
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Constructing Parsers by Example via Interactive Program Synthesis

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Alan Leung

Committee in charge:

Professor Sorin Lerner, Chair
Professor Samuel Buss
Professor Ranjit Jhala
Professor Ryan Kastner
Professor Todd Millstein

2017

Copyright

Alan Leung, 2017

All rights reserved.

The Dissertation of Alan Leung is approved and is acceptable in quality

and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2017

iii

DEDICATION

To my loving wife and family.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xi

Acknowledgements . xii

Vita . xv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Outline of this work . 4
1.2 Organization . 5
1.3 Acknowledgements . 6

Chapter 2 Preliminaries . 7
2.1 Lexical Analysis . 7

2.1.1 Regular Expressions . 7
2.1.2 Lexers . 7

2.2 Context-Free Grammars . 8
2.2.1 String Indexing . 9
2.2.2 Derivations . 10
2.2.3 Sentential Forms . 10
2.2.4 Parse Trees . 10
2.2.5 Parsers . 12

2.3 Disambiguating Filters . 12
2.3.1 Associativity Filters . 13
2.3.2 Priority Filters . 14
2.3.3 Consistency . 15
2.3.4 Filter Speci�cation Syntax . 15

2.4 Acknowledgements . 16

Chapter 3 Parsify . 18
3.1 Overview . 19

3.1.1 User Interface Overview . 20
3.1.2 Basic Inference . 20

v

3.1.3 In�x Expressions . 22
3.1.4 Function De�nitions . 24
3.1.5 Function Calls . 25
3.1.6 Challenges . 26

3.2 Algorithm . 27
3.2.1 Session State . 27
3.2.2 Operations . 28
3.2.3 Draw . 29
3.2.4 Negate . 31
3.2.5 Annotate . 32
3.2.6 Generalize . 33
3.2.7 Resolve . 36

3.3 Evaluation . 40
3.3.1 Versatility . 42
3.3.2 Usability . 43
3.3.3 Best Practices . 44

3.4 Acknowledgements . 46

Chapter 4 Parsimony . 47
4.1 Overview . 50

4.1.1 Constructing the Lexer . 52
4.1.2 Constructing the Parser . 56

4.2 Lexer Synthesis . 60
4.2.1 A Data Structure for Sets of Regular Expressions 60
4.2.2 Regular Expression Inference viaR-DAG Queries 62
4.2.3 Example of Token Inference . 65

4.3 Parser Synthesis . 67
4.3.1 Preliminaries: CYK Parsing Algorithm . 68
4.3.2 Parser Synthesis Constraint Systems . 69
4.3.3 A Data Structure for Sets of Candidate Productions 70
4.3.4 Parser Synthesis via CYK Automata . 72

4.4 Implementation . 91
4.4.1 Backend Design . 92
4.4.2 Frontend Design . 93

4.5 Evaluation . 93
4.5.1 Hypotheses . 94
4.5.2 Participants . 94
4.5.3 Interface Differences . 94
4.5.4 Methodology . 95
4.5.5 Quantitative Results . 96
4.5.6 Qualitative Results . 101

4.6 Acknowledgements . 104

vi

Chapter 5 Related Work . 105
5.1 Program Synthesis . 105
5.2 Grammatical Inference . 107
5.3 Parsing . 108
5.4 Acknowledgements . 109

Chapter 6 Conclusion . 110

Appendix A CYK-based Coloring . 112

Appendix B Additional Patterns and Schemas . 115

Bibliography . 117

vii

LIST OF FIGURES

Figure 2.1. Syntax and semantics of regular expressions. 8

Figure 2.2. Reference lexer algorithm. 9

Figure 3.1. The Parsify user interface. 20

Figure 3.2. TheCOLOR algorithm. 30

Figure 3.3. TheGEN-PRODalgorithm. 32

Figure 3.4. TheGEN algorithm. 35

Figure 3.5. TheHEURISTIC algorithm. 38

Figure 3.6. TheSUCCESSORSalgorithm. 39

Figure 3.7. Progression plots. 42

Figure 4.1. The Parsimony user interface. 51

Figure 4.2. Sample of Fuyu source code:1.fuyu . 52

Figure 4.3. Token Labels Tab after adding the "def " example token. 52

Figure 4.4. Text editor after accepting inferred lexer ruleDEF = def. 53

Figure 4.5. Legend after adding new lexer rule forDEF. 53

Figure 4.6. Token Labels Tab after adding �ve examples of theIDENTtoken. . 54

Figure 4.7. 1.fuyu with all tokens properly colored. 55

Figure 4.8. Candidate synthesized from one example. 56

Figure 4.9. Candidates synthesized from two examples. 56

Figure 4.10. Candidates synthesized from four examples. 57

Figure 4.11. Parse tree visualizations. 57

Figure 4.12. 1.fuyu after accepting solution. 58

Figure 4.13. 1.fuyu after accepting inferences forexpr . 59

viii

Figure 4.14. 1.fuyu after accepting inferences forarray 59

Figure 4.15. Inferred candidateexpr ! array . 60

Figure 4.16. TheHORIZON algorithm. 63

Figure 4.17. Lexer rules for constructingR-DAG. 66

Figure 4.18. ExampleR-DAG constructed from lexer rules shown in Figure 4.17.67

Figure 4.19. The CYK algorithm. 69

Figure 4.20. TheBUILD -CYK-AUTOMATON algorithm. 72

Figure 4.21. Candidate matrixSJf a;Agf b;BgK. 74

Figure 4.22. ThePARSYNTH/
1 algorithm. 75

Figure 4.23. ThePARSYNTH/
2 algorithm. 76

Figure 4.24. Solution toC2 via PARSYNTH/
2. 77

Figure 4.25. ThePARTITION algorithm. 80

Figure 4.26. Before and after partitioning CYK automata forC2. 81

Figure 4.27. ThePARSYNTH/
3 algorithm. 81

Figure 4.28. ThePARSYNTH/
4 algorithm. 83

Figure 4.29. TheAPPLY-NESTING algorithm. 83

Figure 4.30. ThePARSYNTH-FULL algorithm. 91

Figure 4.31. Number of participants completing each task. 97

Figure 4.32. Average time to completion in minutes. 98

Figure 4.33. Average lexer compile errors per participant. 99

Figure 4.34. Average parser compile errors per participant. Breakdown by type. 100

Figure 4.35. Average parser compile errors per participant. Breakdown by task. 101

Figure A.1. TheCYK-COLOR algorithm. 114

ix

Figure B.1. Enclosed and undelimited list. 115

Figure B.2. Unenclosed and undelimited list. 116

Figure B.3. Unenclosed and delimited list. 116

x

LIST OF TABLES

Table 3.1. Benchmark suite. 41

Table 4.1. ExampleHORIZON queries. 67

Table 4.2. Numerical user responses to exit survey. 103

xi

ACKNOWLEDGEMENTS

I would like to thank my Ph.D. advisor, Sorin Lerner, whose advice over the years

has helped me mature as both a researcher and a person. I also give special thanks to

Ranjit Jhala for being an enthusiastic mentor during the early formative years of my Ph.D.

To the other members of my committee, Samuel Buss, Ryan Kastner, and Todd Millstein,

I am grateful for the patience and generosity with which they gave me their time.

Next, I must thank the members of the UCSD Programming Systems Group for

their camaraderie over the years. Thanks to Dimitar Bounov, John Sarracino, Manish

Gupta, and Ross Tate for being �rst-class collaborators and friends for whom I will

always have the utmost respect. Thanks also to Alexander Bakst and Panagiotis Vekris,

my of�cemates for several years, for their good nature and insightful conversation in good

times, and heartfelt commiseration in hard times. Thanks to every Progsys member past

and present with whom I had the good fortune to share a meal, a coffee, or a conversation.

Thanks to the members of the Rita cooking collective: Bridgette Wilson, Dan

Moeller, Greg Long, Jason Greco, Karyn Benson, Marlena Fecho, Ming Wang, and

Ryan Kanoknukulchai. Making friends in a new place can be hard, but you made it feel

effortless. To the members of 24th Street Labs, Kai Wang and Karyn Benson: thanks for

all the sur�ng, barbecues, and impromptu parties. It was a slice of the California beach

lifestyle that I will always remember fondly. Thanks to Sam Kwak for the thousands of

laps at Canyonview Pool. Thanks to the other members of my cohort that I had the good

fortune to befriend – to name a few, Dan Ricketts, Matt Der, Sheeraz Ahmad, and Wilson

Lian. You're all class acts.

Finally, I must thank Wai-San, my wife and best friend, for giving me endless

support and strength, for having unyielding con�dence in my ability, and for reminding

me that there's more to life than work.

Chapter 1, in part, is adapted from material as it appears in Leung, Alan; Sarracino,

xii

John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

2015. The dissertation author was the primary investigator and author on this paper.

Chapter 1, in part, is adapted from material currently being prepared for submis-

sion for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for Example-

Guided Synthesis of Lexers and Parsers.” The dissertation author was the primary investi-

gator and author on this paper.

Chapter 2, in part, is adapted from material as it appears in Leung, Alan; Sarracino,

John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

2015. The dissertation author was the primary investigator and author on this paper.

Chapter 2, in part, is adapted from material currently being prepared for submis-

sion for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for Example-

Guided Synthesis of Lexers and Parsers.” The dissertation author was the primary investi-

gator and author on this paper.

Chapter 3, in full, is adapted from material as it appears in Leung, Alan; Sarracino,

John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

2015. The dissertation author was the primary investigator and author on this paper.

Chapter 4, in full, is adapted from material currently being prepared for submis-

sion for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for Example-

Guided Synthesis of Lexers and Parsers.” The dissertation author was the primary investi-

gator and author on this paper.

Chapter 5, in part, is adapted from material as it appears in Leung, Alan; Sarracino,

John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

xiii

2015. The dissertation author was the primary investigator and author on this paper.

Chapter 5, in part, is adapted from material currently being prepared for submis-

sion for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for Example-

Guided Synthesis of Lexers and Parsers.” The dissertation author was the primary investi-

gator and author on this paper.

xiv

VITA

2004 Bachelor of Science, Cornell University

2004–2009 Component Design Engineer, Intel

2012 Research Intern, Microsoft Research, Cambridge

2010–2017 Research Assistant, University of California, San Diego

2017 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

Leung, Alan; Sarracino, John; Lerner, Sorin. “Interactive Parser Synthesis by Example,”
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2015.

Leung, Alan; Bounov, Dimitar; Lerner, Sorin. “C-to-Verilog Translation Validation,”
2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign,
2015.

Leung, Alan; Gupta, Manish; Agarwal, Yuvraj; Gupta, Rajesh; Jhala, Ranjit; Lerner,
Sorin. “Verifying GPU Kernels by Test Ampli�cation,” Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2012.

Tate, Ross; Leung, Alan; Lerner, Sorin. “Taming Wildcards in Java's Type System,”
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2011.

xv

ABSTRACT OF THE DISSERTATION

Constructing Parsers by Example via Interactive Program Synthesis

by

Alan Leung

Doctor of Philosophy in Computer Science

University of California, San Diego, 2017

Professor Sorin Lerner, Chair

Parsers – programs that extract structure from strings – are fundamental compo-

nents of many software systems. Although parsing theory may have found its roots in

early work on programming languages, the growth of computing during the intervening

decades has expanded the role of parsers into many systems one might not immediately

expect: email clients, video games, spreadsheet programs, and relational databases are

only a few among myriad examples of systems that extract structured information from

input text. As a result, the construction of parsers has become a ubiquitous programming

task that is performed by developers across a large spectrum of domains. It is not just a

xvi

task for programming language experts anymore.

Unfortunately, despite over forty years of research on parsing, writing parsers

remains a painstaking, manual process that is prone to subtle bugs and pitfalls. Existing

tools for generating parsers assume a great deal of background knowledge in parsing and

formal language theory, so the learning curve is high.

In this dissertation, we argue that it is possible to make parsing more accessible

by combining interactive visual feedback with the programming-by-example paradigm,

wherein users synthesize programs simply by providing example inputs and outputs

demonstrating the result of the intended computation. Towards this aim, we present novel

algorithms for (1) constructing syntactic speci�cations by example, (2) constructing

lexical analyses by example, and (3) visualizing progress toward parser completion. We

instantiate these algorithms in two graphical development environments we have imple-

mented, Parsify and its successor Parsimony, whose central user interaction paradigm is

that of programming-by-example. Finally, via user study we demonstrate that non-expert

users indeed show signi�cantly better performance when using our system.

xvii

Chapter 1

Introduction

A parser, at its most fundamental level, is a program that extracts semantic

information from strings. Given the breadth of this de�nition, it should be no surprise

that parsers are ubiquitous in software systems. Most obviously, parsers serve a vital

role in the implementation of programming languages – the execution of a compiler or

interpreter, no matter how sophisticated, often starts with the conversion of strings, mere

sequences of bytes, into formats more amenable to further analysis and transformation.

Indeed, the development of parsing theory has been a keystone success in programming

language research, with a history that spans nearly half a century.

However, parsing is not simply the domain of programming language specialists.

With the explosive growth of computing, the role of parsing has also grown as a core

component in many of the software systems on which we rely. Consider only a small

selection of activities that at their core, employ parsers: importing a CSV �le into

spreadsheet software, converting a blog post in Markdown into HTML, extracting a query

string from a request URL, mining Apache server logs for anomalous behavior, inspecting

the �elds of a TCP packet, reading a con�guration �le on application startup, extracting

the arguments from a command-line invocation, or interpreting a JSON-formatted string

from a web-based API. One would be hard-pressed to �nd any sophisticated software

toolchain that does not need to extract information from strings.

1

2

Thus, parsing is a ubiquitous programming task that developers across a large

spectrum of domains need to understand to accomplish their goals. Parsing is no longer

a specialized discipline to be left to those with specialized skills (e.g., programming

language and compiler developers). It follows that we should seek to make parsing

accessible to a wider audience.

Unfortunately, the current state-of-the-art in parsing leaves something to be

desired when it comes to its accessibility. Despite decades of research on parsing, the

construction of parsers remains a painstaking, manual process that requires specialized

knowledge to avoid its subtle pitfalls. Consider Bison, one of the most popular parser

generators in common use today. The following is extracted directly from its user manual:

Bison parsers are shift/reduce automata. In some cases (much more
frequent than one would hope), looking at this automaton is required to
tune or simply �x a parser.– Bison 3.0.2 User Manual

Mainstream parser generators like Bison offer high performance but at the cost

of a steep learning curve: as Bison's developers admit themselves, an understanding of

shift/reduce automata theory is a necessary prerequisite. Although we mention Bison

�rst, Bison is not alone when in comes to its high learning curve.

More modern incantations of parser technologies such as ANTLR [59] and Pack-

rat parsing [21, 25] seemingly pave the way for more user-friendly syntax speci�cations,

but even so are subject to subtle gotchas requiring an understanding of their underlying

parsing strategies. For instance, ANTLR and other LL-based top-down parsers disallow

use of mutually left-recursive productions such asE ! T andT ! E + T, which arise

naturally when specifying the form of binary expressions and other recursive forms.

Although it is possible to rewrite such productions to avoid left recursion, the standard

algorithm for doing so leads to an explosion in the grammar [57]. Thus, in practice,

parser writers must search for a more concise refactoring – �nding such refactorings can

3

be an art, as better algorithms are not known.

Packrat parsers seek to simplify parsing by eliminating ambiguity viaordered

choice: the �rst alternate to match a string is always chosen. Unfortunately, use of ordered

choice introduces a particularly subtle quirk: a production such asA ! ajab, which we

might naturally expect to match either the stringa or ab, cannot in fact ever matchab

becausea is a pre�x of ab. Although a contrived example, this situation arises in practice

whenever one alternate can match the pre�x of another, such as when matchingif and

if-elseblocks.

Finally, the advent of ef�cient, generalized parsing strategies such as GLL [64]

and GLR [70] promise the ability to use any context-free grammar without restriction,

seemingly solving all our problems. Unfortunately, the price of using a generalized parser

is the freedom to specify grammars rife with ambiguities if left unchecked. The user

is left with the unenviable task of sifting through the resultingparse forests. Detecting

ambiguities, let alone �xing them, can be a dif�cult undertaking as the general problem

is undecidable. Given the numerous options, perhaps the most daunting task a non-expert

programmer must face is the decision of what parsing technology to even choose in the

�rst place: each has its own dark corners, and there is no clear-cut winner.

The dif�culty of constructing parsers has given rise to a particularly troubling

phenomenon dubbed “cargo cult parsing,” [53] wherein programmers eschew established

parsing technologies in favor of ad-hoc regular expressions, often copied directly from

web search results. Clearly, there is a need for tools to bridge the gap between established

parsing theory and actual practice.

Programming-by-example

Programming-by-example (PBE) is a promising approach to bridging that gap.

PBE is a programming paradigm in which end users synthesize a program by providing

4

sample inputs and outputs demonstrating the result of an intended computation. PBE has

been applied to problems from diverse domains including text editing [42], spreadsheet

table transformations [29], and data extraction from ad-hoc logs [20]. PBE presents an

attractive option for situations in which it is much easier to demonstrate correct behavior

(e.g., the correct parse of an example string), than to provide a speci�cation of that

behavior (e.g., a formal grammar speci�cation accepted by a parser generator).

1.1 Outline of this work

This dissertation argues that it is possible to make parsing more accessible by

using a combination of program synthesis and interactive visual feedback. To support

this argument, we build two graphical development environments, Parsify and Parsimony,

whose central user interaction paradigm is that of programming-by-example.

We �rst discuss Parsify, an interactive, graphical development environment for

incrementally synthesizing and testing parsers. In Parsify, the user does not write a single

line of code. Instead, the user provides input/output examples demonstrating the result

of a correct derivation with respect to a context-free grammar to be inferred. Parsify's

underlying synthesis engine then infers a re�ned grammar consistent with each given

example. The key component of this engine is an iterative algorithm for synthesizing

and re�ning the grammar one production and one example at a time. In response to any

such inference, Parsify's interface updates with immediate visual feedback displaying

the result of the change induced by that inference. For ease of use, Parsify provides a

graphical mechanism for specifying example parse trees using only textual selections –

the user need not manually input examples, which is both tedious and error-prone. We

show the effectiveness of Parsify in practice by conducting a series of case studies in

which a co-author successfully implemented the parsers for several input languages from

different domains, each in less than a day of work.

5

We next describe Parsimony, the spiritual successor to Parsify that makes several

key improvements over the previous system. In particular, Parsimony reframes parser

synthesis as satisfaction of a constraint system derived from user-provided examples.

In this more general setting, it is possible to solve for many examples simultaneously,

opening the door to the inference of much more complex solutions consisting of systems

of mutually-dependent productions, rather than just one production at a time. Using

this improved machinery, we design a parametric, extensible framework capable of

inferring entire subgrammars, such as that for algebraic expressions, with only the single

up-front cost of instantiating the framework with a concrete heuristic. Another major

improvement over Parsify is the ability to infer not only context-free grammars, but also

regular expressions for lexer de�nitions. We describe an algorithm for inferring such

regular expressions from a corpus of existing de�nitions and show that it has several

nice theoretical properties with regard to the size and quality of the inferred solution.

Finally, we conduct a controlled user study in which 18 participants with no previous

experience using either Parsify or Parsimony were asked to accomplish a series of parser

implementation tasks. The results of our study show that Parsimony is effective at

increasing the participants' speed at making progress, while also decreasing the number

of mistakes they make.

1.2 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides a

brief overview of language and parsing theory. Chapter 3 describes Parsify, our �rst

programming-by-example framework for synthesizing parsers. Chapter 4 describes

Parsimony, the spiritual successor to Parsify, and its various improvements. Chapter 5

surveys related work. Finally, Chapter 6 summarizes this dissertation and presents areas

for future progress.

6

1.3 Acknowledgements

This chapter, in part, is adapted from material as it appears in Leung, Alan;

Sarracino, John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings

of the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, 2015. The dissertation author was the primary investigator and author on this

paper.

This chapter, in part, is adapted from material currently being prepared for

submission for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for

Example-Guided Synthesis of Lexers and Parsers.” The dissertation author was the

primary investigator and author on this paper.

Chapter 2

Preliminaries

We begin with a preliminary overview of lexical analysis, context-free grammars,

parsing, and disambiguating �lters. The de�nitions in this chapter are referenced in

Chapters 3 and 4.

2.1 Lexical Analysis

2.1.1 Regular Expressions

A language is a set of strings and a string is a sequence of symbols. A regular

expression (regex) is an algebraic notation for de�ning a language, the syntax and

semantics of which is de�ned in Figure 2.1. We denote the language of a regexr by

L (r), and we denote the set of all regexes byR. We say regexr matchesstrings iff

s 2 L (r). For any regexr, there exists an equivalent deterministic �nite automaton

(DFA) D such that the language of the automatonL (D) = L (r). Language containment

L (D1) � L (D2) on DFAs is decidable. Thus8r1; r2 2 R: L (r1) � L (r2) is decidable.

2.1.2 Lexers

A lexer is a 3-tupleL = (S;G;Q) whereS is a set of symbols called terminals,Gis

a set of symbols distinct fromS called the alphabet ofL, andQ 2 [(S� R)] is a sequence

of lexer rules. Suppose(t ;s0) = LEX(L;s), wheres is a string of symbols drawn fromG,

7

8

r ::= a symbol
j rr concatenation
j r j r union
j r? optional
j r � Kleene closure
j r+ Kleene plus

L (a) = f ag
L (r1r2) = f ss0j s2 L (r1) ^ s02 L (r2)g

L (r1 j r2) = f s j s2 L (r1) _ s2 L (r2)g
L (r?) = L (r) [f eg
L (r �) = [¥

i= 0L (r i)
L (r+) = [¥

i= 1L (r i)

Figure 2.1. Syntax and semantics of regular expressions.

andLEX is as de�ned in the reference implementation depicted in Figure 2.2. Informally,

t is a string of terminals computed by greedily matching subsequences ofs with lexer

rules de�ned byL. s0 is the suf�x of s that could not be matched in this way. We sayL

fails to lexs if s06= e. If s0= e we say thatL lexess and thatt is thetoken streamof s

with respect toL. When clear from context, we omit reference toL and simply sayt is

the token stream ofs.

2.2 Context-Free Grammars

A context-free grammaris a tupleG = (N;S;P;S), whereN is a set of nonter-

minals,S is a set of terminals,Sis a designated start nonterminal, andP � (N � V �) is

a set of productions whereV = N [S is the set of symbols called thevocabularyof G.

Unless otherwise stated we will use the following notational conventions throughout this

dissertation: the upper case lettersA;B;C are nonterminals, the lower case lettersa;b;c

are terminals, the lowercase Greek lettersa ;b ;g;mare (possibly empty) strings of sym-

bols inV, the lettersw andt are (possibly empty) strings of terminals, and productions

9

1: function LEX(L;s)
2: let (�; �;Q) = L
3: (t ;s0) ([];s)
4: while js0j > 0 do
5: let (t;s00) = NEXT-TOKEN(Q;s0)
6: if t 6= ? then
7: (t ;s0) (t ++ [t];s0

[js00j:::])
8: else
9: return (t ;s0)

10: end if
11: end while
12: return (t ;e)
13: end function
14:

15: function NEXT-TOKEN(Q;s)
16: (t;s0) (? ;e)
17: for (t0; r) in Q do
18: let s00= MAX -MATCH(r;s)
19: if js00j > js0j then
20: (t;s0) (t0;s00)
21: end if
22: end for
23: return (t;s0)
24: end function

Figure 2.2. Reference lexer algorithm.MAX -MATCH(r;s) is the longest pre�x ofs
matched byr.

(A;b) 2 P are written equivalently asA ! b. We writeG(A) to mean the grammarG

with start nonterminal replaced byA.

2.2.1 String Indexing

String indices begin at 0. We writea [i] to mean the symbol at indexi of string

a . The notationa [i:::] denotes the suf�x ofa starting at indexi, and the notationa [i::: j]

denotes the substring ofa starting at indexi with length j � i. We writeja j to mean the

length ofa andab or a � b for concatenation ofa andb.

10

2.2.2 Derivations

We saya derivesb in a single step, writtena) b, if P contains a production

A ! msuch thata = gAd andb = gmd. Equivalently,) is the single-step derivation

relation such that(a ;b) 2) iff a derivesb in a single step. Let) � be the transitive

closure of) . We saya derivesb iff (a ;b) 2) � , and aderivationof b from a is a

sequencea) :::) b that witnessesa) � b.

2.2.3 Sentential Forms

A sentential formis a stringa 2 V � such thatS) � a . A sentenceis a sentential

form containing only terminals, and the language ofG, writtenL (G), is the set of all its

sentences. Aterminated derivationis a derivation whose �nal element is a sentence. A

full derivationis a terminated derivation whose initial element is the start nonterminalS.

We de�neDG(w) to be the (possibly empty) set of all full derivations of sentencew with

respect toG. We writeD(w) whenG is clear from context.

2.2.4 Parse Trees

A parse treeis a treet such that: (a) every internal node is labeled with a

nonterminal inN, (b) every leaf node is labeled with a terminal inS, (c) for every

internal node with labelA and children with labelsv1; :::;vn 2 V, there exists a production

A ! v1:::vn 2 P. For ease of textual representation, we depict trees as nested bracketed

forms[L t1 ::: tn], whereL is the node label, and each oft1; :::; tn are themselves either

bracketed forms or leaf labels. Theyield of t, writtenyield(t), is the string formed by

concatenating its leaf node labels (e.g.,yield([A [Ba]b]) = ab). Thesignatureof t, written

sig(t), is the production corresponding to the root oft (e.g.,sig([A [Ba]b]) = A ! Bb).

The root symbolof t, written rootSymbol(t), is the symbol at the root node oft (e.g.,

rootSymbol([A [Ba]b]) = A).

11

For any derivationd we can construct its corresponding parse treet by induction

on the elements ofd. Let tree(d) be the map from derivations to their parse trees. We

can now de�ne the set of parse trees of a sentencew as follows:

trees(w) = f tree(d) j d 2 D(w)g

which we extend to grammars naturally:

trees(G) =
[

w2L (G)

trees(w)

Index Trees

Theindex treêt of t is the tree isomorphic tot, with identical internal node labels,

but with its leaf labels replaced from left to right by consecutively increasing integers

starting from 0. For example, the index tree of[A [Ba]b] is [A [B 0] 1]. We de�neindex(t)

to be the map from parse trees to their index trees. Thespanof index treet̂, written

span(t̂), is the pair(i; j) of the labels of its leftmost and rightmost leaves, respectively.

Ambiguity

A sentencew is ambiguous with respect to Giff

9 d1;d2 2 DG(w): tree(d1) 6= tree(d2)

For brevity, we sayw is ambiguouswhenG is clear from context. A grammarG is

ambiguous iffL (G) contains an ambiguous sentence.

12

2.2.5 Parsers

A parserp is a function of typeG� S� ! P (trees(G) � S�) that given a grammar

G and stringw, returns a set of tuples, calledparses, with two elements: a parse treet for

some non-empty pre�x ofw, and a string suf�xw0such thatw = yield(t) � w0. In other

words, a parser does not necessarily consume its entire input string, and thus returns the

unconsumed portion. Afull parser p is a parser that always consumes its entire input or

not at all: the second element of each parse must be the empty string. (Note that this does

not mean a full parser always produces a parse tree for any string: if a stringw =2 L (G)

thenp(G;w) = /0.)

Generalized Parsers

A parserp is generalized iff

8w 2 L (G);w02 S� : p(G;w� w0) � trees(w) �
�

w0	

In other words, generalized parsers produce all possible parse trees for all inputs.

Real-world examples of generalized parsers are GLL or GLR-based parsers such as

instaparse [32] or Elkhound [50], respectively. In the remainder of this dissertation, let

pGLL be such a generalized parser.

2.3 Disambiguating Filters

We formalize disambiguating �lters as predicates on trees: the intuition is that

whenever the predicate evaluates to true, we say that the tree is invalid and removed

from the parser's output set. Disambiguating �lters provide a declarative approach

to removing ambiguity from syntax speci�cations without resorting to rewriting the

grammar's productions.

13

More formally, letp(t) be a predicate on trees, and letp be a parser. The

disambiguation of p with respect top, written pjp is de�ned as follows:

pjp(G;w) = f (t;w0) j : p(t) ^ (t;w0) 2 p(G;w)g

The composition of two �lters is simply disjunction:(p1 � p2)(t) = p1(t) _ p2(t); we lift

disambiguations to sets of �ltersP naturally:

pjP (G;w) =

8
<

:
(t;w0) j : (

_

p2P

p(t)) ^ (t;w0) 2 p(G;w)

9
=

;

2.3.1 Associativity Filters

Associativity �lters rule out a common form of ambiguity that arises when

there exists a sentential formA
 A in which two valid derivations areA) � A
 A) �

a
 b
 A) � a
 b
 g andA) � A
 A) � A
 b
 g) � a
 b
 g. The underlying

problem is that the two derivations induce trees of different shape:[A [A a
 b]
 [A g]]

and[A [A a]
 [A b
 g]], respectively. We de�ne here a constructor for left-associativity

�lters that given a set of productionsR, returns a �lter that rejects trees containing

non-left-associative uses of any production inR:

fpL(R) = l t:9 t02 nodes(t):
8
>><

>>:

Wn
i= 1

�
sig(t0) 2 R^ sig(ti) 2 R

�
if t0= [A t0:::tn]

false otherwise

In words, left-associativity �lters reject any tree in which a parent and a child in non-

leftmost position each have a signature inR. Analogously, right-associativity �lters do

so for non-rightmost positions, and non-associativity �lters simply disallow any child

14

from sharing its parent production. The following are the analogous de�nitions for

right-associativity and non-associativity �lters, respectively.

fpR(R) = l t:9 t02 nodes(t):
8
>><

>>:

Wn� 1
i= 0

�
sig(t0) 2 R^ sig(ti) 2 R

�
if t0= [A t0:::tn]

false otherwise

fpN(R) = l t:9 t02 nodes(t):
8
>><

>>:

Wn
i= 0

�
sig(t0) 2 R^ sig(ti) 2 R

�
if t0= [A t0:::tn]

false otherwise

2.3.2 Priority Filters

We now de�ne simple priority �lters based on a relative priority between two

productions.

fp> (rh; r l) = l t:9 t02 nodes(t):
8
>><

>>:

sig(t0) = rh ^
Wn

i= 0sig(ti) = r l if t0= [A t0:::tn]

false otherwise

Priority �lters reject any tree in which a child's production has lower priority than

its parent's.

15

2.3.3 Consistency

Because �lters are simply predicates on trees, it is possible that a composition

of �lters gives rise to a trivially satis�able predicate
�
p(t) _ p0(t)

�
$ true. Such a

composition rejects all trees (e.g., consider the composition of two �lters that specify

left- and right-associativity of the same operator). In this case, we say the set of �lters is

inconsistent, and otherwiseconsistent.

2.3.4 Filter Speci�cation Syntax

Having established the semantics of disambiguating �lters, we now describe the

corresponding syntax.

Associativity Filter Syntax

The following two syntactic forms are two different ways to specify a left-

associativity �lter of one production:fpL(f A ! bg). To specify right-associativity

or non-associativity, we replaceleft with right or nonassoc, respectively.

left { A ! b }

A ! b { left }

To specify a left-associativity �lter over multiple productions, we use the following

syntax, which corresponds to the �lterfpL(f A1 ! b1; A2 ! b2; :::; An ! bng).

left { A1 ! b1 A2 ! b2 ::: An ! bn }

The forms forright andnonassocare immediately analogous.

16

Priority Filter Syntax

The following syntactic form speci�es the priority �lterfp> (A1 ! b1 ; A2 ! b2).

A1 ! b1 > A2 ! b2

For syntactic clarity, a sequence of such forms may be enclosed in apriorities block.

Enclosure in apriorities block has no effect on the semantics of the enclosed �lters.

priorities {

A1 ! b1 > A2 ! b2

A3 ! b3 > A4 ! b4

:::

An� 1 ! bn� 1 > An ! bn

}

2.4 Acknowledgements

This chapter, in part, is adapted from material as it appears in Leung, Alan;

Sarracino, John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings

of the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, 2015. The dissertation author was the primary investigator and author on this

paper.

This chapter, in part, is adapted from material currently being prepared for

submission for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for

17

Example-Guided Synthesis of Lexers and Parsers.” The dissertation author was the

primary investigator and author on this paper.

Chapter 3

Parsify

This chapter presents Parsify, our �rst instantiation of programming-by-example

in the context of parser construction. To achieve a high-level of interactivity and user-

accessibility, we architect Parsify to adhere to the following three design principles:

• We should minimize the amount of manual coding asked of the user.

• The user should have intuitive, real-time feedback in response to incremental

changes to the parser.

• The user should be able to explore the design space of possible parser implementa-

tions easily and quickly.

To achieve these principles, Parsify presents an exploratory interface in which

the user poses examples that induce the shape of productions in the underlying grammar

being inferred. These examples are presented in the form of text selections (i.e., using a

mouse) in an editor window presenting the �le the user wishes to parse. The user then

examines the result of each inference step visually, as Parsify presents an overlay with

colored regions (and corresponding parse trees) that are continuously updated to re�ect

each inference. In particular, ambiguities are presented immediately after the offending

production has been inferred, allowing the user to either (a) ask Parsify to automatically

18

19

synthesize a disambiguating strategy, or (b) undo the last inference and proceed along

another path to avoid the ambiguity.

This chapter covers both the user interaction model and the underlying algorithms

developed to implement the Parsify development environment. To show the usefulness of

Parsify as a development tool, we additionally discuss the results of several case studies

in which we used Parsify to implement parsers for a variety of languages. In summary,

this chapter details the following contributions:

1. We present a novel application of programming-by-example to the domain of

parsers for context-free languages.

2. We present techniques and algorithms for ef�ciently visualizing progress, inferring

productions, and synthesizing disambiguating �lters by example, including novel

uses of generalized parsers andA� -search.

3. We evaluate our approach's effectiveness via case studies: we have generated

parsers for a test suite consisting of Verilog modules, Apache logs, Tiger programs,

and SQL queries.

3.1 Overview

We begin with a series of examples illustrating how a user might employ Parsify

to implement the parser for a small untyped functional language. As we layer additional

features into the concrete syntax we will see how Parsify is able to handle various practical

dif�culties that arise during parser development. The example is kept very simple for the

purpose of exposition. Our tool can actually handle much more complicated languages

and grammars, as described in our evaluation in Section 3.3. Also note that for the

purpose of exposition, we describe features using textual descriptions where possible,

although the actual implementation of Parsify provides a fully graphical user interface.

20

Figure 3.1.The Parsify user interface: (a) File View, (b) Legend, (c) Label Box, (d) Label
Button, (e) Parse Tree Pane, (f) Resolution Pane, and (g) Negative Label

3.1.1 User Interface Overview

Figure 3.1 shows a sample view of the Parsify user interface with several features

highlighted. We now brie�y describe each feature. The File View (a) and Legend (b)

together show parsing progress on the current �le: each color represents a syntactic

category (i.e., nonterminal), as described shortly. The Label Box (c) and Label Button (d)

allow the user to annotate substrings in the �le with labels. The Parse Tree Pane (e) shows

the parse tree at the current cursor location in the File View. The Resolution Pane (f) is

used to resolve ambiguities. As we progress through our example, each feature will be

explained in further detail.

3.1.2 Basic Inference

To start de�ning a parser for a simple functional language, the user �rst constructs

a �le with the following arithmetic expressions:

1 + 2 ;

21

3 * 4 - 5 ;

12 + x + 19 ;

Every Parsify session begins with default prede�ned rules that encode basic tokens

such as integers and alphanumeric identi�ers, along with the standard assumption that

whitespace is a discarded token separator. Using these default rules, Parsify colorizes

various substrings that can be derived from the built-inident or numeral rules, where

uncolored regions represent substrings that cannot yet be derived from any rule in the

grammar:

1 + 2 ;

3 * 4 - 5 ;

12 + x + 19 ;

The above colorization is our textual representation of the UI mechanism shown in the

File View of Figure 3.1. The user's �rst interaction is to “teach” Parsify that a literal

numeral is a form of expression. To do this, the user selects the substring2 in the File

View, typesexpr in the Label Box, and then clicks on the Label Button. This instructs

Parsify to apply the labelexpr to the selected string2, which causes Parsify to infer a new

production to add to the grammar:expr ! numeral. Whenever making an inference,

Parsify immediately recolors its output to represent the change. In particular, the �rst

line now becomes1 + 2 to re�ect the fact that the substrings1 and2 can be derived

from the new production forexpr . Notice that there now exist two valid colorizations

for the substring1 (and likewise2), as they can be derived from either of rulesexpr and

numeral – in such cases, Parsify prefersexpr as it corresponds to the “more general”

production (we informally de�ne the more general production as the one higher in the

parse hierarchy – we defer to Section 3.2 a formal de�nition). Following the same

procedure, the user can likewise select the identi�erx on the third line and apply label

22

expr , from which Parsify infersexpr ! ident and produces the following colorization

in which all identi�er and numerals are correctly parsed as expressions.

1 + 2 ;

3 * 4 - 5 ;

12 + x + 19 ;

3.1.3 In�x Expressions

The user now proceeds to binary in�x expressions by applying labelexpr to the

substring1 + 2, which allows Parsify to infer the new productionexpr ! expr +

expr .

Associativity

At this point, the user has unwittingly introduced an ambiguity into the grammar,

a concrete example of which is found on line 3. Parsify immediately detects that line 3 has

an ambiguous parse and visually depicts it with a red dashed underline:12 + x + 19.

The ambiguity results because theexpr production just introduced allows for both left-

associative and right-associative parses:[12 + x] + 19 and12 + [x + 19] . It is in

this situation that existing parser generators such as Bison or ANTLR would require

some modi�cation to the syntax speci�cation to remove the offending construct. Parsify

shields the user from performing such modi�cations manually by simply presenting both

parse trees visually and asking the user to choose the correct one. The different parse

trees are shown one at a time in the Parse Tree Pane, as shown in Figure 3.1, with Next

and Prev buttons to browse through the different trees, and a Resolve Ambiguity button

to resolve the ambiguity using the currently displayed tree. The Parse Tree Pane of

Figure 3.1 is precisely in the middle of such an ambiguity resolution phase. Let's assume

the user intends+ to be a left-associative operator, thus choosing the left-associative parse

23

tree. To implement this preference, Parsify makes use of disambiguating �lters to remove

the unwanted parses. More speci�cally, in this case Parsify automatically synthesizes

theleft-associativity �lterexpr ! expr + expr {left} , which disallows derivation of

trees with formexpr + [expr + expr] . The �lter is displayed in the Resolution Pane

at the bottom of the UI, as shown in Figure 3.1.

Priority

Now the user proceeds similarly for the* and- operators, teaching Parsify the

productionsexpr ! expr * expr andexpr ! expr - expr by applying the label

expr to substrings3 * 4 and3 * 4 - 5 in sequence. This exposes a new ambiguity

evidenced on line 2,3 * 4 - 5 , due to the fact that no precedence has been speci�ed

between the* and- operators. Parsify presents two valid parse trees,[3 * 4] - 5

and3 * [4 - 5] , from which the user chooses the �rst: the* operator should bind

tighter than the- operator. Parsify is able to synthesize apriority �lter that disallows

derivation of trees that give- higher precedence than the* operator:expr ! expr *

expr > expr ! expr - expr . Note that this is not the only �lter that discriminates

between the two parses. Another valid �lter that disallows the second parse tree would

beleft { expr ! expr * expr ; expr ! expr - expr} , which speci�es that

the* and- operators are left-associative with respect to one another. This is the reason

for displaying the actual �lter at the bottom of the UI in the Resolution Pane, as shown in

Figure 3.1. If the proposed �lter is not the one the user intended, Parsify provides the

option of rejecting the suggested �lter by clicking the red box marked X. The synthesis

algorithm then proceeds to search for another �lter that also satis�es the user's preference

of parse tree. In the above example, Parsify would �rst present the priority �lter. If the

user rejects this �lter, Parsify's next suggestion would be the left-associativity �lter.

24

3.1.4 Function De�nitions

The user now adds functions to the language. To begin, the user appends to the

current �le some examples of function de�nitions.

fun square x = x * x ;

fun area w h = w * h ;

Notice that some of the colors are incorrect: in particular, it appears thefun

keywords are incorrectly identi�ed asexprs. Of course, this is to be expected because

we have not given Parsify any indication that the sequence of characters “fun ” should be

treated any differently than other identi�ers.

Negative labels

To inform Parsify of the mistake, the user can applynegative labelsin the Parse

Tree Pane against the labeling on both keywords. The user does this by clicking on the

nodes in the parse tree whose labeling is wrong, and then clicking on the red box that

appears next to the node. An example of this mechanism being applied to anexpr label

is shown at (g) in Figure 3.1. In response to the negative labels, Parsify now re�nes its

output:

fun square x = x * x ;

fun area w h = w * h ;

This is almost, but not quite what the user wants – the function names and formal

parameters have been identi�ed asexprs as well, but the desired syntax restricts them to

be bare identi�ers. Thus we apply negative labels against theexpr label on all offending

substrings, resulting in the following:

fun square x = x * x ;

fun area w h = w * h ;

25

Generalization

Now the user applies the labelfundef to each of the two lines above. If Parsify

follows the process described so far, it would produce two basic productions of the form

fundef ! ` fun ' ident ident = expr ;

fundef ! ` fun ' ident ident ident = expr ;

Although these productions handle the given program, they preclude function

de�nitions that have greater than 2 parameters. Thus, Parsify detects such redundant

productions and infers the generalization

fundef ! ` fun ' ident+ = expr ;

in which an arbitrary number of parameters is permissible.

3.1.5 Function Calls

Now let us turn our attention to the last feature the user will add: syntax for

function calls. As in OCaml or Haskell, the user wishes a function call to take the form

of expressions separated by whitespace. The user adds one last example to the �le, an

expression containing a function call:

y * area x y + y - z ;

Unfortunately, this colorization is quite far from the user's desire. It seemsy

* area has been parsed as anexpr even thougharea should be the beginning of the

function callarea x y. The root cause, of course, is that we have not provided an

example of a function call to Parsify, so it does not know to treatarea x y as a new

kind of expression.

The user provides 3 negative labels to tell Parsify that it has incorrectly colored

various parts of our expression:

26

y * area x y + y - z ; ! negate y * area

y * area x y + y - z ; ! negate y + y - z

y * area x y + y - z ; ! negate y + y

y * area x y + y - z ;

Now the user selectsarea x y and applies labelcall , thenexpr , to re�ect that

a call is a kind of expression.

y * area x y + y - z ; ! apply c a l l : area x y

y * a r e a x y + y - z ; ! apply expr : area x y

At this point, Parsify correctly colors the full expression but also reveals an

ambiguity: y * area x y + y - z . There are 9 valid parse trees for this string, but

the intended parse groups subexpressions to the left and gives function calls highest

precedence:

[[[y * [area x y]] + y] - z]

After the user chooses the intended parse tree, Parsify is able to synthesize the

following set of disambiguating �lters,

left {

expr ! expr + expr

expr ! expr - expr

}

expr ! call > expr ! expr * expr

which specify that the+ and- operators are left-associative with respect to one another,

and that function calls have higher precedence than* , as expected.

3.1.6 Challenges

To achieve this level of interaction, we address several challenges:

27

1. What is a concise, natural way of presenting partial progress to the user?Although

we experimented with many representations, we found the most natural represen-

tation was that of acoloring in which different nonterminals of the grammar

correspond to different colors, and colored regions are “as big as possible.”

2. How do we achieve performance capable of supporting interactive use?The

interface would be unusable if the user were forced to wait long periods of time

between colorings. Our solution employs a greedy algorithm for generating colored

labels based on ranking ofpartial parsesgenerated by a GLL parser.

3. How can we synthesize disambiguating �lters in a more principled way than brute

force? Even with a small parse tree, the number of possible disambiguations

can grow exponentially. Our solution formulates synthesis as an instantiation of

A� -search to avoid unlikely candidates.

Section 3.2 details our solutions to these challenges.

3.2 Algorithm

In this section we describe the user interactions and core algorithms employed by

Parsify for inferring context-free grammars. We formalize the model of user interaction

by de�ning a core set of operations as transitions betweensession statesthat represent a

snapshot of the system's state at any point in time. Then, we de�ne various user-visible

actions as compositions of these operations.

3.2.1 Session State

Intuitively, a session stateencapsulates a hypothesis for the grammar and set

of disambiguating �lters inferred from examples seen so far. After any user operation,

this hypothesis is updated to re�ect new information. A session states is a tuple

28

(G;P;M;w;C) whereG is a grammar,P is a set of disambiguating �lters,M is a set of

labels (thenegative labelsof s), w is the text we wish to parse (a string of terminals in

the alphabet ofG), andC is acoloringonw.

A label is a tuple(A; i; j) 2 N � N � N. That is, a label contains a nonterminal

together with a start index (inclusive) and end index (exclusive) that index into the string

w. The set of all labels isL. A coloring C � L is simply a set of labels. The intuition

is that each label in a coloring corresponds 1-to-1 with a single colored region in the

interface: our interface graphically presents a different color for each nonterminal. For

example, if(expr ;3;10) 2 C, then Parsify colors the seven character substring, starting

at index 3, with the color corresponding toexpr .

3.2.2 Operations

The following 5 atomic operations comprise the building blocks for user-facing

interactions in Parsify:

1. DRAW: compute a new coloring.

2. ANNOTATE: accept a new label.

3. GENERALIZE: generalize an existing production.

4. NEGATE: reject an existing label.

5. RESOLVE: synthesize a new disambiguating �lter.

In particular, each action performed by the user maps to asequence of operationsas

follows:

1. Apply Label:ANNOTATE ! GENERALIZE ! DRAW

2. Reject Label:NEGATE ! DRAW

29

3. Disambiguate:RESOLVE! DRAW

Note that we intentionally omit two auxiliary features of our interface from the

formalism: (a) visualizations of parse trees, which are just visual sugar for the underlying

parse trees, and (b) red dashed underlines under ambiguous regions, which are applied as

a postprocessing step on the editor view after generating a coloring.

We now de�ne the semantics of each atomic operation as functions from session

state to session state. We use the notationJOKs to denote the result of executing operation

O on states . We de�ne the initial session state to bes0 = (G0; /0; /0;w; /0), wherew is

the string being parsed andG0 is an initial grammar containing only prede�ned, basic

productions for tokens such as identi�ers and numbers. To ease exposition, we make

the simplifying assumption that inputs contain no contiguous region of more than one

whitespace symbol, although as previously mentioned, our actual implementation handles

arbitrary whitespace by discarding whitespace at token boundaries.

3.2.3 Draw

Our system relies crucially on presenting colorings that correspond to likely

sentential forms in the language being parsed. To do this, we de�ne a comparison

functionbetterthat prefers parses according to the following metric: (a) prefer parses

that consume more text, and (b) when the yield of two parse trees are of the same length,

prefer the tree that subsumes the other. Subsumption is determined by constructing

a preorderv �
G on the nonterminals of the grammar such that treet subsumes tree

t0 iff rootSymbol(t0) v �
G rootSymbol(t) ^ rootSymbol(t) 6v�G rootSymbol(t0). Intuitively,

A v �
G B if there may exist a parse tree with root symbolB that contains a node with

symbolA. Formally, letG = (N;S;P;S). We de�ne v �
G as the transitive closure of

binary relationv G, whereA v G B iff A = B_ (B ! a Ab 2 P). We can then sort parses

according tobetterand choose the root symbol of the highest rated parse tree to be part

30

1: function COLOR(s)
2: let (G;P;M;w0;_) = s
3: let (N;_;_;_) = G
4: C /0;w w0;n 0
5: while jwj > 0 do
6: let X = f (t;w0) j
7: 9 A 2 N: (t;w0) 2 pGLLjP (G(A);w) ^
8: 8t̂ 2 nodes(index(t)) :LABEL (t̂;n) =2 Mg
9: if X 6= /0 then

10: let (t;w0) = �rst (sortBy(better;X))
11: C C [f LABEL (index(t);n) g
12: w w0;n n+ jyield(t)j
13: else
14: w w[1:::];n n+ 1
15: end if
16: end while
17: return C
18: end function
19:

20: function LABEL (t̂;n)
21: let (i; j) = span(t̂)
22: return (rootSymbol(t̂); i + n; j + 1+ n)
23: end function

Figure 3.2. TheCOLOR algorithm.

of a member of the new coloring (in the case of ties, we simply choose one).

TheCOLOR function that actually computes a new coloring is a simple greedy

algorithm that performs a linear scan, accepting the best parse found at each examined

position. The algorithm is shown in Figure 3.2.

With COLOR de�ned, we can now de�ne the operationDRAW, which simply

threads a new coloring into the session state:

JDRAWK(s = (G;P;M;w;C)) = (G;P;M;w; COLOR(s))

An important consideration is that it is possible for the computed coloring to

31

be incorrect, in the sense that the user does not agree with the label assigned to some

part of the text. (Recall from Section 3.1.4 that this occurred whenfun keywords were

incorrectly identi�ed as instances ofexpr .) In such cases, it is important that the user be

permitted to inform Parsify that it has made a mistake. TheNEGATE operation, which we

de�ne next, allows the user to do exactly that.

3.2.4 Negate

The NEGATE operation is the user's mechanism for specifying that a coloring

is incorrect. In particular, negation of a label tells Parsify that in subsequentDRAW

operations, (a) that label cannot appear in a coloring again, and (b) no parse tree whose

subtrees induce the negated label may be considered when computing a new coloring.

Line 8 of functionCOLOR performs this check. The de�nition of theNEGATE operation

is then almost trivial: we simply add the negated label to the set of negative labelsM in

the session state.

JNEGATE(A; i; j)K(s = (G;P;M;w;C)) =

(G;P;M [
�

(A; i; j)
	

;w;C)

Returning to our running example, consider the situation from Section 3.1.4 in

which the user wished to tell Parsify that the substring “fun ” at indices 0 through 3 was

incorrectly identi�ed to be anexpr . In the UI, the user applied a red box to the offending

parse tree node, which caused the interface to immediately refresh with a corrected

coloring. Under the hood, Parsify actually performed the operationNEGATE(expr ;0;3),

followed immediately by aDRAW operation to regenerate a new coloring respecting the

new constraint.

32

1: function GEN-PROD(s ;A; i; j)
2: let (_;_;_;w;C) = s
3: idx i;b []
4: while idx < j do
5: let X = f (A0; i0; j0) 2 C j idx = i0^ j0< jg
6: if jXj = 1 then
7: let f (A0;_; j0)g = X
8: b b � A0

9: idx j0

10: else if jXj = 0 then
11: b b � w[idx]
12: idx idx+ 1
13: else// unreachable
14: end if
15: end while
16: return A ! b
17: end function

Figure 3.3. TheGEN-PRODalgorithm.

3.2.5 Annotate

When the user selects a region of text and applies a name to the selection, the

underlying operation is anANNOTATE operation that generates a new production using

the selected region as a template for the body of the production. The algorithm for

generating this production, calledGEN-PROD, is shown in Figure 3.3.

Informally, GEN-PROD scans the selected range from left to right looking for

labels inC that �t within the selected range. Intuitively, in the user interface this

corresponds to a textual selection in the File View – for every colored region contained

within the selection, Parsify adds the corresponding nonterminal to the production body

being inferred (Lines 6–9). If Parsify �nds a terminal that is uncolored, then Parsify

simply appends the terminal to the inferred production body (Lines 10–12). The branch

body on Line 13 is unreachable because its corresponding branch predicate is satis�ed

whenjXj > 1, which can only happen when the coloring contains overlapping labels.

33

However,COLOR never produces overlapping labels due to the increment on Line 12 of

functionCOLOR.

The de�nition of ANNOTATE generates a new production withGEN-PROD, then

simply threads the production into the grammar.

JANNOTATE(A; i; j)Ks = (G0;P;M;w;C)

where(G;P;M;w;C) = s

(N;S;P;S) = G

P0 = P[
�

GEN-PROD(A; i; j)
	

G0 = (N [A;S;P0;S)

3.2.6 Generalize

TheGENERALIZE operation provides Parsify the ability to expand the grammar

by permitting arbitrary repetition of strings in a controlled fashion. For this purpose,

we extend our grammars with a standard meta-syntax for repetitions borrowed from

Extended Backus-Naur Form (EBNF):a + (anda �) for 1 or more (and 0 or more)

repetitions ofa . Note that these constructs do not increase expressive power beyond

context-free grammars and can be desugared into forms without explicit repetition [26].

Given two production bodies, the functionGEN, shown in Figure 3.4, attempts

to �nd a compatible partitionof both bodies. Informally, a compatible partition of

two stringsa ;b 2 V � is a 1-to-1 correspondence between non-empty substrings of

a andb such that corresponding substrings are either (a) exactly equal, or (b) both

consistent with some number of repetitions of the same sequence of symbols, possibly

separated by occurrences of a single delimiter symbol. For example, supposea =

BAAC;C andb = BAAAC. Then a compatible partition ofa andb would beB;AA;C;C

34

andB;AAA;C becauseB equalsB, AAequalsAAAmodulo repetitions, andC;C equals

C modulo repetitions with delimiter “;”. The result of generalization would be a new

bodyBA+ C(;C)� . The algorithm uses brute force search of all partitions with 4 or fewer

non-empty substrings to �nd a compatible partition.

The algorithm uses two helper functions: (a)REP-EQ returns nonterminalA if

its two arguments match regex patternA+ (the same nonterminal repeated 1 or more

times), (b)DELIM -EQ returns the pair(A;b) if its two arguments match regex pattern

A(bA)� (the same nonterminalA repeated 1 or more times, with repetitions separated

by the delimiterb), and both functions return? if no match is found. We also use two

functional programming primitives:zip, which given two sequences returns a sequence

of pairs of corresponding input elements, andconcat, which concatenates the elements

of a sequence.

With the speci�cs de�ned, we can now de�ne ourGENERALIZE operation, which

takes a nonterminal and two production bodies to be generalized, and replaces the

corresponding productions with a generalized variant if found:

35

1: function PARTITION(a ;n)
2: return f D j concat(D) = a ^ j Dj = n ^

8d 2 D: jdj > 0g
3: end function
4:

5: function COMPATIBLE(Da ;Db)
6: return 8(a ;b) 2 zip(Da ;Db):a = b _

REP-EQ(a ;b) 6= ?_ DELIM -EQ(a ;b) 6= ?
7: end function
8:

9: function EXTRACT(a ;b)
10: if a = b then
11: return a
12: else ifREP-EQ(a ;b) 6= ? then
13: return regex REP-EQ(a ;b)+

14: else ifDELIM -EQ(a ;b) 6= ? then
15: let (A;b) = DELIM -EQ(a ;b)
16: return regex A(bA)�

17: else returna
18: end if
19: end function
20:

21: function GEN(a ;b)
22: for 1 � n < 5 do
23: for (Da ;Db) 2 PARTITION(a ;n) � PARTITION(b ;n) do
24: if COMPATIBLE(Da ;Db) then
25: g []
26: for (a 0;b0) 2 zip(Da ;Db) do
27: g g� EXTRACT(a 0;b0)
28: end for
29: return g
30: end if
31: end for
32: end for
33: return ?
34: end function

Figure 3.4. TheGEN algorithm.

36

JGENERALIZE(A;a ;b)Ks

=

8
>><

>>:

(G0;P;M;w;C) if GEN(a ;b) 6= ?

s otherwise

where(G;P;M;w;C) = s

(N;S;P;S) = G

P0 = P� f A ! a g

� f A ! bg

[
�

A ! GEN(a ;b)
	

G0 = (N;S;P0;S)

Now let us return to the running example from Section 3.1.4, in which we

wished to generalize two productions specifying the syntax for function de�nitions. The

compatible partition discovered byGEN is depicted visually in the following tables: each

column of the upper table contains a corresponding pair of substrings, and the �nal row

depicts the generalized production body returned byGEN:

`fun' ident ident = expr

`fun' ident ident ident = expr

`fun' ident+ = expr

3.2.7 Resolve

The RESOLVEoperation enables Parsify to synthesize a set of disambiguating

�lters given an ambiguous sentencew and its correct parse treet. The goal is to �nd a set

37

of �lters that reject all but the correct parse tree on the example. We use the following

strategy for de�ning and searching the space of possible disambiguations:

1. Identify a set of possible �ltersP tpl based on the structure of the provided ambigu-

ous example,

2. de�ne a heuristic cost functionh that assigns a score to each candidate drawn from

P (P tpl),

3. de�ne thesuccessorsrelation on candidates, and

4. performA� -search [30] on the directed graph induced bysuccessorsto �nd a

low-cost set of �lters that correctly disambiguates the example.

We wish to minimize the number of candidates considered in order to reduce the

space of �lters to search. The main intuition is that even though a parse tree may be

large, we consider only those subtrees whose yield is ambiguous, which may be small.

Let T = f t02 nodes(t) j yield(t0) is ambiguous w.r.t.G(rootSymbol(t0))g. We de�ne a

candidate set of productionsRambig= f sig(t) j t 2 Tg[f sig(t0) j t 2 T ^ t02 children(t)g,

and fromRambig construct our template setP tpl as follows:

P tpl = f fp> (r; r0) j r; r02 Rambig^ r 6= r0g [

f fpL(f r g); fpR(f r g); fpN(f r g) j r 2 Rambigg [

f fpL(f r; r0g); fpR(f r; r0g); fpN(f r; r0g) j

r; r02 Rambig^ r 6= r0g

In other words,P tpl consists of all possible priority and associativity �lters that mention

two or fewer productions inRambig. Although this may seem like a large set, we rely on

heuristic-guided search to avoid evaluating many poor candidates.

38

1: function HEURISTIC(P;t)
2: let ps= pGLLjP (G(rootSymbol(t)) ;yield(t))
3: if :9 (t0;s0) 2 ps: t0= t then
4: return ¥
5: end if
6: if jpsj = 1 then
7: return 0
8: else
9: return min(jpsj;10)

10: end if
11: end function

Figure 3.5. TheHEURISTIC algorithm.

For our heuristic, we wish to assign higher cost to candidates that are less likely

to correctly disambiguate the given example. Our heuristic is simple: prefer candidates

that invalidate more parse trees, but reject a candidate if it rejects the correct tree. More

precisely, we de�ne aHEURISTIC function that takes a candidate set of disambiguating

�lters P, a correct treet, and returns the score forP. The algorithm is shown in Figure 3.5.

There are three particular features to note: (a) on line 4, we return¥ if the resulting

disambiguation removes the intended parse tree from the set of parses, because the

candidate cannot possibly be a solution, (b) on line 7, we return 0 if the candidate has

rejected all but the intended parse tree, meaning this candidate is indeed a solution, and

(c) on line 9, we otherwise cap our heuristic cost at 10 such that we need not enumerate

parse trees beyond the �rst 10 returned by the parser (the parser computes parse forests

lazily).

To de�ne the successors of a candidateP, the naive approach would be to simply

append each member ofP tpl to P in turn. In other words, a successor is just a candidate

with one more �lter than before. Unfortunately, with such a construction many of the

successors would beinconsistentand thus useless. Thus, we de�ne a more re�ned notion

of successor that excludes any inconsistent candidate. The algorithm for computing the

39

1: function SUCCESSORS(P)
2: for p 2 P tpl do
3: let P0= MERGE-FILTERS(P [f pg)
4: if : CONSISTENT(P0) then
5: next
6: else
7: yield P0

8: end if
9: end for

10: end function

Figure 3.6. TheSUCCESSORSalgorithm.

successors of candidateP, calledSUCCESSORS, is shown in Figure 3.6. We de�ne helper

functionMERGE-FILTERS(P) as follows:

1. If there exist inP two priority �lters p> (r; r0) andp> (r0; r00), then add the �lter

p> (r; r00) to P if it does not already exist.

2. If there exist inP two priority �lters p> (r; r0) andp> (r00; r000) and also an associa-

tivity �lter pL(R);pR(R), or pN(R) such thatr0; r002 R, then add the �lterp> (r; r000)

to P if it does not already exist.

3. If there exist inP two left-associativity �lterspL(R) andpL(R0) such thatR\

R0 6= /0, then replace them inP with pL(R [R0), essentially combining two

left-associativity �lters into one. Do analogously for right- and non-associativity

�lters.

4. Repeat the previous steps until no more additions can be made.

The intuition behindMERGE-FILTERS(P) is that it is natural to view priorities and

associativities as a partially ordered set of sets of operators. As such, steps 1 and 2

transitively close the priorities, and step 3 expands equivalence classes of associativities.

Finally, the functionCONSISTENT(P) simply checks that a set of �lters is consistent. In

40

particular, it checks that (a)P contains no cycle of priority �lters such thatp> (r; r0) and

p> (r0; r), and (b)P contains no con�icting associativity �lterspX(R) andpY(R0) such

thatX 6= Y ^ R\ R06= /0.

We are now ready to de�ne our instantiation ofA� -search.A*- SEARCH(P;t)

employs a graph search algorithm that in each iteration picks the candidateP0 in its

frontier with minimum value ofd(P0) + HEURISTIC(P0; t), whered is a measure of

distance from the initial candidate. In our case the initial candidate is simply the existing

set of disambiguation �ltersP from our session state. The distance metricd is a

weighted suml + 2r + 3n+ 1:5p wherel ; r;n; p are the number of additional productions

in left-associativity, right-associativity, non-associativity, and priority �lters, respectively.

Intuitively, this choice of coef�cients encodes the fact that left-associativity is most

preferred, followed by priority, right-associativity, and non-associativity �lters.

On every iteration, if the chosen candidateP0has heuristic score 0 we know it is a

possible disambiguation for our example and we add it to the set of solutions. Otherwise,

we add the successors ofP0to our frontier and continue. Crucially, because the user may

reject a given candidate,A*- SEARCHreturns a lazily computed sequence of solutions by

continuing to search for more candidates, even when a solution has already been found.

JRESOLVE(t)K(s = (G;P;M;w;C)) = (G;P [P0;M;w;C)

whereP0 is the �rst element of A*-SEARCH(P;t) accepted by the user, otherwise /0.

3.3 Evaluation

We evaluate Parsify along two dimensions: (a)versatility : can Parsify handle

the complexities of a wide variety of languages from different language paradigms? and

(b) usability: how easy is the tool to use, and what are best practices to make usage

41

Table 3.1.Benchmark suite.

Language Paradigm Source LOC
Verilog Imp HLS tools 10,184
Tiger Imp/Func textbook 362
Apache [small] Ad-hoc online repo 1,546
SQL [small] Query census-postgres1,492
Apache [big] Ad-hoc NASA 3.5M
SQL [big] Query census-postgres228K

as effective as possible? To examine these questions, we ran several case studies in

which a co-author built several parsers from benchmarks drawn from different languages.

To demonstrate versatility, our chosen benchmarks come from different programming

paradigms and styles. Table 3.1 shows the different benchmarks for which we constructed

parsers. For each, we also list the language paradigm, the source of the benchmark, and

the number of lines of code. We divide our benchmarks into two sets: (a) the �rst 4,

which we call thebreadthset, (b) and the last 2, much larger benchmarks, which we call

thedepthset. During each case study, we used Parsify with examples drawn from the

breadth set to build a parser for the given language. Then, in the case for Apache and

SQL, the constructed parsers were applied to the the depth set, without modi�cation, to

test for over�tting.

We now describe each of the languages in our benchmark set.Verilog is a popular

hardware description language used to de�ne digital circuits. Our goal was to parse the

Verilog output of two high-level synthesis tools: Xilinx Vivado and C-to-Verilog, which

compile C code to Verilog. The benchmarks come from an unpublished suite.Tiger is

a textbook imperative language [4] with functional idioms (e.g., control statements as

expressions).Apachelogs come from the Apache web server. The small dataset was

downloaded from an online repository [56], and the large dataset comes from a public

NASA repository [6]. Log entries encode the requesting server, requested URL, server

return code and size of the reply. Our goal was to perform a deep parse (e.g., parse

42

URLs fully by matching CGI parameters separately, rather than parsing URLs as opaque

strings). SQL is a ubiquitous database query language. We picked SQL because its

syntax is drastically different from above languages. The queries were mined from the

census-postgres open source project [12].

Figure 3.7. Progression plots for Verilog (top left), Tiger (top right), Apache Logs
(bottom left), and SQL (bottom right).

3.3.1 Versatility

We were able to build parsers to successfully parse 100% of each breadth bench-

mark. Additionally, with no modi�cation to the parsers generated for Apache and SQL,

we were able to achieve 97% and 86% coverage, respectively, on the large Apache and

SQL benchmarks in our depth set. We measured coverage by splitting input �les into

individual top-level entities (a single log entry for Apache, and a single query for SQL).

We then ran our inferred parsers against each entity. We report coverage as the number

of lines successfully parsed in this way.

To diagnose the lower coverage achieved for the SQL benchmark, we examined a

randomly sampled selection of code that failed to parse to determine the reason for failure.

In all cases, we determined that the cause for failure was the presence of a syntactic form

that did not exist in our smaller breadth sets. After allowing Parsify to learn on one more

43

example, we were able to achieve 97% coverage on the large SQL benchmark.

Language features across the four benchmarks included: for and while loops;

named records; function declarations and calls; conditionals (e.g., branches and switches);

regular expressions; and various unary, binary, and ternary arithmetic operators.

3.3.2 Usability

To understand the level of interaction required to build a parser, we usepro-

gression plots. A progression plot shows the cumulative progress made as a function

of number of UI actions taken. In particular, the x-axis of a progression plot shows

the number of actions taken, where an action is any single UI interaction: applying

a label, applying a negative label, resolving an ambiguity, undoing, or redoing. For

each x-value, a progression plot displays thecumulative progress: the percentage of

all the code in the project that is fully and successfully parsed after the �rstx actions.

To compute progress, rather than count the number of characters parsed, we count the

positionsbetween charactersthat are part of some coloring. We do this for an important

reason: if we were to count characters, then suppose two separate colored regions (labels)

were directly adjacent. This would appear to achieve 100% when in fact a better parse

would encompass both. Figure 3.7 shows the progression plots for each of our breadth

benchmarks: Verilog, Tiger, Apache, and SQL. Note that we are able to build each of

these parsers with fewer than 400 UI interactions.

Completion Time

A second important metric is the amount oftimetaken to reach a solution. We

used Verilog as the �rst large case study, and not surprisingly it uncovered a variety of

bugs in the implementation of Parsify. As a result, our experiment with Verilog was

interspersed with several bug �xes and restarts, so we do not have an accurate measure of

44

how much time Verilog took. On the other hand, the parsers for Tiger, Apache and SQL

took between 6-8 hours. The author and his collaborators had prior experience building

manually written parsers for Verilog and Tiger: those prior efforts took nearly an order of

magnitude longer than the corresponding Parsify effort – in fact much of the inspiration

for Parsify is the wish to avoid previous dif�culties.

To better understand where the time is spent when using Parsify, we analyzed

recordings of each case study. A particularly interesting observation is that in some

cases, an ambiguity was encountered that could not be resolved by synthesizing a

disambiguating �lter. The only course of action was to undo several actions. Because

undo operations are counted as actions in our progression plots, these situations often

correspond to some of the “plateaus” we see in the progression plots, during which no

progress is made. After carefully analyzing the underlying reasons, we have formulated

several “best practice” guidelines for building parsers even more quickly by avoiding

these problems. Completion times were reduced signi�cantly when following these

practices, with times ranging from 30 minutes to 2 hours for each of the 4 languages.

3.3.3 Best Practices

Build bottom-up

It is important to employ a bottom-up approach when building parsers with

Parsify. Consider two nonterminals, one of which always occurs higher in parse trees

than the other (e.g.,stmt andexpr , wherestmt always occurs higher thanexpr). In this

case it is best to give as many examples as possible forexpr , making it as complete as

possible, before moving tostmt . This ordering is preferable because it allows detection

and resolution of ambiguities earlier, on smaller examples, which makes it easier forboth

the human and Parsify. For instance, consider a simple ambiguity that occurs on a small

expression when adding a new operator. This ambiguity is simple to visualize for the

45

user, and easy to resolve for Parsify because the search space is small. In contrast this

ambiguity becomes much more dif�cult to resolve if the ambiguity is discovered after

statements have been parsed, because the ambiguity could occur deeply nested in a large

statement. This not only makes the parse tree hard to visualize, but it also makes it harder

for Parsify to resolve, because the search space of possible disambiguations can be much

larger.

Consistency for Generalization

We have determined two “styles” for using Parsify's generalization feature. Par-

sify works best when the user consistently uses one or the other, butnot both, for the

same syntactic entity. Consider the simple example of parsing literal arrays: suppose

we have two arrays[a] and[a ,b] , where the expressionsa andb have already been

correctly identi�ed asexprs. There are two styles we can use, depending on whether we

use an intermediate nonterminal or not.

Style 1: don't use an intermediate nonterminal for sequences.Apply labelarray

to [a] and[a ,b] , and Parsify generalizes thearray rule to produce: “[”, followed by a

comma-separated list ofexprs, followed by “] ”.

Style 2: use an intermediate nonterminal for sequences.We start by applying

labeleseq to botha,b anda, at which point Parsify generalizes theeseqrule to match a

comma-separated sequence ofexprs. The two expressions we are trying to parse have

now been recolored and look as follows:[a] and[a,b] . At this point, we just need to

label one of these two expressions asarray .

Both styles work individually, but Parsify does not generalize well when the two

styles are mixed for a given syntactic category (in the above example, arrays).

46

3.4 Acknowledgements

This chapter, in full, is adapted from material as it appears in Leung, Alan; Sar-

racino, John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings of

the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, 2015. The dissertation author was the primary investigator and author on this

paper.

Chapter 4

Parsimony

In the previous chapter, we presented Parsify, our initial programming-by-example

(PBE) system for constructing parsers by example. Recall the three overarching design

principles of Parsify. First, we should minimize the amount of manual coding. Second,

the user should receive real-time feedback. Third, we should allow the user to quickly

iterate on designs. Despite the merits of this design philosophy and its embodiment

in Parsify, over the course of the dissertation author's accumulated experience, several

limitations became apparent. This chapter addresses several of Parsify's limitations

via new synthesis algorithms and their implementation in a second PBE system called

Parsimony. Here we enumerate these limitations and the key algorithmic insights for

overcoming each.

Lack of Lexer Capability

Despite the fact that lexical analysis is a key component of the parsing work�ow,

Parsify had no ability to infer lexer de�nitions (i.e., named regular expressions). Thus, the

user either had to write a custom lexer prior to using Parsify, or hope that that Parsify's

internally hardcoded lexer was suf�cient.

Parsimony implements a new lexer synthesis engine that synthesizes lexer de�ni-

tions from example tokens. Our key insight is that there already exists a large corpus of

47

48

useful, curated regular expressions in the real world: the lexers for existing programming

languages. We frame the task of synthesizing lexers as the task of querying a data

structure called anR-DAG built from these existing lexers. In contrast to previously

known approaches to regular expression inference [3], our approach guarantees that any

synthesized rule will berealistic rather than synthetic, in the sense that it is known to be

useful in the context of a real-world language implementation.

Sensitivity to Order

Parsify was highly sensitive to the order in which the user presented examples

– the underlying algorithm employed a heuristic to decide the most likely candidate

production corresponding to a labeled example – unfortunately, this heuristic prematurely

threw away all but the highest scoring candidate from consideration, even when other

candidates might have been applicable. In cases where this heuristic was incorrect, the

user's only path forward was, unintuitively, to �rst undo several steps, then present

examples in a different order so as to induce different heuristic decisions. The root cause

of this behavior was two-fold: (a) Parsify always synthesizes productions one example at

a time, thus enforcing a strict ordering on inference steps; and (b) after each inference,

Parsify cannot retain multiple candidates simultaneously.

To address this issue, we present a fresh perspective on a classical parsing al-

gorithm �rst described over 50 years ago, the Cocke-Younger-Kasami (CYK) parsing

algorithm [75]. We propose a novel graph data structure built from CYK tables called

theCYK automatonthat ef�ciently keeps track of a large set of candidate productions,

rather than just one. Crucially, because the number of candidates can explode with

the length of the example, CYK automata ef�ciently encode an exponential number of

candidates with worst-case space only linear in the length of the example. In this setting,

we then frame synthesis as graph transformations on automata in which candidates are

49

only removed from consideration when no longer applicable, thus avoiding premature

loss of candidates. This formulation also provides a natural way to solve for multiple

user-labeled examples simultaneously: bycomposingmultiple CYK automata, one for

each example.

Ad-hoc Generalization

Parsify had ad-hoc support for generalizing from instances of common patterns

such as unbounded repetitions (e.g., Kleene plus), but the mechanism was specialized for

repetitions, and it was not obvious how we might extend the approach to other important

patterns.

With Parsimony, we make the key insight that many design patterns can in fact

be encoded by specially constructed CYK automata. Detecting an instance of a design

pattern then reduces to a standard graph intersection between two CYK automata: one

representing the pattern and one representing the example. We demonstrate the generality

of this new approach by implementing the repetition patterns from Parsify and more

(such as recursively de�ned in�x algebraic expressions), simply by de�ning a CYK

automaton for each pattern, along with a schema for the productions to generate based

on that pattern.

This chapter covers each of the key improvements described above. In addition,

we examine the utility of Parsimony over a wider audience: in contrast to the case study

approach presented in Chapter 3, we perform an evaluation of Parsimony's effectiveness

via a controlled user study in which 18 programmers previously unfamiliar with Parsi-

mony were asked to complete a series of parser implementation tasks using experimental

and control variants of Parsimony. The results of that study are described in this chapter.

In summary, this chapter covers the following contributions:

1. We describe a lexer synthesis algorithm that converges on useful lexer de�nitions

50

with only a small number of examples.

2. We present a parser synthesis algorithm that frames synthesis as satisfaction of

constraint systems derived from user-provided examples; in this vein, we formalize

the notion of parser synthesis constraint systems, then de�ne a novel data structure,

the CYK automaton, for ef�ciently solving these systems.

3. We present an extensible framework for detecting and generalizing from examples

of common parser design patterns, thus allowing for synthesis of tricky productions

that are correct by construction.

4. We present the results of a controlled user study in which 18 Computer Science

students, previously unfamiliar with Parsimony, were asked to complete two

realistic parser implementation projects using either Parsimony or a control variant

stripped of synthesis features. Our results show that Parsimony improves user

outcomes as measured by both time to completion and number of mistakes.

4.1 Overview

Parsimony's user interface is shown in Figure 4.1. Its basic functionality includes

standard features ubiquitous amongst integrated development environments: (a) a cus-

tomizable workspace consisting of resizable panes and draggable tabs, (b) a �le browser

for viewing and managing the contents of a project, and (c) text editors for viewing and

editing �les. Parsimony also borrows the graphical features �rst shown in Parsify, such

as parse tree visualizations and live coloring of text �les based on grammar changes.

Unique to Parsimony, however, are two tabs for interacting with the lexer and

parser synthesis engines:

51

Figure 4.1. The Parsimony user interface.

1. The Token Labels Taballows the user to synthesize regular expressions and lexer

rules by providing example strings and their intended tokenization.

2. The Solver Tabprovides rich functionality for synthesizing and previewing gram-

mar productions derived from strings labeled with syntactic categories (i.e., nonter-

minals).

A Parsimony session starts with a project containing a lexer de�nition �le and

parser de�nition �le (both of which start empty), and one or more sample text �les

containing source code examples of the language being implemented. The user interacts

with the Token Labels Tab to add lexer rules to the lexer de�nition, interacts with the

Solver Tab to add productions to the parser de�nition, and iterates on the design until all

sample �les parse correctly according to the user's requirements. This iterative process is

guided by Parsify-style colored boxes (i.e., colorings), that Parsimony draws over text

editor panes to show current progress: as with Parsify, the size, shape, and placement of

these boxes indicate how much of the �le is covered by the rules written so far.

In the remainder of this section, we illustrate the Parsimony work�ow and its

salient features by walking through a series of scenarios demonstrating how we might

employ Parsimony to develop the lexer and parser for a toy language called Fuyu. A

52

sample Fuyu program is shown in Figure 4.2.

def a = 2; def alpha = a;
def gamma1 = (a+-88)^(a*0.3);
def Delta-2 = [1e12, 6.022e+23, 12.2E-10];

Figure 4.2. Sample of Fuyu source code:1.fuyu .

4.1.1 Constructing the Lexer

To begin, we open the lexer de�nitionfuyu.t and sample source1.fuyu shown

at left and right in Figure 4.1, respectively. Since we have just started,fuyu.t is empty.

The goal will be to �ll fuyu.t with lexer rules for tokenizing1.fuyu .

Keywords

We start by synthesizing a lexer rule for thedef keyword via following three steps:

(a) click the Token Labels Tab to activate it, (b) select the substring "def " in 1.fuyu , then

(c) add it as an example token by clicking the blue plus sign that appears. The Token

Labels Tab then updates its contents, as shown in Figure 4.3. In particular, the left-hand

drop-down shows the list of examples added (only one so far), and the right-hand side

shows a candidate rule that Parsimony has inferred from that example:DEF = def. This

rule meets our requirements, so we add it to our lexer de�nition by clicking the button

labeledAdd to token de�nitions.

Figure 4.3. Token Labels Tab after adding the "def " example token.

53

Figure 4.4. Text editor after accepting inferred lexer ruleDEF = def.

Figure 4.5. Legend after adding new lexer rule forDEF.

Parsimony immediately recompiles the lexer and colors1.fuyu in response. The

coloring, shown in Figure 4.4, tells us two important facts.

First, the colored box surrounding "def " tells us that "def " matches the lexer rule

we just de�ned, as indicated by the Legend, shown in Figure 4.5. Just like a chart legend,

the Legend gives the correspondence between colors and names. Second, the red error

box tells us that no lexer rule yet matches the character "a". Intuitively, the error box's

location tells us how far into the �le the lexer was able to construct the token stream. To

�x this error, we will need to de�ne a rule for identi�ers like "a".

Identi�ers

The DEFrule we have just de�ned is the simplest sort of rule – it matches ex-

actly the string "def ", which seems easy enough to write by hand without needing to

synthesize it. Identi�ers, however, are a more complex sort of token whose lexer rule

is correspondingly more challenging to specify. In particular, suppose our language

speci�cation dictates that identi�ers consist only of alphanumeric and hyphen characters;

additionally, the �rst character must be alphabetical. We want Parsimony to automatically

synthesize a lexer rule that meets that speci�cation.

54

Figure 4.6. Token Labels Tab after adding �ve examples of theIDENTtoken.

We start by adding the example identi�er "a" to the Token Labels Tab. Based on

this single example, Parsimony infers the candidate ruleALC = a, which is disappoint-

ingly speci�c: we are trying to “teach" Parsimony what identi�ers look like, but one

example is simply not enough for Parsimony to make a good inference.

To ask Parsimony to infer a rule from agroup of examples, rather than just one,

we can drag and drop multiple samples into their own folder. Shown in Figure 4.6 is a

folder labeledIDENTinto which we have added �ve example identi�ers; the right-hand

side of the �gure shows that Parsimony has inferred two different candidate rules from

the examples contained in that folder.

To gain some intuition about the meaning of these rules, we can ask Parsimony to

show us some examples of strings matched by each rule. When we click theExample

Stringsbutton, Parsimony updates the view with the strings shown in gray. It is clear

from them that the �rst rule permits the presence of underscores, which violates our spec-

i�cation. The second candidate rule, however, seems to be correct based on inspection

of the example strings and the rule's de�nition, so we accept the inference. As before,

Parsimony recompiles the lexer and colors1.fuyu .

At this point, based on the coloring we can proceed as before: synthesize a new

rule for the next failing token, which happens to be the "=" token. Since the basic scenario

55

is the same as for keywords, let us assume for the sake of exposition that lexer rules for

the remaining basic symbols (e.g.,+,- ,* ,{} , etc.) have been de�ned in the remainder of

this section.

Numeric Literals

Numeric literals in Fuyu take the form of integers or �oating point numbers

speci�ed in decimal or scienti�c notation. The desired lexer should assign such literals

the token nameNUMBER. Shown below are the six numeric literals from1.fuyu .

2 -88 0.3 1e12 6.022e+23 12.2E-10

This is the most complex lexical form in Fuyu, and it would likely take a seasoned veteran

of lexical analysis to correctly implement its regular expression on the �rst try:

\-?(0|[1-9][0-9]*)(\.[0-9]+)?([Ee][+\-]?(0|[1-9][0-9]*))?

Parsimony synthesizes this regular expression from just those six examples. In fact, it

is the only candidate Parsimony chooses to show the user because there exists no other

expression of equivalent or better quality in its corpus of training data. Parsimony uses

a notion of quality based on how speci�cally the candidate matches the examples: for

instance, the regular expression.* also matches the examples, too, but it is clearly much

more general, and thus an inferior candidate – we de�ne this notion of quality formally in

Section 4.2. After accepting the inference, our lexer is complete.1.fuyu , with all tokens

properly colored, is shown in Figure 4.7.

Figure 4.7. 1.fuyu with all tokens properly colored.

56

4.1.2 Constructing the Parser

With lexer in hand, we proceed to the parser. In this section, we will successively

augmentfuyu.g with productions for the various syntactic constructs of Fuyu.

Simple Assignments

We start the process by posing an example of an assignment statement. We do

this by (a) selecting "def a = 2; ", (b) typing "assign " into the textbox that appears,

then (c) clicking the Solve button. The Solver Tab responds by presenting the following

stylized candidate production, depicted in Figure 4.8, that Parsimony has synthesized

from the example.

Figure 4.8. Candidate synthesized from one example.

The production is close to correct, but it has the tokenNUMBERhardcoded in the

fourth position, which precludes other kinds of non-numeric expressions. To �x this,

suppose we pose another example: "def alpha = a; ". The Solver Tab now responds

with apair of candidates, shown in Figure 4.9.

Figure 4.9. Candidates synthesized from two examples.

At this point, it should be clear that Parsimony needs to be taught thatNUMBER

and IDENTare instances of a common syntactic category (nonterminal) representing

expressions:expr . To do this, we pose to the Solver both "2" and "a" as examples of

expr . The result is a set of three candidates, shown in Figure 4.10.

57

Figure 4.10.Candidates synthesized from four examples.

Figure 4.11.Parse tree visualizations.

The �rst two candidates match our expectation: to parseNUMBERandIDENTtokens

as expressions, add the two productionsexpr ! NUMBERandexpr ! IDENT. The third

candidate has a special form. It indicates that the we canchoose between two optionsfor

the second position: eitherIDENTor expr . Parsimony gives us this option because it has

determined that either choice is consistent with the examples we have provided.

To help us make a decision, Parsimony shows us parse tree visualizations corre-

sponding to each option, as depicted in Figure 4.11. In particular, if we chooseexpr , we

will get the top parse tree. If we chooseIDENT, we will get the bottom parse tree. Suppose

that according to our speci�cation, only variable names (i.e.,IDENTtokens), can appear

on the left hand side of an assignment. To achieve this, we choose theIDENToption

58

before accepting the solution. All our interactions with the Solver thus far have the net

effect of augmentingfuyu.g with the three productionsexpr ! NUMBER, expr ! IDENT,

andexpr ! DEF IDENT EQ expr SEMI. Parsimony automatically recompiles the parser,

then colors1.fuyu accordingly. The result is shown in Figure 4.12. Note that the �rst

two assignments are now surrounded by colored boxes corresponding to the nonterminal

assign .

Figure 4.12.1.fuyu after accepting solution.

Algebraic Expressions

From the appearance of line 2, we know that our parser cannot yet handle

the right hand side of the assignment togamma1, so we pose a newexpr example:

"(a+-88)�(a*0.3) ". Because algebraic expressions are ubiquitous in programming

languages, Parsimony contains a powerful heuristic mechanism for detecting such syn-

tactic constructs. Based on this heuristic, Parsimony presents the user with a graphical

wizard that asks (a) if this is indeed an algebraic expression, (b) for each operator

(+,*,�) whether that operator is left- or right-associative, and (c) what should be the

order of precedence for those operators. Based on the answers to these questions,

Parsimony constructs an idiomatic subgrammar for parsing expressions of this kind. Sup-

pose we answer using the standard mathematical order of operations. The synthesized

subgrammar then comprises four productions with associativity annotations:expr !

expr + expr {left} , expr ! expr * expr {left} , expr ! expr � expr {right} ,

andexpr ! (expr) . Additionally, Parsimony synthesizes the following precedence an-

notation:priorities { expr ! expr � expr > expr ! expr * expr ; expr ! *

59

expr > expr ! expr + expr ; } . Under the hood, these annotations compile to disam-

biguating �lters that enforce a policy in the parser such that parse trees obey the speci�ed

associativity and precedence hierarchy. Parsimony recolors1.fuyu in accordance with

this new set of inferences. The result is shown in Figure 4.13.

Figure 4.13.1.fuyu after accepting inferences forexpr .

Array Literals

The last syntax left to handle is the array literal, shown on line 3. We pose "[1e12,

6.022e+23, 12.2E-10] " as an example of anarray . Parsimony contains a built-in heuris-

tic to detect delimited repetitions, another ubiquitous language design pattern. Based on

this heuristic, Parsimony presents a graphical wizard con�rming whether (a) each element

of the list is aNUMBERor expr , (b) the separator between elements is a comma, and (c) the

list is surrounded by a pair of square brackets. After con�rming, Parsimony synthe-

sizes an idiomatic subgrammar for delimited lists ofexprs: array ! [-array-inner] ,

-array-inner ! expr , -array-inner ! expr COMMA -array-inner.

Figure 4.14.1.fuyu after accepting inferences forarray .

The new coloring, shown in Figure 4.14, shows that the array literal parses

correctly. However, the parent assignment is still not surrounded by a box forassign .

The reason is that we never told Parsimony that an array literal is also a form ofexpr .

60

The �x is simple: we pose "[1e12, 6.022e+23, 12.2E-10] " as an example of

anexpr , then accept the inferenceexpr ! array , shown in Figure 4.15.

Figure 4.15.Inferred candidateexpr ! array .

Fuyu Program

Finally, we de�ne a start symbol for the parser. We simply pose the entirety of

1.fuyu as an example of aprogram. Parsimony detects that this is yet another example

of a ubiquitous pattern – this time, an undelimited list ofassign instances. When we

con�rm this inference, Parsimony generates two productions:program ! assign and

program ! assign program . Our parser is now complete.

4.2 Lexer Synthesis

In this section we formalize Parsimony's algorithms for synthesizing lexers.

4.2.1 A Data Structure for Sets of Regular Expressions

In this section we describe our data structure, called anR-DAG, for representing

sets of regular expressions. The structure is designed to support ef�cient queries utilized

by our regex inference algorithm as described in Section 4.2.2.

R-DAG De�nition

We �rst de�ne R-DAG*, a partially ordered set (poset) with properties similar to

anR-DAG. We then de�neR-DAG via reduction from anR-DAG*.

De�nition 1 (R-DAG*) . An R-DAG* is a posetD � = (R;< �) such that

1. R� R is a set of regexes,

61

2. < � � (R� R) is the language containment relation overR such that8r1; r2 2

R:L (r1) � L (r2) , (r1; r2) 2 < � ,

3. R contains a designated regex> D such thatL (> D) is the set of all strings, and

4. 8r1; r2 2 R:L (r1) = L (r2)) r1 = r2.

By 2 we have thatr1 < � r2 if and only if the language ofr1 is strictly contained in

the language ofr2. By 3 we have thatRalways has a topmost regex> D . By 4 we have

thatR contains no two redundant regexes whose languages are identical. AnR-DAG*

can be viewed equivalently as a directed acyclic graph such thatR is its vertex set and

< � is its edge set. For ease of exposition we will viewR-DAG*s as graphs or posets

interchangeably as is convenient in the sequel.

De�nition 2 (R-DAG). Let D � = (R;< �) be anR-DAG*. We de�ne its corresponding

R-DAG D = (R;<) to be the transitive reduction ofD � . That is,D is the graph with the

same vertex setRasD � , but with edge set< , the unique minimum size relation whose

transitive closure is< � .

From a practical perspective, we can view anR-DAG as a database of regexes

such that the language containment relationship between regexes is stored explicitly in

the form of graph edges. Because of this structure, one may design graph algorithms

to ef�ciently answer questions of the sort “What is themost speci�cset of regexes that

match stringss1, s2, ...?" In this instance, “most speci�c" informally means that there

exists no other regex (in the database) with smaller language that could also match those

strings. We additionally would like this set to be thelargestset with this property, so

we know we are not missing out. The notions of “most speci�c" and “largest" are made

formal in the following section.

62

4.2.2 Regular Expression Inference viaR-DAG Queries

In this section, we de�ne theHORIZON query onR-DAGs: the purpose of this

query is to discover thelargest, yet most speci�cset of regexes that match a set of

example strings.

We start with some intuition. Suppose we have anR-DAG D = (R;<) and a string

s. First, we wish to �nd a set of regexesH � R such that every regex inH matches

s. Second, we requireH to be succinct: no two regexes inH should be related by< � .

Third, we requireH to be as large as possible without compromising quality: adding

any regex would violate succinctness, and replacing any regex would make it worse

(i.e., closer to> D). These three conditions are captured by the notions ofconsistency,

succinctness, andmaximality, de�ned formally here.

De�nition 3 (Consistent). Let S be a set of strings.H is consistent withS iff 8r 2

H ;s2 S:s2 L (r).

De�nition 4 (Succinct). Let D = (R;<). H is succinct with respect toD iff 8r; r02

H :r 6< � r0.

De�nition 5 (Maximal). Let D = (R;<). Let Sbe a set of strings.H is maximal with

respect to(D ;S) iff no regexr 2 Rexists such that:

1. r =2 H ,

2. 8s2 S:s2 L (r), and

3. 8r02 H :(r < � r0_ r06< � r).

De�nition 6 (Horizon). The setH is a horizon of(D ;S) iff H is consistent withS,

succinct with respect toD , and maximal with respect to(D ;S).

63

1: function HORIZON(D ;S)
2: W f> D g ; H /0
3: while jW j > 0 do
4: let r = removeAny(W)
5: let Rp = f r02 predecessors(D ;r) j 8 s2 S:s2 L (r0)g
6: if

�
�Rp

�
� > 0 then

7: W (W � r) [Rp
8: else
9: W W � r ; H H [f rg

10: end if
11: end while
12: return H
13: end function

Figure 4.16.TheHORIZON algorithm.

We now de�ne the queryHORIZON(D ;S), which computes the horizon of(D ;S).

The algorithm is shown in Figure 4.16. Intuitively,HORIZON maintains a worklistW

of vertices to inspect. The worklist initially contains only> D , the topmost regex that

matches any string, and is thus guaranteed to be reachable from any other vertex ofD . In

each iteration, we remove a regexr from the worklist and compute the set of predecessors

of r that match all strings inS. If such predecessors are found, we then add them to the

worklist and proceed to the next iteration. However, if no such predecessor exists, then

we have gone as far down the graph as possible (i.e., we have found themost speci�c

regex), so we add the current vertex to output setH . We continue this process until the

worklist is exhausted. At completion,H is a set of regexes that is consistent withS,

succinct with respect toD , and maximal with respect to(D ;S). In other words, it is the

horizon of(D ;S). Because each constituent regex is known to match every string inS, it

is a candidate for the body of a lexer rule forS. BecauseH is succinct with respect toD

and maximal with respect to(D ;S), we know there are no “better" candidates that we

have missed.

Theorem 1(Consistency). HORIZON(D ;S) is consistent with S.

64

Proof. We �rst prove the following loop invariant:8r 2 W;s2 S:s2 L (r).

Base case

On loop entry, the worklistW contains only> D , which is guaranteed to match

all strings.

Inductive step

On each iteration of the loop, a regex is added to the worklistW (line 7) only if it

belongs to the setRp. By construction, every member ofRp matches every string inS, as

guaranteed by the predicate8s2 S:s2 L (r0) on line 5. Thus, the invariant holds after

each iteration.

Since every regex added toH (line 9) is drawn fromW (line 4), our loop

invariant implies that every regex inH is guaranteed to match every string inS.

Lemma 1 (Descendant Matching). Let D = (R;<) be anR-DAG, s be a string, andr be

a regex in R. If s2 L (r), then for every descendant r0of r in D , s2 L (r0).

Proof. For every descendantr0 of r, we have thatr < � r0. By the de�nition of < � ,

L (r) � L (r0). Thus, ifs2 L (r) thens2 L (r0).

Theorem 2(Succinctness). HORIZON(D ;S) is succinct with respect toD .

Proof. Let H = HORIZON(D ;S). Suppose for contradiction that there existr; r02 H

such thatr < � r0. Then there must exist a pathp in D from r to r0such that every vertex

in p matchess (Lemma 1). However,r0 could not have been added toH unless it

had no predecessors matchings (lines 5-6). This implies thatp cannot exist, asp must

necessarily go through such a predecessor.

Theorem 3(Maximality). HORIZON(D ;S) is maximal with respect to(D ;S).

65

Proof. Let D = (R;<) andH = HORIZON(D ;S). Assume for contradiction that there

existsr 2 Rsuch that

1. 8s2 S:s2 L (r) and

2. r =2 H ^ 8 r02 H :(r < � r0_ r06< � r).

There are two cases to consider:

1. r was excluded fromH because at least one of its predecessorsr0also matchess.

If so, then some ancestor ofr must exist inH , which contradicts assumption 2.

2. r was never inspected (i.e., never added to the worklist), which implies there exists

no matching path from> D to r. By assumption 1 and Lemma 1, however, such a

path must exist, which is a contradiction.

4.2.3 Example of Token Inference

To better illustrate the connection betweenR-DAGs and inference, we now show

a small example. Note that although the example we use employs only a small cor-

pus of regular expressions, the actual implementation of Parsimony utilizes anR-DAG

constructed from a much larger corpus of thousands of regular expressions.

Consider the set of lexer rules shown in Figure 4.17. To reduce verbosity and im-

prove readability, we have written the lexer rules such that a reference to a terminal name

represents a substitution of the terminal's corresponding regex into the referencing body.

For example,HEX-LETTER | DEC-DIGITis shorthand for the regex[a-f]|[0-9] . We

have also used the common syntactic shorthand[abc] that desugars toa|b|c , as well as

the shorthand. that represents a single instance of any symbol.

66

(TOP; .*)

(HEX-LETTER; [a-f])

(OCT-DIGIT; [0-7])

(DEC-DIGIT; [0-9])

(HEX-DIGIT; HEX-LETTER | DEC-DIGIT)

(OCTAL; 0 OCT-DIGIT*)

(DECIMAL ; 0 | [1-9] DEC-DIGIT*)

(HEXADECIMAL ; HEX-DIGIT*)

(FLOAT; -? DECIMAL (\. DEC-DIGIT+)? ([Ee][+-]? DECIMAL)?)

Figure 4.17.Lexer rules for constructingR-DAG.

The R-DAG constructed from this set of of lexer rules is shown in Figure 4.18.

For ease of visualization, we have labeled each vertex with the terminal name of the

regex rather than regex itself. From the �gure, a few features are apparent. First, any two

elements connected by a path are also related by language containment. For example,

sinceOCT-DIGIT reachesFLOAT, we know that any string that matches theOCT-DIGIT

regex also matches theFLOAT regex. Second, the unique uppermost element of the

R-DAG is TOP. This corresponds to the designated element> D required by De�nition 1.

TOP is reachable from every element of theR-DAG, as expected, since theTOP regex

matches any string. Notice, also, a particular quirk of thisR-DAG: OCTAL is not an

ancestor ofDECIMAL , even though intuitively, we might think that every octal string also

looks like a decimal string. This turns out not to be true in this particular case because

theOCTAL regex in fact always expects a0 digit to appear as the �rst digit, whereas the

regex forDECIMAL also permits non-zero digits in that position.

Finally, Table 4.1 shows several examples of the horizons computed from sets of

example strings using thisR-DAG.

67

Figure 4.18.ExampleR-DAG constructed from lexer rules shown in Figure 4.17.

Table 4.1.ExampleHORIZON queries.

Example Strings Horizon
"0" OCT-DIGIT, OCTAL

"5" OCT-DIGIT

"8" DEC-DIGIT

"a" HEX-LETTER

"x" TOP

"-1.2 " FLOAT

"1e12" FLOAT, HEXADECIMAL

"0" "5" OCT-DIGIT

"0" "5" "8" DEC-DIGIT

"0" "5" "8" "a" HEX-DIGIT

"1e12" "a" HEXADECIMAL

"1e12" " -1.2 " FLOAT

4.3 Parser Synthesis

In this section we formalize Parsimony's algorithms for synthesizing parsers. We

begin with a preliminary overview of CYK parsing.

68

4.3.1 Preliminaries: CYK Parsing Algorithm

The Cocke-Younger-Kasami (CYK) parsing algorithm [75] is a dynamic pro-

gramming algorithm for computing whether a stringt is a member of the language of a

grammarG. In other words, it computes whethert has a full derivation with respect toG.

The crucial distinguishing feature of the CYK algorithm is that the algorithm constructs a

two-dimensional tableM that records, for every substringt 0of t , the set of nonterminals

that derivet 0. The algorithm is shown in Figure 4.19.

We describe the CYK algorithm informally here. We buildM from smaller

substrings oft up to larger ones. For each substring of length 1 at each indexi, (i.e.,

single tokens), we check whether some nonterminalA derives that token in a single step

via a unit rule of formA ! a. If so, we addA to the set at table elementMi;1. We do this

for every such nonterminal. Having examined every substring of length 1, we proceed to

those of lengthl = 2: for each length2 substringt 0at each indexj, we check whether

some nonterminalA0derivest 0 in a single step via a rule of the formA0! BC. To do

this, we try to splitt 0 into a pre�x and suf�x such thatM containsB for the pre�x and

C for the suf�x. If we �nd such a split, we addA0 to the set at table elementM j ;l . We

iterate this procedure for every nonterminal and for each value ofl from 2 up tojt j. At

termination, each element ofM is a (possibly empty) set of nonterminals that derive the

corresponding substring oft :

A 2 Mi;l () A) � t [i:::i+ l] (4.1)

To determine membership oft in L (G), we simply check whetherM0;jt j contains the

start symbol ofG. One important remark is that the algorithm makes use of a function

CNF(G) that we have not de�ned. The CYK algorithm as described requires the grammar

on which it operates to be in Chomsky normal form (CNF): every production must

69

either be of the formA ! a or A ! BC. Well-known algorithms exist for converting any

context-free grammar to CNF [26], so we omit the details here and simply take as a given

that we have access to the functionCNF(G) that takes an arbitrary context-free grammar

G and returns its CNF conversion.

1: function CYK(G; t)
2: let (�; �;P; �) = CNF(G)
3: for i in [0;jt j) do

4: Mi;1 =
n

A j A ! a 2 P ^ t [i] = a
o

5: end for
6: for l in [2;jt j] do
7: for j in [0;jt j � l] do
8: M j ;l = f A j 9 k:A ! BC2 P
9: ^ B 2 M j ;k

10: ^ C 2 M j+ k;l � kg
11: end for
12: end for
13: return M
14: end function

Figure 4.19.The CYK algorithm.

4.3.2 Parser Synthesis Constraint Systems

In this section, we make precise the parser synthesis problem by framing it as

satisfaction of constraints over labeled strings.

De�nition 7 (Parser Synthesis Constraint System). A parser synthesis constraint system

is a tupleC = (G;F;L) where

1. G is a grammar,

2. F = f t f1; t f2; :::; t fkg is a set of strings called�les with unique labelsf1; f2; :::; fk

called�le names, and

3. L is a set ofparse constraintsof form hA; i; l i f denoting a lengthl selection starting

at indexi into �le t f 2 F labeled with nonterminalA.

70

Let the notationG] P mean the grammarG augmented with additional produc-

tionsP. A solution to constraint systemC is a set of productionsP that satis�es the

formula:

8hA; i; l i f 2 L: M = CYK
�

G] P; t f
[i:::i+ l]

�
^ A 2 Mi;l

If P satis�es the above formula, we sayP satis�es C. Intuitively, then, the parser

synthesis problem is the task of �ndingP, a set of productions that allow us to derive

every constrained substring encoded byL.

Trivial Solutions

Note that there always exist trivial solutions to any parser synthesis constraint

system: for every constrainthA; i; l i f 2 L generate the productionA ! t [i:::i+ l]. In other

words, simply use each sequence of selected terminals as the production body. However,

such a solution is usually unpro�table, in the sense that it is unlikely to be the user's

intention. In the following sections, we describe our mechanism for �nding non-trivial

solutions.

4.3.3 A Data Structure for Sets of Candidate Productions

In this section we describe theCYK automaton, a data structure for ef�ciently rep-

resenting large sets of candidate productions. This data structure is a central component

of Parsimony's parser synthesis engine.

Intuition

Intuitively, a CYK table is simply a static record of the nonterminals that derive

each piece of a stringt being parsed. For example,M2;5 is the set of nonterminals that

derive the substringt [2:::7]. However, this is only one interpretation of the table. An

71

alternate perspective is that the table contains predictions about the set of productions

that we might add to our grammar to grow the language. Consider, for instance, that

we have the stringaband grammar with productionsA ! a andB ! b. We would then

have CYK tableM such thatM0;1 = f Ag, M1;1 = f Bg, andM0;2 = /0. Suppose that we

wish for ab to also belong to the language we are designing. What production should

we add to make it so? The CYK table has almost all the information we need to answer

that question. We could combine one element ofM0;1 with one element ofM1;1 to create

the sentential formAB. If we add the productionS! AB, we will have augmented the

language to include exactly the stringab. Note, however, that there are other productions

we could have added instead:S! aB, S! Ab, or S! ab. Even in this trivial case, we

see that there can be many such candidate productions. A CYK automaton is a data

structure for making explicit what the candidates are and for providing ef�cient queries

to compute those candidates.

De�nition 8 (CYK Automaton). A CYK automaton is a directed graph

Y = (I ;E; i0; I f ;U;L) whereI � Z� is a set of vertices,E � I � I is a set of edges,i0 2 I is

a designated start vertex,I f � I is a designated set of �nal vertices,U is a set of symbols,

andL is a map from edges inE to sets of symbols inU. We use the notationL [e7! X]

for the mapl x: if x = ethenX elseL (x).

Given a grammarG and stringt , we construct a CYK automaton via algorithm

BUILD -CYK-AUTOMATON, shown in Figure 4.20. Intuitively, each vertex of a CYK

automaton corresponds to a positionbetween tokens(e.g., 1 indicates the position between

the 0th and 1st token). An edge between verticesj andk corresponds to the CYK table

entryM j ;k� j : that is, the set of nonterminals ofG that derive the substringt [j :::k]. This set

is recorded via map entryL (j;k). Additionally, for every singleton edge(j; j + 1) (i.e.,

those that correspond to length 1 substrings), we also add toL the terminalt [j] occurring

72

1: function BUILD -CYK-AUTOMATON(G; t ; i0; i f)
2: let (N;S; �; �) = G
3: let M = CYK(G; t)
4: (I ;E;L) (f 0 � i � jt jg; /0; l x: /0)
5: for i in

�
i0; i f � 1

�
do

6: E E [f (i; i + 1)g
7: L L [(i; i + 1) 7! f t [i]g]
8: end for
9:

10: for i in
�
i0; i f

�
do

11: for l in
�
1; i f � i

�
do

12: if Mi;l 6= /0 then
13: E E [f (i; i + l)g
14: L L [(i; i + l) 7! L (i; i + l) [Mi;l]
15: end if
16: end for
17: end for
18: return (I ;E; i0; f i f g;N [S;L)
19: end function

Figure 4.20.TheBUILD -CYK-AUTOMATON algorithm.

at that position. By construction, any path between vertex0 and vertexjt j corresponds to

a set of sentential forms that derivet . That is, for a pathp = i0; i1; :::; in such thati0 is

the start vertex andin is a �nal vertex, its set of corresponding sentential forms is given

by the n-ary Cartesian product

L (i0; i1) � L (i1; i2) � ::: � L (in� 1; in) (4.2)

4.3.4 Parser Synthesis via CYK Automata

In this section, we progress through several descriptions of successively more

sophisticated mechanisms for solving parser synthesis constraint systems via CYK

automata, building from simple cases up to more complex cases. We motivate each

augmentation with an example demonstrating the limitation it overcomes. At the end

of this section, we will have arrived at the full algorithm used by Parsimony, dubbed

73

PARSYNTH-FULL.

Case 1: A Single Parse Constraint

We �rst consider synthesis constraint systems with only one parse constraint. Let

us revisit the example from Section 4.3.3, in which we have the stringab, a partially

implemented grammarG1 with productionsA ! a andB ! b, but wish forab to derive

from a new nonterminalS that has yet to be implemented. As we saw in Section 4.1,

to do this using Parsimony we simply highlight the textab, type the labelS into the

textbox that appears, then press the Solve button. Under the hood, this sequence of user

operations constructs the following parser synthesis constraint system:

C1 = (G1;F1;L1)

F1 = f abf1g

L1 = fhS;0;2i f1g

To solve this constraint system, our strategy will be to construct a CYK automaton for

the parse constraint inL1, then generate productions corresponding to the shortest path

through the automaton. Speci�cally, we construct the automaton for constrainthS;0;2i f1

with parameterst = ab; i0 = 0; I f = f 2g:

The shortest (and only) path is0;1;2. Taking the n-ary Cartesian product of edge

attributes along the path, as de�ned in (4.2), we haveL(0;1) � L (1;2) =

f A;ag � f B;bg = f (A;B); (A;b); (a;B); (a;b)g:

74

Figure 4.21.Candidate matrixSJf a;Agf b;BgK.

Each constituent tuple, when read from left to right, is the body of a production forS

that derivesab. That is, any such production is a solution toC1. Given the options, the

question is “which solution should we choose?" In the absence of more information,

Parsimony cannot answer this question. Rather than make an arbitrary choice, Parsimony

displays all the possibilities and leaves the choice to the user.

Candidate Matrices

To succinctly represent a potentially large space of choices, Parsimony uses a

graphical representation called acandidate matrix, an example of which is shown in

Figure 4.21.

The semantics of a candidate matrix is straightforward: thekth column of the

matrix shows all the symbols that may possibly occur at positionk in the corresponding

production body. The user must enable exactly one such symbol per column. The

sequence of enabled symbols, when read from left to right, gives us the corresponding

production. A candidate matrix succinctly visualizes a potentially large set of productions

that grows exponentially in the number of columns: a candidate matrix withk columns

andn symbols per column encodesnk productions. We denote byXJN1N2 :::NkKthe

candidate matrix withk columns such thatNj is the set of symbols in columnj, and

X is the left-hand side symbol. Figure 4.21 explicitly enumerates the four productions

encoded by the 2-column candidate matrixSJf a;Agf b;BgK.

Each production encoded by a candidate matrixM is called avaluationof M. To

75

1: function PARSYNTH/
1(C)

2: let (G; f t f g; fhA; i; l i f g) = C
3: let Y = BUILD -CYK-AUTOMATON(G; t f ; i; i + l)
4: return Y A

L (SHORTEST-PATH(Y; i; i + l))
5: end function

Figure 4.22.ThePARSYNTH/
1 algorithm.

construct candidate matrices, we de�ne the followingconstructor functionY X
L , which

given a path through a CYK automaton, constructs the corresponding candidate matrix

as follows:

Y X
L (i0; :::; in) = XJL(i0; i1) :::L (in� 1; in)K

We additionally de�ne the followingenumeration functionENUM, which given a candi-

date matrixM, returns the set of all valuations ofM = XJNjKn
j= 0:

ENUM(M) = f X ! x0x1:::xn j (x0;x1; :::;xn) 2 N0 � N1 � ::: � Nng

Algorithm PARSYNTH /
1

The algorithm just sketched, calledPARSYNTH/
1, is shown in Figure 4.22. The

primary lines of interest are lines 3-4 in which we construct a CYK automatonY then

construct and return the candidate matrix corresponding to the shortest path throughY.

Case 2: Non-Overlapping Parse Constraints

Algorithm PARSYNTH/
1 can only handle constraint systems with a single parse

constraint. As a �rst step towards generalizing our algorithm to handle multiple con-

straints, we consider the simplest case in which no two parse constraints overlap. Two

parse constraintshA; i; l i f andhB; j;ki f 0
overlapwhen

�
f = f 0� ^

�
f mj i � m< i + lg \ f n j j � n < j + kg 6= /0

�

76

1: function PARSYNTH/
2(C)

2: let (G; f t f j gn
j= 0;L) = C

3: eM /0
4: for hA; i; l i fk 2 L do
5: let Y = BUILD -CYK-AUTOMATON(G; t fk; i; i + l)
6: let M = Y A

L (SHORTEST-PATH(Y; i; i + l))
7: eM eM [f Mg
8: end for
9: return eM

10: end function

Figure 4.23.ThePARSYNTH/
2 algorithm.

where f = f 0 stipulates that both constraints reference the same �le, and the second

conjunct stipulates that both constraints reference some of the same indices into that �le.

A straightforward approach to handle this more general case is to construct more

than one candidate matrix – in particular, one per parse constraint. The revised algorithm,

PARSYNTH/
2, appears in Figure 4.23. Note that on line 7 we accumulate each additional

candidate matrix, then return the entire seteM on line 9.

Example

Suppose we have the following constraint systemC2, which models a grammar

where identi�ersid and numbers1 are forms of expressionsE, and the user has selected

and labeled two substrings "id = id " and "id = 1" with the nonterminalS(statements).

The synthesis task is to infer one or more productions forS.

C2 = (G2;F2;L2)

G2 = (f E;Sg; f id ;1;= g; f E ! id ;E ! 1g;S)

F2 = f id = id f1; id = 1f2g

L2 = fhS;0;3i f1;hS;0;3i f2g

77

PARSYNTH/
2(C2) = f M1;M2g

M1 = SJf E; id gf = gf E; id gK

M2 = SJf E; id gf = gf E;1gK

Figure 4.24.Solution toC2 via PARSYNTH/
2.

The computed solution is shown in Figure 4.24, where we have depictedM1 and

M2 textually at top and visually at bottom. In this situation, Parsimony would display

both candidate matrices in the Solver Tab and allow the user to interact with each. There

are two problems in this scenario: (a) Since the user provided parse constraints for only

one kind of syntactic construct (namely, statementsS), it may be confusing for the user

to see two distinct candidate matrices when only one was expected, and (b) it may lead

the user to accept a solution of two productions (one forM1 and one forM2), which is

subpar because the more economical solution toC2 consists of only a single production:

namelyS! id = E. Clearly, our algorithm needs to be improved to handle such cases

and avoid computing more candidate matrices than necessary.

Case 3: Non-Overlapping Parse Constraints with Sharing

As we have just seen,M1 andM2 in Figure 4.24 are redundant – we need only

one of the two since both share the desired valuationS! id = E. To eliminate such

redundancies, our strategy is to �nd a way topartition the constraintsL2 into disjoint

sets, called classes, such that the constraints in each class can be satis�ed by the same

productions. By producing as few classes as we can, then computing only a single

candidate matrix for each such class, we seek to produce an economical solution. To do

78

this we will �rst need to de�ne an operation for the intersection of two CYK automata.

De�nition 9 (CYK Automaton Intersection). Let Y = (I ;E; i0; I f ;U;L) and

Y0= (I0;E0; i00; I0
f ;U

0;L 0). The intersection ofY andY0, written Y e\ Y0, is de�ned as

follows:

Y e\ Y0= (I � I0;E\ ; (i0; i00); I f � I0
f ;L

\)

L \ = l
�
(x;x0); (y;y0)

�
:L

�
(x;y)

�
\ L 0� (x0;y0)

�

E� =
n�

(x;x0); (y;y0)
�

j (x;y) 2 E ^ (x0;y0) 2 E0
o

E\ =
�

e2 E� j L \ (e) 6= /0
	

We sayY andY0are compatible, writtenCOMPATIBLE(Y;Y0), iff the intersectionY e\ Y0

contains a path from start vertex(i0; i00) to �nal vertex i f 2 I f � I0
f .

Intersection of CYK automata is similar to the standard product construction

for intersection of �nite automata; however, we additionally intersect edge attributes

such that each resulting edge attribute is the set of symbols shared bybothoriginating

edges. With this construction, any path through the intersectionY e\ Y0corresponds to a

common set of sentential forms shared by bothY andY0. If : COMPATIBLE(Y;Y0), then

there exists no such shared sentential form.

Partitioning

Our partitioning algorithm is shown in Figure 4.25. We describe the algorithm

informally here.

We �rst compute for each parse constraint a tuple(A;Y) whereA is the nontermi-

nal of the constraint, andY is the CYK automaton constructed from that constraint. This

set of tuples, denotedY, serves as the input toPARTITION. We then iteratively intersect

automata until no more intersection is possible. In each iteration, we greedily intersect

79

only the highest scoring pair of automata, where our scoring functionSCOREY gives

preference to the pair that is maximally compatible with all the other automata. The idea

is to intersect those pairs whose intersection has the most opportunity to intersect again

in a future iteration. At termination, the output ofPARTITION should be a setY0such

that
�
�Y0

�
� � jYj, and each constituent tuple(A0;Y0) 2 Y0contains a CYK automatonY0

that is possibly the intersection of multiple automata from the original inputY. Most

importantly, any path inY0from start to �nal vertex gives us a solution to all the parse

constraints that gave rise toY0. In other words, each element ofY0corresponds to the

class of parse constraints that it solves.

For illustration, consider the constraint systemC2 from Case 2. The CYK au-

tomata before and after partitioning are shown in Figure 4.26, whereY1 andY2 correspond

to the two constraints inL2, andY12 is the intersection ofY1 andY2 due to partitioning.

The revised algorithm,PARSYNTH/
3, is shown in Figure 4.27. The main revision

from PARSYNTH/
2 is that we �rst partition the set of automata on line 7 before constructing

candidate matrices from them.

The computed solutionPARSYNTH/
3(C2) is

f M3g =
�

SJf E; id gf = gf EgK
	

:

There are two key features of this solution to note. First, there is only one candidate

matrix, not two as withPARSYNTH/
2. Second, the last column ofM3 contains onlyE,

not id or 1, becauseid and 1 were excluded from edge((2;2); (3;3)) in Y12 during

intersection. The two possible valuations ofM3 areS! E = E andS! id = E. In fact,

these are the only possibilities: there exists no other single production that would also

satisfyC2. In this sense, this computed solution is as good as possible.

80

1: function PARTITION(Y)
2: let ays = f ((A1;Y1); (A2;Y2)) j ((A1;Y1); (A2;Y2)) 2 Y2^
3: A1 = A2 ^ COMPATIBLE(Y1;Y2)g
4: if (ays 6= /0) then
5: let (ay1;ay2) = �rst (sortDescBy(SCOREY;ays))
6: let ((A1;Y1); (A2;Y2)) = (ay1;ay2)
7: let Y12 = Y1 e\ Y2
8: return PARTITION(Y � f ay1;ay2g [f (A1;Y12)g)
9: else returnY

10: end if
11: end function
12:

13: function SCOREY((A1;Y1); (A2;Y2))
14: if (A1 6= A2) then return 0
15: end if
16: return å

(A3;Y3)2Y s.t. A3= A1

SCORE-ONE-TRIPLET(Y1;Y2;Y3)

17: end function
18:

19: function SCORE-ONE-TRIPLET(Y1;Y2;Y3)
20: if (COMPATIBLE(Y1;Y3) ^ COMPATIBLE(Y2;Y3) ^ COMPATIBLE(Y1 e\ Y2;Y3))

then
21: return 1
22: else return0
23: end if
24: end function

Figure 4.25. The PARTITION algorithm. Y is a set of pairs(A;Y) whereY is a CYK
automaton andA is its corresponding nonterminal.

Case 4: Overlapping Parse Constraints

An additional complication occurs when constraints are permitted to overlap.

Suppose we have the following constraint systemC4, which represents a situation in

which we have the same grammarG2 as before, but the user has created overlapping

81

Figure 4.26.Before and after partitioning CYK automata forC2.

1: function PARSYNTH/
3(C)

2: let (G; f t f j gn
j= 0;L) = C

3: Y /0
4: for hA; i; l i fk 2 L do
5: Y Y [f (A; BUILD -CYK-AUTOMATON(G; t fk; i; i + l))g
6: end for
7: for (A;Y = (�; �; i0; f i f g; �;L)) 2 PARTITION(Y) do
8: let M = Y A

L (SHORTEST-PATH(Y; i0; i f))
9: eM eM [f Mg

10: end for
11: return eM
12: end function

Figure 4.27.ThePARSYNTH/
3 algorithm.

parse constraints like so: .

C4 = (G4;F4;L4)

G4 = G2

F4 = f id = id + id f1g

L4 = fhS;0;5i f1;hE;2;3i f1g

The user's intention is to specify that the enclosing contextid=id+id is an

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Outline of this work
	Organization
	Acknowledgements

	Preliminaries
	Lexical Analysis
	Regular Expressions
	Lexers

	Context-Free Grammars
	String Indexing
	Derivations
	Sentential Forms
	Parse Trees
	Parsers

	Disambiguating Filters
	Associativity Filters
	Priority Filters
	Consistency
	Filter Specification Syntax

	Acknowledgements

	Parsify
	Overview
	User Interface Overview
	Basic Inference
	Infix Expressions
	Function Definitions
	Function Calls
	Challenges

	Algorithm
	Session State
	Operations
	Draw
	Negate
	Annotate
	Generalize
	Resolve

	Evaluation
	Versatility
	Usability
	Best Practices

	Acknowledgements

	Parsimony
	Overview
	Constructing the Lexer
	Constructing the Parser

	Lexer Synthesis
	A Data Structure for Sets of Regular Expressions
	Regular Expression Inference via r-dag Queries
	Example of Token Inference

	Parser Synthesis
	Preliminaries: CYK Parsing Algorithm
	Parser Synthesis Constraint Systems
	A Data Structure for Sets of Candidate Productions
	Parser Synthesis via CYK Automata

	Implementation
	Backend Design
	Frontend Design

	Evaluation
	Hypotheses
	Participants
	Interface Differences
	Methodology
	Quantitative Results
	Qualitative Results

	Acknowledgements

	Related Work
	Program Synthesis
	Grammatical Inference
	Parsing
	Acknowledgements

	Conclusion
	CYK-based Coloring
	Additional Patterns and Schemas
	Bibliography

