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Abstract

Teaching Large Language Models to Use Tools at Scale

by

Shishir Girishkumar Patil

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph Edgar Gonzalez, Co-chair

Professor Prabal Dutta, Co-chair

Large language models (LLMs) have shown impressive advancements in many complex tasks
such as mathematical reasoning and program synthesis. Despite this progress, the ability
of LLMs to effectively utilize tools, services, and applications remains limited. In order
to address this gap, we first introduce Gorilla LLM, a finetuning recipe that enhances the
ability of LLMs to use tools by invoking APIs. Gorilla also introduces abstract syntax
tree (AST)-based metrics to evaluate API hallucination in LLMs. Further, recognizing that
evaluating LLMs can be challenging, we develop OpenFunctions, a pre-trained model that
does not require retraining and instead relies on retrieval-augmented generation (RAG) to
surface relevant APIs. This system allows LLMs to access an updated repository of functions
and services, improving their utility without the overhead of constant model retraining.

Complementing function calling, RAFT (Retrieval Augmented Fine Tuning) provides a recipe
for embedding new domain-specific knowledge into models. By training LLMs to discern and
utilize only relevant information from a set of retrieved documents, RAFT improves accuracy
and reliability in “open-book” settings across various in-domain datasets.

Finally, to enable the autonomous execution of LLM-generated commands—which can
be prone to errors—the Gorilla Execution Engine (GoEx) is a novel runtime system that
enforces execution under least privilege by dynamically interpreting user intentions and
also incorporates “undo” and “damage confinement” abstractions to mitigate risks. GoEx
supports post-facto validation, allowing users to verify the correctness of actions after they are
executed and to revert any undesired effects. GoEx enables LLMs to operate autonomously,
significantly reducing the potential risks associated with their autonomous actions.

We believe that together, these developments—Gorilla, OpenFunctions, RAFT, and GoEx—are
critical to unlocking the potential for LLM agents to interact with applications and services.
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Chapter 1

Introduction

1.1 Background and motivation

Large language models (LLMs) have rode an impressive wave of advances, with models
now excelling in a variety of tasks, such as mathematical reasoning and program synthesis.
However, despite these significant strides, one area where LLMs have struggled is in effectively
utilizing external tools and services, which are crucial for expanding their applicability beyond
just knowledge retrievers to decision making agents.

APIs present a unified modality to teach LLMs to use external tools and services. How-
ever, this is a challenging task even for today’s state-of-the-art LLMs largely due to their
unawareness of what APIs are available and how to use them in a frequently updated tool
set. We develop Gorilla (Chapter 2), a finetuned LLaMA [139] model that surpasses the
performance of GPT-4 on writing API calls. When combined with a document retriever,
Gorilla demonstrates a strong capability to adapt to test-time document changes, enabling

LLM Agent

Agent

N

Chatbots Agents Apps and Microservices

Figure 1.1: Evolution of LLMs powered applications and services. From chatbots,
to decision-making agents that can interact with applications and services with human-
supervision, to autonomous LLM-agents interacting with LLM-powered apps and services
with minimal and punctuated human supervision.
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flexible user updates or version changes. It also substantially mitigates the issue of hallu-
cination, commonly encountered when prompting LLMs directly. To evaluate the model’s
ability, we introduce APIBench, a comprehensive dataset consisting of HuggingFace, Torch-
Hub, and TensorHub APIs. The successful integration of the retrieval system with Gorilla
demonstrates the potential for LLMs to use tools more accurately, keep up with frequently
updated documentation, and consequently increase the reliability and applicability of their
outputs. Complementing Gorilla, we present OpenFunctions LLM, which bypasses the need
for frequent retraining of LLMs by integrating retrieval-augemented generation (RAG) [74].
RAG surfaces the top few relevant APIs for a given user intent, and then OpenFunctions
returns the right API call with the arguments filled in.

As an improvement over existing RAG systems, we introduce Retrieval Augmented Fine
Tuning (RAFT) in Chapter 3. Pretraining LLMs on large corpora of textual data is now a
standard paradigm. When using these LLMs for many downstream applications, including and
especially for API calls, it is common to additionally bake in new knowledge (e.g., time-critical
news, or private domain knowledge) into the pre-trained model either through RAG-based
prompting, or fine-tuning. However, the optimal methodology for the model to gain such new
knowledge remains an open question. RAFT is a training recipe that improves the model’s
ability to answer questions in an “open-book” in-domain setting. In RAFT, given a question,
and a set of retrieved documents, we train the model to ignore documents that don’t help
in answering the question, which we call “distractor documents”. RAFT accomplishes this
by citing verbatim the right sequence from the relevant document that would help answer
the question. This, coupled with RAFT’s chain-of-thought-style response, helps improve the
model’s ability to reason. In domain-specific RAG, RAFT consistently improves the model’s
performance across PubMed, HotpotQA, and Gorilla datasets, presenting a post-training
recipe to improve pre-trained LLMs to in-domain RAG.

Finally, in Chapter 4, we introduce the Gorilla Execution Engine (GoEx), a novel runtime
that executes LLM generated API calls. GoEx enables LLM-powered applications to operate
on user accounts while confining potential damage from unreliable LLMs. We argue that
in many cases, “post-facto validation”—verifying the correctness of a proposed action after
seeing the output—is much easier than the aforementioned “pre-facto validation” setting.
The core concept behind enabling a post-facto validation system is the integration of an
intuitive undo feature, and establishing a damage confinement for the LLM-generated actions
as effective strategies to mitigate the associated risks. GoEx also draws inspiration from
classical systems security design principles, such as enforcing least privilege, separating user
credentials from the LLM provider, and treating the user as the ground truth for permissions.
In order to map a given user query into a set of functions and permission-scopes—a seemingly
intractable task—we counter-intuitively decide to use an LLM to do so. GoEx accesses
credentials only through the runtime when executing LLM actions, and obtains user approval
before granting permissions. GoEx is evaluated on a dataset of over 10,000 APIs across 250
services, demonstrating that it can enforce least privilege with only 0.5% of cases resulting in
excessive permissions, even if users approve every permission request. The additional latency
from GoEx ranges from 0.1% to 22%. GoEx enables autonomous and safer integration of
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LLMs into user-facing applications across diverse domains.
Together, Gorilla, OpenFunctions, RAFT, and GoEx introduce techniques to teach LLMs

the ability to use external tools and services through API calls. Recipes to train the LLM,
coupled with the underlying systems to backstop unintended consequences, broaden the scope
of LLM applications and ensure that these models can be deployed responsibly and effectively
in diverse environments.

These projects have had significant impact academically and commercially. Gorilla
introduced and pioneered the idea of teaching LLMs to use tools through APIs. Gorilla and
OpenFunctions are being used in hundreds of enterprises, been downloaded tens of thousands
of times, our hosted inference servers have served over 800, 000+ user requests. We will
discuss some of our learnings from our deployment experience and conclude in Chapter 5.
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Chapter 2

Gorilla

2.1 Introduction

The use of APIs and LLMs [1, 15, 16, 29, 100, 120] has changed what it means to program.
Previously, building complex machine learning software and systems required extensive time
and specialized skills. Now with tools like the HuggingFace API, an engineer can set up a deep
learning pipeline with a few lines of code. Instead of searching through StackOverflow and
documentation, developers can ask models like ChatGPT for solutions and receive immediate,
actionable code with docstrings. However, using off-the-shelf LLM’s to generate API calls
remains unsolved because there are millions of available API’s which are frequently updated.

We connect LLMs and massive APIs with Gorilla, a system which takes in an instruction
like “build me a classifier for medical images” and outputs the corresponding imports and
API calls, along with a step-by-step explanation of the pipeline. Gorilla uses self-instruct,
fine-tuning, and retrieval to enable LLMs to accurately select from a large, overlapping, and
changing set tools expressed using their APIs and API documentation. The model trained
with Gorilla demonstrates good adaptation behavior to test-time API document changes
such as API version and arguments.

With the development of API generation methods comes a question of how to evaluate,
as many APIs have overlapping functionality with nuanced limitations and constraints. Thus,
we construct APIBench (∼ 1600 APIs) by scraping a large corpus of ML APIs and developing
an evaluation framework that uses AST sub-tree matching to check functional correctness.

Using APIBench, we finetune Gorilla, a LLaMA-7B-based model with document retrieval,
and show that it significantly outperforms both open-source and closed-source models like
Claude and GPT-4 in terms of API functionality accuracy as well as a reduction in API argu-
ment hallucination errors (Fig. 2.1). Finally, we demonstrate Gorilla’s ability to understand
and reason about constraints.
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“Help me find an API to convert the spoken language in a recorded audio to text using Torch Hub.“

<domain>: Speech-to-Text
<api_provider>: TorchHub
<code>:
asr_model = torch.hub.load('snakers4/silero-models', 'silero_sst’)
result = asr_model.transcribe(audio_path)

Correct
(Gorilla)

<domain>: Speech-to-Text
<api_provider>: TorchHub
<code>:
asr_model = torch.hub.load('snakers4/silero-models’, 'asr', source='local')
result = asr_model.transcribe(audio_path)

API Argument 
Hallucination

(GPT-4)

<domain>: Audio-Translation
<api_provider>: Pytorch
<code>:
import torchaudio
translation = torchaudio.pipelines.WAV2VEC2_ASR_PIPELINE("audio.wav")

Incorrect
API Call
(Claude)

Figure 2.1: Examples of API calls. Example API calls generated by GPT-4 [1], Claude [8],
and Gorilla for the given prompt. In this example, GPT-4 presents a model that doesn’t
exist, and Claude picks an incorrect library. In contrast, our Gorilla model can identify the
task correctly and suggest a fully-qualified API call.

Better

Figure 2.2: Accuracy (vs) hallucination in four settings, that is, zero-shot (i.e., without
any retriever), and with retrievers. BM25 and GPT are commonly used retrievers and the
oracle retriever returns relevant documents at 100%, indicating an upper bound. Higher in
the graph (higher accuracy) and to the left is better (lower hallucination). Across the entire
dataset, our model, Gorilla, improves accuracy while reducing hallucination.

2.2 Related Work

By empowering LLMs to use tools [121], we can grant access to vastly larger and changing
knowledge bases and accomplish complex computational tasks. By providing access to search
technologies and databases, [96, 130, 138] demonstrated that we can augment LLMs to
address a significantly larger and more dynamic knowledge space. Similarly, by providing
access to computational tools, [4, 131, 133, 138, 173] demonstrated that LLMs can accomplish
complex computational tasks. Consequently, leading LLM providers [1], have started to
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integrate plugins to allow LLMs to invoke external tools through APIs.

Large Language Models Recent strides in the field of LLMs have renovated many
downstream domains [29, 139, 167, 168], not only in traditional natural language processing
tasks but also in program synthesis. Many of these advances are achieved by augmenting
pre-trained LLMs by prompting [42, 149] and instruction fine-tuning [30, 56, 118, 148]. Recent
open-sourced models like LLaMa [139], Alpaca [136], and Vicuna [28] have furthered the
understanding of LLMs and facilitated their experimentation. While our approach, Gorilla,
incorporates techniques akin to those mentioned, its primary emphasis is on enhancing the
LLMs’ ability to utilize millions of tools, as opposed to refining their conversational skills.
Additionally, we pioneer the study of fine-tuning a base model by supplementing it with
information retrieval - a first, to the best of our knowledge.

Tool Usage The discussion of tool usage within LLMs has seen an upsurge, with models
like Toolformer taking the lead [66, 70, 96, 121]. Tools often incorporated include web-
browsing [122], calculators [31, 138], translation systems [138], and Python interpreters [42].
While these efforts can be seen as preliminary explorations of marrying LLMs with tool usage,
they generally focus on specific tools. Gorilla, in contrast, aims to explore a vast array of tools
(i.e., API calls) in an open-ended fashion, potentially covering a wide range of applications.

Toolformer [121] and GPT-4 [1] highlight the importance of API calls, and have encouraged
many works in employing API calls as tooling [79, 124]. Moreover, the application of API
calls in robotics has been explored to some extent [2, 141]. However, these works primarily
aim at showcasing the potential of “prompting” LLMs rather than establishing a systematic
method for evaluation and training (including fine-tuning). Our work, on the other hand,
concentrates on systematic evaluation and building a pipeline for future use.

LLMs for Program Synthesis Harnessing LLMs for program synthesis has historically
been a challenging task [23, 35, 69, 78, 159]. Researchers have proposed an array of strategies
to prompt LLMs to perform better in coding tasks, including in-context learning [23, 65, 149],
task decomposition [64, 163], and self-debugging [25, 129]. Besides prompting, there have
also been efforts to pretrain language models specifically for code generation [76, 97, 98].

DocPrompting [173] looked at choosing the right subset of code including API along
with a retriever. Gorilla presents distinct advancements over DocPrompting. First, the
way the data-sets are constructed are different, leading to intersting downstream artifacts.
Gorilla focuses on model usages where we also collect detailed information about parameters,
performance, efficiency, etc. This helps our trained model understand and respond to finer
constraints for each API. Docprompting focuses on generic API calls but not on the details
within an API call. Second, Gorilla introduces and uses the AST subtree-matching evaluation
metric that helps measure hallucination which we find are more representative of code
structure and API accuracy compared to traiditional NLP metrics. Finally, Gorilla focuses
on instruction-tuning method and has ”agency” to interact with users while DocPrompting
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Dataset curation: 1,645 API calls. 94 from Torch 
Hub (exhaustive), 626 from TensorFlow Hub v2 

(exhaustive) and 925 from HuggingFace (Top 20 
in each domain). 

Self-instruct with in-context 
examples to generate 

16,450 {instruction,API} pairs

This is then used to 
train Gorilla-7B

Cat
CatCatAPI: torch.hub.load(…)

API Database

“I want to see 
some cats dancing 

in celebration!”

Information 
Retriever

Input:
###Task: Generate image 
from text
###Reference API: 
StableDiffusionPipeline.from_
pretrained (…)

API:StableDiffusionPipelin
e.from_pretrained(stabilit
yai/stable-diffusion-2-1)

Zero-shot

Execution 
Results!

GORILLA

GORILLA

Figure 2.3: Gorilla: A system for enabling LLMs to interact with APIs. The upper
half represents the training procedure as described in Sec 2.3. This is the most exhaustive
API data-set for ML to the best of our knowledge. During inference (lower half), Gorilla
supports two modes - with retrieval, and zero-shot. In this example, it is able to suggest the
right API call for generating the image from the user’s natural language query.

focuses on building an NLP-to-Code generative model. On equal footing, we demonstrate
that Gorilla performs better than DocPrompting in Appendix 2.5.

2.3 Methodology

We first describe APIBench, a comprehensive benchmark constructed from TorchHub, Ten-
sorHub, and HuggingFace API Model Cards. We begin by outlining the process of collecting
the API dataset and how we generated instruction-answer pairs. We then introduce Gorilla,
a novel training paradigm with an information–retriever incorporated into the training and
inference pipelines. Finally, we present our AST tree matching evaluation metric.

Dataset Collection

To collect the dataset, we recorded all online model cards for HuggingFace’s “The Model
Hub”, PyTorch Hub, and TensorFlow Hub Models. Throughout the rest of this chapter, we
call these HuggingFace, Torch Hub, and TensorFlow Hub respectively for brevity.

API Documentation The HuggingFace platform hosts and servers about 203,681 models.
However, many of them have poor documentation, lack dependencies, have no information
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in their model card, etc. To filter these out, we pick the top 20 models from each domain.
We consider 7 domains in multimodal data, 8 in CV, 12 in NLP, 5 in Audio, 2 in tabular
data, and 2 in reinforcement learning. Post filtering, we arrive at a total of 925 models from
HuggingFace. TensorFlow Hub is versioned into v1 and v2. The latest version (v2) has 801
models in total, and we process all of them. After filtering out model cards with little to no
information, we are left with 626 models. Similar to TensorFlow Hub, we extract 95 models
(exhaustive) from Torch Hub. We then converted the model cards for each of these 1,645
API calls into a JSON object with the following fields: {domain, framework, functionality,
api name, api call, api arguments, environment requirements, example code, performance,
description}. We provide more information in 2.5. These fields were chosen to generalize
beyond API calls within the ML domain, to other domains, including RESTful, SQL, and
other potential API calls.

Instruction Generation Guided by the self-instruct paradigm [146], we employ GPT-4
to generate synthetic instruction data. We provide three in-context examples, along with
reference API documentation, and task the model with generating real-world use cases that
call upon the API. We specifically instruct the model to refrain from using any API names
or hints when creating instructions. We constructed 6 examples (Instruction-API pairs) for
each of the 3 model hubs. These 18 examples were the only hand-generated or modified data.
For each of our 1,645 API datapoints, we generate 10 instruction-API pairs by sampling 3 of
6 corresponding instruction examples in each pair (illustrated in Figure 2.3).

API Call with Constraints API calls often come with inherent constraints. These
constraints necessitate that the LLM not only comprehend the functionality of the API
call but also categorize the calls according to different constraint parameters. Specifically,
for machine learning API calls, two common sets of constraints are parameter size and a
lower bound on accuracy. Consider, for instance, the following prompt: “Invoke an image
classification model that uses less than 10M parameters, but maintains an ImageNet accuracy
of at least 70%.” Such a prompt presents a substantial challenge for the LLM to accurately
interpret and respond to. Not only must the LLM understand the user’s functional description,
but it also needs to reason about the various constraints embedded within the request. This
challenge underlines the intricate demands placed on LLMs in real-world API calls. It is not
sufficient for the model to merely comprehend the basic functionality of an API call; it must
also be capable of navigating the complex landscape of constraints that accompany such calls.
We also incorporate these instructions in our training dataset.

Gorilla

Our model Gorilla, is a retrieval-aware finetuned LLaMA-7B model, specifically for API
calls. As shown in Figure 2.3, we employ self-instruct to generate {instruction, API} pairs.
To fine-tune LLaMA, we convert this to a user-agent chat-style conversation, where each
datapoint is a conversation with one round each for the user and the agent. We then perform
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standard instruction finetuning on the base LLaMA-7B model. For our experiments, we train
Gorilla with and without the retriever. We would like to highlight that though we used the
LLaMA model, our fine-tuning is robust to the pre-trained model (Appendinx 2.5).

Retriever-Aware training For training with retriever, the instruction-tuned dataset also
appends to the user prompt, ‘‘Use this API documentation for reference:

<retrieved API doc JSON>’’. Through this, we aim to teach the LLM to parse the second
half of the question to answer the first half. We demonstrate that this (1) makes the LLM
adapt to test-time changes in API documentation, (2) improves performance from in-context
learning, and (3) reduces hallucination error.

Surprisingly, we find that augmenting a LLM with retrieval, does not always lead to
improved performance, and can at-times hurt performance. We share more insights along
with details in Sec 2.4.

Gorilla Inference During inference, the user provides the prompt in natural language
(Figure 2.3). This can be for a simple task (e.g, “I would like to identify the objects in an
image”), or they can specify a vague goal, (e.g, “I am going to the zoo, and would like to track
animals”). Gorilla, similar to training, can be used for inference in two modes: zero-shot and
with retrieval. In zero-shot, this prompt (with no further prompt tuning) is fed to the Gorilla
LLM model when then returns the API call that will help in accomplishing the task and/or
goal. In retrieval mode, the retriever (either of BM25 or GPT-Index) first retrieves the most
up-to-date API documentation stored in the API Database. Before being sent to Gorilla, the
API documentation is concatenated to the user prompt along with the message “Use this
API documentation for reference.” The output of Gorilla is an API to be invoked. Besides
the concatenation as described, we do no further prompt tuning in our system. While we
also implemented a system to execute these APIs, that is not a focus of this chapter.

Verifying APIs

Inductive program synthesis, where a program is synthesized to satisfy test cases, has found
success in several avenues [12, 92]. However, test cases fall short when evaluating API calls,
as it is often hard to verify the semantic correctness of the code. For example, consider the
task of classifying an image. There are over 40 different models that can be used for the
task. Even if we were to narrow down to a single family of Densenet, there are four different
configurations possible. Hence, there exist multiple correct answers and it is hard to tell if
the API being used is functionally equivalent to the reference API by unit tests. Thus, to
evaluate the performance of our model, we compare their functional equivalence using the
dataset we collected. To trace which API in the dataset is the LLM calling, we adopt the
AST tree-matching strategy. Since we only consider one API call in this evaluation, checking
if the AST of the candidate API call is a sub-tree of the reference API call reveals which API
is being used in the dataset.
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hub

model_zoo

torch.hub.load(’pytorch/vision:v0.10.0’,
            ‘densenet121’, pretrained=True)

torch

hub

load

pytorch/vision

densenet121

pretrained = True

utils Tensor

repo: huggingface/
pytorch-transformers

model: 
densenet201

load

pretrained: Falsepretrained: True

model: 
densenet161

repo: 
pytorch/vision

model: 
densenet121

torch

optional →

Figure 2.4: AST Sub-Tree Matching to evaluate API calls. On the left is an API
call returned by Gorilla. We first build the associated API tree. We then compare this
to our dataset, to see if the API dataset has a subtree match. In the above example, the
matching subtree is highlighted in green, signifying that the API call is indeed correct.
Pretrained=True is an optional argument.

Identifying and even defining hallucinations is challenging. We use the AST matching
process to directly identify the hallucinations. We define a hallucination as an API call that
is not a sub-tree of any API in the database, invoking an entirely imagined tool. This form of
hallucination is distinct from invoking an API incorrectly which we instead define as an error.

AST Sub-Tree Matching We perform AST sub-tree matching to identify which API
in our dataset is the LLM calling. Since each API call can have many arguments, we need
to match on each of these arguments. Further, since, Python allows for default arguments,
for each API, we define which arguments to match in our database. For example, we check
repo or dir and model arguments in our function call. In this way, we can easily check if
the argument matches the reference API or not. Figure 2.4 illustrates an example subtree
check for a torch API call. We first build the tree, and verify that it matches a subtree in
our dataset along nodes torch.hub.load, pytorch/vision, and densenet121. We do not
check for match along leaf node pretrained=True since that is an optional argument.

2.4 Evaluation

When evaluating Gorilla (finetuned on APIBench), we aim to answer the following questions:

1. How does Gorilla compare to other LLMs on API Bench? ( 2.4)
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2. How well does Gorilla adapt to test-time changes in API documentation? ( 2.4)

3. How well can Gorilla handle questions with constraints? (2.4)

We show that Gorilla in the specific domain we evaluated on can outperform both open-
source and close-source models. With our retriever-aware training techniques, our model
can generalize to APIs that are outside of its training data. Finally, Gorilla also handles the
constraints pretty well.

Baselines We primarily compare Gorilla with state-of-the-art language models in a zero-shot
setting and with 3-shot in-context learning. The models under consideration include: GPT-4
by OpenAI with the gpt-4-0314 checkpoint; GPT-3.5-turbo with the gpt-3.5-turbo-0301
checkpoint, both of which are RLHF-tuned models specifically designed for conversation;
Claude with the claude-v1 checkpoint, a language model by Anthropic, renowned for its
lengthy context capabilities; and LLaMA-7B, a state-of-the-art open-source LLM by Meta.

Retrievers The term zero-shot (abbreviated as 0-shot in tables) refers to scenarios where
no retriever is used. The sole input to the model is the user’s natural language prompt. For
BM25, we consider each API as a separate document. During retrieval, we use the user’s query
to search the index and fetch the most relevant (top-1) API. This API is concatenated with
the user’s prompt to query the LLMs. Similarly, GPT-Index refers to the embedding model
text-embedding-ada-002-v2 from OpenAI where each embedding is 1,536 dimensional.
Like BM25, each API call is indexed as an individual document, and the most relevant
document, given a user query, is retrieved and appended to the user prompt. Lastly, we
include an Oracle retriever, which serves two purposes: first, to identify the potential for
performance improvement through more efficient retrievers, and second, to assist users who
know which API to use but may need to help invoking it. In all cases, when a retriever is used,
it is appended to the user’s prompt as follows: <user prompt > Use this API documentation
for reference: <retrieved API doc JSON>. The dataset for these evaluations is detailed in
Section 2.3. We emphasize that we have maintained a holdout test set on which we report our
findings. The holdout test set was created by dividing the self-instruct dataset’s instruction,
API pairs into training and testing sets.

AST Accuracy on API call

We first demonstrate the results for the AST accuracy for different models. We present the
results in Table 2.1. We test each model for different retriever settings defined above. We
report the overall accuracy, the error by hallucination and the error by selecting wrong API
call. Note that for TorchHub and TensorHub, we evaluate all the models using AST tree
accuracy score. However, for HuggingFace, since the dataset is not exhaustive, for all the
models except Gorilla, we only check if they can provide the correct domain names. So this
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Figure 2.5: Accuracy with GPT-retriever. Methods to the left of the dotted line are closed
source. Gorilla outperforms on Torch Hub and Hugging-Face while matching performance on
Tensorflow Hub for all existing SoTA LLMs - closed source, and open source.

problem reduces to picking one of multiple choices. We also benchmark few-shot prompting
for GPT in Tab. 2.7 and show that Gorilla still provides performance improvements.

Finetuning without Retrieval In Table 2.1 we show that lightly fine-tuned Gorilla is able
to match, and often surpass performance in the zero-shot over all the models, 20.43% better
than GPT-4 and 10.75% better than ChatGPT. When compared to other open-source models
LLAMA, the improvement is as big as 83%. his suggests quantitatively, that finetuning is
better than retrieval, at-least in our scope.

In addition, we found that finetuning without the retriever and putting a ground truth
retriever during evaluation improves the performance: 0.88% worse in TensorHub and 0.97%
better in HuggingFace. If we put BM25 or GPT-Index as retriever, results will be significantly
dropped: 21.50% in Torch Hub and 47.57% in HuggingFace. The result illustrates that adding
a non-optimal retriever at test time sometimes misguide the model and result in more errors.

Finetuning with Retrieval We now discuss an interesting experiment on how finetuning
language with retriever incorporated is helping the performance. The settings for this
experiment are finetuning the base LLAMA with the prompt (instruction generated), reference
API document (from golden-truth oracle), and the example output generated by GPT-4. In
Table 2.3, incorporating ground truth retriever in the finetuning pipeline achieves significantly
better results 12.37% better than training without retriever in Torch Hub and 23.46% better
in HuggingFace. However, we found that at evaluation time, current retrievers still have a
big gap between the ground truth retriever: using GPT-Index at evaluation results in 29.20%
accuracy degradation and using BM25 results in a 52.27% accuracy degradation. Nevertheless,
we can still conclude that with a good retriever, finetuning an LLM to incorporate retrieved
results is preferred than zero-shot finetuning.

Hallucination with LLM One phenomenon we observe is that zero-shot prompting with
LLMs (GPT-4/GPT-3.5) to call APIs results in dire hallucination errors. These errors,
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Table 2.1: Evaluating LLMs on Torch Hub, HuggingFace, and Tensorflow Hub
APIs.

LLM (retriever) TorchHub HuggingFace TensorFlow Hub
overall ↑ hallu ↓ err ↓ overall ↑ hallu ↓ err ↓ overall ↑ hallu ↓ err ↓

LLAMA (0-shot) 0 100 0 0.00 97.57 2.43 0 100 0
GPT-3.5 (0-shot) 48.38 18.81 32.79 16.81 35.73 47.46 41.75 47.88 10.36
GPT-4 (0-shot) 38.70 36.55 24.7 19.80 37.16 43.03 18.20 78.65 3.13
Claude (0-shot) 18.81 65.59 15.59 6.19 77.65 16.15 9.19 88.46 2.33
Gorilla (0-shot) 59.13 6.98 33.87 71.68 10.95 17.36 83.79 5.40 10.80

LLAMA (BM-25) 8.60 76.88 14.51 3.00 77.99 19.02 8.90 77.37 13.72
GPT-3.5 (BM-25) 38.17 6.98 54.83 17.26 8.30 74.44 54.16 3.64 42.18
GPT-4 (BM-25) 35.48 11.29 53.22 16.48 15.93 67.59 34.01 37.08 28.90
Claude (BM-25) 39.78 5.37 54.83 14.60 15.82 69.58 35.18 21.16 43.64
Gorilla (BM-25) 40.32 4.30 55.37 17.03 6.42 76.55 41.89 2.77 55.32

LLAMA (GPT-Index) 14.51 75.8 9.67 10.18 75.66 14.20 15.62 77.66 6.71
GPT-3.5 (GPT-Index) 60.21 1.61 38.17 29.08 7.85 44.80 65.59 3.79 30.50
GPT-4 (GPT-Index) 59.13 1.07 39.78 44.58 11.18 44.25 43.94 31.53 24.52
Claude (GPT-Index) 60.21 3.76 36.02 41.37 18.81 39.82 55.62 16.20 28.17
Gorilla (GPT-Index) 61.82 0 38.17 47.46 8.19 44.36 64.96 2.33 32.70

LLAMA (Oracle) 16.12 79.03 4.83 17.70 77.10 5.20 12.55 87.00 0.43
GPT-3.5 (Oracle) 66.31 1.60 32.08 89.71 6.64 3.65 95.03 0.29 4.67
GPT-4 (Oracle) 66.12 0.53 33.33 85.07 10.62 4.31 55.91 37.95 6.13
Claude (Oracle) 63.44 3.76 32.79 77.21 19.58 3.21 74.74 21.60 3.64
Gorilla (Oracle) 67.20 0 32.79 91.26 7.08 1.66 94.16 1.89 3.94

Table 2.2: Gorilla 0-shot with GPT 3-shot in-context examples.

HF (Acc ↑) TH (Acc ↑) TF (Acc ↑)

GPT-3.5 (0s) 16.81 41.93 41.75
GPT-4 (0s) 19.80 54.30 18.20

GPT-3.5 (3i) 25.77 73.11 71.82
GPT-4 (3i) 26.32 75.80 77.37

Gorilla (0s) 58.05 75.80 83.79

while diverse, commonly manifest in erroneous behavior such as the model invoking the
AutoModel.from pretrained(dir name) command with arbitrary GitHub repository names.
Surprisingly, we also found that in TorchHub, HuggingFace and TensorFlow Hub, GPT-3.5
has less hallucination errors than GPT-4. This finding is also consistent for the settings when
various retrieving methods are provided: 0-shot, BM25, GPT-Index and the oracle. This
might suggest that RLHF plays a central role in turning the model to be truthful. Additional
examples and discussion are in 2.5.
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Table 2.3: Comparison of retrieval techniques.

Gorilla without Retriever Gorilla with Oracle retriever

zero-shot BM25 GPT-Index Oracle zero-shot BM25 GPT-Index Oracle

Torch Hub (overall) ↑ 59.13 37.63 60.21 54.83 0 40.32 61.82 67.20
HuggingFace (overall) ↑ 71.68 11.28 28.10 45.58 0 17.04 47.46 91.26
TensorHub (overall) ↑ 83.79 34.30 52.40 82.91 0 41.89 64.96 94.16

Torch Hub (Hallu) ↓ 6.98 11.29 4.30 15.59 100 4.30 0 0
HuggingFace (Hallu) ↓ 10.95 46.46 41.48 52.77 99.67 6.42 8.19 7.08
TensorHub (Hallu) ↓ 5.40 20.43 19.70 13.28 100 2.77 2.33 1.89

AST as a Hallucination Metric We manually executed Gorilla’s API generations to
evaluate how well AST works as an evaluation metric. Executing every code generated is
impractical within academic setting—for example, executing the HuggingFace model needs
the required library dependencies (e.g., transformers, sentencepiece, accelerate), correct
coupling of software kernels (e.g., torch vision, torch, cuda, cudnn versions), and required
hardware support (e.g., A100 40G gpus). Hence, to make it tractable, we sampled 100 random
Gorilla generations from our evalualtion set. The accuracy using AST subtree matching is
78%, consistent with human evaluation of 78% accuracy in calling the right API. All the
generations that AST flagged as incorrect, were the same ones that were manually flagged as
incorrect. Additionally, Gorilla also generates supporting code to call the API which includes
installing dependencies e.g., pip install transformers[sentencepiece]), environment
variables, etc. When we manually attempted to execute the code, 72% of all codes generated
were executed successfully. It’s worth noting that the 6% discrepancy are not semantic errors,
but errors that arose due to factors external to the API, and in the supporting code. We have
included the full example to illustrate this further in 2.5. Considering the significant time
and effort required for manual validation of each generation, the strong correlation between
human evaluation and the AST evaluation further reinforces our belief in the efficiency of
using AST as a robust offline metric.

Accuracy

Gorilla AST metric (proposed) 0.78
Eval by Human 0.78
Code Executable (Eval by Human) 0.72

Table 2.4: AST evaluation metric has strong correlation with accuracy.

Test-Time Documentation Change

The rapidly evolving nature of API documentation presents a significant challenge for the
application of LLMs in this field. These documents are often updated at a frequency that
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USER: I want to automatically remove 
the background from an input image 
<Retrieval: ..fcn_resnet101..>

GORILLA: 
    api_call: 
        “torch.hub.load('pytorch/vision', 
'fcn_resnet101', pretrained=True)”

USER: I want to automatically remove the 
background from an input image. <Retrieval: 
..NVIDIA/DeepLearningExamples:torchhub..>

GORILLA:
    api_call: 
        “torch.hub.load(‘NVIDIA / 
DeepLearningExamples:torchhub ', 'fcn_resnet50', 
pretrained=True)”

USER: I want to automatically remove 
the background from an input image. 
<Retrieval:  ..fcn_resnet50..>

GORILLA: 
    api_call: 
        “torch.hub.load('pytorch/vision', 
'fcn_resnet50', pretrained=True)”
 

Default Response Update the model Update the model repository

Figure 2.6: Gorilla’s retriever–aware training enables it to react to changes in the
APIs. The second column demonstrates changes in model upgrading FCN’s ResNet–50
backbone to ResNet–101. The third column demonstrate changes in model registry from
pytorch/vision to NVIDIA/DeepLearningExamples:torchhub.

outpaces the re-training or fine-tuning schedule of LLMs, making these models particularly
brittle to changes in the information they are designed to process. This mismatch in update
frequency can lead to a decline in the utility and reliability of LLMs over time.

However, with the introduction of Gorilla’s retriever-aware training, we can readily adapt
to changes in API documentation. This novel approach allows the model to remain updated
and relevant, even as the underlying API documentation undergoes modifications. This
ensures that the LLM maintains its efficacy and accuracy over time, providing reliable outputs
irrespective of changes in the underlying documentation.

For instance, consider the scenario illustrated in Figure 6, where the training of Gorilla has
allowed it to react effectively to changes in APIs. This includes alterations such as upgrading
the FCN’s ResNet-50 backbone to ResNet-101, as demonstrated in the second column of
the figure. This capability ensures that the LLM remains relevant and accurate even as
the underlying models and systems undergo upgrades and improvements. Furthermore, the
third column in Figure 6 shows how Gorilla adapts to changes in the model registry from
pytorch/vision to NVIDIA/DeepLearningExamples:torchhub. This reflects the model’s
ability to adjust to shifts in API sources, which is vital as organizations may change their
preferred model registries over time.

In summary, Gorilla’s ability to adapt to test-time changes in API documentation offers
numerous benefits. It maintains its accuracy and relevance over time, adapts to the rapid
pace of updates in API documentation, and adjusts to modifications in underlying models
and systems. This makes it a robust and reliable tool for API calls.

API Call with Constraints

We now focus on the language model’s capability of understanding constraints. For any
given task, which API call to invoke is typically a tradeoff between a multitude of factors.
In the case of RESTFul APIs, it could be the cost of each invocation ($), and the latency
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Table 2.5: Evaluating LLMs on constraint-aware API invocations.

GPT-3.5 GPT-4 Gorilla

0-shot BM25 GPT-Index Oracle 0-shot BM25 GPT-Index Oracle 0-shot BM25 GPT-Index Oracle

Torch Hub (overall) 73.94 62.67 81.69 80.98 62.67 56.33 71.11 69.01 71.83 57.04 71.83 78.16
Torch Hub (Hallu) 19.01 30.98 14.78 14.08 15.49 27.46 14.08 9.15 19.71 39.43 26.05 16.90
Torch Hub (err) 7.04 6.33 3.52 4.92 21.83 16.19 14.78 21.83 8.45 3.52 2.11 4.92

Accuracy const 43.66 33.80 33.09 69.01 43.66 29.57 29.57 59.15 47.88 30.28 26.76 67.60

LLAMA Claude

0-shot BM25 GPT-Index Oracle 0-shot BM25 GPT-Index Oracle

Torch Hub (overall) 0 8.45 11.97 19.71 29.92 81.69 82.39 81.69
Torch Hub (Hallu) 100 91.54 88.02 78.87 67.25 16.19 15.49 13.38
Torch Hub (err) 0 0 0 1.4 2.81 2.11 2.11 4.92

Accuracy const 0 6.33 3.52 17.60 17.25 29.57 31.69 69.71

of response (ms), among others. Similarly, within the scope of ML APIs, it is desirable for
Gorilla to respect constraints such as accuracy, number of learnable parameters in the model,
the size on disk, peak memory consumption, FLOPS, etc. We present the underlying ablation
study evaluating the ability of different models in zero-shot and with retrievers settings to
respect a given accuracy constraint. This setting is best understood with an example. If the
user were to ask for an Image classification model that achieves at least 80% top-1 accuracy
on the Imagenet dataset, then while both are classification models hosted by Torch Hub,
ResNeXt-101 32x16d with a top-1 accuracy of 84.2% would be the right model whose API
to call and not, say, MobileNetV2 which has a top-1 accuracy of 71.88%.

In Table 2.5, we filtered a subset of the Torch Hub dataset that had accuracy defined
for at least one-dataset in its model card (65.26% of TorchHub dataset in Table 2.1). We
notice that with constraints, understandably, the accuracy drops across all models, with and
without a retriever. Gorilla is able to match performance with the best-performing model
GPT-3.5 when using retrievals (BM25, GPT-Index) and has the highest accuracy in the
zero-shot case, highlighting Gorilla’s ability to navigate APIs while considering the trade-offs
between different constraints.

2.5 Insights and In-depth

In this section, we present details and insights on the different training aspects of Gorilla
LLM along with additional results.

Dataset Details

Gorilla’s dataset is multi-faceted, comprising three distinct domains: Torch Hub, Tensor Hub,
and HuggingFace. Each entry within this dataset is rich in detail, carrying critical pieces of
information that further illuminate the nature of the data. Delving deeper into the specifics
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of each domain, Torch Hub provides 95 APIs. The second domain, Tensor Hub, is more
expansive with a total of 696 APIs. Finally, the most extensive of them all, HuggingFace,
comprises 925 APIs. To enhance the value and utility of our dataset, we’ve undertaken an
additional initiative. With each API, we have generated a set of 10 unique instructions.
These instructions, carefully crafted and meticulously tailored, serve as a guide for both
training and evaluation. This initiative ensures that every API is not just represented in our
dataset, but is also comprehensively understood and effectively utilizable.

In essence, our dataset is more than just a collection of APIs across three domains. It is a
comprehensive resource, carefully structured and enriched with added layers of guidance and
evaluation parameters.

Domain Classification The unique domain names encompassed within our dataset are
illustrated in Figure 2.7. The dataset consists of three sources with a diverse range of domains:
Torch Hub houses 6 domains, Tensor Hub accommodates a much broader selection with 57
domains, while HuggingFace incorporates 37 domains. To exemplify the structure and nature
of our dataset, we invite you to refer to the domain names represented in Figure 2.8.

API Call Task In this task, we test the model’s capability to generate a single line of
code, either in a zero-shot fashion or by leveraging an API reference. Primarily designed for
evaluation purposes, this task effectively gauges the model’s proficiency in identifying and
utilizing the appropriate API call.

API Provider Component This facet relates to the provision of the programming
language. In this context, the API provider plays a vital role as it serves as a foundation
upon which APIs are built and executed.

Explanation Element This component offers insights into the rationale behind the usage
of a particular API, detailing how it aligns with the prescribed requirements. Furthermore,
when certain constraints are imposed, this segment also incorporates those limitations. Thus,
the explanation element serves a dual purpose, offering a deep understanding of API selection,
as well as the constraints that might influence such a selection. This balanced approach
ensures a comprehensive understanding of the API usage within the given context.

Code Example code for accomplishing the task. We de-prioritize this as we haven’t tested
the execution result of the code. We leave this for future works, but make this data available
in-case others want to build on it.

Gorilla Details

We provide all the training details for Gorilla in this section. This includes how we divide up
the training, evaluation dataset, training hyperparameters for Gorilla.
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Torch Hub domain names: Classification, Semantic Segmentation, Object Detection,
Audio Separation, Video Classification, Text-to-Speech

Tensor Hub domain names: text-sequence-alignment, text-embedding, text-
language-model, text-preprocessing, text-classification, text-generation, text-question-
answering, text-retrieval-question-answering, text-segmentation, text-to-mel, image-
classification, image-feature-vector, image-object-detection, image-segmentation, image-
generator, image-pose-detection, image-rnn-agent, image-augmentation, image-classifier,
image-style-transfer, image-aesthetic-quality, image-depth-estimation, image-super-
resolution, image-deblurring, image-extrapolation, image-text-recognition, image-
dehazing, image-deraining, image-enhancemenmt, image-classification-logits, image-
frame-interpolation, image-text-detection, image-denoising, image-others, video-
classification, video-feature-extraction, video-generation, video-audio-text, video-
text, audio-embedding, audio-event-classification, audio-command-detection, audio-
paralinguists-classification, audio-speech-to-text, audio-speech-synthesis, audio-
synthesis, audio-pitch-extraction

HuggingFace domain names: Multimodal Feature Extraction, Multimodal Text-
to-Image, Multimodal Image-to-Text, Multimodal Text-to-Video, Multimodal Visual
Question Answering, Multimodal Document Question Answer, Multimodal Graph
Machine Learning, Computer Vision Depth Estimation, Computer Vision Image Clas-
sification, Computer Vision Object Detection, Computer Vision Image Segmentation,
Computer Vision Image-to-Image, Computer Vision Unconditional Image Generation,
Computer Vision Video Classification, Computer Vision Zero-Shor Image Classifica-
tion, Natural Language Processing Text Classification, Natural Language Processing
Token Classification, Natural Language Processing Table Question Answering, Natural
Language Processing Question Answering, Natural Language Processing Zero-Shot
Classification, Natural Language Processing Translation, Natural Language Processing
Summarization, Natural Language Processing Conversational, Natural Language Pro-
cessing Text Generation, Natural Language Processing Fill-Mask, Natural Language
Processing Text2Text Generation, Natural Language Processing Sentence Similarity,
Audio Text-to-Speech, Audio Automatic Speech Recognition, Audio Audio-to-Audio,
Audio Audio Classification, Audio Voice Activity Detection, Tabular Tabular Classifi-
cation, Tabular Tabular Regression, Reinforcement Learning Reinforcement Learning,
Reinforcement Learning Robotics

Figure 2.7: Domain names: Domain names with the three dataset. Tensor Hub is the
smallest dataset while the other two hubs contain many more models.
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### User: Our customer is a zoo and we want to help them detect movement of
different animals. Write a python program in 1 to 2 lines to call API in TensorFlowHub.
### Assistant:
<domain>: image-object-detection,
<api call>: detector = hub.load(’https://tfhub.dev/google/openimages v4/
ssd mobilenet v2/1’),
<api provider>: TensorFlow Hub,
<explanation>: This API call loads the pre-trained Single Shot Detector (SSD)
MobileNet V2 model from TensorFlow Hub, which has been trained on the Open
Images v4 dataset. This model is used for object detection in images. Once loaded,
you can pass an image (and an optional score threshold for detection confidence) to
the detector to get back the detected objects along with their bounding boxes, class
labels, and associated confidence scores.
<code>: import tensorflow as tf; import tensorflow hub as
hub; # Load the SSD MobileNet V2 model; detector =
hub.load(’https://tfhub.dev/google/openimages v4/ssd mobilenet v2/1’); # Use
the model to detect objects in an image (assuming ’image’ is a TensorFlow tensor
representing your image); result = detector(image, score threshold=0.5)

### User: I am an engineer at Uber and I need to find a API that can classify
pedestrians, cars, etc. from an image of the scene. Write a python program in 1 to 2
lines to call API in TorchHub.
<Reference API>: {domain: Object Detection, framework: PyTorch, func-
tionality: Traffic Object Detection, Drivable Area Segmentation, Lane Detection,
api name: HybridNets, api call: torch.hub.load(repo or dir=’datvuthanh/hybridnets’,
model=’hybridnets’, pretrained=True), api arguments: repo or dir, model, pre-
trained, python environment requirements: Python¿=3.7, PyTorch¿=1.10, exam-
ple code: ’import torch; model = torch.hub.load(’datvuthanh/hybridnets’, ’hybridnets’,
pretrained=True); img = torch.randn(1,3,640,384); features, regression, classification,
anchors, segmentation = model(img), performance: dataset: [name: BDD100K, ac-
curacy: Traffic Object Detection: Recall (%): 92.8, mAP@0.5 (%): 77.3, Drivable
Area Segmentation: Drivable mIoU (%): 90.5, Lane Line Detection: Accuracy (%):
85.4, Lane Line IoU (%): 31.6], description: HybridNets is an end2end perception
network for multi-tasks. Our work focused on traffic object detection, drivable area
segmentation and lane detection. HybridNets can run real-time on embedded systems,
and obtains SOTA Object Detection, Lane Detection on BDD100K Dataset.}
### Assistant:
<domain>: Object Detection, <api call>: model =
torch.hub.load(’datvuthanh/hybridnets’, ’hybridnets’, pretrained=True),
<api provider>: PyTorch,
<explanation>: Load the pretrained HybridNets model for object detection from
PyTorch Hub to classify pedestrians, cars, etc. in an image of the scene,
<code >: import torch; model = torch.hub.load(’datvuthanh/hybridnets’, ’hybrid-
nets’, pretrained=True)

Figure 2.8: Example of the Dataset: Two examples of the dataset, the above one is
zero-shot (without information retrievers) and the bottom one is with information retriever.
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Data For HuggingFace, we devise the entire dataset into 90% training and 10% evaluation.
For Torch Hub and Tensor Hub, we devise the data in to 80% training and 20% testing.

Training We train Gorillafor 5 epochs with the 2e-5 learning rate with cosine decay. The
details are provide in Tab. 2.6. We finetune it on 8xA100 with 40G memory each.

Table 2.6: Hyperparameters for training Gorilla.

Hyperparameter Name Value

learning rate 2e-5
batch size 64
epochs 5
warmup ratio 0.03
weight decay 0
max seq length 2048

Performance Comparison

We provide a full comparison of each model’s performance in this section. In Fig 2.10 and
Fig. 2.11, the full set of comparisons is provided. We see that especially in zero-shot case,
Gorilla surpasses the GPT-4 and GPT-3.5 by a large margin. The GPT-4 and GPT-3.5
gets around 40% accuracy in Torch Hub and Tensor Hub, which are two structured API
calls. Compared to that, HuggingFace is a more flexible and diverse Hub, as a result, the
performance on HuggingFace is not as competitive.

Evaluation

For ease of evaluation, we manually cleaned up the dataset to ensure each API domain only
contains the valid call of form:

API name(API arg1, API arg2, ..., API argk)

Our framework allows the user to define any combination of the arguments to check. For
Torch Hub, we check for the API name torch.hub.load with arguments repo or dir and
model. For Tensor Hub, we check API name hub.KerasLayer and hub.load with argument
handle. For HuggingFace, since there are many API function names, we don’t list all
of them here. One specific note is that we require the pretrained model name or path

argument for all the calls except for pipeline. For pipeline, we don’t require the
pretrained model name or path argument since it automatically select a model for you
once task is specified.
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generate video = pipeline(”text-to-video”, model=”your model name”)

vqa = pipeline(”visual-question-answering”, model=”microsoft/clip-vqa-base”,
tokenizer=”microsoft/clip-vqa-base”)

depth estimator = pipeline(”depth-estimation”, model=”intel-isl/MiDaS”,
tokenizer=”intel-isl/MiDaS”)

Figure 2.9: Hallucination Examples: GPT-4 incurs serious hallucination errors in Hug-
gingFace. We show a couple of examples in the figure.

Hallucination

We found especially in HuggingFace, the GPT-4 model incurs serious hallucination problems.
It would sometimes put a GitHub name that is not associated with the HuggingFace repository
in to the domain of pretrained model name or path. Fig. 2.9 demonstrates some examples
and we also observe that GPT-4 sometimes assumes the user have a local path to the model
like your model name. This is greatly reduced by Gorilla as we see the hallucination error
comparison in Tab. 2.1.

AST as a Hallucination Metric

We evaluated the generated results on 100 LLM generations (randomly chosen from our eval
set). The accuracy using AST subtree matching is 78%, consistent with human evaluation
with 78% accuracy in calling the right API. All the generations that AST flagged as incorrect,
were the same ones that were manually also flagged as incorrect. Additionally, Gorilla
generates supporting code to call the API which includes installing dependencies (e.g., pip
install transformers[sentencepiece]), environment variables, etc. When we manually
attempted to execute end-to-end code, 72% of all codes generated were executed successfully.
It’s worth noting that the 6% discrepancy were NOT semantic errors, but errors that arose
due to factors external to the API in the supporting code - we have included an example
to illustrate this further. Considering the significant time and effort required for manual
validation of each generation, our data further reinforces our belief in the efficiency of using
AST as a robust offline metric.

Here is a representative example, where we are able to load the correct model API.
However, in the supporting code, after we have the output from the API, the zip() function
tries to combine sentiments and scores together. However, since scores is a float, it’s not
iterable. zip() expects both its arguments to be iterable, resulting in an ’float’ object
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Figure 2.10: Performance: We plot each model’s performance on different configurations.
We see that Gorilla performs extremely well in the zero-shot setting. While even when the
oracle answer is given, Gorilla is still the best.

is not iterable error.

Gorilla 0-shot (vs) GPT 3-shot

In Table 2.7, we compare the performance of 3-shot in-context learning. We find that 3-shot
it-context learning boosts the performance of GPT-4, with even matching accuracy for Torch
Hub, but Gorilla still performs better on average.

Gorilla (VS) DocPrompting

We evaluate Gorilla and DocPrompting [173] on the HuggingFace Dataset from Table 2.1.
For a 7B model, when trained on the same number of epochs, with and the same learning
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Figure 2.11: Accuracy vs Hallucination: We plot each model’s performance on different
configurations. We found that in the zero-shot setting, Gorilla has the most accuracy gain
while maintaining good factual capability. When prompting with different retrievers, Gorilla
is still capable to avoid the hallucination errors.

Table 2.7: Evaluating Gorilla 0-shot with GPT 3-shot incontext examples. Table
Legend: 3-incont → 3-incontext examples, HF → HuggingFace, TH → TorchHub, TF →
TensorFlow Hub. Acc → Accuracy (higher is better). Hall → Hallucination (lower is better).

HF (Acc ↑) HF (Hall ↓) TH (Acc ↑) TH (Hall ↓) TF (Acc ↑) TF (Hall ↓)
GPT-3.5 (0-shot) 16.81 35.73 41.93 10.75 41.75 47.88
GPT-4 (0-shot) 19.80 37.16 54.30 34.40 18.20 78.65
GPT-3.5 (3 incont) 25.77 32.30 73.11 72.58 71.82 11.09
GPT-4 (3 incont) 26.32 35.84 75.80 13.44 77.37 11.97

Gorilla (0-shot) 58.05 28.32 75.80 16.12 83.79 5.40
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from transformers import pipeline

def load_model ():

classifier = pipeline('sentiment -analysis ',
model='nlptown/bert -base -multilingual -uncased -sentiment ')

return classifier

def process_data(comments , classifier ):

response = classifier(comments)

sentiments = response [0][ 'label '].split ()
scores = response [0][ 'score ']
result = [{'sentiment ': sentiment , 'score ': score}

for sentiment , score in zip(sentiments , scores )]

return result

comments = "These␣comments␣are␣about␣our␣news␣website."

# Load the model

classifier = load_model ()

# Process the data

response = process_data(comments , classifier)

print(response)

Figure 2.12: How well can we execute Gorilla generated code? In this example, the
API call by Gorilla model is accurate and bug-free, but the supporting zip() code has a bug.

Table 2.8: Evaluating Gorilla (vs) DocPrompting. Gorilla improves accuracy, while
lowering the hallucination.

Accuracy ↑ Hallucination ↓

DocPrompting Gorilla DocPrompting Gorilla

61.72 71.68 17.36 10.95

rate for both the models, Gorilla improves accuracy while reducing hallucination.

Sensitivity to pre-training

Gorilla’s training recipe is robust to the pre-training strategies and recipes of the underlying
model. From figure 2.13 we demonstrate that all the three models can converge to within a
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Figure 2.13: Evaluating robustness. For the same train-eval dataset, our fine-tuning recipe
is robust to the underlying base model.

few percentage points in accuracy independent of the pre-trained base model.

2.6 OpenFunctions

OpenFunctions [58] is designed to extend LLMs to formulate executable APIs call given
natural language instructions and API context. Unlike Gorilla which takes in a standard
documentation of the API to return the right arguments, in open-functions, the LLM is pro-
vided with k different functions. To mean, k different function descriptions in JSON, or XML
schema []. OpenFunctions LLM returns the right function, along with the required arguments
filled in. While the fine-tuning of Gorilla means every user needs to be OpenFunctions is an
LLM that is train using a curated set of API documentation, and Question-Answer pairs
generated from the API documentations.

Training OpenFunctions

OpenFunctions is a series of models, in it’s third iteration at the time this dissertation was
written. Here, we will discuss the third and most latest iteration, OpenFunctions-v2.

OpenFunctions-v2 is a 6.91B parameter model trained further upon on the Deepseek-
Coder-7B-Instruct-v1.5 6.91B model. To train the model, we collected in total of 65,283



CHAPTER 2. GORILLA 26

query + [{'name': 'func1 ', 'description ': 'order␣takeout '}] -> ans1

% Transformed to =>

query + [{'name': 'func2 ', 'description ': 'order␣takeout '}] -> [ans2]

Figure 2.14: Function Name Transformation: From the original question-function-answer
pairs, we augment this with a different function names to avoid the model memorizing
the correlation between function names and the question (e.g., ’uber’ API is used for
transportation).

query + [{'name': 'func1 ', 'description ': 'order␣takeout '}] -> ans1

% Transformed to =>

query + [{'name': 'func1 ', 'description ': 'order␣takeout '},
{'name': 'func2 ', 'description ': 'get␣weather '}] -> [ans1]

Figure 2.15: Multiple Functions Transformation: Transform the original function with
multiple function calls included in the training, so that the model can learn to choose which
function call to use.

question-function-answer pairs from three different sources: Python packages (19,353), Java
repositories (16,586), Javascript Repositories (4,245), public-API (6,009), and Command Line
Tools (19,090) from various cloud providers.

After the initial data collection, we carry out four types of data augmentations to diversify
our training dataset. First, we change the function names. This is critical to ensure the
model does not “memorize” the API mapping. Second, we add random (randomly chosen,
and random number of) functions to make our data-set compatible with parallel functions.
This way we can generate multiple-function datasets from simple functions. Third, we adopt
similar strategies of perturbing the prompt to generate scenarios of parallel-functions. We
then extend it to also include multiple- and parallel- functions in the same data-points.
Finally, we mix some portion of the dataset in which the functions provided during the input
is not sufficient to the task. We flag these as “Relevance Detection” scenarios. As with most
LLM training, we varied the extents of each data augmentation to train a robust model.

Following the data augmentation process, we further refine the dataset by employing
the Rouge score [80] for de-duplication, effectively eliminating redundant entries. Gorilla-
OpenFunctions-v2 trained with this recipe set the new benchmark [161] as a state-of-the-art
in function calling matching larger proprietary models in performance all the while being
substantially low cost.
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query1 + [{'name': 'func1 ', 'description ': 'order␣takeout '}] -> ans1

Transformed to =>

query2 + [{'name': 'func1 ', 'description ': 'order␣takeout '}] -> [ans1 ,

ans2]

Figure 2.16: Parallel Functions Transformation: To handle a more complex case where
multiple functions will be selected to answer the user’s request, we change the original question
to ask for multiple outputs.

query1 + [{'name': 'func1 ', 'description ': 'order␣takeout '}] -> ans1

% Transformed to =>

query2 + [{'name': 'func1 ', 'description ': 'order␣takeout '},
{'name': 'func2 ', 'description ': 'get␣weather '}] -> [ans1 , ans2]

Figure 2.17: Parallel Multiple Functions Transformation: The combined of the above
parallel, and multiple transforms.

query1 + [{'name': 'func1 ', 'description ': 'order␣takeout '}] -> ans1

% Transformed to =>

query2 + [{'name': 'func1 ', 'description ': 'order␣takeout '}] ->

[Error , the function cannot solve the question .]

Figure 2.18: Function Relevance Detection: We also include some portion of the dataset
in which the functions provided cannot solve the task. We call this ‘Relevance Detection‘.
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2.7 Conclusion

In our study, we spotlight techniques designed to enhance the LLM’s ability to accurately
identify the appropriate API. Since APIs as a universal language enabling diverse systems to
communicate effectively, their correct usage can boost the ability of LLMs to interact with
tools. In this chapter, we proposed Gorilla, a novel pipeline for finetuning LLMs to call APIs.
The finetuned model’s performance surpasses prompting the state-of-the-art LLM in three
massive datasets we collected. Gorilla generates reliable API calls to ML models without
hallucination, demonstrates an impressive capability to adapt to test-time API usage changes,
and can satisfy constraints while picking APIs.
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Chapter 3

RAFT

“Open book”

query answer

“Closed book”

query answer

Bake in Knowledge 
at Train Time

Model can use 
External Docs at Test

RAFT (Proposed)

query answer

Teach Model to
 use External Docs at Test

Figure 3.1: How best to prepare for an exam? (a) Fine-tuning based approaches
implement ”studying” by either directly ”memorizing” the input documents or answering
practice QA without referencing the documents. (b) Alternatively, in-context retrieval
methods fail to leverage the learning opportunity afforded by the fixed domain and are
equivalent to taking an open-book exam without studying. While these approaches leverage
in-domain learning, they fail to prepare for open-book tests. In contrast, our approach (c)
RAFT leverages fine-tuning with QA pairs while referencing the documents in a simulated
imperfect retrieval setting — thereby effectively preparing for the open-book exam setting.

3.1 Introduction

Trained on vast quantities of public data, LLMs have achieved significant advances in a wide
range of general knowledge reasoning tasks [15, 149].

However, LLMs are increasingly being employed in specialized domains to support tasks
ranging from code completion for specific software frameworks to question answering on
specific document collections (e.g., legal or medical documents). In these settings, general
knowledge reasoning is less critical but instead, the primary goal is to maximize accuracy
based on a given set of documents. Indeed, adapting LLMs to the specialized domains (e.g.,
recent news, enterprise private documents, or program resources constructed after the training
cutoff) is essential to many emerging applications [70, 142] and is the focus of this work.
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This chapter studies the following question: How can we adapt pre-trained LLMs for
Retrieval Augmented Generation (RAG) in specialized domains?

When it comes to adapting LLMs to specialized domains, we consider the following
two candidates: in-context learning through retrieval-augmented generation (RAG) and
supervised fine-tuning. RAG-based methods allow the LLM to reference the documents
when answering questions. However, these methods fail to leverage the learning opportunity
afforded by the fixed domain setting and early access to the test documents. Alternatively,
supervised fine-tuning offers the opportunity to learn more general patterns in the documents
and better align to end tasks and user preferences [172]. However, existing fine-tuning based
approaches either fail to leverage the documents at test time (don’t incorporate RAG) or fail
to account for the imperfections in the retrieval process during training.

We can draw an analogy to an open-book exam. Existing in-context retrieval methods are
equivalent to taking an open-book exam without studying. Alternatively, existing fine-tuning
based approaches implement “studying” by either directly “memorizing” [158] the input
documents or answering practice questions [146] without referencing the documents. While
these approaches leverage in-domain learning, they fail to prepare for the open-book nature
of the test setting.

In this chapter, we study how to combine supervised fine-tuning (SFT) with RAG. We
propose a novel adaptation strategy – Retrieval-Augmented Fine Tuning (RAFT). RAFT
specifically addresses the challenge of fine-tuning LLMs to incorporate domain knowledge
while also improving in-domain RAG performance. RAFT aims to not only enable models to
learn domain specific knowledge through fine-tuning, but also to ensure robustness against
inaccurate retrievals. This is achieved by training the models to understand the dynamics
between the question posed (prompt), the domain specific documents retrieved, and the
appropriate answer. Going back to our analogy, our approach is analogous to studying for an
open-book exam by recognizing relevant, and irrelevant retrieved documents.

In RAFT, we train the model to answer the question (Q) from Document(s) (D*) to
generate an answer (A*), where A* includes chain-of-thought [7, 149], and in the presence of
distractor documents (Dk). We explain the methodology in detail in Section 3.3 and analyze
the sensitivity to the number of distractor documents (k) at train- and test- time in Section 3.5.
RAFT consistently outperforms Supervised-finetuning both with- and without- RAG across
PubMed [34], HotpotQA [162], and HuggingFace Hub, Torch Hub, and Tensorflow Hub
Gorilla datasets [107], presenting a novel, yet simple technique to improve pre-trained LLMs
for in-domain RAG.

3.2 LLMs for Open-Book Exam

To understand our goal better, we expand on our analogy between training an LLM in the
real-world setting of preparing for an exam.



CHAPTER 3. RAFT 31

Closed-Book Exam A closed book exam often refers to a scenario where the LLMs do
not have access to any additional documents or references to answer the questions during the
exam. For LLMs, this is equivalent to the scenario, for example, in which the LLM is used as
a chatbot. In this scenario, the LLM draws from the knowledge baked in during pre-training
and supervised finetuning to respond to the prompt.

Open Book Exam In contrast, we liken the open-book exam setting to the scenario in
which the LLM can refer to external sources of information (e.g., a website or a book chapter).
In such scenarios, typically, the LLM is paired with a retriever which retrieves ‘k’ documents
(or specific segments of the document) which are appended to the prompt. It is only through
these documents retrieved that the LLM gains access to “new knowledge”. As a result, we
argue that the LLM’s performance in these settings, where it is trained as a general-purpose
LLM is largely dependent on the quality of the retriever and how accurately the retriever can
identify the most relevant piece of information.

Domain Specific Open-Book Exam In this chapter, we focused on a narrower but
increasingly popular domain than the general open book exam, called the domain specific
open book exam. In domain specific open book exams, we know apriori the domain in which
the LLM will be tested – used for inference. The LLM can respond to the prompt using use
any and all information from this specific domain, which it has been fine-tuned on. Examples
of domain specific examples include enterprise documents, latest news, code repositories
belonging to an organization, etc. In all these scenarios, the LLM will be used to respond to
the questions, whose answers can be found within a collection of documents (a small practical
domain). The retrieval technique itself has little to no impact on the mechanism (though
it may impact the accuracy). This chapter mainly studies this, domain specific open-book
setting and how to adapt a pretrained LLM to this specific domain, including how to make it
more robust to a varying number of retrieved documents and distractors.

3.3 RAFT

In this section, we present RAFT, a novel way of training LLMs for domain specific open-book
exams. We first introduce the classical technique of supervised fine-tuning, followed by the
key takeaways from our experiments. Then, we introduce RAFT , a modified version of
general instruction tuning. Lastly, we provide an overview of the experiments to expect in
the later sections.

Supervised Finetuning

Consider the supervised fine-tuning (SFT) setting for a Question-Answer dataset. The
formulation consists of the Dataset (D) from which a set of Question (Q) and corresponding
answer (A) pairs are derived or already available. In the classical SFT setting, the model is
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Figure 3.2: Overview of our RAFT method. The top-left figure depicts our approach of
adapting LLMs to reading solution from a set of positive and negative documents in contrast
to standard RAG setup where models are trained based on the retriever outputs, which is a
mixture of both memorization and reading. At test time, all methods follow the standard
RAG setting, provided with a top-k retrieved documents in the context.

trained to improve its ability to answer the questions based on its knowledge - obtained either
during pre-training, or during the SFT training phase. The model so trained can also be
used at test-time with the Retrieval Augmented Generation (RAG) setting, where additional
documents can be introduced in the prompt to help the model answer the question. This can
be represented as follows:

• Train: Q → A

• 0-shot Inference: Q → A

• RAG Inference: Q + D → A

RAFT

Retrieval Aware Fine-Tuning (RAFT), presents a novel recipe to prepare fine-tuning data to
tailor the models for domain specific open-book settings, equivalent to in-domain RAG In
RAFT, we prepare the training data such that each data point contains a question (Q), a
set of documents (Dk), and a corresponding Chain-of-though style answer (A∗) generated
from one of the document (D∗). We differentiate between two types of documents: ‘oracle’
documents (D∗) i.e. the documents from which the answer to the question can be deduced,
and ‘distractor’ documents (Di) that do not contain answer-relevant information. As an
implementation detail, the ‘oracle’ document doesn’t need to be a single document, but
can be more than one document, as is the case in HotpotQA [162]. Then, for P fraction of
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the questions (qi) in the dataset, we retain the oracle document (d∗i ) along with distractor
documents (dk−1). For (1− P ) fraction of the questions (qi) in the dataset, we include no
oracle document and only include distractor documents (dk). We then fine-tune the language
model using the standard supervised training (SFT) technique, training it to generate answers
from the provided documents and questions. Fig. 3.2 illustrates the high-level design principal
for RAFT .

We demonstrate that our approach trains the model to perform better RAG on the set
of documents it is trained on i.e., in-domain. By removing the oracle documents in some
instances, we are compelling the model to memorize answers instead of deriving them from
the context. The training data for RAFT is as follows, and an example of training data can
be seen in Fig. 3.3:

• P % of data: Q + D∗ + D2 + . . . + Dk → A∗

• (1−P) % of data: Q + D1 + D2 + . . . + Dk → A∗

Subsequently, for the test scenario, the model is provided with the Q and top-k documents
retrieved by the RAG pipeline. Note that RAFT is independent of the retriever used.

A key factor in enhancing training quality is the generation of a reasoning process,
such as Chain-of-Thought, to explain the provided answers.RAFT approach is similar:
we demonstrate that creating a full reasoning chain and in addition, clearly citing sources
enhances the model’s accuracy in answering questions. In Fig. 3.3, we illustrate this set-
up. Generating the training data in this fashion, involves presenting the model with a
question, context, and verified answers, and then requesting it to form a reasoning chain that
appropriately references the original context.

For all the datasets in our experiments, we generate the answers using the technique
described above. Note that the Gorilla APIBench dataset, already includes reasoning
in the answers. We provide an example of the generation step in Fig. 3.3, the detailed
reasoning answer includes a citation from the original context inside ##begin quote## and
##end quote## as well as the detailed explanation on how to reach the conclusion based on
the citations. We demonstrate that adding detailed reasoning paragraphs helps boost the
model’s performance in our experiment section.

3.4 Evaluation

We design our experiments to study how well RAFT performs compared to various baselines.
We find that the RAFT-7B model (a finetuned version of LlaMA-2) is better at reading and
extracting information from in-domain documents, than domain specific finetuned model,
and general-purpose model with RAG. As an ablation, we also demonstrate how important
it is for the model to learn with Chain-of-Thought responses. In this section, we will first
introduce all the datasets we used in the experiments, then all the baseline model/fine-tuning
techniques that we benchmark against.
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Question: The Oberoi family is part of a hotel company that has a head office in what

city?

context: [The Oberoi family is an Indian family that is famous for its involvement in

hotels, namely through The Oberoi Group]...[It is located in the city center of

Jakarta, near Mega Kuningan, adjacent to the sister JW Marriott Hotel. It is operated

by The Ritz-Carlton Hotel Company. The complex has two towers that comprise a hotel

and the Airlangga Apartment respectively]...[The Oberoi Group is a hotel company with

its head office in Delhi.]

Instruction: Given the question, context, and answer above, provide a logical

reasoning for that answer. Please use the format of: ##Reason: {reason} ##Answer:

{answer}.

--------------------------------------------------------------------------------------

CoT Answer: ##Reason: The document ##begin_quote## The Oberoi family is an Indian

family that is famous for its involvement in hotels, namely through The Oberoi Group.

##end_quote## establishes that the Oberoi family is involved in the Oberoi group, and

the document ##begin_quote## The Oberoi Group is a hotel company with its head office

in Delhi. ##end_quote## establishes the head office of The Oberoi Group. Therefore,

the Oberoi family is part of a hotel company whose head office is in Delhi. ##Answer:

Delhi

Figure 3.3: RAFT prompt to help LLM evaluate its own generated reasoning and answers,
contrasting them with the correct reasoning and answers. The LLM is prompted to identify
errors in its reasoning and extract key insights for improvement. This figure specifically
represents the ‘GenerateExplanation‘ step in the RAFT algorithm (3.3).

Datasets

In our experiments, we use the following datasets to evaluate our model and all baselines. We
selected these datasets to represent both popular and diverse domains including Wikipedia,
Coding/API documents, and question-answering on medical documents.

• Natural Questions (NQ) [68], Trivia QA [60] and HotpotQA [162] are the open-domain
question-answers based on Wikipedia, mainly focused on common knowledge (e.g.,
movies, sports, etc).

• HuggingFace, Torch Hub, and TensorFlow Hub are from the APIBench [107] proposed in
the Gorilla chapter. These benchmarks measure how to generate the correct, functional,
and executable API calls based on the documentation.

• PubMed QA [59] is a question-answering dataset tailored only for biomedical-research
question-answering. It mainly focuses on answering medical and biology questions
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Table 3.1: RAFT improves RAG performance forall specialized domains: Across
PubMed, HotpotQA, HuggingFace, Torch Hub, and Tensorflow Hub, we see that domain spe-
cific Finetuning improves significantly of the performance of the base model, but RAFT con-
sistently outperforms the existing domain specific finetuning method with or without RAG.
This suggests the need to train the model with context. We compare our model with LLaMA
finetuning receipes, and provide GPT-3.5 for reference.

PubMed
HotpotQA HuggingFace Torch Hub TensorFlow Hub

GPT-3.5 + RAG 71.60 41.5 29.08 60.21 65.59

LLaMA2-7B 56.5 0.54 0.22 0 0
LLaMA2-7B +
RAG

58.8 0.03 26.43 08.60 43.06

DSF 59.7 6.38 61.06 84.94 86.56
DSF + RAG 71.6 4.41 42.59 82.80 60.29

RAFT
(LLaMA2-7B)

73.30 35.28 74.00 84.95 86.86

based on a given set of documents.

Note that the first category of dataset (NQ, Trivia QA, and HotpotQA) is a relatively
general domain whereas the latter two domains are on very domain specific documents.

Baselines We consider the following baselines for our experiments:

• LlaMA2-7B-chat model with 0-shot prompting: this is the commonly used instruction-
finetuned model for QA tasks, where we provide clearly written instructions, but no
reference documentation.

• LlaMA2-7B-chat model with RAG (Llama2 + RAG): similar to the previous setting,
except here we include reference documents. This is a popular technique when dealing
with domain specific QA tasks.

• Domain specific Finetuning with 0-shot prompting (DSF): Performing standard super-
vised finetuning, without documents in context. We find that it mostly useful to align
the answering style of the model as well as get familiar with the domain context.

• Domain specific Finetuning with RAG (DSF + RAG): Equip a domain specific finetuned
model with external knowledge using RAG. So, for the “knowledge” the model does
not know, it can still refer to the context.
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Results

Using the above datasets and baselines, we evaluate our model RAFT and demonstrate
the effectiveness of RAFT in Tab. 3.1. We see that RAFT consistently and significantly
outperforms the baselines. Compared with the base Llama-2 instruction-tuned model,
RAFT with RAG does much better in terms of extracting information as well as being
robust towards distractors. The gain can be as big as 35.25% on Hotpot QA and 76.35% on
Torch Hub evaluation. Compared with DSF on the specific dataset, our model does better at
relying on the provided context to solve the problem. RAFT does much better on tasks like
HotpotQA and HuggingFace datasets (30.87% on HotpotQA and 31.41% on HuggingFace).
Note that for PubMed QA, since it is a binary yes/no question, we don’t observe significant
gains when we compare our model with DSF + RAG. Even compared with a much larger
and better model GPT-3.5, RAFT demonstrates significant advantages.

Overall, the LLaMA-7B model, both with and without the RAG, performs poorly due to
its answering style not aligning with the ground truth. By applying domain specific tuning,
we significantly enhance its performance. This process enables the model to learn and adopt
the appropriate style of answering. However, introducing RAG to a domain-specifically
fine-tuned (DSF) model doesn’t invariably lead to better outcomes. This might indicate that
the model lacks training in context processing and extracting useful information from it. By
incorporating our method, RAFT , we train the model not only to match its answering style
with that required but also to improve its document processing capabilities. Consequently,
our approach outperforms all others.

Effect of CoT

We also conduct an analysis to evaluate the effectiveness of the Chain-of-Thought approach in
enhancing the model’s performance. As indicated in Table 3.2, simply providing the answer
to a question may not always be adequate. This approach can lead to a rapid decrease in loss,
resulting in the training process to diverge. Incorporating a reasoning chain that not only
guides the model to the answer but also enriches the model’s understanding can improve the
overall accuracy. In our experiments, integrating the Chain-of-Thought significantly enhances
training robustness. We employ GPT-4-1106 to generate our Chain-of-Thought prompts and
include an example of the prompt we used in Figure 3.3.

Qualitative Analysis

To illustrate the potential advantages of RAFT over the domain-specifically fine-tuned
(DSF) approach, we present a comparative example in Figure 3.4. This example qualitatively
demonstrates a scenario where the DSF model becomes confused by a question asking for the
identity of a screenwriter. Instead of providing the correct name, it mistakenly cites one of
the films written by the screenwriter. In contrast, the RAFT model accurately answers the
question. This discrepancy suggests that training a model solely with question-answer pairs
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Table 3.2: Ablation on Chain-of-Thought: The numbers of RAFT and RAFT without
CoT. Results on various datasets show that adding CoT can significantly improve the
performance of the finetuned model. With a gain of 9.66% and 14.93% on the Hotpot QA
and HuggingFace datasets respectively.

PubMed
HotpotQA HuggingFace Torch Hub TensorFlow Hub

RAFT w.o CoT 68.30 25.62 59.07 86.56 83.21
RAFT 73.30 35.28 74.00 84.95 86.86

may impair its ability to derive relevant context from provided documents. The comparison
underscores the importance of incorporating both standard instructional tuning and context
comprehension into the training dataset to preserve and enhance the model’s ability to process
text effectively.

Should we train the LLM always with the oracle context for RAG?

In our exploration of whether large language models (LLMs) should always be trained with
the oracle context for Retrieval-Augmented Generation (RAG), we address a key question:
what proportion (P%) of the training data should include oracle documents? Intuitively, one
might assume that for effective training in reading and extracting information from context
(e.g., RAG tasks), the oracle document should always be included during training (P = 100%).
However, our findings challenge this assumption: incorporating a portion of the training
data without the oracle document in the context (P = 80%) appears to enhance the model’s
performance on RAG tasks.

Fig. 3.5 investigates the hyperparameter P%, which represents the percentage of training
instances that should include oracle documents. Our analysis reveals that the optimal
proportion varies across datasets, with figures ranging from 40%, 60%, and 100%. This
indicates that training your LLM without the correct corresponding context at times can be
beneficial for the downstream task of answering questions related to the documents. In our
training setup, we include four distractor documents alongside the oracle document, and at
test time, we maintain this format by providing the oracle document with four distractors.
Our findings suggest that, for domain specific RAG tasks, including a certain percentage of
training data without the oracle documents in the context proves to be advantageous.
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HotPot QA

Question: What screenwriter with credits for “Evolution”[0/1879]e a film starring
Nicolas Cage and Téa Leoni?
Documents: . . . David Weissman is a screenwriter and director. His film credits include
“The Family Man” (2000), “Evolution” (2001), and “When in Rome” (2010).
. . .
The Family Man is a 2000 American romantic comedy-drama film directed by Brett
Ratner, written by David Diamond and David Weissman, and starring Nicolas Cage and
Téa Leoni. . . .
——————————————————————————————————————
————————–
RAFT: ##Reason: The screenwriter with credits for the film “Evolution,” starring
Nicolas Cage and Téa Leoni, is David Weissman. This information is provided in the
reference documents which mention David Weissman as a screenwriter with film credits
including “The Family Man” (2000), “Evolution” (2001), and “When in Rome” (2010).
Therefore, the screenwriter for “Evolution” is David Weissman. ##Answer: David
Weissman ✓

DSF: The Family Man ✗

Figure 3.4: Comparison of RAFT and DSF: We prompt RAFT and DSF fine-tuned
models on the HotpotQA dataset. We can see that the DSF model extracts the wrong
information from the context. For the question, who is the screenwriter, it responds with a
film name. RAFT manages to get the result correctly .

3.5 RAFT Generalizes to Top-K RAG

After demonstrating the performance of RAFT on various benchmarks, we now study another
important problem: How does the number of distractor documents in RAFT affect the
model’s performance when augmented with top-k retriever augmented generation (RAG)
result during the evaluation? Previous research has highlighted the vulnerability of LLMs
to irrelevant text (see studies [86, 125, 151]). This issue is particularly critical for LLMs
+ RAG since top-k RAG is frequently employed at test time to ensure high recall. Such a
scenario necessitates the model to have the ability to discern and disregard irrelevant content,
focusing solely on pertinent information.
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Figure 3.5: How many golden documents to involve? We study the hyperparameter
P% which indicates what fraction of the training data contains the oracle document(s) in its
context. Results on NQ, TQA and HotpotQA suggest that mixing a fraction of data that
does not have the oracle document in its context is helpful for in-domain RAG.

Making Model Robust to top-K RAG

To tackle the challenge of enhancing large language models’ (LLMs) ability to sift through
irrelevant text within the retrieval pipeline, our analysis revealed that training solely with
oracle (highly relevant) documents can inadvertently diminish the model’s ability to discern
and disregard irrelevant information. To address this, our algorithm, RAFT , adopts a
strategy that integrates oracle documents with a mix of irrelevant ones. This methodology
prompts us to investigate the ideal fraction of negative (irrelevant) documents to incorporate
throughout the training process and to assess how well this training approach adapts to
different volumes of documents encountered by the Retrieval-Augmented Generation (RAG)
during the test phase. Our aim is to refine the balance between relevant and irrelevant
information to strengthen the model’s efficiency in identifying and utilizing pertinent content.
Notice that Sec 3.4 looked at what P% of training data should include distractors, while in
this section, we study test-time scenarios.

Training with negative documents. To enhance the robustness of LLMs against irrele-
vant text in retrieved documents, we adopted a finetuning approach that incorporates both
golden (highly relevant) documents and distractor (irrelevant) documents. The model was
trained with varying numbers of distractor documents, but consistently evaluated using the
top-k documents obtained from the retriever - not to be confused with p.

Our findings, detailed in Fig. 3.6, reveal that finetuning with only the oracle document
frequently results in inferior performance compared to configurations that include a greater
number of distractor documents. As we can see in the figure, the better performance for
Natural Questions is training with D∗ + 3D and it is D∗ + 1D documents with Hotpot QA.
This insight has been particularly beneficial for our algorithm, RAFT . In our experiments, we
typically employ a training setup consisting of 1 oracle document alongside 4 distractor docu-
ments. This approach strikes a balance, ensuring the model is not overwhelmed by distractors
while still gaining the ability to effectively discern and prioritize relevant information.
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Figure 3.6: Test-Time Documents Varying: We study how robust RAFT is to varying
numbers of test-time documents that a retriever might provide. In NQ, we find that training
with 4 documents leads to the best performance, but training with 2 documents is optimal
for HotpotQA. However, across both datasets, training with all datasets consisting of oracle
documents hurts performance.

Generalization to a variable number of test-time documents. We extended our
research to examine the impact of different quantities of test-time documents on the model’s
performance. Specifically, our experiments focused on assessing how models, trained with
varying numbers of distractor documents, respond to changes in the number of documents
presented at test time.

The results, illustrated in Fig. 3.6, confirm that the inclusion of distractor documents
during training indeed makes the model more resilient to fluctuations in the number of
documents encountered during testing. This ability to maintain consistent performance
despite variations in test-time document numbers further validates the robustness of our
approach, RAFT . This finding underscores the importance of a well-calibrated training
environment to prepare the model for a range of scenarios it may encounter in real-world
applications.

3.6 Related Works

Retrieval-augmented language models. RAG enhances language models by integrat-
ing a retrieval module that sources relevant information from external knowledge bases,
significantly improving performance across various NLP tasks, including language model-
ing [10, 13, 48, 63, 81, 127, 128, 144, 160] and open-domain question answering [57, 74].
This integration follows a “retrieve-and-read” paradigm where the retrieval module provides
additional context from external sources, which the LM then uses to generate the final output.
The retrieval process involves using the input as a query to fetch documents, which the LM
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incorporates for final predictions. For instance, Atlas [57] fine-tunes T5 models with the
retriever, treating documents as latent variables, while RETRO [13] modifies the decoder-only
architecture to include retrieved texts and conducts pre-training from scratch. kNN-LM [63]
interpolates between the LM’s next token distribution and distributions computed from
retrieved tokens at inference. [114, 128] assume black-box access to an LM and combine it
with either off-the-shelf or fine-tuned retriever.

Memorization. A key question around large neural language models is whether they
truly “understand” text [37, 110] or simply rely on surface pattern memorization [20, 135].
[19, 20, 37] develop methodologies to quantify the extent of memorization in neural models.
[15, 90, 110] further explored how memorization impacts the models’ generalization capabilities.
Recently, a seminal work by [21, 126] demonstrated the ability of language models to memorize
and regurgitate training data, raising significant privacy concerns [61, 103].

Finetuning of LLMs. Recent years have seen rapid progress in developing large-scale
language models (LLMs) [1, 6, 15, 139, 139, 154]. To adapt these foundation models to
downstream tasks, fine-tuning [30, 58, 81, 94, 95, 118, 172] has become a prevalent approach.
Traditional supervised fine-tuning may be limited by the cost and compute required for
adapting LLMs. Addressing these challenges, research in the realm of parameter-efficient
fine-tuning [51], such as Prompt Tuning [73], Prefix-Tuning [77], P-Tuning [87] and Low-Rank
based fine-tuning [52], has gained traction. These methods enable LLMs to acquire domain-
specific knowledge and adapt to specialized tasks such as question answering, summarization,
and dialogue generation. Another branch of finetuning is through RLHF [85, 102, 113, 169],
which adopts RL to align LLM’s preference with human.

Finetuning for RAG. More recently, several papers have been exploring the idea of
finetuning a pretrained LLM to be better at RAG tasks [82, 89, 144, 160]. These works focus
on constructing a combination of finetuning dataset for RAG and train a model to perform
well on these tasks. In particular, in their settings, at test time, the domain or documents
can be different than the training time; whereas our work studies a slightly opposite scenario
where we only care about testing the LLM on the same set of documents.

3.7 Conclusion

RAFT is a training strategy designed to enhance the model’s performance in answering
questions within a specific domain, in “open-book” settings, and demonstrates a fine-tuning
recipe for LLMs for question-answering tasks based on a selected collection of documents.
Our design decisions include training the model alongside distractor documents, organizing
the dataset so a portion lacks oracle documents in their context, and formulating answers in
a chain-of-thought manner with direct quotations from the relevant text. Our evaluations on
PubMed, HotpotQA, and Gorilla API Bench show RAFT’s promising potential. Looking
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forward, we anticipate that in-domain RAG will continue to gain interest within both industry
and academia. Unlike general RAG, our work addresses practical scenarios where LLMs
are tasked with answering questions using domain-specific knowledge. Our findings suggest
that smaller, fine-tuned models are capable of performing comparably well in domain-specific
question-answering tasks, in contrast to their generic LLM counterparts.
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Chapter 4

GoEx

4.1 Introduction

A world where LLMs can be utilized to be far more useful than they are today—one where
they can manage schedules, automate tasks, and interact with a wide range of services—is
on the horizon. Such LLM-powered applications have the opportunity to provide higher
utility to the user but require LLMs to have access to user accounts across multiple services,
necessitating the handling of sensitive user data (e.g., user credentials). Existing systems
from major LLM providers avoid storing any sensitive data at the expense of functionality.
For example, GPT plugins [101] requires a user to copy-paste the LLM output (e.g., a grocery
list) into the target application (e.g, Instacart), which is not only cumbersome for the user
but limits how autonomous the LLM can be.

The fundamental challenge in enabling LLMs to operate autonomously on user accounts is
that the LLM is untrusted, yet it needs to run in a trusted or authorized user account. This
presents a significant security risk, as the LLM may execute tasks that do not align with user
intentions due to their inherent unreliability [115, 170] and the ambiguous nature of human
language [55, 157]. Further, in non-autonomous settings, humans verify the correctness and
appropriateness of the LLM-generated outputs (e.g., code, functions, or actions) before putting
them into real-world execution. This poses significant challenges as code comprehension is
well known to be notoriously difficult.

We argue that in many cases, “post-facto validation”—verifying the correctness of a
proposed action after seeing the output—is much easier than the aforementioned “pre-facto
validation” setting [106]. The core concept behind enabling a post-facto validation system is
the integration of an intuitive undo feature, and establishing a damage confinement for the
LLM-generated actions as effective strategies to mitigate the associated risks. Using this, a
human can now either revert the effect of an LLM-generated output or be confident that the
potential risk is bounded. We believe this is critical to unlock the potential for LLM agents
to interact with applications and services with limited (post-facto) human involvement. Our
open-source runtime for executing LLM actions, Gorilla Execution Engine (GoEx), solves
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this by relying on existing primitives for API invocations in databases (transactions),
file-systems (git), and RESTful calls (by maintaining a pair of actions and undo-action
pairs). This is discussed in Section 4.3.

With undo semantics addressed, the question then lef to address is one of damage
confinement: How can we limit the damage that an untrusted LLM can cause when operating
on behalf of users’ accounts?

Consider the following example: Alice wants to ask her LLM-powered digital assistant to
check her email for any upcoming deadlines. The LLM needs access to Alice’s email account
to read her emails, and the straightforward approach is to give the LLM direct access to
Alice’s email credentials. However, this approach has several drawbacks:

1. Unreliable and untrustworthy LLM execution. LLMs are inherently unpredictable
and may execute tasks that do not align with user intentions [164]. For example, Alice’s
LLM, though tasked with reading her email, may also mistakenly send a sensitive email
to the wrong recipient (e.g., her manager).

2. Centralization of user credentials. The LLM provider becomes a central point of
attack, as it has access to all user credentials across all applications.

Given the nascent state of the field, there is little work on enabling LLMs to operate
autonomously on behalf of users’ accounts and to the best of our knowledge, existing systems
do not address these challenges. For example, SecGPT [157] focuses on isolating LLM-powered
applications from each other to secure the overall system, but assumes that there is a trusted
LLM that acts as the planner interpreting whether the users’ requests require invoking an
app or an LLM. Given the unreliability of LLMs, the planner could end up sending an email
to the Alice’s manager instead of reading an email. Industry offerings such as Rabbit’s
R1 [117] require the user to provide credentials to their server. Although existing software
runtimes like web browsers and mobile operating systems run untrusted code (e.g., browser
extensions, mobile apps), these systems are not directly applicable because LLM-powered
systems involve an untrusted and unreliable LLM executing general-purpose tasks, whereas
historically, browser plugins have been designed for specific functionalities. There is also a
rich line of work centered on improving trustworthiness and reliability of an LLM, which while
shows promise, does not provide rigorous or fully reliable guarantees [153]. Despite the rapid
progress in improving LLMs, there remains a non-trivial risk that these models might still
execute tasks in ways that misalign with user intentions or produce harmful outputs [170].

Instead, we draw inspiration from classical systems security design principles, such as
enforcing least privilege [32], separating the credentials from the LLM provider [91], and
confining the LLM against the source of ground truth (i.e., human approval) [84]. In this
chapter, we propose GoEx, a runtime for enabling autonomous LLM-powered applications
while confining the damage that an untrusted LLM can cause. Central to GoEx is our novel
architecture (illustrated in Fig. 4.1), which incorporates these security principles to ensure
that the LLM-powered application operates strictly within the boundaries set by the user.
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First, we separate user credentials from the LLM, ensuring that the LLM provider never
sees user credentials. Instead, we store user credentials in a “secure vault” that is only
accessible to the runtime. We then sandbox the LLM by only allowing it to access the user’s
accounts through the runtime, which enforces the permissions granted by the user. The
runtime expects the LLM to produce actions (e.g., API calls) and the scope of permissions
needed to execute those actions. We enforce permissions at the granularity granted by
the application provider (e.g., OAuth 2.0 [50] scopes). The runtime ensures that the LLM
operates strictly within the boundaries set by the user.

We treat the user as the source of ground truth, and we take inspiration from mobile
operating systems [38, 39, 40, 41, 150], which have well-studied paradigms for implementing
user permissions. Our system asks the user for permission before the LLM executes an action.
We map the permissions needed for an action to human-readable descriptions. In order to
map API calls to their respective scopes, we leverage self-consistency [145] in order to improve
robustness and a-priori knowledge of scopes the user has pre-approved. The user can then
grant or deny the permission based on the description, has the option to grant permissions
permanently or for a single use, and can revoke permissions at any time.

We illustrate our approach with the previously mentioned example: consider an LLM-
powered personal assistant that reads a user’s email and instead sends a sensitive email to
the user’s manager. The LLM generates an action to send an email to the user’s manager,
and the runtime maps this action to the permissions needed to send an email. The runtime
then asks the user for permission to send emails on behalf of the user. The user can grant or
deny the permission based on the description provided by the runtime, and since the user’s
intention was to have the LLM read an email, they can prevent the sensitive email from being
sent to the user’s manager.

In summary, we make the following contributions:

• We propose a novel architecture for enabling autonomous LLM-powered applications while
confining the damage that an untrusted LLM can cause (Section 4.3).

• We enforce the principle of least privilege by separating user credentials from the LLM (Sec-
tion 4.4) and confining the LLM against the source of ground truth, i.e., human ap-
proval (Section 4.6).

• We implement GoEx, a runtime that maps LLM-generated actions to permissions (Sec-
tion 4.5), and enforces the permissions granted by the user.

We evaluate our approach on 10,204 APIs across 595 scopes from 250 popular services
including BigQuery [47], Blogger, DNS, Google Chat, Google IAM, Gmail, Redis, Slack,
Spanner [33], Uber, Youtube, etc. We find that our techniques for mapping user intent to
permission scopes and APIs leads to excessive permissions to be granted in only 0.5% of the
scenarios even if the user approves every scope request.
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Figure 4.1: GoEx workflow. GoEx “sandboxes” the untrusted LLM by only allowing it
to access the user’s accounts through the runtime, which enforces the permissions granted
by the user. Depending on the authorizations the user has granted, GoEx may or may not
ask for further permissions. Based on the user’s response to the permissions request, GoEx
executes the API call (dashed lines).
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Figure 4.2: Evolution of LLMs powered applications and services. From chatbots,
to decision-making agents that can interact with applications and services with human-
supervision, to autonomous LLM-agents interacting with LLM-powered apps and services
with minimal and punctuated human supervision.
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4.2 Background and motivation

In this section we start-off by presenting an overview of the evolution of LLM-powered systems.
We then present challenges from such a system to motivate the need for a least-privilege
runtime for LLMs.

Evolution of LLM-powered systems

The evolution of LLM-powered applications is illustrated in Fig. 4.2. LLMs have advanced
from simple chat bots to become actionable, decision-making agents that can engage with
applications and services under human oversight, and are progressing towards a future where
autonomous agents interact with other LLM-powered apps and services with only sporadic
and limited human supervision.

Passive, read-only applications

LLMs have transformed the landscape of human-computer interaction. With early adoption
as chat bots, these models were designed to mimic human conversation, allowing users to
interact with computers in natural language. This era of LLMs focused on understanding and
generating answers, serving as a bridge for humans to interact with vast amounts of web data
in a more intuitive way. Early implementations were primarily used in the read-only model
for information retrieval where the LLM did not make any state-ful changes [17], laying the
foundation for more sophisticated applications.

Actionable LLMs

Increasing trustworthiness [143], wide-spread know-how of fine-tuning models, and novel
techniques [107, 121] have expanded the role of LLMs from passive providers of information
to active agents capable of executing simple tasks. These agents, powered by LLMs, can
interact with applications, services, and APIs to perform actions on behalf of the user. This
shift represents a significant leap in the capabilities of LLMs, enabling them to contribute
actively to workflows and processes across various domains.

As LLMs become more integrated into daily workflows and systems, they are expected to
play a significant role in enhancing functionality and adaptability across various domains [14,
26, 27, 54, 72, 99, 104, 105, 155, 171]. However, this evolution also brings challenges, which
we elaborate on in the next subsection.

Challenges with integrating LLMs

Unreliability

LLMs, especially closed-source and continuously-updated models from third parties (e.g.,
ChatGPT [100], Claude [8], and others), introduce new challenges in ensuring the reliability
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and correctness of the overall system. The integration of LLMs into software systems
challenges traditional paradigms of unit testing and integration testing. While closed-source
and continuously pre-trained LLMs from third-parties pose a new challenge of the model
constantly changing, running in-house LLMs is no panacea either. Given the dynamic, often
unpredictable nature of LLM outputs, establishing a fixed suite of tests that accurately
predict and verify all potential behaviors becomes increasingly difficult, if not impossible.

Protecting sensitive data

In order for LLMs to interact with a user’s accounts across multiple applications, the LLM
must be able to reason about having access to credentials, thereby, granting access to the
user’s accounts. When an LLM is hosted by an (untrusted) external service, it is desirable
to not directly pass any credentials or sensitive data to the LLM while still preserving
functionality of the LLM-powered system. As mentioned in Section 4.2, LLMs can also
generate (untrusted) code and are susceptible to hallucinations [115, 170]. This can result in
running potentially malicious code or inadvertently performing actions that were not intended
by the user.

Case study: Checking emails

We now revisit the use case mentioned in Section 4.1 where Alice is using an LLM to check
her email. Alice asks her LLM-powered digital assistant to check her email for any upcoming
deadlines. The LLM needs access to Alice’s email account to read her emails and produce a
summary. As LLMs can be unreliable (Section 4.2), the LLM may mistakenly send a sensitive
email to the wrong recipient (e.g., Alice’s manager) while reading her emails.

4.3 System Design

In this section we first present the threat model (Section 4.3) for our runtime, and then
describe our system (Section 4.3).

Threat model

We consider an LLM-powered system that executes the outputs of the LLM—which may call
external tools or services—on behalf of the user. We assume that the LLM is not malicious,
but it is unreliable and error-prone, since LLMs can exhibit unreliable and unpredictable
behavior [5], and natural language can be ambiguous [55, 157]. The LLM may produce
outputs that are not aligned with the user’s intentions, and may make mistakes. We consider
the LLM to be untrusted, as it may execute tasks that are not intended by the user. We
consider the user to be the source of truth; that is, we consider permissions authorized by
the user to be within the “safe” scope of operation for the LLM.
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In the presence of an unreliable LLM as previously described, we desire the following
security guarantees:

1. Decentralized user credentials. User credentials should not be centralized anywhere
in the system. There cannot be a single point of failure in which all users’ secrets can be
compromised.

2. Confidentiality of user credentials. The LLM provider should not learn user credentials
and secrets through prompts at inference time.

3. Safe execution of LLM output. The LLM’s output should be safely executed. We
define safe execution of LLM output as execution that is either (1) in alignment with
the user’s intentions; (2) can be undone; or (3) operates strictly within the boundaries
permitted by the user.

We assume that the service providers implement their APIs correctly and enforces permis-
sions within their services. We also trust each service provider with the documentation of
permissions and function calls within their API.

Reversibility and Undo Semantics

When possible, actions executed by an LLM should give users the right to undo an action.
This approach may require maintaining multiple versions of the system state, leading to
high costs in terms of memory and computational resources. Furthermore, the feasibility
of implementing undoing an action is often dependent on the level of access granted to the
system. For instance, in file systems or databases, where root access is available, undoing
actions is possible. However, in scenarios where such privileged access is not granted, such as
in email clients like Gmail, the ability to undo an action may be limited or require alternative
approaches. One potential solution is for the runtime to make a local copy before deleting,
which introduces additional state to the runtime but enables undo for email deletion.

To account for the resource costs associated with maintaining multiple system states, we
adopt the notion of a commit, also called a “watermark” in streaming data-flow systems [3,
18]. By grouping together sets of actions based on their associativity, commutativity, and
distributive properties, it may be possible to define checkpoints at which the system state
can be saved or rolled back. This approach would enable selective undoing of actions within
a defined scope, rather than maintaining the ability to undo every individual action.

System overview

GoEx’s architecture (Fig. 4.1) consists of three main components: the Secure Intelligence
Vault, the Least-Privilege Mapper, and the Execution Runtime. The Secure Intelligence
Vault stores user credentials and secrets, ensuring that they are never centralized. The
Least-Privilege Mapper maps LLM-generated actions to permissions, ensuring that the LLM
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operates within the boundaries set by the user. The Execution Runtime executes the LLM-
generated actions, enforcing the permissions granted by the user. The Execution Runtime
is responsible for presenting undo semantics, and actually executing all the API calls. We
describe this in Section 4.7.

We illustrate the workflow of the system in Fig. 4.1, and explain with the aforementioned
example (Section 4.2): ① Alice asks GoEx to check her email for any upcoming deadlines. ②

GoEx then sends this request to the LLM which generates an action to read Alice’s emails
and the permission scope(s) needed to execute the action. In this case, assume the LLM
generates an action to read Alice’s emails and the permission scope needed is the read-only
permission. ③ The GoEx runtime requests the read-only scope from the secret vault, and
the vault asks Alice for permission to read her emails on her behalf. ④ Alice can grant or
deny the permission based on the description provided by the runtime, and authorizes the
read-only scope, providing the runtime with the corresponding token. ⑤ The GoEx runtime
fills in the API call with the token and executes the action to read Alice’s emails, and sends
the output of that action to the LLM, which then reads the emails and produces a summary
of upcoming deadlines. ⑥ GoEx returns the resulting summary to Alice.

4.4 Separating user credentials from the LLM

In order to ensure that user credentials are never centralized, we store them in a secure vault
that is only accessible to the runtime. The LLM never has access to user credentials, and
the runtime only accesses the vault when executing LLM-generated actions. This separation
ensures that user credentials are never exposed to the LLM provider, even in the presence of
a compromised LLM provider.

Authentication

GoEx provides a secure way to handle user secrets, whether using OAuth2 for token-based
authentication or API keys for direct service access. GoEx acts as the secure intermediary to
facilitate authenticated actions across various services. For OAuth2, GoEx sits between the
user and services, facilitating the necessary relay to retrieve access tokens. These tokens allow
users to delegate the GoEx system to perform actions on their behalf. For other services that
authenticate accounts through API keys, GoEx provides an interface that allows users to
insert and retrieve them.

Symbolic permissions

In order to hide the actual permissions from the LLM, we use symbolic permissions that are
mapped to actual permissions at runtime. The LLM generates actions that are associated
with symbolic permissions, and the runtime maps these symbolic permissions to actual
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Option 2

Option 1

GoEx

Please check my email for any relevant 
deadlines.

LLM

GET gmail/.../messages
Scope: auth/gmail.readonly
Scope: auth/gmail.modify
Scope: auth/gmail.metadata
Scope: mail.google.com

POST gmail/.../messages/send
Scope: auth/gmail.readonly
Scope: auth/gmail.modify
Scope: auth/gmail.compose
Scope: mail.google.com

1. Read, compose, send, and 
permanently delete all your email 
from Gmail
2. View your email message 
metadata such as labels and headers, 
but not the email body
3. View your email messages and 
seings
4. Manage dras and send emails
5. Read, compose, and send emails 
from your Gmail account

1. Read, compose, send, and 
permanently delete all your email 
from Gmail
2. View your email message 
metadata such as labels and headers, 
but not the email body
3. View your email messages and 
seings
4. Manage dras and send emails
5. Read, compose, and send emails 
from your Gmail account

✔

✔

✗
✗

✗

Request

Permission request

Permission response

…

One-time

Permanent

Request’

Figure 4.3: Example of the email use case (Section 4.2) and the permissions needed
to execute the action. The least-privilege mapper (Section 4.5) maps the action to the
permissions needed to execute the action. The runtime then requests the permissions from
the user (Section 4.6), who, in this example, grants all read-only permissions but denies any
write permissions.
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API database

Examples

Delete messages older 
than 60 days.
{conversations.history, 
groups:history}, 
{chat.delete, chat:write}
…

Few-shot learning Self-consistencyIn-context learning with 
retrieval-augmented generation Scope constraint
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Figure 4.4: Different techniques to map user intent to set of APIs and scopes.
RAG-based techniques of in-context learning and self-consistency perform much better than
our baseline of few-shot learning. In RAG, the user prompt is augmented with relevant
documents from a database. The scope constraint improves user-experience by lowering the
number of times we request users for additional scope required to accomplish a task.

permissions based on the user’s authorization. This ensures that the LLM does not have
direct access to the user’s permissions, and that the permissions are enforced by the runtime.

Storing secrets

User secrets and keys are stored locally on the user’s device in a secret credential store (SCS),
which maps service name to key and format. When the user wishes to interact with specific
service(s), the corresponding keys are requested from the SCS. The format specifies how the
keys are stored (e.g., file or string). The role of the SCS is to selectively retrieve just the
required keys for a given execution. For example, if a user wants to send an email invite to
their friend for lunch, the agent only needs their OAuth2 token for their email provider’s
API, and not, for example, their key with scope associated with reading their bank accounts.

4.5 Least-Privilege Mapper

GoEx adopts the principle of least privilege to grant the run-time only those permissions
which are essential for its intended function. However, mapping the user intent to a set of
APIs and scopes is challenging, due to the unpredictability of LLM actions and the ambiguity
of human language.
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Challenges

Creating a least-privilege mapper requires overcoming the following challenges:

1. Complexity of scope definitions. The integration of LLMs into service operations
involves navigating an extensive array of permissions. Each service, such as Google
Workspace [43] or Microsoft Azure [93], defines numerous scopes (e.g., permissions or
access levels) that can be granted to an application. These scopes range from reading basic
user profile information to modifying sensitive data or configuring service settings. For
example, a service like Google Drive may offer scopes from solely reading files to complete
management over all of a user’s files.

2. Challenges in mapping actions → scopes. Determining the appropriate scope for a
particular task is further complicated by the fact that for many services, multiple {API,
scope} pairs could potentially accomplish the same task.

3. Hierarchy of scopes. Moreover, the absence of a formal hierarchy or clear granularity
in scope levels further complicates the enforcement of principle of least-privilege. For
example, it is often not straightforward to determine whether an “owner” privilege is
more or less restrictive than an “admin” privilege because these terms’ semantics can vary
significantly across different services.

Strawman: Static mapping of actions → scopes

One can overcome the above challenges to some extent by having a predefined, static set of
{API, scope} mappings for a set of APIs. However, supporting a new set of APIs would
require updating this mapping, which limits the generality of our runtime. We elaborate on
the desired properties of our least-privilege mapper in the next subsection.

Desired properties

A. Generality and flexibility. A key requirement for the GoEx system is generality. The
LLM should be capable of extending its functionality to APIs that it was not explicitly
trained on. This requires a flexible and dynamic mapping system that can interpret the
intended action from the natural language query and map it to the most appropriate and
minimal scope required to perform that action securely.

B. Scope reuse. Further for agentic systems, it is ideal to re-use the same scopes that were
granted before. For example if the user has already granted GoEx scope {scopea, scopeb}
for a service, then, if there are two alternative API, scope pairs for accomplishing the
user task say {API1, scopea} and {API2, scopec} than the GoEx system should ideally
choose {API1, scopea}.
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Dynamically mapping LLM-generated actions to permissions

To address the challenges and achieve the desired properties listed above in mapping user intent
to a set of APIs and scopes, GoEx leverages recent advancements in LLMs. Specifically, we
explore the following techniques: few-shot prompting [15, 112], retrieval-augmented generation
(RAG) [75], and self-consistency [145]. We depict these techniques in Fig. 4.4. Few-shot
prompting [15, 112] introduces several example pairs of requests and the corresponding {API,
scope} pairs to guide the model in the formatting of the response. We first provide a brief
overview of each technique and then explain in more detail their respective subsections.

In the few-shot setting, we do not provide the documentation for the API calls and
instead rely on the model’s extensive training to already cover the APIs of interest (4.5).
Retrieval-augmented generation (RAG) [75] relies on the retrieved APIs’ documentation
for the likely APIs to help guide the model to invoke the API correctly. RAG relies on an
retrieval process to identify APIs that might be relevant to the user’s request based on their
service. However, it is possible that the correct API may not be retrieved and that the
retrieve APIs could be wrong or distracting (Section 4.5). We use few-shot learning and RAG
as baselines to implementing the least-privilege mapper.

To improve robustness of the LLM’s generations, we also explore the using self-consistency [145],
which leverages the stochasticity of the generation process to sample multiple possible API
and scope selections and then select the most likely from the set of k samples (Section 4.5).
Further, the user could have approved certain scopes a-priori, or in a previous interaction. Ide-
ally, GoEx would find APIs that can accomplish the user’s task without requesting additional
scopes (Section 4.5).

Baseline: Few-shot learning (no RAG)

In this approach we utilize 2 in-context examples to guide the LLM in generating API calls
and the surrounding code to generate them. These examples serve as templates to follow, but
do not include any relevant information about the service or the API. The examples chosen
are fixed independent of user’s intended action. Using 2 in-context examples, also known as
few-shot learning, is a technique to ground the format of LLM generation [15]. This is the
second most popular way to use the LLM, besides the most popular way to naively prompting
the LLM with the intended goal a-la ChatGPT. If one were to naively prompt GPT, we find
the performance to be quite poor since the output is not grounded. For example, the model
can start a verbose monologue without giving any code or API as output. The technique we
adopt and this method tests the LLM’s ability to infer correct actions from a limited set of
closely related precedents and it’s pre-training dataset.

Baseline: In-context learning with RAG

In this technique, we enhance the LLM’s context with a retrieval-augmented generation
mechanism. The system includes all relevant APIs in the context (prompt) to provide a rich
option-set, which the LLM can draw from. This improves the accuracy and relevance of the
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API call generation by leveraging a broader base of knowledge. To construct such a system,
we first consider the prompt and find the similarity of the prompt to a service. For example,
for a user prompt of “I would like to send a message to @Bob on Slack”, GoEx will fetch
all the APIs of the Slack service and append that to the user’s prompt before feeding that
into the LLM. The LLM can then pick the most relevant API for inference. The mapping of
prompt to service is relatively straight-forward, and the techniques range from sub-string
matches to using an AI based solution [107, 111]. Similarly, in GoEx we include all the APIs
from a service, although potential optimizations include filtering the set of APIs based on
semantic similarity. Both of these are out of scope from the view of this work.

GoEx self-consistency

Self-consistency [145] is a recently introduced state-of-the-art technique that improves the
LLM’s ability to reason in math. We demonstrate how self-consistency can be adopted in our
domain of mapping scopes and APIs to user intent. Under the self-consistency approach, the
input prompt to the LLM remains the same - the system generates k possible responses, and
then finds the scopes with the largest agreement from all the k generations. We demonstrate
how this technique can reduce errors and increase confidence in the selected API’s scope by
emphasizing consistency across multiple generated outcomes. k is a hyperparameter, and we
demonstrate the sensitivity to different values of k with the best performance at k = 10.

GoEx introducing scope constraints

Often, in the course of the user interactions with GoEx the user could grant scopes for a
period of time. In such scenarios, where GoEx already has access to certain scopes, we
pre-select a scope based on the intent before generating the API call. Here, the LLM is tasked
with generating an API call that fits within the predefined scope, focusing the generation
process and we evaluate if the LLM could choose APIs that could be executed with requiring
additional scopes.

4.6 Asking the user for permission

In GoEx, users are the ultimate arbitrators in determining which scopes and for what service
can be delegated to the runtime. An integral part of this is to present users with appropriate
information to make informed decision.

Human-readable descriptions of permissions

We make the observation that most services have a well-documented API, and the corre-
sponding scopes are mapped to human-readable descriptions. We scrape the documentation
of the service to generate human-readable descriptions of the permissions needed to execute
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an action. We then ask the user for permission to execute the action, providing the user with
the human-readable description of the permissions needed.

As shown in Fig. 4.3, the permission request sent to the user is a human-readable descrip-
tion from the Gmail API documentation [44]. For example, the scope mail.google.com is
mapped to the description, “Read, compose, send, and permanently delete all your email from
Gmail.” Since Alice only wanted to read her emails, she can deny the permission request
for this scope. Note that a least-privilege permission implies that there is some ordering on
permissions. We assume that this ordering is determined by the user as the user can grant or
deny permissions based on the human-readable descriptions provided by the runtime. That
is, a permission that the user grants is considered to be lower privileged than a permission
that the user denies.

Permission granting model

We take inspiration from mobile operating systems [9], which have well-studied paradigms
for implementing user permissions. This permission granting model is also present in
SecGPT [157], which uses this to grant permissions between different LLM applications
interacting with each other. We use this permission granting model in the context of the user
granting permissions to an LLM-powered application to act on behalf of the user.

One-time grant

A one-time permission grant allows the LLM to execute an action using that permission once,
and the permission is revoked after the action is executed. This is useful for actions that the
user does not want the LLM to execute again.

Session grant

A session permission grant allows the LLM to execute actions using that permission for the
duration of the user’s request. The permission is revoked after the session ends.

Permanent grant

A permanent permission grant allows the LLM to execute actions using that permission
indefinitely. The permission is not revoked until the user explicitly revokes it. This is useful
for actions that the user wants the LLM to execute repeatedly.

4.7 Execution Runtime

GoEx’s execution runtime supports a range of “actions” including RESTful API requests (Sec-
tion 4.7), databases operation (Section 4.7), and filesystem actions (Section 4.7). Each action
type, while initiated from a unified GoEx interface, are handled uniquely as described below.
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RESTful API calls

We first describe how GoEx handles RESTful API calls (illustrated in Fig. 4.5).

Figure 4.5: GoEx’s runtime for executing RESTful API calls. Upon receiving the user’s
prompt, GoEx presents two alternatives. First, an LLM can be asked for an (Action,
Undo-Action) pair. Second, the application developer can provide tuples of actions and their
corresponding undo-actions (function calls) from which the LLM can pick amongst.

Authentication. GoEx provides a secure way to handle user secrets, whether using OAuth2
for token-based authentication or API keys for direct service access. GoEx acts as the secure
intermediary to facilitate authenticated actions across various services. For OAuth2, GoEx
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sits between the user and services, facilitating the necessary relay to retrieve access tokens.
These tokens allow users to delegate the GoEx system to perform actions on their behalf.
For other services that authenticate accounts through API keys, GoEx provides an interface
that allows users to insert and retrieve them.

Storing secrets. User secrets and keys are stored locally on the user’s device in a Secret
Intelligent Vault (SIV). SIV maps service name to key and format. When user wishes to
interact with specific service(s), the corresponding keys are requested from the SIV. The
format specifies how the keys are store, that is, in a file, or as a string, etc. The role of the
SIV is to selectively retrieve just the required keys for a given execution. For example, if
a user wants to send an email invite to their friend for lunch, the agent only needs their
OAuth2 token for their email provider, and not, for example, their bank account’s API keys.
The policy used for SIV is user-defined and highly flexible; it could be as simple as parsing
through the user prompt to detect which service’s keywords are present, or as complex as a
fine-tuned prompt-to-service retrieval model.

Generating actions. The GoEx framework supports two techniques to generate the
APIs. In the Chat Completion case, assuming the user prompt is, “send a Slack message
to gorilla@yahoo.com,” the user must initially authorize GoEx to use their access token
through the Slack browser. After receiving the user prompt, GoEx requests the SIV for
the necessary secrets from the Secret Store. Slack secrets (OAuth2) are inherently hidden
because they are stored as a file, so GoEx passes the file path along with the prompt directly
to the LLM. GoEx mounts the Slack secret file and passes the LLM-generated code to be
executed in the GoEx container. If the user wishes to revert the execution, the reversion
call will be retrieved from the reversion set if it exists; otherwise, the handler prompts the
LLM to generate it. If the user chooses Function Calling, instead of asking the LLM to come
up with a command to satisfy the user’s prompt, GoEx asks it to select a function from a
user-defined function set and populate the arguments. Secrets will be chosen from the SIV
similarly, and execution occurs in the GoEx container. If the user wishes to revert, another
function from the function set will be chosen by the LLM.

Generating undo actions. First, we check if the reverse call for the action API is in the
database Reversion Set as shown in figure 4.5. GoEx presents the systems abstractions,
while developers are free to define the policies for mapping. For some APIs it might be
critical to check for exact match for all parameters of the API. On the other hand for some
other APIs, just the API name might be sufficient to uniquely identify what the reverse
API would be. For example it is not sufficient to say the reverse of send slack message is
delete slack message, since number of messages to delete could be an argument.

To populate such a mapping, first, we instruct the LLM to generate a reverse API call
whenever the user attempts to perform an action. We recognize that this gives no guarantees,
but the philosophy is that we allow the LLM to be wrong at most once. Post each new API,
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the table is then if the reversion worked or not making this information available for future
invocations. For applications that need guarantee, developers can pre-populate this table
and combined with function-calling mode of operation, the system can be forced to only use
those API’s that are ‘guaranteed’ by the developers to be reversible.

Damage confinement. Often reversibility cannot be guaranteed. For examples sending an
email isn’t really reversible. For such scenarios, GoEx presents abstraction to bound the worst
case. Currently, the way blast-radius-containment is implemented is through coarse-grained
access control, and exact string match. First, GoEx looks at the user’s prompt to determine
the end service that they are then authorized to use. For example, a prompt of I would like
to send a slack message would only need credentials for slack, and not, say, their bank. GoEx
currently does this, through a simple sub-string check of the prompt, while giving developers
the flexibility to adopt any mapping they might choose.

Execution. Once the API, and the set of credentials required are determined, the APIs
are then executed in a Docker container for isolation.

Database Operations

GoEx leverages the mature transaction semantics offered by databases. This section describes
the abstractions available, and the two default policies.

Abstractions

GoEx relies on the LLM to generate database operations, but there are two prerequisites
needed to execute database operations: (1) knowledge of the current database state, and
(2) knowledge on how to access the database. To provide these, DBManager class is used.
This allows the database to readily minimally query for the database state (e.g. only the
schema) to provide additional info to the LLM during prompting without leaking sensitive
data. It also tracks the connection configuration to the database so that connections can be
established without leaking credentials to the LLM as an untrusted third-party by asking the
user to store the credentials locally, and after the LLM generates the operation, GoEx then
executes the operation.

DBManager also assists the user store with storing a previous state. Here, the commit and
undo actions are introduced where a commit means the user permanently saves the executed
changes, and an undo reverses the aforementioned changes. Most modern databases also
provide ACID guarantees [49], including NoSQL databases like DynamoDB and MongoDB,
which we leverage to implement committing and undoing actions.
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Figure 4.6: Runtime for executing actions on a database. We present two techniques to
determine if a proposed action can be undone. On the left, for non-transactional databases
like MongoDB, and for flexibility, we prompt the LLM to generate (Action, Undo-Action,
test-bed) tuples, which we then evaluate in a isolated container to catch any false (Action,
Undo-Action) pairs. On the right, we can provide a deterministic undo with guarantees by
employing the transaction semantics of databases.

Policy

DBManager implements reversibility in two ways. The user chooses which one to use when
they execute a prompt in GoEx.

1. Option 1 (Reversal). Makes use of a reverse database operation to perform the undo.
It is done by prompting the LLM with the original operation (action call) along with the
schema to generate the reversal operation (undo call). Committing requires no action, and
undoing would just be performing the undo call after the action call is done. This option
scales better as additional users can continue perform database actions without needing
to wait for the previous user to finish their transaction at the cost of relying on the LLM
to come up with an undo call, which may or may not have unexpected behaviors.
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2. Option 2 (Versioning). Makes use of the traditional ACID transaction guarantees of
the database and holds off on completing a transaction until the user specifies to do so, or
rolls back to the previous state. Committing would involve committing the transaction,
and undoing is synonymous to a rollback transaction. This branch is able to provide
reversal guarantees that branch 1 cannot, at the expense of higher performance overhead.

Reversibility testing. Within Option 1, GoEx also performs a reversibility test to verify
that the generated reversal operation indeed reverses the original operation. This requires a
containerized environment to be separate from the original database to maintain the original
database state. Since copying over the database into the container is very expensive, the
approach is to ask the LLM to generate a bare-bones version of the database for reversibility
testing, given the action, undo calls, and the database schema. The outcome of the test is
sent back to the user for final confirmation before committing or undoing the operation. This
method allows for efficient testing by decoupling the testing runtime from being scaled by
the number of entries in the database.

File Systems

GoEx tries to present expressive abstractions to let LLM-powered systems to interact with file-
systems using Git version control. To track the directory tree, on every GoEx filesystem-type
execution, GoEx does an exhaustive, recursive walk of the directory and its sub directories
and stores the directory structure as a formatted string.

Abstractions

Filesystems operation support in GoEx uses abstractions similar to what is used to support
database operations. FSManager, is a filesystems manager that tracks (1) the directory tree
structure with all filenames, and (2) the directory path that the user wishes to execute the
filesystem’s operations in. The tree structure, which is updated with executions, enables the
LLM to generate operations that reflect the actual state of the user’s filesystem.

Utilizing the relevant abstractions presented by journaling and log-structured filesystem
for undo-semantics is left as future work, as the current GoEx system aims for compatibility.

Policy

The options are similar to the database case, where Option 1 is for reversals and Option 2
is for versioning. The largest differences are how FSManager carries out reversibility testing
and that versioning is accomplished using Git.

Git. GoEx uses Git to perform versioning. Since Git is already a version-control system for
files, it is a straightforward solution to use, but has several limitations. Git does not have
the ability to version track outside of the directory that it was initialized in. GoEx limits



CHAPTER 4. GOEX 62

Figure 4.7: Runtime for executing actions on a filesystem. GoEx presents two abstractions.
On the left, the LLM is prompted to come up with an (Action, Undo-Action, test-bed)
which GoEx evaluates in a isolated container to catch any false (Action, Undo-Action) pairs.
On the right presents deterministic guarantees by using versioning control system like Git or
Git LFS.

the user execution scope to the specified path in FSManager—which is always inside of a Git
repository—and its sub directories in accordance to our blast-radius confinement abstraction
to prevent the LLM from performing arbitrary actions in undesired parts of the user’s system.
With larger directories, Git versioning can be expensive space-wise. GoEx leverages Git LFS
for larger directories as an optimization. A threshold is defined for directory size that GoEx
would then check whether or not to initialize Git LFS (200 MB by default).

Reversibility testing. Similar to supporting databases operations, the LLM generates
the testing code using the action and undo calls, along with the directory tree. Inside
the container, the specified path is mounted in read-only mode to again do blast radius
containment. GoEx begins by duplicating the directory contents in the container, then run
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the action and undo calls on the copied directory, and finally compare contents. Depending
on the original operation, the content comparison can just be a check of filenames or an
exhaustive file content comparison of all the files. We rely on the LLM to come up with the
test-case. Unsurprisingly, here GoEx allows you to trade off guarantees for performance.

4.8 Evaluation

In this section, we ask the following questions to evaluate the effectiveness of the GoEx
framework:

1. To what extent is GoEx able to protect against unintended scope access?

2. What is the performance regression when using this framework compared to a baseline
scenario reflecting typical automation practices where the LLM is directly granted access
to credentials?

Given the intended versatility of an LLM runtime, it is crucial to test GoEx’s ability to
consistently understand and manage permissions across a diverse range of applications.
However, evaluating performance overhead and cost may focus on a single application, as
these aspects are expected to be relatively uniform across different applications.

Services considered

To study how robust the system is to such a design, we considered 250 popular services
including Slack, Uber, Google IAM, Google Chat, BigQuery [47], Redis, Blogger, DNS, Gmail,
Youtube, Spanner [33], etc. These services were picked based on ease of access to their API
documentation. For all the services, all the APIs were enumerated exhaustively. In total, they
constituted 10,204 APIs and 595 scopes. We plot the number of APIs and scopes available for
each service in Fig. 4.8. The set of APIs and scopes each service provider exposed is diverse,
ranging from a single API with only one possible scope for Public Certificate Authority [45]
to 778 APIs with tens of possible scopes for Google’s compute service.

Generating the evaluation dataset

To evaluate the efficiency of our system, we first curate the APIs available and their corre-
sponding scopes of all the services exhaustively. The data we collate for each API includes
the URL endpoint, the method (GET, PUT, POST, DELETE, etc.), an example invocation, and
the scopes—at least one of which is required to authenticate and successfully execute the
API. Given this data, we then need to generate a dataset that maps potential human intents
into an API call and scope pair. One example in our evaluation dataset is as follows: the
user prompt is Go through my slack messages with Bob and delete everything older than
60 days. We then append all the APIs from slack as a part of the input prompt for the
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Figure 4.8: Number of APIs available and scopes that can be chosen. Each dot
represents one of the 250 services, and its X-intercept corresponds to the number of APIs
that service exposes, and the Y-intercept represents the unique number of scopes that service
provides. In our dataset, services have between 1 to 778 APIs.

LLM to pick amongst. The expected output from the LLM are the conversations.history
and chat.delete APIs with scopes groups:history and chat:write respectively. In this
example, two APIs from the same service, Slack, are invoked. In all our experiments, we
evaluate GoEx’s ability to invoke at most three APIs from at most two services, which is a
limitation of our resources to generate, and time to validate the evaluation dataset, and not
a limitation of the underlying system GoEx.

To build this evaluation dataset we use the self-instruct paradigm [147]. First, we handcraft
6 examples of user prompts and their mapping to APIs and scopes that are needed to execute
the respective API calls. Then for each evaluation data point we want to generate, we sample
3 of the 6 handcrafted examples randomly and include that in the prompt to guide the LLM
on what needs to be done. This process is also called in-context learning [36]. We then
present a general-purpose LLM, say GPT-4, with all the APIs of a service, say, slack, and ask
the LLM to pick a (or a few) APIs and choose a potential user intent or prompt for which
the chosen API and scopes would be the right answer. Notice that by doing so, we are using
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the LLM to perform a very simple task of mapping the API to a question, as opposed to
mapping the question (human prompt) to an API. This approach is a standard recipe for
data generation [147]. The evaluation data generated in this fashion is not perfect. We then
manually inspect each of the data points to ensure consistency between the question (human
intent), and the corresponding API(s) and the scope(s). Self-instruct can be thought of as an
aid for the humans for coming up with {prompt, API, scope} tuples. In total, our evaluation
includes 2,790 unique data-points from 10,204 unique APIs across 250 services, with 595
possible scopes that can be granted.

Techniques to map intent to APIs and scopes

To evaluate the GoEx framework in its ability to map user intent to APIs and scopes to
user-intent, we establish the baseline and implement various techniques to map human
intent to specific API calls and their corresponding scopes that GoEx. Here, we describe
the methodologies used in this study, each designed to capture a different aspect of the
interaction between human intent and system execution capabilities. In our study, we use
few-show learning (Section 4.5) and in-context learning with RAG (Section 4.5) as our
baselines. We compare this baseline to GoEx’s least-privilege mapper, which leverages
self-consistency (Section 4.5) and scope constraints (Section 4.5). All the aforementioned
policies can be represented in GoEx within 13 lines of code, which highlights the modularity
of our system.

The primary input to our system is the user’s intent expressed in natural language, such as
”I want to send a message in Slack.” The output from the system is twofold: the specific API
call that accomplishes the intent, and the minimal scope necessary to successfully execute
the call without exceeding the permissions required.

LLMs considered

To demonstrate the ease of deploying GoEx, for the experiments in this chapter, we consider
three popular off the shelf LLM-models. We choose a dated checkpoint for all the three
models to ensure the underlying model does not change through the course of our exper-
iments. GPT-4 [1] refers to gpt-4-turbo-2024-04-09 from OpenAI. Claude [8] refers to
claude-3-opus-20240229 from Anthropic, and Mistral [137] refers to mistral-large-2402.
Note that Mistral is an open-source model while GPT-4 and Claude are proprietary models.
For all our experiments, we set a constant temperature of 0.3.

Least-privilege enforcement

This subsection evaluates the effectiveness of the GoEx framework in enforcing the principle
of least privilege, focusing on the ability of LLMs to select the minimal necessary permissions
for executing tasks. Our goal is to ensure that the permissions assigned align closely with
what is strictly required for the task, minimizing any overreach.
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Table 4.1 presents how well GoEx is able to map user intent to the respective least-privilege
scope. We measure the effectiveness of these strategies using three key metrics:

1. Scope excessive: We also report the unique case, where we assume there is no human-
in-the-loop, or the users’ naively said YES to all the scopes the LLM requested. Scope
excessive then is a measure of the the percentage of instances where the selected scopes
exceed what is necessary, reflecting over-privileging.

2. Scopes not sufficient : The percentage of instances where the scopes selected by the LLM
are inadequate for the task, reflecting under-privileging.

3. Scope accuracy : The percentage of instances where the LLM selects the exact scope needed
for the task. Scope accuracy measures the LLM’s ability to select the correct scope when it
is confident (Zero-shot column), and go back to the user to ask for additional clarifications
or scope permissions (User conf. column), either because the LLM is not confident, or
the user’s intent is not clear. This is more a measurement of our prompting technique
and the LLM itself. To enhance accuracy, the LLM is also allowed to request additional
information from the user when the necessary scope is unclear. This interaction aims to
reduce instances where the LLM accesses excessively broad scopes.

These metrics are critical for assessing both user experience and adherence to security princi-
ples. It’s important to note that while scopes deemed ‘not sufficient’ adversely affect user
experience by failing to perform the intended task, they do not compromise the security
principle of least privilege, as they do not allow execution of unintended or excessive per-
missions. We observe that the GoEx’s self-consistency technique achieves highly effective
results, with only 0.5% of cases resulting in the assignment of excessive scopes beyond what
is necessary for task completion. This technique consistently performs well across various
LLM models, and across different hyperparameter settings. This demonstrates the robustness
and adaptability of the self-consistency approach in ensuring that the scope of permissions
remains tightly aligned with the intended tasks across different computational contexts.

Runtime overhead of GoEx system

In this subsection, we analyze the additional latency introduced by GoEx compared to
the baseline scenario, where tasks are executed directly without asking the user for any
permissions (credentials are assumed to be given). We aim to quantify the trade-offs between
enhanced security through GoEx and the impact on job completion times.

To accurately measure the runtime overhead, we evaluated GoEx across a variety of
common user tasks in different applications, including message sending in Slack, managing
objects in cloud storage buckets, and controlling virtual machine (VM) instances on a cloud
platform. These tasks were chosen to represent a mix of both read (R) and write (W)
operations, reflecting typical user interactions in a cloud environment. All of these services
were run on a single node with the configuration kept constant throughout the experiment.
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Model Method Scope excessive (%) ↓ Scope not sufficient (%)
Scope accuracy (%) ↑

Zero-shot User conf. Total

Few-shot (no RAG) 22.9 25.8 43.4 0.0 43.4
RAG in context 1.7 5.0 91.1 0.0 91.1
Self-consistency (3) 0.9 2.4 82.1 13.1 95.1
Self-consistency (5) 0.7 2.1 79.7 15.9 95.6
Self-consistency (10) 0.5 1.9 75.3 20.4 95.7

GPT-4

RAG with scopes 0.3 6.8 89.7 0.0 89.7

Few-shot (no RAG) 25.8 22.9 43.4 0.0 43.4
RAG in context 2.1 9.2 84.8 0.0 84.8
Self-consistency (3) 1.8 3.6 68.0 22.1 90.1
Self-consistency (5) 2.7 1.0 62.7 26.1 88.8
Self-consistency (10) 2.0 2.7 49.0 36.9 85.9

Claude

RAG with scopes 1.6 5.3 87.6 0.0 87.6

Few-shot (no RAG) 26.5 31.3 42.1 0.0 42.1
RAG in context 1.3 10.9 39.9 0.0 39.9
Self-consistency (3) 1.3 9.4 40.2 13.3 53.5
Self-consistency (5) 0.7 5.7 40.4 18.4 58.9
Self-consistency (10) 1.1 4.7 39.1 31.9 70.9

Mistral

RAG with scopes 0.3 6.2 32.0 0.0 32.0

Table 4.1: Evaluating robustness of GoEx. GoEx is robust at mapping user intent to
the respective scope. Users are the ultimate source of truth in delegating scopes to GoEx.
Scope excessive refers to the scenario where users’ naively said Yes to all the scopes the
LLM requests. Even in such an extreme scenarios, with our self-consistency (10) technique in
less than 0.5% of the cases GoEx tends to acquire scopes in excess to what is required to
accomplish the user’s task. This generalizes across popular models.

We report the job completions times of GoEx across these applications in Table 4.2. We
chose APIs that demonstrate a high variance in the job completion times of the underlying
applications varying from 0.29 seconds to 269.81 seconds. For all of these services we report
the total time taken when the API calls are executed with no LLM in the loop, and the user
is assumed to have all the permissions. This is represented in the Job completion column.
Baseline latency refers to the common scenario of invoking the LLM to execute the calls as
per the few-shot setting defined in Section 4.3. The results summarized in Tab. Table 4.2
show the job completion times under the baseline conditions and with GoEx, as well as the
additional overhead introduced by GoEx. We see that GoEx introduces additional latency
overheads varying from 0.12% to upto 22.24% for terminating the instance. The time to
terminate an instance varies to such a large degree because of the high variance in input
tokens resulting from including 777 APIs in the prompt of the LLM.
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Application
Job completion (s) Baseline latency (s) GoEx latency (s)

Overhead
(%)

Mean P95 P99 Mean P95 P99 Mean P95 P99 Mean

Slack send message (R) 0.29 0.32 0.32s 15.98 17.60 18.23 18.162 29.19 32.34 13.65
List all objects in bucket (R) 18.26 18.48 18.50 33.03 35.17 35.55 37.1 41.37 41.64 12.32
Upload objects to bucket (W) 269.81 291.11 294.08 281.86 286.64 288.134 294.04 297.54 297.55 4.32
Start a VM instance (W) 31.63 65.57 65.58 78.57 87.45 88.63 78.67 90.43 92.5 0.12
Terminate an VM instance (W) 49.02 50.29 50.45 64.28 68.67 69.89 78.58 93.45 97.63 22.24
Get Github Pull Req. details (R) 0.60 0.62 0.63 23.567 29.88 30.24 24.98 37.36 38.57 5.99

Table 4.2: GoEx latency. GoEx introduces minimal additional latency varying from < 1%
to ∼ 22% on average. We measure the additional overhead of using GoEx with self-consistency
with ten generations over the fastest LLM-baseline of few-shot generation. We measure
common tasks like sending Slack messages, listing and uploading objects to GCP cloud object
store buckets, starting and terminating a GCP compute instance, and getting pull request
details from Github. (R) represents read operations, and (W) represents write operations.

Model Method
Latency (s) Prompt Tokens Completion Tokens

Mean P95 P99 Mean P95 P99 Mean P95 P99

Few-Shot (No RAG) 14.9 25.9 34.3 1211.5 1219.0 1225.0 369.3 601.7 714.2
RAG In Context 15.3 26.9 35.7 2911.7 8976.1 21935.4 370.4 632.1 801.4
Self-Consistency (3) 18.1 31.3 42.8 2911.7 8976.1 21935.4 1105.8 1840.0 2314.5
Self-Consistency (5) 19.2 33.6 45.7 2911.7 8976.1 21935.4 1849.6 3047.0 3889.7
Self-Consistency (10) 23.1 40.7 55.1 2911.7 8976.1 21935.4 3700.5 6071.3 7871.5

GPT-4

With scopes constraint 14.0 25.1 34.6 2943.5 8620.9 21970.6 337.2 574.3 797.9

Few-Shot (No RAG) 38.8 51.5 60.9 1407.8 1414.2 1419.0 854.4 1124.5 1315.7
RAG In Context 29.8 40.8 51.1 4070.3 14882.1 26701.0 718.8 1017.0 1220.4
Self-Consistency (3) 89.8 121.0 140.2 4070.3 14882.1 26701.0 2145.5 2983.8 3478.1
Self-Consistency (5) 153.2 205.8 229.0 4070.3 14882.1 26701.0 3604.8 5044.7 5733.5
Self-Consistency (10) 349.3 477.2 552.6 4070.3 14882.1 26701.0 7545.0 10293.2 11955.5

Claude

With scopes constraint 29.7 42.3 47.6 4112.4 14913.4 26788.2 692.0 1004.4 1201.3

Few-Shot (No RAG) 39.7 85.1 94.4 1561.4 1569.0 1576.3 619.4 961.3 1172.2
RAG In Context 38.8 84.9 98.2 3147.1 10100.2 22856.5 553.6 872.2 1281.5
Self-Consistency (3) 117.2 185.8 220.3 3147.1 10100.2 22856.5 1662.0 2489.0 3454.8
Self-Consistency (5) 195.5 304.4 331.3 3147.1 10100.2 22856.5 2697.6 4011.5 5877.5
Self-Consistency (10) 316.0 473.5 542.0 3147.1 10100.2 22856.5 5478.0 8239.0 9834.8

Mistral

With scopes constraint 37.7 83.2 95.4 3190.3 10145.2 22894.3 541.7 860.0 1184.6

Table 4.3: GoEx overhead. GoEx’s novel adoption of self-consistency introduces minimal
additional latency overhead and cost. This is unique to our setting, where the input tokens
dominate over output tokens generated thereby keeping costs low. Further, our technique
generalizes across models.
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Latency overheads for LLM inference.

Building on top of Table 4.2, we study in-depth the latency implications associated with LLM
inference within the GoEx framework, specifically focusing on the additional time required for
mapping LLM inferences to actionable API calls and scopes based on the different techniques
in Table 4.3. To effectively measure latency, it is crucial to understand the concepts of prompt
tokens and completion tokens. Prompt tokens refer to the input tokens provided to the
LLM, which include the user’s intent and any context or constraints necessary for the LLM
to understand the task. Completion tokens are the output tokens generated by the LLM,
representing the API call and associated scopes necessary to execute the user’s intent.

Latency in LLM generation is typically a linear combination of these two factors, as the
LLM operates in an autoregressive manner, processing each token sequentially. Consequently,
the cost associated with each inference also follows a similar linear relationship with prompt
and completion tokens, with API providers charging around $10 for every 10 million prompt
tokens and $30 for every 10 million completion tokens. We report tokens in Table 4.3 which
is a more stable metric free from market forces.

Few-shot (no RAG) and RAG with scopes show minimal increase in prompt tokens and
maintain lower latency, as these methods are streamlined to focus the LLM’s generation
process. Self-consistency approaches, where multiple outputs (3, 5, or 10) are generated for a
single prompt, show a significant increase in completion tokens but no increase the number of
input prompt tokens. This approach maintains the original prompt while seeking consistency
in the generated outputs, which increase the cost proportionally, but not latency nominally.
The introduction of scope constraints slightly increases the number of prompt tokens since
additional information about permissible scopes must be included in the prompt. However,
this method helps focus the LLM’s generation process, potentially reducing the range of
completion tokens and thereby controlling latency.

Qualitative examples

In this section we highlight scenarios where the LLMs, if left unattended to, can end up
with more permissions than needed. These are examples from GPT-4 with self-consistency
of k = 10, as reported in Table 4.1. For the prompt, “Can you find nearby Italian restau-
rants around my current location?”, the LLM picked the right set of APIs of searchNearby
from places.googleapis.com. However, while the scope required to perform this API
call is maps-platform.places.nearbysearch, the LLM requested the parent scope of
maps-platform.places.

Similarly for a user’s request of, “How do I add a new video to a playlist on YouTube?”,
the LLM requested the unnecessary scope of youtubepartner while youtube.upload would
have been sufficient. By using the LLM to narrow down the scope, and relying on the users
as the ultimate source of truth, GoEx as a run-time is able to confine the LLM’s actions.
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4.9 Related Work

Existing literature can be broadly categorized into techniques to adavance the LLM perfor-
mance to make them better reasoners, and instruction followers, and works towards isolating,
and improving the trustworthiness of LLMs. We address each of these below:

Advancements in LLM

Although earlier LLMs primarily excelled at text generation and understanding, more
recent advances have expanded their functionality into areas like tool usage [107, 121, 174],
multimodal reasoning [53, 134, 156], and open-ended problem solving [149, 163]. This has
led to LLMs being explored as problem solvers that can break down complex queries into
relevant sub-tasks, leverage relevant tools, and synthesize the results.

Often called agents, or co-pilots, recent work has explored the use of LLMs in a va-
riety of applications, including customer service [14, 99], data analysis [26, 27], software
development [72, 119, 155, 171], planning robotics tasks [54], and simulating human behav-
ior [104, 105]. These applications have demonstrated the potential of LLMs to automate
complex tasks and improve efficiency in a variety of domains.

Isolation

Prior work on enabling automated LLM-powered systems [157] draws on concepts from
existing computer systems [32, 83, 116, 152] and emphasizes isolation between LLM-powered
applications in order to secure the overall system. Traditional methods such as using
containers—which guarantee isolation through virtualization, falter when adjustments to
the environment are required within the user’s context. For example, a user might want
to modify the state of their operating system. Further, isolation alone cannot ensure the
final state aligns with the intended actions, especially under ambiguity or execution errors
and ambiguity of stated intent. Both are common flaws when intent is being specified in
natural-language as opposed to a more precise domain-specific language.

Trustworthiness in LLMs

There is a rich body of work benchmarking LLMs on their robustness [22]. Recently, trust-
worthiness [143] has been introduced as a multifaceted benchmark encapsulating robustness,
stereotype bias, toxicity, privacy, ethics, and fairness. Wang et al. [143] found that more
advanced LLMs (e.g., GPT-4) exhibit higher, albeit still imperfect, trustworthiness.

Attacks on LLMs and defenses

LLMs are also susceptible to prompt hacking attacks, of which include prompt injection [46, 88,
108, 123, 166] and jailbreaking [5, 62]. Such attacks can lead to unpredictable and malicious
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decisions made by the LLM. There is also an active line of work on defending against such
attacks on LLMs [24, 109, 132, 140, 165]. These attacks and defenses will continue to evolve,
and consequently the potential of LLMs being susceptible to having their trustworthiness
undermined necessitates a runtime that can provide execution of LLM-decided actions while
limiting risk.

4.10 Conclusion

The evolution of LLMs from chatbots to deeply embedding them in applications and services
for autonomous operation among themselves and other agents presents an exciting future.
However, the potential for LLMs to make decisions that are not aligned with the user’s
intent, especially in the presence of complex APIs and scopes, necessitates a runtime that
can provide execution of LLM-decided actions while limiting risk. We presented GoEx, a
runtime that separates user credentials from the LLM, and enables LLMs to execute actions
on behalf of the user while confining the LLM inside the scope of permissions the user has
granted. In order to map API calls to their respective scopes, we leveraged self-consistency
in order to improve robustness and a-priori knowledge of scopes the user has pre-approved.
By relying on users as the ultimate source of truth, GoEx presents a secure system to power
autonomous agents.
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Chapter 5

Conclusion

The advancements brought forward by Gorilla, OpenFunctions, RAFT, and GoEx collectively
represent a step forward in the practical deployment of LLMs for interactive and autonomous
tasks. Gorilla, by enhancing the ability of LLMs to understand and generate API calls,
addresses a crucial gap in their capability to interact with external tools and services. This
transitions LLMs from merely impressive knowledge repositories to dynamic decision-making
agents capable of performing complex tasks autonomously.

Furthermore, the integration of RAG through OpenFunctions and the enhancements
provided by RAFT makes function-calling easy to use without the need for custom fine-tuning
or constant retraining. These systems refine the ability of LLMs to access and use real-time
and relevant “fresh” information and also ensures that the generated outputs are increasingly
accurate and grounded in actual data. RAFT enhances the enables LLMs to discriminate
between relevant and distracting information, a critical skill in many applications involving
real-world retrievers.

Lastly, GoEx is a runtime system that safely executes LLM-generated API calls in user-
centric applications. By incorporating tried-and-true systems security principles that prevent
misuse through least-privilege access-control, as well as presenting undo and damage confine-
ment abstractions to address the post-facto validation setting, GoEx facilitates deployment
of LLMs as decision making agents.

5.1 Lessons Learnt

Sidecar LLMs

The evolution of Large Language Models (LLMs) into specialized roles such as tool-calling,
long-context, reasoning, and planning necessitates an orchestration strategy. One effective
approach has been the deployment of sidecar LLMs. In this configuration, each LLM
autonomously evaluates a user’s prompt to determine if it should intervene by injecting
additional context before the prompt is processed by a central LLM. For example, consider
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two LLMs: a specialized tool-use Gorilla LLM and a general-purpose Gen-LLM. When faced
with a prompt like “give me a joke about the current weather in Berkeley,” the Gorilla LLM
could proactively fetch the weather data and supply it to the Gen-LLM, thereby reducing the
number of exchanges required. This push mechanism as opposed to the Gen-LLM invoking
other specialized LLMs pull mechanism was popular among users of Gorilla.

Fine-tuning and RAG

The choice of fine-tuning or RAG systems has been a point of debate. Our findings indicate
that while fine-tuning is highly efficient in embedding knowledge into LLMs, its application
cannot be a daily routine due to both high costs and the complexities involved in LLM
evaluation. As LLMs undergo fine-tuning only intermittently, retrievers become essential for
maintaining the freshness of the data. However, retrievers alone are hindered by low recall
rates, even within their domains. Although difficult for many users to accept, we find the
synergy of fine-tuning and RAG to be necessary for achieving robust performance.

5.2 Future Work

Gorilla, OpenFunctions, RAFT, and GoEx present a first step in designing a system for
executing LLM-powered actions such as APIs. Here, we describe some open questions in the
design of such a system.

Beyond Human and AI Feedback to Perpetual Feedback Loops

Current reinforcement learning techniques, such as Reinforcement Learning through Human
Feedback [102, 113] and AI Feedback [71], do not account for the temporal evolution of user
preferences. An intriguing direction for future research would be to develop methodologies
that can adaptively discern, reflect and incorporate changes in preferences over time.

Designing LLM-friendly APIs

The conversation around LLM-powered systems design is predominantly centered around
designing systems to conform with the API semantics of existing applications and services.
However, an equally interesting question is what API design in an LLM-centric world would
looks like. LLMs introduce a paradigm where applications and services can anticipate and
adapt to the intricacies of LLM interactions. A notable feature that embodies this adaptability
is the implementation of “dry-run” semantics, akin to the functionality commonly visible
in infrastructure products such as [11], [67], and where API calls can be tested to predict
their success without executing any real changes. This concept can be extended beyond
mere prediction, serving as a bridge between LLMs’ proposed actions and user consent. By
repurposing “dry-run” operations, service providers can offer a preview of the uncommitted



CHAPTER 5. CONCLUSION 74

state resulting from an LLM’s actions, allowing users to evaluate and approve these actions
before they are finalized. This process adds an essential layer of user oversight, ensuring that
actions align with user expectations and intentions.

Chaining-aware. Applications and services should by default expect their APIs to be
chained when used by agents. To support such a scenario, there needs to be a way to express
which APIs can be commutative, associative or distributive with a given set of APIs.

Tracking LLM agents

The introduction of a nonce mechanism (i.e., a session identifier) would enable LLMs to
present their identity and facilitate smoother interactions with API providers. This could
serve various purposes, such as identifying a session initiated by an LLM or providing a
context for transactions. A transaction ID, for example, can enable a system to identify
and potentially rollback actions based on this ID. This not only improves the traceability of
interactions but also contributes to the overall robustness and reliability of the system by
providing an auditable framework for LLM-powered systems.

Cross-platform evaluation

Our GoEx evaluation framework measures the accuracy of API call generation within the
realm of web APIs, but our evaluation does not extend to other types of APIs, such as those
used in SQL databases or Python libraries. While the GoEx framework presents abstractions
for executing any API, evaluation of other APIs is notably absent. Conducting cross-platform
evaluations to understand how GoEx performs under varied operational conditions and with
different types of APIs will help identify platform-specific challenges and opportunities for
improving the system’s accuracy and reliability. Further, GoEx only evaluated those cases
where the user’s request can be addressed with a few API calls due to manual inspection
needed to build the evaluation dataset. LLM-agents of the future might interact with tens, if
not hundreds of APIs and their corresponding scopes in a single session.

Translating scopes for users

GoEx relies on developer provided description to prompt the user about certain scopes when
requesting their permission to delegate access. However, it remains unclear to what extent
a non-expert audience can understand the description. For example, the scope team:read
has the description, “View the name, email domain, and icon for workspaces your slack app
is connected to,” which is arguably well-described. However, the description of “Read new
Platform triggers” for the scope triggers:read is slightly more opaque. A system that is
responsible for negotiating scopes with an user also needs to be able to present the user’s
with the right vocabulary to help them make the right decisions.
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