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EPIGRAPH

But, after all, who knows, and who can say

Whence it all came, and how creation happened?

the gods themselves are later than creation,

so who knows truly whence it has arisen?

Whence all creation had its origin,

the creator, whether he fashioned it or whether he did not,

the creator, who surveys it all from highest heaven,

he knows — or maybe even he does not know.

—Nasadiya Sukta, Rigveda 10.129-6,7
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ABSTRACT OF THE DISSERTATION

Belief Refinement Approaches to Communication and Inference Problems

by

Anusha Lalitha

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2019
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This dissertation considers a problem where a single agent or a group of agents aim to

estimate/learn unknown (possibly time-varying) parameters of interest despite making noisy

observations. The agents take a Bayesian-like approach by maintaining a posterior probability

distribution or “belief" over a parameter space conditioned on past observations. The agents aim

to iteratively refine their belief over the parameter space as new information is acquired from

their private observations or through collaboration with other agents. In particular, the agents aim

to ensure that sufficient belief is assigned in neighborhoods centered around the true parameter

with high probability or “reliability". In the context of communication problems considered

in this dissertation, the agents may be active, i.e., agents may additionally take actions which
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provide new observations. Furthermore, agents may employ an adaptive strategy, i.e., using

their past actions and the resulting observations, agents can adaptively choose actions to control

the concentration of the belief. When the agents are active, we propose and analyze adaptive

belief refinement approaches to obtain belief concentration on the unknown parameter with high

reliability. In a different context, namely that of decentralized inference, we consider passive

agents. Here, agents face an additional challenge due to the statistical insufficiency of their private

observations to learn the unknown parameter. While individual agents’ observations are not

informative enough, we assume that the agents’ observations are collectively informative to learn

the unknown parameter. Here, we propose and analyze decentralized belief refining strategies to

collaboratively obtain belief concentration on the unknown parameter.

In the first part of this dissertation, we consider active strategies that are extensions

of the posterior matching strategy (PM) introduced by Horstein, which is a generalization of

the well-known binary search algorithm. We propose and analyze PM based strategies in the

context of modern communication systems, namely the problem of establishing initial access in

mm-Wave communication and spectrum sensing for Cognitive Radio. We propose and analyze

channel coding strategies for real-time streaming and control applications. The second part of the

dissertation investigates the belief refinement approaches for decentralized learning. In particular,

it focusing on developing and analyzing a decentralized learning rule for statistical hypothesis

testing and its application to decentralized machine learning.
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Chapter 1

Introduction

This dissertation considers a problem where a single agent or a group of agents aim to

estimate/learn unknown (possibly time-varying) parameters of interest despite making noisy

observations. The agents take a Bayesian-like approach by maintaining a posterior probability

distribution or “belief" over a parameter space conditioned on past observations. The agents aim

to iteratively refine their belief over the parameter space as new information is acquired from

their private observations or through collaboration with other agents. In particular, the agents aim

to ensure that sufficient belief is assigned in neighborhoods centered around the true parameter

with high probability or “reliability". In the context of communication problems considered

in this dissertation, the agents may be active, i.e., agents may additionally take actions which

provide new observations. Furthermore, agents may employ an adaptive strategy, i.e., using

their past actions and the resulting observations, agents can adaptively choose actions to control

the concentration of the belief. When the agents are active, we propose and analyze adaptive

belief refinement approaches to obtain belief concentration on the unknown parameter with high

reliability. In a different context, namely that of decentralized inference, we consider passive

agents. Here, agents face an additional challenge due to the statistical insufficiency of their private

observations to learn the unknown parameter. While individual agents’ observations are not
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informative enough, we assume that the agents’ observations are collectively informative to learn

the unknown parameter. Here, we propose and analyze decentralized belief refining strategies to

collaboratively obtain belief concentration on the unknown parameter.

In the first part of this dissertation, we consider active strategies that are extensions of

the posterior matching strategy (PM) introduced by Horstein in [1], which is a generalization of

the well-known binary search algorithm. We briefly describe the strategy next in the context of

a search problem but note that a search strategy can double as a channel coding strategy with

feedback and vice versa, which will be discussed later (in chapter 2). Here, the goal of the agent

is to estimate the unknown location of a target and the agent’s action is to choose a subset of

the search space to query. If the target lies in the search subset, then the query outcome is one,

otherwise outcome is zero. If the agent always observes the search outcome without any noise,

then it is known that the binary search algorithm which always searches half the search space

at each time instant, can be used to estimate the target location efficiently. If the agent observes

one, it updates the belief over the search subset to one and assigns zero belief to rest the search

space. Hence, the agent zooms into the region where it observes one, thus reducing the search

space by half after every query. However, when the search outcomes are corrupted by noise, a

more sophisticated approach such as PM strategy is necessary. Here, the agent always chooses

a search subset to query whose belief is equal to half. After observing the search outcome, the

agent updates its belief using the Bayes rule. Intuitively, as indicated by the noisy observation,

the belief increases in the region where the target is believed to be, and decreases elsewhere.

Shayevitz and Feder show in [2] that the agent’s belief concentrates to an exponentially small

neighborhood around the true location (as will be shown later the exponent here denotes the rate

of information acquisition) with high probability. More recently, Waeber et al. in [3] show that

belief concentrates on the true parameter with probability error vanishing exponentially fast as

the number of observations grows. Several discretized versions [4–8] of the PM strategy exists

where the algorithm splits the search space into a finite number of intervals and aims to locate
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the interval that contains the target. It is known that using the discretized PM strategies posterior

concentrates with probability error vanishing exponentially fast as the number of observations

grows. We devise strategies based on the PM strategy to address various problems at the core of

communications which we will describe next.

Chapter 2 considers a discretized version of the above target search problem, where an

agent is searching for an unknown target location among a finite number of locations. Here,

agent’s action consists of simultaneously probing a group of locations. The resulting observation

consists of a sum of an indicator of the target’s presence in the probed region, and a zero mean

Gaussian noise term whose variance is a function of the measurement vector. This problem

formulation captures two engineering problems in the context of modern communication systems,

namely the problem of establishing initial access in mm-Wave communication and spectrum

sensing for Cognitive Radio. We propose a simple two-phase strategy adaptive target search

strategy based on PM strategy actively shapes the belief while reducing the noise encountered

by the agent to achieve higher reliability. We provide a non-asymptotic upper bound on the

expected number of measurements collected under the proposed two-phase strategy. Using a

non-asymptotic lower bound of the expected number of measurements for optimal non-adaptive

search strategy, a non-trivial lower bound to the adaptivity gain in using an adaptive strategy over

a non-adaptive strategy. Our non-asymptotic analysis of adaptivity gain reveals two qualitatively

different asymptotic regimes depending on how the number of locations grow.

Note that the adaptive two-phase strategy proposed in chapter 2 has a stopping time i.e.,

the number of observations it collects, is random variable with bounded expectation. Such a

constraint is called average-length constraint. However, in many practical applications using

strategies which satisfy only average-length constraint has major limitations since it does not

prohibit stopping time from being occasionally very long. Moreover, an average-length constraint

does not limit the variability of the stopping time around its expected value. This leads us to the

question: is it essential to allow some variability in the stopping time to achieve higher reliability?
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In chapter 3 we demonstrate that this flexibility need not be significant. More specifically,

we defined a new class of strategies for channel coding and statistical hypothesis testing (two

important problems at the core of communications and statistics) which are bounded almost surely

and exceed the given test length constraint with an exponentially small probability. We show that

reliability achieved by the fixed-length strategies can be significantly by the almost-fixed-length

strategies. Furthermore, it is possible to achieve optimal reliability of variable-length strategies in

an almost fixed length manner.

In the context of channel coding with feedback, the classical PM strategy and its discretized

versions, assume that the entire information (possibly infinite bit) sequence to be transmitted is

available non-causally to the transmitter, prior to the beginning of transmission. Consequently,

the non-causal knowledge assumption precludes the use of the classical PM strategy for real-time

streaming applications and in control scenarios, in which the data to be transmitted is determined

in a causal fashion. In Chapter 4 we propose a horizon-free causal posterior matching extends

PM strategy to transmit bits which arrive one-by-one at random times. For deterministic inter-bit

arrival times we provide characterize the error exponents in horizon-free manner by extending

Burnashev-Zigangirov’s analysis in [4] such that the older bits have higher reliability than latter

bits. For random inter-bit arrival times, the error exponent is obtained for two regimes: a high

rate regime where all the bits that are available at the encoder are decoded and a low rate regime

where the minimum number of bits are decoded but with a higher exponent. This strategy is then

used to estimate a scalar linear stochastic process with unknown initial condition and additive

bounded disturbances over BSC.

The second part of the dissertation investigates the belief refinement approaches for

decentralized learning. In particular, the second part of the dissertation consists of two chapters

focusing on developing and analyzing a decentralized learning rule for statistical hypothesis testing

and its application to decentralized machine learning. Recall that agents’ private observations may

be statistical insufficiency to learn the unknown parameter. While individual agents’ observations
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are not informative enough, we assume that the agents’ observations are collectively informative

to learn the unknown parameter.

Chapter 5 considers a problem of decentralized hypothesis testing over a network. In-

dividual agents in a network receive noisy local (private) observations whose distribution is

parameterized by a discrete parameter (hypothesis). The marginals of the joint observation

distribution conditioned on each hypothesis are known locally at the agents, but the true parame-

ter/hypothesis is not known. An belief merging rule is analyzed in which agents first perform

a Bayesian update of their belief (distribution estimate) of each hypothesis based on their local

observations, communicate these updates to their neighbors, and then perform a “non-Bayesian”

linear consensus using the log-beliefs of their neighbors. Under mild assumptions, we show

that the belief of any agent on a wrong hypothesis converges to zero exponentially fast. We

characterize the exponential rate of learning, in terms of the agents’ influence of the network and

the divergences between the observations’ distributions. For a broad class of observation statistics

which includes distributions with unbounded support such as Gaussian mixtures, we show that

rate of rejection of wrong hypothesis satisfies a large deviation principle, i.e., the probability of

sample paths on which the rate of rejection of wrong hypothesis deviates from the mean rate

vanishes exponentially fast and we characterize the rate function in terms of the agents’ influence

of the network and the local observation models.

Chapter 6 extends the decentralized belief merge rule to parametric learning and it

provides strong analytic guarantees on convergence as well as a closed form characterization

of the rate of convergence. We also show that our methodology can be combined with efficient

Bayesian inference techniques such as Variational Inference to train Bayesian neural networks

in a decentralized manner. By empirical studies we show that our theoretical analysis can guide

the design of network/social interactions and data partitioning to achieve convergence. When the

training dataset is divided across the network, we demonstrate that we can train a fully connected

as well as a convolutional neural network at each agent in a decentralized manner such that it can
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successfully perform image classification on the global dataset.

Notation: Vectors are denoted by boldface letters A and A( j) is the jth element of a vector.

Let |A| denote the L1 norm of vector A. Matrices are denoted by overlined boldface letters. N

denotes the set of natural numbers. For k, t ∈ N, k < t, the sequence {sk,sk+1, . . . ,st} is denoted

as st
k. For a set S and scalar a ∈ R, a+S denotes the set {x+a : x ∈ S} and aS denotes the set

{ax : x ∈ S}. For sets S1,S2, S1× S2 denotes the set {(x1,x2) : x1 ∈ S1,x2 ∈ S2}. For M ∈ N,

the sequence of integers {1,2, . . . ,M} is denoted [M]. Ber(p) denotes the Bernoulli distribution

with parameter p. The binary entropy of probability p is denoted by h(p) =−p log p− p̄ log p̄

with p̄ := 1− p; all logarithms in this work are to the base 2. Let G(x;µ,σ2) denote the pdf

of Gaussian random variable with mean µ and variance σ2 at x. For any probability mass

function (pmf) p, let p
⊗

i denote p convolved with itself i times. The Kullback–Leibler (KL)

divergence between two probability density functions P1(·) and P2(·) on space X is defined as

D(P1 ‖P2 ) = ∑X P1(x) log P1(x)
P2(x)

, with the convention 0log a
0 = 0 and b log b

0 = ∞ for a,b ∈ [0,1]

with b 6= 0. Let UM denote the set {u ∈ RM : u( j) ∈ {0,1}}. Let [g]a = g if g ≥ a otherwise

[g]a = 0. For any M ∈ N, let IM := { 1
M , 2

M , . . . ,1} and let [M] = {1,2, . . . ,M}. For vectors

x,y ∈ Rd , let x ≤ y denote xi ≤ yi for each i-th element of vector x and y and let 〈x,y〉 denote

∑
d
i=1 xiyi. Let 1 denote the vector of where each element is 1. For any subset F ⊂ RM−1, let

Fo be the interior of F and F̄ the closure. For ε > 0 let Fε+ = {x+δ1,∀0 < δ≤ ε and x ∈ F},

Fε− = {x−δ1,∀0 < δ≤ ε and x ∈ F}.
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Chapter 2

Improved Target Acquisition Rates with

Feedback Codes

2.1 Introduction

Consider a single target acquisition over a search region of width B with a resolution up

to width δ. Mathematically, this is the problem of estimating a unit vector W ∈ {0,1}
B
δ via a

sequence of noisy linear measurements

Yn = 〈Sn,W+Ξn〉, n = 1,2, . . . (2.1)

where a binary measurement vector Sn ∈ {0,1}
B
δ denotes the locations inspected and the vector

Ξn ∈ R
B
δ denotes the additive measurement noise per location. More generally, the observation

Yn at time n can be written as

Yn = 〈Sn,W〉+Zn(Sn), (2.2)

where Zn(Sn) is a noise term whose statistics are a function of the measurement vector Sn. The

goal is to design a sequence of measurement vectors {Sn}τ
n=1, such that the target location W is
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estimated with high reliability, while keeping the (expected) number of measurements τ as low as

possible.

In this chapter, we first consider the linear model (2.1) when the elements of Ξn are

i.i.d Gaussian with zero mean and variance δσ2. This means that Zn(Sn) in (2.2) are distributed

as N (0, |Sn|δσ2). For this case we show that the problem of searching for a target under

measurement dependent Gaussian noise Zn(Sn) is equivalent to channel coding over a binary

additive white Gaussian noise (BAWGN) channel with state and feedback (in Section 4.6 [9]).

This allows us not only to retrofit the known channel coding schemes based on sorted Posterior

Matching (sortPM) [10] as adaptive search strategies, but also to obtain information theoretic

converses to characterize fundamental limits on the target acquisition rate under both adaptive and

non-adaptive strategies. Furthermore, by providing a non-asymptotic analysis of our two stage

sorted Posterior-Matching-based adaptive strategy and our converse for non-adaptive strategy, we

obtain a lower bound on the adaptivity gain.

2.1.1 Our Contributions

Our main results are inspired by the analogy between target acquisition under measurement

dependent noise and channel coding with state and feedback. This connection was utilized in [11]

under a Bernoulli noise model. In this chapter, in Proposition 1, we formalize the connection

between our target acquisition problem with Gaussian measurement dependent noise and channel

coding over a BAWGN channel with state. Here, the channel state denotes the measurement

vector. The channel transition depends on the channel state as N (Xn, |Sn|δσ2) for input codeword

Xn ∈ {0,1}. Adapting the codeword to the past channel outputs, i.e. using feedback codes

is known to increase the capacity of a channel with state and feedback. This motivates us to

use adaptivity when searching, i.e., to utilize past observations {Yi}n−1
i=1 when selecting the next

measurement vector Sn. Furthermore, this information theoretic perspective allows us to quantify

the increase in the adaptive target acquisition rate. Our analysis of improvement in the target
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acquisition rate as well as the adaptivity gain, measured as the reduction in expected number of

measurements, while using an adaptive strategy over a non-adaptive strategy has two components.

Firstly, we utilize information theoretic converse for an optimal non-adaptive search strategy to

obtain a non-asymptotic lower bound on the minimum expected number of measurements required

while maintaining a desired reliability. As a consequence, this provides the best non-adaptive

target acquisition rate. Secondly, we utilize a feedback code based on sorted Posterior Matching

as a two-stage adaptive search strategy and obtain a non-asymptotic upper bound on the expected

number of measurements while achieving a desired reliability. These two components of our

analysis allow us to characterize a lower bound on the adaptivity gain.

Our non-asymptotic analysis of adaptivity gain reveals two qualitatively different asymp-

totic regimes. In particular, we show that adaptivity gain depends on the manner in which the

number of locations grow. We show that the adaptivity grows logarithmically with the number of

locations B
δ

, i.e., O
(
log B

δ

)
when refining the search resolution δ (δ going to 0) and while keeping

total search width B fixed. On the other hand, we show that as the search width B expands (B

goes to ∞) while keeping search resolution δ fixed, the adaptivity gain grows with the number of

locations as O
(B

δ
log B

δ

)
.

The problem of searching for a target under noisy observations has roots in [1]. Our

problem setup is closely related to the problem of sequential estimation of the target location

via the noisy 20 questions game studied by Jedynak et al. in [12] and collaborative 20 questions

for target localization by Tsiligkaridis et al. in [13]. However, unlike these problem setups

which focus on measurement independent noise we consider measurement dependent noise and

hence focus on prior work considering the same. The problem of searching for a target under

a binary measurement dependent noise, whose crossover probability increases with the weight

of the measurement vector was studied by [11] and analyzed under sort PM strategy in [10]. In

particular, [11] and [10] provide asymptotic analysis of the adaptivity gain for the case where

B = 1 and δ approaches zero. Our prior work [14] by utilizing a (suboptimal) hard decoding of

9



Gaussian observation Yn, strengthens [11] and [10] by also accounting for the regime in which B

grows. While the analysis in [14] strengthens the non-asymptotic bounds in [10] with Bernoulli

noise it failed to provide tight analysis for our problem with Gaussian observations. In this

chapter, by strengthening our analysis in [14] we further extend the prior work. We provide the

following detailed list of our main contributions in this chapter:

1. We consider the problem of searching for a target (vacant) narrow band of width δ over

a total bandwidth B via linear binary measurements subject to measurement dependent

Gaussian noise (this model is referred to as noise folding in some literature). We establish

the equivalence of this problem to the problem of binary-input channel coding over an

additive Gaussian channel with state and feedback. This allows us to consider information

theoretic techniques to characterize the fundamental limits of searching as well as construct

feedback codes as effective search strategies (see Proposition 1 and Corollary 1).

2. We propose a simple intuitive two stage adaptive target search strategy inspired by known

feedback codes. This strategy allows us to provide a tight non-asymptotic upper bound on

the expected number of measurements needed by an optimal adaptive search strategy. The

only known upper bound on the expected number of measurements needed by an optimal

adaptive search strategy in the use of Binary Symmetric Channel (BSC) [10,11] provides an

upper bound that is very loose in general and particularly loose for Gaussian observations.

In this sense our upper bound significantly tightens the prior analysis (see Remark 3 and

Figures 2.6 and 2.7).

3. Obtaining tight non-asymptotic upper bounds on the expected number of measurements

needed by an optimal adaptive search strategy allows us to provide better bound on adaptiv-

ity gain (see Theorem 1).

4. Our result extends and significantly improves the prior work in the asymptotic regime of B

goes to ∞:
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• Our setup specializes to two practically relevant asymptotic problems given by Ex-

ample 1 where resolution δ shrinks while search space width B remains fixed (noise

variance shrinking to zero) and Example 2 where resolution δ is fixed but search space

width B grows (half bandwidth noise variance linearly growing).

• Our two-stage strategy is shown to be asymptotically optimal in the regime where

δ goes to zero and B is fixed. In this regime, our results extends prior work to on

BSC [10, 11] to the Gaussian additive noise case with noise folding. Here we note

that the BSC work in [10, 11] can be viewed as a pessimistic analysis of the Gaussian

measurements with hard-decoding.

• In the asymptotic regime where δ is fixed and B grows, our result significantly

improves prior work [11] in incorporating an optimization of the proposed strategy

in terms of a parameter α. Note that without such optimization, even if one accepts

the hard decoding approximation, all known schemes and analysis fail to provide a

non-trivial bound in the asymptotic regime (see Figure 2.6).

2.1.2 Applications

Our problem formulation addresses two challenging engineering problems which arise in

the context of modern communication systems. We will discuss the two problems in the following

examples and then provide the details of the state of art.

Example 1 (Establishing initial access in mm-Wave communication). Consider the problem of

detecting the direction of arrival for initial access in millimeter wave (mmWave) Communications.

Prior to data transmission the base station and user equipment are tasked with aligning the

transmitter and receiver antennas in the angular space. In other words, each sequential beam can

be viewed as a measurement vector Sn searching the angular space B⊂ (0,360◦). Furthermore,

beam forming with varying beam widths as we consider in this chapter is associated with effects in
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perceived SNR. That is, while a narrow beam exploits antenna gains, a wide beam with the same

allocated power inherently achieves lower gains [15, 16](where the gain is inversely proportional

to the beam width). This effect results in lower perceived SNR for wider beams, and thus higher

probability of error in detecting a synchronization signal. This effect of beam width on the

SNR, has motivated our model of measurement dependent noise, where Zn(Sn). For initial

access search, the angular space B is bounded to 360◦, however, the resolution of the search δ is

dependent on the number of antennas used, where finer and finer beams can be resolved as more

and more antennas are used.

Example 2 (Spectrum Sensing for Cognitive Radio). Consider the problem of opportunistically

searching for a vacant subband of bandwidth δ over a total bandwidth of B. In this problem

secondary user desires to locate the single stationary vacant subband quickly and reliably, by

making measurements Sn at every time n. We consider the energy based detection [17] where

joint multi-band detection is employed. Specifically, we are inspired by the group testing based

techniques for cognitive radio presented by [18] where a signal occupancy measurement is

acquired by jointly deciding the occupancy of a group of subbands. Sequential measurements

are made with fixed sampling rate, i.e. a fixed power consumption. Due to noise folding effects

caused by sub-Nyquist sampling [19] at each time instant n, the noise intensity depends on the

number of subbands probed as dictated by a measurement vector Sn. Thus, the noisy observation

Yn is a function of measurement dependent noise Zn(Sn). The resolution of the search δ can

be limited by energy detection technology, while the searchable bandwidth space B is subject to

change depending on the needs of the secondary user and is potentially unbounded.

Giordani et al. [15] compare the exhaustive search like the Sequential Beamspace Scanning

considered by Barati et al. [20], where the base station sequentially searches through all angular

sectors, against a two stage iterative hierarchical search strategy. In the first stage an exhaustive

search identifies a coarse sector by repeatedly probing each coarse region for a predetermined

SNR to be achieved. In the second stage an exhaustive search over all locations identifies the
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target. Giordani et al. show that in general the adaptive iterative strategy reduces the number

of measurements over exhaustive search except when desired SNR is too high, forcing the

number of measurements required at each stage to get too large. We observe this in through

our simulations in Section 2.6-A. In fact, as confirmed by our simulations random-coding-based

non-adaptive strategies including the Agile-Link protocol [21], outperform the repetition based

adaptive strategies.

Past literature on spectrum sensing for cognitive radio [22–24] and support vector recov-

ery [25, 26] have focused on the problem where Sn can be real or complex, with measurement

independent noise applying both exhaustive search and multiple adaptive search strategies. In

contrast, our work considers a simple binary model, Sn ∈ {0,1}
B
δ , but captures the implications

of measurement dependence of the noise, which is known in the spectrum sensing literature as

noise folding. The problem of measurement dependent noise (known as noise folding) has been

investigated in [19] where non-adaptive design of complex measurements matrix satisfying RIP

condition has been investigated. Our work compliments this study by characterizing the gain

associated with adaptively addressing the measurement dependent noise (noise folding), albeit for

the simpler case of binary measurements. We note that the case of adaptively finding a subset of a

sufficiently large vacant bandwidth with noise folding is considered in [18], where ideas from

group testing and noisy binary search have been utilized. The solutions however depend strongly

on the availability of sufficiently large consecutive vacant band and does not apply to our setting.

2.2 Problem Setup

In this section, we describe the mathematical formulation of the target acquisition problem

followed by the performance criteria.
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2.2.1 Problem Formulation

We consider a search agent interested in quickly and reliably finding the true location

of a single stationary target by making measurements over time about the target’s presence. In

particular, we consider a total search region of width B that contains the target in a location of

width δ. In other words, the search agent is searching for the target’s location among B
δ

total

locations. Let W ∈U B
δ

denote the true location of the target, where W( j) = 1 if and only if the

target is located at location j. The target location W can take B
δ

possible values uniformly at

random whose value remains fixed during the search. A measurement at time n is given by a

vector Sn ∈U B
δ

, where Sn( j) = 1 if and only if location j is probed. Each measurement can be

imagined to result in a clean observation Xn = WᵀSn ∈ {0,1} indicating of the presence of the

target in the measurement vector Sn. However, only a noisy version of the clean observation Xn is

available to the agent. The resulting noisy observation Yn ∈ R is given by the following linear

model with additive measurement dependent noise

Yn = Xn +Zn(Sn). (2.3)

Here, we assume Zn ∼N (0, |Sn|δσ2) which corresponds to the case of i.i.d white Gaussian noise

with σ2 denotes the noise variance per unit width. Conditioned on the measurement vector Sn, the

noise Zn is independent over time. Also define σ2
Total := Bσ2

2 , which denotes the noise intensity

when the agent searches half of the search region B
2 .

A search consisting of τ measurements can be represented by a sequence of measurement

vectors Sτ
1 = {S1,S2, . . . ,Sτ} which yields a sequence of observations Y τ

1 = {Y1,Y2, . . . ,Yτ}. At

any time instant n ∈ [τ], the agent selects the measurement vector in general as a function of the

past observations and measurements. Mathematically,

Sn = gn

(
Y n−1

1 ,Sn−1
1

)
, (2.4)
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for some causal (possibly random) function gn : Rn−1×Un−1
B
δ

→U B
δ

. After observing the noisy

observations Y τ
1 and the sequence of measurement vectors Sτ

1, the agent estimates the target

location W as follows

Ŵ = d (Y τ
1 ,S

τ
1) , (2.5)

for some decision function d : Rτ×Uτ
B
δ

→U B
δ

. The probability of error for a search is given by

Pe = P(Ŵ 6= W|Y,S) and the average probability of error is given by Pe = P(Ŵ 6= W). Now we

define the measurement strategy:

Definition 1 (ε-Reliable Search Strategy cε). For some ε ∈ (0,1), an ε-reliable search strategy,

denoted by cε, is defined as a sequence of τ (possibly random) number of causal functions

{g1,g2, . . . ,gτ}, according to which the measurement matrix Sτ
1 is selected, and a decision

function d which provides an estimate Ŵ of W, such that the average probability of error Pe is at

most ε.

2.2.2 Types of Search Strategies

Every measurement vector Sn and the number of total measurements τ can be selected

either based on the past observations Y n−1
1 , or independent of them. Based on these two choices,

strategies can be divided into four types i) having fixed length versus variable length of sequence

of measurement vectors Sτ
1, and ii) being adaptive versus non-adaptive. A fixed length ε-reliable

strategy cε uses a fixed number of measurements τ predetermined offline independent of the

observations, to obtain estimate Ŵ. On the other hand, a variable length ε-reliable strategy cε

uses a random number of measurements τ (possibly determined as a function of the observation

sequence Y τ
1 ) to obtain an estimate Ŵ. For example, τ can be selected such that agent achieves

Pe ≤ ε in every search and hence τ is a random variable which is a function of the past noisy

observations. Under an adaptive strategy cε the agent designs the measurement vector Sn as a
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function of the past observations Y n−1
1 , i.e., gn is a function of both Sn−1

1 and Y n−1
1 .

Definition 2. Let C A
ε be a class of all ε-reliable adaptive strategies.

Under a non-adaptive strategy, the agent designs the measurement vector Sn offline

independent of past observations, i.e., gn does not depend on Sn−1
1 or Y n−1

1 .

Definition 3. Let C NA
ε be a class of all ε-reliable non-adaptive strategies.

2.3 Preliminaries

In this section, we review fundamentals of channel coding with state and feedback and

related the information theoretic concepts. The aim is to connect the problem of searching under

measurement dependent Gaussian noise to the problem of channel coding with state and feedback.

We then formulate an equivalent model of channel coding with state and feedback for comparison

to (2.3).

2.3.1 Channel Coding with State and Feedback

Figure 2.1: Transmission over a communication channel with state and feedback

A communication channel is specified by a set of inputs X̃ ∈ X̃ , a set of outputs Ỹ ∈ Ỹ ,

and a channel transition probability measure P(ỹ|x̃) for every x̃ ∈ X̃ and ỹ ∈ Ỹ that expresses the

probability of observing a certain output ỹ given that an input x̃ was transmitted [27]. Throughout

this work, we will concentrate on coding over a channel with state and feedback (section 4.6
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in [9]). Formally, at time n the channel state, S̃n belongs to a discrete and finite set Ã . We assume

that the channel state is known at both the encoder and the decoder. The transition probability at

time n is specified by the conditional probability assignment

Pn

(
ỸnS̃n+1|Ỹ n−1

1 , X̃n
1 , S̃

n
1

)
= Pn

(
S̃n+1|Ỹ n

1 , X̃
n
1 , S̃

n
1
)
P
(
Ỹn|X̃n, S̃n

)
. (2.6)

Transmission over such a channel is shown in Figure 2.1. In general, the channel state S̃n at time

n evolves as a function of all past outputs, inputs, and states,

S̃n = g̃n(Ỹ n−1
1 , X̃n−1

1 , S̃n−1
1 ). (2.7)

The goal is to encode and transmit a uniformly distributed message W̃ ∈ [M] over the channel.

The encoding function φn at any time n depends on the message to be transmitted W̃, all past

states, and past outputs. Thus the next symbol to be transmitted is given by

X̃n = φn(Ỹ n−1
1 , S̃n−1

1 ,W̃). (2.8)

The encoder obtains the past outputs from the decoder due to the availability of a noiseless

feedback channel from decoder to encoder. In this chapter, we assume that both encoder and

decoder know the evolution of the channel state, i.e., the sequence S̃n
1. After τ channel uses,

the decoder uses the noisy observations Ỹ τ
1 and state information S̃τ

1 to find the best estimate

W̃′, of the message W̃. The probability of error at the end of message transmission is given by

Pe = P(W̃′ 6= W̃|Ỹ τ
1 , S̃

τ
1) and the average probability of error is given by Pe = P(W̃′ 6= W̃).

Example 3 (Binary Additive White Gaussian Noise channel with State and feedback). Consider

a Binary Additive White Gaussian Noise (BAWGN) channel with noisy output Ỹn given as the

sum of input X̃n ∈ {0,1} and Gaussian random variable Z̃n ∈ R whose distribution is a function

of the channel state S̃n. Specifically, Z̃n is a Gaussian random variable with state dependent noise

17



variance |S̃n|δσ2 for some δ > 0. In other words, we have

Ỹn = X̃n + Z̃n(S̃n), (2.9)

where Z̃n ∼N (0, |S̃n|δσ2), and the state evolves as S̃n = g̃n(Ỹ n−1
1 , X̃n−1

1 S̃n−1
1 ). Transmission over

a BAWGN channel is illustrated in Figure 2.2.

Figure 2.2: Transmission over a BAWGN channel with binary input X̃n and Gaussian noise Z̃n.

Proposition 1. The problem of searching under measurement dependent Gaussian noise can be

cast as a problem of channel coding over a BAWGN channel with state and feedback. Specifically,

• The true location vector W can be cast as a message W̃ to be transmitted over the BAWGN.

Therefore, by setting W̃ = W there are B
δ

possible messages.

• The measurement vector fixes the probability P(Ỹn|x̃n, S̃n) = N (x̃n, |Sn|δσ2) since noise

distribution is Z̃n ∼N (0, |Sn|δσ2) for x̃n ∈ {0,1}. In other words, by setting S̃n = Sn the

measurement vector acts as the channel state and fixes the channel transition probability.

• An ε-reliable search strategy cε provides a sequence of {g1,g2, . . . ,gτ} such that P(W′ 6=

W)≤ ε. Hence, by setting g̃i = gi for all i ∈ {1,2, . . . ,τ}, the search strategy dictates the

evolution of channel states S̃n.

18



• The sequence of measurement vectors Sn
1 can be used as the codebook. Specifically, the

codewords and the encoding strategy are obtained by setting

X̃n = φn(Ỹ n−1
1 , S̃n−1

1 ,W̃) = WᵀSn. (2.10)

In other words, ε-reliable search strategy cε provides an encoding strategy with at most ε

probability of error in decoding the true message.

Corollary 1. The problem of coding over BAWGN channel with codebook dependent state and

feedback can be cast a problem of searching under measurement dependent Gaussian noise when

the codebook dependent state is given as

S̃n = [φn(Ỹ n−1
1 , S̃n−1

1 ,W̃(1)),φn(Ỹ n−1
1 , S̃n−1

1 ,W̃(2)), . . . ,φn(Ỹ n−1
1 , S̃n−1

1 ,W̃(M))]ᵀ. (2.11)

The measurement vector is obtained by setting Sn = S̃n. Therefore, a channel coding strategy

with P(W̃ ′ 6= W̃ )≤ ε provides an ε-reliable search strategy over M locations.

The equivalence of problem of searching under measurement dependent noise and the

problem of channel coding with state and feedback, implied by Proposition 1 and Corollary 1,

provides an efficient way to design and compare non-adaptive and adaptive search strategies.

Furthermore, it is known that feedback can improve the capacity of a channel with state [9]. In

other words, adaptive coding strategies provide a gain in rate of transmission over non-adaptive

coding strategies. This motivates our analysis of the gains to be seen when using an adaptive

search strategy over a non-adaptive search strategy. Next we define appropriate figures merit to

characterize the gain in using adaptive strategies for the problem of searching under measurement

dependent noise.

2.3.2 Target Acquisition Rate and Adaptivity Gain
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For any ε-reliable strategy cε, the performance is measured by the expected number

of measurements Ecε
[τ]. The following definition captures the growth of expected number of

measurements as number of search locations grow.

Definition 4 (Achievable Target Acquisition Rate). A target acquisition rate R is said to be

ε-achievable, if for any ξ > 0 there exists an n(ξ) such that for all n≥ n(ξ) there is an ε-reliable

search strategy cε which satisfies the following

Ecε
[τ]≤ n, (2.12)

B
δ
≥ 2n(R−ξ). (2.13)

A targeting rate R is said to be achievable target acquisition rate if it is ε-achievable for all

ε ∈ (0,1).

The above definition is motivated by information theoretic notion of transmission rate over

a communication channel, which captures the exponential rate at which the number of messages

grows with the number of channel uses while the receiver can decode with a small average error

probability. Similarly, the target acquisition rate captures the exponential rate at which the number

of target locations grow with the number of measurement vectors while a search strategy can still

locate the target with a diminishing average error probability.

Definition 5. The BAWGN capacity with input distribution Bern(q) and noise variance σ2 is

defined as

C
(
q,σ2) :=−

∫
∞

−∞

(
(1−q)G(y;0,σ2)+qG(y;1,σ2)

)
log
(
(1−q)G(y;0,σ2)+qG(y;1,σ2)

)
dy

− 1
2

log(2πeσ
2). (2.14)

Corollary 2. From channel coding over a BAWGN channel with state and feedback, we obtain

that for any small ξ > 0 and n large enough, there exists an ε-reliable search strategy cε such the
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following holds

Ecε
[τ]≤ n, (2.15)

2n(C( 1
2 ,σ

2
Total)−ξ)

(a)
≤ B

δ

(b)
< 2nC( 1

2 ,δσ2), (2.16)

where (a) follows by combining our Corollary 1 with Theorem 4.6.1 in [9], and (b) follows by

combining our Corollary 1 with the converse of the noisy channel coding theorem [27] and using

the fact that the best channel is obtained when noise variance is the least, i.e., δσ2.

Definition 6 (Target Acquisition Capacity under σ2
Total ≥ ρ). The supremum of achievable target

acquisition rates R under σ2
Total ≥ ρ is called the target acquisition capacity Cρ under σ2

Total ≥ ρ.

Remark 1. Let CNA
ρ and CA

ρ denote the target acquisition capacity under total noise variance

σ2
Total ≥ ρ over the class of non-adaptive and adaptive strategies respectively. From [10, 11], the

gain in the target acquisition capacity when using adaptive strategies is given as

CA
ρ −CNA

ρ = 1− sup
q

C(q,2qρ)> 0. (2.17)

When the width of the search region B grows the noise intensity σ2
Total grows unboundedly

and the achievable rate goes to zero. Hence, we first characterize the following notion of adaptivity

gain before we characterize the the improvement in target acquisition rate when using adaptive

strategies over non-adaptive strategies.

Definition 7 (Adaptivity Gain). The adaptivity gain is defined as the best reduction in the expected

number of measurements when searching with an ε-reliable adaptive strategy c′ε ∈ C A
ε , over an

ε-reliable non-adaptive strategy cε ∈ C NA
ε . Mathematically, it is given as

min
cε∈C NA

ε

E[τ]− min
c′ε∈C A

ε

E[τ′]. (2.18)
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2.4 Main Results

In this section, we characterize a lower bound on the adaptivity gain mincε∈C NA
ε

E[τ]−

minc′ε∈C A
ε
E[τ′]; the performance improvement measured in terms of reduction in the expected

number of measurements for searching over a width B among B
δ

locations under measurement

dependent Gaussian noise. First we characterize a lower bound on mincε∈C NA
ε

E[τ].

2.4.1 Non-adaptive Strategies

Lemma 1. The minimum expected number of measurements required for any ε-reliable non-

adaptive search strategy can be lower bounded as

min
cε∈C NA

ε

Ecε
[τ]≥

(1− ε) log
(B

δ

)
−h(ε)

C (q∗,q∗Bσ2)
.

Proof of the Lemma 1 is provided in Appendix-A. The proof follows from the fact that

clean signal Xi and noise Zi are independent over time and independent of past observations

for i ∈ [n], due to the non-adaptive nature of the search strategy. In the absence of information

from past observation outcomes, the agent tries to maximize the mutual information I(Xi,Yi)

at every measurement. Since Xi ∼ Bern(qi) and Zi ∼ N (0,qiBσ2), the mutual information

I(Xi,Yi) =C
(
qi,qiBσ2) is maximized at qi = q∗.

Figure 2.3 shows the behavior of the maximum mutual information for a non-adaptive

strategy C
(
q∗,q∗Bσ2) as number of locations grow. When B= 1 and δ goes to zero, C

(
q∗,q∗Bσ2)

remains same for a given σ2. On the other hand, when δ = 1 and B grows, C
(
q∗,q∗Bσ2) goes

to zero. Furthermore, C
(
q∗,q∗Bσ2) goes to zero faster when σ2 = 0.05 than when σ2 = 0.001.

This implies non-adaptive strategies need a growing number of measurements as B grows. On the

other hand, an adaptive strategy can reduce the number measurements as follows. Whenever the

agent narrows down the target’s location to some coarse fraction of the total search region (say

a section of width αB) with high confidence, an adaptive strategy can zoom in and search only
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within αB section. This reduces the noise intensity in the measurements unlike a non adaptive

strategy which still searches regions of width q∗B. Hence, non-adaptive strategies perform poorly

in comparison to adaptive strategies that rapidly zoom in to smaller regions especially when

C
(
q∗,q∗Bσ2) close to zero (as shown in Figure 2.3 for σ2 = 0.05).
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Figure 2.3: Non-adaptive capacity as number of locations grow for various values of σ2.

2.4.2 Lower Bound on Adaptivity Gain

The expected number of measurements required to zoom in to a region of width αB with

high confidence is larger when α is small. On the other hand, noise intensity reduces more

significantly after zooming in to a region of width αB, for small α than for large α. This reduces

the expected number of measurements needed to locate the target within the region αB upto a

resolution δ with high confidence. For any adaptive strategy, there is a trade-off between how

rapidly an adaptive strategy can zoom in to and the width of the region to which it zooms in.

This trade-off is controlled by the value of parameter α. Since adaptive strategies observe less

noisy measurements than non-adaptive strategies after zooming, parameter α also controls the

adaptivity gain. This intuition is formalized by the following theorem.

Theorem 1. Let ε ∈ (0,1). For any ε-reliable non-adaptive strategy cε ∈ C NA
ε searching over
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a search region of width B among B
δ

locations with τ number of measurements, there exists an

ε-reliable adaptive strategy c′ε ∈ C A
ε with τ′ number of measurements, such that for any η > 0 the

following holds

min
cε∈C NA

ε

Ecε
[τ]− min

c′ε∈C A
ε

Ec′ε [τ
′]≥ max

α∈IB
δ

{
log 1

α

g(1)ε,η(q∗,Bσ2)
+

log αB
δ

g(2)ε,η(α,q∗,Bσ2)
−hε,η(δ,α,Bσ

2)

}
,

where

g(1)ε,η(q
∗,Bσ

2) =

(
(1− ε)

C(q∗,q∗Bσ2)
− 1

C (q∗,q∗Bσ2)−η

)−1

,

g(2)ε,η(α,q
∗,Bσ

2) =

 (1− ε)

C(q∗,q∗Bσ2)
− 1

C
(

1
2 ,

αBσ2

2

)
−η

−1

,

and

hε,η(δ,α,Bσ
2) =

log
(2

ε

)
+ log log

( 1
α

)
+aη

C (q∗,q∗Bσ2)−η
+

log
(2

ε

)
+ log log

(
αB
δ

)
+aη

C
(

1
2 ,

αBσ2

2

)
−η

+
h(ε)

C(q∗,q∗Bσ2)
,

q∗ = argmaxq∈IB
δ

C(q,qBσ2), and aη is the solution of the following equation

η =
a

a−3
max
q∈IB

δ

∫
∞

−∞

e
− y2

2Bqσ2√
2πqBσ2

[
2y−1
2qBσ2

]
(a−3)

dy. (2.19)

Proof of Theorem 1 is obtained by combining Lemma 1 and Lemma 2. Theorem 1

provides a non-asymptotic lower bound on adaptivity gain.The first two terms in the above lower

bound can be viewed as corresponding to two stages. Intuitively, the first part corresponds to the

initial stage of the search, where the agent narrows down the target’s location to some coarse α
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fraction of the total search region, i.e., narrows to a section of width αB with high confidence.

The second stage corresponds to refined the search within one of the coarse sections αB obtained

from initial stage. For the first stage, our bound predicts negligible gains in using an adaptive

strategy over a non-adaptive strategy and it is captured by the term 1
g(1)ε,η(q∗,Bσ2)

. However, in the

second stage where an adaptive strategy zooms in to a width of αB, a significant gain can be

seen especially as B grows and it is captured by the term 1
g(2)ε,η(α,q∗,Bσ2)

. The following corollary

characterizes the adaptivity gain in the two asymptotic regimes δ going to zero and B growing.

Corollary 3. Let ε ∈ (0,1). For any ε-reliable non-adaptive strategy cε ∈ C NA
ε searching over

a search region of width B among B
δ

with τ number of measurements, there exists an ε-reliable

adaptive strategy c′ε ∈ C A
ε with τ′ number of measurements, such that for a fixed B the asymptotic

adaptivity gain grows logarithmically with the total number of locations,

lim
δ→0

Ecε
[τ]−Ec′ε [τ

′]

log B
δ

≥ 1− ε

C(q∗,q∗Bσ2)
−1. (2.20)

For a fixed δ, the asymptotic adaptivity gain grows at least linearly with total number of locations,

lim
B→∞

Ecε
[τ]−Ec′ε [τ

′]
B
δ

log B
δ

≥ (1− ε)δσ2

loge
. (2.21)

Furthermore, we have

lim
B→∞

mincε∈C NA
ε

Ecε
[τ]

B
δ

log B
δ

≥ (1− ε)δσ2

loge
, (2.22)

and

lim
B→∞

mincε∈C A
ε
Ec′ε [τ

′]
B
δ

≤ 16δσ
2. (2.23)

The proof of the above corollary is provided in Appendix-C.
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Remark 2. The above corollary characterizes the two qualitatively different regimes discussed

previously. For fixed B, as δ goes to zero the asymptotic adaptivity gain scales as only log B
δ

,

whereas for fixed δ, as B increases the asymptotic adaptivity gain scales as B
δ

log B
δ

. In other

words, adaptivity provides a larger reduction in the expected number of measurements for the

regime where the total search width is growing than in the case where we fix the total width and

shrink the location widths. In Section 2.6 we related this phenomenon to the diminishing capacity

of BAWGN channel when the total noise σ2
Total grows.

Next we provide the main technical components of the proof of Theorem 1.

2.4.3 Adaptive Search Strategies

Consider the following two stage search strategy.

First Stage (Fixed Composition Strategy c1
ε

2
)

We group the B
δ

locations of width δ into 1
α

sections of width αB. Let W′ denote

the true location of the target among the sections of width αB. Now, we use a non-adaptive

strategy to search for the target location among 1
α

sections of width αB. In particular, we

use a fixed composition strategy where at every time instant n, the fraction of total locations

probed is fixed to be q∗. In other words, the measurement vector S′n at every instant n is

picked uniformly randomly from the set of measurement vectors {S′ ∈U 1
α

: |S′|= bq∗
α
c}. For

the ease of exposition, we assume that q∗
α

is an integer. Hence, for this strategy, at every

n, Xn ∼ Bern(q∗) and Zn ∼ N (0,q∗Bσ2). For all i ∈ {1,2, . . . , 1
α
}, let ρ′n(i) be the posterior

probability of the estimate Ŵ′(i) = 1 after reception of Yn−1, i.e., ρ′n(i) := P
(
Ŵ′(i) = 1|Y n−1)

and let ρ′n :=
{

ρ′n(1),ρ
′
n(2), . . . ,ρ

′
n
( 1

α

)}
. Assume that agent begins with a uniform probability

over the 1
α

sections, i.e., ρ′0 = {α,α, . . . ,α}. The posterior probability ρ′n+1(i) at time n+1 when
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Yn = y is obtained by the following Bayesian update:

ρ
′
n+1(i) =


ρ′n(i)G(y;1,q∗Bσ2)

D ′n
if S′n(i) = 1,

ρ′n(i)G(y;0,q∗Bσ2)
D ′n

if S′n(i) = 0,
(2.24)

where

D ′n = ∑
j:1{Sn( j)=1}

ρ
′
n( j)G(y;1,q∗Bσ

2)+ ∑
j:1{Sn( j)=0}

ρ
′
n( j)G(y;0,q∗Bσ

2). (2.25)

Let τ1 := inf
{

n : maxi ρ′n(i)≥ 1− ε

2

}
be the number of measurements used under stage

1. Note that τ1 is a random variable. Hence, first stage is a non-adaptive variable length strategy.

Now, the expected stopping time Ec1
ε
2

[τ1] can be upper bounded using Lemma 3 from Appendix-B.

Second Stage (Sorted Posterior Matching Strategy c2
ε

2
)

In the second stage, the agent zooms into the αB width section obtained from the first

stage and uses an adaptive strategy to search only within this αB section. The agent searches

for the target location of width δ among the remaining αB
δ

locations. In particular, we use the

sorted posterior matching strategy proposed in [10] which we describe next. Let W′′ denote the

true target location of width δ. For all i ∈ {1,2, . . . , αB
δ
}, let ρ′′n(i) be the posterior probability

of the estimate Ŵ′′(i) = 1 after reception of Yn−1, i.e., ρ′n(i) := P
(
Ŵ′′(i) = 1|Yn−1) and let

ρ′′(n) := {ρ′′n(1),ρ′′n(2), . . . ,ρ′′n
(

αB
δ

)
}. Assume the agent begins with a uniform probability over

the αB
δ

sections, i.e., ρ′′0 =
{

δ

αB ,
δ

αB , . . . ,
δ

αB

}
. At every time instant n, we sort the posterior values

in descending order to obtain the sorted posterior vector ρ↓n. Let vector In denote the corresponding

ordering of the location indices in the new sorted posterior. Define

k∗n := argmin
i

∣∣∣∣∣ i

∑
j=1

ρ
↓
n( j)− 1

2

∣∣∣∣∣ . (2.26)
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We choose the measurement vector S′′n such that S′′n( j) = 1 if and only if j ∈ {In(1), . . . , In(k∗n)}.

Note that for this strategy, at every n, the noise is Zn∼N (0, |S′′n|δσ2) and the worst noise intensity

is N (0, αBσ2

2 ). The posterior probability ρ′′n+1(i) at time n+ 1 when Yn = y is obtained by the

following Bayesian update:

ρ
′′
n+1(i) =


ρ′′n(i)G(y;1,|S′′n |δσ2)

D ′′n
if S′′n(i) = 1,

ρ′′n(i)G(y;0,|S′′n |δσ2)
D ′′n

if S′′n(i) = 0,
(2.27)

where

D ′′n = ∑
j:1{Sn( j)=1}

ρ
′′
n( j)G

(
y;1, |S′′n|δσ

2)+ ∑
j:1{Sn( j)=0}

ρ
′′
n( j)G

(
y;0, |S′′n|δσ

2) . (2.28)

Let τ2 := inf
{

n : maxi ρ2
n(i)≥ 1− ε

2

}
be the number of measurements used under stage 2. Note

that τ2 is a random variable. Hence, the second stage is an adaptive variable length strategy.

The expected number of measurements Ec2
ε
2

[τ′′] can be upper bounded using Lemma 6 from

Appendix-B.

Noting that the total probability of error of the two stage search strategy is less than ε

and that the expected stopping time is Ec′ε [τ
′] = Ec1

ε
2

[τ1]+Ec2
ε
2

[τ2], we have the assertion of the

following lemma.

Lemma 2. The minimum expected number of measurements required for the above ε-reliable

adaptive search strategy c′ε can be upper bounded as

Ec′ε [τ
′]≤ min

α∈IB
δ

 log 1
α
+ log 2

ε
+ log log 1

α
+aη

C (q∗,q∗Bσ2)−η
+

log αB
δ
+ log 2

ε
+ log log αB

δ
+aη

C
(

1
2 ,

αBσ2

2

)
−η

 . (2.29)

Remark 3. Recall that minc′ε∈C A
ε
Ec′ε [τ

′] denotes the minimum expected number of measurements

required by the optimal adaptive strategy non-asymptotically. Lemma 2 provides an upper bound
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on minc′ε∈C A
ε
Ec′ε[τ

′] using the two stage adaptive strategy. The sorted posterior matching strategy

proposed in [10] provides another upper bound for minc′ε∈C A
ε
Ec′ε [τ

′]. However, this bound is very

loose. In fact, sorted posterior matching startegy empirically performs significantly better than

the bound predicted by the analysis in [10]. Lemma 2 using a possibly sub-optimal strategy than

sorted posterior matching provides a significantly tighter bound on minc′ε∈C A
ε
Ec′ε[τ

′] as illustrated

in Figures 2.6 and 2.7.

Remark 4. In the regime of fixed B and diminishing δ, Lemma 2 together with Corollary 2

establishes the asymptotic optimality of our proposed algorithm.

2.5 Extensions and Generalizations

2.5.1 Generalization to other noise models

The main results presented in this chapter consider the setup where the noise Zn is

distributed as N (0, |Sn|δσ2). In other words, the variance of the noise given by (|Sn|δσ2) is a

linear function of the size of a measurement vector |Sn|. This model assumption holds when each

target location adds noise equally and independently of other locations when probed together. In

general, due to correlation across locations the additive noise variance can be assumed to scale as a

non-decreasing function f (·) of the measurement vector |Sn|. In this section, we extend our model

to a general formulation for the noise Zn ∼ N (0, f (|Sn|)δσ2), where f (·) is a non-decreasing

function of |Sn|. For example, f (Sn) = |Sn|γ for some γ > 0. Figure 2.4 shows that the effect of

the noise function f (|Sn|) on the capacity. The following theorem is an extension of Theorem 1 to

the general formulation of noise. We provide the theorem without a proof since it closely follows

the proof of Theorem 1.

Theorem 2. Let ε ∈ (0,1) and let f (·) be a non-decreasing function. For any ε-reliable non-

adaptive strategy cε ∈ C NA
ε searching over a search region of width B among B

δ
locations with τ
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Figure 2.4: Behavior of capacity of BAWGN channel with σ2 = 0.25 over a total search region
of width B = 10, location width δ = 0.1, as a function of the size of a measurement |Sn|.

number of measurements, there exists an ε-reliable adaptive strategy c′ε ∈ C A
ε with τ′ number of

measurements, such that for any constant η > 0 the following holds

min
cε∈C NA

ε

Ecε
[τ]− min

c′ε∈C A
ε

Ec′ε [τ
′]≥ max

α∈IB
δ

{
log 1

α

g(1)ε,η(q∗,Bσ2)

log αB
δ

g(2)ε,η(α,q∗,Bσ2)

}
(1+o(1)),

where

g(1)ε,η(q
∗,Bσ

2) =

 (1− ε)

C(q∗, f (q∗B
δ
)δσ2)

− 1

C
(

q∗, f (q∗B
δ
)δσ2

)
−η

−1

,

g(2)ε,η(α,q
∗,Bσ

2) =

(
(1− ε)

C(q∗, f (q∗B
δ
)δσ2)

− 1
C
(1

2 , f (αB
2δ
)σ2
)
−η

)−1

,

and q∗ = argmaxq∈IB
δ

C(q, f (qB
δ
)δσ2), and o(1) goes to 0 as B

δ
→ ∞.
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2.5.2 Multiple Targets

The problem formulation and the main results of this chapter consider the special case

when there exists a single stationary target. Suppose instead the agent aims to find the true

location of r unique targets quickly and reliably. Our problem formulation is easily extended to

the general case where there may exist multiple targets. In our generalization to multiple targets

under the linear noise model (2.3), the clean signal indicates the the number of targets present in

the measurement vector Sn. In particular, let W(i) ∈U B
δ

be such that W(i)( j) = 1 if and only if

j-th location contains the i-th target. Then, the noisy observation is given as

Yn =
r

∑
i=1

(W(i))ᵀSn +Zn, (2.30)

where Zn ∼N (0, |Sn|δσ2). Setting X (i)
n = (W(i))ᵀSn for i ∈ [r], we have

Yn =
r

∑
i=1

X (i)
n +Zn. (2.31)

The problem of searching for multiple targets is equivalent to the problem of channel coding over

a Multiple Access Channel (MAC) with state and feedback [28]. In other words, we can extend

the Proposition 1, to channel coding over a MAC with state and feedback with the following

constraints: (i) W(i) can be viewed as the message to be transmitted by the i-th transmitter, (ii) the

measurement matrix Sn can be viewed as the common codebook shared by all the transmitters,

and (iii) a search strategy dictates the evolution of the MAC state. The channel transition is then

fixed by the channel state which is measurement dependent.

Example 1′ (Establishing initial access in mm-Wave communications). In the deployment

of mm-Wave links into a cellular or 802.11 network, the base station needs to to quickly switch

between users and accommodate multiple mobile clients. In a dense network as such, a received

signal at the base station will be corrupted by measurement dependent noise (due to channel
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properties) and by neighboring interfering users. Thus, in our model at time n the noisy

observation, Yn of eq.2.31, is a function of inputs from multiple users in the network, in addition

to a measurement dependent noise.

Example 2′ (Spectrum Sensing for Cognitive Radio). In spectrum sensing for cognitive

radio, an agent is tasked with opportunistically searching for r vacant subbands of bandwidth

δ over a total bandwidth of B. In this problem we desire to locate r stationary vacant subbands

quickly and reliably, by making measurements over time. Here again the noise intensity depends

on the number of subbands probed, Sn, at each time instant n.

Searching for multiple targets with measurement dependent noise is a significantly harder

problem compared to a single target case and achievability strategies for this problem even in the

absence of noise are far more complex [29, 30].

2.6 Numerical Results

In this section we provide numerical analysis.

2.6.1 Comparing Search Strategies

In this section, we empirically compare the performance in expected number of mea-

surements Ecε
[τ] required by four ε-reliable strategies proposed in the literature. In addition

to the sortPM strategy c2
ε , and the optimal variable length non-adaptive strategy i.e., the fixed

composition strategy c1
ε , we also consider two noisy variants of the binary search strategy. The

noisy binary search applied to our search model selects the locations to be searched at time n, i.e.

the search region Sn, to be half the width of the previous search region Sn−1. In particular, it

zooms in to the half region of Sn−1 which has accumulated higher posterior probability.

The first variant we consider is the fixed length noisy binary search, which resembles the

adaptive iterative hierarchical search strategy [15]. In this strategy, each measurement is repeated

32



αε(Sn)|Sn| number of times, where αε(Sn) is a number chosen as a function of Sn such that all

combined measurements result in an ε-reliable search strategy. That is, each measurement vector

Sn is used αε(Sn)|Sn| number of times, before the strategy zooms into a region of half the size.

The second variant is a variable length version of the similar noisy binary search where each

measurement vector Sn is used until we obtain error probability less than εp := ε

logB/δ
either

inside or outside of Sn. Table I provides a quick summary of the search strategies. Note that

Table I also includes a short summary of our two-stage strategy, although this strategy is studied

in the next section (Section VI-B).

Table 2.1: Candidate Search Strategies

Strategies cε ∈ Cε Description of Sn selection

Optimal non-adaptive • Select Sn s.t. |Sn|= q∗B
δ

as dictated by strategy c1
ε

Fixed Length Noisy Binary • Select Sn as dictated by
binary search strategy
• Repeat αε(Sn)|Sn| times

Variable Length Noisy Binary • Select Sn as dictated by
binary search strategy
• Repeat τ times s.t.
τ=min{n:‖ρn‖∞≥1− εp}

Sorted Posterior Matching • Select Sn as dictated by
Sort PM strategy c2

ε

Two-stage Strategy • Phase 1: Search among ( 1
α

)

large subsets. Select Sn fixed

composition s.t. |Sn|= q∗B
δ

• Phase 2: Zoom into region

of size αB, and select Sn
with Sort PM strategy c2

ε

Figure 2.5, shows the performance of each ε-reliable search strategy, when considering

fixed parameters B, δ, and ε. We note that the fixed length noisy binary strategy performs poorly

in comparison to the optimal non-adaptive strategy. This shows that randomized non-adaptive
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search strategies, similar to the one considered in [21] perform better than both the exhaustive

search (as shown in [21]) and the iterative hierarchical search strategy. In particular, it performs

better than the variable length noisy binary search since when the noise variance parameter σ2 is

large, this higher noise intensity requires that each measurement is repeated far too many times in

order to be ε-reliable. The performance of the optimal fully adaptive variable length strategies

sort PM [10] is superior to all strategies even in the non-asymptotic regime.

10
-2

10
-1

0

50

100

150
Fixed Length Noisy Binary

Optimal non-adaptive

Variable Length Noisy Binary

SortPM

Figure 2.5: Ecε
[τ] with ε = 10−4, B = 16, and δ = 1, as a function of σ2 for various strategies.

2.6.2 Two Distinct Regimes of Operation

In this section, for a fixed σ2 we are interested in the expected number of measurements

required Ecε
[τ] by an ε-reliable strategy cε, in the following two regimes: (1) varying δ while

keeping B fixed, and (2) varying B while keeping δ fixed. Figures 2.6 and 2.7 show the simulation

results of Ecε
[τ] as a function of width B, i.e. regime (1) and resolution δ, i.e. regime (2),

respectively. The empirical performance is studied for the following: for the fixed composition

non adaptive strategy cε ∈ C NA
ε , for the sort PM adaptive strategy cε ∈ C A

ε and its respective

upper bound (obtained from the analysis of [10]), for our proposed two-stage strategy along with
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dominant terms of the lower bound of Lemma 1, and the upper bound of Lemma 2.. In both

regimes, we observe better performance using the sortPM strategy over our two-stage strategy.

However, the upper bound of the sortPM strategy is extremely loose and fails to guarantee any

adaptivity gain. In fact, in Figure 2.7 the sortPM upper bound is approximately 4 times larger in

Ecε
[τ] than the sortPM strategy. On the other hand, under both regimes of operation, our tighter

bounds empirically show positive adaptivity gain, albeit in distinctly different manners for each

regime. For both regimes, we see that the adaptivity gain grows as the total number of locations

increases; however in distinctly different manner as seen in Corollary 3.
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SortPM: analytic upper bound

Optimal non-adaptive: simulation

Optimal non-adaptive: analytic lower bound

Two-stage: analytic upper bound

Two-stage: simulation

SortPM: simulation

Figure 2.6: Ecε
[τ] with ε = 10−4, σ2 = 0.05, and δ = 1, as a function of B.

2.6.3 Relating the Regimes of Operation to Capacity

In this section, we attempt to relate these two regimes of operation to the manner in

which the capacity of a BAWGN channel varies. Let noise parameter Zn ∼N (0,2qσ2
Total), where

q = |Sn|δ
B is the fraction of the search region measured and σ2

Total =
Bσ2

2 is the half bandwidth

variance. Figure 2.9 shows the effects of the half bandwidth variance on the capacity of a search

as a function of q. Intuitively, the target acquisition rate of the adaptive strategy relates to the

time spent searching sets of size q as q varies from 1
2 to δ

B . This means for sufficiently small
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Figure 2.7: Ecε
[τ] with ε = 10−4, σ2 = 1 and B = 1, as a function of δ.
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Figure 2.8: Close up of Ecε
[τ] with ε = 10−4, σ2 = 1 and B = 1, as a function of δ.

σ2
Total (≤ 0.025 in this example), the adaptivity gain is negligible since C(1

2 ,2qσ2
Total) is about 1

for all q. For medium range σ2
Total (for e.g., 0.25 in this example), the adaptivity effects the target

acquisition rate from C(1
2 ,2q∗σ2

Total) to C(1
2 ,2

δ

Bσ2
Total). When σ2

Total grows significantly, however,

the capacity drops rather quickly to zero, forcing the non-adaptive strategies to operate close to

exhaustive search, whose measurement time increases linearly in B
δ

. This is the regime with most

significant adaptivity gain as predicted by Corollary 3.
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Figure 2.9: For arbitrary B and δ, and with ε = 10−4, C(1
2 ,2qσ2

Total) as a function of q for
different values of total noise variance (σ2

Total)

2.6.4 Beyond a Linear Noise Model

In this section, we analyze Ecε
[τ] under a general noise model, as presented in section

(V-A). Recall, Yn ∼N (Xn, f (|Sn|)δσ2), where f is a non-decreasing function of the measurement

vector |Sn|. Figure 2.4 shows that the behavior of the capacity range of a search with fixed

parameters B, δ, Sn can be significantly affected by the function f (·). Let us consider the noise

function f (·) to be of the form |Sn|γ. Figure 2.10 shows the plot of dominant terms of the lower

bound of Lemma 1, and the upper bound of Lemma 2 as a function of σ2 for the values of

γ ∈ {0.5,1,2}. The adaptivity gain is clearly more significant for larger values of gamma and

hence, validates the need for generalizing the noise function.

2.7 Conclusion and Future Work

We considered the problem of searching for a target’s unknown location under measure-

ment dependent Gaussian noise. We showed that this problem is equivalent to channel coding

over a BAWGN channel with state and feedback. We used this connection to utilize feedback code
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Figure 2.10: Ecε
[τ] with ε = 10−4, σ2 = 0.25 and B = 25, δ = 1, as a function of γ when

Zn ∼N (0, |Sn|γδσ2).

based adaptive search strategies. We obtained information theoretic converses to characterize the

fundamental limits on the target acquisition rate under both adaptive and non-adaptive strategies.

As a corollary, we obtained a lower bound on the adaptivity gain. We identified two asymptotic

regimes with practical applications where our analysis shows that adaptive strategies are far more

critical when either noise intensity or the total search width is large. In contrast, in scenarios

where neither the total width nor noise intensity is large, non-adaptive strategies might perform

quite well. The immediate step is the extension of this work to a model with r > 1 target locations,

where the problem has been shown to be equivalent to MAC encoding with feedback [28].
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2.8 Appendix

2.8.1 Proof of Lemma 1

Applying Fano’s inequality [27] to any non-adaptive search strategy that locates the target

among B
δ

locations with Pe ≤ ε, we have

log
(

B
δ

)
(a)
≤ 1

1− ε
sup
Xn

n

∑
i=1

I(Xi,Yi)+
h(ε)
1− ε

(b)
≤ 1

1− ε

n

∑
i=1

C
(
qi,qiBσ

2)+ h(ε)
1− ε

≤ n
1− ε

max
q∈I B

δ

C(q,qBσ
2)+

h(ε)
1− ε

, (2.32)

where (a) follows from the fact that Xi and Zi for i = 1,2, . . . ,n are independent over time and

independent of past observations due to the non-adaptive nature of the search strategy. Since

Xi ∼ Bern(qi) and Zi ∼ N (0,qiBσ2), (b) follows from the fact that I(Xi,Yi) = C
(
qi,qiBσ2).

Rearranging the above equation, we have the assertion of the lemma.

2.8.2 Proof of Lemma 2

Before we provide the proof of Lemma 2, we define quantities required in the proof. For

any q ∈ IB
δ

and under any measurement vector Sn ∈U B
δ

such that |Sn|= qB
δ

we have the following

∣∣∣∣log
P(y|Sn,W(i) = 1)
P(y|Sn,W( j) = 1)

∣∣∣∣=


0 if Sn(i) = 1 and Sn( j) = 1,

0 if Sn(i) 6= 1 and Sn( j) 6= 1,∣∣∣ 2y−1
2qBσ2

∣∣∣ Otherwise.

(2.33)
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Hence, we have

max
i, j∈[B

δ
]

max
Sn∈U B

δ

∫
∞

−∞

P(y|Sn,W(i) = 1)
∣∣∣∣log

P(y|Sn,W(i) = 1)
P(y|Sn,W( j) = 1)

∣∣∣∣1+γ

dy

= max
q∈IB

δ


∫

∞

−∞

e
− y2

2qBσ2√
2πqBσ2

∣∣∣∣ 2y−1
2qBσ2

∣∣∣∣1+γ

dy

 . (2.34)

Therefore, there exists ξ B
δ

< ∞ and γ > 0 such that

max
i, j∈[B

δ
]

max
Sn∈U B

δ

∫
∞

−∞

P(y|Sn,W(i) = 1)
∣∣∣∣log

P(y|Sn,W(i) = 1)
P(y|Sn,W( j) = 1)

∣∣∣∣1+γ

dy≤ ξ B
δ

. (2.35)

Define

ψ B
δ

(a) := max
q∈IB

δ


∫

∞

−∞

e
− y2

2Bqσ2√
2πqBσ2

[
2y−1
2qBσ2

]
a

dy

 , (2.36)

and recall that [g]a = g if g≥ a otherwise [g]a = 0. The quantity a controls the maximum jump in

the log-likelihood ratio of the Gaussian observations under all possible search sets determined by

the values of q ∈ IB
δ

and the quantity ψ B
δ

(a) controls the tail probability of log-likelihood ratios

whose value is greater than a. Furthermore, we have ψ B
δ

(a) is non-increasing in a, and we have

ψ B
δ

(a)≤ a−γξ B
δ

. Therefore, the tail probability goes to 0, i.e, ψ B
δ

(a)→ 0 as a→ ∞. Now we are

ready to provide the proof for Stage I of our two stage strategy.

Stage I

Lemma 3. Under the fixed composition search strategy while searching over a search region of

width B among 1
α

locations such that |S′n|α = q∗ for n≥ 1, the following holds true for all n≥ 1

E
[
U(ρ′n+1)−U(ρ′n)|Fn,S′n

]
≥C

(
q∗,q∗Bσ

2) , (2.37)
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where define U(ρ′n) := ∑

1
α

i=1 ρ′n(i) log ρ′n(i)
1−ρ′n(i)

.

Proof. The proof follows closely the proof of inequality (9) in [31]. There are 1
α

locations of

length αB and hence query vector S′n ∈U 1
α

. At every time instant under the fixed composition

strategy K∗ = |Sn|= q∗
α

number of locations are searched. i.e., a region of length q∗B is searched.

Let PK∗ denote the collection of all partitions p of search locations 1 to 1
α

into sets A0
n and A1

n such

that |A1
n|= K∗. The probability of picking a partition p ∈ PK∗ is λp =

( 1
α

K∗
)−1

. For simplicity of

exposition let M = 1
α

. Also, we have ∑p∈PK∗ λp1{i∈A0
n} = π∗0 := M−K∗

M , and ∑p∈PK∗ λp1{i∈A1
n} =

π∗1 := K∗
M .

Since a region of q∗B is searched at every time instant, the noise variance is fixed at q∗Bσ2.

Hence, let Pk = P(Y |X = k, |A1
n|= K∗) = N (k,q∗Bσ2) for k ∈ {0,1}. Consider

E
[
U(ρ′n+1)−U(ρ′n)|Fn,Sn

]
= ∑

p∈PK∗

λp

M

∑
i=1

1

∑
k=0

ρ
′
n(i)1{i∈Ak

n}D

(
Pk

∥∥∥∥∥∑j 6=i

1

∑
l=1

ρ′n( j)
1−ρ′n(i)

1{i∈Al
n}Pl

)

=
M

∑
i=1

ρ
′
n(i)

1

∑
k=0

π
∗
k ∑

p∈PK∗

λp

π∗k
1{i∈Ak

n}D

(
Pk

∥∥∥∥∥∑j 6=i

1

∑
l=1

ρ′n( j)
1−ρ′n(i)

1{i∈Al
n}Pl

)
(a)
≥

M

∑
i=1

ρ
′
n(i)

1

∑
k=0

π
∗
kD

(
Pk

∥∥∥∥∥∑j 6=i

1

∑
l=1

ρ′n( j)
1−ρ′n(i)

∑
p∈PK∗

λp

π∗k
1{i∈Ak

t }1{i∈Al
t}Pl

)
(b)
=

M

∑
i=1

ρ
′
n(i)
(

π
∗
1D
(
P1

∥∥∥∥K∗−1
M−1

P1 +
M−K∗

M−1
P0

)
π
∗
0D
(
P0

∥∥∥∥M−K∗−1
M−1

P0 +
K∗

M−1
P1

)]
≥

M

∑
i=1

ρ
′
n(i)
(

π
∗
1D
(
P1

∥∥∥∥K∗

M
P1 +

M−K∗

M
P0

)
π
∗
0D
(
P0

∥∥∥∥M−K∗

M
P0 +

K∗

M
P1

))
(c)
= C

(
q∗,q∗Bσ

2) ,
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where (a) follows from Jensen’s inequality (b) follows from the definition of π∗0, π∗1 and

∑
p∈PK∗

λp1{i∈A0
n}1{ j∈A1

n} = ∑
p∈PK∗

λp1{i∈A1
n}1{ j∈A0

n} =
K∗(M−K∗)
M(M−1)

,

∑
p∈PK∗

λp1{i∈A0
n}1{ j∈A0

n} =
π∗0(M−K∗−1)

M−1
,

∑
p∈PK∗

λp1{i∈A1
n}1{ j∈A1

n} =
π∗1(K

∗−1)
M−1

,

and (c) is the definition of non-adaptive BAWGN channel capacity with input distribution Ber(q∗)

and noise variance q∗Bσ2.

Lemma 4. Under the fixed composition search strategy while searching over a search region

of width B among 1
α

locations such that |S′n|α = q∗ for n ≥ 1, the following holds true for the

expected number of queries while searching with Pe ≤ ε

2

Ec1
ε
[τ1]≤

log 1
α
+ log 2

ε
+ log log B

δ
+aη

C (q∗,q∗Bσ2)−η
. (2.38)

Proof is similar to the proof of Lemma 6.

Stage II

Note that BAWGN capacity for all q ∈ IB
δ

with capacity achieving input is

C
(

1
2
,qBσ

2
)
= D

(
N (0,qBσ

2)

∥∥∥∥1
2

N (0,qBσ
2)+

1
2

N (1,qBσ
2)

)
= D

(
N (1,qBσ

2)

∥∥∥∥1
2

N (0,qBσ
2)+

1
2

N (1,qBσ
2)

)
. (2.39)

Hence, the following Lemma follows from Proposition 3 in [32].

Lemma 5. Under the sortPM search strategy while searching over a search region of width αB
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among αB
δ

locations, the following holds true for all n≥ 1

E
[
U(ρ′′n+1)−U(ρ′′n)|Fn,Sn

]
≥C

(
1
2
,
αBσ2

2

)
, (2.40)

where define U(ρ′′n) := ∑

αB
δ

i=1 ρ′′n(i) log ρ′′n(i)
1−ρ′′n(i)

.

Lemma 6. Under the sortPM search strategy, the following holds true for the expected number

of queries while searching over the search width αB among αB
δ

locations with Pe ≤ ε

2

Ec2
ε
[τ2]≤

log αB
δ
+ log 2

ε
+ log log αB

δ
+aη

C
(

1
2 ,

αBσ2

2

)
−η

, (2.41)

where aη is the solution of the following equation

η =
a

a−3
ψ B

δ

(a−3). (2.42)

Proof. Fix some a > 0 to be chosen later. Let M = αB
δ

. Let ρ̃′ = 1− 1
1+max{logM, 2

ε
} . Now, define

U ′(ρ′′0) =U(ρ′′0)− log ρ̃′

1−ρ̃′ and define U ′(ρ′′n) as follows: if U ′(ρ′′n)< 0, then

U ′(ρ′′n+1) =



U(ρ′′n+1)−U(ρ′′n)+U ′(ρ′′n)

if U(ρ′′n+1)−U(ρ′′n)< a−U ′(ρ′′n),

a

if U(ρ′′n+1)−U(ρ′′n)≥ a−U ′(ρ′′n),

(2.43)
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and if U ′(ρ′′n)≥ 0, then

U ′(ρ′′n+1) =



U(ρ′′n+1)−U(ρ′′n)+U ′(ρ′′n)

if U(ρ′′n+1)−U(ρ′′n)< a,

a+U ′(ρ′′n)

if U(ρ′′n+1)−U(ρ′′n)≥ a.

(2.44)

By induction we can show that

log
ρ̃′

1− ρ̃′
≤U(ρ′′n)−U ′(ρ′′n). (2.45)

We have

E
[
U ′(ρ′′n+1)−U ′(ρ′′n)|Fn

]
= E

[
U(ρ′′n+1)−U(ρ′′n)|Fn

]
+E

[[
−b−U(ρ′′n+1)+U(ρ′′n)−U ′(ρ′′n)1{U ′(ρ′′n)<0}

]+
|Fn

]
(a)
≥ E

[
U(ρ′′n+1)−U(ρ′′n)|Fn

]
− a

a−3
ψ B

δ

(a−3)

(b)
≥ C

(
1
2
,
αBσ2

2

)
− a

a−3
ψ B

δ

(a−3), (2.46)

where (a) follows from [33] equation (4.140) and (b) follows Lemma 5. Let τ′ = min{n :

U ′(ρ′′n) ≥ 0} and τ ε

ε
= min{n : U(ρ′′n) ≥ log ρ̃

1−ρ̃
} where ρ̃ = 1− 2

ε
. From equation (2.45) and

since ρ̃′ > ρ̃, we have

Ec2
ε
[τ ε

2
]≤ Ec2

ε
|τ̃′]. (2.47)

The sequence U ′(ρ′′n)

C
(

1
2 ,

αBσ2
2

)
− a

a−3 ψ B
δ

(a−3)
−n forms a submartingale with respect to filtration Fn. Now
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by Doob’s Stopping Theorem we have

U ′(ρ′′0)

C
(

1
2 ,

αBσ2

2

)
− a

a−3ψ B
δ

(a−3)
≤ E

 U ′(ρ′′
τ̃′)

C
(

1
2 ,

αBσ2

2

)
− a

a−3ψ B
δ

(a−3)
− τ̃
′

 . (2.48)

Hence, we have

Ec2
ε
[τ̃′]≤

−U ′(ρ′′0)+E[U ′(ρ′′
τ̃′)]

C
(

1
2 ,

αBσ2

2

)
− a

a−3ψ B
δ

(a−3)

=
−U(ρ′′0)+ log ρ̃′

1−ρ̃′ +E[U ′(ρ′′
τ̃′)]

C
(

1
2 ,

αBσ2

2

)
− a

a−3ψ B
δ

(a−3)

(a)
≤

log αB
δ
+ log log αB

δ
+ log 2

ε
+E[U ′(ρ′′

τ̃′)]

C
(

1
2 ,

αBσ2

2

)
− a

a−3ψ B
δ

(a−3)

(b)
≤

log αB
δ
+ log log αB

δ
+ log 2

ε
+a

C
(

1
2 ,

αBσ2

2

)
− a

a−3ψ B
δ

(a−3)
, (2.49)

where (a) follows from the fact that U(ρ′′0) =− log(B
δ
−1) and (b) follows from the fact that for

all n < τ′, U ′(ρ′′n)< 0 and hence from equation (2.43) we have U ′(ρ′′
τ̃′)< a. Let η > 0 such that

η�C
(

1
2 ,

αBσ2

2

)
. Choose a to be the solution of the following

η =
a

a−3
ψ B

δ

(a−3), (2.50)

i.e., choose a = aη. We have the assertion of the lemma by combining above equation with

equations (2.47) and (2.49). Note that we control the maximum jump in the one-step evolution

of average U(ρ′′n) by truncating the log likelihood ratio of the Gaussian observations under all

possible search sets by the term aη. However, truncating the log-likelihood results in a cutback in

our capacity by an amount η, i.e., we obtain C(1
2 ,

αBσ2

2 )−η.
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2.8.3 Proof of Corollary 2

We make the following sub-optimal choices of aη and α(B
δ
) to obtain asymptotic bounds.

Choose aη = log log B
δ

so that η goes to zero as B
δ
→ ∞, and choose α(B

δ
) = 1

log B
δ

. Note that

α(B
δ
) goes to 0 slower than δ goes to 0. Combining this with Theorem 1 and using the fact

limδ→0C
(1

2 ,
1
2α
(B

δ

)
Bσ2) = 1, we have equation (2.20). Similarly, note that α(B

δ
) goes to 0

slower than B goes to ∞. Using loose approximations C(q∗,q∗Bσ2)≤ loge
Bσ2 and C

(1
2 ,α(

B
δ
)Bσ2)≥

log(B
δ
)

16Bσ2

(
1− log(B

δ
)

16Bσ2

)
with Theorem 1 we have equations (2.22–2.21).

Chapter 2, in full, is a reprint of the material as it appears in the paper: Anusha Lalitha,

Nancy Ronquillo and Tara Javidi, “Improved Target Acquisition Rates With Feedback Codes", in

IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 5, pp. 871-885, Oct. 2018.

The dissertation author was the primary investigator and author of this paper.
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Chapter 3

Almost-Fixed-Length Strategies for

Channel Coding and Hypothesis Testing

3.1 Introduction

Channel coding and statistical hypothesis testing which are at the core of information

theory and statistics have been traditionally studied under two settings, namely under the average-

length constraint and the fixed-length constraint. Under the average-length constraint, strategies

are designed such that their expected stopping time is bounded whereas under the fixed-length

constraint, strategies are designed such that their stopping time is strictly bounded. Furthermore,

the class of strategies which satisfy an average-length constraint provide various appealing

improvements compared to those that satisfy fixed-length constraint. For instance, channel coding

strategies under average-length constraint significantly improve the rate-reliability trade-off [5]

and similarly, hypothesis testing under average-length constraint improve the type-I and type-

II error exponent trade-off [34], over the fixed-length strategies. However, in many practical

applications using strategies which satisfy only average-length constraint has major limitations

since it does not prohibit stopping time from being occasionally very long. Moreover, unlike the
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fixed-length constraint, an average-length constraint does not limit the variability of the stopping

time around the average value. This suggests that allowing some variability in the stopping time

is essential for achieving better error exponents. The main contribution of this chapter is to

demonstrate that this flexibility need not be significant.

This chapter introduces a new class of coding and hypothesis testing strategies referred

to as almost-fixed-length channel codes and almost-fixed-length hypothesis tests in which the

stopping time is kept fixed (≤ n) for almost all sample paths except for an exponentially rare set

for which the stopping time is allowed exceed n but remains bounded by Kn where K is a constant.

More specifically, the probability of stopping time exceeding n approaches zero exponentially

fast with an exponent γ > 0. In other words, variance of the stopping time of almost-fixed-length

tests approaches zero as n grows. We also note that the proposed class of strategies does not

require a full sequential computation, and hence, is not as computationally cumbersome as the

variable-length strategies under average-length constraint. In this chapter, we show that it is

possible to achieve optimal performance of variable-length strategies using almost-fixed-length

strategies. Hence, neither growing variability nor the computational complexity are essential to

obtaining the optimal error exponents. The performance achieved by the two settings, namely

average-length constraint and fixed-length constraint, that were thought to be very distinct are

in fact the extremities of a continuum of performance curves achieved by almost-fixed-length

strategies parametrized by γ.

It is known that feedback can significantly improve the rate-reliability trade-off of fixed

length feedback codes provided that variable-length codes are allowed. Burnashev [5] established

that the error exponent improves in this setting and the reliability function for any rate R below

capacity is given by

E(R) =C1

(
1− R

C

)
, (3.1)
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where C denotes the capacity of the DMC and C1 denotes the maximal KL-divergence between

the conditional output distributions given any two inputs. On the other hand, the fixed-length

codes are bounded above and below by the Haroutunian bound established in [35] and the random

coding exponent demonstrated in [36], which are both strictly less than Burnashev’s optimal

reliability function. The following example shows that significant gap in the performance of the

two settings.
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Figure 3.1: Figure shows the optimal error exponents of variable-length feedback codes shown
by Burnashev along with upper bound and lower bound on fixed-length feedback codes i.e.,
sphere packing bound and random coding bound for a BSC with cross-over probability p = 0.2.

Example 4. Consider a Binary Symmetric Channel (BSC) with cross-over probability p = 0.2.

Figure 3.1 shows Burnashev’s optimal reliability function, the random coding bound which is a

lower bound for fixed-length codes and the sphere packing bound which is an upper bound for

fixed-length codes1. We can see that the variable-length codes significantly improve the error

exponents achieved by the class of fixed-length codes even in the presence of feedback. We shall

return to this example to illustrate how one can go from the fixed-length error exponent curve to

Burnashev’s optimal error exponent curve in an almost-fixed-length manner.

1Haroutunian bound coincides with the sphere packing bound in the case of a BSC.
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There is a large body of literature on the asymptotic analysis of type-I and type-II errors

as the (expected) number of samples n grows large. More specifically, the error exponents in both

variants of hypothesis testing is well-known and understood [27, 34, 37–39]. In the fixed-length

regime, the error exponents of the two types of errors can only be traded-off against each other,

the sequential hypothesis tests can achieve both exponents simultaneously. In other words, by

allowing the stopping time to be a random number with bounded expected value, the sequential

hypothesis test resolves the trade-off between error-types.
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Figure 3.2: Figure shows the optimal error exponents of fixed-length hypothesis test and
sequential hypothesis test for Bernoulli samples with parameters given by p1 = 0.9 under H1
and p2 = 0.2 under H2.

Example 5. Consider H1 : X ∼ Bern(0.9) and H2 : X ∼ Bern(0.2). Figure 3.2 shows the optimal

error exponents in both fixed-length and sequential setting. We can see that the sequential

hypothesis test provides a significant improvement over the fixed-length hypothesis testing. We

shall return to this example to illustrate how one can go from the fixed-length curve to the

sequential curve.
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3.1.1 Related Work

Channel codes with probabilistic delay constraints were considered by Altug et al. in [40],

where they show that if the constraint on expected stopping time is replaced by a probabilistic

one then the first order gain in rate ceases to exist. However, these works fail to notice the

improvement in the error exponent achieved by codes under probabilistic delay constraints such

as the class of almost-fixed-length codes over the class of fixed-length codes. Our results show

that it is possible to achieve Burnashev’s optimal error exponent with finite and bounded block-

length as γ approaches zero. As shown in Figure 3.1, almost-fixed-length codes indeed bridge a

significant gap between in an almost-fixed-length manner.

For achievability, we propose a simple construction for a two-phase almost-fixed-length

feedback channel code which builds upon fixed-length feedback codes with error-erasure decoder

considered by Forney in [41], Telatar and Gallger in [42] and more recently by Nakiboglu and

Zheng in [43]. In the first phase we utilize an error-erasure code and whenever an erasure

is declared we proceed to the second phase which consists of a fixed-length channel code.

Leveraging the bounds on error-erasure exponents, we provide upper and lower bounds on the

optimal error exponents achievable in an almost-fixed-length manner.

We propose a simple two-phase hypothesis test using which the overall reliability is

increased significantly and the trade-off between type-I and type-II error exponents is relaxed.

Our converse proof closely follows a pair of papers by Grigoryan et. al. [44] and Sason [45] on

hypothesis testing with rejection.
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3.2 Types of Channel Codes

Consider a discrete memoryless channel (DMC) with input alphabet X , output alphabet

Y and a sequence of conditional output distributions {PYn|Xn
1 Y n−1

1
}∞

n≥1 which satisfy the following

PYn|Xn
1 Y n−1

1
(yn|xn

1yn−1
1 ) = PY |X(yn|xn) ∀n ∈ N. (3.2)

We assume that the feedback channel is of infinite capacity, noiseless and delay free i.e., the input

of the feedback channel is observed at the transmitter before transmission of Xn at each time

n ∈ N.

3.2.1 Fixed Length Feedback Channel Codes

Definition 8. An (`,M,ε) fixed-length feedback (FLF) code, where `,M ∈ N, and ε ∈ (0,1), is

defined by:

(i) A common randomness U ∈U, with a probability distribution PU , whose realization is

used to initialize the encoder and the decoder before the start of transmission.

(ii) A sequence of encoders fn : U×{1, . . . ,M}×Y n−1→ X for n ∈ N defining the channel

inputs

Xn = fn(U,W,Y n−1), (3.3)

where W ∈ {1, . . . ,M} is the equiprobable message.

(iii) A sequence of decoders gn : U×Y n→{1, . . . ,M} for n ∈ N providing an estimate of W at

each time n.
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(iv) A stopping time τ ∈ N which satisfies

τ = ` a.s. (3.4)

The final estimate is computed at time τ and it is given by

Ŵτ := gτ(U,Y τ) (3.5)

such that the error probability satisfies

P(Ŵτ 6=W )≤ ε. (3.6)

Definition 9. A rate-reliability pair (R,E) is said to be achievable in fixed-length manner with

feedback if for any δ > 0 there exists an `(δ) ∈ N such that for all `≥ `(δ) there is a (`,M`,ε`)

FLF code which satisfies

M` ≥ 2`R, (3.7)

ε` ≤ 2−`(E−δ). (3.8)

For a given rate R below capacity, the reliability function EFLF(R) is defined as the best achievable

error exponent at rate R in a fixed-length manner with feedback.

The following fact characterizes an upper bound and lower bound on the optimal achiev-

able reliability in a fixed-length manner with feedback.

Fact 1. For the class of FLF codes, the optimal achievable reliability as a function of rate R can

bounded above and below as follows

Er(R)≤ EFLF(R)≤ EH(R), (3.9)
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where EH(R) is an upper established by Haroutunian in [35] and Er(R) is the random coding

exponent demonstrated in [36]. The upper bound EH(R) is strictly larger than the sphere

packing exponent Esp(R) (demonstrated in [36]) for the class of non-symmetric channels and

coincides with Esp(R) for the class of symmetric channels including the Binary Symmetric Channel

(BSC) [46].

3.2.2 Variable Length Feedback Channel Codes

Definition 10. An (`,M,ε) variable-length feedback (VLF) code, where `,M ∈ N, and ε ∈ (0,1),

is defined similarly to FLF codes with an exception that condition (iv) in Definition 8 is replaced

by:

(iv)′ A random stopping time τ ∈ N which satisfies

E[τ]≤ ` a.s. (3.10)

The final estimate is computed at time τ and it is given by

Ŵτ := gτ(U,Y τ) (3.11)

such that the error probability satisfies

P(Ŵτ 6=W )≤ ε. (3.12)

Definition 11. A rate-reliability pair (R,E) is said to be achievable in variable-length manner

with feedback if for any δ > 0 there exists an `(δ) ∈ N such that for all ` ≥ `(δ) there is a
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(`,M`,ε`) VLF code which satisfies

M` ≥ 2`R, (3.13)

ε` ≤ 2−`(E−δ). (3.14)

For a given rate R below capacity, the reliability function EVLF(R) is defined as the best achievable

error exponent at rate R in a variable-length manner with feedback.

The following fact characterizes the optimal achievable reliability in a variable-length

manner with feedback.

Fact 2. Burnashev in [5] established that for the class of VLF codes, the optimal achievable

reliability as a function of rate R is given by

EVLF(R) =C1

(
1− R

C

)
, (3.15)

where C denotes the capacity of the DMC and C1 denotes the maximal KL-divergence between

the conditional output distributions given any two inputs i.e.,

C1 := max
x,x′∈X

D(PY |X(·|x)||PY |X(·|x′)). (3.16)

3.2.3 Almost Fixed Length Feedback Channel Codes

We introduce a new class of channel codes for which the number of channel uses are

bounded but have some variability in terms of stopping time. By construction, this new class

of (`,M,γ,K,ε) almost-fixed-length channel codes are given an exponentially small flexibility

for the stopping time τ to be larger than `, while keeping the maximum length of any test to be

bounded by a constant times `.

Definition 12. An (`,M,γ,K,ε) almost-fixed-length feedback (AFLF) code, where `,M,K ∈ N,
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γ≥ 0, and ε ∈ (0,1), is defined similarly to FLF codes with an exception that condition (iv) in

Definition 8 is replaced by:

(iv)′′ A random stopping time τ ∈ N which satisfies

P(τ > `)≤ 2−γ`, (3.17)

τ≤ K` a.s. (3.18)

The final estimate is computed at time τ is given by

Ŵτ := gτ(U,Y τ) (3.19)

such that the error probability satisfies

P(Ŵτ 6=W )≤ ε. (3.20)

Remark 5. The definition of AFLF code implies that:

(i) Fixed Length Feedback (FLF) codes are a special case of AFLF codes where γ = ∞ and

K = 1 and hence P(τ > `) = 0.

(ii) AFLF codes are a special case of Variable Length Feedback (VLF) codes, where the

condition on the stopping time

E[τ]≤ ` (3.21)

is replaced by more stringent conditions given in equations (3.17) and (3.18). In other

words, AFLF codes not only require the stopping time τ to be bounded in expectation but

also require the probability that τ exceeds ` to be exponentially small.
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(iii) AFLF codes are a special case of VLF∗ codes considered by Altug et al. in [40], where the

condition on the stopping time

min{n ∈ N : P(τ > n)≤ εd} ≤ ` (3.22)

for some εd ∈ (0,1) is replaced by more stringent conditions given in equations (3.17)

and (3.18). In other words, AFLF codes not only require the probability that τ exceeds ` to

be less than a fixed threshold εd but also require the threshold to decay exponentially in `.

Definition 13. A rate-reliability pair (R,E) is said to be achievable in an almost-fixed-length

manner with feedback if for any δ > 0 there exists an `(δ) ∈N such that for all `≥ `(δ) there is a

(`,M`,γ,K,ε`) AFLF code which satisfies

M` ≥ 2`R, (3.23)

ε` ≤ 2−`(E−δ). (3.24)

For a given rate R below capacity, the reliability function EAFLF(R,γ,K) is defined as the best

achievable error exponent at rate R in an almost-fixed length manner with feedback.

The following fact characterizes an upper bound and lower bound on the optimal achiev-

able reliability in an almost-fixed-length manner with feedback.

Corollary 4. For the class of AFLF codes, for all γ ≥ 0 and K ∈ N the optimal achievable

reliability as a function of rate R can be bounded as follows

EFLF(R) = EAFLF(R,∞,1)≤ EAFLF(R,γ,K),

EAFLF(R,γ,K)≤ EAFLF(R,0,∞) = EVLF(R).
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Hence, we have

Er(R)≤ EAFLF(R,∞,1)≤ EH(R), (3.25)

Er(R)≤ EAFLF(R,γ,K)≤C1

(
1− R

C

)
. (3.26)

The above corollary is be obtained by combining Remark 5 (i) with Fact 1 and by

combining Remark 5 (ii) with Fact 2.

3.3 Rate-Reliability of Almost-Fixed-Length Feedback Codes

3.3.1 Achievability: Construction of Almost-Fixed-Length Codes

In this section we show that AFLF codes can be easily constructed from existing channel

coding strategies. More specifically, we build upon error-erasure codes considered by Forney

in [41], Telatar and Gallger in [42] and more recently by Nakiboglu and Zheng in [43]. Next we

provide some definitions for error-erasure codes.

Definition 14. An (`,M,ε,εX) fixed length feedback code with error-erasure decoding, where

`,M ∈ N, and ε,εX ∈ (0,1), is defined by:

(i) A common randomness U ∈U, with a probability distribution PU , whose realization is

used to initialize the encoder and the decoder before the start of transmission.

(ii) A sequence of encoders fn : U×{1, . . . ,M}×Y n−1→ X for n ∈ N defining the channel

inputs

Xn = fn(U,W,Y n−1), (3.27)

where W ∈ {1, . . . ,M} is the equiprobable message.
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(iii) A sequence of decoders gn : U ×Y n → {1, . . . ,M} ∪ {e} for n ∈ N providing the best

estimate of W in {1, . . . ,M} or declare an erasure e at time n.

(iv) A stopping time τ ∈ N which satisfies

τ = ` a.s. (3.28)

The final estimate is computed at time τ and it is given by

Ŵτ := gτ(U,Y τ) (3.29)

such that the error probability satisfies

P(Ŵτ 6=W | Ŵτ 6= e)≤ ε, (3.30)

and the erasure probability satisfies

P(Ŵτ = e)≤ εX . (3.31)

Definition 15. A rate-reliability pair (R,E,EX) is said to be achievable in fixed-length manner

with feedback under error-erasure decoding if for any δ > 0 there exists an `(δ) ∈N such that for

all `≥ `(δ) there is a (`,M`,ε`,ε`,X) fixed-length error-erasure code which satisfies

M` ≥ 2`R, (3.32)

ε` ≤ 2−`(E−δ), (3.33)

ε`,X ≤ 2−`(EX−δ). (3.34)

For a given rate R below capacity and EX ≥ 0, the error reliability function Eee(R,EX) is defined

59



as the best achievable error exponent at rate R and at erasure exponent EX in a fixed-length manner

with feedback under error-erasure decoding.

Next we provide a simple and intuitive construction of AFLF codes using the class of

error-erasure codes and FLF codes.

Proposition 2. Consider a (`,M,ε1,εX) fixed-length feedback code under error-erasure decoding

and a ((K−1)`,M,ε2) fixed-length feedback code, applied sequentially in a two phase strategy

as shown below:

(i) Phase I: For all time instants n≤ `, use the encoding functions of (`,M,ε1,εX) fixed-length

feedback code to obtain the next channel input. At n = `, use the decoding function of the

(`,M,ε1,εX) code to obtain an estimate Ŵ` of the message. If Ŵ` 6= e then stop and if Ŵ` = e,

then proceed to Phase II.

(ii) Phase II: For all time instants ` < n≤ K`, discard the previous channel observations and

use the encoding functions of ((K−1)`,M,ε2) FLF code to obtain the next channel input.

At n = K`, use the decoding function of the ((K−1)`,M,ε2) FLF code to obtain an estimate

ŴK` of the message.

The resulting two-phase strategy is an (`,M) almost-fixed-length feedback code which satisfies

P(τ > `)≤ εX , (3.35)

P(Ŵτ 6=W )≤ ε1 + ε2. (3.36)

We obtain the following corollary as a consequence of the above proposition.

Corollary 5. For the class of AFLF codes, for all γ ≥ 0 and K ∈ N, the optimal achievable

reliability as a function of rate R can be lower bounded as

EAFLF(R,γ,K)≥min
{

E ′ee(R,γ),(K−1)E ′FLF

(
R

(K−1)

)}
, (3.37)
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if the error exponent E ′ee(R,γ) is achievable in a fixed-length manner with feedback under

error-erasure decoding where the erasure exponent is γ and if E ′FLF

(
R

(K−1)

)
is achievable in a

fixed-length manner with feedback.

Next two theorems provide a lower bound to the optimal achievable reliability in an

almost-fixed-length manner with feedback.

Theorem 3 (Special Case: γ = 0). For the class of AFLF codes, for γ = 0 and K ∈N, the optimal

achievable reliability as a function of rate R can be lower bounded as

EAFLF(R,0,K)≥min
{

C1

(
1− R

C

)
,(K−1)Er

(
R

(K−1)

)}
. (3.38)

Furthermore, for all K ≥ 1+ C1
Er(0)

we have

EAFLF(R,0,K) =C1

(
1− R

C

)
. (3.39)

Proof of the above theorem is provided in Appendix 3.7.1 and is based on a truncated

version of the Yamamoto-Itoh strategy [47]. Theorem 3 shows that the optimal Burnashev bound

EVLF(R) can be achieved for any rate R below capacity with bounded number of channel uses.

The class of VLF codes also achieve the optimal Burnashev bound, however under bounded

number of average channel uses, where unlike AFLF codes occasionally very large number of

channel uses are required.

Remark 6. Polyanskiy et al. in [48] show that feedback improves the first order rate. However, for

channel codes with more stringent constraints on stopping time designed to reduce the variability

in number channel uses provide no such improvement even in the presence of feedback. Altug

et al. in [40] show that if the constraint on expected number of channel uses in the class of VLF

codes is replaced by a probabilistic one, given by equation (3.22), as seen in the class of VLF∗

codes then the first order gain in rate ceases to exist. However, these works fail to notice the
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improvement in the error exponent achieved by codes under probabilistic delay constraints such

as the class of AFLF codes over the class of FLF codes. Theorem 3 and 4 show that the class of

AFLF codes can improve the error exponent significantly. In particular, it is possible to achieve

Burnashev’s optimal error exponent with finite and bounded block-length as γ approaches zero.

Remark 7. The strategies considered in Proposition 2 and in the proof of Theorem 3, we use a

decoder which discards the past channel outputs in the case of an erasure. Instead the decoder

can use all the past channel outputs to jointly decode the transmitted message at τ = K`. Such a

strategy was considered by Gopala et al. in [49] where the error exponent satisfies

EAFLF(R,0,K)≥min
{

E f (R),KE∗r

(
R
K

)}
, (3.40)

where E∗r is the error exponent achieved by a random code whose input probability distribution is

optimal for Forney’s error-erasure decoder considered in [41] where erasure exponent tends to

zero and E f (R) is the Forney’s decision feedback exponent defined as the largest possible error

exponent while the erasure exponent is positive [41]. For a BSC, if K ≥ E f (0)
Er(0)

, where Er(R) is the

BSC random coding exponent, then for all 0≤ R≤C, we have EAFLF(R,0,K)≥ E f (R). As seen

in Figure 3.3, while joint decoding of channel outputs reduces the number of channel uses in the

worst case, it comes at the cost of a smaller error exponent guarantee.

Theorem 4 (Strictly Positive γ > 0). For any rate R below capacity, let

α
∗(R,γ) :=

R
g−1( γ

R)
, (3.41)

where g(a) = Er(a)
a . For the class of AFLF codes, for 0 < γ < Er(R) and K ∈ N, the optimal

achievable reliability as a function of rate R can be lower bounded as

EAFLF(R,γ,K)≥min
{

E ′ee(R,γ),(K−1)Er

(
R

K−1

)}
, (3.42)
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Figure 3.3: Figure shows Forney’s decision feedback bound with the optimal error exponents
of VLF codes shown by Burnashev and with upper bound and lower bound on FLF codes i.e.,
sphere packing bound and random coding bound for a BSC with cross-over probability p = 0.2.

where we define

E ′ee(R,γ) := max
α∈[α∗(R,γ),1]

max
λ∈[0,1]

(1−α)D(P(λ)||PY |X (·|x))≥γ

E ′′ee(α,λ,R), (3.43)

and define

E ′′ee(α,λ,R) := αEr

(
R
α

)
+(1−α)D(P(λ)||PY |X(·|x′)), (3.44)

where for any λ ∈ [0,1], the λ-tilted distribution P(λ) is given by

P(λ)(y) :=
P1−λ

Y |X (y|x)Pλ

Y |X(y|x
′)

∑a∈Y P1−λ

Y |X (a|x)Pλ

Y |X(a|x′)
, ∀y ∈ Y . (3.45)

Additionally, for γ > Er(R) the lower bound on optimal achievable reliability as a function

of rate R given by equation (3.42) reduces to EAFLF(R,γ,K)≥ Er(R).

Proof of the above theorem is provided in Appendix 3.7.1 and is based on a truncated

63



version of the Yamamoto-Itoh strategy [47].
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Figure 3.4: Figure shows the error exponents achieved by AFLF codes where K ≥ K∗ = 7 for
values of γ approaching zero. The AFLF bounds are compared with the optimal error exponents
of VLF codes shown by Burnashev along with upper bound and lower bound on FLF codes i.e.,
sphere packing bound and random coding bound for a BSC with cross-over probability p = 0.2.

Example 1 (Revisited). For setup considered in Example 4, Figure 3.4 shows the lower bound

described in Theorem 4 equation (3.42) for the optimal AFLF error exponent EAFLF(R,γ,K). As

γ decreases, the rate-reliability curve improves as predicted by the lower bound in equation (3.42).

In particular, for any rate R below capacity it is possible to achieve error exponent arbitrarily close

to Burnashev’s optimal error exponent EVLF(R) in an almost-fixed-length manner by selecting γ

close zero.

3.3.2 Converse for Almost-Fixed-Length Feedback Codes

Our converse bounds the performance of a (`,M,γ,K,ε) AFLF code with that of a fixed-

length error-erasure where the probability of erasure approaches zero exponentially fast with

an exponent at most γ. More specifically, given an (`,M,γ,K,ε) AFLF code we can construct

a fixed-length error-erasure code by declaring an erasure whenever τ > `. Such a code is a

(`,M,2−γ`,ε) fixed-length feedback code with error-erasure decoder. As a consequence we obtain
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the following result.

Proposition 3 (Converse). For the class of AFLF codes, for γ ≥ 0 and K ∈ N, the optimal

achievable reliability as a function of rate R can be upper bounded as

EAFLF(R,γ,K)≤min
{

Eee(R,γ),KEH

(
R
K

)}
, (3.46)

where recall that Eee(R,γ) is the optimal achievable error exponent under error-erasure decoding

where the erasure exponent is γ and EH(R) denotes the upper bound establised by Haroutunian

in [35] for the class of FLF codes.

Proof of the above proposition is provided in the Appendix 3.7.2.

3.4 Types of Hypothesis Tests

In this section, we extend the notion of almost-fixed-length strategies to hypothesis testing

and provide matching upper and lower bounds for error exponents achieved by binary hypothesis

tests in an almost-fixed-length manner. Consider two hypotheses H1 and H2 which correspond to

the two possible underlying distributions, P1 and P2, governing the samples. In other words, we

have

H1 : X ∼ P1, and H2 : X ∼ P2,

where X takes values in a finite set X . Consider collecting τ number of i.i.d samples, where τ

is a random stopping time with respect to the underlying filtration given by σ(X1, . . . ,Xn). The

expectation under hypothesis Hi, for i ∈ {1,2}, is denoted by Ei[·].

A general hypothesis test decides between H1 and H2, for any given τ samples by dividing

the sample space X τ into two sets or two “decision regions”. A decision region, denoted by Aτ
i , is
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a collection of samples Xτ ∈ X τ for which the test chooses Hi, for i ∈ {1,2}. The type-I error

is defined as an error event that occurs when the test accepts hypothesis H2 when hypothesis

H1 is true and its probability is given by P1
(
Aτ

2
)
. Similarly, type-II error is defined as an error

event when the test accepts hypothesis H1 when hypothesis H2 is true and its probability is given

by P2
(
Aτ

1
)
. It is known that growing the number of samples results in an exponential reduction

in these probabilities of error. This fact is characterized by two classical asymptotic results

depending on the manner in which τ grows. First, we review two classical regimes of hypothesis

tests based on the growth of τ.

3.4.1 Fixed-Length Hypothesis Tests

In this setting τ is assumed to be a bounded integer i.e., it satisfies τ≤ n, where n ∈ N.

Definition 16. The error exponents (E1,E2) are said to be achievable in a fixed-length manner, if

for every δ > 0 there exists an N(δ) ∈ N such that for all n≥ N(δ) there exists a hypothesis test

satisfying the following constraints

τ≤ n Pi− a.s. for i ∈ {1,2}, (3.47)

P1 (Aτ
2)≤ e−(E1−δ)n, (3.48)

P2 (Aτ
1)≤ e−(E2−δ)n. (3.49)

Definition 17. For any λ ∈ [0,1], the λ-tilted distribution P(λ) with respect to P1 and P2 is given

by

P(λ)(x) :=
P1−λ

1 (x)Pλ
2(x)

∑a∈X P1−λ

1 (a)Pλ
2(a)

, ∀x ∈ X . (3.50)

The following fact characterizes the set of all error exponents, denoted by RFL, achievable

in a fixed-length manner.
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Fact 3 (Theorem 11.7.1 in [27]). The set of error exponents feasible for the class of fixed-length

hypothesis tests is given by

RFL =
{
(E1,E2) : Ei ≤ D

(
P(λ) ‖Pi

)
, i ∈ {1,2}, for some λ ∈ [0,1]

}
. (3.51)

Furthermore, the following fixed-length test achieves the optimal error exponents on the boundary

of RFL. If

1
n ∑

n
i=1 log P1(Xi)

P2(Xi)
≥ α stop and choose H1,

1
n ∑

n
i=1 log P1(Xi)

P2(Xi)
< α stop and choose H2,

(3.52)

where α is given by

α = D
(
P(λ) ‖P2

)
−D

(
P(λ) ‖P1

)
, λ ∈ [0,1]. (3.53)

Definition 18. Let λ∗ be such that

D
(
P(λ∗) ‖P1

)
= D

(
P(λ∗) ‖P2

)
. (3.54)

Then, the Chernoff exponent D∗ is defined as

D∗ := D
(
P(λ∗) ‖P1

)
, (3.55)

and it characterizes the optimal reliability of Bayesian tests. In other words, D∗ denotes the

optimal exponent that can be achieved simultaneously by both type-I and type-II errors in a

fixed-length manner.
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3.4.2 Sequential Hypothesis Tests

In this setting, τ is allowed to be a random variable (potentially unbounded) such that

max{E1[τ],E2[τ]} ≤ n, where n ∈ N.

Definition 19. The error exponents (E1,E2) are said to be sequentially achievable, if for every

δ > 0 there exists an N(δ) ∈ N such that for all n≥ N(δ) there exists a hypothesis test satisfying

the following constraints

max{E1[τ],E2[τ]} ≤ n, (3.56)

P1 (Aτ
2)≤ e−(E1−δ)n, (3.57)

P2 (Aτ
1)≤ e−(E2−δ)n. (3.58)

The following fact characterizes the set of all error exponents, denoted by Rseq, achievable

in sequential manner.

Fact 4 (Wald and Wolfowitz [34]). The set of error exponents feasible for the class of sequential

hypothesis test are given by

Rseq = {E1 : E1 ≤ D(P2 ‖P1 )}×{E2 : E2 ≤ D(P1 ‖P2 )}. (3.59)

Furthermore, the following sequential hypothesis test achieves the above optimal error exponents

(D(P2 ‖P1 ) ,D(P1 ‖P2 )). At any instant k ∈ N,

∑
k
i=1 log P1(Xi)

P2(Xi)
≥ α stop and choose H1,

∑
k
i=1 log P1(Xi)

P2(Xi)
≤ β stop and choose H2,

β < ∑
k
i=1 log P1(Xi)

P2(Xi)
< α take an extra sample

and repeat for k+1,

(3.60)

where α = (D(P1 ‖P2 )−δ)n and β =−(D(P2 ‖P1 )−δ)n.
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Remark 8. Our definition of sequentially achievable error exponents, given by equations (3.56),

(3.57), and (3.58), coincides with the achievable error exponents defined in [50]. Alternatively,

the definition can be modified such that for n1,n2 ∈ N large enough the hypothesis test satisfies

E1[τ]≤ n1, E2[τ]≤ n2, (3.61)

P1 (Aτ
2)≤ e−(E1−δ)n1, (3.62)

P2 (Aτ
1)≤ e−(E2−δ)n2, (3.63)

as considered in [51]. In contrast, only the case where n1 = n2 is considered in [50]. Our

definition which includes the definition of [50] as a special case is more stringent than the

definition considered in [51]. For instance this definition does not admit sequential tests that

increase the error exponent E1 arbitrarily under H1 by taking arbitrarily large number of samples

under H1 than under H2, i.e., by making n1
n2

arbitrarily large.

In summary, an optimal fixed-length hypothesis test can only achieve the maximum error

exponent in one type of error if the probability of the other error-type is kept fixed. In contrast, a

sequential hypothesis test achieves both optimal error exponents simultaneously. The following

example with Figure 1 illustrates this.

3.4.3 Almost-Fixed-Length Hypothesis Tests

We introduce a new class of hypothesis tests in the same spirit as the class of AFLF codes.

Definition 20. The error exponents (E1,E2) are said to be achievable in a (γ,K)-almost-fixed-

length manner for some γ≥ 0 and K ∈ N, if for every δ > 0 there exists an N(δ) ∈ N such that
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for all n≥ N(δ) there exists a hypothesis test satisfying the following

Pi (τ > n)≤ e−γn i ∈ {1,2}, (3.64)

τ≤ Kn Pi− a.s. for i ∈ {1,2}, (3.65)

P1 (Aτ
2)≤ e−(E1−δ)n, (3.66)

P2 (Aτ
1)≤ e−(E2−δ)n. (3.67)

Let R (γ,K)
AFL denote the region of all feasible error exponents of the class of (γ,K)-almost-

fixed-length tests.

Remark 9. Note that as γ tends to ∞, this class of tests recover the class of fixed-length hypothesis

tests, hence RFL ⊂ R (γ,K)
AFL , for every γ≥ 0 and K ∈ N. Similarly, for all ε > 0 and n large enough,

we have that Ei[τ]≤ n+ ε, for i ∈ {1,2}. This implies that R (γ,K)
AFL ⊂ Rseq.

3.5 Exponents of Almost-Fixed-Length Hypothesis Tests

Next we provide our main result for almost-fixed-length hypothesis tests.

Theorem 5. For any γ≥ 0, define

Rγ := RFL∪{E1 : E1 ≤ E1(γ)}×{E2 : E2 ≤ E2(γ)}, (3.68)

where define

E1(γ) := max
λ∈[0,1]

{
D
(
P(λ) ‖P1

)
: D
(
P(λ) ‖P2

)
≥ γ

}
, (3.69)
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and

E2(γ) := max
λ∈[0,1]

{
D
(
P(λ) ‖P2

)
: D
(
P(λ) ‖P1

)
≥ γ

}
. (3.70)

For any γ≥ 0 and K ∈ N, we have

Rγ∩KRFL ⊂ R (γ,K)
AFL . (3.71)

and conversely, we have

R (γ,K)
AFL ⊂ Rγ∩KRFL. (3.72)

The proof of the above theorem follows by from combining Proposition 4 with Proposi-

tion 5. The following corollary is an immediate consequence of the above theorem.

Corollary 6. For γ > D∗, and for all K ∈ N, we have

R (γ,K)
AFL = RFL (3.73)

since {E1 : E1 ≤ E1(γ)}×{E2 : E2 ≤ E2(γ)} ⊂ RFL.

3.5.1 Achievability: A Two Phase Hypothesis Test

For γ > D∗, the achievability of Rγ coincides with that of the class of fixed-length hypoth-

esis tests, RFL, ( Pi(τ > n) = 0 and since Rγ = RFL), so any fixed-length hypothesis test achieves

Rγ. Let us consider γ ≤ D∗ and K ∈ N. We propose a hypothesis test that decides between

the hypotheses at two evaluation points, one at n and the other at Kn. Formally the two phase

hypothesis test is described as follows for γ≤ D∗.

(i) Phase-I: We collect n samples and choose whether to stop and decide between the hypotheses
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or to continue to collect extra samples. Define

λ1(γ) := argmax
λ∈[0,1]

{
D
(
P(λ) ‖P1

)
: D
(
P(λ) ‖P2

)
≥ γ

}
, (3.74)

and

λ2(γ) := argmax
λ∈[0,1]

{
D
(
P(λ) ‖P2

)
: D
(
P(λ) ‖P1

)
≥ γ

}
. (3.75)

Note that λ1(γ) and λ2(γ) denote λ∈ [0,1] which achieves in the maximum in equation (3.69)

and (3.70) respectively. For the ease of exposition we will denote λi(γ) as λi where i∈ {1,2}.

Furthermore, let

α1 = D
(
P(λ2) ‖P2

)
−D

(
P(λ2) ‖P1

)
, (3.76)

β1 = D
(
P(λ1) ‖P2

)
−D

(
P(λ1) ‖P1

)
. (3.77)

Phase-I of the strategy is conducted as follows: if

1
n ∑

n
i=1 log P1(Xi)

P2(Xi)
≥ α1 stop and choose 1,

1
n ∑

n
i=1 log P1(Xi)

P2(Xi)
≤ β1 stop and choose 2,

β1 <
1
n ∑

n
i=1 log P1(Xi)

P2(Xi)
< α1 proceed to Phase-II.

(3.78)

(ii) Phase-II: In the second phase, (K−1)n extra samples are obtained. Fix some λ ∈ [0,1] and

let

α = D
(
P(λ) ‖P2

)
−D

(
P(λ) ‖P1

)
. (3.79)
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Phase-II of the strategy is conducted as follows: if

1
Kn ∑

Kn
i=1 log P1(Xi)

P2(Xi)
≥ α stop and choose 1,

1
Kn ∑

Kn
i=1 log P1(Xi)

P2(Xi)
< α stop and choose 2.

(3.80)

Proposition 4. Let γ≤D∗ and K ∈N. The two phase hypothesis test as given by equations (3.78)

and (3.80) is an almost-fixed-length hypothesis test and the set of error exponents achieved is

given by

Rγ∩KRFL.

Furthermore, for all K≥K∗ and for α= 0 in Phase-II in equation (3.80), the two phase hypothesis

test achieves any (E1,E2) ∈ Rγ where

K∗ := max
{

D(P2 ‖P1 )

D∗
,
D(P1 ‖P2 )

D∗

}
.

The proof of the above proposition is provided in Appendix 3.7.3.

Example 2 (Revisited). Figure 3.5 shows the region of error exponents R (γ,K)
ALF described in

Theorem 5 at different values of γ for K ≥ K∗ = 4. As γ decreases, the trade-off between

error exponents (E1,E2) improves. In particular, it shows that it is possible to achieve the error

exponents that are arbitrarily close to optimal error exponents of sequential hypothesis tests, i.e.

(D(P2 ‖P1 ) ,D(P1 ‖P2 )), by selecting γ arbitrarily close to zero. Figure 3.6 shows R (γ,K)
ALF for

K = 2 which is strictly less than K∗ = 4. We see that for smaller values of γ the feasible region of

error exponents is bounded by KRFL.
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Figure 3.5: This figure shows the region R (γ,K)
AFL for various values of γ when K ≥ K∗ = 4 when

the samples are Bernoulli with parameters p1 = 0.9 under H1 and p2 = 0.2 under H2. As γ

decreases the trade-off between the error exponents gets better and the test achieves the optimal
sequential exponents (D(P2 ‖P1 ) ,D(P1 ‖P2 )).
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Figure 3.6: This figure shows the achievable region of the two phase hypothesis test as γ

increases for K = 2 (K∗ = 4), when the samples are Bernoulli with parameters p1 = 0.9 under
H1 and p2 = 0.2 under H2.

3.5.2 Converse: Hypothesis Testing with Rejection Option

Our converse bounds the performance of a γ-almost-fixed-length hypothesis test with

that of a fixed-length hypothesis test with rejection option where the probability of rejection
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approaches zero exponentially fast with an exponent at most γ. A hypothesis test with rejection

option, at end of τ samples divides the sample space X τ into three sets or decision regions, given

by Aτ
i for i ∈ {1,2} where the test accepts Hi, and Aτ

Ω
which denotes the region for which the test

rejects both hypotheses H1 and H2. Given a (γ,K)-almost-fixed-length hypothesis test we can

construct a hypothesis test with rejection option by rejecting to choose either of the hypotheses

whenever τ > n.

Definition 21. The exponents (E1,E2,EΩ) are said be achievable, if for every δ > 0 there exists

an N(δ) ∈ N such that for all n≥ N(δ) there exists a hypothesis test with rejection option that

satisfies the following

τ≤ n, (3.81)

P1(Aτ
2)≤ e−(E1−δ)n, P2(Aτ

1)≤ e−(E2−δ)n, (3.82)

P1(Aτ
Ω)+P2(Aτ

Ω)≤ e−(EΩ−δ)n. (3.83)

Lemma 7. For any γ≥ 0, let R γ denote the region of all feasible error exponents for the class of

hypothesis tests with rejection option, then we have

Rγ×{EΩ = γ} ⊂ R γ.

Conversely, for every γ≥ 0 we have

R γ ⊂ Rγ×{EΩ = γ}.

A variant of above the lemma has been studied under the class of hypothesis tests with

rejection option considered by Grigoryan et al. in [44], Sason in [45] and Gutman in [52]. The

following proposition builds on the converse of hypothesis tests with rejection option to provide a

converse for almost-fixed-length hypothesis tests.
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Proposition 5. Let γ≥ 0 and K ∈ N. The region of all feasible error exponents of the class of

(γ,K)-almost-fixed-length tests satisfies

R (γ,K)
AFL ⊂ Rγ∩KRFL. (3.84)

The proof of the above proposition is provided in Appendix 3.7.4.

3.6 Conclusion and Future Work

We looked at a new class of strategies for channel coding and hypothesis tests that have

a slight flexibility over fixed-length strategies by allowing a slightly large stopping time in

exponentially small fraction of sample paths. We show that when stopping times are allowed to

be slightly large in only exponentially small cases, the overall reliability is increased significantly.

We showed that it is possible to achieve optimal performance of variable-length strategies using

almost-fixed-length strategies. Since, for any n≥ 1, for all (`,M,γ,K,ε) AFLF code we have that

lim
`→∞

E
[(

τ`

`

)n]
= 1, lim

`→∞
Var(τ`) = 0.

Similarly, the above equation holds for the stopping time of any (γ,K) AFL hypothesis test.

This means that the class of strategies for which the variance of the stopping time is required

be to zero, is no more restrictive than the class of strategies that satisfy only an average-length

constraint, in terms of reliability. Hence, neither growing variability nor the computational

complexity are essential to obtaining the optimal error exponents. Similar statements can be made

for constraining higher moments of the stopping time.
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3.7 Appendix

3.7.1 Two-Phase AFLF Code based on Truncated Yamamoto-Itoh Strat-

egy

The following achievability strategy is similar to the strategy considered in [43], however

for completeness we provide a simpler and intuitive proof which is more natural to our problem.

Our two-phase strategy is described as follows:

1. Phase-I (Truncated Yamamoto-Itoh Strategy): Fix some α ∈ [0,1]. For the first phase we

consider the Yamamoto-Itoh strategy [47] with block-length ` and 2`R number of messages,

where we divide the first phase into two parts of length α` and (1−α)`. In the first part,

we transmit `R bits over α` channel uses using a random code [36]. Hence, the probability

of making an error in the first part is given by

P1e ≤ 2−α`Er(R
α). (3.85)

Now fix x,x′ ∈ X such that D(PY |X(·|x)||PY |X(·|x′)) is maximized, i.e.,

C1 = D(PY |X(·|x)||PY |X(·|x′)).

If the received message has been decoded correctly we send ACKs, i.e., transmit input x

otherwise we send NACKs, i.e., transmit input x′ for the remaining length (1−α)`. Now

construct a fixed length hypothesis test as shown in Fact 3, for some λ∈ [0,1], to distinguish

between the ACK and NACK symbols received such that

P2ec ≤ 2−(1−α)`D(P(λ)||PY |X (·|x′)), (3.86)
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and

P2ce ≤ 2−(1−α)`D(P(λ)||PY |X (·|x)), (3.87)

where P2ec denotes the probability of receiving an ACK when NACK was transmitted

and P2ce denotes the probability of receiving a NACK when ACK was transmitted. If

the hypothesis test declares a NACK, proceed to Phase-II otherwise accept the decoded

message.

2. Phase-II (Random Code):In the second phase send `R bits using random channel coding

with blocklength (K−1)` at rate R
K−1 so that τ≤ K`.

Clearly the above strategy is an AFLF code whose γ and error exponent are determined as

follows. For the above strategy the probability of entering Phase-II is given by

P(τ > `) = P1e(1−P2ec)+(1−P1e)P2ce (3.88)

≤ P1e +P2ce (3.89)

≤ 2−α`Er(R
α) +2−(1−α)`D(P(λ)||PY |X (·|x)). (3.90)

Furthermore, let ε(K−1)` denote the probability of error in Phase-II then the total probability of

error of the AFLF code is given by

ε` = P1eP2ec +P(τ > `)ε(K−1)`

≤ 2−α`Er(R
α)2−(1−α)`D(P(λ)||PY |X (·|x′))+2−(K−1)`Er( R

K−1). (3.91)

Proof of Theorem 3

Fix ε > 0 and let α = R
C−ε

. We construct the hypothesis test such that the exponent of

P2ce error is 0 and the exponent of P2ec is D(PY |X(·|x)||PY |X(·|x′)), i.e., C1 of the channel. Hence,
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as ε goes to 0 the probability of entering Phase-II goes to 0, and the error exponent of the strategy

satisfies

EAFLF(R,0,K)≥ liminf
`→∞

−1
`

logε` (3.92)

= min
{

C1

(
1− R

C

)
,(K−1)Er

(
R

K−1

)}
. (3.93)

To obtain the value of K for which the optimal EVLF(R) is achieved using the above two

phase strategy as an AFLF code, we extend the argument used in [49] to any general DMC. Note

that

(K−1)Er

(
C

K−1

)
≥ EVLF(C) = 0 (3.94)

and for K ≥ 1+ C1
ER(0)

we have

(K−1)Er(0)≥ EVLF(0) =C1. (3.95)

Since C1 >C we have

∂EVLF(R)
∂R

=−C1

C
≤−1. (3.96)

Furthermore, it is known that [36]

∂Er(R)
∂R

≥−1. (3.97)

Hence, for all K ≥ 1+ C1
ER(0)

it follows that

(K−1)ER

(
R

K−1

)
≥ EVLF(R) (3.98)
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for all 0≤ R≤C. Combining with Corollary 4 we have the assertion of the theorem.

Proof of Theorem 4

Fix some α ∈ [0,1]. Now note that

liminf
`→∞

−1
`

logP(τ > `)≥min
{

αEr

(
R
α

)
,(1−α)D(P(λ)||PY |X(·|x))

}
, (3.99)

and similarly we have

EAFLF(R,γ,K)≥min
{

αEr

(
R
α

)
+(1−α)D(P(λ)||PY |X(·|x′)),(K−1)Er

(
R

K−1

)}
(3.100)

Case 1: Consider the case where 0 < γ < E(R). Let α∗(R,γ) denote α which satisfies

αEr

(
R
α

)
= γ, (3.101)

and hence

α
∗(R,γ) =

R
g−1( γ

R)
, (3.102)

where g(a) = Er(a)
a . Then, we have

EAFLF(R,γ,K)≥min
{

E ′ee(R,γ),(K−1)Er

(
R

K−1

)}
, (3.103)

where we define

E ′ee(R,γ) := max
α∈[α∗(R,γ),1]

max
λ∈[0,1]

(1−α)D(P(λ)||PY |X (·|x))≥γ

E ′′ee(α,λ,R), (3.104)
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and define

E ′′ee(α,λ,R) := αEr

(
R
α

)
+(1−α)D(P(λ)||PY |X(·|x′)). (3.105)

Case 2: Consider the case where γ > Er(R). Since for all α ∈ [0,1] we have αEr
(R

α

)
≤

Er(R), choose α = 1 so that the decoder never declares NACK and hence τ = ` a.s. Furthermore

we have EAFLF(R,γ,K)≥ Er(R) for all 0≤ R≤C.

3.7.2 Proof of Proposition 3

For every (`,M,γ,K,ε) AFLF code we obtain an (`,M,2−γ`,ε) error-erasure code. Since

the optimal error exponent of an error-erasure code with erasure exponent γ is given by Eee(R,γ),

the probability of error of (`,M,2−γ`,ε) error-erasure code satisfies

ε≥ 2−`Eee(R,γ). (3.106)

Therefore, the probability of error of (`,M,γ,K,ε) AFLF code also satisfies ε ≥ 2−`Eee(R,γ).

Furthermore, the AFLF code uses K` channel uses which implies

ε≥ 2−EH(R). (3.107)

In other words, the probability of error of (`,M,γ,K,ε) AFLF code

ε≥max
{

2−`Eee(R,γ),2−EH(R)
}
. (3.108)

Hence, the assertion of the proposition follows.
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3.7.3 Proof of Proposition 4

It is straightforward to check that equations (3.74) and (3.75) imply

D
(
P(λ1)||P1

)
= E1(γ), and D

(
P(λ1)||P2

)
= γ, (3.109)

D
(
P(λ2)||P2

)
= E2(γ), and D

(
P(λ2)||P1

)
= γ. (3.110)

Note that by construction, τ≤ Kn a.s. Additionally, we must show that the probability of

the sample paths where τ > n is exponentially small with an exponent γ. Consider

P1(τ > n) = P1

(
β1 <

1
n

n

∑
i=1

log
P1(Xi)

P2(Xi)
< α1

)

≤ P1

(
1
n

n

∑
i=1

log
P1(Xi)

P2(Xi)
< α1

)
.

Hence, for any δ > 0 there exists an N(δ) such that for all n≥ N(δ) we have

P1(τ > n)
(a)
≤ e−(D(P

(λ2)‖P1 )−δ)n
(b)
≤ e−(γ−δ)n,

where (a) is obtaining using Sanov’s Theorem (Theorem 11.4.1 in [27]) and equation (3.77), and

(b) comes from equation (3.110). Similarly, for all n≥ N(δ) we also have P2(τ > n)≤ e−(γ−δ)n

using Sanov’s Theorem and equations (3.76) and (3.109). Hence, this test belongs to the class of

(γ,K)-almost-fixed-length hypothesis test.

The error of type-I is given as follows,

P1 (Aτ
2) = P1

(
1
n

n

∑
i=1

log
P1(Xi)

P2(Xi)
≤ β1

)
+

P1

({
β1 <

1
n

n

∑
i=1

log
P1(Xi)

P2(Xi)
< α1

}
∩

{
1

Kn

Kn

∑
i=1

log
P1(Xi)

P2(Xi)
< α

})
.

Fix λ ∈ [0,1]. Using Sanov’s Theorem and from the definition of α1 and β1, for any δ > 0 there
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exists an N0(δ) such that for all n≥ N0(δ) we have

P1 (Aτ
2)≤ e−(D(P

(λ1)‖P1 )−δ)n + e−(KD(P(λ)‖P1 )−δ)n.

Now, taking limit we obtain

lim
n→∞

1
n
− logP1 (Aτ

2)≥min
{

D
(
P(λ1) ‖P1

)
,KD

(
P(λ) ‖P1

)}
.

Similarly, we obtain

lim
n→∞

1
n
− logP2 (Aτ

1)≥min
{

D
(
P(λ2) ‖P2

)
,KD

(
P(λ) ‖P2

)}
.

Now if we set α = 0 in Phase-II, we have D
(
P(λ) ‖P1

)
= D

(
P(λ) ‖P2

)
= D∗. Hence,

we have the assertion of the proposition.

3.7.4 Proof of Proposition 5

From the definition of (γ,K)-almost-fixed-length tests we have

R (γ,K)
AFL ⊂ R (0,K)

AFL ⊂ KRFL. (3.111)

From the converse of hypothesis test with rejection we have

R (γ,K)
AFL ×{EΩ = γ} ⊂ Rγ×{EΩ = γ}. (3.112)

Therefore, for every γ≥ 0 and K ∈ Z+ we have

R (γ,K)
AFL ⊂ Rγ∩KRFL. (3.113)
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Hence, we have the converse for Theorem 5.

Chapter 3, in part, is a reprint of the material as it appears in the paper: Anusha Lalitha and

Tara Javidi, “Reliability of sequential hypothesis testing can be achieved by an almost-fixed-length

test", in IEEE International Symposium on Information Theory, Barcelona, pp. 1710-1714, 2016.

The dissertation author was the primary investigator and author of this paper.

Chapter 3, in full, is currently being prepared for submission for publication as: Anusha

Lalitha and Tara Javidi, “Almost-fixed-length strategies for Channel Coding and Hypothesis

Testing". The dissertation author was the primary investigator and author of this paper.
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Chapter 4

Real-time Binary Posterior Matching

4.1 Introduction

While feedback cannot increase the capacity of memoryless channels [27, Ch. 7.12],

it can dramatically reduce the probability of error and the complexity of the communication

schemes that achieve them. For the binary symmetric channel (BSC), a horizon-free sequential

scheme was proposed by Horstein [1]; it was rigorously proved to attain capacity by Shayevitz

and Feder [2] for this and other channels, via its generalization—the posterior matching (PM)

scheme. Exponential error-probability guarantees, for the finite-horizon setting, were constructed

in [4, 6, 7, 53]. An exponential bound on the error probability in the horizon-free case has been

devised by Waeber et al. [3], although this bound becomes trivial for rates much below the

capacity.

The availability of instantaneous noiseless feedback obviates the need of transmitting

long error-correcting codes across long epochs, and enables instead the use of sequential com-

munication schemes, by providing full knowledge of the receiver’s state to the transmitter. A

class of problems where this may have powerful implications is that of stabilizing an unstable

control plant over a noisy channel. In particular, in the presence of feedback, the structure of the
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horizon-free PM decoder seems to match the structure of anytime reliable decoders (proposed for

stabilizing unstable linear plants over noisy channel [54–56]).

However, the classical PM schemes assume that the entire information (possibly infinite

bit) sequence is available essentially non-causally to the transmitter, prior to the beginning of

transmission. That is, they are sequential with respect to the transmitted sequence (codeword)

but not with respect to the information sequence. Consequently, the non-causal knowledge

assumption precludes the use of the classical PM scheme for real-time and control scenarios, in

which the data to be transmitted is determined in a causal fashion.

In the current work, we consider a real-time setting, described in detail in 5.2, in which

the bits arrive to the transmitter one-by-one at random times, under the assumption that the

inter-arrival times (time-arrival differences) have a known finite support. We construct, in 4.3, a

causal (horizon-free) PM scheme for this setting, i.e., a scheme that is sequential with respect to

both the information and the transmitted sequences. We provide exponential guarantees for the

error probability akin to those of [3], in 4.4.

We apply the proposed scheme, in 4.5, for control over a BSC with feedback and compare

its analytic and empirical stabilization performance with those of the anytime-reliable codes of

Sahai and Mitter [54] that use no feedback but are computationally demanding, as well as with

those of Simsek et al. [57],1 in 4.5.1. We conclude the chapter with a discussion, in 4.6.

4.2 Problem Formulation

The transmitter wishes to transmit an infinite stream of bits over a BSC with cross over

probability p ∈ (0,1/2). Let si ∈ {0,1} denote the i-th bit in the infinite bit stream where

si ∼ Bern(1/2). Notationally, we consider the infinite bit sequence as the binary expansion

1Analytic guarantees for the scheme of [57] exist only for the case in which the entire information sequence is
known in advance, which corresponds, to the case of stabilizing an unstable linear system with possibly unknown
initial conditions but with no system disturbance.

86



Figure 4.1: Figure shows the transmission of a stream of bits which arrive at the encoder at
random times Ti. The arrival times are available at both at the encoder and decoder.

of a single message point Θ uniformly distributed over the unit interval i.e., Θ ∼ Unif[0,1).

We assume the bits of the message point Θ are revealed to the transmitter causally at arbitrary

(possibly random) times, as follows. Let {Ni}i≥1 be an i.i.d. random process where each Ni has a

pmf pN and Ni ∈ [nmin,nmax], where nmin < nmax, and nmin,nmax ∈ N. Furthermore, the i-th bit

arrives at time Ti := ∑
i−1
j=1 N j +1 for all i≥ 2 with T1 = 1. For all time instants t ∈ N, define the

following random variable

b(t) := max{i ∈ N : Ti ≤ t}. (4.1)

In other words, b(t) denotes the number of bits that have arrived by time t. Assuming that the first

bit is available at the beginning (i.e., T1 = 1), at time t at most first d t
nmin
e bits have arrived with

a non-zero probability and similarly the first d t
nmax
e bits have arrived with probability 1, which

implies

P

(⌈
t

nmax

⌉
≤ b(t)≤

⌈
t

nmin

⌉)
= 1. (4.2)

Remark 10 (Periodic arrival times). An important special instance of this framework is the case

of deterministic and periodic arrival times, in which a new information bit is revealed every fixed

n ∈ N time steps.

We now define the feedback communication scheme of an information bit sequence that
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is made available causally to the encoder with random inter bit-arrival times, depicted in 4.1. We

assume that the times at which the bits are revealed to the transmitter are known at the receiver.

The encoder E is described by a sequence of (causal) functions {Et}t≥1. A causal encoder

with feedback emits a channel input symbol xt ∈ {0,1} as a function of number of bits available

sb(t)
1 and past channel outputs yt−1

1 :

xt = Et

(
sb(t)

1 ,yt−1
1

)
. (4.3)

The decoder D is described by the sequence of functions {Dt}t≥1. After observing t channel

outputs, the decoder outputs a vector of estimates of all the bits available at the encoder thus far,

ŝb(t)
1 (t) = [ŝ1(t), ŝ2(t), . . . , ŝb(t)(t)] ∈ {0,1}b(t):

ŝb(t)
1 (t) = Dt

(
yt

1
)
. (4.4)

At any time instant t, we want to analyze the probability of error in decoding the first j bits

P
(

ŝ j
1(t) 6= s j

1

)
for 1≤ j ≤ b(t). Since the bits that arrive early get encoded for longer duration it

is natural to expect that the probability of error in decoding the older bits is smaller than that in

decoding the newer bits.

4.3 Causal Posterior Matching Strategy

In this section, we propose a causal PM based encoding and decoding strategy to transmit

a causally available message where the inter bit-arrival times are random.

First, we provide an overview of the strategy. At time t, suppose only the first i bits

are available to the encoder i.e., consider the event b(t) = i. Consider a unit interval [0,1] and

divide it into bins of equal length 2−i. The message point Θ is located on the unit interval, whose

first i bits si
1 provide the index of the bin containing Θ, where the index takes values in the set
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{0,1, . . . ,2i−1}. The encoder and decoder maintain a posterior probability of the message point

Θ belonging to each bin after observing the past channel outputs. For the next Ni channel uses,

we use causal posterior matching (described in detail in Sections 4.3.2 and 4.3.3 below) to encode

the first i bits. After observing each channel output the decoder and encoder (using feedback)

perform a Bayesian update to the posterior probability of Θ. After these Ni channel uses, a new

bit arrives. To accommodate the new bit, we divide each bin from the previous 2i bins into 2

bins, resulting in 2i+1 bins in total. Furthermore, we divide the posterior probability equally into

the newly created bins. Now, the first i+1 bits provide the index of the bin containing Θ on a

grid with 2(i+1) bins. This process of dividing the existing bins and the posterior probability to

accommodate a new bit continues in a horizon-free manner. At any time t, the binary expansion of

the index of the bin that contains the median of the posterior distribution are declared as estimates

of the bits available at the encoder.

4.3.1 Preliminaries

Let BSC(p) denote a BSC with cross-over probability p ∈ (0,1/2) with input X ∈ {0,1},

output Y ∈ {0,1}:

P(Y = y|X = x) =


p if y 6= x,

p̄ if y = x.
(4.5)

Let C(p) := 1−h(p) denote the capacity of BSC(p).

Suppose after t channel uses, the encoder has access to only the first i bits, i.e., consider the

event b(t) = i. Furthermore, the decoder maintains a posterior distribution of Θ after observing

t channel outputs yt
1, i.e., PΘ|Y t

1

(
Θ ∈ [(k−1)2−i,k2−i)

∣∣yt
1
)

for all k ∈ {0, . . . ,2i−1}. Let FΘ|Y t
1

denote the cumulative distribution function (CDF) of posterior probability distribution. Due to

the presence of feedback, the posterior distribution maintained by the decoder is available to
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the encoder as well. We refer to the point F−1
Θ|Y t

1

(
1/2
∣∣yt

1
)
∈ [0,1] as the median of the posterior

probability distribution at time t.

The following definitions will be useful, as we shall see, in describing the causal PM

strategy.

• For every n ∈ N, let β(n) denote the solution of the following equation

β = ψ
∗(β)− 1

n
, (4.6)

where

ψ(λ) :=− log
{
(2p)λ +(2p̄)λ

}
+1, (4.7)

and define ψ∗(β) as the Legendre–Fenchel transform of ψ(λ):

ψ
∗(β) := sup

λ>0
(ψ(λ)−λβ) . (4.8)

Further denote by λ∗(n) ∈ [0,1] the λ that achieves the supremum in (4.8) when ψ∗(β)

satisfies (4.6). In other

• For all i, t ∈ N, let k(t)i ∈ {0, . . . ,2i−1} denote the index of the bin containing the median

F−1
Θ|Y t

1
(1/2) in the grid with resolution 2−i over the unit interval, i.e,

k(t)i 2−i ≤ F−1
Θ|Y t

1

(
1/2
∣∣yt

1
)
<
(

k(t)i +1
)

2−i. (4.9)

We are now ready to describe the causal PM strategy in detail.
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4.3.2 Encoder

Fix a parameter λ ∈ {λ∗(nmin),λ
∗(nmax)}. After t channel uses and the next channel input

at time instant t +1 is given as follows. Recall that b(t +1) denotes the number of bits available

to the encode before transmission at time instant t +1. Let d(t)
1 and d(t)

2 denote the values of the

probability to the left and to the right of the median in the bin k(t)b(t+1), respectively:

d(t)
1 := 1/2−FΘ|Y t

1

(
k(t)b(t+1)2

−b(t+1)
)
, (4.10)

d(t)
2 := FΘ|Y t

1

((
k(t)b(t+1)+1

)
2−b(t+1)

)
−1/2. (4.11)

Define further, for any λ ∈ [0,1],

π
(t+1)
1 (λ) :=

h(λ,d(t)
2 )

h(λ,d(t)
1 )+h(λ,d(t)

2 )
, (4.12)

π
(t+1)
2 (λ) := 1−π

(t+1)
1 (λ), (4.13)

where

h(λ,d) := (1−2(p̄− p)d)−λ− (1+2(p̄− p)d)−λ . (4.14)

The next channel input at time t +1, conditioned on the past observations yt
1, with probability

π
(t+1)
1 (λ) is given by

Xt+1 =

 0 if 0.sb(t+1)
1 ≤ k(t)b(t+1)2

−b(t+1),

1 if 0.sb(t+1)
1 > k(t)b(t+1)2

−b(t+1).
(4.15)
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and with probability π
(t+1)
2 (λ) is given by

Xt+1 =

 0 if 0.sb(t+1)
1 ≤

(
k(t)b(t+1)+1

)
2−b(t+1),

1 if 0.sb(t+1)
1 >

(
k(t)b(t+1)+1

)
2−b(t+1).

(4.16)

Note that there two cases for the encoding operation:

(i) No new bit arrives at t +1: In this case we have b(t +1) = b(t). Hence, the resolution of

the grid 2−b(t) remains changed.

(ii) A new bit arrives at t +1: In this case we have b(t +1) = b(t)+1. Hence, the resolution

of the grid decreases from 2−b(t) to 2−b(t+1). Therefore, the encoder divides each of the

previous bins into two equal-length bins with equal posterior probabilities in each bin. In

particular, for any i ∈ N, after t channel uses under the event b(t) = i, b(t +1) = i+1, the

encoder sets

PΘ|Y t
1

(
Θ ∈

[
(2k)2−i−1,(2k+1)2−i−1)∣∣yt

1
)

(4.17)

= PΘ|Y t
1

(
Θ ∈

[
(2k+1)2−i−1,(2k+2)2−i−1)∣∣yt

1
)

(4.18)

=
1
2
PΘ|Y t

1

(
Θ ∈

[
k2−i,(k+1)2−i)∣∣yt

1
)
, (4.19)

for all k ∈ {0, . . . ,2i−1}.

4.3.3 Decoder

Upon receiving the channel output at time instant t +1, the decoder performs a Bayesian

update to the posterior of Θ as follows.

Lemma 8. For t ∈N, consider i ∈ {1, . . . ,b(t +1)}. For all k≤ k(t)i , since FΘ|Y t
1

(
k2−i

∣∣yt
1
)
≤ 1/2,
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the Bayesian update after observing the channel output at time t +1 is given as follows:

F
Θ|Y t+1

1

(
k2−i

∣∣yt+1
1
)

FΘ|Y t
1

(
k2−i

∣∣yt
1
) =


p

1
2+(p̄−p)d(t)

1

if Yt+1 = 1,

p̄
1
2−(p̄−p)d(t)

1

if Yt+1 = 0,
(4.20)

with probability π
(t+1)
1 (λ) and

F
Θ|Y t+1

1

(
k2−i

∣∣yt+1
1
)

FΘ|Y t
1

(
k2−i

∣∣yt
1
) =


p

1
2−(p̄−p)d(t)

2

if Yt+1 = 1,

p̄
1
2+(p̄−p)d(t)

2

if Yt+1 = 0,
(4.21)

with probability π
(t+1)
2 (λ). For k > k(t)i , since 1−FΘ|Y t (k2−i) < 1/2, the Bayesian update for

1−FΘ|Y t (k2−i)< 1/2 can be specified similarly.

The proof of Lemma 8 is given in Appendix 4.7.1.

At any time instant t, the decoder generates an estimate Θ̂t = F−1
Θ|Y t

(
1/2
∣∣yt

1
)

of Θ. The

estimates ŝb(t)
1 (t) of the first b(t) bits are the binary expansion of the index of the bin containing

the median k(t)b(t). Furthermore, when a new bit arrives, similar to the encoder, the decoder divides

each bin into two equal-length bins and equally divides the posterior probability.

Remark 11. In the special case where after t channel uses the median coincides with the (left) end

point of a bin k(t)i 2−i for some i ∈ {1, . . . ,b(t +1)}, at time t +1 the encoder transmits 1 if sb(t+1)
1

bits are to the right of the median and—0 otherwise. Furthermore, the decoder’s update reduces

to the update of non-causal PM considered by Horstein in [1] and Shayevitz and Feder in [2],

where each FΘ|Y t (k2−i), k≤ k(t)i and similarly 1−FΘ|Y t (k2−i), k > k(t)i , expands by 2p̄ or shrinks

by 2p.

Remark 12. For any i≥ 1, for all t ≥ Ti, the encoder has access to the first i bits and hence the

number of bins is at least 2i. In other words, from time Ti to t, the causal PM strategy operates on
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a grid whose resolution is finer than 2−i and hence updates FΘ|Y t (k2−i) for all k ∈ {0, . . . ,k(t)i }

and 1−FΘ|Y t (k2−i) for all k ∈ {k(t)i +1, . . . ,2i−1}. This implies that, for all t ≥ Ti, we always

encode the first i bits along with the newly available bits. Furthermore, although we assume bits

arrive one at a time, the strategy and our analysis can be extended to the case where any k ∈ N

bits arrive at a time.

4.4 Main Results

In this section, we provide our main result on the error exponent attained by the causal

PM strategy.

Theorem 6. Consider the causal PM strategy with parameter λ over a BSC(p). The i-th bit

arrives at the encoder at a random time Ti, whose pmf is p
⊗

i
N , where the inter-arrival times lie in

the set [nmin, . . . ,nmax] and let

b(t) = max{i ∈ N : Ti ≤ t}.

Then,

(i) For λ = λ∗(nmin), the probability of error in decoding the first i∈ {1, . . . ,dt/nmine} message

bits after t channel uses is bounded by

P
(

ŝi
1 (t) 6= si

1
∣∣b(t)> i

)
≤ κE

[
2−β(nmin)(t−Ti)

∣∣∣b(t)> i
]
, (4.22)

where β(nmin) is the solution of (4.6) for n = nmin and where κ is a finite positive constant.

(ii) For λ= λ∗(nmax), the probability of error in decoding the first i∈ {1, . . . ,bt/nmaxc}message
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bits after t channel uses is bounded by

P
(
ŝi

1 (t) 6= si
1
)
≤ κ2−β(nmax)(t−nmax(i−1)), (4.23)

where β(nmax) is the solution of (4.6) for n = nmax and where κ is a finite positive constant.

Theorem 6 shows that the causal PM strategy can operate in two regimes based on how the

randomization probabilities π
(t)
1 and π

(t)
2 are chosen given the past observations and the number

of bits available at the encoder, i.e., by setting the parameter λ appropriately. In the setting (i),

causal PM can be thought of as operating in a “high-rate regime", since it decodes all the arrived

information bits, but with a lower error exponent of (4.22), corresponding to β(nmin). In contrast,

in the setting (ii), causal PM can be thought of as operating in a “low-rate regime", as it decodes

only the first bt/nmaxc bits, but with a higher error exponent of (4.23), corresponding to β(nmin).

The proof above theorem is provided in Appendix 4.7.2 and 4.7.3. The proof relies on

the analyzing the tails of the posterior probability distribution given by min{FΘ|Y t
1

(
θ
∣∣yt

1
)
,1−

FΘ|Y t
1

(
θ
∣∣yt

1
)
} for θ ∈ (0,1), which is inspired by the analysis in [3]. However, the analysis of the

expected value of decay of the tails is based on the analysis of Burnashev and Zigangirov in [4].

Corollary 7 (Periodic arrival times). Consider the causal PM strategy with parameter λ over a

BSC(p). The i-th bit arrives at the encoder at time Ti = n(i−1)+1, i.e., the inter-arrival time is

constant n ∈ N. Then, for λ = λ∗(n), the probability of error in decoding the first j ∈ [bt/nc] bits

of a message after t channel uses is bounded by

P
(

ŝ j
1 (t) 6= s j

1

)
≤ κ

(
2−β(n)(t−n( j−1))

)
, (4.24)

where β(n) is the solution of (4.6) for n, and where 0≤ κ < ∞.
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Plant
Zt+1 = αZt +Wt +Ut

SensorController Channel

ZtWt

Ut

XiYi

Figure 4.2: A scalar linear plant that is controlled over a noisy channel. The Sensor transmits to
the controller over a noisy channel with feedback; n channel uses {Xi} per control sample Zt are
assumed.

4.5 Application to Control over Noisy Channels

Consider the problem of stabilizing an unstable scalar plant,

Zt+1 = αZt +Wt +Ut , (4.25)

where α > 1, the initial state is a random variable Z0 ∈ [−∆,∆], the disturbances {Wt}t≥0 are i.i.d.

with a bounded support Wt ∈ [−W,W ] and Ut is a control signal applied by the controller at time t.

The controller, that generates Ut , is separated from the sensor that measures Zt by a BSC(p) with

feedback, i.e., n channel uses per each control sample Zt are available. For η ≥ 1, we want to

stabilize the η-th moment, i.e., supt E[|Zt |η]< ∞. To that end, suppose the observer quantizes the

plant measurements into 1 bit, which implies a new bit arrives after every n channel uses. This

is a special case of our strategy where the inter-arrival time of the bits is fixed (recall 10). This

model is depicted in 4.2.

Remark 13. For the ease of exposition, we consider a 1 bit quantizer but the strategy can be

extended to a k-bit quantizer for any 1≤ k ≤ n.

To stabilize the plant it suffices to apply a control signal Ut = −αẐt , where {Ẑt}t≥1

satisfies supt E[|Zt− Ẑt |η]< ∞. The following corollary provides the values α for which the plant

can be stabilized.
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Corollary 8. Consider the plant of (4.25) for α > 1 observed through a BSC(p) with feed-

back with a budget of n channel uses. Then, for all η ≥ 1, the plant is η-stabilizable, i.e.,

supt E
[∣∣Zt− Ẑt

∣∣η]< ∞, for

logα≤min{1/n,β(n)/η} , (4.26)

where β(n) is the solution of (4.6).

Proof. We use the causal PM strategy to transmit the quantized plant measurements over a

BSC(p) with feedback. This is a special case of our causal PM strategy where the inter-arrival

time of the bits is a constant n, hence we set λ = λ∗(n). For each step of the plant evolution

we convey one bit over n channel uses. Corollary 7 provides the following guarantees on the

estimates generated by the causal PM strategy

P
(

ŝ j
1 (nt) 6= s j

1

)
≤ κ

(
2−β(n)n(t− j)

)
,

for all j ∈ [t], where β(n) is the solution of (4.6). Hence, using [54, Theorem 4.1] we have that

the plant is η-stabilizable if (4.26) holds.

Remark 14. The constraint logα < 1/n≤ 1 is due to a 1-bit quantization requirement that we

implicitly impose by assuming that a single bit arrives at a time. This requirement can be lifted by

allowing higher quantization rates, along with the appropriate adaptation of the proposed scheme,

at the price of reducing the error exponent β. In other words, two conflicting effects can be seen

in the problem of stabilizing an unstable plant over a noisy channel: (i) Source quantization: we

wish to maximize the quantization resolution to allow for finer source approximation, however

this results in higher channel-coding rate since more bits have to be sent over a given channel

budget n (ii) Channel coding: we wish to minimize the channel-coding rate to minimize the error

due to decoding, i.e., to maximize the error exponent. These two effects are manifested by the
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two minimands in (4.26).

Remark 15. As a consequence of 8 , for a given η≥ 1 and p ∈ (0,1/2), we obtain a lower bound

R(p) on the maximum rate (i.e., minimum channel budget d1/R(p)e) at which the communication

channel BSC(p) can be operated such that the plant (4.25) is η-stabilizable for some α > 1.

Using (4.6), note that we have

min
{

1
n
,
β(n)

η

}
≥max

β>0
min

{
β

η
,

1
η

(
ψ
∗(β)− 1

n

)
,
1
n

}

Hence, using 8, this implies that R(p) is the largest R > 0 that satisfies the following equation:

ψ
∗(ηR) = (η+1)R. (4.27)

In other words, we obtain that 2R(p) is a lower bound on the largest α for which the plant (4.25)

can be η-stabilized over a BSC(p) for any channel budget n > 1.

4.5.1 Simulations for Control over Noisy Channels

We compare the performance of the proposed causal PM strategy with previously proposed

upper and lower bounds for the maximal value of α for which the plant (4.25) can be stabilized.

4.3 compares the stabilizability of a system as a function of the crossover probability of a BSC.

The empirical as well as the theoretical performance of both the causal PM-based strategy and

a strategy proposed by Simsek et al. [57] (albeit for the interference-free case: Wt ≡ 0), as well

as the Sahai–Mitter lower bound without feedback (anytime-reliable tree codes) of [54] and the

capacity upper bound are illustrated. From 4.3 we see that the bound 2R(p) on α, provided by our

analysis of the causal PM-based scheme, is rather conservative in comparison to its empirical

performance. The latter clearly outperforms the Simsek et al. strategy [57] (for which the analysis

is rather tight) and exceeds the Sahai–Mitter lower bound. This demonstrates that the causal
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Figure 4.3: The maximum eigenvalue α of a plant that is stabilizable over a BSC(p) as a
function of p using: the causal PM strategy (analytically and empirically), the Simsek et
al.strategy [57] (analytically and empirically), the Sahai–Mitter tree-code lower bound [54], and
the capacity upper bound.

PM-based strategy provides better performance both in terms of stability and complexity. We

further note that the causal PM-based scheme can stabilize the plant for α values that are strictly

greater than one for all crossover probabilities p ∈ [0,1/2), even under the provided conservative

analysis. This is in stark contrast to the strategy of Simsek et al., which can stabilize unstable

plants only below a certain threshold crossover probability.

4.6 Conclusions and Future Work

We considered the problem of transmitting an infinite stream of bits over a BSC where

the bits are revealed to the transmitter causally and the inter bit-arrival time may be random. We

proposed a causal PM strategy and provided guarantees for the error exponent of the decoded bits
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using this strategy. The causal PM is parameterized by λ(n) which decides the randomization of

the encoding functions. Hence, it implicitly decides the number of bits decoded and their error

exponent. We derived explicit results for two extremes of λ(n). An interesting area of future

work would be to extend our analysis to any λ between these two extremes. Another important

future direction is to extend our analysis to the case where the bit arrival times are unknown at

the receiver.

Furthermore, we applied our strategy to the problem of stabilizing a control plant over

a BSC. We provided analytical guarantees on the maximal plant eigenvalue for which the plant

can be stabilized using causal posterior matching. Closing the gap between our analysis and the

empirical performance is an important area of future.

4.7 Appendix

4.7.1 Preliminaries

Proof of Lemma 8

For k ∈ {0, . . . ,2i− 1}, note that FΘ|Y t
1
(k2−i|yt

1) = PΘ|Y t
1
(Θ ∈ [0,k2−i) | yt

1). For any

y ∈ {0,1} after observing Yt+1 = y, the decoder updates the posterior distribution of Θ using the

Bayes rule as follows

F
Θ|Y t+1

1
(k2−i|yt

1,Yt+1 = y) =
FΘ|Y t

1
(k2−i|yt

1)P(Yt+1 = y |Θ ∈ [0,k2−i],yt
1)

P(Yt+1 = y | yt
1)

. (4.28)

Let Yt+1 = 1 and the case where Yt+1 = 0 can be obtained similarly. First consider the

case where median is approximated as the left end point of the k(t)b(t+1)th i.e., k(t)b(t+1)2
−b(t+1). Then

recall that the encoding function is given by equation (4.15). For all i ∈ {1, . . . ,b(t +1)} since

k(t)i 2−i ≤ k(t)b(t+1)2
−b(t+1) (4.29)
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we have P(Yt+1 = 1 |Θ ∈ [0,k2−i],yt
1) = p for all k ∈ {0, . . . ,k(t)i }. Furthermore, we have

P(Yt+1 = 1 | yt
1) = P(Yt+1 = 1 |Θ ∈ [0,k(t)b(t+1)2

−b(t+1)),yt
1)FΘ|Y t

1
(k(t)b(t+1)2

−b(t+1) | yt
1) (4.30)

+P(Yt+1 = 1 |Θ ∈ [k(t)b(t+1)2
−b(t+1),1),yt

1)(1−FΘ|Y t
1
(k(t)b(t+1)2

−b(t+1) | yt
1))

(4.31)

= p
(

1
2
−d(t)

1

)
+ p̄

(
1
2
+d(t)

1

)
(4.32)

=
1
2
+(p̄− p)d(t)

1 . (4.33)

Hence, for all k ∈ {0, . . . ,k(t)i } we obtain

F
Θ|Y t+1

1
(k2−i|yt+1

1 ) =
FΘ|Y t

1
(k2−i|yt

1)p
1
2 +(p̄− p)d(t)

1

. (4.34)

Similarly we can obtain the Bayes update for 1−F
Θ|Y t+1

1
(k2−i|yt+1

1 ) when k∈{k(t)i +1, . . . ,2i−1}.

Now consider the case where median is approximated as the right end point of the k(t)b(t+1)th i.e.,

(k(t)b(t+1)+1)2−b(t+1). Then recall that the encoding function is given by equation (4.16). Again

noting that

k(t)i 2−i ≤ k(t)b(t+1)2
−b(t+1) (4.35)

(k(t)b(t+1)+1)2−b(t+1) ≤ (k(t)i +1)2−i (4.36)

we have P(Yt+1 = 1 | Θ ∈ [0,k2−i],yt
1) = p for all k ∈ {0, . . . ,k(t)i } and P(Yt+1 = 1 | yt

1) =
1
2 −

(p̄− p)d(t)
2 . The Bayesian update for the rest of the all cases can be obtained similarly. Note that

the proof relies on the fact that i≤ b(t +1), hence for bits which have not arrived by t +1 the

update of the posterior probabilities may not be dictated by the assertion of the lemma.
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4.7.2 Proof of Theorem 6 Part (i)

Consider the sample path where the inter-bit arrival realizations {N j} j≥1 are {n j} j≥1. Let

ti := ∑
i−1
j=1 n j +1. Fix i ∈ {1, . . . , t

nmin
} and consider the event where Ti = ti < t. This is the case

where first i bits arrive by time instant t with non-zero probability. Recall that k(t)i denotes the

index of the bin containing the median F−1
Θ|Y t

(1
2

)
in grid with resolution 2−i i.e.,

k(t)i 2−i ≤ F−1
Θ|Y t

(
1
2

)
< (k(t)i +1)2−i. (4.37)

We bound the probability of error in decoding first i bits conditioned on the event {Ni−1
1 =

ni−1
1 }∩{Ti < t}

P
(

ŝi
1 (t) 6= si

1
∣∣Ni−1

1 = ni−1
1 ,Ti < t

)
(4.38)

= P
(

Θ 6∈
(

k(t)i 2−i,(k(t)i +1)2−i
]∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

)
(4.39)

= E
[
FΘ|Y t

(
k(t)i 2−i

)
+1−FΘ|Y t

(
(k(t)i +1)2−i

)∣∣∣Ni−1
1 = ni−1

1 ,Ti < t
]
. (4.40)

For any τ≥ 1, define

ξΘ|Y τ(x) := min
{

FΘ|Y τ(x),1−FΘ|Y τ(x)
}

(4.41)

for x = k2−i where k ∈ {0, . . . ,2i−1}. Since FΘ|Y t

(
k(t)i 2−i

)
≤ 1

2 and 1−FΘ|Y t

(
(k(t)i +1)2−i

)
≤

1
2 , observe that

ξΘ|Y t

(
k(t)i 2−i

)
= FΘ|Y t

(
k(t)i 2−i

)
and that

ξΘ|Y t

(
(k(t)i +1)2−i

)
= 1−FΘ|Y t

(
(k(t)i +1)2−i

)
.
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Hence, for every β > 0 we can write

P
(

ŝi
1 (t) 6= si

1
∣∣Ni−1

1 = ni−1
1 ,Ti < t

)
(4.42)

= E
[
ξΘ|Y t

(
k(t)i 2−i

)
+ ξΘ|Y t

(
(k(t)i +1)2−i

)∣∣∣Ni−1
1 = ni−1

1 ,Ti < t
]

(4.43)

≤ 2−β(t−ti)+P
(

ξΘ|Y t

(
(k(t)i +1)2−i

)
+ ξΘ|Y t

(
k(t)i 2−i

)
≥ 2−β(t−ti)

∣∣∣Ni−1
1 = ni−1

1 ,Ti < t
)
.

(4.44)

The second term in the above equation can be bounded using Markov’s inequality for any

λ > 0 as follows

P
(

ξΘ|Y t

(
(k(t)i +1)2−i

)
+ ξΘ|Y t

(
k(t)i 2−i

)
≥ 2−β(t−ti)

∣∣∣Ni−1
1 = ni−1

1 ,Ti < t
)

(4.45)

≤ 2λβ(t−ti)E
[(

ξΘ|Y t

(
k(t)i 2−i

)
+ ξΘ|Y t

(
(k(t)i +1)2−i

))λ
∣∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
. (4.46)

Furthermore, note that

E
[(

ξΘ|Y t

(
k(t)i 2−i

)
+ ξΘ|Y t

(
(k(t)i +1)2−i

))λ
∣∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
(4.47)

≤ 2λE
[

max
k

ξ
λ

Θ|Y t

(
k2−i)∣∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
≤ 2λE

[
2i−1

∑
k=0

ξ
λ

Θ|Y t

(
k2−i)∣∣∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]

= 2λ
2i−1

∑
k=0

E
[

ξ
λ

Θ|Y t

(
k2−i)∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
. (4.48)
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Fix some k ∈ {0, . . . ,2i−1}. Then, for any ti ≤ τ≤ t consider

E
[

ξ
λ

Θ|Y τ(k2−i)
∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
(4.49)

= E
[

2λ logξΘ|Y τ(k2−i)
∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
(4.50)

= E

2λ logξ
Θ|Y τ−1(k2−i) E

2
λ log

ξ
Θ|Y τ (k2−i)

ξ
Θ|Y τ−1 (k2−i)

∣∣∣∣∣∣Y τ−1

∣∣∣∣∣∣Ni−1
1 = ni−1

1 ,Ti < t

 (4.51)

(a)
≤ 2−ψ(λ)E

[
2λ logξ

Θ|Y τ−1(k2−i)
∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
, (4.52)

where ψ(λ) =− log
(
(2p)λ+(2p̄)λ

2

)
and (a) obtained by applying Lemma 9.

Conditioned on the event {Ni−1
1 = ni−1

1 }∩{Ti < t}, for all τ≥ ti the causal PM strategy

operates on a grid whose resolution is finer than 2−i. As discussed in Remark 12 this implies that

ξΘ|Y τ(k2−i) is updated for all ti ≤ τ ≤ t. Therefore, applying Lemma 9 repeatedly for all time

instants ti ≤ τ≤ t, we obtain the following for every k ∈ {0, . . . ,2i−1}

E
[

ξ
λ

Θ|Y t (k2−i)
∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
≤ 2−ψ(λ)(t−ti)E

[
logξ

λ

Θ|Y ti−1 (k2−i)
∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
.

(4.53)

Substituting equation (4.53) in equation (4.47) we have

E
[(

ξΘ|Y t

(
k(t)i 2−i

)
+ ξΘ|Y t

(
(k(t)i +1)2−i

))λ
∣∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
(4.54)

≤ 2−ψ(λ)(t−ti)
2i−1

∑
k=0

E
[

ξ
λ

Θ|Y ti−1(k2−i)
∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
. (4.55)
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Now, applying Lemma 10 for λ such that ψ(λ)− 1
nmin

> 0 we have

E
[(

ξΘ|Y t

(
k(t)i 2−i

)
+ ξΘ|Y t

(
(k(t)i +1)2−i

))λ
∣∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
(4.56)

≤ 2−ψ(λ)(t−ti) 1

1−2−
(

ψ(λ)− 1
nmin

)
nmin

. (4.57)

Substituting the above inequality in equation (4.42), the probability of error in decoding first i

bits conditioned on the event {Ni−1
1 = ni−1

1 }∩{Ti < t} for all λ > 0 such that ψ(λ)− 1
nmin

> 0 is

given by

P
(

ŝi
1 (t) 6= si

1
∣∣Ni−1

1 = ni−1
1 ,Ti < t

)
≤ 2−β(t−ti)+

2−(ψ(λ)−λβ)(t−ti)

1−2−
(

ψ(λ)− 1
nmin

)
nmin

. (4.58)

For any β > 0, if there exists a λ > 0 such that ψ(λ)− λβ− 1
nmin

> 0, then we have

ψ(λ)− 1
nmin

> 0 and ψ(λ)−λβ > 0. Also, if supλ>0(ψ(λ)−λβ)− 1
nmin

> 0 then the supremum

achieving λ also satisfies ψ(λ)− 1
nmin

> 0. Therefore, we fix λ = λ∗(nmin). Hence, we obtain the

following

P
(

ŝi
1 (t) 6= si

1
∣∣Ni−1

1 = ni−1
1 ,Ti < t

)
(4.59)

≤ 2−β(t−ti)+κ
′2−

(
ψ∗(β)− 1

nmin

)
(t−ti) (4.60)

≤ κ2−maxβ>0 min
{

β,ψ∗(β)− 1
nmin

}
(t−ti), (4.61)

≤ κ2−β(nmin)(t−ti). (4.62)

for some positive constants κ′,κ < ∞ independent of t. Now, note that the event {Ni−1
1 =

ni−1
1 }∩{Ti < t} is equivalent to the event {Ni−1

1 = ni−1
1 }∩{b(t) > i}. Taking the expectation

with respect to p
⊗

i
N we have

P
(

ŝi
1 (t) 6= si

1
∣∣b(t)> i

)
≤ κE

[
2−β(nmin)(t−Ti)

∣∣∣b(t)> i
]
, (4.63)
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for all i ∈
[⌈

t
nmin

⌉]
.

4.7.3 Proof of Theorem 6 Part (ii)

Now following the steps as in the proof of Theorem 6 part(i) we obtain the following

E
[
ξΘ|Y t

(
k(t)i 2−i

)
+ξΘ|Y t

(
(k(t)i +1)2−i

)]λ

≤ 2λ2−ψ(λ)(t−ti)
2i−1

∑
k=0

E
[
logξ

λ

Θ|Y ti−1(k2−i)
]
.

(4.64)

Now, applying Lemma 11 for λ such that ψ(λ)− 1
nmax

> 0 we have

E
[
ξΘ|Y t

(
k(t)i 2−i

)
+ξΘ|Y t

(
(k(t)i +1)2−i

)]λ

≤ 2−ψ(λ)(t−ti) 1

1−2−(ψ(λ)− 1
nmax )nmax

. (4.65)

Following the same steps as in the proof of Theorem 6 part (i) and setting λ = λ∗(nmax), for

i ∈ {1, . . . ,d t
nmax
e} we obtain the following

P
(
ŝi

1 (t) 6= si
1
)
≤ κ2−maxβ>0 min{β,ψ∗(β)− 1

nmax }(t−nmax(i−1)) (4.66)

= κ2−β(nmax)(t−nmax(i−1)), (4.67)

some positive constant κ < ∞ independent of t.

4.7.4 Technical Background

In this appendix, we provide some preliminary lemmata which are technical and only

helpful in proving the main results of the chapter.

Lemma 9. For t ≥ 1 consider i∈
[⌈

t
nmin

⌉]
. Consider a sample path where Ni−1

1 = ni−1
1 and b(t)>

i. Then for all τ such ti−1 = ∑
i−1
j=1 n j ≤ τ≤ t, for any point x = k2−i, where k ∈ {0, . . . ,2i−1},
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and 0 < λ≤ 1 the following holds true

E

(ξΘ|Y τ+1(x)

ξΘ|Y τ(x)

)λ
∣∣∣∣∣∣Y τ,Ni−1

1 = ni−1
1 ,Ti < t

≤ (2p)λ +(2p̄)λ

2
, (4.68)

when randomization probabilities are chosen as follows

π
(τ+1)
1 (λ) =

h(λ,d(τ)
2 )

h(λ,d(τ)
1 )+h(λ,d(τ)

2 )
, (4.69)

π
(τ+1)
2 (λ) = 1−π

(τ+1)
1 (λ), (4.70)

where d(τ)
1 and d(τ)

2 are as defined in equation (4.12) respectively and (4.13) and h(λ,d) is defined

in equation (4.14).

Proof. The proof of this lemma is based on the analysis of moment generated function provided

by Burnashev and Zigangirov in [4].

Case 1: Suppose the median does not cut any bin i.e., median coincides with the end point of

some bin.

Case 1a: Using Lemma 8, the update of ξΘ|Y τ(x) when FΘ|Y τ(x)≤ 1
2 is given as follows

ξΘ|Y τ+1(x)

ξΘ|Y τ(x)
≤

 2p if Yτ+1 = 1 w.p. 1
2 ,

2p̄ if Yτ+1 = 0 w.p. 1
2 .

(4.71)

Case 1b: Using Lemma 8, the update of ξΘ|Y τ(x) when 1−FΘ|Y τ(x)< 1
2 is given as follows

ξΘ|Y τ+1(x)

ξΘ|Y τ(x)
≤

 2p̄ if Yτ+1 = 1 w.p. 1
2 ,

2p if Yτ+1 = 0 w.p. 1
2 .

(4.72)
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Hence, for all x = k2−i where k ∈ {0, . . . ,2i−1} under Case 1 we have

E

( ξΘ|Y τ(x)
ξΘ|Y τ−1(x)

)λ
∣∣∣∣∣∣Y τ,Ni−1

1 = ni−1
1

≤ f1(λ) :=
(2p)λ +(2p̄)λ

2
. (4.73)

Case 2: When median lies inside some bin we randomize the encoding.

Case 2a: Consider x = k2−i where k ∈ {0, . . . ,2i−1} such that ξΘ|Y τ(x) = FΘ|Y τ(x)≤ 1
2 .

Using Lemma 8 with probability π
(τ+1)
1 the update is given as

ξΘ|Y τ+1(x)

ξΘ|Y τ(x)
≤


p

1
2+(p̄−p)d(τ)

1

if Yτ+1 = 1,

p̄
1
2−(p̄−p)d(τ)

1

if Yτ+1 = 0
(4.74)

where the probability of P(Yτ+1 = 1 | yτ
1) =

1
2 +(p̄− p)d(τ)

1 and P(Yτ+1 = 0 | yτ
1) =

1
2−(p̄− p)d(τ)

1 .

Similarly with probability π
(τ+1)
2 the update is given as

ξΘ|Y τ+1(x)

ξΘ|Y τ(x)
≤


p

1
2−(p̄−p)d(τ)

2

if Yτ+1 = 1,

p̄
1
2+(p̄−p)d(τ)

2

if Yτ+1 = 0,
(4.75)

where P(Yτ+1 = 1 | yτ
1) =

1
2 − (p̄− p)d(τ)

2 and P(Yτ+1 = 0 | yτ
1) =

1
2 +(p̄− p)d(τ)

2 . Hence, for all

x = k2−i where k ∈ {0, . . . ,2i−1} such that ξΘ|Y τ(x) = FΘ|Y τ(x)≤ 1
2 , we have

E

(ξΘ|Y τ+1(x)

ξΘ|Y τ(x)

)λ
∣∣∣∣∣∣Y τ,Ni−1

1 = ni−1
1

≤ f2(λ) := π
(τ+1)
1 gλ

(
d(τ)

1

)
+π

(τ+1)
2 gλ

(
−d(τ)

2

)
, (4.76)

where we define

gλ(d) :=
pλ(1

2 +(p̄− p)d
)λ−1 +

p̄λ(1
2 − (p̄− p)d

)λ−1 . (4.77)
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Case 2b: Consider x = k2−i where k ∈ {0, . . . ,2i− 1} such that ξΘ|Y τ(x) = 1−FΘ|Y τ(x) ≤ 1
2 .

Using Lemma 8 with probability π
(τ+1)
1 the update is given as

ξΘ|Y τ+1(x)

ξΘ|Y τ(x)
≤


p̄

1
2+(p̄−p)d(τ)

1

if Yτ+1 = 1,

p
1
2−(p̄−p)d(τ)

1

if Yτ+1 = 0,
(4.78)

where P(Yτ+1 = 1 | yτ
1) =

1
2 +(p̄− p)d(τ)

1 and P(Yτ+1 = 0 | yτ
1) =

1
2− (p̄− p)d(τ)

1 . Similarly, with

probability π
(τ+1)
2 the update is given as

ξΘ|Y τ+1(x)

ξΘ|Y τ(x)
≤


p̄

1
2−(p̄−p)d(τ)

2

if Yτ = 1,

p
1
2+(p̄−p)d(τ)

2

if Yτ = 0,
(4.79)

where P(Yτ+1 = 1 | yτ
1) =

1
2−(p̄− p)d(τ)

1 and P(Yτ+1 = 0 | yτ
1) =

1
2 +(p̄− p)d(τ)

1 . Hence, x = k2−i

where k ∈ {0, . . . ,2i−1} such that ξΘ|Y τ(x) = 1−FΘ|Y τ(x)≤ 1
2 , we have

E

(ξΘ|Y τ+1(x)

ξΘ|Y τ(x)

)λ
∣∣∣∣∣∣Y τ,Ni−1

1 = ni−1
1

≤ f3(λ) := π
(τ+1)
1 gλ(−d(τ)

1 )+π
(τ+1)
2 gλ(d

(τ)
2 ). (4.80)

Now we want π
(τ+1)
1 and π

(τ+1)
2 which minimize the max{ f2(λ), f3(λ)}. Hence we choose

π
(τ+1)
1 and π

(τ+1)
2 for which f2(λ) = f3(λ) and obtain

π
(τ+1)
1 =

gλ

(
d(τ)

2

)
−gλ

(
−d(τ)

2

)
gλ

(
d(τ)

1

)
−gλ

(
−d(τ)

1

)
+gλ

(
d(τ)

2

)
−gλ

(
−d(τ)

2

) . (4.81)
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Note that for the above choice of π
(τ)
1 and π

(τ)
2 we have

max
d(τ)

1 ,d(τ)
2

max{ f2(λ), f3(λ)} ≤ max
d(τ)

1 ,d(τ)
2

{
f2(λ)+ f3(λ)

2

}
(4.82)

=
1
2

π
(τ+1)
1 max

d(τ)
1

{
gλ(d

(τ)
1 )+gλ(−d(τ)

1 )
}

(4.83)

+
1
2

π
(τ+1)
2 max

d(τ)
2

{
gλ(d

(τ)
2 )+gλ(−d(τ)

2 )
}

(4.84)

= max
d

1
2
{gλ(d)+gλ(−d)} . (4.85)

Furthermore, we have

gλ(d)+gλ(−d)
2

=

(
(2p)λ +(2p̄)λ

4

)(
(1+2(p̄− p)d)1−λ+ (4.86)

+(1−2(p̄− p)d)1−λ
)
. (4.87)

Since d1,d2 ≤ 1
2 we have 2(p̄− p)d1,2(p̄− p)d2 ≤ 1. If 0 < λ ≤ 1, then using the inequality

(1− x)λ +(1+ x)λ ≤ 2, we have

max
d
{gλ(d)+gλ(−d)} ≤ (2p)λ +(2p̄)λ

2
. (4.88)

Therefore, for all three cases we can upper bound as follows

max
d(τ)

1 ,d(τ)
2

max{ f1(λ), f2(λ), f3(λ)} ≤
(2p)λ +(2p̄)λ

2
. (4.89)

Hence, we have the assertion of the lemma.

Lemma 10. For t ≥ 1 consider i ∈ {1, . . . ,d t
nmin
e}. Consider a sample path where Ni−1

1 = ni−1
1

and b(t) > i. Then, using causal posterior matching strategy the following holds true for all
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λ > 0 such that ψ(λ)− 1
nmin

> 0:

2i−1

∑
k=1

E
[

ξ
λ

Θ|Y ti−1(k2−i)
∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
≤ 1

1−2−
(

ψ(λ)− 1
nmin

)
nmin

. (4.90)

Proof. The first bit has been encoded for all times instants from 1 to ti−1, hence for k = 2i−1 we

have

E
[

ξ
λ

Θ|Y ti−1 (k2−i)
∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
≤ 2−ψ(λ)(ti−1).

Note that there are 2i−1 tails which satisfy the above equation. Similarly, for 1≤ `≤ i−1 the `th

bit has been encoded since time t` to ti−1 we have that there are 2i−` tails of the remaining ones

which are less than 2−ψ(λ)(ti−t`). Therefore we have

2i−1

∑
k=0

E
[

ξ
λ

Θ|Y ti−1(k2−i)
∣∣∣Ni−1

1 = ni−1
1 ,Ti < t

]
≤

i

∑
`=0

2i−`2−ψ(λ)(ti−t`) (4.91)

(a)
≤

i

∑
`=0

2i−`2−ψ(λ)nmin(i−`) (4.92)

=
i

∑
`=0

2−
(

ψ(λ)− 1
nmin

)
nmin(i−`) (4.93)

≤
∞

∑
`=0

2−
(

ψ(λ)− 1
nmin

)
nmin` (4.94)

(b)
=

1

1−2−
(

ψ(λ)− 1
nmin

)
nmin

, (4.95)

where (a) follows from ti−t`≥ nmin(i−`) and (b) follows from that fact that ψ(λ)− 1
nmin

> 0.

Lemma 11. For t ≥ 1 consider i ∈ {1, . . . ,d t
nmax
e}. Let ti := nmax(i−1)+1. Then, using causal

posterior matching strategy the following holds true for all λ > 0 such that ψ(λ)− 1
nmax

> 0:

2i−1

∑
k=0

E
[
ξ

λ

Θ|Y ti−1(k2−i)
]
≤ 1

1−2−(ψ(λ)− 1
nmax )nmax

. (4.96)
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Proof. The first bit has been encoded for all times instants from 1 to ti−1, hence for k = 2i−1 we

have

E
[
ξ

λ

Θ|Y Ti−1 (k2−i)
]
≤= 2−ψ(λ)(ti−1). (4.97)

Note that there are 2i−1 tails which satisfy the above equation. Similarly, for 1≤ `≤ i−1 the

`th bit has been encoded since time t` to ti−1 we have that there are 2i−` tails of the remaining

ones which are less than 2−ψ(λ)(ti−t`). Noting that ti− t` = nmax(i− `) and following the proof of

Lemma 10 we have the assertion of the lemma.

Chapter 4, in part, is a reprint of the material as it appears in the paper: Anusha Lalitha,

Anatoly Khina, Tara Javidi, and Victoria Kostina, “Real-time binary posterior matching", in IEEE

International Symposium on Information Theory, 2019. The dissertation author was the primary

investigator and author of this paper.
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Chapter 5

Social Learning and Distributed

Hypothesis Testing

5.1 Introduction

Learning in distributed settings is more than a phenomenon of social networks; it is also

an engineering challenge for networked system designers. For instance, in today’s data networks,

many applications need estimates of certain parameters: file-sharing systems need to know the

distribution of (unique) documents shared by their users, internet-scale information retrieval

systems need to deduce the criticality of various data items, and monitoring networks need to

compute aggregates in a duplicate-insensitive manner. Finding scalable, efficient, and accurate

methods for computing such metrics (e.g. number of documents in the network, sizes of database

relations, distributions of data values) is of critical value in a wide array of network applications.

We consider a network of nodes that sample local observations (over time) governed by

an unknown true hypothesis θ∗ taking values in a finite discrete set Θ. We model the i-th node’s

distribution (or local channel, or likelihood function) of the observations conditioned on the true

hypothesis by fi (·;θ∗) from a collection { fi (·;θ) : θ ∈ Θ}. Nodes neither have access to each
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Figure 5.1: Example of a parameter space in which no node can identify the true parameter.
There are 4 parameters, {θ1,θ2,θ3,θ4}, and 2 nodes. The node 1 has f1 (·;θ1) = f1 (·;θ3) and
f1 (·;θ2) = f1 (·;θ4), and the node 2 has f2 (·;θ1) = f2 (·;θ2) and f2 (·;θ3) = f2 (·;θ4).

others’ observations nor the joint distribution of observations across all nodes in the network.

Every node in the network aims to learn the unknown true hypothesis θ∗. A simple two-node

example is illustrated in Figure 5.1 – one node can only learn the column in which the true

hypothesis lies, and the other can only learn the row. In this example, the local observations of

a given node are not sufficient to recover the underlying hypothesis in isolation. In this chapter

we study a learning rule that enables the nodes to learn the unknown true hypothesis based on

message passing between one hop neighbors (local communication) in the network. In particular,

each node performs a local Bayesian update and send its belief vectors (message) to its neighbors.

After receiving the messages from the neighbors each node performs a consensus averaging on a

reweighting of the log beliefs. Our result shows that under our learning rule each node can reject

the wrong hypothesis exponentially fast.

We show that the rate of rejection of wrong hypothesis is the weighted sum of Kullback-

Leibler (KL) divergences between likelihood function of the true parameter and the likelihood

function of the wrong hypothesis, where the sum is over the nodes in the network and the

weights are the nodes’ influences as dictated by the learning rule. Furthermore, we show that the

probability of sample paths on which the rate of rejection deviates from the mean rate vanishes

exponentially fast. For any strongly connected network and bounded ratios of log-likelihood

functions, we obtain a lower bound on this exponential rate. Furthermore, for any aperiodic

network we characterize the exact exponent with which probability of sample paths on which

the rate of rejection deviates from the mean rate vanishes (i.e., obtain a large deviation principle)

for a broader class of observation statistics which includes distributions with unbounded support
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such as Gaussian mixtures and Gamma distribution. The large deviation rate function is shown to

be a function of observation model and the nodes’ influences on the network as dictated by the

learning rule.

Outline of the chapter. The rest of the chapter is organized as follows. We provide the model in

Section 5.2 which defines the nodes’ observation model and network. This section also contains

the learning rule and assumptions on model. We then provide results on rate of convergence and

their proofs in Section 5.3. We apply our learning rule to various examples in Section 5.4 and

discuss some practical issues in Section 5.4.3. We conclude with a summary in Section 5.5.

5.1.1 Related Work

The literature on distributed learning, estimation and detection can divided into two

broad sets. One set deals with the fusion of information observed by a group nodes at a fusion

center where the communication links (between the nodes and fusion center) are either rate

limited [58–66] or subject to channel imperfections such as fading and packet drops [67–69].

Our work belongs to the second set, which models the communication network as a directed

graph whose vertices/nodes are agents and an edge from node i to j indicates that i may send

a message to j with perfect fidelity (the link is a noiseless channel of infinite capacity). These

“protocol” models study how message passing in a network can be used to achieve a pre-specified

computational task such as distributed learning [70, 71], general function evaluation [72],or

stochastic approximations [73]. Message passing protocols may be synchronous or asynchronous

(such as the “gossip” model [74–78]). This graphical model of the communication, instead

of assuming a detailed physical-layer formalization, implicitly assumes a PHY/MAC-layer

abstraction where sufficiently high data rates are available to send the belief vectors with desired

precision when nodes are within each others’ communication range. A missing edge indicates the

corresponding link has zero capacity.

Due to the large body of work in distributed detection, estimation and merging of opinions,
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we provide a long yet detailed summary of all the related works and their relation to our setup.

Readers familiar with these works can skip to Section 5.2 without loss of continuity.

Several works [79–83] consider an update rule which uses local Bayesian updating

combined with a linear consensus strategy on the beliefs [84] that enables all nodes in the network

identify the true hypothesis. Jadbabaie et al. [79] characterize the “learning rate” of the algorithm

in terms of the total variational error across the network and provide an almost sure upper bound

on this quantity in terms of the KL-divergences and influence vector of agents. In Corollary 10

we analytically show that the proposed learning rule in this chapter provides a strict improvement

over linear consensus strategies [79]. Simultaneous and independent works by Shahrampour

et al. [85] and Nedić et al. [86] consider a similar learning rule (with a change of order in the

update steps). They obtain similar convergence and concentration results under the assumption of

bounded ratios of likelihood functions. Nedić et al. [86] analyze the learning rule for time-varying

graphs. Theorem 9 strengthens these results for static networks by providing a large deviation

analysis for a broader class of likelihood functions which includes Gaussian mixtures.

Rad and Tahbaz-Salehi [82] study distributed parameter estimation using a Bayesian

update rule and average consensus on the log-likelihoods similar to (6.2)–(5.3). They show that

the maximum of each node’s belief distribution converges in probability to the true parameter

under certain analytic assumptions (such as log-concavity) on the likelihood functions of the

observations. Our results show almost sure convergence and concentration of the nodes’ beliefs

when the parameter space is discrete and the log-likelihood function is concave. Kar et al. in [87]

consider the problem of distributed estimation of an unknown underlying parameter where the

nodes make noisy observations that are non-linear functions of an unknown global parameter.

They form local estimates using a quantized message-passing scheme over randomly-failing

communication links, and show the local estimators are consistent and asymptotically normal.

Note that for any general likelihood model and static strongly connected network, our Theorem 7

strengthens the results of distributed estimation (where the error vanishes inversely with the
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square root of total number of observations) by showing exponentially fast convergence of the

beliefs. Furthermore, Theorem 8 and 9 strengthen this by characterizing the rate of convergence.

Similar non-Bayesian update rules have been in the context of one-shot merging of

opinions [83] and beliefs in [88] and [89]. Olfati-Saber et al. [83] studied an algorithm for

distributed one-shot hypothesis testing using belief propagation (BP), where nodes perform

average consensus on the log-likelihoods under a single observation per node. The nodes can

achieve a consensus on the product of their local likelihoods. A benefit of our approach is that

nodes do not need to know each other’s likelihood functions or indeed even the space from

which their observations are drawn. Saligrama et al. [88] and Alanyali et al. [89], consider a

similar setup of belief propagation (after observing single event) for the problem of distributed

identification of the MAP estimate (which coincides with the true hypothesis for sufficiently

large number of observations) for certain balanced graphs. Each node passes messages which are

composed by taking a product of the recent messages then taking a weighted average over all

hypotheses. Alanyali et al. [89] propose modified BP algorithms that achieve MAP consensus for

arbitrary graphs. Though the structure of the message composition of the BP algorithm based

message passing is similar to our proposed learning rule, we consider a dynamic setting in which

observations are made infinitely often. Our rule incorporates new observation every time a node

updates its belief to learn the true hypothesis. Other works study collective MAP estimation

when nodes communicate discrete decisions based on Bayesian updates [90, 91] Harel et el.

in [90] study a two-node model where agents exchange decisions rather than beliefs and show

that unidirectional transmission increases the speed of convergence over bidirectional exchange

of local decisions. Mueller-Frank [91] generalized this result to a setting in which nodes similarly

exchange local strategies and local actions to make inferences.

Several recently-proposed models study distributed sequential binary hypothesis testing

detecting between different means with Gaussian [92] and non-Gaussian observation models [93].

Jakovetic et al. [93] consider a distributed hypothesis test for i.i.d observations over time and
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across nodes where nodes exchange weighted sum of a local estimate from previous time instant

and ratio of likelihood functions of the latest local observation with the neighbors. When the

network is densely connected (for instance, a doubly stochastic weight matrix), after sufficiently

long time nodes gather all the observations throughout network. By appropriately choosing a local

threshold for local Neyman-Pearson test, they show that the performance of centralized Neyman-

Pearson test can be achieved locally. In contrast, our M-ary learning rule applies for observations

that are correlated across nodes and exchanges more compact messages i.e., the beliefs (two finite

precision real values for binary hypothesis test) as opposed to messages composed of the raw

observations (in the case of Rd Gaussian observations with d� 2, d finite precision real values

for binary hypothesis test). Sahu and Kar [92] consider a variant of this test for the special case of

Gaussians with shifted mean and show that it minimizes the expected stopping times under each

hypothesis for given detection errors.

5.2 The Model

5.2.1 Nodes’ Observation Model

Consider a group of n individual nodes. Let Θ = {θ1,θ2, . . . ,θM} denote a finite set of

M parameters which we call hypotheses: each θi denotes a hypothesis. At each time instant t,

every node i ∈ [n] makes an observation X (t)
i ∈ Xi, where Xi denotes the observation space of

node i. The joint observation profile at any time t across the network, {X (t)
1 ,X (t)

2 , . . . ,X (t)
n }, is

denoted by X(t) ∈ X , where X = X1×X2× . . .×Xn. The joint likelihood function for all X ∈ X

given θk is the true hypothesis is denoted as f (X ;θk). We assume that the observations are

statistically governed by a fixed global “true hypothesis” θ∗ ∈Θ which is unknown to the nodes.

Without loss of generality we assume that θ∗ = θM. Furthermore, we assume that no node in

network knows the joint likelihood functions { f (·;θk)}M
k=1 but every node i ∈ [n] knows the local

likelihood functions { fi (·;θk)}M
k=1, where fi (·;θk) denotes the i-th marginal of f (·;θk). Each
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node’s observation sequence (in time) is conditionally independent and identically distributed

(i.i.d) but the observations might be correlated across the nodes at any given time.

In this setting, nodes attempt to learn the “true hypothesis” θM using their knowl-

edge of { fi (·;θk)}M
k=1. In isolation, if fi (·;θk) 6= fi (·;θM) for some k ∈ [M− 1], node i can

rule out hypothesis θk in favor of θM exponentially fast with an exponent which is equal to

D( fi (·;θM)‖ fi (·;θk)) [94, Section 11.7]. Hence, for a given node the KL-divergence between

the distribution of the observations conditioned over the hypotheses is a useful measure of the

distinguishability of the hypotheses. Now, define

Θ̄i = {k ∈ [M] : fi (·;θk) = fi (·;θM)}

= {k ∈ [M] : D( fi (·;θM)‖ fi (·;θk)) 6= 0}.

In other words, let Θ̄i be the set of all hypotheses that are locally indistinguishable to node i. In

this work, we are interested in the case where |Θ̄i|> 1 for some node i, but the true hypothesis

θM is globally identifiable (see (5.1)).

Assumption 1. For every pair k 6= j, there is at least one node i∈ [n] for which the KL-divergence

D
(

fi (·;θk)
∥∥ fi
(
·;θ j
))

is strictly positive.

In this case, we ask whether nodes can collectively go beyond the limitations of their local

observations and learn θM. Since

{θM}= Θ̄1∩ Θ̄2∩ . . .∩ Θ̄n, (5.1)

it is straightforward to see that Assumption 1 is a sufficient condition for the global identifiability

of θM when only marginal distributions are known at the nodes. Also, note that this assumption

does not require the existence of a single node that can distinguish θM from all other hypotheses

θk, where k ∈ [M−1]. We only require that for every pair k 6= j, there is at least one node i ∈ [n]
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for which fi (·;θk) 6= fi
(
·;θ j
)
.

Finally, we define a probability triple
(
Ω,F ,PθM

)
, where

Ω = {ω : ω = (X(0),X(1), . . .), ∀X(t) ∈ X , ∀ t}

, F is the σ− algebra generated by the observations and PθM is the probability measure induced by

paths in Ω, i.e., PθM = ∏
∞
t=0 f (·;θM). We use EθM [·] to denote the expectation operator associated

with measure PθM . For simplicity we drop θM to denote PθM by P and denote EθM [·] by E[·].

5.2.2 Network

We model the communication network between nodes via a directed graph with vertex

set [n]. We define the neighborhood of node i, denoted by N (i), as the set of all nodes which

have an edge starting from themselves to node i. This means if node j ∈N (i), it can send the

information to node i along this edge. In other words, the neighborhood of node i denotes the set

of all sources of information available to it. Moreover, we assume that the nodes have knowledge

of their neighbors N (i) only and they have no knowledge of the rest of the network [95].

Assumption 2. The underlying graph of the network is strongly connected, i.e. for every i, j ∈ [n]

there exists a directed path starting from node i and ending at node j.

We consider the case where the nodes are connected to every other node in the network

by at least one multi-hop path, i.e. a strongly connected graph allows the information gathered to

be disseminated at every node throughout the network. Such a network enables learning even

when some nodes in the network may not be able to distinguish the true hypothesis on their own,

i.e. the case where |Θ̄i|> 1 for some nodes.
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5.2.3 The Learning Rule

In this section we provide a learning rule for the nodes to learn θM by collaborating with

each other through the local communication alone.

We begin by defining the variables required in order to define the learning rule. At every

time instant t each node i maintains a private belief vector q(t)
i ∈ P (Θ) and a public belief vector

b(t)
i ∈ P (Θ), which are probability distributions on Θ. The social interaction of the nodes is

characterized by a stochastic matrix W . More specifically, weight Wi j ∈ [0,1] is assigned to the

edge from node j to node i such that Wi j > 0 if and only if j ∈N (i) and Wii = 1−∑
n
j=1Wi j. The

weight Wi j denotes the (relative) confidence node i has on the information it receives from node j.

The steps of learning are given below. Suppose each node i starts with an initial private

belief vector q(0)
i . At each time t = 1,2, . . . the following events happen:

1. Each node i draws a conditionally i.i.d observation X (t)
i ∼ fi (·;θM).

2. Each node i performs a local Bayesian update on q(t−1)
i to form b(t)

i using the following

rule. For each k ∈ [M],

b(t)i (θk) =
fi

(
X (t)

i ;θk

)
q(t−1)

i (θk)

∑a∈[M] fi

(
X (t)

i ;θa

)
q(t−1)

i (θa)
. (5.2)

3. Each node i sends the message Y(t)
i = b(t)

i to all nodes j for which i ∈ N ( j). Similarly

receives messages from its neighbors N (i).

4. Each node i updates its private belief of every θk, by averaging the log beliefs it received

from its neighbors. For each k ∈ [M],

q(t)i (θk) =
exp
(

∑
n
j=1Wi j logb(t)j (θk)

)
∑a∈[M] exp

(
∑

n
j=1Wi j logb(t)j (θa)

) . (5.3)
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Note that the private belief vector q(t)
i remain locally with the nodes while their public

belief vectors b(t)
i are exchanged with the neighbors. The objective of learning rule is to ensure

that the private belief vector q(t)
i of each node i ∈ [n] converges to 1M(·).

Given the weight matrix W , the network can be thought of as a weighted strongly con-

nected network. Assumption 2, implies that weight matrix W is irreducible. In this context we

recall the following fact.

Fact 5 (Section 2.5 of Hoel et. al. [96]). Let W be the transition matrix of a Markov chain. If W

is irreducible then the stationary distribution of the Markov chain denoted by v = [v1,v2, . . . ,vn]

is the normalized left eigenvector of W associated with eigenvalue 1 and it is given as

vi =
n

∑
j=1

v jWji. (5.4)

Furthermore, all components of v are strictly positive. If the Markov chain is aperiodic, then

lim
t→∞

W t(i, j) = v j, i, j ∈ [n]. (5.5)

If the chain is periodic with period d, then for each pair of states i, j ∈ [n], there exists an integer

r ∈ [d], such that W t(i, j) = 0 unless t = md + r for some nonnegative integer m, and

lim
m→∞

W md+r(i, j) = v jd. (5.6)

In the social learning literature, the eigenvector v also known as the eigenvector centrality; it is a

measure of social influence of a node in the network. In particular we will see that vi determines

the contribution of node i in the collective network learning rate.

Definition 22 (Network Divergence). For all k ∈ [M−1], the network divergence between θM
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and θk, denoted by K(θM,θk), is defined as

K(θM,θk) :=
n

∑
i=1

viD( fi (·;θM)‖ fi (·;θk)) , (5.7)

where v = [v1,v2, . . . ,vn] is the normalized left eigenvector of W associated with eigenvalue 1.

Fact 5 together with Assumption 1 guarantees that K(θM,θk) is strictly positive for every k ∈

[M−1].

Due to the form of our learning rule, if the initial belief of any θk,k ∈ [M], for some node

is zero then beliefs of that θk remain zero in subsequent time intervals. Hence, we require the

following assumption.

Assumption 3. For all i ∈ [n], the initial private belief q(0)i (θk)> 0 for every k ∈ [M].

5.3 Main Results

5.3.1 The Criteria for Learning

Before we present our main results, we discuss the metrics we use to evaluate the perfor-

mance of a learning rule in the given distributed setup.

Definition 23 (Rate of Rejection of Wrong Hypothesis). For any node i ∈ [n] and k ∈ [M−1],

define the following

ρ
(t)
i (θk) :=−1

t
logq(t)i (θk). (5.8)

The rate of rejection of θk in favor of θM at node i is defined as

ρi(θk) := liminf
t→∞

ρ
(t)
i (θk). (5.9)
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Now, let

q̃(t)
i :=

[
q(t)i (θ1),q

(t)
i (θ2), . . . ,q

(t)
i (θM−1)

]T
. (5.10)

Then

ρ
(t)
i :=−1

t
log q̃(t)

i (5.11)

and the rate of rejection at node i is defined as

ρi := liminf
t→∞

ρ
(t)
i . (5.12)

If ρi(θk)> 0 for all k ∈ [M−1], under a given learning rule the belief vector of node i not

only converges to the true hypothesis, it converges exponentially fast. Another way to measure

the performance of a learning rule is the rate at which the belief of true hypothesis converges to

one.

Definition 24 (Rate of Convergence to True Hypothesis). For any i ∈ [n] and k ∈ [M−1], define

the rate of convergence µi to θM by

µi := liminf
t→∞

−1
t

log(1−q(t)i (θM)). (5.13)

Definition 25 (Rate of Social Learning). The total variational error across the network when the

underlying true hypothesis is θk (where we allow the true hypothesis to vary, i.e. θ∗ = θk for any

k ∈ [M] instead of assuming that it is fixed at θ∗ = θM) is given as

e(t)(k) =
1
2

n

∑
i=1
||q(t)i (·)−1k(·)||=

n

∑
i=1

∑
j 6=k

q(t)i (θ j). (5.14)

This equals the total probability that all nodes in the network assign to “wrong hypotheses”. Now,
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define

e(t) := max
k∈[M]

e(t)(k). (5.15)

The rate of social learning is defined as the rate at which total variational error, e(t), converges to

zero and mathematically it is defined as

ρL := liminf
t→∞

−1
t

loge(t). (5.16)

This measure of performance for the learning rule has been used in the social learning

literature [81]. For a given network and a given observation model for nodes, ρL gives the least

rate of learning guaranteed in the network and therefore provides a worst case guarantee. It is

straightforward to see that with a characterization for ρi(θk) for all k ∈ [M−1] we obtain a lower

bound on rate of convergence to true hypothesis, µi, and on the rate of social learning, ρL, under a

given learning rule.

5.3.2 Learning: Convergence to True Hypothesis

Theorem 7 (Rate of Rejecting Wrong Hypotheses, ρi). Let θM be the true hypothesis. Under the

Assumptions 1–3, for every node in the network, the private belief (and hence the public belief)

under the proposed learning rule converges to true hypothesis exponentially fast with probability

one. Furthermore, the rate of rejecting hypothesis θk in favor of θM is given by the network

divergence between θM and θk. Specifically, we have

lim
t→∞

q(t)
i = 1M P-a.s. (5.17)

and

ρi =− lim
t→∞

1
t

log q̃(t)
i = K P-a.s. (5.18)
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where

K = [K(θM,θ1),K(θM,θ2), . . . ,K(θM,θM−1)]
T . (5.19)

The proof of Theorem 7 is provided in Appendix A. Theorem 7 establishes that the

beliefs of wrong hypotheses, θk for k ∈ [M−1], vanish exponentially fast and it characterizes the

exponent with which a node rejects θk in favor of θM. The rate of rejection is a function of the

node’s ability to distinguish between the hypotheses, which is given by the KL-divergences and

structure of the weighted network, weighted by the eigenvector centrality of the nodes. Hence,

every node influences the rate in two ways. Firstly, if the node has higher eigenvector centrality

(i.e. the node is centrality located), it has larger influence over the beliefs of other nodes as a

result has a greater influence over the rate of exponential decay as well. Secondly, if the node has

high KL-divergence (i.e highly informative observations that can distinguish between θk and θM),

then again it increases the rate. If an influential node has highly informative observations then it

boosts the rate of rejecting θk by improving the rate. We will illustrate this through numerical

examples in Section 5.4.1.

We obtain lower bound on the rate of convergence to the true hypothesis and rate of

learning as corollaries to Theorem 7.

Corollary 9 (Lower Bound on Rate of Convergence to θM). Let θM be the true hypothesis. Under

the Assumptions 1–3, for every i ∈ [n], the rate of convergence to θM can be lower-bounded as

µi ≥ min
k∈[M−1]

K(θM,θk) P-a.s. (5.20)

Corollary 10 (Lower Bound on Rate of Learning). Let θM be the true hypothesis. Under the
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Assumptions 1–3, the rate of learning ρL across the network is lower-bounded by,

ρL ≥ min
i, j∈[M]

K(θi,θ j) P-a.s.

Remark 16. Jadbabaie et. al. proposed a learning rule in [79], which differs from the proposed

rule at the private belief vector q(t)
i formation step. Instead of averaging the log beliefs, nodes

average the beliefs received as messages from their neighbors. In [81], Jadbabaie et. al. provide

an upper bound on the rate of learning ρL obtained using their algorithm. They show

ρL ≤ α min
i, j∈[M]

K(θi,θ j) P-a.s. (5.21)

where α is a constant strictly less than one. Corollary 10 shows that lower bound on ρL using the

proposed algorithm is greater than the upper bound provided in (5.21).

5.3.3 Concentration under Bounded Log-likelihood ratios

Under mild assumptions, Theorem 7 shows that the belief about a wrong hypothesis

θk for k ∈ [M−1] converges to zero exponentially fast at rate equal to the network divergence,

K(θM,θk), between θM and θk with probability one. We strength this result for periodic networks

with period d under the following assumption.

Assumption 4. There exists a positive constant L such that

max
i∈[n]

max
j,k∈[M]

sup
X∈Xi

∣∣∣∣∣log
fi
(
X ;θ j

)
fi (X ;θk)

∣∣∣∣∣≤ L. (5.22)

Theorem 8 (Concentration of Rate of Rejecting Wrong Hypotheses, ρ
(t)
i (θk)). Let θM be the true

hypothesis. Under Assumptions 1–4, for periodic networks with period d, for every node i ∈ [n],
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k ∈ [M−1], and for all ε > 0 we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)≤ K(θM,θk)− ε

)
≤− ε2

2L2d
. (5.23)

For 0 < ε≤ L−K(θM,θk), we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)≥ K(θM,θk)+ ε

)
≤− 1

2L2d
min

{
ε

2, min
j∈[M−1]

K(θM,θ j)
2
}
. (5.24)

For ε≥ L−K(θM,θk) we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)≥ K(θM,θk)+ ε

)
≤− min

k∈[M−1]

{
K(θM,θk)

2

2L2d

}
. (5.25)

Corollary 11 (Rate of convergence to True Hypothesis). Let θM be the true hypothesis. Under

Assumptions 1–4, for every i ∈ [n], we have

µi = min
k∈[M−1]

K(θM,θk) P-a.s.

Proofs of Theorem 8 and Corollary 11 are provided in Appendix B. From Theorem 7

we know that ρ
(t)
i (θk) converges to K(θM,θk) almost surely. Theorem 8 strengthens Theorem 7

by showing that the probability of sample paths where ρ
(t)
i (θk) deviates by some fixed ε from

K(θM,θk) vanishes exponentially fast. This implies that ρ
(t)
i (θk) converges to K(θM,θk) expo-

nentially fast in probability. Theorem 8 also characterizes a lower bound on the exponent when

the probability of such events vanishes and shows that periodicity of the network reduces the

exponent.
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5.3.4 Large Deviation Analysis

We require a technical assumption that relaxes the assumption of bounded ratios of the

likelihood functions in prior work [85, 97–99].

Assumption 5. For every pair θi 6= θ j and every node k ∈ [n], the random variable
∣∣∣∣log fk(Xk;θi)

fk(Xk;θ j)

∣∣∣∣
has finite log moment generating function under distribution fk

(
·;θ j
)
.

Next, we give examples of families of distributions which satisfy Assumption 5 but violate

Assumption 4.

Remark 17. Distributions f (X ;θi) and f (X ;θ j) for i 6= j which the following properties for

some positive constants C and β, satisfy Assumption 5

Pi

(
f (X ;θ j)

f (X ;θi)
≥ x
)
≤ C

xβ
, Pi

(
f (X ;θi)

f (X ;θ j)
≥ x
)
≤ C

xβ
. (5.26)

Note that (5.26) is a sufficient condition but not a necessary condition. Examples 6–7 below do

not satisfy (5.26) yet satisfy Assumption 5.

Example 6 (Gaussian Mixtures). Let f (X ;θ1) = N (µ1,σ) and f (X ;θ2) = N (µ2,σ). Then

g1(x) :=
∣∣∣∣log

f (x;θ1)

f (x;θ2)

∣∣∣∣≤ c1|x|+ c2, (5.27)

where c1 =
∣∣∣µ1−µ2

σ2

∣∣∣ and c2 =
∣∣∣µ2

1−µ2
2

2σ2

∣∣∣. Hence, for i ∈ {1,2} and for λ≥ 0 we have

Ei

[
eλg1(X)

]
≤ ec2λEi

[
ec1λ|X |

]
< ∞. (5.28)

More generally for i ∈ {1,2}, and p ∈ [0,1], let

f (x;θi) =
p

σ
√

2π
exp
(
−(x−αi)

2

2σ2

)
+

1− p
σ
√

2π
exp
(
−(x−βi)

2

2σ2

)
. (5.29)
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Then the log moment generating function of
∣∣∣log f (X ;θ1)

f (X ;θ2)

∣∣∣ is finite for all λ≥ 0.

Example 7 (Gamma distribution). Let

f (X ;θ1) =
βα1

Γ(α1)
xα1−1e−βx

and

f (X ;θ2) =
βα2

Γ(α2)
xα2−1e−βx,

then

g2(x) :=
∣∣∣∣log

f (x;θ1)

f (x;θ2)

∣∣∣∣≤ c1| logx|+ c2, (5.30)

where c1 = |α1−α2| and c2 =
∣∣∣(α1−α2) logβ+ log Γ(α2)

Γ(α1)

∣∣∣. Hence, for i ∈ {1,2} and for λ≥ 0

we have

Ei

[
eλg2(X)

]
≤ ec2λEi

[
ec1λ| logX |

]
< ∞. (5.31)

The above examples show that Assumption 5 is satisfied for distributions which have

unbounded support. In order to analyze the concentration of ρ
(t)
i under Assumption 5 we replace

Assumption 2 with the following assumption.

Assumption 2′. The underlying graph of the network is strongly connected and aperiodic.

Next we provide few more definitions. Let

Y(t)(θk) := 〈v,L(t)(θk)〉, (5.32)
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where L(t)(θk) is the vector of log likelihood ratios given by

L(t)(θk) =

log
f1

(
X (t)

1 ;θk

)
f1

(
X (t)

1 ;θM

) , . . . , log
fn

(
X (t)

n ;θk

)
fn

(
X (t)

n ;θM

)
T

. (5.33)

Definition 26 (Moment Generating Function). For every λk ∈ R, let Λk(λk) denote the log

moment generating function of Y(t)(θk) by

Λk(λk) := logE[eλkY(t)(θk)] = logE[eλk〈v,L(θk)〉] (5.34)

For every λ ∈ RM−1, let Λ(λ) denote the log moment generating function of Y by

Λ(λ) := logE[e〈λ,Y〉]. (5.35)

Note that each entry of vector Y(t) is a function of joint observation vector X(t) whose

distribution is governed by f (·;θM).

Definition 27 (Large Deviation Rate Function). For all x ∈ R, let Ik(x) denote the Fenchel-

Legendre transform of Λk(·)

Ik(x) := sup
λk∈R
{λx−Λk(λk)} . (5.36)

For all x ∈ RM−1, let I(x) denote the Fenchel-Legendre transform of Λ(·)

I(x) := sup
λ∈RM−1

{〈λ,x〉−Λ(λ)} . (5.37)

Theorem 9 (Large Deviations of ρ
(t)
i ). Let θM be the true hypothesis. Under Assumptions 1, 2′,

3, 5, the rate of rejection ρ
(t)
i satisfies an Large Deviation Principle with rate function J(·), i.e.,
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for any set F ⊂ RM−1 we have

liminf
t→∞

1
t

logP
(

ρ
(t)
i ∈ F

)
≥− inf

y∈Fo
J(y), (5.38)

and

limsup
t→∞

1
t

logP
(

ρ
(t)
i ∈ F

)
≤− inf

y∈F̄
J(y), (5.39)

where large deviation rate function J(·) is defined as

J(y) := inf
x∈RM−1:g(x)=y

I(x), ∀y ∈ RM−1, (5.40)

where g : RM−1→ RM−1 is a continuous mapping given by

g(x) := [g1(x),g2(x), . . . ,gM−1(x)]T , (5.41)

and

gk(x) := xk−max{0,x1,x2, . . . ,xM−1}. (5.42)

The proof of Theorem 9 is provided in Appendix C. Theorem 9 characterizes the asymp-

totic rate of concentration of ρ
(t)
i in any set F ⊂ RM−1. In other words, it characterizes the rate

at which the probability of deviations in each ρ
(t)
i (θk) from the rate of rejection K(θM,θk) for

every θk 6= θM vanish simultaneously. It characterizes the asymptotic rate as a function of the

observation model of each node (not just the bound L on the ratios of log-likelihood function)

and as a function of eigenvector centrality v. The following corollary specializes this result to

obtain the individual rate of rejecting a wrong hypothesis at every node. It can be obtained by

repeating the proof of Theorem 9 for each hypothesis alone.
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Corollary 12. Let θM be the true hypothesis. Under Assumptions 1, 2′, 3, 5, for 0< ε≤K(θM,θk),

k ∈ [M−1], we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)≤ K(θM,θk)− ε

)
=−Ik (K(θM,θk)− ε) . (5.43)

For ε > 0, we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)≥ K(θM,θk)+ ε

)
=−Ik (K(θM,θk)+ ε) . (5.44)

Using Theorem 9 and Hoeffding’s Lemma, we obtain the following corollary.

Corollary 13. Suppose Assumption 4 is satisfied for some finite L ∈ R. For ε as specified in

Theorem 8, we recover the exponents of Theorem 8 under aperiodic networks, given by

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)≥ K(θM,θk)+ ε

)
≤− ε2

2L2 , (5.45)

and

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)≤ K(θM,θk)− ε

)
≤− ε2

2L2 . (5.46)

Remark 18. Under Assumption 4, Corollary 13 shows that lower bound on the asymptotic rate

of concentration of ρ
(t)
i as characterized by Theorem 8 is loose in comparision to that obtained

from Theorem 9. Nedic et al. [86] and Shahrampour et al. [85] provide non-asymptotic lower

bounds on the rate of concentration of ρ
(t)
i whose asymptotic form coincides with the lower

bound on rate characterized by Theorem 8 for aperiodic networks. This implies that under

Assumption 4 Theorem 9 provides a tighter asymptotic rate than their results in [85, 86]. Hence,

Theorem 9 strengthens Theorem 8 by extending the large deviation to larger class of distributions

and providing a tighter bound that captures the complete effect of nodes’ influence in the network
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and the local observation statistics.

5.4 Examples

In this section through numerical examples we illustrate how nodes learn using the

proposed learning rule and examine the factors which affect the rate of rejection of wrong

hypotheses and its rate of concentration.

5.4.1 Factors influencing Convergence

Example 8. Consider a group of two nodes as shown in Figure 5.1, where the set of hypotheses

is Θ = {θ1,θ2,θ3,θ4} and true hypothesis θ∗ = θ4. Observations at each node at time t, X (t)
i , take

values in R100 and have a Gaussian distribution. For node 1, f1 (·;θ1) = f1 (·;θ3) = N (µ11,Σ)

and f1 (·;θ2) = f1 (·;θ4) = N (µ12,Σ), and for node 2, f2 (·;θ1) = f2 (·;θ2) = N (µ21,Σ) and

f2 (·;θ3) = f2 (·;θ4) = N (µ22,Σ), where µ11,µ12,µ21,µ22 ∈R100 and Σ is a positive semi-definite

matrix of size 100-by-100. Here, node 1 can identify the column containing θ4, and node 2 can

identify the row. In other words, Θ̄1 = {θ2,θ4} and Θ̄2 = {θ3,θ4}. Also, θ4 = Θ̄1∩ Θ̄2, hence θ4

is globally identifiable.

Strong Connectivity

Nodes are connected to each other in a network and the weight matrix is given by

W =

 0.9 0.1

0.4 0.6

 . (5.47)

Figure 5.2 shows the evolution of beliefs with time for node 2 on a single sample path. We

see that using the proposed learning rule, belief of θ4 goes to one while the beliefs of wrong

hypotheses go to zero. This example shows that each node through collaboration is able to learn

134



θ4. Figure 5.3 shows the rate of rejection of wrong hypotheses. We see that the rate of rejection

θk for k ∈ {1,2,3} closely follows the asymptotic rate K(θ4,θk).

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
el

ie
f V

ec
to

r 
q 2(t

)

Number of iterations, t

 

 

θ
1

θ
2

θ
3

θ
4
 (true hypothesis)

Figure 5.2: For the set of nodes described in Figure 5.1, this figure shows the evolution of
beliefs for one instance using the proposed learning rule. Belief of the true hypothesis θ4 of
node 2 converges to 1 and beliefs of all other hypotheses go to zero.
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Figure 5.3: Figure shows the exponential decay of beliefs of θ1, θ2 and θ3 of node 2 using the
learning rule.

Suppose the nodes are connected to each other in a network whose weight matrix is given
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by

W =

 1 0

0.5 0.5

 . (5.48)

Since there is no path from node 2 to node 1, the network is not strongly connected. Node 2 as

seen in Figure 5.4 does not converge to θ4. Even though node 1 cannot distinguish the elements

of Θ̄1 from θ4, it rejects the hypotheses in {θ1,θ3} in favor of θ4. This forces node 2 also to

reject the set {θ1,θ3}. For node 1, θ2 and θ4 are observationally equivalent, hence their respective

beliefs equal half. But node 2 oscillates between θ2 and θ4 and is unable to learn θ4. Hence,

when the network is not strongly connected both nodes fail to learn.
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Figure 5.4: Figure shows the beliefs of node 2 shown in Figure 5.1. When the network is not
strongly connected node 2 cannot learn θ4.

In this setup we apply the learning rule considered in [79], where in the consensus

step public beliefs are updated by averaging the beliefs received from the neighbors instead of

averaging the logarithm of the beliefs. As seen in Figure 5.5, rate of rejecting learning using the

proposed learning rule is greater than the upper bound on learning rule in [79]. Note that the

precision of the belief vectors in the simulations is 8 bytes (64 bits) per hypothesis. This implies
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Figure 5.5: Figure shows that the rate of rejection of θ2 using the proposed learning rule
(averaging the log beliefs) is greater than the rate of rejection of θ2 obtained using the learning
rule in [79] (averaging the beliefs).

the nodes each send 32 bytes per unit time, which is less than the case when nodes exchange local

Gaussian observations which may require data rate as high as 800 bytes per observation.

Periodicity

Now suppose the nodes are connected to each other in periodic network with period 2 and

the weight matrix given by

W =

 0 1

1 0

 . (5.49)

From Figure 5.6, we see that the belief on wrong hypotheses converges to zero but beliefs oscillate

significantly about the expected value of rate of rejection as compared to the case of an aperiodic

network considered in (5.47).

Even though nodes do not have a positive self-weight (Wii), the new information (through

observations) entering at every node reaches its neighbors and gets dispersed in throughout the
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Figure 5.6: Figure shows the exponential decay of beliefs of θ1, θ2, and θ3 of node 2 connected
to node 1 in a periodic network with period 2.

network; eventually reaches every node. Hence, nodes learn even when the network is periodic as

long as it remains strongly connected.

Eigenvector Centrality and Extent of distinguishability

From Theorem 7, we know that a larger weighted sum of the KL divergences, i.e. a

larger network divergence, K(θM,θk), yields a better rate of rejecting hypothesis θk. We look at a

numerical example to show this.

Example 9. Let Θ = {θ1,θ2,θ3,θ4,θ5} and θ∗ = θ4. Consider a set of 25 nodes which are

arranged in 5×5 array to form a grid. We obtain a grid network by connecting every node to its

adjacent nodes. We define the weight matrix as,

Wi j =


1
|N (i)| , if j ∈N (i)

0, otherwise
(5.50)

Consider an extreme scenario where only one node can distinguish true hypothesis θ1 from the

rest and to the remaining nodes in the network all hypotheses are observationally equivalent
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i.e. Θ̄i = Θ for 24 nodes and Θ̄i = {θ1} for only one node. We call that one node which can

distinguish the true hypothesis from other hypotheses as the “informed node” and the rest of the

nodes called the “non-informed nodes”.

For the weight matrix in (5.50), the eigenvector centrality of node i is proportional to N (i), which

means in this case, more number of neighbors implies higher social influence. This implies that

the corner nodes (namely node 1, node 5, node 20 and node 25 at the four corners of the grid)

have least eigenvector centrality among all nodes. Hence, they are least influential. The nodes on

four edges have a greater influence than the corner nodes. Most influential nodes are the ones

with four connections, such as node 13 which is located in third row and third column of the grid.

It is also the central location of the grid.

Figure 5.7 shows the variation in the rate of rejection of θ2 of node 5 as the location of

informed node changes. We see that if the informed node is at the center of the grid then the rate

of rejection is fastest and the rate is slowest when the informed node is placed at a corner. In

other words, rate of convergence is highest when the most influential node in the network has

high distinguishability.

5.4.2 Factors influencing Concentration

Now to examine the results from Theorem 8 and Theorem 9, we go back to Example 8,

where two nodes are in a strongly connected aperiodic network given by (5.47). Observation

model for each node is defined as follows. For node 1, f1 (·;θ1) = f1 (·;θ3) ∼ Ber(4
5) and

f1 (·;θ2) = f1 (·;θ4) ∼ Ber(1
4), and for node 2, f2 (·;θ1) = f2 (·;θ2) ∼ Ber(1

3) and f2 (·;θ3) =

f2 (·;θ4)∼ Ber(1
4). Figure 5.8 shows the exponential decay of θ1 for 25 instances. We see that

the number of sample paths that deviate more than ε = 0.1 from K(θ4,θ1) decrease with number

of iterations. Theorem 8 characterizes the asymptotic rate at which the probability of such sample

paths vanishes when the log-likelihoods are bounded. This asymptotic rate is given as a function

of L and period of the network. From Corollary 13 the rate given by Theorem 8 is loose for
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Figure 5.7: Figure illustrates the manner in which rate of rejection of θ2 at node 5 is influenced
by varying the location of an informed node. As seen here when the informed node is more
central i.e. at node 13, rate of rejection is fastest and when the informed node is at the corner
node 1, rate of rejection is slowest.

aperiodic networks. A tighter bound which utilizes the complete observation model is given by

Theorem 9. Figure 5.9 shows the gap between the rates.
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Figure 5.8: Figure shows the decay of belief of θ1 (wrong hypothesis) of node 2 for 25 instances.
We see that the number of sample paths on which the rate of rejecting θ1 deviates more than
η = 0.1 reduces as the number of iterations increase.
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Figure 5.9: Figure shows the asymptotic exponent with which the probability of events where
rate of rejecting θ1 deviates by η from K(θ4,θ1); θ4 is the true hypothesis. The black curve
shows the asymptotic exponent as characterized by Theorem 8. The colored curve shows the
exact asymptotic exponent as characterized by Theorem 9, where the exponent depends on the
hypothesis to which the learning rule is converging. This shows that small deviations from
K(θ4,θ1) occur when the learning rule is converging to θ4 and larger deviations occur when the
learning rule is converging to a wrong hypothesis.

Figure 5.9 in the context of Example 8 shows the rate at which the probability of sample

paths deviating from rate of rejection can be thought of as operating in three different regimes.

Here, each regime denotes the hypothesis to which the learning rule is converging. In order to see

this consider the rate function of θ1, i.e. J1(·) from Corollary 12;

J1(y) = inf
x∈R3:g(x)=y

I(x),∀y ∈ R.

The behavior of the rate function J1(·) depends on the function g1(x) = x1−max{0,x1,x2,x3}.

Whenever g1(x) = x1, the rate function is I1(·). This shows that whenever there is a deviation of

x− k(θ4,θ1) from the rate of rejection of θ1, the sample paths that vanish with slowest exponents

are those for which 1
t log q(t)i (θ1)

q(t)i (θ4)
< 0 as t → ∞. In other words, small deviations occur when

the learning rule is converging to true hypothesis θ4 and they depend on I1(·) (and hence θ1)

alone. Whereas large deviations occur when the learning rule is mistakenly converging to a wrong
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hypothesis and hence, the rate function depends on θ1 and the wrong hypothesis to which the

learning rule is converging. Hence, we have three different regimes corresponding to the three

wrong hypotheses.

5.4.3 Learning with Communication Constraints

Now, we consider a variant of our learning rule where the communication between the

nodes is quantized to belong to a predefined finite set. Each node i starts with an initial private

belief vector q(0)
i and at each time t = 1,2, . . . the following events happen:

1. Each node i draws a conditionally i.i.d observation X (t)
i ∼ fi (·;θM).

2. Each node i performs a local Bayesian update on q(t−1)
i to form b(t)

i using the following

rule. For each k ∈ [M],

b(t)i (θk) =
fi

(
X (t)

i ;θk

)
q(t−1)

i (θk)

∑a∈[M] fi

(
X (t)

i ;θa

)
q(t−1)

i (θa)
. (5.51)

3. Each node i sends the message Y (t)
i (θk) =

[
Db(t)i (θk)

]
, for all k ∈ [M], to all nodes j for

which i ∈N ( j), where D ∈ Z+ and

[x] =

 bxc+1, if x > bxc+0.5,

bxc, if x≤ bxc+0.5,
(5.52)

where bxc denotes the largest integer less than x.

4. Each node i normalizes the beliefs received from the neighbors N (i) as

Ỹ (t)
i (θk) =

Y (t)
i (θk)

∑a∈[M]Y
(t)
i (θa)

(5.53)
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and updates its private belief of θk, for each k ∈ [M],

q(t)i (θk) =
exp
(

∑
n
j=1Wi j logỸ (t)

i (θk)
)

∑a∈[M] exp
(

∑
n
j=1Wi jỸ

(t)
i (θa)

) . (5.54)

In the above learning rule, the belief on each hypothesis belongs to a set of size D+1. Hence

transmitting the entire belief vector, i.e., transmitting the entire message requires M log(D+1)

bits.

Note that all of our simulations so far, we have used 64-bit precision to represent the belief

on each hypothesis, meaning our simulations can be interpreted as limiting the communication

links to support 64 bits, or equivalently 8 bytes, per hypothesis per unit of time. Our previous

numerical results show a close match with the analysis using this level of quantization. Next we

show the impact of a coarser quantization.

Example 10. Consider a network of radars or ultrasound sensors whose aim is to find the location

of a target. Each sensor can sense the target’s location along one dimension only, whereas the

target location is a point in three-dimensional space. Consider the configuration in Figure 5.10:

there are two nodes along each of the three coordinate axes at locations [±2,0,0], [0,±2,0],

and [0,0,±2]. The communication links are given by the directed arrows. Nodes located on

the x-axis can sense whether x-coordinate of the target lies in the interval (−2,−1] or in the

interval (−1,0) or in the interval [0,1) or in the interval [1,2). If a target is located in the interval

(−∞,−2]∪ [2,∞) on the x-axis then no node can detect it. Similarly nodes on y-axis and z-axis

can each distinguish between 4 distinct non-intersecting intervals on the y-axis and the z-axis

respectively. Therefore, the total number of hypotheses is M = 43 = 64.

The sensors receive signals which are three dimensional Gaussian vectors whose mean is

altered in the presence of a target. In the absence of a target, the ambient signals have a Gaussian

distribution with mean [0,0,0]. For the sensor node along x-axis located at [2,0,0], if the target

has x-coordinate θx ∈ (−2,2), the mean of the sensor’s observation is [b3+θxc,0,0]. If a target is

143



located in (−∞,−2]∪ [2,∞) on the x-axis, then the mean of the Gaussian observations is [0,0,0].

Local marginals of the nodes along y-axis and z-axis are described similarly, i.e., as the target

moves away from the node by one unit the signal mean strength goes by one unit. For targets

located at a distance four units and beyond the sensor cannot detect the target. In this example,

suppose θ1 is the true hypothesis.

Figure 5.10: Figure shows a sensor network where each node is a low cost radar that can
sense along the axis it is placed and not the other. The directed edges indicate the directed
communication between the nodes. Through cooperative effort the nodes aim to learn location
of the target in 3 dimensions.

Consider D = 212−1 which implies that belief on each hypothesis is of size 12 bits or

equivalently 1.5 bytes. Figure 5.11 shows evolution of log beliefs of node 3 for hypotheses for

θ2, θ5 and θ6 for 500 instances when the link rate is limited to 1.5 bytes per hypothesis per

unit time. We see that the learning rule converges to the true hypotheses on all 500 instances.

Similarly, Figure 5.12 shows the evolution of beliefs of node 3 for hypotheses θ2, θ5 and θ6 when

the link rate is limited to 1 byte per hypothesis per unit time, i.e., when D = 28− 1. We see

that the learning rule converges to a wrong hypothesis θ2. However, on the same sample path

in Figure 5.13 we see that if the link rate is 1.5 bytes per hypothesis per unit time, the learning
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Figure 5.11: The solid lines in figure show the evolution of the log beliefs of node 3 with time
for hypotheses θ2, θ5 and θ6 when links support a maximum of 12 bits per hypothesis per unit
time. This is compared with the evolution of the log beliefs with no rate restriction case (dotted
lines) which translates a maximum of 64 bits per hypothesis per unit time. Figure also shows
the confidence intervals (one standard deviation above and below) around log beliefs over 500
instances of learning rule with 12 bits per hypothesis. We see the learning rule with link rate 12
bits per hypothesis converges in all the instances.

rule converges to true hypothesis. This happens because on every sample path our learning rule

has an initial transient phase where beliefs may have large fluctuations during which the belief

on true hypothesis may get close to zero. For low link rates (small D), even when the belief on

true hypothesis is strictly positive but less than 1
2D , it gets quantized to zero. Recall that for our

learning rule, when a belief goes to zero, propagates the zero belief to all subsequent time instants.

This shows that as we increase link rate (increase value of D), the quantized learning rule is more

robust to the initial fluctuations. Moreover, we observe that for both Examples 8 and 10, when

link rates are greater than or equal to 1.5 bytes per hypothesis per unit time the learning rule

converges for all instances and its performance coincides with the prediction of our the analysis

under the assumption of perfect links.
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Figure 5.12: The solid lines in the figure show the evolution of the log beliefs of node 3 with
time for hypotheses θ2, θ5 and θ6 when links support a maximum of 8 bits per hypothesis per unit
time. This is compared with the evolution of the log beliefs with no rate restriction case (dotted
lines) which translates a maximum of 64 bits per hypothesis per unit time. For this sample
path, we see that learning rule converges to a wrong hypothesis θ5 when the communication is
restricted to 8 bits per hypothesis.

5.5 Discussion

In this chapter we study a learning rule through which a network of nodes make ob-

servations and communicate in order to collectively learn an unknown fixed global hypothesis

that statistically governs the distribution of their observations. Our learning rule performs local

Bayesian updating followed by averaging log-beliefs. We showed that our rule guarantees expo-

nentially fast convergence to the true hypothesis almost surely. We showed the rate of rejection

of any wrong hypothesis has an explicit characterization in terms of the local divergences and

network topology. Furthermore, under the (mild technical) Assumption 5 on the tail of the

log-likelihood ratios of observations, we provide an asymptotically tight characterization of rate

of concentration for the rate of rejection of wrong hypotheses. This assumption admits a broad

class of distributions with unbounded support such as Gaussian mixtures. In the next subsections

we address two important aspects of our algorithm construction and network model.
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Figure 5.13: The solid lines in figure show the evolution of the beliefs of node 3 with time for
hypotheses θ2, θ5 and θ6 when links support a maximum of 12 bits per hypothesis per unit time.
This is compared with the evolution of the beliefs with no rate restriction case (dotted lines)
which in our simulations translates to the case when the links support a maximum of 64 bits
per hypothesis per unit time. On the same sample path in Figure 5.12, we see that learning rule
converges to true hypothesis when the communication is restricted to 12 bits per hypothesis.

5.5.1 Lack of Knowledge of Joint Observation Distribution

Our algorithm does not require that the the nodes in the network (a) have knowledge of

the full joint distribution of the observations nor (b) share their raw local observations. These two

properties of our algorithm are highly desirable in many social network settings due to privacy

considerations. The performance of our algorithm seems to be overtly pessimistic compared

to the performance of a fully cooperative network with identically distributed and independent

observations across the nodes (where the rate of rejecting the wrong hypothesis is n times our

rate K(θ∗,θ)). However interestingly, in the case of fully correlated identical observations across

the network, our algorithm performs as well as a centralized aggregator would perform. In short,

our work can be viewed as a first step towards addressing these questions in settings where nodes

keep their local observations and marginal distributions and completely prioritizing local privacy.

Nonetheless, we acknowledge that many non-trivial questions remain: (i) what is the trade-off
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between privacy preservation and learning rate and (ii) what are the cost/benefits of learning the

joint distribution in order to optimally combine the local observations.

5.5.2 Availability of Perfect Communication Links

In this work, we have assumed that communicating public beliefs among the neighbors

can occur with an infinite precision. Although this is a hard assumption to justify in resource-

constrained settings, we believe that it is a reasonable abstraction for a practical “protocol-level"

model of communication constraints, in which sufficiently high data rates are available to send

messages when nodes are within each others’ communication range, whereas no communication

is possible for physically distant nodes. In Section 5.4.3, we have provided detailed simulations

to show that the gap between the true model and the idealized protocol model is not of significant

practical consequence. In particular, Examples 3 and 5 show the impact of quantizing the

beliefs before exchanging them is negligible at even low link rates. However, from a theoretical

perspective, a study of distributed hypothesis testing with constraints on communication is a

major topic of ongoing research [64, 100].

Furthermore, through Example 5, we have also highlighted the practical gains, in terms of

communication, associated with communicating the beliefs instead of the raw local observations

where the observations are in a high dimensional space. In other words, the nodes that rely on our

learning rule do not need to keep track of their neighbors’ reported observations, but only the

beliefs.
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5.6 Appendix

5.6.1 Proof of Theorem 7

We begin with the following recursion for each node i and k ∈ [M−1]:

log
q(t)i (θM)

q(t)i (θk)
=

n

∑
j=1

Wi j log
b(t)j (θM)

b(t)j (θk)

=
n

∑
j=1

Wi j

log
f j

(
X (t)

j ;θM

)
f j

(
X (t)

j ;θk

) + log
q(t−1)

j (θM)

q(t−1)
j (θk)

 , (5.55)

where the first and the second equalities follow from (5.3) and (6.2), respectively. Now for each

node j we rewrite log
q(·)j (θM)

q(·)j (θk)
in terms of node j’s neighbors and their samples at the previous

instants. We can expand in this way until we express everything in terms of the samples collected

and the initial estimates. Noting that W t(i, j) = ∑
n
it−1=1 . . .∑

n
i1=1Wii1 . . .Wit−1 j, it is easy to check

that (5.55) can be further expanded to obtain the following:

lim
t→∞

1
t

log
q(t)i (θM)

q(t)i (θk)
= lim

t→∞

1
t

n

∑
j=1

t

∑
τ=1

W τ(i, j) log
f j

(
X (t−τ+1)

j ;θM

)
f j

(
X (t−τ+1)

j ;θk

)
+ lim

t→∞

1
t

n

∑
j=1

W t(i, j) log
q(0)j (θM)

q(0)j (θk)
. (5.56)

From Assumption 3, the prior q(0)j (θk) is strictly positive for every node j and every k ∈ [M].

Since W t(i, j)≤ 1, we have

lim
t→∞

1
t

 n

∑
j=1

W t(i, j) log
q(0)j (θM)

q(0)j (θk)

= 0. (5.57)

Let W be periodic with period d. If W is aperiodic, then the same proof still holds by
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putting d = 1. Now, we fix node i as a reference node and for every r ∈ [d], define

Ar = { j ∈ [n] : W md+r(i, j)> 0 for some m ∈ N}.

In particular, (A1,A2, . . . ,Ad) is a partition of [n]; these sets form cyclic classes of the Markov

chain. Fact 5 implies that for every δ > 0, there exists an integer N which is function of δ alone,

such that for all m≥ N, for some fixed r ∈ [d], if j ∈ Ar, then

∣∣∣W md+r(i, j)− v jd
∣∣∣≤ δ (5.58)

and if j 6∈ Ar

0≤W md+r(i, j)≤ δ. (5.59)

Using this the first term in (5.56) can be decomposed as follows

lim
t→∞

1
t

n

∑
j=1

t

∑
τ=1

W τ(i, j) log
f j

(
X (t−τ+1)

j ;θM

)
f j

(
X (t−τ+1)

j ;θk

)
= lim

t→∞

1
t

n

∑
j=1

Nd−1

∑
τ=1

W τ(i, j) log
f j

(
X (t−τ+1)

j ;θM

)
f j

(
X (t−τ+1)

j ;θk

)
+ lim

t→∞

1
t

n

∑
j=1

t

∑
τ=Nd

W τ(i, j) log
f j

(
X (t−τ+1)

j ;θM

)
f j

(
X (t−τ+1)

j ;θk

) . (5.60)

Using the triangle inequality and the fact that W τ(i, j)≤ 1 for every τ ∈ N we have

∣∣∣∣∣∣ limt→∞

1
t

Nd−1

∑
τ=1

W τ(i, j) log
f j

(
X (t−τ)

j ;θM

)
f j

(
X (t−τ)

j ;θk

)
∣∣∣∣∣∣≤ lim

t→∞

1
t

Nd−1

∑
τ=1

∣∣∣∣∣∣log
f j

(
X (t−τ)

j ;θM

)
f j

(
X (t−τ)

j ;θk

)
∣∣∣∣∣∣ .

For every j ∈ [n], log
f j(X j;θM)
f j(X j;θk)

is integrable, implying
∣∣∣∣log

f j(X j;θM)
f j(X j;θk)

∣∣∣∣ is almost surely finite. This
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implies that

lim
t→∞

1
t

Nd−1

∑
τ=1

W τ(i, j) log
f j

(
X (t−τ)

j ;θM

)
f j

(
X (t−τ)

j ;θk

) = 0 P-a.s. (5.61)

Using (5.57) and (5.61), (5.60) becomes

lim
t→∞

1
t

log
q(t)i (θM)

q(t)i (θk)
= lim

t→∞

1
t

n

∑
j=1

t

∑
τ=Nd

W τ(i, j) log
f j

(
X (t−τ+1)

j ;θM

)
f j

(
X (t−τ+1)

j ;θk

)
with probability one. It is straightforward to see that the above equation can be rewritten as

lim
t→∞

1
t

log
q(t)i (θM)

q(t)i (θk)
= lim

T→∞

1
T d

n

∑
j=1

T−1

∑
m=N

 d

∑
r=1

W md+r(i, j) log
f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)


with probability one. For every δ > 0 and N such that for all m ∈ N equations (5.58) and (5.59)

hold true, using Lemma 12 we get that

lim
t→∞

1
t

log
q(t)i (θM)

q(t)i (θk)

with probability one lies in the interval with end points

K(θM,θk)−
δ

d

n

∑
j=1

E

[∣∣∣∣∣log
f j
(
X j;θM

)
f j
(
X j;θk

) ∣∣∣∣∣
]

and

K(θM,θk)+
δ

d

n

∑
j=1

E

[∣∣∣∣∣log
f j
(
X j;θM

)
f j
(
X j;θk

) ∣∣∣∣∣
]
.
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Since this holds for any δ > 0, we have

lim
t→∞

1
t

log
q(t)i (θM)

q(t)i (θk)
= K(θM,θk) P-a.s.

Hence, with probability one, for every ε > 0 there exists a time T ′ such that ∀t ≥ T ′, ∀k ∈ [M−1]

we have ∣∣∣∣∣1t log
q(t)i (θM)

q(t)i (θk)
−K(θM,θk)

∣∣∣∣∣≤ ε,

which implies
1

1+ ∑
k∈[M−1]

e−K(θM ,θk)t+εt
≤ q(t)i (θM)≤ 1.

Hence we have the assertion of the theorem.

Lemma 12. For a given δ > 0 and for some N ∈ N for which (5.58) and (5.59) hold true for all

m≥ N, the following expression

lim
T→∞

1
T d

n

∑
j=1

T−1

∑
m=N

 d

∑
r=1

W md+r(i, j) log
f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)


with probability one lies in an interval with end points

K(θM,θk)−
δ

d

n

∑
j=1

E

[∣∣∣∣∣log
f j
(
X j;θM

)
f j
(
X j;θk

) ∣∣∣∣∣
]
,

and

K(θM,θk)+
δ

d

n

∑
j=1

E

[∣∣∣∣∣log
f j
(
X j;θM

)
f j
(
X j;θk

) ∣∣∣∣∣
]
.
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Proof. To the given expression we add and subtract v jd from W md+r(i, j) for all j ∈ Ar to obtain

lim
T→∞

1
T d

n

∑
j=1

T−1

∑
m=N

 d

∑
r=1

W md+r(i, j) log
f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)


=
d

∑
r=1

∑
j 6∈Ar

 lim
T→∞

1
T d

T−1

∑
m=N

W md+r(i, j) log
f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)


+
d

∑
r=1

∑
j∈Ar

 lim
T→∞

1
T d

T−1

∑
m=N

(
W md+r(i, j)− v jd

)
log

f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)


+
d

∑
r=1

∑
j∈Ar

 lim
T→∞

1
T d

T−1

∑
m=N

v jd log
f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)
 . (5.62)

For each r and some j ∈ Ar, using (5.58) and the strong law of large numbers we have

∣∣∣∣∣∣ lim
T→∞

1
T d

T−1

∑
m=N

(
W md+r(i, j)− v jd

)
log

f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)

∣∣∣∣∣∣

≤ δ

d
E

[∣∣∣∣∣log
f j
(
X j;θM

)
f j
(
X j;θk

) ∣∣∣∣∣
]

P-a.s..

Similarly for j 6∈ Ar, using (5.59) we have

∣∣∣∣∣∣ lim
T→∞

1
T d

T−1

∑
m=N

W md+r(i, j) log
f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)
∣∣∣∣∣∣≤ δ

d
E

[∣∣∣∣∣log
f j
(
X j;θM

)
f j
(
X j;θk

) ∣∣∣∣∣
]

P-a.s..

Again, by the strong law of large numbers we have

d

∑
r=1

∑
j∈Ar

v j

 lim
T→∞

1
T

T−1

∑
m=N

log
f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)
=

d

∑
r=1

∑
j∈Ar

v jE

[
log

f j
(
X j;θM

)
f j
(
X j;θk

) ]

= K(θM,θk) P-a.s..
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Now combining this with (5.62) we have the assertion of the lemma.

5.6.2 Proof of Theorem 8

Recall the following equation:

lim
t→∞

1
t

log
q(t)i (θM)

q(t)i (θk)
= lim

t→∞

1
t

n

∑
j=1

Nd−1

∑
τ=1

W τ(i, j) log
f j

(
X (t−τ+1)

j ;θM

)
f j

(
X (t−τ+1)

j ;θk

)
+ lim

t→∞

1
t

n

∑
j=1

t

∑
τ=Nd

W τ(i, j) log
f j

(
X (t−τ+1)

j ;θM

)
f j

(
X (t−τ+1)

j ;θk

) , (5.63)

where N is such that for all m≥ N,m ∈ N equations (5.58) and (5.59) are satisfied. For any fixed

t, using Assumption 4, the first term in the summation on the right hand side of (5.63) can be

bounded as

∣∣∣∣∣∣1t
n

∑
j=1

Nd−1

∑
τ=1

W τ(i, j) log
f j

(
X (t−τ+1)

j ;θM

)
f j

(
X (t−τ+1)

j ;θk

)
∣∣∣∣∣∣≤ nNdL

t
.

Also, the second term in the summation on the right hand side of (5.63) can be bounded as

∣∣∣∣∣∣1t
n

∑
j=1

t

∑
τ=Nd

W τ(i, j) log
f j

(
X (t−τ+1)

j ;θM

)
f j

(
X (t−τ+1)

j ;θk

) − d

∑
r=1

∑
j∈Ar

v j

T d

T−1

∑
m=0

log
f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)
∣∣∣∣∣∣

≤ δ
1

T d

T−1

∑
m=0

∣∣∣∣∣∣log
f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)
∣∣∣∣∣∣ .
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Using Assumption 4 we have

1
T d

T−1

∑
m=0

∣∣∣∣∣∣log
f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)
∣∣∣∣∣∣≤ L

d
.

Therefore, we have

∣∣∣∣∣∣1t log
q(t)i (θM)

q(t)i (θk)
−

d

∑
r=1

∑
j∈Ar

v j

T d

T−1

∑
m=0

log
f j

(
X (T d−md−r+1)

j ;θM

)
f j

(
X (T d−md−r+1)

j ;θk

)
∣∣∣∣∣∣≤ δnL

d
.

Applying Hoeffding’s inequality (Theorem 2 of [101]), for every 0 < ε≤ K(θM,θk), we can write

(5.63) for t ≥ Nd as

1
t

log
q(t)i (θM)

q(t)i (θk)
≤ K(θM,θk)− ε+o

(
1
t
,δ

)
,

with probability at most exp
(
− ε2T

2L2

)
where o

(1
t ,δ
)
= δnL

d + nNdL
t . Similarly, for 0 < ε ≤ L−

K(θM,θk) we have

1
t

log
q(t)i (θM)

q(t)i (θk)
≥ K(θM,θk)+ ε+o

(
1
t
,δ

)
,

with probability at most exp
(
− ε2T

2L2

)
and for ε > L−K(θM,θk) we have

1
t

log
q(t)i (θM)

q(t)i (θk)
≥ K(θM,θk)+ ε+o

(
1
t
,δ

)
,

with probability 0. Now, taking limit and letting δ go to zero, for 0 < ε≤ K(θM,θk) we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)−ρ

(t)
i (θM)≤ K(θM,θk)− ε

)
≤− ε2

2L2d
,
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for 0 < ε≤ L−K(θM,θk) we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)−ρ

(t)
i (θM)≥ K(θM,θk)+ ε

)
≤− ε2

2L2d
,

and for ε > L−K(θM,θk) we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)−ρ

(t)
i (θM)≥ K(θM,θk)+ ε

)
=−∞.

Since q(t)i (θM)≤ 1, all the events ω which lie in the set {ω : ρ
(t)
i (θk)≤ K(θM,θk)− ε} also lie in

the set {ω : ρ
(t)
i (θk)≤ K(θM,θk)− ε+ρ

(t)
i (θM)}. Hence, for every 0 < ε≤ K(θM,θk) we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)≤ K(θM,θk)− ε

)
≤− ε2

2L2d
. (5.64)

For k ∈ [M−1] and any α≥ 0, the set

{
ρ
(t)
i (θk)≥ K(θM,θk)+ ε

}

lies in the complement of the following set:

{
ρ
(t)
i (θk)−ρ

(t)
i (θM)< K(θM,θk)+ ε−α

}
∩
{

ρ
(t)
i (θM)< α

}
.

This implies that

P
(

ρ
(t)
i (θk)≥ K(θM,θk)+ ε

)
≤ P

(
ρ
(t)
i (θk)−ρ

(t)
i (θM)≥ K(θM,θk)+ ε−α

)
+P

(
ρ
(t)
i (θM)≥ α

)
. (5.65)
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Using Lemma 13 we have that for every δ > 0 there exists a T such that for all t ≥ T

P
(

ρ
(t)
i (θk)≥ K(θM,θk)+ ε

)
(5.66)

≤ exp
(
−(ε−α)2

2L2d
t +δt

)
+ exp

(
− min

k∈[M−1]

{
K(θM,θk)

2

2L2d

}
t +δt

)
. (5.67)

Taking the limit as α→ 0+ for 0 < ε≤ L−K(θM,θk) we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)≥ K(θM,θk)+ ε

)
≤− 1

2L2d
min

{
ε

2, min
j∈[M−1]

K2(θM,θ j)

}
. (5.68)

For ε≥ L−K(θM,θk) we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θk)≥ K(θM,θk)+ ε

)
≤− min

k∈[M−1]

{
K(θM,θk)

2

2L2d

}
. (5.69)

Lemma 13. For all α > 0, we have the following for the sequence q(t)i (θM)

lim
t→∞

1
t

logP
(

ρ
(t)
i (θM)≥ α

)
≤− min

k∈[M−1]

{
K(θM,θk)

2

2L2d

}
. (5.70)

Proof. For any α > 0, consider

P
(

ρ
(t)
i (θM)≥ α

)
≤ ∑

k∈[M−1]
P

(
1

M−1
(
1− e−αt)≤ q(t)i (θk)

)
= ∑

k∈[M−1]
P
(

ρ
(t)
i (θk)≤ K(θM,θk)−ηt(θk)

)
, (5.71)

where ηt(θk) = K(θM,θk)− 1
t log(M−1)+ 1

t log(1− e−αt). For every ε > 0, there exists T (ε)
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such that for all t ≥ T (ε) we have

P
(

ρ
(t)
i (θk)≥ α

)
≤ ∑

k∈[M−1]
P
(

ρ
(t)
i (θk)≤ K(θM,θk)−K(θM,θk)+ ε

)
= ∑

k∈[M−1]
P
(

ρ
(t)
i (θk)≤ ε

)
.

Therefore, for every ε > 0, δ > 0, there exists T = max{T (ε),T (δ)} such that for all

t ≥ T we have

P
(

ρ
(t)
i (θM)≥ α

)
≤ (M−1) max

k∈[M−1]
exp
{
−(K(θM,θk)− ε)2

2L2d
t +δt

}
.

By taking the limit and making ε arbitrarily small, we have

lim
t→∞

1
t

logP
(

ρ
(t)
i (θM)≥ α

)
≤− min

k∈[M−1]

{
K(θM,θk)

2

2L2d

}
.

Proof of Corollary 11

From Theorem 8, we have

lim
t→∞

1
t

logP
(

µi ≥ min
k∈[M−1]

K(θM,θk)+ ε

)
≤− 1

2L2d
min

{
ε

2, min
k∈[M−1]

K(θM,θk)
2
}
.

Now, applying the Borel-Cantelli Lemma to the above equation we have

µi ≤ min
k∈[M−1]

K(θM,θk) P-a.s.
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Letting ε→ 0 and by combining this with Corollary 9 we have

µi = min
k∈[M−1]

K(θM,θk) P-a.s.

5.6.3 Proof of Theorem 9

Fact 6 (Cramer’s Theorem, Theorem 3.8 [102]). Consider a sequence of d-dimensional i.i.d

random vectors {Xn}∞
n=1. Let Sn =

1
n ∑

n
i=1 Xi. Then, the sequence of Sn satisfies a large deviation

principle with rate function Λ∗(·), namely: For any set F ⊂ Rd ,

liminf
n→∞

1
n

logP(Sn ∈ F)≥− inf
x∈Fo

, (5.72)

and

limsup
n→∞

1
n

logP(Sn ∈ F)≤− inf
x∈F̄

, (5.73)

where Λ∗(·) is given by

Λ
∗(x) := sup

λ∈Rd
{〈λ,x〉−Λ(λ)} . (5.74)

and Λ(·) is the log moment generating function of Sn which is given by

Λ(λ) := logE[e〈λ,Y〉]. (5.75)

Fact 7 (Contraction Principle, Theorem 3.20 [102]). Let {Pt} be a sequence of probability
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measures on a Polish space X that satisfies LDP with rate function I. Let


Y be a Polish space

T : X → Y a continuous map

Qt = Pt ◦T−1 an image probability measure.

(5.76)

Then {Qt} satisfies the LDP on Y with rate function J given by

J(y) = inf
x∈X :T (x)=y

I(x). (5.77)

To prove that 1
t log q̃(t)

i satisfies the LDP, first we establish the LDP satisfied by the

following vector:

Q(t)
i =

[
q(t)i (θ1)

q(t)i (θM)
,

q(t)i (θ2)

q(t)i (θM)
, . . . ,

q(t)i (θM−1)

q(t)i (θM)

]T

. (5.78)

Note that Q(t)
i =

q̃(t)
i

q(t)i (θM)
. From Lemma 14, we obtain that 1

t logQ(t)
i satisfies the LDP with rate

function I(·), as given by (5.37). Now we apply the Contraction Principle (Fact 7), for

X = RM−1, Y = RM−1,

T (x) = g(x) , ∀x ∈ RM−1,

Pt = P

(
1
t

logQ(t)
i ∈ ·

)
,

Qt = P

(
g
(

1
t

logQ(t)
i

)
∈ ·
)
,

and we get that g
(

1
t logQ(t)

i

)
satisfies an LDP with a rate function J(·), i.e., for every F ⊂ RM−1
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we have

liminf
t→∞

1
t

logP
(

g
(

1
t

logQ(t)
i

)
∈ F
)
≥− inf

y∈Fo
J(y), (5.79)

and

limsup
t→∞

1
t

logP
(

g
(

1
t

logQ(t)
i

)
∈ F
)
≤− inf

y∈F̄
J(y). (5.80)

Combining Lemma 15 with (5.79) and (5.80), we obtain that 1
t log q̃(t)

i satisfies the LDP

with rate function J(·) as well. Hence, we have the assertion of the theorem.

Lemma 14. The random vector 1
t logQ(t)

i satisfies the LDP with rate function given by I(·) in

(5.36). That is, for any set F ⊂ RM−1 with interior Fo and closure F̄, we have

liminf
t→∞

1
t

logP
(

1
t

logQ(t)
i ∈ F

)
≥− inf

x∈Fo
I(x), (5.81)

and

limsup
t→∞

1
t

logP
(

1
t

logQ(t)
i ∈ F

)
≤− inf

x∈F̄
I(x). (5.82)

Proof. Using the learning rule we have

1
t

logQ(t)
i =

1
t

t

∑
τ=1

n

∑
j=1

W τ(i, j)L(t−τ+1)
j

=
1
t

t

∑
τ=1

n

∑
j=1

(
W τ(i, j)− v j

)
L(t−τ+1)

j +
1
t

t

∑
τ=1

Y(τ), (5.83)

where L is given by (5.33) and Y by (5.32). Using Cramer’s Theorem (Fact 6) in RM−1, for any
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set F ⊂ RM−1, we have

liminf
t→∞

1
t

logP

(
1
t

t

∑
τ=1

Y(τ) ∈ F

)
≥− inf

x∈Fo
I(x), (5.84)

and

limsup
t→∞

1
t

logP

(
1
t

t

∑
τ=1

Y(τ) ∈ F

)
≤− inf

x∈F̄
I(x). (5.85)

Consider

∣∣∣∣∣1t t

∑
τ=1

n

∑
j=1

(
W τ(i, j)− v j

)
L(t−τ+1)

j

∣∣∣∣∣≤ n
t

t

∑
τ=1
|λτ

max(W )|

(
n

∑
j=1

∣∣∣L(t−τ+1)
j

∣∣∣) . (5.86)

From Assumption 5, we have that Λ(λ) is finite for λ ∈ Rn. Now, using Lemma 16, we have

lim
t→∞

1
t

logP

(∣∣∣∣∣1t t

∑
τ=1

n

∑
j=1

(
W τ(i, j)− v j

)
L(t−τ+1)

j

∣∣∣∣∣≥ δ

)
=−∞. (5.87)

Using Lemma 17 on 1
t logQ(t)

i , we have the assertion of the theorem.

Lemma 15. For every set F ⊂ RM−1 and for all i ∈ [n], we have

liminf
t→∞

1
t

logP
(

1
t

log q̃(t)
i ∈ F

)
≥ liminf

t→∞

1
t

logP
(

g
(

1
t

logQ(t)
i

)
∈ F
)
, (5.88)

and

limsup
t→∞

1
t

logP
(

1
t

log q̃(t)
i ∈ F

)
≤ limsup

t→∞

1
t

logP
(

g
(

1
t

logQ(t)
i

)
∈ F
)
. (5.89)
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Proof. For all t ≥ 0, we have

1
t

log q̃(t)
i = g

(
1
t

logQ(t)
i

)
− 1

t
log

(
e−C(t)t +

M−1

∑
j=1

eg j

(
1
t logQ(t)

i

)
t
)

1, (5.90)

where

C(t) = max

{
0,

1
t

log
q(t)i (θ1)

q(t)i (θM)
,
1
t

log
q(t)i (θ2)

q(t)i (θM)
, . . . ,

1
t

log
q(t)i (θM−1)

q(t)i (θM)

}
.

Also for all t ≥ 0, we have

1≤ e−C(t)t +
M−1

∑
j=1

eg j

(
1
t logQ(t)

i

)
t ≤M.

Hence for all ε > 0, there exists T (ε) such that for all t ≥ T (ε) we have

g
(

1
t

logQ(t)
i

)
− ε1≤ 1

t
log q̃(t)

i ≤ g
(

1
t

logQ(t)
i

)
. (5.91)

For any F ⊂RM−1, let Fε+ = {x+δ1,∀0 < δ≤ ε and x∈ F}, Fε− = {x−δ1,∀0 < δ≤ ε and x∈

F}. Therefore, for every ε > 0 we have

liminf
t→∞

1
t

logP
(

g
(

1
t

logQ(t)
i

)
∈ F
)
≤ liminf

t→∞

1
t

logP
(

1
t

log q̃(t)
i ∈ Fε−

)
. (5.92)

Making ε arbitrarily small, Fε− → F , and by monotonicity and continuity of probability measure

we have

liminf
t→∞

1
t

logP
(

g
(

1
t

logQ(t)
i

)
∈ F
)
≤ liminf

t→∞

1
t

logP
(

1
t

log q̃(t)
i ∈ F

)
. (5.93)
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For t ≥ T (ε) we also have

1
t

log q̃(t)
i ≤ g

(
1
t

logQ(t)
i

)
≤ 1

t
log q̃(t)

i + ε1. (5.94)

This implies for every ε > 0 we have

limsup
t→∞

1
t

logP
(

1
t

log q̃(t)
i ∈ F

)
≤ limsup

t→∞

1
t

logP
(

g
(

1
t

logQ(t)
i

)
∈ Fε+

)
. (5.95)

Again, by making ε arbitrarily small we have

limsup
t→∞

1
t

logP
(

1
t

log q̃(t)
i ∈ F

)
≤ limsup

t→∞

1
t

logP
(

g
(

1
t

logQ(t)
i

)
∈ F
)
. (5.96)

Hence, we have the assertion of the lemma.

5.6.4 Proof of the Lemmas

Lemma 16. Let q be a real number such that q∈ (0,1). Let Xi be a sequence of non-negative i.i.d

random vectors in Rn, distributed as X and let Λ(λ) denote its log moment generating function

which is finite for λ ∈ Rn, then for every δ > 0, we have

lim
t→∞

1
t

logP

(
1
t

t

∑
i=1

(q)iXi ≥ δ1

)
=−∞. (5.97)

Proof. Applying Chebychev’s inequality and using the definition of log moment generating

function, for λ ∈ Rn, we have

P

(
1
t

t

∑
i=1

(q)iXi ≥ δ1

)
≤ e−t(〈λ,δ1〉− 1

t ∑
t
i=1 Λ((q)iλ)). (5.98)

From convexity of Λ, we have ∑
t
i=1 Λ((q)iλ)≤Λ(λ)∑

t
i=1(q)

i. Since Λ(λ) is finite and ∑
∞
i=1(q)

i <
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∞, for all δ > 0 we have

lim
t→∞

1
t

logP

(
1
t

t

∑
i=1

(q)iXi ≥ δ1

)
≤−〈λ,δ1〉. (5.99)

Since, the above equation is true for all λ ∈ Rn, we have the assertion of the lemma.

Lemma 17. Consider a sequence {Z(t)}∞
t=0 where Z(t) ∈ Rd such that

Z(t) = X(t)+Y(t), (5.100)

where sequences {X(t)}∞
t=0 and {Y(t)}∞

t=0 have the following properties:

1. The sequence {X(t)}∞
t=0 satisfies

liminf
t→∞

1
t

logP
(

X(t) ∈ F
)
≥− inf

x∈Fo
IX(x), (5.101)

limsup
t→∞

1
t

logP
(

X(t) ∈ F
)
≤− inf

x∈F̄
IX(x), (5.102)

where IX : Rd → R is a well-defined LDP rate function.

2. For every ε > 0, sequence {Y(t)}∞
t=0 satisfies

lim
t→∞

1
t

logP(|Y(t)| ≥ ε1) =−∞. (5.103)

Then {Z(t)}∞
t=0 satisfies

liminf
t→∞

1
t

logP(Z(t) ∈ F)≥− inf
x∈Fo

IX(x), (5.104)

limsup
t→∞

1
t

logP(Z(t) ∈ F)≤− inf
x∈F̄

IX(x). (5.105)
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Proof. For every t ≥ 0, we have

P
(

Z(t) ∈ Fε+ ∪Fε−

)
≥ P

(
{X(t) ∈ F}∩{|Y(t)| ≤ ε1}

)
≥ P

(
X(t) ∈ F

)
−P

(
|Y(t)|> ε1

)
.

For all δ > 0, there exists a T (δ) such that for all t ≥ T (δ) we have

P
(

X(t) ∈ F
)
≥ e− infx∈Fo IX (x)t−δt .

For all B > 0, there exists a T (B) such that for all t ≥ T (B) we have

P
(
|Y(t)|> ε1

)
≥ e−Bt .

Now choose B > infx∈Fo IX(x)+δ and t ≥max{T (δ),T (B)}, then we have

P
(

Z(t) ∈ Fε+ ∪Fε−

)
≥ e− infx∈Fo IX (x)t−δt

(
1− e−Bt+infx∈Fo IX (x)t+δt

)
.

Sending ε to zero and taking the limit we have

liminf
t→∞

1
t

logP
(

Z(t) ∈ F
)
≥− inf

x∈Fo
IX(x).

Similarly, using the fact that P({Z(t) ∈ F}∩{|Y(t)| ≤ ε1})≤ P
(

X(t) ∈ Fε+

)
we have the other

LDP bound.

Chapter 5, in full, is a reprint of the material as it appears in the paper: Anusha Lalitha,

Tara Javidi and Anand D. Sarwate, “Social Learning and Distributed Hypothesis Testing", in

IEEE Transactions on Information Theory, vol. 64, no. 9, pp. 6161-6179, Sept. 2018. The

dissertation author was the primary investigator and author of this paper.
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Chapter 6

Decentralized Bayesian Learning over

Graphs

6.1 Introduction

Personal edge devices can often use their locally observed data to learn machine learning

models that improve the user experience on the device as well as on other devices. However, the

use of local data for learning globally rich machine learning models has to address two important

challenges. Firstly, this type of localized data, in isolation from the data collected by other

devices, is unlikely to be statistically sufficient to learn a global model. Secondly, there might be

severe restrictions on sharing raw forms of personal/local data due to privacy and communication

cost concerns. In light of these challenges and restrictions, an alternative approach has emerged

which leaves the training data distributed on the edge devices while enabling the decentralized

learning of a shared model. This alternative, known as Federated Learning, is based on edge

devices’ periodic communication with a central (cloud-based) server responsible for iterative

model aggregation. While addressing the privacy constraints on raw data sharing, and significantly

reducing the communication overload as compared to synchronized stochastic gradient descent
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(SGD), this approach falls short in fully decentralizing the training procedure. Many practical

peer to peer networks are dynamic and a regular access to a fixed central server, which coordinates

the learning across devices, is not always possible. Existing methods based on federated learning

cannot handle such general networks where central server is absent. To summarize, some of

the major challenges encountered in a fully decentralized learning paradigm are: (i)Statistical

Insufficiency: The local and individually observed data distributions are likely to be less rich than

the global training set. For example, a subset of features associated with the global model may

be missing locally. (ii)Restriction on Data Exchange: Due to privacy concerns, agents do not

share their raw training data with the neighbors. Furthermore, model parameter sharing has been

shown to reduce the communication requirements significantly. (iii) Lack of Synchronization:

There may not be a single agent with whom every agent communicates which can synchronize

the learning periodically. (iv) Localized Information Exchange: Agents are likely to limit their

interactions and information exchange to a small group of their peers which can be viewed as the

1-hop neighbors on the social network graph. Furthermore, information obtained from different

peers might be viewed differently, requiring a heterogeneous model aggregation strategy.

Contributions: We consider a fully decentralized learning paradigm where agents iter-

atively update their models using local data and aggregate information from their neighbors to

their local models. In particular, we consider a learning rule where agents take a Bayesian-like

approach via the introduction of a posterior distribution over a parameter space characterizing

the unknown global model. Our theoretical and conceptual contributions are as follows: (i) Our

decentralized learning rule generalizes a learning rule considered in the social literature [103–105]

by restricting the posterior distribution to a predetermined family of distributions for computa-

tional tractability. (ii) We provide theoretical guarantee that each agent will eventually learn the

true parameters associated with global model under mild assumptions. (iii) We provide analytical

characterization of the rate of convergence of the posterior probability at each agent in the network

as a function of network structure and local learning capacity. (iv) Unlike prior work, we allow a
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fully general network structure as long as it is strongly connected. As a consequence, our work

provides first known theoretical guarantees on convergence for a Bayesian variant of federated

learning.

In addition to our theoretical results we show that our methodology can be combined

with efficient Bayesian inference techniques to train Bayesian neural networks in a decentralized

manner. By empirical studies we show that our theoretical analysis can guide the design of

network/social interaction and data partition to achieve convergence. We also show the scalability

of our method by training over 100 neural networks on asynchronous time-varying networks. Our

Bayesian approach has the added advantage of obtaining confidence value over agents’ predictions

and can directly benefit from Bayesian learning literature which shows that these models offer

robustness to over-fitting, regularization of the weights, uncertainty/confidence estimation, and

can easily learn from small datasets [106, 107]. In this regard, our work bridges the gap between

decentralized training methodologies and Bayesian neural networks.

Related Work: Our fully decentralized training methodology extends federated learn-

ing [108–110] to general graphs in a Bayesian setting and does away with the need of having a

centralized controller. In particular, our learning rule also generalizes various Bayesian inference

techniques such as [107,111–113] and variational continual learning techniques such as [111,113].

Lastly, our work can be viewed as a Bayesian variant of communication-efficient methods based

on SGD [114–116] which also allow the agents to make several local computations and then

periodically average the local models. This is unlike decentralized optimization and SGD based

methods [117–123] where local (stochastic) gradients are computed for each instance of data and

communication happens at a rate comparable to number of local updates. For a detailed overview

on the communication-efficient SGD methods contrasted with decentralized optimization methods

refer to [124].
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6.2 Problem Formulation

The Model: Let X denote the global input space and let Y denote the set of all possible

labels. The global dataset has input-label pairs belonging to (X ,Y ) which are distributed as

D = PX ×PY |X . Consider a group of N individual agents, where each agent i has access to

input-label pairs taken from a subset (Xi,Y ) such that ∪N
i=1Xi ⊂ X . The samples

{
X (1)

i ,X (2)
i , . . .

}
are independent and identically distributed (i.i.d), and are generated according to the distribution

Pi ∈ P (X ). Furthermore, we assume that each agent has a set of candidate local likelihood

functions over the label space which are parametrized by θ ∈ Θ and given by {`i(y | θ,x) : y ∈

Y , θ ∈ Θ, x ∈ X }. Each agent i is aiming to learn a distribution over Θ which achieves the

following

inf
π∈P (Θ)

EPX

[
DKL

(
PY |X(·|X)

∣∣∣∣∣∣∣∣∫
Θ

`i(·|θ,X)π(θ)dθ

) ]
. (6.1)

Note that for any input x ∼ PX , the distribution
∫

Θ
`i(·|θ,x)π(θ)dθ denotes predictive

distribution over the label space Y . Minimizing the objective in equation (6.1) ensures that each

agent makes statistically similar predictions as the true labelling function over the global dataset.

Definition 28. A social learning model is said to be realizable if there exists a θ∗ ∈Θ such that

`i(· | θ∗,x) = PY |X(· | x) for i ∈ [N].

We note that, in the realizable case, the minimizer of equation (6.1) is the trivial distribu-

tion which takes value one at θ∗ and zero elsewhere. In other words, in the realizable case, each

agent’s goal is to learn the true model parameter θ∗.

Definition 29. If Pi = PX for all agents i ∈ [N], then all agents have identically distributed

observations across the network. We refer to this as the IID data distribution setting. In contrast,

we call the local data to have non-IID data distribution when there exists i ∈ [N] for which

Pi 6= PX .
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Example 11 (Decentralized Linear Regression with non-IID Data Distribution). Let d ≥ 2 and

Θ = Rd . Consider a linear realizable model where there exists a θ
∗ = [θ∗0, . . . ,θ

∗
d−1] ∈ Θ, data

input x ∈ Rd , the label y ∈ R given as y = θ
∗T

φ(x)+η, where the basis function φ : Rd :→ R

provides the feature vector φ(x) = [φ0(x), . . . ,φd−1(x)]T and η denotes the additive Gaussian

noise η∼ N(0,α2). This implies true probabilistic model generating the labels as well as local

likelihood function at any agent i, given an input x is given by PY |X(y | x) = `i(y | θ,x) =

G(y,θ∗T φ(x),α2). Now we consider a non-IID data distribution: Fix some 0 < m < d and let

X1 =
{

x ∈ Rd | φ(x) = [φ0(x), . . . ,φm−1(x),0, . . . ,0]T
}

and

X2 =
{

x ∈ Rd | φ(x) = [0, . . . ,0,φm(x), . . . ,φd−1(x)]T
}
.

Suppose that agent 1 make observations in X1 or can access only m features locally. Similarly,

agent 2 observations lie in X2, i.e. the remaining d−m features locally. It is clear that the local

features at each agent is such that the true parameter θ
∗ cannot be locally learned and there is a

need for communication and model aggregation.

Example 12 (Decentralized Image Classification using Deep Neural Networks). Consider the

problem of learning a neural network which can approximate the input-label probabilistic model

with distribution PY |X(· | x) over the label space for each input image x ∈ X . In this setting, the

local likelihood function at any agent i, given an image x ∈ X was observed, conditioned on the

DNN weights θ is obtained as follows `i(y | θ,x) = Softmax(y, fθ(x)) := exp(fy
θ
(x))

∑y′∈Y exp(fy′
θ
(x))

, where

fy
θ
(·) denotes the value of the output layer of the neural network at label y.

The Communication Network: We model the communication network between agents via a

directed graph with vertex set [N]. We define the neighborhood of agent i, denoted by N (i), as

the set of all agents j who have an edge going from j to i. We assume i ∈N (i). Furthermore, if
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agent j ∈N (i), agent i receives information from agent j. The social interaction of the agents is

characterized by a stochastic matrix W . The weight Wi j ∈ [0,1] is strictly positive if and only if

j ∈N (i) and ∑
N
j=1Wi j = 1. The weight Wi j denotes the confidence agent i has on the information

it receives from agent j.

6.2.1 Decentralized Learning Rule

We introduce a decentralized learning rule which generalizes a learning rule considered

in the social learning literature [103–105]. However, we restrict local posterior distributions to a

predetermined family of distributions. This allows us to implement the decentralized algorithm

in a computationally tractable manner. Let Q ⊂ P (Θ) a family of posterior distributions. Start

with q(0)
i ∈ P (Θ) with q(0)

i (θ) > 0 for all θ ∈ Θ and i ∈ [N]. At each time step n = 1,2, . . . the

following events happen at every agent i ∈ [N]:

1. Draw a batch of M i.i.d samples
(

X(n)
i ,Y(n)

i

)
∼ PY |X(Y

(n)
i |X

(n)
i )PM

i (X(n)
i ).

2. Local Bayesian Update of Posterior: Perform a local Bayesian update on q(n−1)
i to form

the public posterior vector b(n)
i using the following rule. For each θ ∈Θ,

b(n)i (θ) =
`i

(
Y(n)

i | θ,X
(n)
i

)
q(n−1)

i (θ)∫
Θ
`i

(
Y(n)

i | φ,X
(n)
i

)
q(n−1)

i (φ)dφ

. (6.2)

3. Projection onto Allowed Family of Posteriors: Project onto an allowed family of poste-

rior distributions Q by employing KL-divergence minimization,

ΠQ (b(n)
i ) = argmin

π∈Q
D
(

π

∥∥∥b(n)
i

)
. (6.3)

4. Communication Step: Agent i sends ΠQ (b(n)
i ) to agent j if i ∈ N ( j) and receives

ΠQ (b(n)
j ) from neighbors j ∈N (i).

172



5. Consensus Step: Update private posterior distribution by averaging the log posterior

distributions received from neighbors, i.e., for each θ ∈Θ,

q(n)i (θ) =
exp
(

∑
N
j=1Wi j logΠQ (b(n)

j )(θ)
)

∫
Θ

exp
(

∑
N
j=1Wi j logΠQ (b(n)

j )(φ)
)

dφ

. (6.4)

Remark 19 (Variational Inference). In above learning rule, local Bayesian update of the posterior

step (6.2) can be combined with the projection onto allowed family of distributions (6.3) as

follows

b(n)
i = argmin

π∈Q
D

(
π

∥∥∥∥∥ 1

Z(n)
i

`i

(
Y(n)

i | ·,X
(n)
i

)
b(n−1)

i (·)

)
(6.5)

= argmin
π∈Q

D
(

π

∥∥∥q(n−1)
i

)
+Eπ

[
− log`i

(
Y(n)

i | ·,X
(n)
i

)]
, (6.6)

where Z(n)
i is the possibly intractable normalization constant. Minimization performed in Equa-

tion (6.6) is referred to as Variational Inference (VI) and the minimand is referred to as the

variational free energy [106, 107, 112, 125].

Remark 20 (Gaussian Approximate Posterior). Gaussian approximate posterior can be obtained

in an computationally efficient manner via VI techniques [107, 112]. More specifically, let Q

denote the family of Gaussian posterior distributions with pdf given by G(θ,µ,Σ). Let (µ(n)i ,Σ
(n)
i )

denote the mean and the covariance matrix of b(n)
i at agent at i obtained using equation (6.6).

Then we can show that the posterior distribution q(n)
i obtained after the consensus step also

belongs to Q for all i ∈ [N]. Furthermore, the mean and covariance matrix (µ̃(n)i , Σ̃
(n)
i ) of q(n)

i is

given as follows

Σ̃
(n)
i

−1
=

N

∑
j=1

Wi jΣ
(n)
j
−1
, µ̃(n)i = Σ̃

(n)
i

N

∑
j=1

Wi jΣ
(n)
j
−1

µ(n)j . (6.7)

Hence, the family of Gaussian distributions not only makes the algorithm tractable, it simplifies
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the consensus step by eliminating the normalization involved in equation (6.4) by reducing to

updates on the mean and covariance matrix. Derivation is provided in the supplementary.

6.3 Analytic Results: Rate of Convergence

Assumption 6. The network is a connected aperiodic graph. Specifically, W is an aperiodic and

irreducible stochastic matrix.

Assumption 7. Let Θ be a finite set and let Θi := argminθ∈ΘEPi

[
DKL

(
PY |X(·|Xi)||`i(·|θ,Xi)

)]
and Θ∗ := ∩N

i=1Θi. There exists a parameter θ∗ ∈Θ that is globally learnable, i.e, ∩N
i=1Θi 6=∅.

Assumption 8. For all agents i ∈ [N], assume:(i) The prior posterior b(0)i (θ)> 0 for all θ ∈Θ.

(ii) There exists an α > 0, L > 0 such that α < `i(y | θ,x)< L, for all y ∈ Y , θ ∈Θ and x ∈ X .

These assumptions are natural. Assumption 6 states that one can always restrict attention

to the connected components of the social network where the information gathered locally by the

agents can disseminated within the component. Assumption 7 ensures the combined observation

of the agents across the network is statistically sufficient to learn the global model. Finally,

Assumption 8 prevents the degenerate case where a zero Bayesian prior prohibits learning.

Theorem 10. Let Θ be a finite set and let Q = P (Θ). Under assumptions 6, 7 and 8, using the

decentralized learning algorithm described in 6.2.1 for any given confidence parameter δ ∈ (0,1)

and any arbitrarily small ε > 0, we have

max
i∈[N]

max
θ6∈Θ∗

b(n)i (θ)< e−n(K(Θ)−ε) (6.8)

when the number of samples satisfies n≥ 8C log N|Θ|
δ

ε2(1−λmax(W ))
, where we define the rate of convergence
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of the posterior distribution as follows

K(Θ) := min
θ∗∈Θ∗,θ∈Θ\Θ∗

N

∑
j=1

v jI j(θ
∗,θ), (6.9)

and I j(θ
∗,θ) := EPM

j

[
DKL

(
PY |X(·|X j)||` j(· | θ,X j)

)
−DKL

(
PY |X(·|X j)||` j(· | θ∗,X j)

)]
, where

eigenvector centrality v = [v1,v2, . . . ,vN ] is the unique stationary distribution of W with strictly

positive components, furthermore define λmax(W ) := max1≤i≤N−1 λi(W ), where λi(W ) denotes

i-th eigenvalue of W counted with algebraic multiplicity and λ0(W ) = 1, and C :=
∣∣log L

α

∣∣.
Proof of the theorem and additional comments on the rate of convergence are provided in

the supplementary material.

Remark 21. The rate of convergence characterized by (6.9) is a function of the agent’s ability to

distinguish between the parameters given by the KL-divergences and structure of the weighted

network which is captured by the eigenvector centrality v of the agents. Hence, every agent

influences the rate in two ways. Firstly, if the agent has higher eigenvector centrality (i.e. the

agent is centrality located), it has larger influence over the posterior distributions of other agents

as a result has a greater influence over the rate of exponential decay as well. Secondly, if the

agent has high KL-divergence (i.e highly informative local observations that can distinguish

between parameters), then again it increases the rate. If an influential agent has highly informative

observations then it boosts the rate of convergence. We will illustrate this through extensive

simulations in 6.4.

6.4 Experiments

6.4.1 Decentralized Bayesian Linear Regression

To illustrate our approach, we construct an example of Bayesian linear regression (Ex-

ample 11) in the realizable setting over the network with 4 agents. We show that our proposed
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social learning framework enables a fully decentralized and fast learning of a global model

even when the local data is severely deficient. More specifically, we assume that each agent

makes observations along only one coordinate of x even though the global test set consists of

observations belonging to any x (further details of the experimental setup are provided in the

supplementary). Note that this is a case of extreme non-IID data partition across the agents. 6.1c

shows that the MSE of both agents, when trained using the learning rule, matches that of a central

agent implying that the agents converge to the true θ
∗ as our theory predicts.

Remark 22. Note that Gaussian likelihood functions considered in Example 11 violate the

bounded likelihood functions assumption. Furthermore, the parameters belong to a continuous

parameter set Θ. This example and those that follow demonstrate that our analytical assumptions

on the likelihood functions and the parameter set are sufficient but not necessary for convergence

of our decentralized learning rule.

6.4.2 Decentralized Image Classification

To illustrate the performance of our learning rule on real datasets we consider the problem

of decentralized training of Bayesian neural networks for an image classification task on the

MNIST digits dataset [126] and the Fashion-MNIST (FMNIST) dataset [127]. For all our

experiments we consider a fully connected NN with the same architecture considered in the

context of federated learning in [110]. Additional details regarding the implementation are

provided in the supplementary. At each time step n, we sample θk ∼ b(n)
i for k ∈ [L] and for each

test set image x, we employ Monte Carlo to obtain the prediction and confidence in the prediction

as y = argmaxy′∈Y
1
L ∑

L
k=1 Softmax(y′, fθk(x)), and P(y) = 1

L ∑
L
k=1 Softmax(y, fθk(x)) respectively.

The posterior probability P(y) in Bayesian Deep Learning literature [106,128,129], is interpreted

as the confidence of agent i in predicting y as the true label. In our experiments, we divide the

training dataset into subsets with non-overlapping label subsets. Hence, agents must learn b(n)
i

such that the resulting predictive distribution can perform well over the global dataset without
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(c) Learning with cooperation

Figure 6.1: Figure compares the Mean Squared Error (MSE) of the predictions over a test
dataset under three cases: (i) a benchmark scenario where all training data is shared with a
central (cloud) agent, (ii) another benchmark case in which local agents, despite the severe
deficiency of their observations, learn without cooperation using local training data only, and
(iii) our learning paradigm where agents learn using the proposed decentralized learning rule.
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sharing the local data and hence not having seen input example associated with the labels that are

missing locally. In other words, our agents, at test time, will produce labels of items that they

might have never encountered during the training phase. To make the distinction, we refer to a

label agent i produces as an in-domain (ID) label if training data corresponding to that label is

available locally otherwise they are referred to as out-of-domain (OOD) labels. We now describe

our empirical studies.

Design of Social Interaction Matrix W

In this section, we investigate how the social interaction matrix W should be designed for

a given network structure and a given data partition such that we maximize the rate of convergence

in decentralized training. We examine this on a network with a star topology, where a central

agent is connected to 8 other edge agents. Let the social interaction weights for the central agent

be W1 = [1
9 , . . . ,

1
9 ]. For a ∈ (0,1), we assume that an edge agent i puts a confidence Wi1 = a on

the central agent, Wii = 1−a on itself and zero on others. Note that as the confidence a which

the edge agents put on the central agent increases, the eigenvector centrality of the central agent

v1 increases i.e., central agent becomes more influential over the network. For both MNIST

and FMNIST, we partition the dataset such that the central agent has more informative local

observations. Hence, using equation (6.9) we know that placing more confidence a on the central

agent increases the rate of convergence to the true parameter and increases rate of convergence

of the test dataset accuracy. This is demonstrated in 6.2a and 6.2b where both accuracy and

the rate of convergence improve as a increases. In other words, rate of convergence and the

average accuracy is the highest when the agent with most informative local observations has most

influence on the network. Furthermore, on star topology we also demonstrate the scalability of our

method through asynchronous implementathion over time-varying networks with 25 agents and

100 nodes where we achieve 96.5% and 92.3% accuracy respectively (6.6.4 in supplementary).

We focus on star topology since federated learning methods [108–110] (only) consider
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Figure 6.2: Figure shows the variation in the average accuracy over a star network topology as
the eigenvector centrality of the central agent is changed.

networks with this structure. We compare the performance of our learning rule to the best reported

results. On MNIST for a = 0.5 the average accuracy we obtain is 97.55% which is comparable

to the federated learning method [110] FedAvg obtaining 98% for the same architecture and data

partition. Similarly, on FMNIST for a = 0.7 the average accuracy we obtain is 84.21% slightly

inferior to the federated learning method FedAvg [110] which obtains 87.33% accuracy in similar

setting. For asynchronous time-varying networks, when we increase the number of agents in the

network from 25 to 100, we again see a drop in the accuracy from 96.5% to 92.3% (6.6.4 in the

supplementary). We believe the lack of periodic global synchronization results in this difference

and for detailed discussion refer to Remark 25 in the supplementary. An important area of future

work is to overcome this challenge.

Effect on confidence over predictions: In addition to accuracy, Bayesian neural net-

works provide confidence estimates for each agent’s predictions. Hence, we investigate the effect

of network structure on confidence. 6.3 shows the confidence on digits 0 and 2 at both central and

edge agents as a is varied. In all cases, we observe that both central agent and edge agents learn

to predict their ID labels with higher confidence than the OOD labels. Furthermore, 6.3a, 6.3b

and 6.3c show that as eigenvector centrality of central agent (most informative agent) increases,
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Figure 6.3: Figure shows the increase in the confidence on ID digit and OOD digit at the central
agent and an edge agent over communication rounds. Agents are connected in a network with
star topology.

the confidence on OOD label at agent edge increase as expected.

Effect of Data Partition Over the Network

Effect of the agent placements: In this section, we investigate the appropriate placement

of a locally informative agent in the network in a manner that maximizes the rate of convergence.

We examine this on a 3×3 grid network obtained by connecting every agent to its adjacent agents

as shown in 6.4a. The social interaction weights are defined as Wi j =
1

|N (i)| if j ∈ N (i) and

zero otherwise. In this network, the eigenvector centrality of agent i is proportional to its degree

|N (i)|; hence, more number of neighbors implies higher social influence. We divide the data such
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Figure 6.4: Figure shows average accuracy over 9 agents in a network with grid topology.

that the local training set for one of our agents (the Type-1 agent) is statistically informative than

the local training set for all other (Type-2) agents. Now, we consider two possible placements

of the Type-1 agent in the network (shown in 6.4a): (i) Setting 1: Type-1 agent is placed at the

center (position 5) of the network and (ii) Setting 2: Type-1 agent is placed in a corner location

(position 1) in the network. Using equation (6.9) we can predict that setting 1 has a higher rate of

convergence to the true parameter and a higher rate of convergence of the test dataset accuracy

compared to setting 2 which is demonstrated in 6.9a. In other words, rate of convergence is

highest when the most influential agent in the network has access to an informative training

dataset.

Effect of the type of data partition: Theorem 1 establishes the convergence of our

learning rule under Assumption 7. Theoretical implication of this result is that all agents eventually

learn the labeling function that best fits the global data if every wrong parameter labeling function
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can be eliminated by some agent in the network. In the case where the agents use neural networks,

local learning can only learn features discriminative to in-domain labels. Our theoretical result

suggests that agents are guaranteed to converge to the correct labeling function only when every

pair of OOD labels is distinguished by some agents in the network. This also suggests that

some non-IID data partitioning of the labels can lead to convergence to an ambiguous set of

labeling functions. This has been also shown to lead to poor accuracy empirically in the federated

learning literature [130]. Unlike federated learning, our analytic Bayesian framework allows us

to theoretically predict the issue.

In order to understand the practical implications of Assumption 7, we construct an example

where violating assumption leads to poor accuracy. Consider a star network with a = 0.5 where

the central agent has access labels {0, . . . ,7} and edge agents have access to labels {8,9}. Given

that {4,9} share many common features and since no agent in the network has access to both

digits, our analytic results fall short to ensure learning features that can directly distinguish {4,9}.

Indeed, 6.5a the confidence on OOD digit 9 at the central agent and on OOD digit 4 at an edge

agent remains low. The effect of data partition described above is more pronounced in the case

of FMNIST dataset. Let central agent have access to labels {t-shirt, trouser, dress, coat,

shirt, bag} and edge agents has access to labels {pullover, sandal, sneaker ankle-boot}.

Agents do not learn to distinguish label pullover at edge agents from the labels at the central

agent. 6.5b shows that the confidence on OOD label coat at the edge agents is significantly

low for this data partition and the average accuracy drops to 69.7%. Contrast this with the less

ambiguous and less severe data partition of FMNIST data considered for 6.2b where all the labels

with shirt-like features, are assigned to a single type, both accuracy and confidence improve as

seen in 6.5c.
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Figure 6.5: Figures shows confidence at central and edge agents in a star network over various
partition of the MNIST and FMNIST datasets.

183



6.5 Conclusion

In this chapter, we considered the problem of decentralized learning over a network

of agents with no central server. We considered a peer-to-peer learning algorithm in which

agents iterate and aggregate the beliefs of their one-hop neighbors and collaboratively estimate

the global optimal parameter. We obtained high probability bounds on convergence and a full

characterization of the rate of convergence across the network. We illustrated the effectiveness

of algorithm for learning neural networks in computationally tractable manner while achieving

high accuracies. Our experimental illustrate the predictive power of analysis of the algorithm.

An important area of future work includes extensive empirical studies on various deep neural

network architectures.

6.6 Appendix

6.6.1 Comments on Rate of Convergence

Remark 23 (Positivity of K(Θ)). We make a few comments on the quantity K(Θ). Note that in

the realizable setting, for any θ∗ ∈Θ∗ and θ ∈Θ\Θ∗ we get

I j(θ
∗,θ) = EPM

j

[
DKL

(
` j(·|θ∗,X j)||` j(· | θ,X j)

)]
which is non-negative. The KL-divergence between the likelihood functions conditioned on

the input captures the extent of distinguishability of parameter θ∗ from θ. For a wrong param-

eter θ ∈ Θ\Θ∗, if I j(θ
∗,θ) is very small then we say that the local observations at agent j are

not informative enough to distinguish between θ∗ and θ. Similarly for the non-realizable set-

ting, for θ∗ ∈Θ∗ and θ ∈Θ\Θ∗ by definition we have EPM
i
[DKL

(
PY |X(·|X j)||` j(· | θ∗,X j)

)
]<

EPM
i
[DKL

(
PY |X(·|X j)||` j(· | θ,X j)

)
] for all j. Hence, K(Θ) is always positive. In the social
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learning literature, eigenvector centrality v is a measure of social influence of an agent in the

network, since each vi determines the contribution of agent i in the collective network learning

rate K(Θ).

6.6.2 Consensus Step on Gaussian distributions

Let (µ(n)i ,Σ
(n)
i ) denote the mean and the covariance matrix of b(n)

i at agent at i obtained

using equation (6.6). Using equation (6.4), we have

N

∑
j=1

Wi j lnG(θ,µ(n)j ,Σ
(n)
j ) (6.10)

=−1
2

N

∑
j=1

Wi j

(
(θ−µ(n)j )T

Σ
(n)
j
−1
(θ−µ(n)j )

)
− 1

2

N

∑
i=1

Wi j ln(2π)k|Σ(n)
j | (6.11)

=−1
2

(
θ

T
N

∑
j=1

Wi jΣ
(n)
j
−1

θ+
N

∑
j=1

µ(n)j
T

Wi jΣ
(n)
j
−1

µ(n)j

)
(6.12)

+
1
2

(
N

∑
j=1

µ(n)j
T

Wi jΣ
(n)
j
−1

θ+θ
T

N

∑
j=1

Wi jΣ
(n)
j
−1

µ(n)i

)
− 1

2

N

∑
j=1

Wi j ln(2π)k|Σ(n)
j |. (6.13)

By completing the squares we obtain q(n)
i is Gaussian distribution and we have

Σ̃i
(n)−1

=
N

∑
j=1

Wi jΣ
(n)
j
−1
, (6.14)

and

Σ̃
(n)−1

i µ̃(n)i =
N

∑
j=1

Wi jΣ
(n)−1

j µ(n)j =⇒ µ̃(n)i = Σ̃
(n)
i

N

∑
j=1

Wi jΣ
(n)
j
−1

µ(n)j . (6.15)

6.6.3 Details on Bayesian Linear Regression Experiment

Let θ
∗ = [−0.3, 0.5, 0.5, 0.1, 0.2]T and let noise be distributed as η ∼ N (0,α2) where

α= 0.8. Agent i makes observations (x,y), where x= [0 . . . ,0,xi,0, . . . ,0]T and xi is sampled from
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Unif[−1,1] for i= 1, Unif[−1.5,1.5] for i= 2, Unif[−1.25,1.25] for i= 3, and Unif[−0.75,0.75]

for i = 4. We assume each agent starts with a Gaussian prior over θ with zero mean vector and

covariance matrix given by diag[0.5,0.5,0.5,0.5], where diag(x) denotes a diagonal matrix

with diagonal elements given by vector x. The social interaction weights are given as W1 =

[0.5,0.5,0,0], W2 = [0.3,0.1,0.3,0.3], W3 = [0,0.5,0.5,0] and W4 = [0,0.5,0,0.5]. We assume

each agent starts with a Gaussian prior over Θ and hence the posterior distribution after a Bayesian

update remains Gaussian. This implies Q remains fixed as the family of Gaussian distributions

and the consensus step reduces to equation (6.7).

6.6.4 Details on Bayesian Deep Learning Experiments on Image Classifi-

cation

We consider two datasets: (i) the MNIST digits dataset [126] where each image is assigned

a label in Y = [0, . . . ,9] and (ii) the Fashion-MNIST (FMNIST) dataset [127] where each image is

assigned a label in Y = [ t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker,

bag, ankle-boot]. Both datasets consist of 60,000 training images and 10,000 testing images of

size 28 by 28. For all our experiments we consider a fully connected NN with 2-hidden layers

with 200 units each using ReLU activations which is same as the architecture considered in the

context of federated learning in [110].

For all the experiments we choose Q to be the family of Gaussian mean-field approximate

posterior distributions with pdf given by G(θ,µ,Σ), where Σ is a strictly diagonal matrix [111,112].

As discussed in 19 this corresponds to performing variational inference to obtain a Gaussian

approximation of the local posterior distribution, i.e., minimizing the variational free energy given

in equation (6.6) over Q . While we compute the KL divergence in (6.6) in a closed form, we

employ simple Monte Carlo to compute the gradients using Bayes by Backprop [107, 112].

Remark 24 (Prediction on Test Dataset). In the absence of cooperation among the agents,
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each agent i using the Bayes rule only learns the local posterior distribution P(θ|Xn
i ,Y

n
i ) and

makes predictions on the test dataset input x using the predictive distribution P(y|x) =
∫

Θ
`i(y |

θ,x)P(θ|Xn
i ,Y

n
i )dθ. However at any time step n, using the decentralized learning rule each agent

i learns a posterior distribution b(n)
i and makes predictions on the test dataset input x using a

predictive distribution
∫

Θ
`i(y | θ,x)b

(n)
i (θ)dθ. Applying 10 we see that as the local posterior b(n)

i

converges to θ∗ for each agent i, it can locally predict as if was trained on global dataset.

Remark 25. Federated learning paradigm, unlike our fully decentralized setup, requires a central-

ized controller to aggregate the local models from each agent. Furthermore, after each round of

communication with the central controller, every agent before training initializes its local model

with the global model obtained from the central controller. The periodic shared initialization

using a global model across the network, while it is a stringent constraint, is required to prevent

the averaging performed at the central controller from producing an arbitrarily bad model [110].

Without modelling the correlation between the weights and bias of the agents across the network,

different random initialization at each agent can lead to different local minima and result in

diverging local models at the agents [131]. However, modelling of correlation between the

weights and bias of the agents across the network is computationally prohibitive. We overcome

this challenge by using shared initialization when the local models are trained for the first time

at each agent, however we do not perform this after each communication round. Our method

overcomes the need for shared initialization after each communication round by incorporating

the global information (on the weights and bias across the agents) in the local training by using

the prior q(n)
i , obtained locally via the consensus step (6.4) at each agent i, in the minimization

of variational free energy (6.6). It would be interesting to investigate other shared initialization

suitable for decentralized training which addresses the gap in the performance.
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Design of Social Interaction Matrix W

For experiments in 6.4.2, we use a network with a star topology, where there is one

central agent and 8 edge agents. We vary confidence a which the edge agents put on the central

agent over [0.1,0.2,0.3,0.5,0.7], the eigenvector centrality of the central agent v1 increases as

[0.1,0.18,0.25,0.36,0.44]. We partition the MNIST dataset into two subsets so that the central

agent dataset has all images of labels [2, . . . ,9] and edge agents has all images of labels [0,1]. To

ensure all the edge agents has equal number of images, we shuffle the images with labels [0,1]

and partition them into 8 non-overlapping subsets. We call this partition MNIST-Setup1.

Similarly, for Fashion-MNIST (FMNIST) dataset, we first partition into two subsets so

that central agent has access to labels [t-shirt, pullover, dress, coat, shirt, bag] and edge

agents have access to labels [trouser, sandal, sneaker, ankle-boot]. We shuffle the images

with labels [trouser, sandal, sneaker, ankle-boot] and partition them into 8 non-overlapping

subsets. We call this partition FMNIST-Setup1.

We ensure that all agents has same number of local updates u per communication round,

which is equal to (bnedge/Bc)E. For the central agent, this means that for each local epoch, the

central agent is trained on a random subset of its local dataset, whereas the edge agents use all the

local dataset. For all agents, we use Adam optimizer [132] with initial learning rate of 0.001 and

learning rate decay of 0.99 per communication round.

Table 6.1: Settings for Star Topology Network Experiment: E is number of local epochs, B is
the local minibatch size, u is the number of local updates per communication round, η is the
initial learning rate for all agents, ε is the learning rate decay rate, ncenter is the dataset size of
the central agent, nedge is the dataset size of each of the edge agent.

Experiment E B u η ε ncenter nedge comm rounds
MNIST-Setup1 5 50 155 0.001 0.99 47335 1583 800
MNIST-Setup2 5 50 145 0.001 0.99 48200 1475 800
MNIST-Setup3 5 50 145 0.001 0.99 48209 1473 800
FMNIST-Setup1 5 100 150 0.001 0.99 36000 3000 800
FMNIST-Setup2 5 100 150 0.001 0.99 36000 3000 800
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Effect of Data Partition over the Network

Effect of the agent placements: We use a 3 by 3 grid network illustrated by 6.4a in 6.4.2.

We assign MNIST images with labels [2, . . . ,9] to an agent of Type-1 and divide images with

labels [0,1] among 8 agents of Type-2. In Center setting, we place Type-1 agent at the central

location. In Corner setting, we place Type-1 agent in a corner location. Similar to 6.6.4, We

ensure that all agents has same number of local updates u per communication round, which is

equal to (bnType2/Bc)E. Again, we use Adam optimizer for all agents.

Table 6.2: Settings for Grid Topology Network Experiment: E is number of local epochs, B is
the local minibatch size, u is the number of local updates per communication round, η is the
initial learning rate for all agents, ε is the learning rate decay rate, nType1 is the dataset size of
the Type-1 agent, nType2 is the dataset size of each of the Type-2 agent.

Experiment E B u η ε nType1 nType2 comm rounds
Corner 5 50 155 0.001 0.99 47335 1583 1200
Center 5 50 155 0.001 0.99 47335 1583 1200

Effect of the type data partition: In ablation study, we again use a star network and con-

sider two other ways of partitioning the MNIST dataset: (1) the central agent dataset has all images

of labels [0, . . . .,7] and edge agents has all images of labels [8,9], we call this MNIST-Setup2,

and (2) the edge agents has all images of labels [4,9] and the central agent other labels, we

call this MNIST-Setup3. For FMNIST dataset, central agent has access to images with labels

[t-shirt, trouser, dress, coat, shirt, bag] and edge agents have access to images with

labels [pullover, sandal, sneaker ankle-boot], we call this FMNIST-Setup2.

Asynchronous Decentralized Learning on Time-varying Networks Experiment

Now we implement our learning rule on time-varying networks which model practical

peer-to-peer networks where synchronous updates are not easy or very costly to implement.
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(b) Accuracy over all 100 nodes.

Figure 6.6: Figure shows the accuracies of agents in a time-varying network.

We consider a time-varying network of N + 1 agents numbered as {0,1, . . . ,N}. At any give

time, only N0 agents are connected to agent 0 in a star topology. For k ∈ [ N
N0
], let Gk denote a

graph with a star topology where the central agent 0 is connected to edge agents whose indices

belong to {N0(k−1)+1, . . . ,N0k}. This implies at any given time only a small fraction of agents

N0
N are training over their local data. Note that ∪

N
N0
k=1Gk is strongly connected network over all

N +1 agents. The social interaction weights for the central agent are W0 = [ 1
N0+1 , . . . ,

1
N0+1 ]. Let

a = 0.5. An edge agent i ∈ Gk puts a confidence Wi0 = a on the central agent 0, Wii = 1−a on

itself and zero on others. The MNIST dataset is divided in an i.i.d manner, i.e., data is shuffled

and each agent is randomly assigned approximately (60,000
N+1 ) samples. For N = 25,N0 = 5, we

obtain an average accuracy of 95.6% over all agents and 95.1% accuracy at the central agent
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and for N = 100,N0 = 10, we obtain an average accuracy of 92.3% over all agents and 93.1%

accuracy at the central agent. This also demonstrates that decentralized learning can be achieved

with as few as 600 samples locally.

Table 6.3: Settings for Time-varying Network Experiment: E is number of local epochs, B is
the local minibatch size, u is the number of local updates per communication round, η is the
initial learning rate for all agents, ε is the learning rate decay rate, n is the dataset size of any
agent. Since all agents have same number of samples, they automatically have equal number of
local updates per communication round. Adam optimizer is used for all agents.

Experiment E B u η ε n comm rounds
N = 25 1 50 47 0.001 0.99 2307 1000
N = 100 2 10 120 0.001 0.998 594 1000

6.6.5 Additional Figures
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Figure 6.7: Figures shows average accuracy of 9 agents connected in a network with star
topology.

191



0 100 200 300 400 500 600 700 800
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf
id
en

ce

Central agent: OOD label Ankle-boot
Edge agent: ID label Ankle-boot
Edge agent: OOD label Coat
Central agent: ID label Coat

(a) a = 0.7
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(b) a = 0.5
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(c) a = 0.3

Figure 6.8: Figures shows the increase in the confidence on an ID label and OOD label at the
central and edge agents over communication rounds for FMNIST dataset. Agents are connected
in a network with star topology and the value of a varies over [0.7,0.5,0.3].
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Figure 6.9: Figure shows average accuracy over 9 agents in a network with grid topology.
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6.6.6 Proof of Theorem 1

The proof of Theorem 1 is based the proof provided in [103–105]. For the ease of

exposition, let b(0)i (θ) = 1
|Θ| for all θ ∈Θ. Fix a θ∗ ∈Θ∗. We begin with the following recursion

for each node i ∈ [N] and for any θ 6∈Θ∗,

1
n

log
b(n)i (θ∗)

b(n)i (θ)
=

1
n

N

∑
j=1

n

∑
k=1

W k
i jz

(n−k+1)
j (θ∗,θ), (6.16)

where

z(k)j (θ∗,θ) = log
l j

(
X (k)

j | θ∗,X
(k)
i

)
l j

(
X (k)

j | θ,X
(k)
i

) . (6.17)

From the above recursion we have

1
n

log
b(n)i (θ∗)

b(n)i (θ)
≥ 1

n

N

∑
j=1

v j

(
n

∑
k=1

z(k)j (θ∗,θ)

)
− 1

n

N

∑
j=1

n

∑
k=1

∣∣∣W k
i j− v j

∣∣∣ ∣∣∣z(k)j (θ∗,θ)
∣∣∣ (6.18)

(a)
≥ 1

n

N

∑
j=1

v j

(
n

∑
k=1

z(k)j (θ∗,θ)

)
− 4C logN

n(1−λmax(W ))
, (6.19)

where (a) follows from Lemma 18 and the boundedness assumption of log-likelihood ratios. Now

fix n≥ 8C logN
ε(1−λmax(W )) , since b(n)i (θ∗)≤ 1 we have

−1
n

logb(n)i (θ)≥−ε

2
+

1
n

N

∑
j=1

v j

(
n

∑
k=1

z(k)j (θ∗,θ)

)
.

Furthermore, we have

P

(
−1

n
logb(n)i (θ)≤

N

∑
j=1

v jI j(θ
∗,θ)− ε

)
≤ P

(
1
n

N

∑
j=1

v j

n

∑
k=1

z(k)j (θ∗,θ)≤
N

∑
j=1

v jI j(θ
∗,θ)− ε

2

)
.

Now for any j ∈ [N] note that
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N

∑
j=1

v j

n

∑
k=1

z(k)j (θ∗,θ)−n
N

∑
j=1

v jI j(θ
∗,θ) =

n

∑
k=1

(
N

∑
j=1

v jz
(k)
j (θ∗,θ)−

N

∑
j=1

v jE[z
(k)
j (θ∗,θ)]

)
.

For any θ 6∈Θ∗, applying McDiarmid’s inequality for all ε > 0 and for all n≥ 1 we have

P

(
n

∑
k=1

(
N

∑
j=1

v jz
(k)
j (θ∗,θ)−

N

∑
j=1

v jE[z
(k)
j (θ∗,θ)]

)
≤−εn

2

)
≤ e−

ε2n
2C .

Hence, for all θ 6∈Θ∗, for n≥ 8C logN
ε(1−λmax(W )) we have

P

(
−1
n

logb(n)i (θ)≤
N

∑
j=1

v jI j(θ
∗,θ)− ε

)
≤ e−

ε2n
4C , (6.20)

which implies

P
(

b(n)i (θ)≥ e−n(∑N
j=1 v jI j(θ

∗,θ)−ε)
)
≤ e−

ε2n
4C . (6.21)

Using this we obtain a bound on the worst case error over all θ and across the entire network as

follows

P

(
max
i∈[N]

max
θ6∈Θ∗

b(n)i (θ)≥ e−n(K(Θ)−ε)

)
≤ N|Θ|e−

ε2n
4C , (6.22)

where K(Θ) := minθ∈Θ∗,ψ∈Θ\Θ∗∑
N
j=1 v jI j(θ,ψ). From Assumption 7 and Lemma 18 we have

that K(Θ)> 0. Then, with probability 1−δ we have

max
i∈[N]

max
θ6∈Θ∗

b(n)i (θ)< e−n(K(Θ)−ε), (6.23)

when the number of samples satisfies

n≥
8C log N|Θ|

δ

ε2(1−λmax(W ))
. (6.24)
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Lemma 18 ( [104]). For an irreducible and aperiodic stochastic matrix W, the stationary

distribution v = [v1,v2, . . . ,vN ] is unique and has strictly positive components and satisfies

vi = ∑
n
j=1 v jWji. Furthermore, for any i ∈ [N] the weight matrix satisfies

n

∑
k=1

N

∑
j=1

∣∣∣W k
i j− v j

∣∣∣≤ 4logN
1−λmax(W )

,

where λmax(W ) = maxi∈[N−1]λi(W ), and λi(W ) denotes eigenvalue of W counted with algebraic

multiplicity and λ0(W ) = 1.

Chapter 6, in full, has been submitted for publication as: Anusha Lalitha, Xinghan Wang,

Cihan Kilinc, Yongxi Lu, Tara, Javidi, and Farinaz Koushanfar, “Decentralized Bayesian Learning

over Graphs”, available on arXiv preprint arXiv:1905.10466. The dissertation author was the

primary investigator and author of this paper.
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Jaggi. CoCoA: A general framework for communication-efficient distributed optimization.
Journal of Machine Learning Research, 18(230):1–49, 2018.

[115] Pratik Chaudhari, Carlo Baldassi, Riccardo Zecchina, Stefano Soatto, and Ameet Talwalkar.
Parle: parallelizing stochastic gradient descent. CoRR, abs/1707.00424, 2017.

204



[116] Tao Lin, Sebastian U. Stich, and Martin Jaggi. Don’t use large mini-batches, use local
SGD. CoRR, abs/1808.07217, 2018.

[117] John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Transactions on Automatic
Control, 57:592–606, 2012.

[118] E. Wei and A. Ozdaglar. Distributed alternating direction method of multipliers. In 2012
IEEE 51st IEEE Conference on Decision and Control (CDC), pages 5445–5450, Dec 2012.

[119] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. d2: Decentralized training
over decentralized data. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 4848–4856, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018. PMLR.

[120] L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

[121] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can
decentralized algorithms outperform centralized algorithms? a case study for decentralized
parallel stochastic gradient descent. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5330–5340. Curran Associates, Inc., 2017.

[122] Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. Collaborative deep
learning in fixed topology networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5904–5914. Curran Associates, Inc., 2017.

[123] Peter H. Jin, Qiaochu Yuan, Forrest N. Iandola, and Kurt Keutzer. How to scale distributed
deep learning? CoRR, abs/1611.04581, 2016.

[124] Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and
analysis of communication-efficient SGD algorithms. CoRR, abs/1808.07576, 2018.

[125] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[126] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[127] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. 2017.

[128] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, ed-
itors, Proceedings of The 33rd International Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pages 1050–1059, New York, New York,
USA, 20–22 Jun 2016. PMLR.

205



[129] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning
for computer vision? In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 5574–5584. Curran Associates, Inc., 2017.

[130] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra.
Federated learning with non-iid data. CoRR, abs/1806.00582, 2018.

[131] Ian Goodfellow, Oriol Vinyals, and Andrew Saxe. Qualitatively characterizing neural
network optimization problems. In International Conference on Learning Representations,
2015.

[132] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

206




