cell control replicates where only one assay is performed 

to compare and determine if any confounding effects occurred between the two assays. 
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6.1 MOSAICA  

Cell fate and cell-cell, cell-niche interactions are tightly regulated in space at both genetic 

and tissue and system level to mediate organ development, tissue homeostasis and repair, and 

disease appearance and progression. Therefore, spatial transcriptomics that profile gene 

expression landscape at the single-cell level in tissues in a 3D spatial context as shown in this 

work represents a new frontier in biological research and precision medicine[1-8]. For instance, 

spatial transcriptomics techniques can (a) help realize the vision of the human cell atlas in 

generating “high-resolution and comprehensive, three-dimensional reference maps of all 

human cells in the body”, (b) determine molecular mechanisms that govern cell fate, state, 

lineage and cell cooperation in tissue formation in developmental biology and regenerative 

medicine, (c) investigate the biological changes associated with different diseases in a spatial-

dynamic fashion and to uncover disease molecular mechanisms and discover disease 

biomarkers, and (d) characterize the complexities of tissue biopsy (e.g. tumor) in clinical 

pathology to inform personalized disease diagnosis and therapeutic intervention in the era of 

precision medicine. Spatial transcriptomics tools need to be able to assess multiple transcripts 

within the same cell and sample in a highly multiplexed fashion due to the heterogeneous gene 

expression and many different cell identities/states exist in a particular tissue. Furthermore, 

patient derived materials are often available in limited quantity and generating many sections 

to test for different markers separately is tedious and non-feasible. 
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A major bottleneck in spatial transcriptomics is the lack of tools that can be both easy-of-

use and highly multiplexing[7-11]. Conventional tools for in situ analysis including fluorescence in 

situ hybridization (FISH) (e.g., LGC StellarisTM) can only detect 3-4 targets at a time because of the 

limited number of spectral channels in fluorescence microscopes[12-14]. Conventional methods 

for in situ profiling of transcripts are further confounded by the autofluorescent moieties in tissue 

preparations including clinical biopsies. Recent single-cell RNA sequencing (scRNAseq) methods 

provide information on the presence and identity of transcripts in single cells but lack the critical 

spatial context needed to understand complex heterogeneous tissue [15-17]. Spatial 

transcriptomic methods that are based on sequential labeling, stripping, and imaging (e.g. 

seqFISH, MERFISH), branched amplification (e.g. RNAscopeTM, SABER), or in situ sequencing (e.g. 

GeoMxTM, Slide-seq) are often too complicated, error-prone, time-consuming, laborious and 

costly to scale up, limiting their broad usage [18-23]. Furthermore, repeated processing of the 

same sample can damage tissue structural integrity and target molecules and are often not 

feasible for precious samples such as clinical biopsies.  

In this work we report a new spatial-omics technology termed MOSAICA (Multi Omic 

Single-scan Assay with Integrated Combinatorial Analysis) that enables direct, highly multiplexed 

biomarker profiling in the 3D spatial context in a single round of staining and imaging. MOSAICA 

employs in situ staining with combinatorial fluorescence spectral and lifetime encoded probes, 

spectral- and time-resolved fluorescence imaging, and AI-based target decoding pipeline. 

Fluorescence lifetime is a measure of the time a fluorophore spends in the excited state before 

returning to the ground state and is an inherent characteristic of the fluorophore and its 

surrounding environment [24]. By utilizing both time and intensity domains for labeling and 
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imaging, we were able to discriminate a large repertoire of spectral and lifetime components 

simultaneously within the same sample to enable increased multiplexing capabilities with 

standard optical systems.  

In this study, we described the MOSAICA pipeline including automated probe design 

algorithm, probe hybridization optimization and validation, combinatorial spectral and lifetime 

labeling and analysis for target encoding and decoding. Particularly, we developed an automated 

machine learning-powered spectral and lifetime phasor segmentation software that has been 

developed to spatially reveal and visualize the presence, identity, expression level, location, 

distribution, and heterogeneity of each target mRNA in the 3D context. We showcased MOSAICA 

in analyzing a 10-plex gene panel in SW480 colorectal cells based on combinatorial spectral and 

lifetime barcoding of only five generic commercial fluorophores. Using this model, we illustrated 

the multiplexing scalability and MOSAICA’s ability to correct for stochastic nonbinding artifacts 

present within the sample. We further demonstrated MOSAICA’s utility in improved multiplexing, 

error-correction, and autofluorescence removal in highly scattering and autofluorescent clinical 

melanoma FFPE tissues, demonstrating its potential use in tissue for cancer diagnosis and 

prognosis. 

 
6.2 10-plex Combinatorial Panel in SW480 Cells  

We applied MOSAICA to a 10-plex panel of mRNA targets in colorectal cancer SW480 cell 

culture samples. This cell line was chosen because its xenograft model exhibits spatial patterns 

of heterogeneity in WNT signaling [25], which will allow us to study tumorigenesis in the spatial 

context and potentially identify cancer stem cell populations in colorectal cancer in future. Here, 
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we selected this model as a validation platform to demonstrate the multiplexing scalability and 

error correction capabilities of our approach. We began by first identifying a set of 10 genes with 

known expression levels from our bulk sequencing data. Using the aforementioned probe design 

pipeline, we designed 80 probes (two pairs of 40 probes) for each gene: BRCA1, BRCA2, CENPF, 

CKAP5, KI67, MTOR, NCOA1, NCOA2, and NCOA3. These genes were chosen due to their 

housekeeping status or involvement in tumorigenesis in colorectal cancer. By encoding each gene 

with a distinct combination of two fluorophores, we generated a codebook of 10 labelling 

combinations from only five fluorophores following Equation 1: (
5
2

) = 10 (Fig. 6.1A). To assess 

the baseline nonspecific binding events of our assay, we included a negative probe control 

sample which was labelled with primary probes not targeting any specific sequence in the human 

genome or transcriptome but still containing readout regions for secondary fluorescent probes 

hybridization (Fig. 6.1A right). Matching numbers and concentrations of primary and secondary 

probes that were used in the 10-plex panel were used in this sample. 
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Figure 6.1. Simultaneous 10-plex detection of genes in colorectal cancer SW480 cells in a single 
round of labeling and imaging. A) 10 different types of gene transcripts are labeled with primary 
probes followed by respective and complementary fluorescent secondary probes. Each gene is 
labeled with a combination of 2 different fluorophores for 10 combinations. Negative control 
probes (mNeonGreen, DCT, TYRP1, and PAX3) targeting transcripts not present in the sample 
were used with their respective secondary fluorophore probes. B) Spectral image (max-
projection in z) of a field of view of the labeled 10-plex sample (5-channel pseudo coloring). C) 
Lifetime image (max-projection in z) of a field of view of the labeled 10-plex sample (phasor 
projection on universal circle pseudo coloring). D) Spectral image of the labeled negative control 
probe sample. E) Lifetime image of the labeled negative control probe sample. F) Final puncta 
detection after being processed in our analysis software showing highlighted example puncta of 
each target (insets, right). Scale bar 20 µm in main image and 1 µm in insets. G) 3D representation 
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of the field of view for the 10-plex sample. H) Number of puncta detected for each gene 
expression target in each cell for the labeled 10-plex sample (N=80 cells). I) Overall puncta count 
of each transcript in the 10-plex sample (left) and negative control probe sample (right). J) 
Correlation of detected puncta (mRNA puncta count) vs. RNA-bulk sequencing (normalized 
counts) is shown for each target with Pearson r of 0.9.  

 

Figure 6.1B depicts a spectral image overlay (five fluorescent channels including DAPI) of 

the labeled 10-plex SW480 sample. Additionally, in the same measurement, the orthogonal 

lifetime information attained by interrogating each pixel for their lifetime components. These 

pixels were phasor-transformed and pseudo-colored based on their projected phasor 

coordinates on the universal circle, creating the image depicted in Figure 6.1C. In doing so, both 

dimensions of data can now be simultaneously accessed to determine which cluster of pixels 

meet the appropriate and stringent criteria for puncta classification. Similarly, Figure 6.1D/E 

depict the merged composite spectral and lifetime images of the corresponding negative control 

probe sample. Figure 6.1F depicts the now detected pseudo-colored clusters which were 

successfully classified as one of the RNA markers. A representative inset image for each marker 

and its targeted detection is provided on the right. With 40 Z-stack images, we generated a 3D 

spatial distribution of the field of view to visualize the spatial analysis in a 3D context (Fig. 6.1G).  

MOSAICA employs an error-correction strategy by gating for specific and pre-encoded 

fluorophore combinations and rejecting any fluorescent signature which do not meet these 

criteria. Specifically, in addition to the population of pixels that represents the decodified puncta 

as mentioned above, there was a population of pixels of various shapes and sizes which did not 

fit the criteria. Simulations to look into overlapping and inconsistent signals were run (Fig 6.2A,B). 

Plotted in Figure 6.2C are the total detected puncta in this experiment, separated into 
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populations depending on our classification criteria. Of the total detected puncta (n = 13,521), a 

considerable fraction n = 4,488 (33%), were observed emitting fluorescence only in a single 

channel and was indicative of nonspecific binding events and/or autofluorescence moieties. As 

previously characterized by several groups, nonspecific binding events is an inherent issue with 

smFISH which arises from the stochastic binding of cDNA probes towards cellular components 

such as proteins, lipids, or nonspecific regions of RNA and follow a random distribution [26].  

When combined with native autofluorescence moieties which can also exists as 

diffraction-limited structures that emits a strong fluorescent signal in any single channel, this 

group represents a confounding problem for standard intensity-based measurements and 

analysis because they share similar SNR and intensities to real labeled puncta and cannot be 

differentiated. This is the main benefit of implementing the combinatorial encoded criteria which 

rejects this large amount (around 33%) of stochastic and nonspecific binding labeling events as 

well as any event eliciting a lifetime signature that deviated from the utilized commercial 

fluorophores. Finally, we also observed a relatively small group of puncta emitting fluorescent 

signal across more than two spectral channels but still eliciting the same spectral and lifetime 

signatures as the utilized fluorophores, n = 880. To characterize this population, we performed a 

simulation running 20,000 iterations of various puncta densities and fitted the corresponding 

exponential model that characterizes the probability of puncta overlap. We attained an interval 

for the fraction of lost puncta due to optical crowding ranging from 2.1% to 6.6% which accounts 

for the 880 puncta or 6% of the total detected puncta. We name this group the overlapped in 

Figure 6.2C,D.  
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Figure 6.2. Overlapping and inconsistent signal simulations. Simulations are run at different 

densities to generate 3D image stacks and puncta are detected using our image processing 

pipeline. A) Recovered density by our system as a function of the true density for the limit 

considered puncta volumes (blue) and simulation trends (top trend for 1plex bottom trend for 

10-plex). B) Percentage of recovered puncta for the 1plex (top trend, depicting ratio of 

underestimated due to overlap) and 10-plex (bottom trend, depicting ratio of inconsistent signal 

due to overlap), again between the limit considered puncta volumes (blue). C,D) Number of 

puncta assigned to a particular gene, undetermined puncta and overlapped puncta for the 10-

plex experiment and 6-plex experiment. 

 

The number of puncta detected for each target gene in each cell for the labeled 10-plex 

sample was plotted (Fig. 6.1H). Figure 6.1I plots the total number of detected puncta for the 

labeled 10-plex sample split into the different genes classified using MOSAICA phasor analysis 

with combinatorial labeling. In comparison, we also show the MOSAICA pipeline results with the 

negative control sample obtaining counts of less than five per thousand mainly due to noise in 

the images. To validate these puncta count, we compared them to matching RNA-seq data from 

the same cell type. Shown in Figure 6.1J is a scatter plot of the average mRNA puncta count for 

each cell plotted against the normalized counts from DESeq2 of our bulk RNA-sequencing data 

for each gene. When fitting with a straight line we obtained a Pearson correlation of r = 0.904, 

indicating a significant positive association between the two methods. The number of counts per 

cell was obtained by simply dividing the total number of detected genes into the number of cells 
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obtained by 3D segmentation of the individual nuclei stained with DAPI. The individual cell edges 

were estimated by growing the edges of the nuclei until convergence. A total of 80 cells were 

analyzed for this experiment.  

6.3 6-plex Combinatorial Panel in Human FFPE Skin Tissue 

We next investigated whether MOSAICA can provide multiplexed mRNA detection and 

phasor-based error-correction to clinically relevant and challenging sample matrices. Assaying 

biomarkers in situ in tissue biopsies has great clinical values in disease diagnosis, prognosis and 

stratification including in oncology [27-29]. Specifically, we applied a mRNA panel consisting of 

KI67 (indicative of cell proliferation), POLR2A, BRCA1, MTOR, NCOA2, and NCOA3 to highly 

scattering and autofluorescent human melanoma skin biopsy FFPE tissues obtained from and 

characterized by the UCI Dermatopathology Center. Using the same probe design pipeline, 

primary probes were encoded with a combination of two fluorophores for each gene to exhibit 

a unique fluorescent signature (Fig. 6.3A left).  
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Figure 6.3. Multiplexed mRNA detection in epidermis region of human skin melanoma FFPE 
tissue. A) 6 different types of gene transcripts were labeled with primary probes followed by 
respective and complementary fluorescent secondary probes. Each gene was labeled with a 
combination of 2 different fluorophores for 10 combinations. Negative control probes targeting 
transcripts not present in the sample were used with their respective secondary fluorophore 
probes. B) Spectral image (max-projection in z) of a field of view of the labeled 10-plex sample (3 
channel pseudo coloring). C) Lifetime image (max-projection in z) of a field of view of the labeled 
10-plex sample (phasor projection on universal circle pseudo coloring). D) Spectral image of the 
labeled negative control probe sample is depicted. E) Lifetime image of the labeled negative 
control probe sample. F) Final puncta detection of the 6-plex field of view after being processed 
in our analysis software showing highlighted example puncta of each target (insets, right). Scale 
bar is 10 µm in the main image and 1 µm in insets. G) Overall puncta count of each transcript in 
the 6-plex sample. H) Puncta count for the negative control probe sample. I) Correlation of 
detected puncta (mRNA puncta count) vs. bulk sequencing (fragments per kilobase per million 
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(FPKM)) is shown for each target. J) Transcript density in the field of view for each of the genes 
reveals clustering of specific genes, as an example KI67 appears highly expressed in three cells, 
one of them marked with a dotted ellipse that corresponds to location in F. 

 

Figure 6.3B depicts a spectral image overlay (four fluorescent channels including DAPI) of 

the epidermis region of a labeled 6-plex skin tissue sample. Similarly, as in the previous section, 

the orthogonal lifetime image was attained after using phasor analysis to create the image 

depicted in Figure 6.3C. Figure 6.3D/E depict the merged composite spectral and lifetime images 

of the corresponding negative probe sample also in the epidermis region. Figure 6.3F depicts the 

pseudo-colored puncta which were successfully classified and identified as their assigned mRNA 

markers. A representative inset image for each marker and its targeted detection is provided on 

the right. Using this approach, we observed that a population of puncta consisting of nonspecific, 

autofluorescent, or unknown sample artifacts were rejected from analysis, (n = 438) or 29% of 

total detected clusters (Fig. 6.2D). In addition to this group, we observed MOSAICA rejecting a 

small group of puncta that emitted fluorescence in multiple spectral channels (n = 168). Since, 

this fraction (11%) exceeded the optical crowding range (2.1% to 6.6%) our simulations and 

model permits, we attribute this discrepancy to autofluorescence moieties which had fluorescent 

signatures that spans a broad emission spectrum and elicits a multispectral response. With 

conventional intensity-based measurements and analysis, both contaminating groups are 

inherent image artifacts that compromise the integrity of puncta detection unless complicated 

quenching steps or additional rounds of stripping, hybridization, and imaging are utilized [26,30]. 

With MOSAICA, these contaminating artifacts can be accounted for with the integration of 

spectral, lifetime, and shape-fitting algorithms. 
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Figure 6.3G/H plots the total number of detected puncta for the labeled 6-plex sample 

and the negative control probe sample to highlight the final counts obtained using MOSAICA. We 

observed MOSAICA platform results with the negative control sample obtaining counts of less 

than five per thousand. To validate these puncta counts and their relative expressions, we 

examined the relationship between the decodified puncta with matching bulk RNA-sequencing 

obtained from The Cancer Genome Atlas (TCGA) database. Shown in Figure 6.3I is a scatter plot 

of mRNA puncta count for each cell plotted against fragments per kilobase per million (FPKM). 

We observed a Pearson correlation of r = 0.959 for this 6-plex sample, indicating a significant 

positive association between the two methods and the capability for MOSAICA to capture a wide 

range of differentially expressing markers. Lastly, as shown in Figure 6.3J, the density map of the 

detected transcripts provides a visual method to identify spatial localization of clusters of genes, 

such as KI67 (indicative of proliferating tumor cells) being more prevalent in the dermis region 

while POLR2A is dispersed throughout the region. Overall, in situ profiling biomarkers such as 

KI67 and their spatial clustering can have diagnostic and prognostic values in malignant diseases 

and MOSAICA provides a robust platform to profile these markers [31].  

6.4 Simulations 

In order to test the detection and classification pipeline, we wrote a set of scripts to 

simulate spectral/lifetime data which provided a ground truth towards detection and accurate 

classification debugging. This data generation script allows randomly distributing N diffraction-

limited transcripts in an arbitrarily big 3-dimensional space, each with a Gaussian intensity 

profile. We simulated our transcript Gaussian profile with a X-Y standard deviation of 200 nm and 
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a Z standard deviation of 500 nm, a peak intensity of 1 ± 0.3 (the intensity becomes relevant 

when simulating background noise). In the simulation run that we used to test the crowding 

limitations of the system we simulated tagging genes with couples out of a total of 12 fluorescent 

probes; 4 distinct spectral probes and 3 distinct lifetimes in each, yielding a total of (
12
2

) = 66 

possible genes. 

We generated the simulated images in a cubic space of 10x10x10 µm, discretized as an 

image stack of 33 images of 1000 x 1000 pixels (yielding a voxel resolution of 100x100x300 nm). 

This volume was generated containing increasing densities of transcripts, ranging from a single 

transcript of each gene (66 transcripts) up to 2,000 transcripts of each gene (132k transcripts) 

and for each possible value of density a total of 10 iterations each time. These 20k simulated 

image stack sets were individually processed by our image processing pipeline and the transcript 

position and labelling obtained by the pipeline was compared to the known ground truth of the 

generated data. This simulation provided a benchmark of the density limitations of the method 

but at the same time giving an idea of the underestimation of the number of transcripts as a 

function of local density. The simulations allowed us to model the estimated number of 

overlapping transcripts as a function of density. 

A similar set of simulations was run by emulating the conditions in the 10-plex experiment 

(Figure 6.1) where the genes are tagged with combinations of 2 out of 5 probes. The 20k 

iterations for different densities allowed to plot the density of the classification obtained after 

detection compared to the real number of transcripts in the simulations. This simulation was fit 

to the probabilistic model obtained from calculating the number of transcripts that are not 
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overlapped in space (see next section), from which the true number of puncta was extracted (see 

Figure 6.2).  

6.5 Detection efficiency of Spectral-FLIM vs. LGC Stellaris vs. RNASCOPE 

To further evaluate the detection efficiency, we performed benchmarking tests with our 

method against LGC StellarisTM and RNAscopeTM which are commercial gold standard FISH 

methods (Fig. 7.4). Using the housekeeping gene, POLR2A, as an exemplary target, we found a 

significant association between the number of detected puncta by our method and LGC 

StellarisTM (t-test p-value = 0.4). When compared to RNASCOPETM, we observed that for this cell 

type and target, both our assays and LGC StellarisTM did not correlate significantly (p = 7.8x10-4 

and p = 3.4x10-4), indicating a discrepancy in detection efficiency between the two methods. We 

attribute this difference to MOSAICA and LGC StellarisTM utilizing a direct labeling and 

amplification-free method while RNASCOPETM utilizes a tyramide signal amplification reaction 

which generates thousands of fluorophore substrate per transcript and can lead to overlapping 

puncta or undercounting of detected puncta. Together, these data show MOSAICA can robustly 

detect target mRNAs of broad dynamic range of expression levels from single digit to hundreds 

of copies per cell. 
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Figure 6.4. Benchmarking MOSAICA against RNAscopeTM and LGC StellarisTM. A) POLR2A gene 
expression on colorectal cancer SW480 cells following RNAscopeTM, LGC StellarisTM and MOSAICA 
protocols. Scale bars are 10µm. B) Puncta counts per cell volume between three platforms. 
MOSAICA exhibited comparable puncta per cell count compared to benchmark LGC StellarisTM, 
whereas RNAscopeTM was undercount. Pairwise t-test against null hypothesis that values belong 
to distributions of equal means were p = 0.4 (LGC StellarisTM vs MOSAICA), p = 3.4x10-4 (LGC 
StellarisTM  vs RNAscopeTM  and p = 7.8x10-4 (MOSAICA vs RNAscopeTM ). A sliding volume of 
3000µm3 was used throughout the image stacks and the number of puncta counts per volume 
was obtained. This number was then divided into the average number of cells per volume 
depending on the 3D segmentation of DAPI nuclei. 

 

6.6 Preliminary FLIM-FRET with Spectral-FLIM FISH 

In addition to using different combinations of fluorophores that exhibit distinct spectral 

and lifetime signatures, preliminary FLIM-FRET experiments where different FRET pairs and their 

distances were be modulated to elicit changes in both spectral and lifetime were conducted 

(Figure 6.5). Using the same pair of fluorophores, this method demonstrates that distance 



129 
 

modulation can be a potential way to increasing multiplexing capabilities. As a complementary 

donor and acceptor pair are positioned closer together, the lifetime of the donor decreases with 

increasing quenching. This trajectory can be depicted in Figure 6.5A. To utilize this mechanism to 

increase multiplexing capabilities, mNeonGreen transcripts were targeted in 4 different 

conditions: 1) labeled with donor only and no acceptor, 2) labeled with FRET pairs separated by 

a distance of 25 bp or 7.5 nM, and 3) labeled with FRET pairs separated by a distance of 12 bp or 

3.6 nM (Figure 6.5B). As expected, the sample labeled only with donor, had the closest lifetime 

to the donor in solution group (Figure 6.5C-D). The slight shift to the right appears to be the donor 

fluorophore blending in with the autofluorescence of the sample. As distance is decreased 

between the pair, from 25 bp to 12 bp, the donor exhibited quenching towards the right side of 

the phasor plot. This is a preliminary demonstration that this technique can be feasible and 

potentially scalable with more distances and FRET pairs. However, since not all regions are fully 

double-stranded, there remains many limitations for using this approach as a molecular ruler. 

Future work entails conjugated fluorophores at certain sites on the secondary probe to allow the 

conjoined strands to be double stranded everywhere.  
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Figure 6.5. Preliminary lifetime measurements with FRET can be used for fluorescence 
barcoding/decoding. (A) The theoretical behavior on the lifetime phasor as one reduces the 
distance between the FRET probes. (B) Tagging mRNA transcripts with FRET probe pairs at 
different distances. (C) Real images of transcripts tagged with only the donor, and the probe pair 
at two different distances. (D) The phasor plot resolves the different cases of the images in panel 
C. 
 

6.7 Detecting mRNA transcripts in highly scattering and auto-fluorescent tissues 

As a preliminary demonstration to determine if this technology can be applicable to highly 

scattering and auto fluorescent tissues from different origins and prepared with different 

preservation methods, ubiquitin C (UBC) transcripts from mouse skin tissue preserved in 

optimum cutting temperature (OCT) medium and mouse colon tissue preserved in formalin fixed 

paraffin embedded (FFPE) medium were labeled with ALEXA 647 and detected with spectral-FLIM 

(Figure 6.6 A and C). A negative control sample labeled with no primary probes but with 

secondary fluorescent probes were ran in parallel (Figure 6.6 B and D). With spectral-FLIM, 

background tissue autofluorescence could be effectively subtracted to reveal distinct puncta 

which directly matched the encoded fluorescent signature. 
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Figure 6.6. Detecting mRNA transcripts in highly scattering and auto-fluorescent tissues. (A) 

Mouse skin tissues preserved in OCT labeled with probes targeting UBC mRNA with Alexa 647. 

(B) A control sample labeled with secondary fluorescent probes only. (C) Similarly, mouse colon 

tissues preserved in FFPE exhibited clear and distinct UBC transcripts with spectral-FLIM. (D) A 

control sample with only secondary fluorescent probes.  

 

Furthermore, POLR2A transcripts from human skin tissues preserved in formalin fixed 

paraffin embedded (FFPE) medium were detected and labeled with ALEXA 647 (Figure 6.7). Using 

standard intensity-based fluorescence microscopy, we could not differentiate between labeled 

puncta from autofluorescent moieties with similar SNR (Figure 6.7A - top). However, with 

spectral-FLIM, background tissue artifacts (red circles) could be effectively subtracted out to 

reveal distinct puncta (green circles) which directly matched the encoded fluorescent signature 

(Figure 6.67 - bottom). Probes containing a scrambled sequences targeting no mRNA region were 

also added to serve as a negative control to visualize the intrinsic autofluorescent moieties of 

each sample (Figure 6.7B).  
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Figure 6.7. Error correction with Spectral-FLIM in highly scattering and autofluorescent tissues. 
(A) Human FFPE skin sections were labeled with probes targeting POLR2A with ALEXA 647. FLIM 
effectively discriminates the labeled puncta (green circles) against autofluorescent moieties (red 
circles) with similar SNR. (B) A scrambled control non-complementary towards POLR2A served as 
a negative control to highlight the diverse autofluorescent moieties which can be present in 
highly autofluorescent tissues. 
 

6.8 Co-detection of mRNA and Protein in cells 

Figure 6.8 shows an example of simultaneous detection of protein and RNA transcripts in 

the same cells using spectral-FLIM. To harmonize the FISH and IHC protocol, protein labeling was 

first conducted with RNAse inhibitors added to ensure that no confounding IHC reagent might 

degrade the mRNA prior to transcript labeling, e.g. serum or ascites derived antibodies. RNA 

labeling was then performed after IHC and then this sample was collectively imaged in one round. 
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For this experiment, SW480 cells were again used and labeled for the protein markers tubulin 

(ALEXA 488) and vimentin (TRITC) as well as for the mRNA markers POLR2A (ALEXA 647) and 

MTOR (ATTO 647) (Figure 6.8A-F). Figure 6.8H plots the number of puncta count found for the 

mRNA targets while Figure 6.8G depicts the merged images. These preliminary experiments 

demonstrate that this technology can work for spatial multiomic detection.  

 

 

 

Figure 6.8. Simultaneous 4-plex co-detection of protein and mRNA in colon cancer SW480 cells 

using hyperspectral-FLIM. (A) The proteins Tubulin and Vimentin were labeled with TUBB4A 

mouse and VIM rabbit primary antibody, respectively. Secondary antibodies goat anti-mouse 

Alexa 488 and donkey anti-rabbit TRITC were then used respectively. The mRNA targets POLR2A 

and mTOR labeled with target specific primary probes were hybridized, then secondary probes 

with Alexa 647 and Atto 647 were hybridized to the primary probes, respectively. (B) Using 

spectral-FLIM, the two targets within the 647 nm spectral channel were separated. Signal-to-

Noise and puncta count analysis was performed for the mRNA targets. 
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6.9 Methods 

6.9.1 Primary Probe Design 

A set of primary probes were designed for each gene. A python code was used to rapidly 

design the primary probes while controlling various aspects of the probes such as GC content, 

length, spacing, melting temp, and prohibited sequences. To begin, probes are designed using 

exons within the CDS region. However, if that region does not provide over 40 probes, the exons 

from the CDS and UTR regions are used. The candidate probes are then aligned to the genome 

using Bowtie2, an NGS aligner, to determine if these probes are specific. Probes that are 

determined specific are then aligned to the RNA sequencing data on the UCSC Genome Browser, 

further eliminating probes that do not align to regions with an adequate number of reads. While 

mapping the probes to the genome on the UCSC Genome Browser, the probes are aligned with 

BLAT (BLAST-like alignment tool). A local BLAST query was run on the probes for the genes in the 

panel to eliminate off-target hits. For this experiment, each gene had the maximum number of 

probes that could be designed with our pipeline and requirements. The final primary probe 

design included 2 assigned readout sequences of secondary probe with a “TTT” connector in 

between, another connector, then one of the probes specific for the gene. The primary probes 

were ordered from Sigma Aldrich and pooled together for each gene.  
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6.9.2 Secondary probe design 

Secondary probe structures were based on the design from the Zhuang group [8]. In short, 

the 20-nt, three-letter readout sequences were designed by generating a random set of 

sequences with the per-base probability of 25% for A, 25% for T, and 50% for G. Sequences 

generated in this fashion can vary in their nucleotide content. To eliminate outlier sequences, 

only sequences with a GC content between 40% and 50% were kept. In addition, sequences with 

internal stretches of G longer than 3 nt were removed to eliminate the presence of G-

quadruplets, which can form secondary structures that inhibit synthesis and binding. To remove 

the possibility of significant cross-binding between these readout sequences, algorithms from 

previous reports were used to identify a subset of these sequences with no cross-homology 

regions longer than 11 contiguous bases [32]. Probes were then checked with BLAST to identify 

and eliminate sequences with contiguous homology regions longer than 11 nt to the human 

transcriptome. From the readout sequences satisfying the above requirements, 16 were 

selected. 

6.9.3 Cell culture 

Human embryonic kidney (HEK293T) cells (632180; Takara) were cultured in DMEM (10-

013-CV; Corning) supplemented with 10% FBS (1500-500; Seradigm) and 1% penicillin (25-512; 

GenClone). Human colorectal adenocarcinoma (SW480) cells were cultured in DMEM with high 

glucose (SH30081.02; HyClone) supplemented with 10% FBS (1500-500; Seradigm), 1x L-

Glutamine (25-509; GenClone), and 1% penicillin (25-512; GenClone). The cells were plated into 
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8-well chambers and then fixed. The 8-well plates (155409; Thermo Scientific) for HEK293-T and 

SW480 cells were coated with fibronectin bovine plasma (F1141-2MG; Sigma Aldrich) before 

seeding cells onto the 8-well plates. All cultures were grown at 37℃ with 5% CO2.  

6.9.4 mNeonGreen cell engineering 

A mNeonGreen construct was transfected into HEK293T-X cells with FuGENE HD 

Transfection Reagent (E2311; Promega). The cells were then selected with puromycin 

(NC9138068; Invivogen) and Zeocin (AAJ67140XF; Alfa Aesar) 3 days after transfection.  

6.9.5 Preparation of fixed cells in cell chambers 

When the cells reached 70% confluency, cells were fixed for 30 minutes using 4% 

paraformaldehyde (15710; Electron Microscopy Science), then washed with PBS 3 times. The 

cells were then incubated with sodium borohydride (102894; MP Biomedicals) for 5 minutes and 

washed with PBS 3 times. 0.5% Triton X-100 (T8787-100ML; Sigma-Aldrich) in PBS was incubated 

in each well for 5 minutes and cells were washed with 2x SSCT (2x SSC with 0.1% TWEEN® 20 

(P9416-100ML; Sigma-Aldrich). For storage, cells were left in 70% ethanol at 4℃.  

6.9.6 Preparation of FFPE tissues  

The University of California Irvine IRB approved this study for IRB exemption under 

protocol number HS# 2019-5054. All human melanoma cases were de-identified samples to the 

research team at all points and therefore considered exempt for participation consent by the IRB. 

Fully characterized human patient skin melanoma FFPE tissues with an immune cell score of brisk 
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were obtained from the UCI dermatopathology center then sectioned to 5 µm slices using a 

rotary microtome, collected in a water bath at 35°C, and mounted to positively charged Fisher 

super frost coated slides. The tissue sections were then baked at 60°C for 1 hour. For antigen 

unmasking, slides were deparaffinized, rehydrated then followed by target retrieval (with citrate 

buffer). 

6.9.7 Primary probe hybridization 

Blocking buffer containing 100 mg/ml Dextran sulfate sodium salt (D8906-100G; Sigma-

Aldrich), 1 mg/ml Deoxyribonucleic acid from herring sperm (D3159-100G; Sigma-Aldrich), 0.01% 

Sodium Azide (S2002-100G; Sigma-Aldrich), 0.01% tween, and 15% ethylene carbonate 

(AC118410010; Fisher Scientific) in 2x sodium saline citrate (SSC) was added to the fixed cells or 

tissues and incubated at 60℃ for 8 minutes and then at 37℃ for 7 minutes. Following this pre-

block step, primary probes with 5nM of each probe in blocking buffer were added to the samples 

and incubated at 60℃ for 30 minutes and then overnight at 37℃. 

6.9.8 Secondary probe hybridization 

Once the primary probe solution is removed, the sample is washed with 2x Saline-Sodium 

Citrate Tween (SSCT) twice. Wash buffer (2xSSCT with 10% ethylene carbonate (EC)) is used for 

3 washes and incubated in 60℃ for 5 minutes each time. Blocking buffer is added and incubated 

at room temperature for 5 minutes. The sample is then incubated in a solution with 5 nM of the 

secondary probes in blocking buffer at 37℃ for an hour. The sample is washed with 2x SSCT twice 

before using wash buffer to wash 3 times and incubated in 42℃ for 5 minutes each time. For the 
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first wash, 10 mg/mL Hoechst (H3570; Invitrogen) is diluted 1:1000 in PBS and added to cells. 

Later, the wash buffer is then removed and replaced with glycerol mounting media and ready for 

imaging.  

6.9.9 Codetection of protein and 9RNA 

Prior to mRNA labeling, fixed SW480 cells were blocked with 1% Bovine Serum Albumin 

(RLBSA50; VWR), 0.1% TWEEN® 20, 1:1,000 Sodium Azide, 0.2 U/ml Protector RNase inhibitor 

(3335399001; Sigma-Aldrich), and 1 mM DTT in RNAse-free PBS (AM9625; Life Technologies) for 

30 min at room temperature. These cells were then washed 3 times with 0.1% TWEEN® 20 in 

RNAse-free PBS for 5 min each wash at room temperature. Antibody solutions containing 1:1,000 

Mouse anti-Tubulin (3873BF; Cell Signaling) and 1:200 Rabbit anti-Vimentin (5741BF; Cell 

Signaling) in the same blocking buffer were subsequently added to the samples and incubated 

overnight at 4℃. Following 3 additional washes with 0.1% TWEEN® 20  in RNAse-free PBS for 5 

min each at room temperature, antibody solutions containing fluorescently labeled 1:200 Donkey 

anti-Mouse Alexa-488 (R37114; Fisher Scientific) and 1:200 Donkey anti-Rabbit TRITC (711-025-

152; Jackson Laboratories) in the same blocking buffer were added at room temperature for 1 

hour. After 3 washes with RNAse-free PBS with 0.1% TWEEN® 20 for 10 min each wash at room 

temperature, 4% PFA in PBS was added for 15 min at room temperature. These cells were then 

washed 3 times with 0.1% TWEEN® 20 in PBS at room temperature for 5 min. For mRNA labeling, 

the previously described methods regarding primary and secondary probe hybridization were 

utilized. 
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6.9.10 LGC Stellaris TM 

LGC StellarisTM RNA FISH probes (Biosearch Technologies, CA, USA) were used, with 

48 × 20 mer fluorophore conjugated oligos tiling the length of the target transcript. The POLR2A 

probe set were supplied as predesigned controls conjugated to Quasar 570 fluorophores. 

Labeling/staining was carried out as described in the LGC StellarisTM protocol for adherent 

mammalian cells. The POLR2A probe sets were used at 50 nM. 

6.9.11 RNAscopeTM 

The FFPE tissue sections were deparaffinized before endogenous peroxidase activity was 

quenched with hydrogen peroxide. Target retrieval was then performed, followed by protease 

plus treatment. The fixed cells pretreatment included treatment with hydrogen peroxide and 

protease 3. The RNAscopeTM assay was then performed using the RNAscopeTM Multiplex 

Fluorescent V2 kit and Akoya Cy5 TSA fluorophore. The positive control (POLR2A) and negative 

control (dapB) were in C1. 

6.9.12 Microscopy Imaging 

Our samples can be imaged with any instrument provided that it has spectral and lifetime 

acquisition capabilities. Our measurements were taken on two separate instruments; a generic 

FLIM instrument is depicted in Supplementary Figure 1. For validation of fluorophores and their 

spectral and lifetime signatures, measurements were taken on a 2-channel ISS Alba5 STED 

platform. This system is equipped with a pulsed white laser (NKT SuperK EXTREME) system where 
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the excitation wavelength(s) can be selected with an acousto-optic tunable filter (NKT SuperK 

SELECT). Single photons were detected with avalanche photodiode detectors (Excelitas 

Technologies) and their arrival times with respect to the stimulating frequency (78MHz) were 

measured with a FPGA-based electronic board (ISS FastFLIM). Imaging was achieved by fast beam 

scanning with galvo mirrors and 3D stacks of images were acquired with a z-piezo mount on the 

objective.  

For measurements of multiplexed/combinatorial labeling and detection experiments, we 

utilized a Leica SP8 with the Falcon module. This platform employs a white light laser and an 

acoustic optic beam splitter dichroic, and the Leica hybrid detectors with excitation band 

selectable by means of a prism. 3D measurements of cells and tissue samples were taken with a 

100x plan apochromat oil objective with a numerical aperture of 1.40, yielding images with an x-

y resolution of 100 nm and z-spacing of 500 nm.  

For epifluorescence measurements, images of labeled mRNA transcripts were taken on 

an inverted Ti-E using a 100× plan apochromat oil objective with a numerical aperture of 1.40. 

Samples were illuminated with a Spectra-X (Lumencor) LED light source at the 395 nm, 470 nm, 

555 nm and/or 640 nm excitation wavelengths. Images were acquired with an Andor Zyla 4.2 

sCMOS camera at 4K resolution with 6.5 µm pixels.  

6.9.13 Overlapping Probability 

The fraction of puncta that do not overlap with any other puncta depends on the total 

number of puncta present in the volume of study and the relative proportion between said total 

volume and the volume of each individual puncta. The following expression is obtained as the 
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product of N-1 times the fraction of available space having removed the volume occupied by one 

transcript: 

𝑛

𝑁
= (1 −

𝑣𝑖

𝑉𝑇
)

𝑁−1

 

 

(2) 

where n is the number of isolated puncta, N is the total number of puncta, vi is the volume of 

each puncta and VT is the total volume (simulated or scanned). The real number of transcripts N 

cannot be analytically isolated from the previous equation, but one can graphically obtain it. Due 

to the fact that the transcripts are sub-diffraction limit, the value of vi depends on the point 

spread function of the instrument. Using the detected number of counts n=13.5k and the 

estimated cellular volume 68 kµm3, both obtained from the two image stacks, we proceeded to 

estimate the real number of transcripts present in the sample using the previous expression. 

Assuming an interval of possible volumes for the transcripts between 0.1 and 0.3 µm3 we 

obtained an estimated percentage of overlapping puncta in the interval [2, 6.6]%, which accounts 

for the number of puncta detected in more than 2 channels in the 10-plex experiment (6%). See 

Figure 6.2.  

6.9.14 Sequencing Data  
 

Colorectal cancer SW480 cell bulk RNA sequencing (unpublished data) was analyzed with 

DESeq2. Average expression is then obtained for comparison to the MOSAICA puncta count for 

each gene. For the human skin melanoma FFPE tissue, the patient sample did not have 

corresponding sequencing data. RNA sequencing data was obtained from The Cancer Genome 
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Atlas (TCGA), available on the National Cancer Institute (NCI) Genomic Data Commons (GDC) data 

portal, from 5 human skin melanoma FFPE biopsy thigh punch samples [Entity ID: TCGA-EE-A2GO-

06A-11R-A18S-07, TCGA-EE-A20C-06A-11R-A18S-07, TCGA-YG-AA3N-01A-11R-A38C-07, TCGA-

DA-A95Z-06A-11R-A37K-07, TCGA-GN-A26C-01A-11R-A18T-07]. The sequencing data were 

analyzed with HTseq and normalized for sequencing depth and gene length using Fragments Per 

Kilobase Million (FPKM). The average of the 5 patient samples for each transcript were used for 

correlation graphs with Spectral-FILM puncta count.  

 

6.9.15 Statistical Analysis 
 

When comparing distributions of puncta counts, signal-to-noise ratios, and intensity 

values, Student t-tests were performed for against the probability that the measured 

distributions belong to distributions with equal means. The reported probability values in the 

figures are symbolized with (* for p<0.05, ** for p<0.01, *** for p<10-3 and **** for p<10-4). 

Pearson correlation coefficient was computed to determine the correlation between the average 

expression level to the puncta count of each transcript.  

 

Phasor Transform Expressions 

The first-order phasor transform of the lifetime intensity photon histogram 𝐼(𝑡): 

 

𝑆 =
∫ 𝐼(𝑡) sin(𝜔𝑡)𝑑𝑡

𝑇

0

∫ 𝐼(𝑡)𝑑𝑡
𝑇

0

 
(1) 

𝐺 =
∫  𝐼(𝑡) cos(𝜔𝑡) 𝑑𝑡

𝑇

0

∫  𝐼(𝑡) 𝑑𝑡
𝑇

0

 (2) 

https://portal.gdc.cancer.gov/cases/783eb662-7d7a-4637-8500-e2d86d73ec7b?bioId=12fc6374-32ac-45d4-a09a-8fb71d69d953
https://portal.gdc.cancer.gov/cases/783eb662-7d7a-4637-8500-e2d86d73ec7b?bioId=12fc6374-32ac-45d4-a09a-8fb71d69d953
https://portal.gdc.cancer.gov/cases/bc71a91d-8ad1-4bab-a4fa-89470aa4e4d0?bioId=f3fe7192-c115-4c74-927b-b3d824995205
https://portal.gdc.cancer.gov/cases/1c052cde-7a70-410b-a273-dbe39dd968f4?bioId=b4b4736d-32bf-4577-af49-f35e7da87c2c
https://portal.gdc.cancer.gov/cases/668701cf-9c73-4caf-8482-3f478235909a?bioId=8d6eedc0-70d4-4e68-a706-6fdea2d87918
https://portal.gdc.cancer.gov/cases/668701cf-9c73-4caf-8482-3f478235909a?bioId=8d6eedc0-70d4-4e68-a706-6fdea2d87918
https://portal.gdc.cancer.gov/cases/fa099993-ef30-4eff-a8fb-aa41b5ea671a?bioId=c55d0f65-fa13-4bb5-a556-2bd78bac2ccf
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Where 𝑇  is the period between excitation pulses (or modulation period), and 𝜔 =
2𝜋

𝑇
 the 

pulsation frequency such that the period of trigonometric functions matches the excitation 

period 𝑇. 

The first-order phasor transform of the spectral intensity photon histogram 𝐼(𝜆): 

 

𝑆 =
∫ 𝐼(𝜆) sin(𝜔𝜆 − 𝜔𝜆0)

𝜆𝑓

𝜆0
 𝑑𝜆

∫ 𝐼(𝜆)
𝜆𝑓

𝜆0
𝑑𝜆

 
(3) 

𝐺 =
∫ 𝐼(𝜆) cos(𝜔𝜆 − 𝜔𝜆0)

𝜆𝑓

𝜆0
 𝑑𝜆
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𝜆0
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 (4) 

Where 𝜆0 and 𝜆𝑓 are the limits of the spectral band of the detector, and 𝜔 =
2𝜋

𝜆𝑓−𝜆0
 the pulsation 

frequency such that the period of trigonometric functions matches the spectral bandwidth. 

 

 

 

Supplementary Figure 6.1. Generalized spectral-FLIM Microscopy setup. A pulsed/modulated 
light source is used to illuminate the sample and the fluorescence of the sample is collected by a 
spectral detector (current resolution around 10 nm). The repetition rate can either be supplied 
by or delivered to the laser which is used by the electronics in the digital frequency domain to 
obtain a single photon arrival time using the heterodyne principle (current resolution around 50 
ps). 



144 
 

Table S6.1. List of Fluorophores Used 

 

 

 

Table S6.2. List of Genes Used and their Assigned Fluorophore Combination  
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CHAPTER 7: 
CONCLUSION AND FUTURE WORK 

 
7.1 Summary and Conclusion 

MOSAICA provides a new solution that fills a major gap in the spatialomics field by 

simultaneously achieving both simplicity and multiplexing by enabling direct in situ spatial 

profiling of many biomarkers in a single round of staining and imaging. This solution contrasts 

existing approaches such as conventional direct labeling approaches (e.g., LGC StellarisTM, 

RNAscopeTM, etc.) which can only analyze 3 - 4 targets due to limited spectral channels as well as 

recent spatial transcriptomic approaches (e.g., seqFISH) which can provide greater multiplexing 

capabilities but at the expense of many iterations of sample re-labeling, imaging, indexing, and 

error-prone image registration. MOASICA accomplishes this by uniquely integrating the lifetime 

dimension with the conventional spectral dimension, employing combinatorial fluorescence 

spectral and lifetime target encoding, and exploiting machine learning- and phasor-based 

deconvolution algorithms to enable high-plex analysis and error-correction. This enables 

MOSAICA to simultaneously access both spectral and lifetime dimensions to achieve higher plex 

detection without sacrificing assay throughput as well as correcting for autofluorescent moieties 

and stochastic nonspecific binding artifacts, which are inherent challenges associated with 

existing intensity-based measurements.  

Compared to existing sequential hybridization and imaging approaches, MOSAICA 

significantly reduces the number of hybridization and imaging rounds required to profile larger 

multiplexed panels of RNA biomarkers. By imaging every fluorophore and labeled transcript 

simultaneously rather than sequentially, the need to relabel probes or reimaging samples is 
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precluded which is often the bottleneck for these complex and lengthy assays. For a 10-plex 

panel, this drastically shortens assay time by at least of factor of 4 – 5x and scales up even more 

as the panel becomes more multiplexed, making these assays more practical, effective, and 

affordable for routine laboratory or clinical usage. This is particularly important in clinical 

settings, where biopsy samples are limited in quantity and the need to avoid repetitive stripping, 

rehybridization, and image registration to preclude damage to the tissue structure integrity and 

target molecules is highly critical. In terms of cost, compared to existing commercial platforms 

where assay ranges from several hundred dollars to thousand dollars per batch of samples, 

MOSAICA utilizes inexpensive DNA primary probes which can be purchased in batch or as 

microarrays for a minimal price. Fluorescently conjugated secondary probes can also be used and 

shared as a common set among many different genes, scaling down costs to several dollars per 

assay or 10 – 20x less than commercial vendors. Compared to indirect spatial transcriptomic 

methods that analyze barcoded regions of interest (ROIs) using downstream sequencing (e.g., 

GeoMx® Digital Spatial Profiler, 10x Genomics Visium), the direct, imaging-based MOSAICA would 

be advantageous for targeted mRNA profiling with higher spatial resolution (subcellular features 

or single molecules), simpler workflow, lower cost, and potentially higher throughput (number 

of tissue sections analyzed per day) with a camera-based system (below). Moreover, the 

MOSAICA platform utilizes standard fluorescent probes and fluorescence microscopy (several 

commercial instruments capable of acquiring both spectral and lifetime information are 

available, e.g., Leica SP8 FALCON, PicoQuant rapidFLIM, ISS FastFLIM, etc., and already exist in 

many shared core facilities in academia and industry). Fluorescence imaging remains the most 
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familiar and widely used technique in biological research and its minimal requirements of 

MOSAICA will permit quick and broad adoption in the scientific community. 

As a complementary tool to existing spatial-omics methods, MOSAICA broadly enables 

scientists and clinicians to better study biology, health, and disease and to develop precision 

diagnostics and treatments. Gene expression is heterogeneous and many different cell 

identities/states exist in a particular tissue. To fully characterize cells in situ, we need to be able 

to assess multiplexed panels of genes within the same cell, which can be readily addressed by 

MOSAICA. As such, MOSAICA can help accelerate spatiotemporal mapping experiments to 

construct 3D tissue cell atlas maps. Additionally, MOSAICA represents a powerful tool for 

targeted in situ validation of RNA sequencing data. scRNAseq returns cell identities in the form 

of “differentially expressed gene lists” that “define” cell types. However, the clustering process 

is subjective, variable and error-prone. Multiplex spatial transcriptomics using MOSAICA can 

validate whether a pattern of gene expression really defines a cell type or conflates multiple cell 

types. Furthermore, we are currently developing MOSAICA to serve as a clinical companion 

diagnostic tool for stratified care. Of particular interest is the spatial profiling of the organization 

and interactions between tumor cells, immune cells and stromal components in tumor tissues 

that can inform cancer diagnosis, prognosis, and patient stratification [1-2]. With MOSAICA’s 

ability to analyze numerous markers in a single round, we believe this feature will be particularly 

attractive for clinicians or researchers working with precious patient derived materials.  

Further ongoing work for this platform includes improving multiplexing by scaling up the 

number of fluorophores and their combinations using our combinatorial-based labeling 

approach. For instance, our combinatorial encoding results and simulations predict that with 



150 
 

different combinations of 10 fluorophores using triple labeling strategy, MOSAICA can barcode 

and detect 120 mRNA targets. Our immediate next step is to scale our multiplexing capability to 

about 60-plex, which will bridge the gap between conventional FISH and sequential- and 

sequencing-based methods and can be rapidly employed to numerous applications in targeted 

spatial transcriptomic analysis in basic and translational research. In the future, we will further 

expand our codebook by implementing a Förster resonance energy transfer (FRET)-based 

barcoding method [3] by using different FRET fluorophore pairs and tuning the distance between 

fluorophore donor and acceptor. We can utilize the FRET phenomena as an additional error 

correction mechanism at the nanometer level to resolve multiple transcripts in the same voxel. 

Moreover, we will improve imaging throughput with our recently developed camera-based light-

sheet imaging [4] and hyperspectral imaging [5]. Indeed, MOSAICA is versatile and can be further 

integrated with other imaging modalities such as super-resolution, expansion microscope and 

multi-photon imaging techniques [6-8] to increase subcellular resolution and enable imaging 

large highly scattering tissues.  

Additionally, we will further develop our image analysis software with a user interface 

which enables classification and visualization of single-cell phenotypes, spatial organization and 

neighborhood relationship. Our current software platform’s puncta detection and puncta 

classifier algorithm can also be improved using modern image processing techniques such as 

convolutional neural networks with clinical training sets to optimize true and false positive 

detection of biomarkers. We anticipate on benchmarking these sets with experimental data with 

stripping methods to determine fidelity of labeled targets. Lastly, we will further improve protein 
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multiplexing in our multi-omics analysis using antibody-DNA conjugates where we can conduct 

combinatorial labeling and barcoding to scale up multiplexing as we do for the mRNA detection.  
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