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Abstract

Optimal Control of Commercial Office Battery Systems, and Grid Integrated Energy
Resources on Distribution Networks

by

Michael Derin Sankur

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Dave Auslander, Chair

The proliferation of new sensing and actuation technologies presents new opportunities
for enhanced supervision, optimization, and control of energy systems. In the commercial
office environment, the use of smart power strips, uninterruptible power supplies, and ad-
vanced building energy management systems is growing as a means to implement control of
energy efficiency measures and demand response. In electricity distribution networks, phasor
measurement units and inverters are enabling utility operators to monitor and manage dis-
tribution systems more effectively. The physics or operational constraints of systems within
the commercial office environment or distribution networks are often nonlinear or noncon-
vex, and thus difficult to incorporate into optimization programs. This dissertation presents
research into modeling and optimal control of two nonlinear energy systems.

At the commercial office scale, we discuss the development and implementation of optimal
control of plug loads and office scale battery storage. Building upon successes in optimal
control of plug loads, we propose a model predictive controller (MPC) for the incorporation
of battery storage. We derive a model of an off the shelf battery storage system through
experimental data, and discuss extensions to allow controllable charging. We investigate two
methods to solve the nonlinear and binary MPC, and simulations show the promise dynamic
programming method.

At the distribution network scale, we discuss power flow models for optimization of grid
distributed energy resources (DER), and techniques for solving nonlinear optimal power
flow (OPF) problems. First, we study semidefinite programming as a method for solving
nonlinear OPFs for control of voltage phasors. Simulation results motivate the development
of novel models. We then derive a linearized unbalanced power flow model (LUPFM) for use
in convex optimal power flow (OPF) formulations. The LUPFM builds upon previous work
by adding a relationship between voltage phasor and complex power flow. A study into the
LUPFM accuracy shows its fidelity for benchmark networks. We discuss two applications
of the LUPFM. The first is balancing of voltage magnitude on a distribution network, and
simulations are successful for both radial and mesh networks. The second application is
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minimization of voltage magnitude and angle difference for switching operations. Simulations
show the success and potential of the LUPFM for OPF control of voltage phasors.
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Chapter 1

Introduction

With the advent of new technologies ranging from smart power strips, uninterruptible
power supplies, the internet of things, advanced metering infrastructure for electric grid,
micro synchophasor measurement units, to inverters there are new and exciting areas in
which to apply optimization and control theory to energy systems. However, many of these
systems have nonlinear physics or nonlinear operational characteristics and thus require
suitable mathematical models or optimization techniques. The focus of this work is to
apply modeling, optimization and control techniques to two nonlinear energy systems. The
first system is a commercial office with plug loads and battery storage. The second is an
unbalanced distribution network with integrated distributed energy resources (DER).

1.1 Modeling and Optimal Control of Commercial

Office Plug Loads and Battery Storage Systems

Commercial buildings are becoming increasingly metered and controllable with the adop-
tion of technologies such as smart meters, smart power strips, and advanced building energy
management systems [19, 49]. Economic incentives such as time-of-use electricity pricing has
led to many research efforts in and the advancement of technologies for commercial building
efficiency and demand response.

An area often overlooked until recently in commercial buildings for load-shedding are
plug loads [3, 19, 40]. Systems such as office scale battery storage (OSBS) are enabling peak
load reduction and load shifting actions to be complemented by plug loads [41]. In this work,
we study the modeling optimal control of plug loads and an OSBS in a commercial office
setting. The effort is detailed in Part I of this dissertation.

This work builds upon previous effort of plug load control [2, 4, 3, 40], we focus mainly
on the integration of an off the shelf OSBS system. Firstly, a model predictive controller
(MPC) is formulated that encapsulates the behavior or plug loads. A battery charging and
discharging model is derived from experimental data. The battery model is nonlinear and
nonconvex, with two modes of operation. Next, techniques for obtaining the optimal control
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state of plug loads and the OSBS are discussed. The first technique is an exhaustive search
algorithm, and simulations highlight its shortcomings. The second technique studied is
dynamic programming. Simulations show its strength in optimizing over long time horizons
with good time granularity.

1.2 Optimization and Control of Distribution

Network Scale Energy Systems

Modeling, formulation, and solving of optimal power flow (OPF) problems is an area
of research that is increasingly important with the advent of renewable and distributed
energy resources, and the increasing ubiquity of grid sensors and data [43]. An important
area for the application of OPF is grid reconfiguration for grid stability, reliability and
integration of micro-gridding. In this work, we study OPFs that seek to manage DER for
grid reconfiguration actions on an unbalanced network.

The physics of power flow are nonlinear and nonconvex, making it difficult to directly
incorporate the physics into an reliably and easily solvable OPF problem. To address this,
research has focused on semidefinite programming (SDP) and approximate power flow models
[7], however literature has highlighted some drawbacks that may preclude its widespread
applicability [24, 27]. Novel linearized models for unbalanced power flow are used for their
linear properties, however their approximate nature may not capture important nonlinear
physics [14, 39].

Our first effort in this area is to develop SDP OPFs for control of voltage magnitude and
angle, and to explore convergence to a physically meaningful solution through simulation.
We propose and derive several OPFs for control of voltage phasors. Simulations motivate
further study in the control of voltage magnitude, and show the viability of placing bounds
on voltage angle.

Our second effort is to develop a model that can be incorporated into a convex pro-
gram, and thus we derive a linearized unbalanced power flow model (LUPFM). This model
augments previous literature [14, 39] by adding a relationship for voltage angle and com-
plex power flow. We investigate the accuracy of the LUPFM, and find it acceptable for
benchmark networks.

Two OPF applications of the LUPFM are discussed. The first OPF seeks to balance
voltage magnitude across different phases at nodes on a network. Simulation results show
the ability of the OPF to reduce voltage imbalance for both radial and mesh networks.
The second OPF seeks to minimize the voltage phasor difference between two points on a
network for switching actions. Simulation results show the ability of the OPF to regulate
voltage magnitude and angles at different points on a network.
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1.3 Research Contributions

The contributions of Part I, titled Modeling and Optimal Control of Commercial Office Plug
Loads and Battery Storage Systems, of this work are as follows:

- Chapter 3: A model predictive control formulation is developed that expands on previous
work in optimal control of plug loads [3, 40]. This MPC incorporates devices commonly
found in commercial offices and an abstract energy storage model.

- Chapter 4: A battery model of an off the shelf uninterruptible power supply (UPS) is de-
rived through experimentation. To incorporate a real UPS into the MPC from Chapter 3,
its battery discharging and charging and charge controller characteristics are investigated
and modeled.

- Chapter 5: An exhaustive search method for solving the MPC is investigated. Simulation
results show the limited viability of this method.

- Chapter 6: A dynamic programming method for solving the MPC is investigated. Simu-
lation results show its promise as a viable method for optimizing over extended periods.

The contributions of Part II, titled Modeling of Unbalanced Power Flow and Optimal Control
of Distributed Energy Resources for Grid Reconfiguration, of this work are as follows:

- Chapter 9: The derivation and investigation of SDP OPFs for control of voltage phasors.
Simulation results further motivate efforts in this area, and the exploration of other power
flow models.

- Chapter 10: The derivation of a linearized unbalanced power flow model (LUPFM). This
model augments that of [14, 39] by incorporating a relationship between voltage angle and
complex power flow.

- Chapter 11: The accuracy of the LUPFM is investigated, with simulation results demon-
strating model accuracy for benchmark networks.

- Chapter 12: Two OPFs that incorporate the LUPFM are designed and experiments are
performed demonstrating the its effectiveness in OPFs for voltage control.

- Section 12.1: OPF1 seeks to minimize voltage magnitude imbalance across a distribution
network. Simulation results show significant reduction in voltage imbalance.

- Section 12.2: OPF2 seeks to minimize voltage phasor difference (both voltage magnitude
difference and angle difference) between two points in a network for switching actions.
Simulations show OPF2 controlling both voltage magnitude and angle, thus reducing
potential power flow across an open switch scheduled to be closed.
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1.4 Organization of this Dissertation

Part I of this dissertation is concerned with modeling and optimal control of office scale
battery storage systems.

- Chapter 2 gives overview of existing technologies and summarizes the effort undertaken in
Part I.

- Chapter 3 discusses the derivation of an MPC for optimal load-shedding through control
of plug loads and battery storage.

- Chapter 4 discusses the derivation of a battery system operation model through experi-
mental data.

- Chapter 5 presents an exhaustive search control algorithm and simulation results are
discussed.

- Chapter 6 derives and discusses a dynamic programming algorithm for optimizing OSBS
control state, and simulation results for two scenarios are discussed.

- Chapter 7 provides concluding remarks and a discussion of future work.

Part II of this dissertation is concerned with power flow models and optimization of distri-
bution networks.

- Chapter 8 summarizes the current state of research into linear and nonlinear OPFs and
outlines the research effort of Part II.

- Chapter 9 discusses research in using SDP for OPF for control of voltage magnitude and
angle.

- Chapter 10 provides a derivation of a linearized unbalanced power flow model.

- Chapter 11 investigates the accuracy of the LUPFM from Chapter 10.

- Chapter 12 provides discussion of two applications of the LUPFM in OPFs for voltage
control, and simulations.

- Chapter 13 provides concluding remarks and a discussion of future work.

Conclusions for this dissertation are drawn in Chapter 14.
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Part I

Modeling and Optimal Control of
Commercial Office Plug Loads and

Battery Storage Systems
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Chapter 2

Introduction

The commercial building sector accounts for 36 % of electrical energy consumption in
the United States [45]. The advent and increasing ubiquity of smart-meters, tiered and
time-of-use pricing has led to research in and advancements of commercial demand response
technologies. Many successful efforts in reducing building peak power, and energy consump-
tion, target building HVAC and lighting systems. Building HVAC and lighting are major
consumers of electricity. These systems are likely to be centrally controlled and metered.

Plug loads, on the other hand, are often neglected as a resource for demand response.
Plug loads can account for 30 % to 50 % of energy consumption in commercial buildings [49,
19]. A plug load is a device that draws electrical power from an outlet for operation. This
includes, but not limited to, desktop computers, desktop monitors, fans, persona, heaters,
and lamps. Their inclusion as a resource for demand response would greatly increase the
flexibility and efficacy of a DR system. Plug loads are usually not utilized for DR for several
reasons. The foremost reason is their distributed nature and lack of centralized point of
access and control. Plug loads most often lack the necessary intelligence for self-monitoring
and control so intermediary devices are needed for these purposes. Finally, the cost to retrofit
a building with meterable and controllable outlets is often prohibitive.

Advancements in technologies are enabling plug loads to become a load-shed resource
for DR. One such technology is the smart power strip (SPS). An SPS is a device comprised
of one or more electrical outlets. The outlets are independently metered and controllable,
and enable the user to selectively power connected devices. A second enabling technology
is the Energy Information gateway (EIG). An EIG is a software system that interfaces with
existing hardware (such as an SPS) for plug load monitoring and control [2, 4, 40]. A
third enabling technology is battery storage, specifically office scale battery storage (OSBS)
system. An OSBS system provides power to one or more plug loads from outlet power or
from its own battery power. Many commercial environments contain one or more OSBS
systems for protection against power failure. The increasing adoption and ubiquity of SPSs,
EIGs, and OSBS systems in commercial environments prompts the investigation of optimal
control of an OSBS system and plug loads as load-shedding resources.

There have been many research efforts focused on the incorporation of plug loads and
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battery storage in the context of DR. The authors in [34] present a model predictive control
(MPC) framework for coordinated control of laptop battery charging for DR. Their algorithm
simplifies to a modified knapsack problem with constraints to avoid over cycling between
charging and discharging states. Their simulations show that laptop batteries are a viable
resource for load-shifting. In [36] the authors present an MPC framework to reduce peak
electricity demand. The authors develop a room thermal model to account for thermal
storage and varying tariffs on electricity.

The authors in [17] develop an algorithm for optimal storage use in a demand response
context. They propose a simple convex optimization program that does not require pricing
information. In [46], the authors use dynamic programming to develop control policies of
battery storage for residential demand response. They minimize the residential energy cost
taking advantage of predictions of variable pricing signals. Optimal energy storage control
policies are developed in [21], where the authors utilize a dynamic programming algorithm.
However, many of these efforts do not address the control of battery storage in conjunction
with plug loads, or employ simple or generalized battery models.

Much of our previous effort has focused on the development of our own EIG [2], [4], [40].
EIG development was spread across several projects. The initial project was to develop an
open-source reference model of an EIG for a residential setting, sponsored by the California
Energy Commission (CEC) and the California Institute for Energy and the Environment
(CIEE). The EIG was adapted for and deployed in a commercial setting as part of a project
with Siemens. Further development includes several iterations and the use of a linear solver
for optimal plug load control. We successfully demonstrated the EIG exercising optimal con-
trol of plug loads in a commercial office during a load-following (LF) scenario, and validated
simulation results with physical experiments [3].

In this work, we investigate optimal control of an OSBS system alongside plug loads
for load-shedding. We look at two OSBS systems, investigating the value of controllable
charging. We develop a model predictive control (MPC) framework to account for varying
load-shed targets and OSBS battery dynamics. An experientially derived battery model
is presented. An exhaustive search numerical method is discussed, and simulation results
demonstrate the the use of an OSBS alongside plug loads as a load-shed resource. Simulation
results also quantify the value of controllable charging for increasing battery capacities. A
dynamic programming algorithm is discussed. The algorithm produces control variable look
up tables and quantifies OSBS performance. lastly, this work is summarized and plans to
carry this work forward are discussed.
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Chapter 3

Model Predictive Control of Plug
Loads and an Office Scale Battery
Storage System

In this work, we focus on control at an office level, as shown in Figure 3.1. Here, an EIG
coordinates energy related information and control within an office. The office has one or
more SPSs, each with one or more plug loads. The EIG monitors and exerts control over
the SPSs. The plug loads connected to each SPS are “actuated” though actuation of the
corresponding SPS outlet. A plug load is powered off by powering off its corresponding SPS
outlet, and powered on by powering on its corresponding SPS outlet. A plug load that has
been powered off, and therefore does not consume outlet power, is considered to have shed
its load.

The EIG also monitors and controls an OSBS system that serves a critical load which
must always be powered. The OSBS can operate on outlet power or its own battery power.
The OSBS sheds its load by running on battery power, so as to not draw power from an
outlet. A higher level building entity, the Central Building Authority (CBA) in Figure 3.1,
acts as the link from the outside world to the EIG and disseminates load-shedding targets to
each office [40]. The office EIG is given a load-shed target over a time horizon by the CBA
and seeks to meet this target as closely as possible while minimizing a metric of occupant
“inconvenience”. The term inconvenience can be thought of as the occupant discomfort
incurred by actuation of plug loads and OSBS battery discharging [3, 41, 42].

We begin our discussion of the MPC formulation by describing three decision variables;
one for the plug loads within the EIG domain, and two for an OSBS system. Equation (3.1)
gives the binary vector decision variable for plug loads within the EIG domain. As discussed
earlier, and in [3], this is also the state of the SPS outlet the plug load is connected to:

xit =

{
0 : ith device powered off at time t

1 : ith device powered on at timet .
(3.1)
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Sym-
bol

Description Unit

γt Load-shed target at time t for an office [W]

c Vector denoting power consumption of office plug loads [W]

pt Vector denoting inconveniences associated with actuation of office plug
loads at time t

[-]

xt Vector of binary decision variables denoting power state of office plug
loads at time t

[-]

σt Maximum allowable inconvenience associated with office plug loads at
time t

[-]

LT Total load on OSBS [W]

St OSBS battery energy at time t [J]

K OSBS total battery energy capacity [J]

Qt OSBS battery state of charge (SOC), representing percent of battery
energy St of total battery capacity K

[%]

Pt OSBS charging power at time t [W]

Pt OSBS average charging power over time t to t+ ∆T [W]

ut Binary decision variable indicating OSBS outlet power state [Z]

vt Binary decision variable indicating OSBS battery charging state [Z]

rt Inconvenience as a function of SOC at time t [-]

N Prediction horizon of model predictive control (MPC) [-]

βpl Weighting given to inconvenience of plug load actuation [W]

βsoc Weighting given to inconvenience of battery discharge [W]

Table 3.1: Nomenclature for Part I.

The binary decision variable for OSBS power, ut, is defined by (3.2). This decision
variable refers to whether the OSBS is operating on power from its own battery, or operating
on power drawn from an outlet. A state of ut = 0 indicates the OSBS operates on its battery
power at time t. A state of ut = 1 indicates the OSBS operates on power drawn from an
outlet at time t. The term “operates” in this context refers to running the OSBS and
servicing any connected plug loads:

ut =

{
0 : OSBS operating on battery power at time t

1 : OSBS operating on outlet power at time t .
(3.2)

The binary decision variable for OSBS charging state, vt, is defined by (3.3). A state
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Figure 3.1: Office plug loads and OSBS presided over by an EIG

of vt = 0 indicates the OSBS is not charging its battery at time t, while a state of vt = 1
indicates the OSBS is charging its battery at time t:

vt =

{
0 : OSBS not charging battery at time t

1 : OSBS charging battery at time t .
(3.3)

In this work we look at two different OSBS systems. The first is based on an uninterrupt-
ible power supply (UPS). A UPS automatically charges its battery to and/or maintains it
at a full state of charge (SOC) when operating on outlet power. It cannot charge its battery
when operating on battery power. Therefore a UPS effectively has one decision variable,
such that ut = vt ∀ t. Further modeling of the UPS will be discussed in Chapter 4.

We consider a second OSBS system with the ability to control charging when operating
on outlet power, a system we call controllable battery storage (CBS). The CBS can either
charge or idle its battery when operating on outlet power, therefore ut = 1 =⇒ vt ∈ {0, 1}.
Like the UPS, the CBS cannot charge its battery when running on battery power, therefore
ut = 0 =⇒ vt = 0. When operating on outlet power the CBS can bypass its battery
and solely service its plug load(s), such that ut = 1, vt = 0; or it can both service its load
and charge its battery, such that ut = 1, vt = 1. The relationships between OSBS decision
variables are defined in (3.4). OSBS decision variables and OSBS operation states are defined
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in Table 3.2:

UPS:
ut = 0 =⇒ vt = 0

ut = 1 =⇒ vt = 1

CBS:
ut = 0 =⇒ vt = 0

ut = 1 =⇒ vt ∈ {0, 1} .

(3.4)

OSBS ut vt Operation State

UPS
0 0 UPS operating on battery power and not charging its battery.

1 1 UPS drawing outlet power and charging/maintaining battery to/at
100% SOC.

CBS

0 0 CBS operating on battery power and not charging its battery.

1 0 CBS drawing outlet power and not charging its battery.

1 1 CBS drawing outlet power and charging/maintaining battery to/at
100% SOC.

Table 3.2: OSBS decision variables and operation states.

The objective function of the MPC is given in (3.5), in which two terms are summed
over a time horizon. The first term is the absolute value of the difference between the target
load-shed, and the load-shed from plug loads, cT (xt − 1), and the OSBS, LT (ut − 1) +Ptvt.
The charging power is included in this term as battery charging requires drawing power
additional to the OSBS load being serviced. It should be noted that as plug load power
and OSBS power are discrete, the load-shed target is not likely to be exactly met, and an
under-shed or over-shed will likely occur. The second term is the measure of inconvenience
or incurred by actuation of plug loads and OSBS battery discharge. In (3.5), X0→N−1 refers
to the sequence of xt from t = 0 to t = N − 1. The same applies for U0→N−1 for ut and
V0→N−1 for vt.

minimize
X0→N−1
U0→N−1
V0→N−1

N−1∑
t=0

∣∣γt + cT (xt − 1) + LT (ut − 1) + Pt (Qt) vt
∣∣ . . .

+ βplp
T
t (1− xt) + βsocrt(Qt) .

(3.5)

The generalized set of constraints of the MPC is given by (3.6). Here, (3.6a) represents
battery state of charge (SOC) dynamics in time as a function of the current SOC, the total
load on the OSBS and its operation state. Equation (3.6b) is the average charging power
over the timestep from t to t + ∆T as a function of the current SOC, rt. A measure of
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inconvenience as a function of SOC is given in (3.6c). The derivation of an OSBS model for
(3.6a), (3.6b), and (3.6c) will be discussed in the subsequent section:

Qt+1 = fSOC(Qt, LT , ut, vt) ∀ t ∈ {0, N − 1} (3.6a)

Pt = fP (Qt) ∀ t ∈ {0, N − 1} (3.6b)

rt = fr(Qt) ∀ t ∈ {0, N − 1} (3.6c)

Qt ≥ Qmin,t ∀ t ∈ {0, N} (3.6d)

pTt ≤ σt (1− xt) ∀ t ∈ {0, N − 1} (3.6e)

xt ∈ χt ∀ t ∈ {0, N − 1} (3.6f)

xit ∈ {0, 1} ∀ i ∀ t ∈ {0, N − 1} (3.6g)

ut ∈ {0, 1} ∀ t ∈ {0, N − 1} (3.6h)

vt ∈ {0, 1} ∀ t ∈ {0, N − 1} . (3.6i)

A time varying minimum SOC constraint is given by (3.6d). This constraint is included
as many batteries incur damage at low SOCs, and an occupant may want to maintain a
minimum SOC as a power failure safeguard. A time varying constraint on the maximum
allowable inconvenience incurred from plug load actuation is given by (3.6e). This constraint
represents the user’s desire to meet the target without incurring too much inconvenience.
As in [3], this can also be considered the point at which meeting the load-shed target is no
longer as valuable to the occupant as use of their plug loads. A time of use constraint for
plug loads is given by (3.6f), indicating the occupants need to use their devices at certain
times. Equation (3.6g) enforces the binary nature of plug load operation. Finally (3.6h)
and (3.6i) enforce OSBS control states as binary. Equations (3.5) and (3.6) comprise the
optimization program for the model predictive controller.

A model of the inconvenience incurred by discharging the UPS was also developed, given
by (3.7). While there is a constraint placed on the SOC (3.6), (3.7) in the objective (3.5)
serves to penalize low OSBS SOC. The constraints and penalty may arise from concerns
about battery life and the desire to always maintain a minimum reserve SOC in case of
power failure:

rt(Qt) =


1−

(
1− rr
Qr

)
Qt : 0 ≤ Qt ≤ Qr

rr

(
100−Qt

100−Qr

)
: Qr ≤ Qt ≤ 100 .

(3.7)

We chose a piecewise linear function, whose value remains relatively small for high SOCs
and increases dramatically as the SOC decreases past a cutoff. An example of this function
with values Qr = 40 and rr = 0.1 can be seen in Figure 3.2. The penalty function on SOC
is likely to be a business decision and so will not be discussed in detail in this work.



CHAPTER 3. MODEL PREDICTIVE CONTROL 13

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

SOC [%]

In
c

o
n

v
e

n
ie

n
c

e

 

 

q(SOC)

Figure 3.2: Plot of inconvenience function r(Qt) where Qr = 40 and rr = 0.1.
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Chapter 4

Experimentally Derived OSBS
Battery Model

A dynamic model of a commercially available OSBS was experimentally developed for
this MPC formulation. The OSBS is an uninterruptible power supply (UPS), the American
Power Conversion (APC) Smart UPS 1500RXLM, referred to the APC UPS. The APC
UPS operates on its battery power when outlet power is disconnected, until outlet power
is restored or the battery reaches a minimum state of charge whereupon it shuts down.
When outlet power is connected the APC UPS charges its battery to, and/or maintains its
battery, at 100% SOC. The UPS model described in the previous section, and defined by
(3.4) is based on the operational nature of the APC UPS. The APC UPS cannot control its
charging independently when it is drawing outlet power.

As the system state is the OSBS SOC, we seek to derive a model which captures battery
charging power as a function of battery state of charge (SOC). In order to model the APC
UPS, it was discharged to several pre-defined SOCs by connecting a load and disconnecting
outlet power. After the APC UPS reached the target SOC, outlet power was restored and
the APC UPS was allowed to charge to 100% SOC. This was done for a range of connected
plug loads, including loads of 60 W, 120 W and 180 W. From the APC UPS software, time,
percent (%) battery capacity, and battery voltage was recorded in one (1) minute intervals.
The power drawn by the APC UPS was recorded in 15 second intervals with an SPS. The
power drawn from the APC UPS by the connected plug load was recorded in 15 second
intervals by a second SPS. It was observed in all tests that the APC UPS drew an almost
constant amount of power additional to the connected load when not charging its battery.
This was confirmed by analyzing the power data recorded by the two SPSs. The tests and
power data also showed that the connected plug load drew nearly the same amount of power
regardless APC UPS operation state, differing by 3 % at maximum.

The APC UPS percent battery capacity was assumed to be its battery SOC. As SPS
power trace data was recorded at 15 second intervals, it was linearly interpolated to fit the
one minute intervals of the APC UPS data. Thus a set of SOC and power data was created
for the APC UPS. The power drawn by the plug load was subtracted from the power drawn
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(b) APC UPS net power consumption during charging cycle. This is the difference between the
measured power drawn by the UPS and that drawn by the loads connected to the UPS.

Figure 4.1: APC UPS charging cycle SOC and net power. In this figure, the black dashed
line represents the switch from a period of nearly constant power draw to that of decaying
power draw. The magenta dotted line represents the time at which the SOC reaches 100%,
assumed to be when charging is complete.

by the APC UPS to obtain the net power consumed by the APC UPS.
Figure 4.1 shows the data for a test in which the UPS was discharged to a 20 % SOC

with a nominal load of 180 W. Figure 4.1b shows the SOC increasing in an linear fashion in
time. In Figure 4.1b it can be seen that the APC UPS drew an almost constant amount of
net power as the its SOC increased from 20 % to 50 %. The net power decreases as the SOC
increases from 50 % to 100 %. After the battery reaches, and stays at, 100 % SOC it can
be seen that the APC UPS continues to draw a decaying amount of power. As we look to
use battery SOC as a state variable and parameterize charging power in SOC, it is assumed
that charging is complete once the battery has reached 100 % SOC. The time and data after
the APC UPS reaches 100 % SOC is neglected. When the APC UPS initially reaches 100 %
SOC it can be seen that it is drawing roughly 60 W net, which is assumed to be the constant
UPS operation power. From these observations we arrive at a battery charging model for
the UPS, listed below:

1. Constant APC operation power during all power states of 60 W.
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2. Connected plug load draws constant power regardless of UPS power state.

3. Constant charging power when SOC between 0% and 50% of 140 W.

4. Charging completed when APC UPS reaches 100 % SOC.

We select a battery energy model in which the SOC Qt is the percent of total battery
energy capacity at time t. Battery energy at time t is represented by St. The total battery
energy capacity K is the maximum amount of energy the battery can hold, defined as the
maximum time the OSBS can operate on battery power (discharge to zero energy) with a
nominal load, including operating power. Therefore the SOC Qt is defined as in (4.1):

Qt =
St
K
× 100 % . (4.1)

As K is a constant, it is trivial to replace Qt with St in equations. The SOC dynamics
are represented as battery energy dynamics, given by (4.2), similar to the model presented
in [17]:

St+1 = St +
[
(ut − 1)(LT ) + ηcvtPt(St)

]
∆T . (4.2)

Battery energy is linear in time, and binary in the control states ut and vt. Here, Pt denotes
the average amount of charging power over from time t to t+∆T . The variable ηc represents
battery charging efficiency, and is chosen as 1. This equation demonstrates the binary nature
of the APC UPS, as it either operates on battery power or outlet power. The battery energy
model is generalized with both OSBS decision variables to be used for both the UPS and
CBS model. The battery energy dynamics can also be written solely in terms of the SOC
by using (4.1), resulting in the OSBS SOC dynamics, (4.3):

Qt+1 = Qt +
K

100

[
(ut − 1)(LT ) + ηcvtPt(St)

]
∆T . (4.3)

Battery charging power was parametrized in battery SOC as in (4.4). This function
captures the constant charging power draw from 0 to 50 % SOC, as seen in Figure 4.1.
The decaying charging power seen as SOC increases from 50 to 100 % was modeled using a
constrained least squares fit. A piecewise linear function was ostensibly chosen to place the
optimization program within a linear programming framework:

Pt (Qt) =


140 : 0 ≤ Qt ≤ 50

510− 7.4Qt : 50 ≤ Qt ≤ 60

240− 2.9Qt : 60 ≤ Qt ≤ 75

90− 0.9Qt : 75 ≤ Qt ≤ 100 .

(4.4)

The piecewise linear function was constrained such that: Pt(50) = 140 to represent the
transition between constant and decaying power draw, Pt maintains piecewise continuity,
and Pt(100) = 0 to represent the completion of charging at 100 % SOC. Figure 4.2 depicts
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Figure 4.2: APC UPS computed charging power and piecewise linear charging power model.

the charging power model, with 3 linear segments for the decaying charging power regime.
The piecewise linear function was also ostensibly selected so that the optimization program
would be compatible with a linear programming framework.

The full MPC optimization program, with the SOC as the state, is written as (4.5). It
should be noted that this program is nonlinear, binary in its decision variables, and has
several switched modes from the battery charging model.
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minimize
X0→N−1
U0→N−1
V0→N−1

N−1∑
t=0

∣∣γt + cT (xt − 1) + LT (ut − 1) + Pt (Qt) vt
∣∣ . . .

+ βplp
T
t (1− xt) + βsocrt(Qt)

subject to ∀ t ∈ {0, N − 1}
Qt+1 = Qt + (K/100)

[
(ut − 1)(LT ) + ηcvtPt(St)

]
∆T

Pt(Qt) =


140 : 0 ≤ Qt ≤ 50

510− 7.4Qt : 50 < Qt ≤ 60

240− 2.9Qt : 60 < Qt ≤ 75

90− 0.9Qt : 75 < Qt ≤ 100

rt(Qt) =

((Qr − 1 + rr)/Qr)Qt : 0 ≤ Qt ≤ Qr

rr(100−Qt)/(100−Qr) : Qr ≤ Qt ≤ 100

Qt ≥ Qmin,t

pTt (1− xt) ≤ σt

xt ∈ χt
xit ∈ {0, 1} ∀ i
ut ∈ {0, 1}
vt ∈ {0, 1} .

(4.5)
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Chapter 5

An Exhaustive Search Numerical
Method and Simulation Results

5.1 Exhaustive Search Numerical Method

The full MPC optimization program is given by (3.5)-(4.4), and concisely presented in
(4.5). The MPC objective function contains a binary term LTut and a nonlinear binary
term, utPt(Qt). The non-convex piecewise linear charging power model introduces switched
modes into the set of MPC constraints. Additionally the decision variables xt, ut, and vt are
all binary. The nature of this MPC program precludes it from being solved by many popular
solvers as they are not well suited to handle these types of problems.

It is clear that the aforementioned nonlinearities and non-convexities come from the
binary nature of OSBS operation and its charging power model. By removing all terms
associated with the OSBS from (3.5) and (3.6), the optimization program is reduced to a
binary integer linear program (BILP) quite similar to that in [3]. This can be leveraged to
solve the optimization program by an exhaustive search.

We denote a general sequence of ut from t = 0 to N − 1 as U0→N−1, and that of vt as
V0→N−1. For any combination of U0→N−1 and V0→N−1, and Q0, the sequences S1→N and
Q1→N can be calculated by (4.2). Using (4.4) the sequence P 0→N−1 can be computed, as
can r0→N−1 with (3.7). Treating these sequences as exogenous parameters, like the load-shed
target γt, the optimization problem is reduced to an N step BILP as in(5.1):

minimize
X0→N−1

N−1∑
t=0

∣∣γt + cT (xt − 1n) + (LT ) (u�t − 1) + Pt
‡
(Qt)v

�
t

∣∣ . . .
+ βplp

T
t (1n − xt) + βsocr

‡
t (Qt)

subject to pTt (1n − xt) ≤ σt ∀ t ∈ {0, N − 1}
xt ∈ χt ∀ t ∈ {0, N − 1}
xt ∈ {0, 1} ∀ t ∈ {0, N − 1} .

(5.1)
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Here, the superscript � denotes the decision variables from the combination of U0→N−1 and
V0→N−1, and the superscript ‡ denotes the calculated values for the combination. The decision
variable X0→N−1 is the sequence of xt for t = 0 to N − 1.

This method discretizes the portion of the state space of (3.5) and (3.6) representing
the OSBS, keeping the decision variables representing plug loads free. The simplification
removes the nonlinearities and non-convex switched battery model from the optimization
program. The optimization program of (3.5) and (3.7) is reduced to a BILP (5.1) of dimen-
sion nN , where n is the number of plug loads, for which many open source and commercial
solvers are available. As in (3.4), it can be seen that the UPS effectively has one decision
variable, therefore U0→N−1 = V0→N−1. The CBS has two decision variables, thus U0→N−1
and V0→N−1 may differ. Not all combinations of U0→N−1 and V0→N−1 will be feasible from
CBS operation and (3.4). The optimal decision variable sequences X∗0→N−1, U

∗
0→N−1, and

V ∗0→N−1 are obtained by comparing every combination of every permutation of U0→N−1 and
V0→N−1. This is done by comparing the BILP objective value for the each combination.
Thus, the algorithm for solving the MPC optimization problem is as follows:

1. Grid ut and vt over all possible permutations of U0→N−1 and V0→N−1.

2. Iterate over all sequences U0→N−1 (UPS), or all combinations of sequences U0→N−1 and
V0→N−1 (CBS).

- For CBS only, check feasibility of current sequence combination with regard to
CBS operation, and proceed only if feasible.

3. Evolve OSBS dynamics (4.2) and (4.4) for the current decision variable sequence (UPS)
or combination (CBS) over horizon t = 0 to N − 1.

4. Check feasibility of current sequence or combination with regard to minimum SOC
constraint (3.6d) over horizon t = 0 to N − 1 (UPS and CBS)

5. Solve BILP (5.1) if current sequence or combination is feasible.

6. Compare current BILP objective to best obtained thus far:

- If better, store objective, U0→N−1, V0→N−1 and X0→N−1 as best thus far.

- Otherwise, discard.

7. Return optimal solution after BILP solved for all feasible sequences (UPS) or combi-
nations (CBS).

This method returns the optimal decision variable sequences for plug loads and the UPS
or CBS over the time horizon t = 0 to N − 1. For a prediction horizon of N steps, there
are 2N permutations of U0→N−1. The BILP must be solved for all feasible, with regard to
SOC, permutations of U0→N−1 to obtain the optimal decision variables sequences of X∗0→N−1
and U∗0→N−1. The CBS has two decision variables, and therefore two sequences, there are
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22N = 4N possible combinations of the permutations of U0→N−1 and V0→N−1. As there are
three CBS operation states, there are 3N permutations feasible with regard to CBS operation.
Not all permutations will be feasible with regard to the minimum SOC constraint.

It should be noted that this method can quickly become intractable with an increasing
MPC prediction horizon and/or number of OSBSs. For an office with a single UPS and
prediction horizon N = 10, the algorithm would need to compare 210 possible sequences,
solving the BILP of dimension 10n for each feasible sequence. For an EIG domain with m
UPSs, there are 2mN possible combinations of sequence permutations. Though a powerful
computer may be able to handle longer prediction horizons, this method may still deliver
suboptimal results. Small timesteps may cause the temporal length of the prediction horizon
to be too short. The inability to predict far enough into the future may cause “shortsighted”
policies to be implemented, due to load-shed target changes outside the prediction horizon.
Longer timesteps would ameliorate this problem, however this would mean averaging the
OSBS charging power and battery dynamics over a longer time period. The exponential
computational scaling associated with this method preclude both longer prediction horizons
and greater dimensionality in the number of OSBSs per EIG.

5.2 Simulation Results using Exhaustive Search

Method

We now present results from simulations of an EIG exerting control of office plug loads
and an OSBS. The simulations are for a 360 minute period with a load-shed period of 180
minutes from 60 to 240 minutes. Outside the load-shed period, rule based control is applied
to the OSBS, such that the UPS and CBS charge their batteries to 100% SOC. During the
load-shed period the MPC is employed to obtain the optimal decision variable sequences.
The MPC optimization program is solved at each timestep setting the current timestep as
t = 0. The MPC implements the first decision variable of each sequence, x∗0, u

∗
0, and v∗0 for

the duration of the timestep.
We consider two scenarios for simulations; a DR scenario and a load-following (LF)

scenario. A static load-shed target is assigned by the CBA to the EIG in the DR scenario.
In the LF scenario, the load-shed target is variable in time. The load-shed targets are shown
in Figure 5.1. Each scenario is simulated with a range of battery capacities (run times), from
60 minutes to 210 minutes in 30 minute increments. The minimum allowable SOC is 10%
to allow for prolonged operation on battery power.

The UPS and CBS service a load of 120 W, and their operating power is 60 W as per
the APC UPS model. Therefore when operating on battery power their load-shed is 180 W.
The plug load inconvenience weighting βpl is 10, and the SOC inconvenience weighting βsoc is
chosen as 5. The maximum allowable inconvenience σt is 4 during load-shed periods, and 0
otherwise. The maximum prediction horizon is chosen as N = 6 to balance the performance
of the MPC algorithm and computational expediency. The prediction horizon decreases
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Figure 5.1: Demand response (DR) and load-following (LF) scenario load-shed targets.

in length nearing the end of the event, so as to not include non-load-shed periods into the
optimization program. The timestep length is 15 minute, giving a 90 minute temporal length
to the prediction horizon.

Plug load Power [W] - ci Inconvenience - pi

Large Fan 30 2

Desktop Monitor 60 3

Desk Lamp 60 2

Desk Lamp (CFL) 15 2

Laptop 40 2

Small Fan 15 3

Laptop 40 1

Desk Lamp 50 2

Table 5.1: Plug loads used in simulations.

As in [3, 42], we select an assortment of plug loads commonly found in offices. The plug
loads are assumed to have static power consumption when operating, and constant priority
values. Table 5.1 lists the plug loads, their respective power consumptions and inconvenience
value. The SOC inconvenience function rt(Qt) is given by (3.7) with values of Qq = 40 and
rr = 0.1, as in Figure 3.2. In each scenario, we assume the UPS or CBS operates on outlet
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(a) Load-shed from plug loads and UPS.
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(b) Load-shed from plug loads and CBS.

Figure 5.2: Total and component load-shed of plug loads and an OSBS for static target
scenario.

power and is allowed to charge before and after the load-shed period. The UPS or CBS
begin the simulation with 100 % SOC.

Model Predictive Control of Plug Loads and an OSBS for
Load-Shedding

In this section we discuss results from simulations a with a static load-shed target of
225W, shown in Figure 5.2. The simulations demonstrate the MPC algorithm providing
control of the plug loads and a UPS or CBS with battery run time of 90 minutes. It should
be noted that the negative load-shed following the load-shed period is due to rule based
control such that the OSBS charges its battery.

Figure 5.2a shows the total and component load-sheds from plug loads and a UPS.
Figure 5.2b shows the total and component load-sheds from plug loads and a CBS. In each
simulation it can be seen that when the UPS or CBS operates on battery power, shedding
its 180 W load, the plug loads comprise approximately 40 W of load-shed to meet the load-
shed target as closely as possible. When the UPS or CBS operates on outlet power, 100
W of load-shed is achieved through plug load actuation to closer meet the load-shed target.
However the plug loads are never used to their full load-shed potential as a result of the
maximum inconvenience constraint.

In Figure 5.2a, it can be seen that the UPS and plug loads combined load-shed is within
10 W of the target when the UPS operates on battery power. After 30 minutes of operating



CHAPTER 5. AN EXHAUSTIVE SEARCH NUMERICAL METHOD AND
SIMULATION RESULTS 24

on battery power, the UPS charges its battery for 75 minutes. The UPS then operates on
battery power for 30 minutes before returning to outlet power. At this point the UPS is
drawing 140 W to charge, while the plug loads contribute 100 W to the load-shed, thus there
is actually a negative load-shed of 40 W.

In Figure 5.2b, it can be seen that the CBS operates on battery power for the first
30 minutes of the load-shed period. It then operates on outlet power and charges for 30
minutes, before operating on outlet power without charging for 75 minutes. During this
time, the plug loads constitute the load-shed of 100 W. For the last 45 minutes of the event,
the CBS operates on battery power, and the plug loads constitute 40 W of load-shed.

In Figure 5.2, it can be seen that the UPS runs on battery power for a total of 90 minutes,
while the CBS does so for 75 minutes. The UPS charges its battery for more time than the
CBS, during the times either OSBS draws outlet power. The time from 120 minutes to 195
minutes in which the CBS operates on outlet power without charging its battery highlights
that doing so is optimal for certain conditions.

Demand Response Scenario

In the demand response scenario, a static load-shed target of 225W was assigned over
the 180 minute load-shed period. Simulation results for three battery capacity cases, for
both the UPS and CBS, are shown in Figure 5.3. The figures show the load-shed target and
the total load-shed achieved when using plug loads and either the UPS (red, left column) or
CBS (blue, right column). It can be seen that the UPS and CBS generally exhibit similar
behavior at the end of the DR period independent of batter capacity. They both reserve
and/or charge to accrue enough SOC to operate on battery power such that the battery is
maximally discharged by the end of the DR period.

Figures 5.3a and 5.3b show simulation results for a UPS and CBS with 60 minute battery
run times, respectively. Both operate on outlet power from the beginning of the event, with
plug loads constituting the load-shed of 100 W. Starting 45 minutes prior to the end of
the event, both the UPS and CBS operate on battery power, shedding their load. During
this time plug loads contribute 40 W of load-shed, instead of the prior 100 W. Similar to
the results from Figure 5.2 the plug load inconvenience constrains prevents their load-shed
potential from being fully realized when the OSBS operates on outlet power.

Simulation results for the 120 minute run time case are shown in Figure 5.3c and 5.3d.
It can be seen that the UPS and CBS exhibit similar behavior during the DR period. They
both operate on battery power for the initial 15 minutes of the DR period, then operate
on outlet power. The UPS charges its battery as it must, while the CBS does not. At 75
minutes from the end of the DR period, both the UPS and CBS operate on battery power,
shedding their respective loads.

Figure 5.3e and Figure 5.3f show the results from the 180 minute run time case for the
UPS and CBS, respectively. The UPS and CBS both shed their loads by operating on battery
power for the first 60 minutes of the DR period. They then both operate on outlet power for
45 minutes. During this time the UPS charges its battery and the CBS does not. Both the
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UPS and CBS operate on battery power for the last 75 minutes of the DR period, shedding
their respective loads.

From these simulations, it can be seen that the optimal control policy is for the OSBS
to operate on battery such that its battery is discharged to the minimum allowable SOC at
the end of the event. The simulations suggest that it is optimal to operate on battery power
during the beginning of the event as well for larger battery capacities. This is somewhat
counter-intuitive as it would require the UPS to charge if it returns to outlet power during
the event. These simulations also clearly show that it is often optimal for the CBS to idle
its battery when operating on outlet power.

Capacity [min] JUPS [W] JCBS [W] CBS Improvement [%]

60 1441 1441 0

90 1331 1262 5.2

120 1089 1024 6.0

150 976 884 9.4

180 762 607 20.3

210 600 466 22.3

Table 5.2: Comparison of UPS and CBS performance for DR scenario.

Table 5.2 compares the performance of the UPS and CBS from DR scenario simulations.
Performance is measured as the sum of the MPC objective function over the DR period,
evaluated with the implemented optimal decision variables for each 15 minute timestep, as
in (5.2):

J =
240∑
t=60

∣∣γt + cT (x∗t − 1) + LT (u∗t − 1) + Pt(Qt)v
∗
t

∣∣+ βplp
T
t (1− x∗t ) + βsocrt(Qt) . (5.2)

The UPS and CBS perform identically with the smallest battery capacity, as seen in
Figure 5.3. As battery capacity increases, the CBS increasingly outperforms the UPS. This
intuitive result comes from the ability of the CBS to control battery charging. Battery
charging constitutes a negative amount of load-shed by the OSBS and detracts from the
load-shed provided by the plug loads. These results show that the addition of controllable
charging becomes increasingly valuable as OSBS battery capacity increases. This is also seen
in Figure 5.3 as the CBS does not charge its battery when operating on outlet power during
the DR period.

Load-Following Scenario

In the load following (LF) scenario, a time varying load-shed target is assigned, with
targets ranging from 75W to 225W over a 180 minute period. The load-shed target has two



CHAPTER 5. AN EXHAUSTIVE SEARCH NUMERICAL METHOD AND
SIMULATION RESULTS 26

peaks, one toward the beginning of the LF period and one near the end of the LF period,
with a valley during the middle. Simulation results are shown in Figure 5.4.

Figure 5.4a (UPS) and Figure 5.4b (CBS) show the different behaviors of the UPS and
CBS for the 60 minute battery run time case. The UPS operates on outlet power for the
first 30 minutes of the LF period, then operates on battery power for 30 minutes, shedding
its load. It then operates on outlet power and charges its batter for 60 minutes. The UPS
then switches to battery power for 30 minutes, resumes outlet power for 15 minutes, then
operates on battery power for the last 15 minutes of the LF period. In contrast, the CBS
operates on outlet power for the first 15 minutes of the LF period, then sheds its load
by running on battery power for 30 minutes. During this time, two different amounts of
load-shed are realized by the plug loads. The CBS then operates on outlet power while
idling its battery for 105 minutes. It then again sheds its load during the second target
peak. The CBS simulation, in Figure 5.4b, show operation on outlet power without battery
charging is optimal for the CBS. Furthermore, the UPS actually caused negative load-sheds
at times when charging ts battery, as charging power was greater than the maximum plug
load load-shed available.

Figures 5.4c and 5.4d give simulation results for the UPS and CBS, respectively, each
with a 120 minute battery run time. The UPS operates on battery power during the initial
15 minutes of the LF event, returning to outlet power for the next 15. It then operates on
battery power during the first target peak for 45 minutes. While the target is comparatively
lower, the UPS operates on outlet power, charging its battery. It then operates on battery
power, shedding its load, for 15 minutes before charging for 15 minutes. Finally the UPS
sheds its load for the last 45 minutes of the event. The CBS, however, operates on battery
power for the first 60 minutes of the LF period. It then operates on outlet power without
charging for 90 minutes, while the load-shed target is decreased. It then sheds its load for
the last 30 minutes of the event.

It can be seen in Figures 5.4e and 5.4f that the UPS and CBS operate on battery power
or outlet power in an almost identical fashion. The UPS operates on battery power for 30
minutes while the load-shed target is at its lowest point. The CBS does so for 45 minutes
without charging. The UPS runs on battery power for the last 75 minutes of the LF event,
while the CBS does so for 60 minutes. As the UPS charges its battery while running on
outlet power, its SOC is higher than the CBS when switching to battery power toward the
end of the LF period.

The LF simulation again shows that CBS operation on outlet power without charging
is optimal as opposed to CBS operation on outlet power and charging. Table 5.3 compares
the performance of the UPS and CBS in the LF scenario. Much like the DR scenario, the
CBS outperforms the UPS in its ability to meet a load-shed criteria in conjunction with
plug loads. Similar to the DR scenario, the performance of the CBS increases with battery
capacity. Again, this is due to the CBS being able to run on outlet power and not charge its
battery, while the UPS must charge if using outlet power.
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Capacity [min] JUPS [W] JCBS [W] CBS Improvement [%]

60 1183 1118 5.5

90 1100 968 12

120 876 736 16

150 683 556 18.6

180 450 357 20.7

210 389 256 34.2

Table 5.3: Comparison of UPS and CBS performance for LF scenario.

Remarks on Exhaustive Search Method and Simulations

Simulation results show that the CBS offers better performance than the UPS for both
the DR and LF scenarios. The performance gap increases as battery size increases. This
intuitive result comes as the CBS offers more flexibility as it can run on outlet power and not
charge its battery. Simulation results also highlight that it is very often optimal for the CBS
to utilize this feature during a DR or LF event. This can be seen in Figure 5.4, where the
CBS does not charge its battery while running on outlet power, when the load-shed target
is relatively low. Of course, with a low enough load-shed target it may be optimal to charge
the CBS battery, especially if plug loads can be actuated to account for the charging power
drawn.

While the exhaustive search method delivers an optimal control policy at each timestep,
it suffers from several drawbacks. The main drawback is the length of the prediction horizon
N . The optimal control policy may not take important future events into account. As the
prediction horizon N needs to be small enough for computational expediency, the length
of the timesteps also becomes an issue. With a timestep that is too small, the temporal
length of the prediction horizon may be too short to capture important future events and/or
to capture different battery charging regimes. This can be remedied by increasing timestep
length. However the OSBS charging power is then averaged over a longer time. These caveats
associated with the exhaustive search method prompt the search for a different method for
solving the optimization program, which will be discussed in the next chapter.
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Demand Response Scenario Simulations
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(a) Simulation of DR scenario; UPS with
60 minute battery capacity
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(b) Simulation of DR scenario; CBS with
60 minute battery capacity
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(c) Simulation of DR scenario; UPS with
120 minute battery capacity
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(d) Simulation of DR scenario; CBS with
120 minute battery capacity
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(e) Simulation of DR scenario; UPS with
180 minute battery capacity
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(f) Simulation of DR scenario; CBS with
180 minute battery capacity

Figure 5.3: Demand response scenario simulation results for UPS and CBS, with battery
capacities of 60, 120 and 180 minutes.
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Load-Following Simulations
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(a) Simulation of LF Scenario; UPS with 60
minute battery capacity
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(b) Simulation of LF Scenario; CBS with
60 minute battery capacity

0 30 60 90 120 150 180 210 240 270 300 330 360
−150

−100

−50

0

50

100

150

200

250

Time [min]

L
o

a
d

−
S

h
e
d

 [
W

]

 

 

Target γ
t

UPS + Plug−Loads

(c) Simulation of LF Scenario; UPS with
120 minute battery capacity
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(d) Simulation of LF Scenario; CBS with
120 minute battery capacity
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(e) Simulation of LF Scenario; UPS with
180 minute battery capacity
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(f) Simulation of LF Scenario; CBS with
180 minute battery capacity

Figure 5.4: Load-following scenario simulation results for UPS and CBS, with battery ca-
pacities of 60, 120 and 180 minutes.
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Chapter 6

A Dynamic Programming Algorithm
for the MPC Optimization Program
and Simulation Results

6.1 Dynamic Programming Algorithm

Dynamic programming is a powerful optimization tool, that can be used to solve many
complex problems not amenable to linear or quadratic programs. The basic tenet is to
dissolve a problem into a series of smaller problems. As in [21], [46] it is used to optimize
based on a set of predicted signals and/or events .The MPC formulation is amenable to
being formulated as a dynamic program, addressing several of the problems associated by
the aforementioned exhaustive search method. The system state is the OSBS battery energy
St, and by linear scaling the SOC Qt. The UPS effectively has one binary decision variable,
and therefore has two operation states: operation on outlet battery where ut = vt = 0, and
operation on outlet power where ut = vt = 1. The CBS has two decision variables, and three
operational states: operation on battery power where ut = vt = 0, operation on outlet power
without charging where ut = 1, vt = 0, and operation on outlet power with charging where
ut = vt = 1.

The algorithm for solving the DP is as follows: The SOC Q is gridded as a discrete set of
points. At the last timestep, t = N , the boundary condition is computed for each point in
the SOC grid as rN(QN) and is stored as the terminal cost VN(QN). The algorithm proceeds
to the previous timestep, t = N − 1. At each SOC grid point Qj the OSBS dynamics
(4.2) and (4.4) are evolved over one timestep for the two (UPS) or three (CBS) operation
states. For Qj

t , this gives the battery energy St+1(S
j
t , ut, vt), and SOC Qt+1(Q

j
t , ut, vt) by

(4.1) at the next time step, and the average charging power over the timestep Pt(Q
j
t). The

feasibility of each OSBS operation state is checked using Qt+1(Q
j
t , ut, vt) in the minimum

SOC constraint (3.6d). If an operation state is feasible, a binary integer linear program (6.1)
gives the optimal plug load decision variable x∗t (Q

j
t , ut, vt) as a function of the OSBS SOC
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and operation state for the current timestep:

x∗t (Q
j
t , ut, vt) = argmin

xt

{∣∣γt + cT (xt − 1) + LT (ut − 1) + Pt(Q
j
t)vt
∣∣+ βplp

T
t (1− xt)

}
subject to pTt (1− xt) ≤ σt

xt ∈ χt
xit ∈ {0, 1} ∀i .

(6.1)
The stage cost is computed for each operation state, as in (6.2), using the average charging

power and the optimal plug load states x∗t (Qt, ut, vt) for the operation state:

gt(Q
j
t , ut, vt) =

∣∣γt + cT
(
xj∗t (Qj

t , ut, vt)− 1
)

+ LT (ut − 1) + Pt(Q
j
t)vt
∣∣ . . .

+ βplp
T
t

(
1− xj∗t (Qj

t , ut, vt)
)

+ βsocrt(Q
j
t) .

(6.2)

The cost-to-go function (6.3) is evaluated for feasible OSBS operation states, using a lin-
ear interpolation to calculate Vt+1(Qt+1(Q

j
t , ut, vt)). The OSBS operation state, and therefore

decision variables, that minimizes vjt (Q
j
t) is chosen as the optimal:

v∗t (Q
j
t) = min

ut,vt

{
gt(Q

j
t , ut, vt) + Vt+1(Qt+1(Q

j
t , ut, vt))

}
. (6.3)

Evaluating (6.3) gives the optimal OSBS decision variables u∗t (Q
j
t) and v∗t (Q

j
t) at time t

and for SOC point Qj
t . This also gives the optimal plug load decision variable x∗t (Q

j
t). The

optimal decision variables are saved in lookup tables indexed by time and SOC. The cost-to-
go v∗t (Q

j
t) is stored for the current timestep and SOC. This algorithm proceeds backwards

in time until the initial timestep, at which point it is terminated. The DP algorithm is also
outlined below:

1. At t = N , initialize cost-to-go function VN(QN) using boundary condition of rN(QN)
for all SOCs grid points.

2. Proceed backward one timestep and loop through all SOC grid points.

3. At the current SOC grid point Qj
t , compute St+1(Q

j
t) by (4.2), Qt+1(Q

j
t) by (4.1),

Pt(Q
j
t) by (4.4), and rt(Q

j
t) by (3.7) for each operation state.

4. Check feasibility of operation state with regard to battery SOC (3.6d).

- If operation state is infeasible and vt = 0, set cost-to-go for operation state to
infinity.

- If operation state is infeasible and vt = 1, solve BILP (6.1) and compute stage
cost (6.2) for operation state.

- If operation state is feasible, solve BILP (6.1) and compute stage cost (6.2) for
operation state.
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5. Select optimal OSBS and plug load operation state for SOC grid point via (6.3).

6. Store optimal decision variables u∗t (Q
j
t), v

∗
t (Q

j
t), x

∗
t (Q

j
t), and cost-to-go v∗t (Q

j
t) for

current SOC.

7. Repeat steps 3 through 6 for all SOC grid points at current time t.

8. Repeat steps 2 through 7 progressing backward in time through first timestep t = 1.
Terminate after.

Casting the MPC as a dynamic program eliminates several of the problems of the exhaus-
tive search method. While the DP algorithm has advantages in solving the MPC optimization
program, it also has drawbacks. The most recognizable is the preclusion of solving an op-
timization program with multiple OSBS systems within a domain. For k OSBS systems,
each with SOC grid of size n, there are nk possible SOC combinations. At each of these
combinations every possible control state over the k OSBS systems must be compared, up to
k3. It can clearly be seen that this method is not scalable in the number of OSBS systems,
as computation scales exponentially.

6.2 Simulation Results using Dynamic Programming

Algorithm

In this section we present simulation results for two scenarios. The first scenario is of a
demand response (DR) event in which a static load-shed target is assigned to the EIG from
a higher building level authority. The second is a load-following (LF) scenario where a time
varying load-shed target is assigned. The load-shed targets for both scenarios are shown in
Figure 5.1 for simulation periods (event length) of 180 minutes. The timestep length is one
(1) minute.

The simulations are of an EIG coordinating the listed plug loads and either a UPS or
CBS. As in the simulations for the exhaustive search method, we select a variety of plug
loads representing commonly found devices in commercial offices [3, 42]. The plug loads and
their respective power consumption and occupant assigned static inconvenience value are
listed in Table 5.1.

The UPS and CBS have identical parameters and battery models. We look at one battery
capacity for these simulations; 180 minutes. The plug load served by the OSBS is 120 W,
and the OSBS operating power is 60 W. The total load on the OSBS is LT = 180 W.
The minimum SOC is 25%, to simulate battery longevity considerations and to represent a
reserve of battery energy desired by the occupant. The plug load inconvenience weighting is
βpl = 25, and SOC inconvenience weighting is βsoc = 50. The SOC inconvenience function
rt(Qt) is given by (3.7) with values of Qq = 40 and rr = 0.1, and can be seen in Figure
3.2. In each scenario, we assume the OSBS operates on outlet power before and after the
load-shed period, however we do not limit the initial SOC to 100 % SOC.
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OSBS Region Operation State ut(Qt) vt(Qt)

UPS & CBS Battery power — No charging 0 0

CBS Outlet power — No charging 1 0

UPS & CBS Outlet power — Charging 1 1

Table 6.1: OSBS control states in Figure 6.1 and Figure 6.3.

Demand Response Scenario and Load-Following Scenarios

Figure 6.1 and Figure 6.3 show the optimal OSBS operation states derived via simulations
for the DR and LF scenarios, respectively. In each figure, the x axis is simulation time,
starting at the beginning of the DR or LF event. The battery SOC grid is on the y axis.
In each figure, the red region represents the operation state of UPS or CBS running on
battery power: ut(Qt) = vt(Qt) = 0. Green regions represent the state where the CBS
operates on outlet power and does not charge: ut(Qt) = 1, vt(Qt) = 0. Blue regions represent
the operation state where the UPS or CBS draws outlet power and charges its battery:
ut(Qt) = vt(Qt) = 1. The regions and corresponding decision variables are also explained in
Table 6.1.

Figure 6.1 show the optimal operation state and decision variables for the DR scenario
simulation. It can be seen in Figure 6.1a that the optimal UPS control policy is to initially
operate on outlet power, then switch to battery power so as to discharge the battery to the
minimum SOC by the end of the event. A line separating the state space between outlet and
battery power is defined as the SOC needed to power the UPS for the remaining time in the
DR event. This is perhaps more accurately views as the run time of the UPS operating on
battery power starting at an SOC. Similarly, as shown in Figure 6.1b, the optimal control
policy for the CBS is to operate on outlet power, then switch to battery power such that the
battery will be completely discharged at the end of the event. However, the CBS optimal
charging policy is to charge the battery only when its initial SOC is less than or equal to
40%, during the initial 45 minutes of the DR event. Figure 6.1b shows the optimality of
CBS operation on outlet power without charging, and of charging for low initial SOCs. Both
the UPS and CBS charge when the SOC is less than 25 % in order to satisfy the minimum
SOC constraint.

A comparison of the performance between the UPS and CBS for the DR scenario is given
by Figure 6.2. In Figure 6.2a, the overall performance is plotted for the full range of initial
SOCs. Here, performance is measured as the total cost at the initial timestep for each SOC
grid point, V0(Q0) for Q0 = 0 to Q0 = 100. The total cost includes the difference between
the load-shed target and achieved load-shed from OSBS and plug loads, and the weighted
inconvenience functions. Figure 6.2a shows that CBS performance is better across the full
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range of initial SOCs, and that CBS performance nears that of the UPS as the initial SOC
reaches 100 %. The percent improvement in performance is given by Figure 6.2b, in which
the gap in performance decreases with initial SOCs greater than 40 %. The peak at 40 %
is likely due to the SOC inconvenience function, (3.6c), which has a knee when Q = 40. At
100 % initial SOC, the CBS has a performance increase of 3.0 %. This is due to the similar
optimal control policies of both devices and the UPS not charging its battery for a prolonged
period with high initial SOCs.

Simulation results for the LF scenario are displayed in Figure 6.3. Figure 6.3a shows
the optimal UPS control policy, which is to run on battery power for higher initial states of
charge, then to charge the battery when the load-shed target is reduced during the middle
of the event. As the load-shed target increases, the optimal policy is to operate on battery
power for as long as possible. Similar results are found for the CBS, seen in Figure 6.3b.
For higher initial SOCs the CBS operates on battery power, while for initial SOCs less than
40% the CBS operates on outlet power and charges its battery. The CBS operates on outlet
power without charging during the middle of the event while the load-shed target is lowered.
It then switches to battery power for the remainder of the event to discharge its battery to
the minimum allowable SOC by the end of the event.

Figure 6.4 gives a comparison between UPS and CBS performance for the LF scenario.
In Figure 6.4a it can be seen that the CBS has better performance across the entire range
of initial SOCs. Figure 6.4b shows that the CBS outperforms the UPS to its greatest extent
with an initial SOC of 40 %. At 100 % initial SOC, the CBS performs 6.9 % better than
the UPS, due to the CBS ability to control its charging when drawing outlet power.

These simulation results demonstrate the utility of DP for optimal scheduling of plug
loads and OSBS systems as load-shed resources. Implementation of DP allows for a longer
prediction horizons with smaller timesteps. The DP algorithm provides the user with lookup
tables for OSBS and plug load control policies. Furthermore, the DP algorithm provides a
measure of performance of an OSBS system in conjunction with plug loads as a load-shed
resource.

Remarks on Dynamic Programming Method and Simulations

It is clear that reformulating the MPC optimization program as a dynamic program
abates several of the problems inherent in the exhaustive search method. Dynamic program-
ming allows for larger number of timesteps in the prediction horizon. In turn, this allows for
shorter timestep temporal length and less averaging of battery dynamics. However the use
of DP precludes the inclusion of more than one OSBS system in the current formulation.

The dynamic programming algorithm provides valuable lookup tables for OSBS and plug
load control. The tables contain optimal decision variable values for a given time and SOC.
The DP algorithm also gives a numerical value to the cost of using an OSBS alongside plug
loads for load shedding. The DP algorithm exhibits much advantage over the exhaustive
search algorithm, and thus should be used for to control OSBS systems and plug loads for
optimal load-shedding.
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(a) Optimal UPS operation state lookup table for DR scenario.
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(b) CBS operation state lookup table for DR scenario.

Figure 6.1: OSBS operation states for DR scenario. See Table 6.1 for explanation of regions.
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(a) Comparison between UPS and CBS performance for DR scenario. Performance is given as
V0(S0) as defined in (6.3)
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(b) CBS performance increase as percent of UPS performance for DR scenario.

Figure 6.2: Performance comparison between UPS and CBS for DR scenario.
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(a) Optimal UPS operation state lookup table for LF scenario.
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(b) Optimal CBS operation state lookup table for LF scenario.

Figure 6.3: OSBS operation states for LF scenario. See Table 6.1 for explanation of regions.
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(a) Comparison between UPS and CBS performance for LF scenario across initial SOCs. Perfor-
mance is given as V0(Q0) as defined in (6.3)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Initial SOC [%]

C
B

S
 P

e
rf

o
rm

a
n

c
e
 I
n

c
re

a
s
e
 [

%
]

(b) CBS performance increase as percent of UPS performance for LF scenario.

Figure 6.4: Performance comparison between UPS and CBS for LF scenario.
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Chapter 7

Concluding Remarks and Future
Work

In this work we present a framework for optimal control of plug loads and battery storage
in the context of load-shedding. We discuss the impetus for this work, enabling technologies
and previous research efforts in the field. The use of EIG and SPS systems in a commercial
office is discussed and a model predictive controller is formulated. This MPC balances
meeting a load-shedding objective with the inconvenience and discomfort associated with
doing so. An OSBS battery model derived from experimental observation is discussed. Two
OSBS systems are presented, with their differences in physical key physical and mathematical
model difference highlighted.

The complexity of the MPC optimization program is discussed. A simplification enables
the use of an exhaustive search method which is outlined. Simulation results for a demand
response and a load-following scenarios are presented. Simulations show the value of battery
storage to complement plug loads as a load-shed resource. Simulations show that it is optimal
to run on battery power so as to discharge it at the end of a DR or LF event. The results
quantify the increasing value of controllable charging with battery capacity. We found that
for the smallest battery capacities, the UPS and CBS offer identical performance. The CBS
outperforms the UPS 22.3 % in the DR scenario, and 34.2 % in the LF scenario. The
drawbacks of this numerical method, which may preclude its practical implementation, are
also discussed.

A second numerical method for the optimization program is presented. This dynamic
programming algorithm eliminates several of the drawbacks of the exhaustive search method,
but not without its own. The DP algorithm is discussed, as are simulations performed
using it. The simulation results demonstrate that it is optimal for both the UPS and CBS
to discharge their batteries to the minimum SOC by end of the event. The UPS should
charge/maintain its battery to/at 100 % SOC during the beginning of the event. The CBS
should only charge its battery if it has a low SOC during the beginning of the event. The
CBS very often operates on outlet power without charging. These results prove the need
for controllable charging. We found that for 100 % initial SOC, CBS performance is 3.0 %
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better than the UPS in the DR scenario, and 6.9 % better in the LF scenario.
We plan to continue this work in two key areas. The first is to investigate other methods

for solving the MPC optimization program, including binary relaxations. A second method is
the reformulation of the battery model with special ordered sets to allow for casting the MPC
as a linear program. The second area in which this work will be continued is experimentation
with available hardware to verify simulation results.
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Part II

Modeling of Unbalanced Power Flow
and Optimal Control of Distributed

Energy Resources for Grid
Reconfiguration
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Chapter 8

Introduction

The proliferation of new types of sensors into the electric power distribution system is
providing deeper insights into the operation of the grid and is driving innovation around new
paradigms for system management. Among the many new sensing devices being deployed in
the distribution grid, distribution synchrophasors provide a suite of new functionality that
could serve to better inform the process of managing Distributed Energy Resources (DER).
Distribution PMUs not only collect “traditional” system telemetry (such as voltage and
current magnitudes) on sub-second time intervals, but provide access to voltage and current
phase angles as well. These devices are now becoming more commonplace and are either
manifesting as standalone units [30] or are being incorporated into other system components
[44].

The growing presence of distribution PMUs indicates that sufficient infrastructure may
be in place in future grids to support control activities that make decisions based on feeder
voltage measurements. In fact, a small, but growing, number of control applications that
utilize phase angle measurements have started to appear in literature. The work of [35]
proposed the use of voltage angle measurements to curtail over-generation of renewables.
Additionally, the authors of [47] considered voltage angle thresholds as criteria to connect
renewable generation. Both works refer to this control activity as “Angle Constrained Active
Management”, or ACAM.

An application for distribution PMU data may be useful is enabling fast and safe switch-
ing of network elements. The ability to disconnect and reconnect microgrids and quickly
reconfigure distribution networks are two important abilities of future distribution networks
[15, 16, 37]. Network Reconfiguration and microgrid islanding/reconnection may require
switching actions.

Preventing arcing and or large transient currents when opening or closing a switch is
important for safe and reliable grid operation, and to prolong the life of existing protection
equipment. To open a switch, the magnitude of the current, and therefore power, flowing
through the line must not be over safe limits, as well as the switch action to occur at a current
zero-crossing. To close a switch, the voltage difference across it end must be sufficiently small
to prevent arcing and large current surges.
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As such, distribution system operators (DSOs) require power injection at reconfigura-
tion locations to close switches and minimize impact on grid components and power quality.
Switching actions may be scheduled beforehand, but for a contingency case a mobile gener-
ation that provides power to the correct location may be dispatched.

The advent and proliferation of distributed energy resources present an opportunity to
power sections of a network and facilitate network reconfiguration at a potentially faster
timescale than current practices. With proper location of DER and sufficient power/energy
resource it may be possible to control voltage and current phasors at critical points in the
network from the DSO, without needing to dispatch a mobile generation unit or engineering
team.

The literature on control and optimization of DER to for more sophisticated operation
distribution networks is quite vast. Many of the works in this field seek are motivated from
an economic standpoint, and works in which the aim is to directly control voltage phasors is
sparse.

Many works in the field study the use of semidefinite programming (SDP), semidefinite
relaxations (SDR), and convex relaxations in optimal power flow (OPF) problems. Works
on this topic range from studying the geometry of the problem [23], to conditions under
which a convex relaxation in likely to be tight [22], to limitations on the application of SDPs
[24], to solving distributed SDP OPFs for unbalanced networks [11]. It should be noted that
much of the earlier literature considers balanced networks, and only recently have unbalanced
networks been studied [11, 50].

Recently, other works in the field have studied using approximate power models, including
linearized models [6, 14, 39], and quadratic models [13]. Other works have considered optimal
DER dispatch in a model-free framework [1, 5].

To enabled control strategies for regulation of voltage phasors, we build upon a linear
model of unbalanced power flow by adding a relation between voltage angle differences and
line real and reactive power. Previous works have considered linear models of unbalanced
power flow [14, 39], but have only provided considered voltage magnitude. To our knowledge,
this work is the first to include voltage angle on an unbalanced network, and in which an
OPF is capable of regulating the entire voltage phasor (magnitude and angle).

In this work, we investigate OPF formulations for control of voltage magnitude and
phase angle through DER dispatch, for the purposes of opening or closing a switch on
a distribution network. First in Section 8.1, pertinent nomenclature and equations are
presented and explained. In Chapter 9, semidefinite programming for OPF formulations
is discussed. Section 9.2 provides an overview of the state of research on SDP OPFs and
presents an argument for the need of other OPF formulations. In Section 9.3, we derive
SDP OPFs for the control of voltage magnitude and phase angle, and discuss preliminary
simulations on simple networks.

In Chapter 10, a linearized unbalanced power flow model (LUPFM) that incorporates
voltage angle is derived. The accuracy of the LUPFM is investigated in Chapter 11 for
benchmark IEEE test feeders. Two applications of the LUPFM are discussed in Chapter
12, with Section 12.1 presenting an OPF for balancing voltage magnitude across multiple
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phases at networks nodes, and Section 12.2 presenting an OPF for minimizing voltage phasor
difference across the ends of an open switch.

8.1 Nomenclature, Definitions, and Preliminaries

Symbol Description Unit

N Set of network nodes in network

Pn Set of phases that exist at node n

E Set of lines (edges) in network

Pmn Set of phases that exist on line (m,n)

G Set of nodes with energy resources

V φ
n Voltage phasor at node n on phase φ [p.u.]

Vn Vector of voltage phasors at node n [p.u.]

Eφ
n Square magnitude of voltage at node n on phase φ [(p.u.)2]

En Vector of square magnitudes of voltage at node n [(p.u.)2]

θφn Phase angle of voltage phasor at node n on phase φ [-]

Θn Vector of phase angles of voltage phasors at node n [-]

iφn Load current of phase φ at node n [p.u.]

in Vector of load currents at node n [p.u.]

Zφφ
mn Impedance of line (m,n) on phase φ [p.u.]

Zφψ
mn Impedance of line (m,n) between phases φ and ψ [p.u.]

Zmn Impedance matrix of line (m,n) [p.u.]

Y φφ
mn Admittance of line (m,n) on phase φ [p.u.]

Y φψ
mn Admittance of line (m,n) between phases φ and ψ [p.u.]

Ymn Admittance matrix of line (m,n) [p.u.]

Iφmn Current phasor on phase φ on line (m,n) [p.u.]

Imn Vector of current phasors on line (m,n) [p.u.]

P φ
mn,m Real power on line (m,n) on phase φ at node m [p.u.]

Pmn,m Vector of real power on line (m,n) at node m [p.u.]

P φ
mn,n Real power on line (m,n) on phase φ at node n [p.u.]

Pmn,n Vector of real power on line (m,n) at node n [p.u.]

Qφ
mn,m Reactive power on line (m,n) on phase φ at node m [p.u.]

Qmn,m Vector of reactive power at node m [p.u.]
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Qφ
mn,n Reactive power on line (m,n) on phase φ at node n [p.u.]

Qmn,n Vector of reactive power on line (m,n) at node n [p.u.]

Sφmn,m Phasor of complex power on line (m,n) on phase φ at
node m

[p.u.]

Smn,m Vector of complex power phasors at node m [p.u.]

Sφmn,n Phasor of complex power on line (m,n) on phase φ at
node n

[p.u.]

Smn,n Vector of complex power phasors at node n [p.u.]

dφn Complex demand on phase φ at node n [p.u.]

dn Vector of complex demands at node n [p.u.]

sφn Complex load on phase φ at node n [p.u.]

sn Vector of complex loads at node n [p.u.]

uφn DER real power dispatch on phase φ at node n [p.u.]

un Vector of DER real power dispatch at node n [p.u.]

vφn DER reactive power dispatch on phase φ at node n [p.u.]

vn Vector of DER reactive power dispatch at node n [p.u.]

wφn DER complex dispatch on phase φ at node n [p.u.]

wn Vector of DER complex dispatch at node n [p.u.]

eφn Fixed voltage magnitude reference for phase φ at node n [(p.u.)2]

eφn Vector of fixed voltage magnitude references at node n [(p.u.)2]

(·)T Transpose

(·)∗ Complex conjugate

(·)H Complex conjugate transpose

Table 8.1: Nomenclature for Part II.

Let T = (N , E) denote a graph representing an unbalanced distribution feeder, where N
is the set of nodes of the feeder and E is the set of line segments. There are N+1 nodes on the
network including the node representing a transmission line or point of common connection
(PCC), which may be indexed by 0 or∞ and assigned the number 0. Nodes will be indexed
by their name, and assigned a number ranging from 1 to N . We treat the PCC as an infinite
bus, decoupling interactions in the downstream distribution system from the rest of the grid.
While the substation voltage may evolve over time, we assume this evolution takes place
independently of loading conditions and DER control actions in T .

Each node and line segment can have up to three phases, labeled a, b, and c. Phases are
referred to by φ ∈ {a, b, c} and ψ ∈ {a, b, c}. Let Pm be the set of phases at node m, and
Pmn be the set of phases of line (m,n). If phase φ is present at node m, then at least one
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Figure 8.1: Simple network showing node voltages Vm, node currents im, line currents Imn,
and line impedances Zmn.
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Figure 8.2: Diagram of simple network showing node voltage Vm, net node demand sm, line
impedance Zmn, and line complex power referenced to line transmitting node Smn,m and line
receiving node Smn,n.

line connected to m must contain phase φ, such that:

m ∈ N ⇒ Pm =
(
∪l:(l,m)∈EPlm

)
∪
(
∪n:(m,n)∈EPmn

)
.

If line (m,n) exists, its phases must be a subset of the phases present at both node m and
node n, such that:

(m,n) ∈ E ⇒ Pmn ⊆ Pm ∩ Pn ,

However Pm ∩ Pn 6= ∅ does not necessarily mean ∃(m,n) ∈ E .
The voltage phasor for phase φ at node n is V φ

n ∈ C, and the vectors of voltage phasorrs

for node n is Vn =
[
V a
n V b

n V c
n

]T
∈ C3. The current phasor for phase φ on line (m,n) is

Iφmn ∈ C, and the voltage of current phasors on line (m,n) is Imn =
[
Iamn Ibmn Icmn

]T
∈ C3.

The current phasor for phase φ at node n is iφn ∈ C, and the vector of current phasors for

node n is in =
[
ian ibn icn

]T
∈ C3.

We define V φ
n = 0 if φ /∈ Pn, Iφmn = 0 if φ /∈ Pmn, and Zφψ

mn = Zψφ
mn = 0 ∀ψ ∈ {a, b, c} if
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φ /∈ Pmn, such that:

φ /∈ Pn ⇒ V φ
n = 0

φ /∈ Pmn ⇒ Iφmn = 0

φ /∈ Pmn ⇒ Zφψ
mn = Zψφ

mn = 0 ∀ψ ∈ {a, b, c}
φ /∈ Pmn ⇒ Y φψ

mn = Y ψφ
mn = 0 ∀ψ ∈ {a, b, c} .

(8.1)

The current/voltage relationship for a three phase line (m,n) between adjacent nodes m
and n is captured by Kirchhoff’s Voltage Laws (KVL) in its full (8.2), and compact form
(8.3): V

a
m

V b
m

V c
m

 =

V
a
n

V b
n

V c
n

+

Z
aa
mn Zab

mn Zac
mn

Zba
mn Zbb

mn Zbc
mn

Zca
mn Zcb

mn Zcc
mn


I

a
mn

Ibmn

Icmn

 (8.2)

Vm = Vn + ZmnImn , (8.3)

where, Zφψ
mn = rφψmn + jxφψmn denotes the complex impedance of line (m,n) across phases φ and

ψ. Here, (8.2) and (8.3) are presented where Pmn = {a, b, c}. For lines with less than three
phases (|Pmn| = 1, or |Pmn| = 2) (8.3) becomes:

[Vm]Pmn = [Vn]Pmn + [Zmn]Pmn,Pmn [Imn]Pmn , (8.4)

by employing the same indexing notation as in [11]. In this notation, rows of all terms in
(8.4), and columns of Zmn, corresponding to φ /∈ Pmn are removed. For example, for a single
phase line (m,n) where Pmn = {φ}, (8.4) is stated as:

V φ
m = V φ

n + Zφφ
mnI

φ
mn .

For a two phase line (m,n) where Pmn = {a, b}, (8.4) is stated as:[
V a
m

V b
m

]
=

[
V a
n

V b
n

]
+

[
Zaa
mn Zab

mn

Zba
mn Zbb

mn

][
Iamn

Ibmn

]
.

For a two phase line (m,n) where Pmn = {a, c}, (8.4) is stated as:[
V a
m

V c
m

]
=

[
V a
n

V c
n

]
+

[
Zaa
mn Zac

mn

Zca
mn Zcc

mn

][
Iamn

Icmn

]
.

Kirchoff’s Current law at node m is given in its full (8.5) and compact (8.6) forms:

∑
l:(l,m)∈E

I
a
lm

Iblm

Iclm

 =

i
a
m

ibm

icm

+
∑

n:(m,n)∈E

I
a
mn

Ibmn

Icmn

 (8.5)

∑
l:(l,m)∈E

Ilm = im +
∑

n:(m,n)∈E

Imn . (8.6)



CHAPTER 8. INTRODUCTION 48

Figure 8.1 shows a simple network with node voltage, node current, line current, and line
impedance.

Complex power on a line is defined at either end of the line as:

Sφmn,m = V φ
m

(
Iφmn
)∗

Sφmn,n = V φ
n

(
Iφmn
)∗

,
(8.7)

where Sφmn,m = P φ
mn,m + jQφ

mn,m ∈ C is the power from node m to node n at node m, and
Sφmn,n = P φ

mn,n + jQφ
mn,n ∈ C is the power from node m to node n at node n. The vector of

complex power flow on line (m,n) at node m is Smn,m =
[
Samn,m Sbmn,m Scmn,m

]T
for node m

where Smn,m = Pmn,m + jQmn,m. The vector of complex power flow on line (m,n) at node n

is Smn,n =
[
Samn,n Sbmn,n Scmn,n

]T
where Smn,n = Pmn,n+jQmn,n. A complex load is served

at each node, where the voltage dependent load on a phase sφn
(
V φ
n

)
= pφn

(
V φ
n

)
+jqφn

(
V φ
n

)
∈ C

is:
sφn
(
V φ
n

)
=
(
AφPQ,n + AφI,n

∣∣V φ
n

∣∣+ AφZ,n
∣∣V φ
n

∣∣2) dφn + wφn − jcφn = V φ
n

(
iφn
)∗
, (8.8)

where cφn denotes capacitance, and AφPQ,n, AφI,n, and AφZ,n are demand ZIP model [38] param-

eters such that AφPQ,n + AφI,n + AφZ,n = 1 ∀φ ∈ Pn ∀n ∈ N . The vector of complex loads at

node n is sn =
[
san sbn scn

]T
where sn = pn + jqn. Figure 8.2 shows power flow and node

loads on a simple network.
In 8.8, the complex DER dispatch is:

wφn = uφn + jvφn , (8.9)

where the vector of complex DER disaptch at node n is wn =
[
wan wbn wcn

]T
where wn =

un + jvn.
Throughout this work, we use the symbol ◦ to represent the Hadamard Product (HP) of

two matrices (or vectors) of the same dimension, also known of the element-wise product,
defined as:

C = A ◦B = B ◦ A⇒ Cij = AijBij = BijAij ,

where i indicates the row and j indicates the column of the vector or matrix.
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Chapter 9

A Discussion of Semidefinite
Programming for Optimal Power
Flow Problems

9.1 Introduction

Power flow models are often nonlinear (very often quadratic) and nonconvex, due to the
nonlinear relations between voltage, current, and complex power. To give an example of the
nonlinear nature of power flow models, consider line (m,n) ∈ E , where the complex power
at node m is Smn,m = VmI

∗
mn. A model incorporating line power flows, node voltage and line

current would therefore have quadratic equality constraints. Substituting the variable for
current, by using the line voltage difference divided by line admittance, Imn = Ymn (Vm − Vn),
the power flow on the line at node m is Smn,m = VmY

∗
mn (V ∗m − V ∗n ) = Y ∗mn (VmV

∗
m − VmV ∗n ).

However, this model is now quadratic in voltage, and contains quadratic inequality con-
straints. While this nonlinear equation can be linearized by variable substitution, it may
be difficult to regain the original variables. Furthermore, nonlinear constraints, especially
nonlinear equality constrains, often cause problems numerical solver convergence.

Semidefinite programming (SDP) is a useful method for transforming and approximating
optimization programs with nonlinear or nonconvex objectives or constraints [28]. This
is especially true for quadratic constraint quadratic programs (QCQP), which many OPF
problems are (as seen in the above example). SDP for OPF applications has been studied
extensively in recent history, with much literature addressing single phase networks, some
earlier works include [7, 22]. More recent literature addresses multiphase networks [11,
50]. In this work, we will use SDP as a shorthand for both semidefinite programming and
semidefinite program.

An SDP is an optimization program with a positive semidefinite matrix variable, which
will be denoted as X. Linear operators, such as the trace, Tr(·), are often used to incorporate
inequality or equality constraints and craft objective functions [28]. Constraints that are
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quadratic in X can be incorporated with linear matrix inequalities. The matrix variable X,
is often formed from a vector x right multiplied by its complex conjugate transpose, such
that X = xxH . To recover the vector x from the matrix X, the solution to the SDP, X, must
have a rank of one. However, the condition that X is rank-one is not convex [28]. Therefore
this constraint is often removed from the SDP to obtain a semidefinite relaxation (SDR), a
convex relaxation of the original SDP. The SDR is better suited for solver utilizing interior
point methods. While a solver may not return a matrix that is strictly rank-one, if the ratio
of the largest nonzero eigenvalue to the second largest nonzero eigenvalue is large enough,
the matrix may be considered to be rank-one.

We now provide a summary of select literature on OPF SDPs for single and multiphase
networks. We will discuss the successes of SDPs, and also drawbacks that may preclude
them from being practically applicable.

9.2 Previous Research in SDP for OPFs

Literature on semidefinite programming has mainly focused on single phase networks,
and the results show the potential of SDP and SDR as a viable method for solving nonlinear
and nonconvex OPF problems. One of the earliest works utilizing SDP for OPF applications
is [7], in which the authors derive an OPF SDP, and solve the SDP using interior point
methods. In [22], the authors investigate conditions under which the SDP and SDR primal
and dual problems will converge to the same solution, and under which a rank-one solution
is obtainable. The authors of [23] discuss geometric interpretations of power flow physics,
and show that the optimal Pareto-optimal points do not change under convex relaxations.
The authors also discuss line power bounds and angle constraints.

The authors of [24] investigate limitations of semidefinite programming in solving OPF
problems. They propose modifications to the SDP to replicate OPF solutions for five node
and seven node networks. They authors found that their approach in modifying constraints
was unsuccessful, and found varying levels of success modifying the SDP objective.

The authors present simulations on simple networks that show convergence to rank-one
solutions with both binding non binding line flow constraints, with results verified by a
separate solver. However, when line flow the constraint bounds are tightened, a rank-one
solution is unobtainable, though the new problem is feasible.

The authors of [27] study sufficiency conditions for the exactness of SDP convex relax-
ations; the conditions under which a rank-one solution is obtainable. The authors propose a
lemma (Lemma 1 in [27]) that states that a nondegenrate feasible solution to a SDP will have
rank greater than 1 if the number of equality constraints plus binding inequality constraints
to the SDP is greater than or equal to twice problem dimension.

The authors propose a theorem (Theorem 2 in [27]) stating that if a primal nondegenerate
solution in the optimal solution set of the primal SDP problem has equality constraints and
binding inequality constraints in number greater than twice the problem dimensionality,
then there are no rank-one solutions in the optimal solution set. This theorem places strict
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bounds on the number of equality constraints that a SDP can have in order to possibly yield a
rank-one optimal solution, which is less than twice the problem dimensionality. The authors
provide remarks on SDP formulation and common constraints on voltage and generation
(DER dispatch).

The authors perform numerical studies on several test cases. Using test cases from liter-
ature, the authors show that while all the test cases follow the sufficient condition outlined
in [27], a unique rank-one solution could not be found.

The authors then empirically investigate the effect on a network’s load profile has on
obtaining an exact relaxation. They found that in gridding several loads on a network,
roughly 93.7% of cases had a unique optimal solution, however only 6.3% of all cases yielded
a unique rank-one solution, so that for a vast majority of cases the relaxation is inexact.

In [29], the authors investigate implementation of an SDP OPF formulation for both
radial (acyclic) and mesh (cyclic) networks. The authors explore different formulations and
line capacity constraints and their relation to obtaining an exact SDP relaxation.

The authors discuss four types of common line capacity constraints and equivalent forms
for an SDP, showing that the four line constraints have similar nonconvex feasible regions.
Simulations on a simple three bus mesh network show that only one of the constraints yield
a rank-1 solution for all values of maximum line voltage angle difference, while the other
three only do so for certain values. The authors conclude from this example that problem
formulation and constraint type are important to factors in successfully obtaining an exact
relaxation. The authors prove that for a mesh (cyclic) network of size 3, an exact relaxation
can be obtained if the minimum reactive DER dispatch is unbounded for a lossless case, and
if the real and reactive DER dispatch is unbounded for a lossy case.

The authors then propose adding a penalty function to the OPF objective, penalizing
DER reactive power dispatch, in order to obtain a low-rank or rank-1 solution. The authors
define a degree of sub-optimality for this modified OPF, and discuss how the modified OPF
SDP solution can be used to find the global optimal solution to the original OPF.

Simulation results on mesh (cylic) test networks show that the original OPF is unable to
obtain rank-1 solutions, however the modified OPF yields rank-1 solutions with appropriate
weighting on the additional reactive power dispatch penalty. Simulations results also show
that the weight on the additional penalty does not significantly impact DER real power
dispatch compared to the original OPF, but does significantly alter the DER reactive power
dispatch.

In [31] and [32], the authors investigate physical network conditions that will lead to an
SDP producing a globally optimal solution. The authors investigate two networks which can
be equivalently modeled, showing that the SDR converges for one and not the other.

From these examples, it can be surmised that SDP has drawbacks that may preclude it
from being widely applicable to many different networks,

Recently, the literature on SDP OPF formulations has expanded to study multiphase
networks. In [11], the authors derive an unblanaced multi-phase power flow model for ra-
dial networks, and transform the problem into an equivalent semi-definite program (SDP)
formulation. The authors discuss a convex relaxation to the equivalent SDP that such that
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the relaxed equivalent SDP is convex. The authors derive a distributed solution such that
the SDP can be implemented within subnetworks on a radial network. They leverage an
algorithm using alternating direction method of multiplies (ADMM) to solve several local
SDP problems accounting for a global objective and constraints.

The authors successfully transform a nonlinear optimization problem into an equivalent
SDP. They furthermore apply a rank relaxation to the equivalent SDP such that the relaxed
problem is convex. The authors show that if the relaxed SDP has a solution with rank 1,
then the solution is optimal for both the relaxed problem and the equivalent SDP.

The authors provide an intuitive argument that builds upon that of [23, 51], as to why
the multiphase SDP should converge to a rank-one solution for a radial (acyclic) network.
While the authors present simulations that show the success of their method, for certain
cases a rank-one solution was not obtainable unless the substation voltage was changed from
1 to 1.02 p.u.

The authors of [50] build upon the work in [11] by developing an algorithm to solve an
OPF should the convex relaxation of the SDP fail.

Literature on SDP OPFs has shown great success in utilizing SDP to solve nonlinear
OPFs. However the literature also outlines several properties of SDP that may preclude it
from being practically implementable.

9.3 Extensions of the SDP OPF for Control of

Voltage Phasors

Many of the OPFs discussed in recent literature papers are economic dispatch problems.
In this section, we will derive objective functions and constraints and objective functions for
control of voltage phasors for the purposes of grid reconfiguration. The work in this section
is not intended as a definitive study on SDP OPFs for controlling voltage magnitude and
phase angle. Instead, it is a preliminary foray into the method for comparative purposes.

Summary of Nomenclature and SDP/SDR Derivation

In this section, we outline pertinent nomenclature and derive relations that can be incor-
porated into an SDP OPF. The nomenclature and derivation are based on that in [11], with
some modifications.

All node voltage phasor vectors Vm, m ∈ N are collected into the vector v ∈ C3(N+1):

v =
[
VT

0 VT
1 . . . VT

N

]T
, (9.1)

and all node current phasor vectors im, (m) ∈ N are collected into the vector i ∈ C3(N+1):

i =
[
iT0 iT1 . . . iTN

]T
. (9.2)



CHAPTER 9. A DISCUSSION OF SEMIDEFINITE PROGRAMMING FOR OPTIMAL
POWER FLOW PROBLEMS 53

The vectors i and v are related by the symmetric admittance matrix Y ∈ C3(N+1)×3(N+1)

such that:
i = Yv , (9.3)

with Y as defined in [11]. The voltage (current) on phase φ at node n can be obtained by
multiplying the voltage (current) vector by the transpose of vector eφn, as defined in [11]:

V φ
n =

(
eφn
)T

v

iφn =
(
eφn
)T

i =
(
eφn
)T

Yv .
(9.4)

The hermitian matrix V ∈ C3(N+1)×3(N+1) is defined as:

V = vvH . (9.5)

The squared magnitude of the voltage phasor V φ
n is:∣∣V φ

n

∣∣2 =
(
V φ
n

)∗
V φ
n = vHeφn

(
eφn
)T

v = vHΦφ
V,nv . . .

= Tr
(
vHΦφ

V,nv
)

= Tr
(

Φφ
V,nvvH

)
= Tr

(
Φφ
V,nV

)
,

(9.6)

where Φφ
V,n = eφn

(
eφn
)T ∈ R3(N+1)×3(N+1). Minimum and maximum voltage magnitude con-

straints are incorporated into the OPF as:

V φ
n ≤

∣∣V φ
n

∣∣ ≤ V
φ

n ⇒
(
V φ
n

)2 ≤ Tr
(

Φφ
V,nV

)
≤
(
V
φ

n

)2
. (9.7)

The complex load on phase φ at node n is defined by (8.8), and can be expressed as:

sφn = V φ
n

(
iφn
)∗

=
(
iφn
)∗
V φ
n = iHeφn

(
eφn
)T

v = vHYHeφn
(
eφn
)T

v = vHYφ
nv . . .

= Tr
(
vHYφ

nv
)

= Tr
(
Yφ
nvvH

)
= Tr

(
Yφ
nV
)
,

(9.8)

where Yφ
n = YHeφn

(
eφn
)T ∈ C3(N+1)×3(N+1). The active (real) and reactive (imaginary) parts

of the complex load are:

pφn =
1

2

(
vHYφ

nv + vH
(
Yφ
n

)H
v
)

=
1

2
Tr
((

Yφ
n +

(
Yφ
n

)H)
V
)

= Tr
(
Φφ
p,nV

)
qφn =

1

j2

(
vHYφ

nv − vH
(
Yφ
n

)H
v
)

=
1

j2
Tr
((

Yφ
n −

(
Yφ
n

)H)
V
)

= Tr
(
Φφ
q,nV

)
,

(9.9)

where Φφ
p,n = 1

2

(
Yφ
n +

(
Yφ
n

)H)
and Φφ

q,n = 1
j2

(
Yφ
n −

(
Yφ
n

)H)
.

From (8.8), the DER real and reactive power dispatch on phase φ at node n, uφn and vφn,
respectively, are:

uφn = pφn −
(
AφPQ,n + AφZ,n

∣∣V φ
n

∣∣2)Re
{
dφn
}

= Tr
(
Φφ
p,nV

)
−
(
AφPQ,n + AφZ,n Tr

(
Φφ
V,nV

))
Re
{
dφn
}

vφn = qφn −
(
AφPQ,n + AφZ,n

∣∣V φ
n

∣∣2) Im
{
dφn
}

+ cφn

= Tr
(
Φφ
q,nV

)
−
(
AφPQ,n + AφZ,n Tr

(
Φφ
V,nV

))
Im
{
dφn
}

+ cφn .

(9.10)
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With this definition, we can define bounds on the DER complex power dispatch. The
first is to limit the real and reactive power independently, as in [11]:

uφn ≤ uφn ≤ uφn

vφn ≤ vφn ≤ vφn .
(9.11)

The second bound on DER complex power dispatch is an approximation on apparent power
constraint with Nc half-spaces, as derived in Appendix C:

cos(δk)u
φ
n + sin(δk)v

φ
n ≤ wφn,

k2π

Nc

, k = 0, 1 . . . Nc . (9.12)

The third bound on DER complex dispatch is a bound on apparent power of the form, as in
[33]:

∣∣uφn + jvφn
∣∣ ≤ wφn ≡


(
wφn
)2

uφn vφn

uφn −1 0

vφn 0 −1

 � 0 , (9.13)

where � (�) denotes the LHS matrix is positive (negative) semidefinite.
The authors of [29], propose modifying the objective function of an SDP by penalizing

the reactive power sourced (output by DER into the grid). The penalty is takes the form:

g (V) = −
∑
n∈G
φ∈ Pn

vφn = −
∑
n∈G
φ∈ Pn

qφn −
(
AφPQ,n + AφZ,n

∣∣V φ
n

∣∣2) Im
{
dφn
}

+ cφn

= −
∑
n∈G
φ∈ Pn

Tr
(
Φφ
q,nV

)
−
(
AφPQ,n + AφZ,n Tr

(
Φφ
V,nV

))
Im
{
dφn
}

+ cφn .

(9.14)

Simulation Parameters

V∞ VA1Z∞A1 VA2ZA1A2

VA3

ZA2A3

VA4

ZA2A4

VA5ZA4A5

Figure 9.1: Diagram of simple network used in SDP OPF Simulations.

In this section we discuss a simple network that we perform simulations with SDP OPFs
on. For simplicity, the network is single phase. DER is placed at nodes G = {A2, A3, A5}
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with an apparent capacity limit of 0.05 p.u. DER is assumed to be inverters capable of four
quadrant operation, and thus can source and sink real and reactive power independently.

The voltage obtained from solving power flow with no DER dispatch, un = vn = 0 with
a Newton-Raphson method [48] is given in Table 9.1.

Node Vn [p.u.] Vn [p.u.]

∞ 1.0000− j0.0000 1.0000∠0.0000◦

A1 0.9943− j0.0033 0.9943∠− 0.1873◦

A2 0.9714− j0.0163 0.9715∠− 0.9587◦

A3 0.9654− j0.0191 0.9656∠− 1.1317◦

A4 0.9654− j0.0201 0.9656∠− 1.1903◦

A5 0.9638− j0.0225 0.9641∠− 1.3370◦

Table 9.1: Voltage from solving power flow [48] with zero DER dispatch.

In the next section, we derive and discuss simulation results of several SDP formulations
for controlling voltage magnitude and angle on a network. As in [29], we penalize DER
reactive power dispatch with (9.14), and a weight of ε.

We consider the solution V to be rank-one if it only has one positive nonzero eigenvalue,
or if |λ1/λ2| ≥ 106, where λ1 and λ2 are the first and second largest nonzero eigenvalues
of V, respectively. The eigenvalue decomposition of V is V = UΛUH = vvH , and thus
v =

∑
k

√
λkuk where λk and uk are the eigenvalues and eigenvectors of V, respectively.

Thus if O (|λ1/λ2|) ∼ 106 then O
(√
|λ1/λ2|

)
∼ 103.

Extension of SDP Method for Control of Voltage Magnitude

Voltage Magnitude Reference Tracking

We first consider a tracking problem in which an SDP seeks to minimize the absolute
difference between the voltage magnitude at a node, and a reference. For a multiphase
network, this is written as (9.15), where the voltage magnitude reference for phase φ at node
k is νφk :

minimize
V

∑
φ∈Pk

∣∣∣∣Tr
(

Φφ
V,kV

)
−
(
νφk

)2∣∣∣∣+ εg (V)

subject to (9.10), (9.13), (9.14) ∀φ ∈ Pn,∀n ∈ G
0.95 ≤

∣∣V φ
n

∣∣ ≤ 1.05, (9.7) ∀φ ∈ Pn,∀n ∈ N

V1 =
[
1 1∠− 120◦ 1∠120◦

]T
.

(9.15)
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The objective function can be transformed into a linear objective function and two linear
constraints by introducing a new variable γφV,k such that:

minimize
V,γφk

∑
φ∈Pk

γφk + εg (V)

subject to (9.10), (9.13), (9.14) ∀φ ∈ Pn,∀n ∈ G
0.95 ≤

∣∣V φ
n

∣∣ ≤ 1.05, (9.7) ∀φ ∈ Pn,∀n ∈ N

V1 =
[
1 1∠− 120◦ 1∠120◦

]T
Tr
(

Φφ
V,kV

)
−
(
νφk

)2
≤ γφV,k ∀φ ∈ Pk

− Tr
(

Φφ
V,kV

)
+
(
νφk

)2
≤ γφV,k ∀φ ∈ Pk .

(9.16)

The OPF can also be cast as a quadratic minimization, as in (9.17):

minimize
V

∑
φ∈Pk

(
Tr
(

Φφ
V,kV

)
−
(
νφk

)2)2

+ εg (V)

subject to (9.10), (9.13), (9.14) ∀φ ∈ Pn,∀n ∈ G
0.95 ≤

∣∣V φ
n

∣∣ ≤ 1.05, (9.7) ∀φ ∈ Pn,∀n ∈ N

V1 =
[
1 1∠− 120◦ 1∠120◦

]T
,

(9.17)

and transformed by introducing the variable γφk and a semidefinite matrix, as in [32]:

minimize
V,γφk

∑
φ∈Pk

γφk + εg (V)

subject to (9.10), (9.13), (9.14) ∀φ ∈ Pn,∀n ∈ G
0.95 ≤

∣∣V φ
n

∣∣ ≤ 1.05, (9.7) ∀φ ∈ Pn, ∀n ∈ N

V1 =
[
1 1∠− 120◦ 1∠120◦

]T
 γφk

(
Tr
(

Φφ
V,kV

)
−
(
νφk

)2)
(

Tr
(

Φφ
V,kV

)
−
(
νφk

)2)
1

 � 0 ∀φ ∈ Pk .

(9.18)

Simulations were run on the network shown in Figure 9.1, with the OPF of (9.16), with
the node k = A2 given a reference. We perform simulations for voltage magnitude references
varying from 0.95 to 1.0 in increments of 0.005 p.u. Additionally, the DER reactive power
dispatch is penalized as in [29] with ε varying from 0 to 0.5 in increments of 0.05.

Figure 9.2 gives the results a simulation of (9.16) with varying voltage magnitude ref-
erence and reactive power dispatch penalty. It can be seen that for a voltage magnitude
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Figure 9.2: Results of OPF (9.16) simulations with varying voltage magnitude reference and
reactive power dispatch penalty. Blue dots represent cases with rank-one solutions. Red
dots represent cases where a rank-one solution was not obtained.

reference of νA2 ≥ 0.98 p.u., the unmodified OPF converges to a rank-one solution. For
magnitude references of 0.965 ≤ νA2 ≤ 0.975 p.u., the original OPF did not reach a rank-one
solution, and a small penalty on DER reactive power dispatch led to a rank-one solution.
For magnitude references of 0.95 ≤ νA2 ≤ 0.96, no penalty weighting led a rank-one solution.
The ratio of eigenvalues for these cases was always less than 104.

0.95 0.96 0.97 0.98 0.99 1

Voltage Reference 
2
 [p.u.]

0

0.1

0.2

0.3

0.4

0.5
Magnitude Reference - Quadratic

Figure 9.3: Results of OPF (9.16) simulations with varying voltage magnitude reference and
reactive power dispatch penalty. Blue dots represent cases with rank-one solutions. Red
dots represent cases where a rank-one solution was not obtained.

Figure 9.3 gives the results a simulation of (9.18) with varying voltage magnitude refer-
ence and reactive power dispatch penalty. This case has similar results to the previous sim-
ulation. Higher voltage magnitude references cases did not require modification of the OPF
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objective function. Cases where the voltage magnitude references was 0.965 ≤ νA2 ≤ 0.975
p.u., required a small penalty to obtain a rank-one solution. Finally, the cases where
0.95 ≤ νA2 ≤ 0.96 did not converge to a rank-one solution despite with any weighting
on DER reactive power dispatch.

Minimization of Voltage Magnitude Difference

The previous OPFs can be extended to minimize the difference between voltage magni-
tude across different phases at a node, between the same phase at different nodes, or between
different phases at different nodes:

Eφ
kl =

∣∣∣V φ
k

∣∣∣2 − ∣∣∣V φ
l

∣∣∣2 = Tr
(

Φφ
V,kV

)
− Tr

(
Φφ
V,lV

)
= Tr

(
Φφ
V,klV

)
, (9.19)

where Φφ
V,kl = Φφ

V,k −Φφ
V,l. An OPF minimizing the absolute value of the difference between

voltage magnitude of phase φ at node k and node l is:

minimize
V

∑
φ∈Pkl

∣∣∣Tr
(

Φφ
V,klV

)∣∣∣+ εg (V)

subject to (9.10), (9.13), (9.14) ∀φ ∈ Pn,∀n ∈ G
0.95 ≤

∣∣V φ
n

∣∣ ≤ 1.05, (9.7) ∀φ ∈ Pn,∀n ∈ N

V1 =
[
1 1∠− 120◦ 1∠120◦

]T
.

(9.20)

This objective can likewise be transformed into a linear objective function and two linear
constraints as in:

minimize
V,γφkl

∑
φ∈Pkl

γφkl + εg (V)

subject to (9.10), (9.13), (9.14) ∀φ ∈ Pn,∀n ∈ G
0.95 ≤

∣∣V φ
n

∣∣ ≤ 1.05, (9.7) ∀φ ∈ Pn,∀n ∈ N

V1 =
[
1 1∠− 120◦ 1∠120◦

]T
Tr
(

Φφ
V,klV

)
≤ γφV,kl ∀φ ∈ Pkl

− Tr
(

Φφ
V,klV

)
≤ γφV,kl ∀φ ∈ Pkl .

(9.21)

The OPF minimizing voltage magnitude difference can also be cast a quadratic minimization
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as in (9.22):

minimize
V

∑
φ∈Pkl

(
Tr
(

Φφ
V,klV

))2
+ εg (V)

subject to (9.10), (9.13), (9.14) ∀φ ∈ Pn,∀n ∈ G
0.95 ≤

∣∣V φ
n

∣∣ ≤ 1.05, (9.7) ∀φ ∈ Pn,∀n ∈ N

V1 =
[
1 1∠− 120◦ 1∠120◦

]T
.

(9.22)

This can likewise be transformed into the SDR of (9.23):

minimize
V,γφkl

∑
φ∈Pkl

γφkl + εg (V)

subject to (9.10), (9.13), (9.14) ∀φ ∈ Pn,∀n ∈ G
0.95 ≤

∣∣V φ
n

∣∣ ≤ 1.05, (9.7) ∀φ ∈ Pn,∀n ∈ N

V1 =
[
1 1∠− 120◦ 1∠120◦

]T
 γφkl Tr

(
Φφ
V,klV

)
Tr
(

Φφ
V,klV

)
1

 � 0 ∀φ ∈ Pkl .

(9.23)

We performed simulations on the network shown in Figure 9.1, with k = A3 and l = A5.
The penalty weighting on DER reactive power dispatch varied from 0 to 1 in increments of
0.1. With the OPF of (9.21), no rank-one solution was obtained. Similarly, with the OPF
of (9.23), no rank-one solution was obtained. For all values of ε, O (|λ1/λ2|) ∼ 103 for all
values of ε. The simulation results prompt further study of this problem.

Voltage Magnitude Difference Bounds

Bounds on the difference in voltage magnitude can be enforced using (9.19):

minimize
V,γφkl

∑
φ∈Pkl

εg (V)

subject to (9.10), (9.13), (9.14) ∀φ ∈ Pn,∀n ∈ G
0.95 ≤

∣∣V φ
n

∣∣ ≤ 1.05, (9.7) ∀φ ∈ Pn,∀n ∈ N

V1 =
[
1 1∠− 120◦ 1∠120◦

]T
Eφ
kl ≤ Tr

(
Φφ
V,klV

)
≤ E

φ

kl ∀φ ∈ Pkl .

(9.24)

We performed simulations with k = A3 and l = A5. We performed multiple simulations
with the penalty weighting on DER reactive power dispatch varied from 0 to 1 in increments
of 0.1. For the no control case, the squared voltage magnitude of nodes A3 and A5 are
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|VA3|2 = 0.9323 and |VA5|2 = 0.9294, respectively. With a magnitude difference bound of
−0.01 ≤ Eφ

kl ≤ 0.01 no rank one solution was found, and O (|λ1/λ2|) ∼ 103 for all values

of ε. With a magnitude difference bound of −0.005 ≤ Eφ
kl ≤ 0.005, no rank one solution

was found, and O (|λ1/λ2|) ∼ 103 for all values of ε. With a magnitude difference bound of
−0.001 ≤ Eφ

kl ≤ 0.001, no rank one solution was found, and O (|λ1/λ2|) ∼ 103 for all values
of ε. The simulation results prompt further study of this problem.

Extension of SDP Method for Control of Voltage Angle

Consider an off-diagonal index of V corresponding to the product of the phasor of a
phase φ at node m and the complex conjugate of the phasor for phase φ at node n, which
can be expressed in polar form:

V φ
m

(
V φ
n

)∗
=
∣∣V φ
m

∣∣ ∣∣V φ
n

∣∣∠ (θπm − θπn)

=
∣∣V φ
m

∣∣ ∣∣V φ
n

∣∣ [cos (θπm − θπn) + j sin (θπm − θπn)] . (9.25)

We now define θφmn = θφm− θφn. The ratio of the real and imaginary components of V φ
m

(
V φ
n

)∗
is defined by the tangent function:

Im
{
V φ
m

(
V φ
n

)∗}
Re
{
V φ
m

(
V φ
n

)∗} =

∣∣V φ
m

∣∣ ∣∣V φ
n

∣∣ sin (θφmn)∣∣∣V φ
m

∣∣∣ ∣∣∣V φ
n

∣∣∣ cos
(
θφmn
) = tan

(
θφmn
)
. (9.26)

The real and imaginary components of V φ
m

(
V φ
n

)∗
are defined as:

Re
{
V φ
m

(
V φ
n

)∗}
=

1

2

[
V φ
m

(
V φ
n

)∗
+
(
V φ
m

)∗
V φ
n

]
=

1

2

[
Tr
(
Φφ
mnV

)
+ Tr

(
Φφ
nmV

)]
Im
{
V φ
m

(
V φ
n

)∗}
=

1

j2

[
V φ
m

(
V φ
n

)∗ − (V φ
m

)∗
V φ
n

]
=

1

j2

[
Tr
(
Φφ
mnV

)
− Tr

(
Φφ
nmV

)]
,

(9.27)

where the matrices Φφ
mn and Φφ

nm are defined as:

Φφ
mn = eφn

(
eφm
)T
, Φφ

nm = eφm
(
eφn
)T

, (9.28)

using the same notation for eφm and eφn as in [11]. Thus, we can use (9.26), (9.27), and (9.28)
to obtain relationships defining an off diagonal element of V in terms of the its angle:

Re
{
V φ
m

(
V φ
n

)∗}
sin
(
θφmn
)

= Im
{
V φ
m

(
V φ
n

)∗}
cos
(
θφmn
)

Tr
(

Φφ
Re,mnV

)
sin
(
θφmn
)

= Tr
(

Φφ
Im,mnV

)
cos
(
θφmn
)

ΦRe,mn =
1

2

[
Φφ
mn + Φφ

nm

]
, ΦIm,mn =

1

j2

[
Φφ
mn − Φφ

nm

]
.

(9.29)

While 9.29 can be used to directly assign voltage angles, it is likely to not be practically
applicable as choosing a feasible set of angles may prove difficult or impossible.
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Voltage Angle Difference Bounds

On the interval 〈−π/2, π/2〉, a ≤ b⇒ tan (a) ≤ tan (b), and thus we can take advantage
of this property to introduce upper and lower bounds on voltage phasor angle using the

previous analysis. Defining a lower angle bound as θφmn, and an upper angle bound as θ
φ

mn,
we can introduce a new constraint:

θφmn ≤ θφmn ≤ θ
φ

mn ⇒ tan
(
θφmn
)
≤ tan

(
θφmn
)
≤ tan

(
θ
φ

mn

)
, (9.30)

where θφmn, θ
φ

mn and θφmn are all on the interval 〈−π, π〉. With the definition of the real and
imaginary parts of V φ

m

(
V φ
n

)∗
from (9.26), this can be rewritten as:

tan
(
θφmn
)
≤

Im
{
V φ
m

(
V φ
n

)∗}
Re
{
V φ
m

(
V φ
n

)∗} ≤ tan
(
θ
φ

mn

)
, (9.31)

which can be rewritten by multiplying by the denominator:

tan
(
θφmn
)
Re
{
V φ
m

(
V φ
n

)∗} ≤ Im
{
V φ
m

(
V φ
n

)∗} ≤ tan
(
θ
φ

mn

)
Re
{
V φ
m

(
V φ
n

)∗}
. (9.32)

Using the trace operator, this can be rewritten as a constraint for the voltage angle lower
bound:

tan
(
θφmn
)

Tr
(

Φφ
Re,mnV

)
≤ Tr

(
Φφ
Im,mnV

)
, (9.33)

and voltage angle upper bound:

Tr
(

Φφ
Im,mnV

)
≤ tan

(
θ
φ

mn

)
Tr
(

Φφ
Re,mnV

)
. (9.34)

An example OPF that incorporates bounds on voltage angle difference is given by (9.35):

minimize
V

f (V) + εg (V)

subject to (9.10), (9.13), (9.14) ∀φ ∈ Pn,∀n ∈ G
0.95 ≤

∣∣V φ
n

∣∣ ≤ 1.05, (9.7) ∀φ ∈ Pn,∀n ∈ N

V1 =
[
1 1∠− 120◦ 1∠120◦

]T
tan
(
θφkl

)
Tr
(

Φφ
Re,klV

)
≤ Tr

(
Φφ
Re,klV

)
∀φ ∈ Pkl

Tr
(

Φφ
Im,klV

)
≤ tan

(
θ
φ

kl

)
Tr
(

Φφ
Re,klV

)
∀φ ∈ Pkl .

(9.35)

We perform simulations on the network show in Figure 9.1. The objective function of
(9.35) is f (V) = |VA2|2 = Tr (ΦV,2V). We place angle bounds where k = A3 and l = A5.

With angle bounds of θφkl = −0.005 and θ
φ

kl = 0.005, a rank-one solution is obtained with
ε = 0 and O |λ1/λ2| ≈ 107. Solving power flow with the optimal DER dispatch from 9.35,
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VA3 = 0.9743∠ − 1.1142◦ and VA5 = 0.9737∠ − 1.1630◦. The resultant voltage angles are
within the imposed bounds.

With angle bounds of θφkl = −0.001 and θ
φ

kl = 0.001, a rank-one solution is obtained with
ε = 0 and O |λ1/λ2| ≈ 107. Solving power flow with the optimal DER dispatch from 9.35,
VA3 = 0.9733∠ − 1.1368◦ and VA5 = 0.9724∠ − 1.1366◦. The resultant voltage angles are
within the imposed bounds.

While simulation results are promising, the lack of success in controlling voltage magni-
tude motivates the concerted analysis of controlling voltage magnitude and angle within an
SDP formulation.

9.4 Conclusions

This chapter provided a discussion of the literature on SDP for OPF problems, and a
preliminary study into SDP for controlling voltage magnitude and angle. While literature
has detailed the success of SDP as a method for solving nonlinear and nonconvex OPFs,
these works also highlighted drawbacks to the method. Simulation results motivate further
analysis.

The first part of this chapter discusses recent works on SDP OPFs that show the method’s
promise, however, these works also outline why it may not be a viable method with current
solvers. In [24], simulations have shown that a rank-one solution may not be obtainable,
even for a feasible problem, when load line flow constraints are tightened. In [27], analysis
has shown that too many equality constraints and binding inequality constraints will prevent
convergence to a rank-one solution. In [29], to rectify convergence issues with certain cyclic
networks, the authors suggest a possible solution of augmenting the objective function to
penalize DER reactive power dispatch, thus changing the original problem. Finally, simu-
lation results in [11] show that SDP convergence is sensitive to slack bus voltage. Recent
literature points to methods for addressing some of these issues with iterative methods [26,
50, 51].

The second part of this chapter explores SDP as a method for solving OPFs for controlling
voltage magnitude and angle. We derive SDP formulations for several OPFs for management
of voltage magnitude and angle. Simulation results show that an OPF that tracks a voltage
magnitude target will converge to a rank-one solution for higher target values, will converge to
a rank-one solution for certain target values with a penalty on DER reactive power dispatch,
and will not converge to a rank-one solution for lower target vales.

A second simulation in which an OPF seeks to minimize voltage magnitude difference
failed to produce a rank-one solution, despite the OPF modification proposed in [29]. A
third simulation in which an OPF seeks to place constraints on voltage magnitude differ-
ence failed to produce a rank-one solution, despite the OPF modification proposed in [29].
Finally, a fourth simulation in which an OPF seeks to impose constraints on voltage angle
difference successfully produced rank-one solutions for several bounds, without necessitating
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the OPF modification proposed in [29]. These simulation results motivate further analysis
into controlling voltage magnitude with SDP OPFs.

This work is not an exhaustive or definitive study on the efficacy of SDP OPFs in con-
trolling voltage magnitude and angle, but rather an preliminary exploration. The lack of
rank-one solutions for minimizing voltage magnitude difference, and lack of objective that
minimizes voltage angle difference motivates the need for the investigation of other power
flow models for DER optimization.
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Chapter 10

Derivation of a Linearized Unbalanced
Power Flow Model

10.1 Introduction

From the discussion of semidefinite programming presented in Chapter 9, it is clear
that SDP and current solves currently have drawbacks that may preclude its application to
solve OPF large, multiphase, or meshed (cyclic) networks. With this in in mind, we seek a
novel model for unbalanced power flow model that can easily be incorporated into a convex
optimization program.

Baran and Wu developed the DistFlow single phase power flow model in [9], and a
simplified version of the DistFlow model in [8]. The simplified version contains linear power
flow equations, except for the loss terms which are quadratic in real and reactive line power
flows.

The DistFlow and its linearized version, often referred to as LinDistFlow, have been
used for optimization and control of distribution network resources, along with network
state estimation. In [12], the authors utilize a modified version of the simplified simplified
DistFlow equations to develop local volt/var control schemes. The authors of [25] employ
simplified simplified DistFlow in developing localized voltage regulation algorithms. In [10],
the authors take advantage of the simplified simplified DistFlow system of equations to
investigate linear approximations of the the power flow manifold.

The DistFlow has also been extended to three phase systems, as have the simplified
DistFlow system of equations. Gan and Low [14] extend the DistFlow to three phases,
and apply simplifying assumptions to obtain linear version of the simplified DistFlow. The
authors conclude that for networks with small line losses and nearly balanced voltages,
the linear approximation is accurate. The authors of [20] develop localized single phase
and three phase voltage control schemes using the single phase and three phase simplified
DistFlow equations. The authors also derive a version of the three phase simplified DistFlow
for voltage regulation in[39]. The authors also derive approximations for previously omitted
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nonlinear terms.
As the simplified DistFlow and its three phase counterpart are linear, the systems of

equations can be incorporated into a linear program (LP) or quadratic program (QP), or
other convex optimization programs. However, the models of [14], [20], and [39] do not
contain the voltage phasor angle. To this end, we builds upon the three phase simplified
DistFlow by adding equations for voltage phase angle.

10.2 Derivation of Power and Losses for Unbalanced

Approximate Power Flow

We now derive complex power and loss terms on a line (m,n) ∈ E . This derivation follows
that of [14] and [39] for three phases systems. Our derivation arrives at the same result as
in [14], but with different nomenclature.

Power Referenced to Line Receiving Node

We now derive complex power and losses for lines (l,m) ∈ E and (m,n) ∈ E that connect
to node m ∈ N . This derivation follows that of [14] and [39] for three phases systems. Our
derivation arrives at the same result as in [14], but with different nomenclature and method.

To start, we take the HP of Vm and the complex conjugate (non-transposed) of (8.6):∑
l:(l,m)∈E

Vm ◦ I∗lm = Vm ◦ i∗m +
∑

n:(m,n)∈E

Vm ◦ I∗mn . (10.1)

The Vm term inside the summation on the RHS is substituted using (8.3):∑
l:(l,m)∈E

Vm ◦ I∗lm = Vm ◦ i∗m +
∑

n:(m,n)∈E

Vn ◦ I∗mn + (ZmnImn) ◦ I∗mn . (10.2)

Here, we define the per phase complex power as Sφlm,m = Vφ
m

(
Iφlm

)∗
, and Sφmn,n = Vφ

n

(
Iφmn
)∗

,

and the 3 × 1 vectors of complex power phasors Slm,m = Vm ◦ I∗lm and Smn,n = Vn ◦ I∗mn
where Smn,n is the power from node m to node n at node n, such that:∑

l:(l,m)∈E

Slm,m = sm +
∑

n:(m,n)∈E

Smn,n + Lmn . (10.3)

As we define Iφmn = 0 ∀φ /∈ Pmn and Iφmn = 0 ∀φ /∈ Pmn, then clearly Sφmn,n = 0 ∀φ /∈ Pmn.
The term Lmn ∈ C3×1 is a nonlinear and non-convex loss term. Thus this equation

will be difficult to incorporate into an optimization framework. We therefore introduce the
following assumption:

A1: Lmn is constant ∀(m,n) ∈ E
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Applying A1 to (10.3) gives a linear equation for the conservation of complex power at node
m ∈ N , (10.4). ∑

l:(l,m)∈E

Slm,m ≈ sm +
∑

n:(m,n)∈E

Smn,n + Lmn . (10.4)

Additionally, following the analysis in [9] and [14], we introduce a second assumption:

A2: Lmn =
[
0 0 0

]T
∀(m,n) ∈ E

Assumption A2 states that line losses are small compared to line flows, such that
∣∣Lφmn∣∣�∣∣Sφmn∣∣ ∀φ ∈ Pmn ∀(m,n) ∈ E and can therefore be neglected. With this assumption applied

to (10.4), we arrive at a simplified equation for the conservation of complex power (10.5):∑
l:(l,m)∈E

Slm ≈ sm +
∑

n:(m,n)∈E

Smn . (10.5)

It should be noted that when A2 is applied, we will drop the second subscript denoting
the node the power is referenced at. This is because if losses are assumed to be 0, then
the power at the transmitting node and receiving node of a line are equivalent, such that
Smn,m = Smn,n = Smn ∀(m,n) ∈ E , and Sφmn = 0 ∀φ /∈ Pmn.

Power Referenced to Line Transmitting Node

In the previous subsection, we derived three phase complex power flow for lines connected
to node m ∈ N , with the power referenced to the receiving end of the line. While the
transmitting and receiving end of a line (m,n) ∈ E can be arbitrarily chosen, referencing
power at one end or the other may improve accuracy of a model, especially when using
measured voltage and power values.

We now derive a similar set of equation to (10.2) – (10.5), however with line complex
power defined at the line’s transmitting node. We again start by taking the HP of Vm and
the complex conjugate (non-transposed) of (8.6):∑

l:(l,m)∈E

Vm ◦ I∗lm = Vm ◦ i∗m +
∑

n:(m,n)∈E

Vm ◦ I∗mn . (10.6)

The Vm term inside the summation on the LHS is substituted using (8.3) on line (l,m) ∈ E :∑
l:(l,m)∈E

Vl ◦ I∗lm − (ZlmIlm) ◦ I∗lm = Vm ◦ i∗m +
∑

n:(m,n)∈E

Vm ◦ I∗mn . (10.7)

Here, we define the per phase complex power as Sφlm,l = Vφ
l

(
Iφlm

)∗
and Sφmn,m = Vφ

m

(
Iφmn
)∗

.

The 3×1 vector of complex power phasors are defined as Slm,l = Vl◦I∗lm and Smn,m = Vm◦I∗mn
where Smn,m is the power from node m to node n at node m, such that:∑

l:(l,m)∈E

Slm,l − Llm = sm +
∑

n:(m,n)∈E

Smn,m . (10.8)
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As we define Iφmn = 0 ∀φ /∈ Pmn, then clearly Sφmn,m = 0 ∀φ /∈ Pmn.
Similarly to (10.3), Llm ∈ C3×1 is a nonlinear and non-convex loss term. Applying A1

on line (l,m) ∈ E to (10.8) gives a linear equation for the conservation of complex power at
node m, (10.9): ∑

l:(l,m)∈E

Slm,l − Llm ≈ sm +
∑

n:(m,n)∈E

Smn,m . (10.9)

Additionally, applying A2 further simplifies (10.9) into (10.10):∑
l:(l,m)∈E

Slm ≈ sm +
∑

n:(m,n)∈E

Smn . (10.10)

It should be noted that (10.5) and (10.10) are equivalent, as when A2 is applied to a line
(m,n) ∈ E , Sφmn,m = Sφmn,n = Sφmn ∀φ ∈ Pmn and Smn,m = Smn,n = Smn when losses are
neglected.

10.3 Derivation of Voltage Magnitude Relations for

Unbalanced Approximate Power Flow

In this section, we present a derivation for squared voltage magnitudes and complex mul-
tiphase power for unbalanced systems. This section follows derivations in [14, 39], however
we present it in this work to keep a uniform nomenclature with the next section, to motivate
the extension of the model to consider voltage angles in the following section, and to high-
light a common structure shared between the voltage magnitude/complex power flow and
voltage angle/complex power flow relationships.

The reader should note that here we present the derivation for a line with three phases
where Pmn = {a, b, c}. For lines with less than three phases (|Pmn| = 1 or |Pmn| = 2), all
equations should be indexed by Pmn as (8.4) is.

As in the previous section, Section 10.2, we will derive equations relating voltage mag-
nitude to complex power flow first referencing voltage and power to the receiving node of a
line, then the transmitting node.

Derivation of Magnitude Equation with Voltage and Power
Referenced to Line Receiving Node

To start, we consider line (m,n) ∈ E , and take the Hadamard Product of (8.3) and its
complex conjugate (non-transposed):

Vm ◦V∗m = (Vn + ZmnImn) ◦ (Vn + ZmnImn)∗ . (10.11)

This can be rewritten by distributing the terms on the RHS:

Vm ◦V∗m = Vn ◦V∗n + Vn ◦ (ZmnImn)∗+ (ZmnImn) ◦V∗n + (ZmnImn) ◦ (ZmnImn)∗ . (10.12)
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Now, we define the real scalar:

Eφ
m =

∣∣V φ
m

∣∣2 = V φ
m(V φ

m)∗ , (10.13)

the 3× 1 real vector:

Em =
[
Ea
m Eb

m Ec
m

]T
= Vm ◦V∗m , (10.14)

and the 3× 1 real vector:

Hmn = (ZmnImn) ◦ (ZmnImn)∗ = (Vm −Vn) ◦ (Vm −Vn)∗ . (10.15)

With these definitions, we also take advantage of the commutative property of the HP and
group the second and third terms of the RHS of (10.12) inside the real operator, as they are
the complex conjugate of each other:

Em = En + 2 Re {(ZmnImn)∗ ◦Vn}+ Hmn . (10.16)

We expand (ZmnImn)∗ ◦Vn to obtain:

Em = En + 2 Re


V

a
n

(
Zaa
mnI

a
mn + Zab

mnI
b
mn + Zac

mnI
c
mn

)∗
V b
n

(
Zba
mnI

a
mn + Zbb

mnI
b
mn + Zbc

mnI
c
mn

)∗
V c
n

(
Zca
mnI

a
mn + Zcb

mnI
b
mn + Zcc

mnI
c
mn

)∗

+ Hmn . (10.17)

Now, we use the definition of complex power at the receiving node where
(
Iφmn
)∗

= Sφmn,n/V
φ
n ,

and define the term γφψn = V φ
n /V

ψ
n , thus expand (10.17) to (10.18):

Em = En + 2 Re


(Zaa

mn)∗Samn,n + γabn (Zab
mn)∗Sbmn,n + γacn (Zac

mn)∗Scmn,n

γban (Zba
mn)∗Samn,n + (Zbb

mn)∗Sbmn,n + γbcn (Zbc
mn)∗Scmn,n

γcan (Zca
mn)∗Samn,n + γcbn (Zcb

mn)∗Sbmn,n + (Zcc
mn)∗Scmn,n


+ Hmn . (10.18)

The 3 × 1 vector on the RHS can be separated into a 3 × 3 matrix multiplied by the 3 × 1
vector Smn,n:

Em = En + 2 Re


 (Zaa

mn)∗ γabn (Zab
mn)∗ γacn (Zac

mn)∗

γban (Zba
mn)∗ (Zbb

mn)∗ γbcn (Zbc
mn)∗

γcan (Zca
mn)∗ γcbn (Zcb

mn)∗ (Zcc
mn)∗


S

a
mn,n

Sbmn,n

Scmn,n


+ Hmn . (10.19)

Defining the matrix Γn ∈ C3×3 as:

Γn = Vn (1/Vn)T =

 1 γabn γacn

γban 1 γbcn

γcan γcbn 1

 , (10.20)
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we can use the definition of the HP to separate the 3× 3 matrix into two 3× 3 matrices as
in:

Em = En + 2 Re {(Γn ◦ Z∗mn) Smn,n}+ Hmn . (10.21)

Finally, we apply the real operator (Re) on the RHS, separating the complex power vector
into its active and reactive components, Smn,n = Pmn,n + jQmn,n, to arrive at:

Em = En + 2Mmn,nPmn,n − 2Nmn,nQmn,n + Hmn

Mmn,n = Re {Γn ◦ Z∗mn}
Nmn,n = Im {Γn ◦ Z∗mn} .

(10.22)

We have derived equations that govern the relationship between squared voltage mag-
nitudes and complex power flow across line (m,n). This system of equations is nonlinear
and nonconvex system, and therefore cannot be incorporated into a convex optimization
framework without the use of approximations or convex relaxations. However, this system
can be linearized with the following assumptions:

A3: Hmn is constant ∀(m,n) ∈ E

A4: γφψn are constant ∀φ, ψ ∈ Pn, φ 6= ψ, ∀n ∈ N

Application of assumptions A3 and A4 to (10.23) results in a linear model that relates the
squared magnitudes of nodal voltages and complex power flows to DER injected power.

Em ≈ En + 2Mmn,nPmn,n − 2Nmn,nQmn,n + Hmn . (10.23)

The magnitude equations can be further simplified via logical choices for the constant
parameters of A3 and A4. Following the analysis presented in [9], we choose Hmn =[
0 0 0

]T
∀(m,n) ∈ E . As in [14] and [39], we assign the γφψn such that:

γabn = α γbcn = α γacn = α2

γban = α2 γcbn = α2 γcan = α
∀n ∈ N ≡ Γn =

 1 α α2

α2 1 α

α α2 1

∀n ∈ N , (10.24)

where α = 1∠120◦ = 1
2
(−1 + j

√
3) and α2 = α−1 = α∗ = 1∠240◦.

With these choices for Hmn and γφψn , we obtain a linear system of equations relation the
difference in voltage magnitude across line (m,n) to real and reactive power flows on the
line:

Em ≈ En + 2MmnPmn,n − 2NmnQmn,n , (10.25)

Mmn =
1

2

 2raamn −rabmn +
√

3xabmn −racmn −
√

3xacmn

−rbamn −
√

3xbamn 2rbbmn −rbcmn +
√

3xbcmn

−rcamn +
√

3xcamn −rcbmn −
√

3xcbmn 2rccmn

 , (10.26)
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Nmn =
1

2

 −2xaamn xabmn +
√

3rabmn xacmn −
√

3racmn

xbamn −
√

3rbamn −2xbbmn xbc +
√

3rbcmn

xcamn +
√

3rcamn xcbmn −
√

3rcbmn −2xccmn

 . (10.27)

Magnitude Equation Reference to Line Transmitting Node

Similar to Section 10.2, the magnitude equations can be rederived to reference node
voltages at the transmitting end of the line.

To start, consider line (m,n) ∈ E with the voltage difference due to line impedance taken
on the left side. We then take the Hadamard Product of (8.3) and its complex conjugate
(non-transposed):

(Vm − ZmnImn) ◦ (Vm − ZmnImn)∗ = Vn ◦V∗n . (10.28)

This can be rewritten by distributing the terms on the LHS:

Vm ◦V∗m−Vm ◦ (ZmnImn)∗− (ZmnImn) ◦V∗m + (ZmnImn) ◦ (ZmnImn)∗ = Vn ◦V∗n . (10.29)

With the definitions of Em, En, Hmn, we again take advantage of the commutative property
of the HP and group the second and third terms of the LHS of (10.29) inside the real
operator:

Em − 2 Re {(ZmnImn)∗ ◦Vm}+ Hmn = En . (10.30)

At this point, we will focus on the terms inside the real operator (Re) and expand
(ZmnImn)∗ ◦Vm to obtain:

Em − 2 Re


V

a
m

(
Zaa
mnI

a
mn + Zab

mnI
b
mn + Zac

mnI
c
mn

)∗
V b
m

(
Zba
mnI

a
mn + Zbb

mnI
b
mn + Zbc

mnI
c
mn

)∗
V c
m

(
Zca
mnI

a
mn + Zcb

mnI
b
mn + Zcc

mnI
c
mn

)∗

+ Hmn = En . (10.31)

Now, we use the definition of complex power at the line transmitting node, where
(
Iφmn
)∗

=
Sφmn/V

φ
m, and define the term γφψm = V φ

m/V
ψ
m , thus expand (10.31) to (10.32):

Em−2 Re


(Zaa

mn)∗Samn,m + γabm (Zab
mn)∗Sbmn,m + γacm (Zac

mn)∗Scmn,m

γbam (Zba
mn)∗Samn,m + (Zbb

mn)∗Sbmn,m + γbcm(Zbc
mn)∗Scmn,m

γcam (Zca
mn)∗Samn,m + γcbm(Zcb

mn)∗Sbmn,m + (Zcc
mn)∗Scmn,m


+Hmn = En . (10.32)

The 3 × 1 vector on the RHS can be separated into a 3 × 3 matrix multiplied by the 3 × 1
vector Smn.

Em − 2 Re


 (Zaa

mn)∗ γabm (Zab
mn)∗ γacm (Zac

mn)∗

γbam (Zba
mn)∗ (Zbb

mn)∗ γbcm(Zbc
mn)∗

γcam (Zca
mn)∗ γcbm(Zcb

mn)∗ (Zcc
mn)∗


S

a
mn,m

Sbmn,m

Scmn,m


+ Hmn = En . (10.33)
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With the definition of Γm ∈ C3×3 as Γm = Vm (1/Vm)T , we can use the definition of the HP
to separate the 3× 3 matrix into two 3× 3 matrices as in:

Em − 2 Re {(Γm ◦ Z∗mn) Smn,m}+ Hmn = En . (10.34)

Finally, we apply the real operator on the LHS, separating the complex power vector into
its active and reactive components, Smn,m = Pmn,m + jQmn,m, to arrive at:

Em = En + 2Mmn,mPmn,m − 2Nmn,mQmn,m −Hmn

Mmn,m = Re {Γm ◦ Z∗mn}
Nmn,m = Im {Γm ◦ Z∗mn} .

(10.35)

It is interesting to note, at this point, that (10.22) and (10.35) are quite similar, with the
difference being that (10.22) has the matrix Γn and line powers Smn,n defined at node n and
the higher order term Hmn positive on the RHS, while (10.35) has the matrix Γm and line
powers Smn,m defined at node m and the higher order term Hmn negative on the RHS.

As with the previously derived magnitude equations with power and voltage referred
to the receiving node, these equations are nonlinear and nonconvex, and we employ the
assumptions A3 and A4 in the same manner. Application of assumptions A3 and A4 to
(10.35) results in a linear model that relates the squared magnitudes of nodal voltages and
complex power flows to DER injected power.

Em ≈ En + 2Mmn,mPmn,m − 2Nmn,mQmn,m −Hmn . (10.36)

Similar to the previous derivation, choosing Hmn =
[
0 0 0

]T
∀(m,n) ∈ E , and γφψ such

that:

γabm = α γbcm = α γacm = α2

γbam = α2 γcbm = α2 γcam = α
∀m ∈ N ≡ Γm =

 1 α α2

α2 1 α

α α2 1

∀m ∈ N , (10.37)

we arrive at a linearized relation between voltage magnitude and complex power:

Em ≈ En + 2MmnPmn,m − 2NmnQmn,m , (10.38)

with Mmn and Nmn defined by (10.26) and (10.27), respectively.

10.4 Derivation of Voltage Angle Relations for

Unbalanced Approximate Power Flow

We now derive an extension of the power and magnitude system that relates differences
in voltage angles between adjacent nodes to complex power flows. This derivation shares
many similarities with the analysis of Section 10.3. The derivation presented here represents
a three phase line, Pmn = {a, b, c}. For lines with less than three phases (|Pmn| = 1 or
|Pmn| = 2), all equations should be indexed by Pmn as (8.4) is.

This work adds to that of [14] and [39] by adding an equation for voltage angle.
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Motivational Example

Consider a line (m,n) ∈ E . For simplicity, we assume the line is single phase, and
therefore omit the phase superscript φ. The power across (m,n) at node m is:

Smn,m = VmI
∗
mn = Vm (Vm − Vn)∗ /Z∗mn .

Multiplying the numerator and denominator the impedance of the line Zmn:

Smn,m = |Vm|2 Zmn/ |Zmn|2 − VmV ∗nZmn/ |Zmn|
2 .

For simplicity, we will assume that |Zmn| = 1, and expand the terms of previous equation
into their respective complex components:

Smn,m = |Vm|2 (rmn + jxmn)− |Vm| |Vn| (cos (θm − θn) + j sin (θm − θn)) (rmn + jxmn) .

Grouping the real and reactive power components:

Smn,m = |Vm|2 rmn − |Vm| |Vn| (rmn cos (θm − θn)− xmn sin (θm − θn)) . . .

+ j
(
|Vm|2 xmn − |Vm| |Vn| (xmn cos (θm − θn) + rmn sin (θm − θn))

)
.

At this point, it is clear that power flow across the line (m,n) is dependent on the both
the difference in voltage magnitude between node m and n, but also the difference in voltage
angle between node m and n. To further illustrate the dependence on voltage angle, we
assume that the voltage magnitude at node m and node n are equal such that |Vm| = |Vn|:

Smn,m = |Vm|2 (rmn − rmn cos (θm − θn) + xmn sin (θm − θn)) . . .

+ j |Vm|2 (xmn − xmn cos (θm − θn)− rmn sin (θm − θn)) .

From this equation, it is clear that differences in voltage angle between the two node m and
n will cause power to flow on (m,n). The power and magnitude equations presented in this
work, [14], and [39], and the SDP formulation in [11], are suited to control the real and
reactive power flow on lines of a distibution network.

However, these formulations are not suited to the scenario of closing a switch between two
nodes, where power will begin to flow on the newly created line. With the switch open, the
nodes are disconnected, and no power flows, and therefore power flow cannot be controlled.

We seek to build upon the approximate unbalanced power flow model to allow for control
of voltage angle, such that control of the complete phasor is possible. Such control will enable
“cleaner” switching actions wherein a minimal voltage difference across an open switch will
prevent otherwise large, and potentially equipment damaging or dangerous, power surges.
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Angle Equations with Voltage and Power Referenced to Line
Receiving Node

We begin by taking the HP of the complex conjugate of (8.3) and Vn:

V∗m ◦Vn = V∗n ◦Vn + (ZmnImn)∗ ◦Vn . (10.39)

With the results from the Section 10.3, we can substitute both terms on the RHS, and
expand the LHS with the polar representations of voltage phasors: |V

a
m| |V a

n |∠ (−θam + θan)∣∣V b
m

∣∣ ∣∣V b
n

∣∣∠ (−θbm + θbn
)

|V c
m| |V c

n |∠ (−θcm + θcn)

 = En + (Γn ◦ Z∗mn) Smn,n . (10.40)

To be consistent with convention in the power and magnitude equations, we multiply both
sides by −1. We then take the imaginary component of both sides: |V

a
m| |V a

n | sin (θam − θan)∣∣V b
m

∣∣ ∣∣V b
n

∣∣ sin (θbm − θbn)
|V c
m| |V c

n | sin (θcm − θcn)

 = − Im {(Γn ◦ Z∗mn) Smn,n} . (10.41)

Finally, we apply the imaginary operator to the RHS of (10.41): |V
a
m| |V a

n | sin (θam − θan)∣∣V b
m

∣∣ ∣∣V b
n

∣∣ sin (θbm − θbn)
|V c
m| |V c

n | sin (θcm − θcn)

 = −Nmn,nPmn,n −Mmn,nQmn,n , (10.42)

with Mmn,n and Nmn,n defined as in (10.23).
Inspection of the voltage angle equation reveals some interesting properties compared to

the voltage magnitude equations of (10.22). The RHS of Eqs. (10.22) and (10.42) are the
real and imaginary parts of the same argument (except for a scaling factor of one-half).

The angle equation (10.42) is nonlinear and nonconvex, and therefore difficult to incor-
porate into an OPF. Therefore, we introduce the following three assumptions:

A4: γφψn are constant ∀φ, ψ ∈ Pn, φ 6= ψ, ∀n ∈ N

A5:
∣∣Vφ

m

∣∣ and
∣∣Vφ

n

∣∣ are constant ∀φ ∈ Pmn, ∀(m,n) ∈ N

A6: sin
(
θφm − θφn

)
≈ θφm − θφn, via small angle approximation, ∀φ ∈ Pmn, ∀(m,n) ∈ E

It should be noted that A4 is the same as in Section 10.3, and is applied to both the
magnitude and angle equations. Furthermore, the reader should note that A5 is only applied

to (10.42). We now define
∣∣V φ
n

∣∣ = eφn ∀φ ∈ Pn ∀n ∈ N with en =
[
ean ebn ecn

]T
∀n ∈ N as
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a set of fixed voltage magnitude references, assumed to be constant despite control action.
Application of A4, A5, and A6 to (10.42), gives a linear version of (10.42):

em ◦ en ◦Θm ≈ em ◦ en ◦Θn −Nmn,nPmn,n −Mmn,nQmn,n , (10.43)

where Θm =
[
θam θbm θcm

]T
. This linear equation can further be simplified by selecting γφψn

as in (10.24) so that Mmn and Nmn are defined as in (10.26) and (10.27), respectively:

em ◦ en ◦Θm ≈ em ◦ en ◦Θn −NmnPmn,n −MmnQmn,n . (10.44)

Should the network voltage magnitudes be unknown or unmeasurable, they can be assumed
to be that of the typical substation nominal voltage magnitude of 1, thus (10.44) becomes
(10.45):

Θm ≈ Θn −NmnPmn,n −MmnQmn,n . (10.45)

Angle Equations with Voltage Referenced to Line Transmitting
Node

Similar the previous two sections, we can rederive the angle equation by referencing the
voltage ratios γ and power to the transmitting node of the line. We start with by taking the
HP of Vm and the complex conjugate (non-transposed) of KVL on line (m,n):

V∗m ◦Vm = V∗n ◦Vm + (ZmnImn) ◦Vm . (10.46)

With the definitions of the power and magnitude equation derivations, we rearrange both
sides:

Em =

 |V
a
m| |V a

n |∠ (θam − θan)∣∣V b
m

∣∣ ∣∣V b
n

∣∣∠ (θbm − θbn)
|V c
m| |V c

n |∠ (θcm − θcn)

+ (Γm ◦ Z∗mn) Smn,m . (10.47)

Taking the imaginary components of both sides eliminates the LHS:

0 =

 |V
a
m| |V a

n | sin (θam − θan)∣∣V b
m

∣∣ ∣∣V b
n

∣∣ sin (θbm − θbn)
|V c
m| |V c

n | sin (θcm − θcn)

+ Im {(Γm ◦ Z∗mn) Smn,m} . (10.48)

Applying the Im operator and subtracting the second term from both sides leads to an
equation similar to that of (10.49): |V

a
m| |V a

n | sin (θam − θan)∣∣V b
m

∣∣ ∣∣V b
n

∣∣ sin (θbm − θbn)
|V c
m| |V c

n | sin (θcm − θcn)

 = −Nmn,mPmn,m −Mmn,mQmn,m . (10.49)
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Applying A4, A5, and A6 to (10.49) gives (10.50):

em ◦ en ◦Θm ≈ em ◦ en ◦Θn −Nmn,mPmn,m −Mmn,mQmn,m . (10.50)

This linear equation can further be simplified by selecting γφψn as in (10.24) so that Mmn

and Nmn are defined as in (10.26) and (10.27), respectively:

em ◦ en ◦Θm ≈ em ◦ en ◦Θn −NmnPmn,m −MmnQmn,m . (10.51)

If the voltage magnitudes are unknown, 10.44 can be simplified by assuming all voltage
magnitudes are roughly 1, giving 10.52:

Θm ≈ Θn −NmnPmn,m −MmnQmn,m . (10.52)

10.5 Linearized Unbalanced Power Flow Model

We now present a set of equations comprising a LUPFM for multiphase radial and mesh
networks.

In the previous sections, we have derived am equation for unbalanced multiphase power
flow, equations relating voltage magnitude to complex unbalanced power flow, and equations
relating voltage angle to complex unbalanced power flow. For each of these, linearizing
assumptions were applied only to the respective equations, without considering the other
equations. We now apply assumptions to all three equations to obtain a comprehensive and
linear appoximate power flow model.

The first equation is for a complex load on phase φ at node n, where AφPQ,n + AφZ,n =

1 ∀φ ∈ Pn, ∀n ∈ N and AφI,n = 0 ∀φ ∈ Pn, ∀n ∈ N :

sφn
(
V φ
n

)
=
(
AφPQ,n + AφZ,nE

φ
n

)
dφn + wφn − jcφn

sn (Vn) = (APQ,n + AZ,n ◦ En) ◦ dn + wn − jcn .
(10.53)

A2 is applied to the power equation, such that:

Smn,m = Smn,n = Smn ∀(m,n) ∈ E∑
l:(l,m)∈E

Slm ≈ sm +
∑

n:(m,n)∈E

Smn . (10.54)

A3 is applied to the magnitude equation where Hmn =
[
0 0 0

]T
∀(m,n) ∈ E , and A4

is applied with Γm = Γn = Γ according to (10.24), such that:

Em ≈ En + 2MmnPmn − 2NmnQmn , (10.55)

with Mmn and Nmn and defined as in (10.58).
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A4 with Γm = Γn = Γ according to (10.24), A5, and A6 are applied to the angle
equation, such that:

em ◦ en ◦Θm ≈ em ◦ en ◦Θn −NmnPmn −MmnQmn . (10.56)

with Mmn and Nmn and defined as in (10.58) Finally, if no fixed voltage references are chosen
or available, they can be assigned as 1, such that eφn = 1 ∀φ ∈ Pn ∀n ∈ N :

Θm ≈ Θn −NmnPmn −MmnQmn . (10.57)

with Mmn and Nmn and defined as in (10.58):

Mmn =
1

2

 2raamn −rabmn +
√

3xabmn −racmn −
√

3xacmn

−rbamn −
√

3xbamn 2rbbmn −rbcmn +
√

3xbcmn

−rcamn +
√

3xcamn −rcbmn −
√

3xcbmn 2rccmn



Nmn =
1

2

 −2xaamn xabmn +
√

3rabmn xacmn −
√

3racmn

xbamn −
√

3rbamn −2xbbmn xbc +
√

3rbcmn

xcamn +
√

3rcamn xcbmn −
√

3rcbmn −2xccmn

 .

(10.58)

The linear model presented in this section assumes three phase nodes and lines. For lines
with Pmn 6= {a, b, c}, (10.55), (10.56), (10.57), and (10.58) should be indexed as described
in Section 8.1.
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Chapter 11

Accuracy Analysis of Linearized
Unbalanced Power Flow
Approximation

The LUPFM contains several linearizing assumptions with selection of nominal param-
eters, thus investigation into the accuracy of these approximations is warranted. Such an
analysis can give insight into not only the accuracy of the assumptions, but also under what
conditions the assumptions fail to reflect actual power flow.

To investigate this accuracy, we perform a Monte Carlo simulation on a modified version
of the IEEE 13 node test feeder [18], the topology of which can be seen in 11.1. In this version,
the voltage regulator between nodes 650 and 632 is omitted, the transformer between nodes
633 and 634 is replaced by a line of configuration 601 and length of 50 feet, and the switch
between node 671 and 692 is replaced by a line with configuration 601 and length of 50 feet.
A node representing a transmission line is appended to the network, connecting to node

650, with a fixed voltage reference of
[
1 1∠240◦ 1∠120◦

]T
. This node is treated as an

infinite bus such that connection with the distribution network does not affect transmission
line voltage. Node phases are given in Table A.6, and line phases and per-unit impedances
are given in Table A.7.

Node are assigned complex power demands with the real, and reactive, demand com-
ponents randomly chosen from uniform distribution between 0 and a maximum real, and
reactive demand, respectively. The maximum component demands are independently in-
creased in increments of 0.01 p.u. from 0.01 p.u. to 0.15 p.u. At each combination of
maximum real and reactive demand, 25 simulations are conducted. At each simulation, base
power flow is solved using a Newton-Raphson method comprising the load model (8.8), KVL
(8.4), and KCL (8.6), adapted from [48]. Approximate power flow is solved with a Newton-
Raphson method of the LUPFM comprised of (10.53), (10.54), (10.55), (10.58), and either
(10.56) or (10.57).

To explore the effect of using fixed known or measured voltage magnitudes values in the
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angle equations, we consider two cases for approximate power flow. The first, which will be
referred to as case 1, assumes that all voltage magnitudes are either unknown or are close
enough to 1, such that eφn = 1 ∀φ ∈ Pn, ∀n ∈ N in (10.44). In the second case, referred to
as case 2, eφn are fixed to the voltage magnitudes from the results of solving the base case
power flow.

The error between base and approximate power flow results are given by (11.1) - (11.4),
where the overline notation indicates the approximate power flow solution.

εmagnitude = max
φ∈Pn,n∈N

∣∣∣∣∣V φ
n

∣∣− ∣∣∣V φ
n

∣∣∣∣∣∣ (11.1)

εangle = max
φ∈Pn,n∈N

∣∣∣∠V φ
n − ∠V φ

n

∣∣∣ (11.2)

εvector = max
φ∈Pn,n∈N

∣∣∣V φ
n − V

φ
n

∣∣∣ (11.3)

εpower = max
φ∈Pmn,(m,n)∈E

∣∣∣Sφmn,n − Sφmn∣∣∣ . (11.4)

The maximum voltage magnitude error across all phases and nodes is given by (11.1). The
maximum voltage angle error across all phases and nodes is given by (11.2). The maximum
voltage phasor error across all phases and nodes is given by (11.3), which is also known as
the total vector error. The maximum error in apparent power across all phases and nodes is
given by (11.4).

Figure 11.2 plots the maximum voltage magnitude error between the voltage from solving
power flow with KVL and KCL, and approximate voltage solving power flow with the lin-
earized equations. A quadratic trend in error is quite visible as substation power increases.
When the substation power is 1 p.u., the voltage magnitude error remains under 0.005 p.u.
for all tested cases. As the substation power increases (as do the node loads) the magnitude
errors become more pronounced, increasing to a range between 0.005 p.u. and 0.01 p.u. as
the substation power reaches 1.5 p.u. As the approximate power flow magnitude relation
(10.25) is same for both approximate power flow cases, there is no difference in magnitude
error between cases.

Figure 11.3 gives the error in apparent power between base case power flow and approx-
imate power flow. As the linearized power equations, (8.8) and (10.5), are the same for
case 1 and case 2 there is no difference in error between case 1 and case for the iterations.
Similar to the other errors, the apparent power error follows a quadratic trend in increasing
substation power. When substation power is 1.0 p.u, the error remains under 0.04 p.u.

Figure 11.4a gives the maximum voltage angle error for all nodes and phases for increasing
substation power for the case 1 of approximate power flow, where eφn = 1 ∀φ ∈ Pn ∀n ∈ N
in (10.44). When substation power is 1.0 p.u., the errors are less than 0.2◦. The maximum
total vector error for all phases and nodes across increasing substation power is given in
Figure 11.4b. This is the magnitude of the greatest voltage vector difference between the
real and approximate power flow solutions. This can be thought of as a ball in which the
voltage from the approximate power flow solution resides in.
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Figure 11.1: Modified IEEE 13 node feeder topology for Monte Carlo accuracy analysis of
unbalanced approximate power flow mode. Note absence of voltage regulator between nodes
650 and 632, transformer between nodes 633 and 634, and switch between nodes 671 and
692.

Figure 11.5a gives the maximum voltage angle error for all nodes and phases for increas-
ing substation power for the case 2 of approximate power flow where the voltage magnitudes
in (10.44) are assigned from the results of base case power flow. It can clearly be seen that
the errors are less than the previous case When substation power is 1.0 p.u., the errors are
less than 0.2◦. The maximum total vector error for all phases and nodes across increasing
substation power is given in Figure 11.5b. Similarly, this error is lower than that of approx-
imate power flow case 1. It is clear that using measured voltage magnitudes in (10.44) and
(10.51) increases the accuracy of the approximation.

As base case and approximate power flow are solved with a node representing the trans-
mission line treated as a slack bus with nominal voltage phasor, it is clear the errors are
compounded along the network moving away from the transmission line node. Nodes fur-
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Figure 11.2: Maximum voltage magnitude error across all phases and nodes from Monte
Carlo simulation.
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Figure 11.3: Apparent power error from Monte Carlo simulation.

ther away from the substation are more likely to have larger errors in voltage magnitude and
angle due to error accumulation. Additionally, nodes with large demands, and therefore large
power flows on connecting lines will also have larger errors due the necessity of neglecting
losses for linearization.

Conversely,“tail nodes” or nodes that are far from the substation and have only one path
to the substation will have accurate approximate power flows. This is due to the conservation
of complex power, (10.5). Errors will compound from tail these nodes toward the substation,
as losses are neglected in (10.5) and (10.10) to obtaining linear equations.
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(a) Maximum voltage angle error across all phases and nodes from Monte Carlo simulation, for
case where all voltage magnitudes are assumed to be 1 in angle equations, (10.44).
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(b) Maximum voltage total vector error across all phases and nodes fro Monte Carlo simulation,
for case where all voltage magnitudes are assumed to be 1 in angle equations, (10.44).

Figure 11.4: Monte Carlo simulation results for voltage angle error and total vector error for
case where all voltage magnitudes are assumed to be 1 in (10.44).
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(a) Maximum voltage angle error across all phases and nodes from Monte Carlo simulation, for
case where voltage magnitudes in (10.44) are fixed to the values from solving power flow.
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(b) Maximum voltage total vector error across all phases and nodes from Monte Carlo simulation,
for case where voltage magnitudes in (10.44) are fixed to the values from solving power flow.

Figure 11.5: Monte Carlo simulation results for voltage angle error and total vector error for
case where voltage magnitudes in (10.44) are assigned to the values from solving power flow.
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Chapter 12

Applications of the Linearized
Unbalanced Power Flow Model

Control and optimization of DER on balanced networks is a topic that has encompassed
much research effort. In recent years, these efforts have been extended to multiphase un-
balanced networks, presenting new challenges in mathematical modeling and application of
optimization techniques. In this chapter, we discuss two applications of the equations for
LUPFM for optimal control of DER on distribution networks.

12.1 Voltage Magnitude Balancing

In this section, we discuss an experiment in which we incorporate linearized power, mag-
nitude, and angle equations in an OPF that controls DERs to regulate and balance voltage
magnitudes on an unbalanced radial distribution network. Voltage balancing is an impor-
tant objective as many three phase loads (induction motors for instance) are sensitive to
high levels of imbalance. Furthermore, many 3-phase voltage regulation equipment actuates
based solely on single phase measurements. Therefore, significant levels of imbalance can
lead to improper operation of these devices.

The goal of this experiment is to minimize the total voltage magnitude imbalance across
the feeder. Voltage magnitude imbalance is defined as the absolute error of the difference of
voltage magnitude between two difference phases at a node. The voltage imbalance at node
n is defined as:

Υn =
∑

φ∈Pn,ψ∈Pn
φ 6=ψ

∣∣∣∣V φ
n

∣∣− ∣∣V ψ
n

∣∣∣∣ . (12.1)

For nodes with one phase (|Pn| = 1) Υn = 0 The total network voltage magnitude imbalance
is define as:

ΥN =
∑
n∈N

∑
φ∈Pn,ψ∈Pn

φ 6=ψ

∣∣∣∣V φ
n

∣∣− ∣∣V ψ
n

∣∣∣∣ . (12.2)



CHAPTER 12. APPLICATIONS OF THE LINEARIZED UNBALANCED POWER
FLOW MODEL 84

We design an OPF to minimize network voltage magnitude imbalance, regulate system
voltage magnitude to within acceptable limits. The OPF also account for DER apparent
power constraints and regulates the dispatch. This OPF, (12.3) is:

minimize
uφn,v

φ
n,E

φ
n ,P

φ
mn,Q

φ
mn

∑
n∈N

 ∑
φ∈Pn,ψ∈Pn

φ 6=ψ

(
Eφ
n − Eψ

n

)2
+

[∑
φ∈Pn

ρw
∣∣wφn∣∣2

]

subject to (10.53), (10.54), (10.55), (10.58), (10.56)

Eφ
n ≤ Eφ

n ≤ E
φ

n ∀φ ∈ Pn, ∀n ∈ N∣∣wφn∣∣ ≤ wφn ∀φ ∈ Pn, ∀n ∈ N .

(12.3)

In 12.3, the DER dispatch apparent power constraints,
∣∣wφn∣∣ ≤ w ∀φ ∈ Pn, ∀n ∈ N can

be approximated by a series of linear equations as derived in Appendix C, such that (12.3)
is a true quadratic program.

It should be noted that comparison of either case to an SDP formulation of (12.3) we
were not able to obtain a rank-one solution to an equivalent problem formulated as an SDP.

Voltage Magnitude Balance Experiment on a Radial Network

We perform this experiment on a modified version of the IEEE 13 node test feeder [18],
the topology of which can be seen in 12.1. In this version, the voltage regulator between
nodes 650 and 632 is omitted, the transformer between nodes 633 and 634 is replaced by
a line of configuration 601 and length of 50 feet, and the switch between node 671 and
692 is replaced by a line with configuration 601 and length of 50 feet.Additionally, a node
representing a transmission line is appended to the network, connecting to node 650, with

a fixed voltage reference of
[
1 1∠240◦ 1∠120◦

]T
. This node is treated as an infinite bus

such that connection with the distribution network does not affect transmission line voltage.
A transformer is placed between node 650 and the transmission line, with impedance as
specified in [18]. Node parameters and phases can be found in Table A.6. Line parameters,
phases and impedances can be found in Table A.7.

All capacitors, listed in Table A.9, are omitted. Node demands, listed in Table A.8, are
specified by [18], are multiplied by a factor of 1.125, and are assumed to follow the model of
(8.8) with AφPQ,n = 0.85, AφI,n = 0, and AφZ,n = 0.15 ∀φ ∈ Pn ∀n ∈ N .

DER are placed on all existing phases of nodes 632, 675, 680, and 684. DER are assumed
to be single phase inverters capable of four quadrant operation, where the dispatch of one
phase is independent of others at the same node. The DER have an apparent power limit of
0.025 p.u., or 125 kW. DER placement, phases and apparent power capacity can be found
in Table A.10. The penalty on DER dispatch is weighted with ρw = 0.5. Voltage magnitude

bounds were 0.95 <=
∣∣V φ
n

∣∣ ≤ 1.05 such that Eφ
n = 0.9025 and E

φ

n = 1.1025.
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The first case we consider is the base case with no DER dispatch, where wφn = 0 ∀φ ∈
Pn ∀n ∈ N . The second case is the control case, where DER dispatch is given by (12.3).
For both cases, power flow is solved using a Newton-Raphson method adapted from [48],
comprised of (8.4), (8.6), and (8.8).

∞

650

abc

632

abc

633abc 634abc645 bc646 bc

671

abc

692abc 675abc

680

abc

684 ac

652

c

611 a

Figure 12.1: Modified IEEE 13 node feeder topology. Note absence of voltage regulator
between nodes 650 and 632, transformer between nodes 633 and 634, and switch between
nodes 671 and 692. DER are present at blue nodes.

Figure 12.2 shows the voltage magnitudes for the base case of the voltage balancing
scenario. A significant imbalance in the voltage magnitude between phase b and phases a
and c is clearly visible. Additionally, there are several minimum voltage violations on phase
c.

Figure 12.3 shows the voltage magnitudes for the control case of the voltage balancing
scenario. The reduction in voltage magnitude imbalance between the base case and control
case is easily seen.
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Figure 12.2: Base case (no control) of voltage balancing scenario for modified IEEE 13 node
feeder.
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Figure 12.3: Control case of voltage balancing scenario for modified IEEE 13 node feeder,
with DER dispatch from (12.3).

Figure 12.4 plots the voltage imbalance for the base case and control for each node, as
given by (12.1). The reduction in imbalance is clearly visible, and more pronounced at nodes
further from the substation. As nodes 652 and 611 have only 1 phase each, there is no metric
of voltage imbalance and therefore the imbalance is not plotted for these nodes. The total
network imbalance, as defined by (12.2), is 0.4533 for the base case and 0.0797 for the control
case. The optimal DER dispatch from (12.3) for the IEEE 13 node network is given in Table
12.1.
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Figure 12.4: Comparison of voltage magnitude imbalance for IEEE 13 node feeder between
base case and control case.

Node Phase a wan Phase b wbn Phase c wcn

632 0.00600 - j0.00174 -0.00573 - j0.00956 0.00077 + j0.01159

675 -0.01242 + j0.00386 0.01277 + j0.01571 -0.00236 - j0.01980

680 -0.01197 + j0.00354 0.01109 + j0.01533 -0.00115 - j0.01896

684 -0.01110 + j0.00381 - -0.00159 - j0.01837

Table 12.1: Optimal DER dispatch for voltage magnitude balancing from (12.3).

Voltage Magnitude Balancing Experiment on a Mesh Network

We consider a second experiment for voltage magnitude balancing on a multiphase mesh
network. This mesh network includes nodes and lines with multiple phases, lines with phases
that are a subset of the set of phases of the connected nodes. The topology of the mesh
network is given by Figure 12.5.

All lines are assigned the configuration of 601 from the IEEE 13 node test feeder [18], with
a length of 150 meters. The line between (∞,M1) is treated the same as in the transformer
between the transmission line and substation in [18]. Node parameters and phases are given
in Table A.11. Line nodes, phases, and impedance are given in Table A.12.

Node demands are given in Table A.13. All demands follow the model of (8.8) with
AφPQ,n = 0.85, AφI,n = 0, and AφZ,n = 0.15 ∀φ ∈ Pn ∀n ∈ N . Capacitor parameters are given
in Table A.14.

DER were placed at nodes G = {M2,M3,M4,M6,M7}. DER is assumed to be able
to source or sink both real and reactive power independently. DER on difference phases
on a node is assumed to be able to operate independently. DER operation is assumed to
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be limited by a maximum apparent power capacity, wφn. DER placement and parameters
are given in Table A.15. Voltage magnitude bounds were 0.95 <=

∣∣V φ
n

∣∣ ≤ 1.05 such that

Eφ
n = 0.9025 and E

φ

n = 1.1025.
The first case we consider is the base case with no DER dispatch, where wφn = 0 ∀φ ∈

Pn ∀n ∈ N . The second case is the control case, where DER dispatch is given by (12.3).
For both cases, power flow is solved using a Newton-Raphson method adapted from [48],
comprised of (8.4), (8.6), and (8.8).

∞{a, b, c} M1{abc}abc

M2{abc}

abc

M3{abc}
abc

abc

M4{abc}

abc

M5{abc}
abc

ab

M6{abc}ab

M7{bc}bc

b c

M8{ab}ab

M9{c}c

Figure 12.5: Nine node mesh network. Node names and phases Pm are shown, as well as the
line phases Pmn.

M1 M2 M3 M4 M5 M6 M7 M8 M9

Node

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

V
o

lt
a
g

e
 M

a
g

n
it

u
d

e
 [

p
.u

.] Base Case - No Control

a

b

c

Figure 12.6: Base case (no control) of voltage balancing scenario for nine node mesh network.

Figure 12.6 gives the voltage magnitude for the base case (no control)of the voltage
magnitude balancing experiment on the nine node mesh network. Significant imbalance can
be seen in nodes M6 - M8, where voltage magnitudes differ by more than 1 p.u.

Figure 12.7 shows the power flow results, applying the optimal DER dispatch from (12.3).
The decrease in voltage magnitude imbalance from the base case is clearly visible.
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Figure 12.7: Control case of voltage balancing scenario for nine node mesh network, with
DER dispatch from (12.3).
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Figure 12.8: Comparison of voltage magnitude imbalance for nine node mesh network be-
tween base case and control case.

Figure 12.8 gives the voltage imbalance at each node. The total imbalance for the base
case is 0.146, and the total imbalance for the control case is 0.064. Table 12.2 gives the
optimal DER dispatch from 12.3.
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Node Phase a wan Phase b wbn Phase c wcn

M2 -0.00721 - j0.00339 0.00294 + j0.00956 0.00088 - j0.00996

M3 -0.00837 - j0.00314 0.00315 + j0.00949 0

M4 0 0.00307 + j0.00952 0.00224 - j0.00975

M6 -0.00858 - j0.00513 0.00258 + j0.00966 -0.00079 - j0.00997

M7 - 0.00359 + j0.00933 -0.00048 - j0.00999

Table 12.2: Optimal DER dispatch for voltage magnitude balancing from (12.3).

Increasing OPF Accuracy Through Sequential Linear/Quadratic
Programming

Sequential linear programming (SLP) or Sequential quadratic programming can be em-
ployed to increase the accuracy of OPFs. Algorithm 1 describes the process. Convergence
of Algorithm 1 is not proven, but we provide observations.

When employing Algorithm 1, simulation results show convergence for almost all networks
and scenarios when voltage angle is excluded from the LUPFM as a variable. When voltage
angle is included in the LUPFM, 1 usually does not converge, with differences in X and X∗

corresponding to voltage angle. This is likely due to the small angle approximation in the
LUPFM.

12.2 Phasor Difference Minimization for Switching

Operations

We now present results of two experiments in which the power, magnitude, and angle
equations were incorporated into an OPF with the objective of minimizing the phasor differ-
ence between nodes at either end of an open switch (we will refer to this as phasor tracking),
while regulating system voltage magnitudes to within acceptable limits. The OPF decision
variables were DER real and reactive power injections at select nodes, which were capacity
constrained (i.e. four-quadrant resources).

In these experiments, we considered closing the switch between two points on a network.
To minimize arc flashing, sudden and large real or reactive power surges across the switch,
disturbances to the network, and protection equipment damage, we desire to match the
voltage phasors at the ends of the open switch. To this end, we proposed the following OPF
to minimize the voltage phasor difference between one nodes k and l, while providing feeder
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Algorithm 1 Sequential Quadratic Programming for Increasing OPF Accuracy

1. Solve base OPF (12.3) to obtain optimal network state X∗ and DER complex power
dispatch W∗.

2. Solve power flow with current optimal DER dispatch W∗, to obtain network state X.

3. Update linearized terms in LUPFM from X.

3.1 Replace (10.54) in (12.3) with (10.4) or (10.9) if first iteration. Update
Lmn, (m,n) ∈ E from X.

3.2 Replace (10.55) in (12.3) with (10.19) or (10.33) if first iteration. Update
Hmn, (m,n) ∈ E from X.

3.3 Update γφψn , n ∈ N from X in (10.19) or (10.33).

3.4 Replace (10.57) in (12.3) with (10.43) or (10.50) if first iteration. Update γφψn , n ∈
N from X.

3.5 Update (10.43) or (10.50), with eφm, φ ∈ Pm, m ∈ N and eφn, φ ∈ Pn, n ∈ N
from X.

4. Solve updated OPF (12.3) to obtain new optimal network state X∗ and DER complex
power dispatch W∗.

5. Solve power flow with current optimal DER dispatch W∗, to obtain network state X.

6. Check for convergence of X and X∗.

6.1 If convergence not achieved, repeat steps 3 - 6.

6.2 If convergence achieved, stop.

voltage support:

minimize
uφn,v

φ
n,y

φ
n,θ

φ
n,P

φ
n ,Q

φ
n

ρECE + ρθCθ + ρwCw

subject to (10.53), (10.54), (10.55), (10.58), (10.56)

Eφ
n ≤ Eφ

n ≤ E
φ

n ∀φ ∈ Pn, ∀n ∈ N1 ∪N2∣∣wφn∣∣ ≤ wφn ∀φ ∈ Pn, ∀n ∈ N1 ∪N2 ,

(12.4)
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Figure 12.9: Networks N1 and N2 connected to the same transmission line, with open switch
between nodes 1680 and 2680.

where

CE =
∑
φ∈Pkl

(
Eφ
k − E

φ
l

)2
, (12.5)

Cθ =
∑
φ∈Pkl

(
θφk − θ

φ
l

)2
, (12.6)

Cw =
∑
n∈N

∑
φ∈Pn

∣∣wφn∣∣2 . (12.7)

The OPF objective function is a weighted sum of three terms: CE is the sum of squared
magnitude tracking error for all nodes and phases with an assigned magnitude reference,
Cθ is the sum of squared angle tracking error for all nodes and phases with an assigned
angle reference, and Cw is the sum of the squared magnitudes of all DER dispatch. Voltage

magnitude bounds were 0.95 <=
∣∣V φ
n

∣∣ ≤ 1.05 such that Eφ
n = 0.9025 and E

φ

n = 1.1025. DER
dispatch is constrained by its apparent power capacity.

In 12.4, the DER dispatch apparent power constraints,
∣∣wφn∣∣ ≤ w ∀φ ∈ Pn, ∀n ∈ N can

be approximated by a series of linear equations as derived in Appendix C, such that (12.4)
is a true quadratic program.

It should be noted that comparison of either case to an SDP formulation of (12.4) we
were not able to obtain a rank-one solution to an equivalent problem formulated as an SDP
for either scenario.
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Phasor Difference Minimization on a Radial Network

The first experiment was conducted on two modified versions of the IEEE 13 node dis-
tribution test feeder model [18]. Feeder topology, line configuration, line impedance, line
length, and spot loads are specified in [18] and outlined in Appendix A.2. We consider two
networks, N1 and N2, connected to the same transmission line as in Figure 12.9. For clarity,
we concatenate the number 1 to the front of nodes within N1 and the number 2 for nodes
within N2 (e.g. node 671 of N1 is now 1671 and node 634 of N2 is now 2634). The trans-
mission line, indexed by ∞ and denoted in Figure 12.9 by ∞, is treated as an infinite bus,

with fixed voltage reference of V∞ =
[
1 1∠240◦ 1∠120◦

]T
p.u..

The first network, N1, is a modified version of the IEEE 13 node test feeder model.
The voltage regulator between nodes 1650 and 1632 is omitted, the transformer between
nodes 1633 and 1634 is replaced by a line of configuration 601 and length of 50 feet, and
the switch between node 1671 and 1692 is replaced by a line with configuration 601 and
length of 50 feet. All loads are assumed to be Wye connected. We place Wye connected
0.01 + j0.004 p.u. loads on all phases at node 1680. Capacitors in N1 were multiplied by
a factor of 0.5. Four quadrant capable DER were placed at on all existing phases at nodes
G∞ = {1632, 1675, 1684}. We assumed each DER can inject or sink both real and reactive
power separately on each phase of the feeder. All DER were constrained by an apparent
power capacity limit on each phase of 250 kVA, or 0.05 p.u.

The second network, N2, is also a modified version of the IEEE 13 node test feeder
model. The voltage regulator between nodes 2650 and 2632 is omitted, the transformer
between nodes 2633 and 2634 is replaced by a line of configuration 601 and length of 50 feet,
and the switch between node 2671 and 2692 is replaced by a line with configuration 601 and
length of 50 feet. All loads are assumed to be Wye connected. We place Wye connected
0.01 + j0.004 p.u. loads on all phases at node 2680. Capacitors in N1 were multiplied by
a factor of 0.5. Four quadrant capable DER were placed at on all existing phases at nodes
G∞ = {2632, 2671}. We assumed each DER can inject or sink both real and reactive power
separately on each phase of the feeder. All DER were constrained by an apparent power
capacity limit on each phase of 250 kVA, or 0.05 p.u.

Loads follow the voltage dependent load model of (8.8) with parameters AφPQ,n = 0.85

and AφZ,n = 0.15 ∀φ ∈ {a, b, c}, ∀n ∈ N1, ∀n ∈ N2. To create a load imbalance between the
two networks, we multiply all loads in N1 by a factor of 0.75 and all loads in N2 by a factor
of 1.5. An open switch was placed between node k = 1680 of N1 and node l = 2680 of N2,
with a line with configuration 601 and length of 500 feet.

The weighting on the three components of the objective function of (12.4) are ρE = 1000,
ρθ = 1000, and ρw = 1. Results from this experiment can be seen in Table 12.3. We
consider three cases: “No Control” (NC) where all DER dispatch is 0, “Magnitude Control”
(MC) where the optimal DER dispatch is obtained solving (12.4) with ρθ = 0, and “Phasor
Control” (PC) where the optimal DER dispatch is obtained solving (12.4). For each case,
power flow is solved with the zero (NC) or optimal DER dispatch from (12.4) (MC,PC). For
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all cases, power flow is solved using a Newton-Raphson method adapted from [48], comprised
of (8.4), (8.6), and (8.8).

It can clearly be seen that with MC, the difference in per phase magnitudes of 1680 and
2680 are driven toward zero, however the voltage angle difference still remains large and on
the order of the NC case. With PC, both the voltage magnitude differences and phase angle
differences are minimized.

The last row of Table 12.3 gives the hypothetical instantaneous complex power phasor
should the switch be closed with the voltages at node 1680 and node 2680 listed in Table
12.3. We define this as:

S‡mn = Vn ◦ [Ymn (Vm −Vn)]∗ , (12.8)

where m = 1680, n = 2680, and Ymn is the admittance matrix of line (m,n), defined as
Ymn = [Zmn]−1Pmn,Pmn . It is important to note that this power is not the steady state value
after the switch is closed, but rather the instantaneous power that would flow with the given
instantaneous voltage difference and line admittance. While this power value will change
and reach a steady state value over time, a transient analysis is outside the scope of this
work. The optimal DER dispatch is given in Table 12.4.

Phasor Difference Minimization on a Mesh Network

We consider a second experiment on a meshed (cylic) network, and use the mesh network
from Section 12.1. Network topology can be seen in 12.5, and parameters are listed in
Appendix A.3.

Loads follow the voltage dependent load model of (8.8) with parameters AφPQ,n = 0.85

and AφZ,n = 0.15 ∀φ ∈ {a, b, c}, ∀n ∈ N .
DER is placed at nodes G = {M2,M3,M4,M6,M7} with an apparent power capacity

limit of 0.10 p.u. DER is assumed to be four quadrant operation capable single phase
inverters. Voltage magnitude bounds were 0.95 <=

∣∣V φ
n

∣∣ ≤ 1.05 such that Eφ
n = 0.9025 and

E
φ

n = 1.1025.
A switch is placed between nodes M5 and M6. The OPF (12.4) is employed with k = M5

and l = M6 to optimally dispatch DER to minimize the phasor difference, with objective
function weights ρE = 1000, ρθ = 1000, and ρw = 1.

Table 12.5 gives the results of this simulation, where we consider the three cases from the
previous simulation. It can be seen that the voltage magnitude difference is greatly reduced

for the “MC” case, however the hypotethical power
(
SφM5,M6

)‡
remains roughly as large as

the “NC” case. When full phasor control “PC” is applied, both the magnitude difference
and angle difference are minimized, and the hypothetical power real power is smaller than
the “NC” and “MC” cases. Table 12.6 gives the DER dispatch from (12.4).
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Node Phase A Phase B Phase C

1632 0.0312 + j0.0189 0.0329 + j0.0197 0.0383 + j0.0214

1675 0.0433 + j0.0251 0.0436 + j0.0244 0.0440 + j0.0238

1684 0.0431 + j0.0253 0 0.0441 + j0.0236

2632 -0.0349 + j-0.0139 -0.0273 + j-0.0188 -0.0378 + j-0.0328

2671 -0.0472 + j-0.0166 -0.0419 + j-0.0273 -0.0381 + j-0.0324

Table 12.4: Optimal DER dispatch for phasor matching for switching action from (12.4).
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Node Phase A Phase B Phase C

M2 0.0995 + j-0.0099 -0.0959 + j-0.0284 0.0224 + j0.0975

M3 0.0995 + j0.0102 0.0968 + j-0.0250 0

M4 0 -0.0974 + j0.0228 0.0996 + j-0.0091

M6 -0.0934 + j-0.0357 -0.0829 + j0.0559 -0.0945 + j0.0326

M7 0 0.0216 + j-0.0976 -0.0941 + j0.0338

Table 12.6: Optimal DER dispatch for phasor matching for switching action from (12.4).



99

Chapter 13

Concluding Remarks and Future
Work

Optimization of energy resources on unbalanced networks is a challenging field due to the
nonlinear and nonconvex physics of power flow. Many works have studied how to address
these issues using semidefinite programming and approximate linear models.

In this work, we our aim was to investigate solving OPF problems that cannot be ad-
dressed with SDP techniques. We extend the work of [14, 20, 39] by developing a linearized
model for unbalanced power flow in Section 10.4. This model maps voltage angle differences
across a line to the complex power flow on the line.

In Chapter 11, We investigated the accuracy of the LUPFM, comparing the results of
solving power flow with the system physics and the LUPFM. We found that under normal
operating conditions, the model leads to magnitude errors on the order of 1%, angle errors
of less than 0.5 and substation power errors of 5% of the network rated power.

In Chapter 12, we study two applications of the LUPFM. The first application is to
minimize the difference in voltage magnitude across different phases at nodes in a distribution
network. Simulation results prove the OPF effective in this endeavor.

The second application is to minimize the voltage phasor difference between two nodes,
representing an open switch. We design an OPF that seeks to minimize the voltage mag-
nitude difference per phase at two nodes, and the voltage angle difference per phase at two
nodes. Simulation results demonstrate the efficacy of the OPF in minimizing voltage phasor
difference.

The ability to switch components into and out of distribution feeders with minimal impact
on system operation presents many opportunities to reconfigure distribution systems for a
variety of purposes. Moving forward, we intend to investigate two such applications. First,
we plan to study grid reconfiguration in order to better withstand critical grid events (e.g.
weather-related or other types of disasters). In anticipation of a critical event, it may be
advantageous to alter system topology to maximize the ability to serve critical loads. To
solve such a problem, we will most likely need to extend our present OPF formulation into
a receding horizon controller, that can optimize over a future time window. Secondly, as
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“clean” switching may also enable distributed microgrids to coalesce and pool resources to
provide ancillary services, we intend to extend this OPF formulation to allow for mixed-
integer formulations.
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Chapter 14

Conclusion

14.1 Modeling and Optimal Control of Commercial

Office Plug Loads and Battery Storage Systems

This dissertation developed an approach for control of commercial office OSBS alongside
plug loads.

Summary of Results

This work focused on two main aspects: development of a model for an off the shelf OSBS
for incorporation into an MPC, and solving the nonlinear and nonconvex MPC. A model
predictive control formulation was augmented to include generic battery storage for demand
response of load following. A model of an off the shelf OSBS was derived from experimental
data. Two algorithms for solving the nonlinear MPC were derived and discussed.

An exhaustive search algorithm that optimizes plug load control over all possible battery
control sequences was derived. Simulations with this algorithm highlight the severe faults of
short prediction horizon and necessity of long timesteps.

A dynamic programming algorithm was then implemented. Simulation results show the
promise of this method, and highlight positive attributes such as long prediction window
and good timestep granularity. Simulation results also provide insight into the benefit of an
OSBS with controllable charging.

Future Work

While the research in this work provided methods for control of plug loads and an OSBS,
more work is needed before such work can be practically implemented. One key area is the
development of an algorithm for optimal OSBS control for OSBS systems.
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14.2 Modeling of Unbalanced Power Flow and

Optimal Control of Distributed Energy

Resources for Grid Reconfiguration

This dissertation focused on approaches for controlling voltage magnitude and phase
angle on an unbalanced distribution network.

Summary of Results

First semidefinite programming is discussed as a method for solving nonlinear and non-
convex OPFs. Literature points to many successes, but also bring to light many drawbacks
and attributes of SDP that may preclude its widespread implementation. We then derive
several SDP OPFs for control of voltage magnitude and angle. Simulations motivate further
analysis into the control of voltage magnitude, and also show success in constraining voltage
angle.

A linearized unbalanced power flow model (LUPFM) is derived for incorporation into
convex OPFs. This model augments those of [14, 39] by adding a relationship between
voltage angle difference across a network line and complex power flow on the line. The
accuracy of the LUPFM is investigated and found to be satisfactory for IEEE benchmark
unbalanced networks.

Two application of the LUPFM are discussed. The first is an OPF that seeks to minimize
voltage magnitude imbalance at nodes on an unbalanced network. Simulation results for both
radial and mesh networks show the success of this OPF.

The second is an OPF that seeks to minimize voltage phasor difference between two
unconnected nodes for switching actions. Simulations for both radial and mesh networks are
successful in reducing the phasor difference.

Future Work

There are many key areas in which the LUPFM can improve distribution network oper-
ation. An example is to incorporate the LUPFM into an MPC for voltage phasor regulation
across changing loads and distributed generation and storage conditions.

There are also many ways in which the LUPFM can be improved itself. Development of
more accurate inverter models is a necessary task. Development of additional operational
network constraints for the LUPFM is also necessary. Finally, a more thorough investigation
into sequential linear programming would likely prove beneficial.
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Appendix A

Distribution Network Parameters

A.1 Parameters of the Five Node Network

This appendix will outline the parameters of the five node meshed network as used in
simulations in Chapter 9. The topology can be seen in Figure 9.1.

Node ∞ A1 A2 A3 A4 A5

Pm {a} {a} {a} {a} {a} {a}

Table A.1: Five node network nodes parameters.

Node m Node n Pmn 100× [Zmn]Pmn [p.u.]

∞ A1 {a}
[
0.3281 + j0.9639

]
A1 A2 {a}

[
1.3125 + j3.8557

]
A2 A3 {a}

[
0.9844 + j2.8918

]
A2 A4 {a}

[
0.9844 + j2.8918

]
A4 A5 {a}

[
0.9844 + j2.8918

]
Table A.2: Five node network line nodes, phases and impedances.
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Node Phase a dan Phase b dbn Phase c dcn

A2 0.1000 + j0.0800 - -

A3 0.1000 + j0.1000 - -

A4 0.0600 + j0.0800 - -

A5 0.0600 + j0.0400 - -

Table A.3: Per-unit complex demands at nodes for nine node network

Node Phase a can Phase b cbn Phase c ccn

A5 j0.0400 - -

Table A.4: Per-unit capacitance at nodes for nine node network

Node Phase a wan Phase b wbn Phase c wcn

A2 0.1000 - -

A3 0.1000 - -

A5 0.1000 - -

Table A.5: Per-unit apparent power capacity for DER placed nine node network.

A.2 Parameters of the IEEE 13 Node Test Feeder

This appendix will outline the parameters of the IEEE 13 node test feeder as used in
simulations in Chapter 11 and Chapter 12. The topology can be seen in Figure 11.1.

Node ∞ 650 632 633 634 645 646

Pm {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {b, c} {b, c}
Node 671 692 675 680 684 652 611

Pm {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, c} {a} {c}

Table A.6: IEEE 13 node test network nodes parameters from [18].
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Node Phase a dan Phase b dbn Phase c dcn

634 0.0320 + j0.0220 0.0240 + j0.0180 0.0240 + j0.0180

645 - 0.0340 + j0.0250 0

646 - 0.0460 + j0.0264 0

671 0.0770 + j0.0440 0.0770 + j0.0440 0.0770 + j0.0440

692 0 0 0.0340 + j0.0302

675 0.0970 + j0.0380 0.0136 + j0.0120 0.0580 + j0.0424

680 0.0020 + j0.0010 0.0020 + j0.0010 0.0020 + j0.0010

652 0.0256 + j0.0172 - -

611 - - 0.0340 + j0.0160

Table A.8: Per-unit complex demands at nodes for IEEE 13 node feeder model from [18].

Node Phase a can Phase b cbn Phase c ccn

675 j0.0400 j0.0400 j0.0400

611 - - j0.0200

Table A.9: Per-unit capacitance at nodes for IEEE 13 node feeder from [18].

Node Phase a wan Phase b wbn Phase c wcn

632 0.0250 0.0250 0.0250

675 0.0250 0.0250 0.0250

680 0.0250 0.0250 0.0250

684 0.0250 - 0.0250

Table A.10: Per-unit apparent power capacity for DER placed on IEEE 13 node feeder.

A.3 Parameters of the Nine Node Meshed Network

This appendix will outline the parameters of the nine node meshed network as used in
simulations in Chapter 12. The topology can be seen in Figure 12.5.
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Node ∞ M1 M2 M3 M4

Pm {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
Node M5 M6 M7 M8 M9

Pm {a, b, c} {a, b, c} {b, c} {a, b} {c}

Table A.11: Nine node mesh network nodes parameters.
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Node Phase a dan Phase b dbn Phase c dcn

M2 0.1600 + j0.1100 0.1200 + j0.0900 0.1200 + j0.0900

M3 0.0700 + j0.0500 0.0500 + j0.0250 0

M4 0 0.1600 + j0.1100 0.1600 + j0.1100

M6 0.1600 + j0.1100 0.0680 + j0.0600 0.2000 + j0.1250

M8 0.1000 + j0.1000 0.0500 + j0.0200 -

M9 - - 0.0800 + j0.0320

Table A.13: Per-unit complex demands at nodes for nine node mesh network

Node Phase a can Phase b cbn Phase c ccn

M6 j0.0100 j0.0100 j0.0100

M7 - j0.0100 j0.0100

M9 - - j0.0100

Table A.14: Per-unit capacitance at nodes for nine node mesh network

Node Phase a wan Phase b wbn Phase c wcn

M2 0.0100 0.0100 0.0100

M3 0.0100 0.0100 0

M4 0 0.0100 0.0100

M6 0.0100 0.0100 0.0100

M7 - 0.0100 0.0100

Table A.15: Per-unit apparent power capacity for DER placed nine node mesh network.
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Appendix B

Newton-Raphson Algorithm for
Solving Approximate Unbalanced
Power Flow

This section presents the equations, residuals, and Jacobian terms for a Newton-Raphson
method that solves unbalanced approximate power flow. The method presented here incor-

porates A2, A3 where Hmn =
[
0 0 0

]T
, A4 to both the magnitude and angle equations,

A5, and A6. Thus this method encompasses (10.53), (10.54), (10.55), (10.58), and (10.56).
In this method, the pertinent variables are Eφ

n , θφn, P φ
mn, and Qφ

mn.

Line Real and Reactive Power

For a line (m,n) ∈ E , if φ /∈ Pmn then by definition:

P φ
mn = 0

Qφ
mn = 0 .

(B.1)

The residuals are defined as:
∆P φ

mn = 0

∆Qφ
mn = 0 .

(B.2)

The partial derivative of the residuals are:

∂∆P φ
mn

∂P φ
mn

= 1

∂∆Qφ
mn

∂Qφ
mn

= 1 .

(B.3)
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Magnitude Equation on Line (m,n)

For a line (m,n) ∈ E , if φ ∈ Pmn we consider (10.55) where Mmn, and Nmn, are defined
by (10.58). For φ ∈ Pmn, the magnitude equation is:

Eφ
m = Eφ

n + 2
∑

ψ∈Pmn

Mφψ
mnP

ψ
mn −Nφψ

mnQ
ψ
mn . (B.4)

The residual of the magnitude equation is:

∆Eφ
mn = −Eφ

m + Eφ
n + 2

∑
ψ∈Pmn

Mφψ
mnP

ψ
mn − 2Nφψ

mnQ
ψ
mn . (B.5)

The partial derivatives of the magnitude equation residual are:

∂∆Eφ
mn

∂Eφ
m

= −1

∂∆Eφ
mn

∂Eφ
n

= 1

∂∆Eφ
mn

∂Pψ
mn

= 2Mφψ
mn ψ ∈ Pmn,

∂∆Eφ
mn

∂Qψ
mn

= −2Nφψ
mn ψ ∈ Pmn .

(B.6)

Angle equation on Line (m,n)

For a line (m,n) ∈ E , if φ ∈ Pmn we consider (10.56) where Mmn, and Nmn, are defined
by (10.58), and eφm and eφn are fixed voltage magnitudes. For phase phi ∈ Pmn, the angle
equation is:

eφme
φ
nθ

φ
m = eφme

φ
nθ

φ
n −

∑
ψ∈Pmn

Mφψ
mnP

ψ
mn +Nφψ

mnQ
ψ
mn . (B.7)

The residuals of the magnitude equation is defined as:

∆θφmn = −eφmeφnθφm + eφme
φ
nθ

φ
n −

∑
ψ∈Pmn

Mφψ
mnP

ψ
mn +Nφψ

mnQ
ψ
mn . (B.8)

The partial derivatives of the magnitude equation residuals are:

∂∆θφmn

∂θφm
= −eφmeφn

∂∆θφmn

∂θφn
= eφme

φ
n

∂∆θφmn

∂Pψ
mn

= −Nφψ
mn ψ ∈ Pmn

∂∆θφmn

∂Qψ
mn

= −Mφψ
mn ψ ∈ Pmn .

(B.9)
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Node Voltage Magnitude and Angle

For a node n ∈ N , if φ /∈ Pn then the voltage magnitude and angle are:

Eφ
n = 0

θφn = 0 .
(B.10)

The residuals of the voltage magnitude and angle are:

∆Eφ
n = Eφ

n

∆θφn = θφn .
(B.11)

The partial derivative(s) of the residual of the voltage magnitude and angle are:

∂∆Eφ
n

∂Eφ
n

= 1

∂∆θφn

∂θφn
= 1 .

(B.12)

Node Real Power Conservation

For a node m ∈ N , if φ ∈ Pn the conservation of real power, with pφm taken as the real
component of sφm, is:∑

l:(l,m)∈E

P φ
lm =

(
AφPQ,m + AφZ,mE

φ
m

)
Re
{
dφm
}

+ uφm +
∑

n:(m,n)∈E

P φ
mn . (B.13)

The residual of node real power conservation is:

∆pφm = −
∑

l:(l,m)∈E

P φ
lm +

(
AφPQ,m + AφZ,mE

φ
n

)
Re
{
dφm
}

+ uφm +
∑

n:(m,n)∈E

P φ
mn . (B.14)

The partial derivatives of the residual of node real power conservation are:

∂∆pφm

∂P φ
lm

= −1

∂∆pφm

∂Eφ
m

= AφZ,m Re
{
dφm
}

∂∆pφm

∂P φ
mn

= 1 .

(B.15)
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Node Reactive Power Conservation

For a node m ∈ N , if φ ∈ Pn the conservation of reactive power, with qφm taken as the
imaginary component of sφm, is:∑

l:(l,m)∈E

Qφ
lm =

(
AφPQ,m + AφZ,mE

φ
m

)
Im
{
dφm
}

+ vφm − cφm +
∑

n:(m,n)∈E

Qφ
mn . (B.16)

The residual of node real power conservation is:

∆qφm = −
∑

l:(l,m)∈E

Qφ
lm +

(
AφPQ,m + AφZ,mE

φ
n

)
Im
{
dφm
}

+ vφm − cφm +
∑

n:(m,n)∈E

Pφ
mn . (B.17)

The partial derivatives of the residual of node real power conservation are:

∂∆qφm

∂Qφ
lm

= −1

∂∆qφm

∂Eφ
m

= AφZ,m Im
{
dφm
}

∂∆qφm

∂Qφ
mn

= 1 .

(B.18)

Slack Node Voltage Magnitude and Angle

Solving power flow typically requires selecting a slack node and assigning a fixed voltage
reference. The slack node voltage magnitude variable will be represented by Eφ

sl, and the

slack node voltage angle variable will be represented by θφsl. An overline notation will denote
the fixed voltage reference. At the slack node, the voltage magnitude and angle are:

Eφ
sl = Eφ

θφsl = θφ .
(B.19)

The residuals of the slack bus voltage equations are:

∆Eφ
sl = Eφ

sl − Eφ

∆θφsl = θφsl − θφ .
(B.20)

The partial derivatives of the residuals of the slack bus voltage equations are:

∂∆Eφ
sl

∂Eφ
sl

= 1

∂∆θφsl
∂θφsl

= 1 .

(B.21)

Typically, the slack node is chosen as the node representing the transmission line, and given

a voltage reference of Vsl =
[
1 1∠240◦ 1∠120◦

]T
.
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Appendix C

Derivation of a Half-space
Approximations for L2 Norm
Constraints

Inverter dispatch is often bound by apparent power capacity limit; a bound on the mag-
nitude of complex power dispatch, un + jvn. Though this bound is convex, it is nonlinear,
thus we seek to derive an easy to implement linear approximation of the apparent power
capacity constraint:

‖un + jvn‖ ≤ wn . (C.1)

We begin with the equation defining a circle and its interior centered at (x0, y0) with
radius R, and express the variables x and y in polar form:

(x− x0)2 + (y − y0)2 ≤ R2

x = x0 + r cos(δ)

y = y0 + r sin(δ) ,

(C.2)

with 0 ≤ δ ≤ 2π. We expand (C.2) to:

x2 − 2x0x+ x20 + y2 − 2y0y + y20 ≤ R2 , (C.3)

and with (C.2), arrive at (C.4):

(x0 + r cos(δ))x− 2x0 (x0 + r cos(δ)) + x20 + . . .

(y0 + r sin(δ)) y − 2y0 (y0 + r sin(δ)) + y20 ≤ R2 .
(C.4)

Here we separate (x0 + r cos(δ))x, and again use (C.2) in x0x and y0y, giving (C.5):

x0 (x0 + r cos(δ)) + r cos(δ)x− 2x0 (x0 + r cos(δ)) + x20 + . . .

y0 (y0 + r sin(δ)) + r sin(δ)y − 2y0 (y0 + r sin(δ)) + y20 ≤ R2 .
(C.5)
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To simplify (C.5), we cancel the x20 and y20 terms, and gather the x0r cos(δ) and y0r sin(δ)

r cos(δ)x− x0r cos(δ) + r sin(δ)y − y0r sin(δ) ≤ R2 . (C.6)

Points on the boundary of the set will have r = R, which we plug into (C.6). As R > 0, we
can divide both sides by R, and thus finish with (C.7), a linear relationship for the generic
variables (x, y):

cos(δ)x+ sin(δ)y ≤ r + x0 cos(δ) + y0 sin(δ) . (C.7)

Equation (C.7) gives a linear constraint on the variables x and y for the parameter δ, and
defines the half-space tangent to the circle at point (x, y) = (x0 + R cos(δ), y0 + R sin(δ)).
Half-spaces are convex, as are the intersection of any number of half-spaces. Thus a set Nc

half-spaces of the form (C.8) will form a convex linear approximation of a circle:

X = {(x, y)| cos(δk)x+ sin(δk)y ≤ r + x0 cos(δk) + y0 sin(δk),

δk =
k2π

Nc

, k = 0, 1 . . . Nc} .
(C.8)

This linear approximation can be seen in Figure C.1 for Nc = 12 such that δk = 30◦. The
accuracy of the approximation is shown in Figure C.2, with the number of half spaces ranging
from 4 (δk = 90◦) to 120 (δk = 3◦). It can clearly be seen that around 60 half-spaces, the
half-space approximation contains 0.1 % more area than the circle defined by the L2 norm
constraint.

Substituting the original variables for real and reactive complex power dispatch and
apparent power capacity:

W φ
n = {(uφn, vφn)| cos(δk)u

φ
n + sin(δk)v

φ
n ≤ wφn + uφn,0 cos(δk) + vφn,0 sin(δk),

δk =
k2π

Nc

, k = 0, 1 . . . Nc} .
(C.9)

where (uφn,0, v
φ
n,0) is the center of the apparent power constraint.
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x

y

(x0, y0)
δ = 30◦

cos(0)x+ sin(0)y = R + x0 cos(0) + y0 sin(0)

r

δ = 30◦
cos(30)x+ sin(30)y = R + x0 cos(30) + y0 sin(30)

cos(60)x+ sin(60)y = R + x0 cos(60) + y0 sin(60)

cos(90)x+ sin(90)y = R + x0 cos(90) + y0 sin(90)

Figure C.1: Tangential half-space approximation of circle.
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Figure C.2: Error of half-space approximation of apparent power constraint.




