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ABSTRACT OF THE DISSERTATION

Weak and strong binding states and tubulin C terminal tails affect intracellular transport

By

Trini Nguyen

Doctor of Philosophy in Mathematical, Computational and Systems Biology

University of California, Irvine, 2024

Assistant Professor Chris Miles, Chair

Intracellular transport is the process by which cargoes, such as organelles, travel to their

needed locations within the cell in a timely manner via cytoskeletal filaments. This process

involves the cargo that needs to be transported, motor proteins such as kinesin, and a fila-

ment, such as the microtubule. The process is broken down into several sub-processes, two

of which are the focus in this study: the binding process (in which the cargo-motor protein

ensemble binds to the microtubule) and processivity (where the cargo-motor ensemble walks

on the microtubule). It is known which structures in the cell are used in intracellular trans-

port, such as motor proteins, microtubules, and tubulin C terminal tails (CTTs); however, it

is unclear how their properties affect the entire process. In this study, we use mathematical

modeling and computational simulations to explain perplexing details of experimental data.

Specifically, we show that motor diffusion alone cannot explain binding times measured from

optical trap studies. Through computational analysis, we suggest that ADP release from the

motor head may be an integral component of the binding process. We also propose the con-

tribution CTTs provide to motor proteins processivity, where we believe CTTs help motor

heads that are searching for microtubule binding sites by holding them near the microtubule,

thus allowing for quicker steps. By combining modeling and simulations with experimental

data, we can tune physical parameters that have the most potential of explaining the data,

which in turns allow us a deeper understanding of intracellular transport.
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Chapter 1

Introduction

For the cell to function correctly, its proteins, organelles, and other cargoes must travel effi-

ciently to their intended destinations via a process called intracellular transport [33]. In this

process, cargoes use molecular motors to travel on a cytoskeletal network within the cell (Fig-

ure 1.1). The process is a complex one, and the diverse and numerous components that are

required for intracellular transport contribute to its complexity. Some of these components

include subcellular cargoes, motor proteins, and filaments upon which the cargoes travel on

[114]. Examples of subcellular cargoes that utilize this type of transport include mitochon-

dria, lipid droplets, and vesicles, and they use motor proteins, such as kinesin, dynein, and

myosin, to walk on cytoskeletal filaments such as microtubules and actin. Other proteins

are also involved in intracellular transport, especially those that decorate the microtubule

surface, such as tau and tubulin C terminal tails (CTTs) [33]. All of these components

differ greatly in size, shape, and interactions with each other, which forces the cell to strictly

regulate intracellular transport. The process has been very carefully studied, since transport

malfunctions have been connected to neurodegenerative diseases, such as Parkinson’s and

Alzheimer’s diseases [75, 117, 20]. However, it is still unclear how certain properties, such

as physical factors and chemical interactions, of each of the structures involved in trans-
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Figure 1.1: Intracellular Transport System. Cargoes can use motor proteins to travel one
of two directions on the microtubule: they can use dynein to walk in the retrograde direc-
tion (towards the minus end of the microtubule) and kinesin for the anterograde direction
(towards the plus end). The motor proteins primarily consist of two parts, the tail which
binds to the cargo, and the motor domain which are used to bind to and walk on the mi-
crotubule. The motor must be in a specific state, such as being bound to ATP, to bind to
the microtubule and walk on it. Microtubules consist of tubulin dimers, which consist of α
and β tubulin monomers polymerizing together. Proteins on the microtubule control motor
protein traffic, such as C terminal tails that protrude out of each tubulin monomer. Adapted
from [36, 57].

port affect the overall process. This dissertation focuses on motor size, spacing between two

proteins, and interactions between these proteins.

1.1 Microtubules and CTTs

Microtubules are formed when αβ-tubulin dimers polymerize together (Figure 1.1) [80]. In

eukaryotic cells, microtubules consist of 13 protofilaments and are about 25 nm in diameter.

These polymers can be as long as 50 µm, which allows for cargoes to travel long distances

within the cell. Each tubulin monomer is about 8 nm long and contain a binding site

for motor proteins to bind to and step on, so each motor step is also about 8 nm long.

Microtubules are heavily decorated with proteins, and it is believed that these proteins
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regulate motor protein traffic [102]. These proteins range in size and activity, in which

some are longer than others and can either speed up the motor binding or unbinding from

the microtubule. Thus, binding to the microtubule surface and walking along it are not

straight-forward processes. One of the proteins that seem to regulate motor protein traffic

on the microtubule are CTTs [80]. These negatively-charged tails extend from each tubulin

monomer, where α CTTs are slightly shorter than β CTTs, but both are about 10 nm

in length. It is not clear how CTTs contribute to motor processivity, but their interactions

with motor proteins and structure are being heavily studied. For example, post-translational

modifications are found to be highly complex on CTTs [46]. These modifications seem to

be coordinated with motor protein function. Microtubules with less polyglutamylation,

which occurs only on α CTTs, seem to result in lower motor binding events [61]. If α CTTs

discourage binding, perhaps they are shorter than β CTTs to have a balance of bound motors

versus unbound motors. Another example of a CTT study includes ends of microtubules

that are near the soma of the neuron, which have detyrosinated CTTs, whereas the other

end (where dynein-dynactin lands) have tyrosinated CTTs [46]. Thus, it is clear that CTTs

use post-translational modifications to dictate how often and which motors can bind to the

microtubule, but there remains many unknown details about CTTs. In further attempt

to understand the purpose of CTTs, experiments that use subtilisin to remove CTTs from

microtubules have been performed. In one of these studies, removal of the CTTs resulted

in a significant decrease of KIF1A’s (a member of the kinesin family) binding rate to the

microtubule [61], although it is possible that too much subtilisin was used and the resulting

damage to the microtubule may have not allowed for motor binding. Still, it seems that some

CTTs may also help recruit motors to the microtubule. Removal of CTTs have also been

seen to decrease both the run-length and velocity of motors [102]. It is not very obvious how

CTTs can achieve both longer motor run-lengths and faster velocities on the microtubule.

For example, it can be hypothesized that CTTs help motors by catching them as they fall off

the microtubule, and this assistance would certainly extend motor run-lengths. However, it is
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likely that merely catching the motors would slow them down, as it takes time for the motor

to rebind to the microtubule after some diffusive search. Thus, the purpose of CTTs remain

a mystery. However, as CTTs exist very closely to motor binding sites on microtubules [46],

they are very much worth studying when attempting to understand intracellular transport.

Chapter 3 of this dissertation focuses on possible CTT models that can explain the perplexing

result seen in [102].

1.2 Kinesin Motor Protein and its Interactions with

the Microtubule

Much research have been performed on kinesin motor proteins traveling on the microtubule

[70, 86]. Kinesin motors consist of two heads (also known as the motor domain), which are

used to perform stepping on the microtubule (Figure 1.1) [127]. Kinesins typically transport

cargoes from the center of the cell to the periphery, known as the anterograde direction [7].

There are 14 known kinesin families, and each of these kinesins differ in organisms of which

they exist, size, and movement patterns, among other properties [58]. This study focuses

primarily on kinesin-1, which has been connected to several neurodegenerative diseases and

have great clinical importance [91, 78, 119]. Thus, understanding their properties are very

necessary. This kinesin protein is made up of both heavy and light chain molecules [44].

The cargo binds to the light chains via binding proteins, and the heavy chains make up

the rest of the motor, including the two heads that connect to the long stalk with a short

but flexible neck linker. Binding of the heads to the microtubule is dictated by ATP and

ADP molecules (Figure 1.2). Each head has a separate binding site for the microtubule and

for ATP. ADP release and ATP binding and hydrolysis all result in the neck linker turning

the head to allow for microtubule binding. In fact, single-molecule studies have shown that

ADP release is required for motor stepping [104]. The estimates of the rate of ADP release
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vary greatly in the literature [26, 100, 101, 38, 41, 105, 29, 2], mainly due to the numerous

types of kinesin studied and the disparity of the ADP release rate between two bound heads

versus one bound head. It is also not clear whether the ADP release rate for stepping is the

same for binding. Thus, there is still work that needs to be completed to understand the

mechanisms that allow kinesin to bind to the microtubule.

Unbinding of the motor from the microtubule can be measured by experiments. In [79],

the authors were able to measure the force required for myosin to detach from actin using

optical tweezers, and a similar experimental setup can be used to measure kinesin unbinding

forces. These types of experiments have also been used to observe processivity [64], and

others have used high-resolution traces to measure run-length and velocities [53]. Thus,

there are many experimental methods to study unbinding and organelle motion. Binding,

however, is more difficult to study. In experiments, it is difficult to observe the moment

the motor binds to the microtubule, which is not necessarily when it begins to walk on the

microtubule. Nevertheless, there are still studies that attempt to study binding. A common

finding of these studies is the observation of a weak bound state between the motor and

the microtubule [45, 128, 21]. It is not clear what is limiting the motor to strongly bind to

the microtubule from this weak bound state, but since ADP release is the rate-limiting step

for kinesin walking [37], it could also be the rate-limiting step for kinesin initial binding.

Chapter 2 explores this model of binding.

1.3 Current Understanding of the Binding Process

There is much to uncover about the specifics of the motor-microtubule binding process,

and there has been attempts at clarifying this important process. Motors can either bind

directly to the microtubule, or with the assistance from microtubule-associated proteins

(MAPs) that decorate the microtubule surface [35]. For example, it has been found that
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Figure 1.2: Kinesin Step Cycle. When a kinesin head steps on the microtubule and binds to
it, ADP is released. This allows for ATP to be recruited to this leading head, which results
in a neck linker conformation that turns the trailing head forward. The ATP-bound head
then releases a phosphate group to become an ADP-bound head. This results in a weak
affinity between that bound head and the microtubule, and the motor can unbind from the
microtubule at this point. Adapted from [77].
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MAP7 plays an important role in kinesin-1 recruitment to the microtubule [45]. Some

proteins inhibit the motor from binding to the microtubule [48], but this inhibition can be

relieved by other proteins, such as protein-γ1 and Jun N-terminal kinase-interacting protein

1, which bind to the motor instead of the microtubule [115]. It is not clear what signals

these proteins to become activated at specific times, but the known system of this traffic is

certainly impressive. Other elements that decorate the microtubule aside from MAPs are

CTTs, but it is still difficult to understand how they affect motor binding. For example, there

is evidence that suggests α CTTs decrease motor-microtubule binding rates, but β CTTs

help with motor recruitment to the microtubule [102]. The two different types of CTTs are

only different in length by about 4 nm [80]. It is difficult to hypothesize how these lengths

can have completely different behaviors, so what other differences between these two CTTs

result in their polarizing interactions with the motor? There are other observed mechanisms

that the cell uses to control motor-microtubule binding. The microtubule itself can influence

binding of motors through post-translational modifications, such as acetylation [90], which

happens directly on the microtubule, not on its CTTs. The mechanism of post-translational

modifications controlling motor binding is still not clear; perhaps the modifications change

the charge of the microtubule binding site, making the affinity to motors stronger, or the

modifications make CTTs longer (or shorter), which affects the motor’s diffusive search time

for the microtubule. Other post-translational modifications that affect motor-microtubule

binding can happen on the motor, such as phosphorylation, and these modifications can

change the orientation of the motor so that microtubule binding site on the motor domain

becames more accessible to the microtubule and binding becomes easier [22]. It is possible

that the kinesin’s orientation is important for binding, and thus other conformational changes

of kinesin should be studied, such as ADP release. Because there are so many factors that

affect binding, there are many possible ways for binding to malfunction. Since binding is

the very first step of intracellular transport, any malfunction in the binding process would

disrupt the entire transport process. Thus, it is important to understand the complete details
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of binding to find areas for neurodegenerative disease medicines and therapy improvement.

1.4 The Value of Computational Approaches in Intra-

cellular Transport Studies

Experimental studies are valuable in measuring and observing cellular processes in real time;

however, as much information is being uncovered about these processes, the realization of

the limit of what we can observe is being manifested. For example, we cannot observe the

specific details of binding, and we cannot disentangle between binding and the first walking

step of a motor. We also cannot observe the specific details of the motor interacting with

other proteins on the microtubule. However, computational models can help with these

limitations. Computational models can be used in combination with experimental studies

to relate subcellular phenomena to observed behaviors (Figure 1.3). For example, with ana-

lytical and numerical models, scientists can study the isolated effects of certain parameters,

such as protein size and binding rates, that are difficult to control in experiments alone. [84]

have done this analysis in which they used a Markov chain model to control the length of

an actin filament and understand its effects on cargo travel speed. The ability to control

protein size is valuable because they are a wide variety of proteins and each of them come in

different sizes, so understanding the effect of size on a system can help biologists summarize

the effects from numerous proteins. There are a variety of computational methods available

to study intracellular transport, and these include stochastic models [124], where the effect of

random noise is incorporated to reflect the range of effects that are observed in experiments.

In intracellular transport studies, stochastic models typically simulate biophysical effects of

a system [86], and these models are extremely helpful because they mimic known biological

processes very closely. However, simulating biophysical effects, such as steric effects, can be

very computationally expensive. Some stochastic models do not include biophysical effects,
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such as the Gillespie algorithm [30], which generates possible solutions of stochastic equations

with known reaction rates. Often times, Gillespie-styled simulations are computationally less

expensive than biophysical simulations, but that is because less details are considered. Ide-

ally, both types of studies should be done; rough estimates of unknown parameters can be

easier obtained through less computationally expensive algorithms, but more computation-

ally expensive algorithms can allow insight of effects of intricate details. There is also the

issue of determining the entire set of biologically feasible parameters that allows these mod-

els to explain the data. Statistical algorithms can be used to address this issue. It seems

that there is no singular method that can be used to holistically study intracellular trans-

port. The projects in this dissertation employ many different methods to study intracellular

transport: both experiments and computational methods. With respect to computational

methods, this dissertation includes both computationally expensive analyses to understand

a complicated experimental setup, and a less computationally expensive analysis to propose

models of a simpler experimental setup. We also use statistical algorithms to further under-

stand intracellular transport. By combining experimental data and theory, we can effectively

understand the interactions between the motor protein and the microtubule.

9



Figure 1.3: Combining Experimental Data with Theory. To effectively study biological
processes, a variety of methods should be used. In computational biology, experimental data
is typically gathered first. If this data is too perplexing and more experiments are not feasible
or not efficient, then computational methods should be employed. An appropriate model
should be hypothesized from the data. The model can then be translated into mathematics,
and computer simulations of the mathematical model can provide more insight into the
experimental data. Adapted from [16].
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Chapter 2

Competition between physical search

and a weak-to-strong transition rate

limits kinesin binding times

2.1 Abstract

The self-organization of cells relies on the profound complexity of protein-protein interac-

tions. Challenges in directly observing these events have hindered progress toward under-

standing their diverse behaviors. One notable example is the interaction between molecular

motors and cytoskeletal systems that combine to perform a variety of cellular functions.

In this work, we leverage theory and experiments to identify and quantify the rate-limiting

mechanism of the initial association between a cargo-bound kinesin motor and a microtubule

track. Recent advances in optical tweezers provide binding times for several lengths of ki-

nesin motors trapped at varying distances from a microtubule, empowering the investigation

of competing models. We first explore a diffusion-limited model of binding. Through Brown-
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ian dynamics simulations and simulation-based inference, we find this simple diffusion model

fails to explain the experimental binding times, but an extended model that accounts for the

ADP state of the molecular motor agrees closely with the data, even under the scrutiny of

penalizing for additional model complexity. We provide quantification of both kinetic rates

and biophysical parameters underlying the proposed binding process. Our model suggests

that a typical binding event is limited by ADP state rather than physical search. Lastly, we

predict how these association rates can be modulated in distinct ways through variation of

environmental concentrations and physical properties.

2.2 Introduction

Life depends on an immensely diverse and complex array of protein-protein interactions [96].

These interactions are richly regulated in both space and time (e.g., via post-translational

modifications, fluctuating concentrations [67]) to modulate affinities, promiscuities, and sen-

sitivities [97]. Understanding how these interactions are parameterized by both chemical

and physical factors is broadly limited due to challenges in observing interaction events di-

rectly [111]. While predicting interactions from molecular structures (e.g., from molecular

dynamics simulations) is an invaluable approach, these investigations still suffer from the

same observational limitation in their validation [87].

One variety of such interactions of major importance across cellular function are those be-

tween molecular motors and cytoskeletal filaments. Cytoskeletal motors, specifically kinesin-

microtubule assemblies, self-organize to perform a zoo of cellular behaviors, including the

delivery of cargoes in intracellular transport [33], generation of forces to guide genetic ma-

terial in mitosis [122, 110], and guiding of axonal growth [76]. Each of these wildly different

behaviors is fundamentally achieved through molecular motors binding, stepping, and un-

binding from cytoskeletal filaments [130]. Over the last several decades, advancements in
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single-molecule experiments have revealed extensive details about the latter two components

[79, 51, 98]. Stepping and unbinding are, in some sense, downstream of binding, suggesting

clear merit in understanding the details underlying the process.

Pursuits toward understanding motor-cytoskeleton binding have been clouded by complica-

tions in disentangling the measurements from convolving factors. That is, one must specify

exactly the notion of binding that is being measured. To do so, consider the full process

of self-assembly. Initially, a freely diffusing motor associates with a cargo, the motor-cargo

complex then diffuses into close proximity to a cytoskeletal filament, and then the first mo-

tor binds to this cytoskeletal filament. Whether the motor strongly binds to the filament

immediately upon first contact is not clear. Is the physical contact between motor and fila-

ment sufficient for binding, or are chemical processes needed as well? Due to the challenges

in disentangling these steps, there is enormous variety in the reported ranges for binding

rates. While landing rate assays [82] provide direct measurements of motor-cargo associa-

tion rates, these do not inform motor-cytoskeletal rates. With the exception of [25], very

little data of direct measurements of motor-microtubule binding events exists, but this study

corresponds to the reattachment of a secondary motor that is kept close to the filament by

another. Effective binding on the timescale of seconds [123, 27] to tenths of a second [60]

have been reported from indirect measurements and utilized heavily in other modeling works

[54, 50, 72, 71] to understand collective motor behavior. However, these effective rates neglect

geometric factors (such as organization on the cargo) that are known to crucially dictate the

binding rate [63, 93, 125, 11]. A mechanistic, biophysical model of the binding process is

therefore necessary to reconcile the various experimental observations and modeling efforts.

Here, we use a combined experimental and computational approach to explore different

possible biophysical models of how the motor-microtubule binding process occurs. The

investigation is based on the initial association time between a cargo-bound kinesin and

microtubule from recent optical trap measurements (Figure 2.1) on a variety of motor lengths
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Optical Trap

Unbound Bind Walking Walking outside trap Unbind Bind

}Measure time to rebind

Figure 2.1: Experimental setup. An optical trap (pink) controls the average z-position of
a polystyrene microbead cargo. When the cargo-motor ensemble binds to the microtubule
and begins to walk on it, a position-sensitive diode (PSD) senses the displacement of the
bead. As the motor walks farther from the center of the trap, the force on the cargo (and
consequently the motor) grows, eventually leading to unbinding from the microtubule and
resetting of the setup. The PSD measurements provide the timing between unbinding to
rebinding, the binding process modeled throughout the remainder of the work.

and trapped distances away from the microtubule. The span of setups allows exploration

and validation of models otherwise impossible with a single dataset. We first investigate the

null model of a diffusion-limited search performed by the motor head. Through Brownian

dynamics simulations coupled with simulation-based inference, we find that this model fails

to capture a delay in binding at close distances. We find reconciliation with the data after the

addition of an ADP-release requirement prior to binding to the model, motivated by known

mechano-chemistry of motors. Through approximate Bayesian computation techniques, we

quantify underlying rates and biophysical parameters governing this process and predict

that most motor binding events are limited by tubulin-stimulated ADP release. Lastly, we

provide predictions on how this process can be modulated distinctly by varying environmental

concentrations or spatial distance, highlighting the complexity and regulatability of this

interaction. Altogether, our study provides a new state-of-the-art mechanistic understanding

of the motor-cytoskeletal binding process, a crucial ingredient in understanding the self-

organization of motor-cytoskeletal assemblies used in cellular function. More broadly, our

work illustrates how complexities arising from spatial and chemo-mechanical factors that

shape protein-protein interactions may be understood through the combined efforts of theory

and experiments.

14



2.3 Results

2.3.1 Diffusion-limited binding does not capture the qualitative

behavior of experimental data

To investigate the biophysical mechanisms of the first association between a cargo-bound

motor and a microtubule, we compare binding time data of three kinesin lengths (33, 45,

and 60 nm) attached to a polystyrene bead that is laser-trapped at several distances away

(0, 20, 40, and 60 nm) from a microtubule. Concentrations of motors in solution are diluted

such that at most one motor is on each bead. Throughout the remainder of the work, we

consider the binding time to be that between the unbinding reset event and the next time

of detectable motion of the bead, as schematically shown in Figure 2.1. See Materials and

Methods for further details on the experimental setup. The resulting binding times can be

seen in Figure 2.2 ABC (black). Times are on the order of seconds, which is in line with

other measurements of binding as discussed in the Introduction. Intuitively, as the cargo is

moved away from the microtubule track, binding times increase. The most straightforward

explanation for this is a ”random search” mechanism rate-limiting the binding, schematically

shown in Figure 2.3 as the ”diffusion model”. That is, the ”null” model for binding, as

assumed elsewhere [130], is that the motor head undergoes random motion until it reaches

close proximity to the microtubule track and then binds with some reactivity. Our work

does not directly incorporate electrostatic effects known to underlie the binding process [34],

but assumes that these effects can be lumped into the effective reactivity and movement

parameters.

To investigate whether such a diffusion-binding model can explain the binding time across

experimentally observed conditions, we developed a Brownian dynamics simulation of the

proposed model. The stochastic model includes the random motion of the cargo, both
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Figure 2.2: Model fits and cross-validation. ADP-release model captures qualitative behavior
in experimental data, while the simple diffusion model cannot. In vitro optical trap exper-
iments were used to measure mean binding times (black) for three motor lengths: 33 nm
(A), 45 nm (B), and 60 nm (C). The horizontal axis shows average distances between the
cargo and microtubule (MT), which were varied for each experiment. Two binding models
(simple diffusion only in green and ADP-release in pink) were simulated and fitted to all of
the experimental data. n = 100 for simulated data varied for experimental data. Data are
presented as mean ± SEM. (D): Cross-validation was performed to determine the predictive
power of each model. For three rounds, data was trained on two motor lengths, and tested
on the third. Dashed lines show error when fitting the models to the entire data in ABC.
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(e.g. Lipid Droplet)

Motor Protein
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Figure 2.3: Schematic of models. Left: State diagram of the simple diffusion model of
kinesin-microtubule binding. Through random motion of the cargo and motor head, binding
time is determined by the stochastic search process of the motor reacting when in close
proximity to the microtubule. Right: Model of binding process that considers a weak-to-
strong transition driven by ADP release. We consider a cargo-motor ensemble that is in
State 1, unbound from the microtubule and bound to ADP on both motor heads. From
here, the motor can release ADP from one of its heads, transitioning to State 2, or bind
weakly to the microtubule in State 3. To bind strongly to the microtubule and transition
to State 4, the motor must meet two requirements: ADP is released from one of its motor
heads and it must be within a binding distance to the microtubule. We consider two types
of ADP release: a non-tubulin stimulated rate (kADP

off ), and a faster tubulin-stimulated rate
(kADP,Fast

off ).
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translation and rotational, and the diffusive search of a motor head attached via a tether

to this cargo. The tether is assumed to be of the known length of each motor and exerts

a Hookean force when extended beyond this length. The initial configuration of the motor

head is assumed to be downward, based on the fast timescale of resetting in the optical trap

(tenths of a second). When the motor head enters a specified distance of the microtubule due

to random motion, the binding reaction occurs at an unknown, microscopic rate. Additional

model details and discussion of assumptions can be found in the Materials and Methods.

Ultimately, this leads to two unknown parameters: the diffusivity of the motor head, and

the microscopic reactivity.

Through a suite of simulation-based inference techniques [1, 103, 120] (further details in

Methods and Materials), we obtain fits to the diffusion model over all experimental setups

for the two unknown parameters: the diffusivity of the motor head, and the microscopic

binding rate. The resulting fits can be seen in Figure 2.2 ABC (green) for the mean time

to bind for the three motor lengths and various distances. There appears to be reasonable

qualitative agreement with the experiments, where increasing distances increases binding

time. The corresponding parameter fits can be found in Table 2.1. While the diffusivity of

the motor head is challenging to quantify [130], our fitted value on the order of 1000-10000

nm2/s is within ranges considered for kinesin elsewhere [126]. Upon further scrutiny, the

mean binding times shown in Figure 2.2 ABC, especially at close distances, display a distinct

qualitative disagreement between the diffusion model and experimental measurements. In

the diffusion model, as the cargo is trapped closer, the motor is effectively instantly able to

bind. However, experimental values show a plateau of times around 1 second, even for close

distances. This plateau points to the binding process being a multistep process.
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Table 2.1: Fitted Parameters. Dm is the diffusion constant of the tethered motor head. κw

is the stiffness constant of the weak bond between the motor and the microtubule when the
motor is weakly bound to it. Parameters are fitted using a Bayesian optimization algorithm
[1]. Some parameters were not found in previous literature.

Parameter Simple Diffusion
Model

Diffusion w/ ADP
State Model

Previous Literature

kADP
off (s−1) 0 0.008 0.008-0.1

[37, 26, 100, 101]

kADP,fast
off (s−1) 0 2.12 0.5-300 [38, 26, 41,

100, 101, 105, 29, 2]

kADP
on (s−1) 0 883.9 425.0 [26]

kMT
on (s−1) 80.6 70.65

kMT
off (s−1) 0 0.2 0.31 [40]

Dm (nm2 s−1) 4459.8 1994.0

κw (pNnm−1) 0 0.0020

2.3.2 A chemo-mechanical ADP-release model of binding better

explains observed one second binding delay

With the observation that a simple diffusion model does not produce the ∼ 1 second delay

in binding at close distances seen in experimental measurements, we sought a model that

may explain this phenomenon. Several plausible explanations including cargo rotation and

measurement error were considered, but seem unlikely when evaluated with estimates of their

effect (see Discussion). Instead, we turn to the rich mechanochemistry of the kinesin motor.

It is known that the nucleotide state of each motor head crucially determines its strong

or weak affinity to the microtubule [113, 19, 3] and through cycles of this nucleotide state

(ATP, ADP, released), processive stepping is achieved [73]. We posit that this nucleotide-

based regulation of ”binding” extends beyond that of processive stepping, and even the

preliminary attachment between the cargo-motor ensemble and the microtubule. That is,
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we posit that the experimentally observed binding times correspond to a strong binding

event, and therefore the underlying nucleotide state of the motor heads, plays a significant

role in arriving at this state.

To investigate whether a model including nucleotide state may better explain the experi-

mentally observed times, we extend the model to account for 4 possible states, as shown in

Figure 2.3. In this model, the motor-cargo ensemble begins in State 1 with both motor heads

in an ADP state, undergoing the same random motion as the diffusion model. From here,

the ensemble can enter one of two states: State 2, where ADP is released from either motor

head, or State 3, when the ensemble diffuses close to the microtubule and one of the motor

heads weakly binds to it. From either of these states, the ensemble can then strongly bind

to the microtubule either through diffusion (from State 2), or the ADP molecule is released

(from State 3). We consider two types of ADP release, a fast tubulin-stimulated release and

a slow non-tubulin-stimulated release [37, 100, 41, 38, 101, 26]. We consider ADP release

as a requirement for strong binding based on the neck-linker model for stepping where an

ADP-bound head has a low affinity for the microtubule, then this trailing head moves for-

ward along the microtubule bound to ADP, and when it steps down onto the microtubule,

ADP is released [131]. Importantly, our description is coarse-grained to not track the heads

separately, but we consider the ADP release to describe either motor head. The assumption

that the ensemble begins in State 1 has two parts: we assume that if the motor detaches in

an ATP-bound state, this phosphate release is fast [73], but then the corresponding ADP

release is slower without tubulin [38].

Using the same simulation-based inference approaches for the diffusion model, we fit the

observed binding times for all 3 motor lengths and distances simultaneously for the extended

ADP-diffusion model, with 7 unknown parameters, 2 from the diffusion model, 4 reaction

rates, and 1 corresponding to the strength of attachment in the weak binding state. The

result of the fits can be seen in Figure 2.2 ABC in pink. The overall fit is discernibly better
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for the 33 nm and 45 nm motor lengths, and arguably worse for 60 nm at long distances. The

noteworthy consistent overestimation for the 60 nm motor arises due to the simultaneous

fitting of fixed parameters across all three motor lengths, sacrificing better fits for shorter

motor lengths at the expense of the longest length. Such consistent overestimation does

point toward a shortcoming of the model and may be due to heterogeneities in the different

motors beyond their length alone. However, the model now captures the qualitative feature

of a plateau of times at short distances. While only the mean binding times were used to

fit, Figures A.2 and A.3 show close agreement in full distributions of binding times as well.

Beyond the qualitative improvement, the inherent danger in quantitatively assessing whether

the ADP-release model better explains the data comes from the increased model complexity

[13]. Intuitively, a model with more parameters has more flexibility to produce a better fit,

and careful attention must be paid to model selection. In lieu of commonly-used information-

theoretic techniques (AIC, BIC), even for simulation-based inference [65], we instead leverage

the structure of our experimental observations to compare models based on their ability

to explain unseen experimental circumstances. We perform a cross-validation procedure

where we fit both the diffusion and ADP+diffusion models to the binding times for 2 of

the 3 motor lengths, withholding one for testing on the trained models. In each validation

test of withholding a motor length, the more complex model generalized better, shown in

Figure 2.2D. From this, we conclude that the ADP-diffusion model better fits the observed

binding times, even under cross-validation-based scrutiny [129].

2.3.3 Kinetic and biophysical parameters of the ADP-binding model

can be estimated with high precision

Beyond the qualitative lesson of identifying the ADP-diffusion model as explaining the data,

our fitting procedure provides rich quantitative insight into the underlying processes by es-
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timating underlying parameters, shown in Table 2.1 and Figure 2.4. Some kinetic rates

have been previously measured, and serve as support for the model, whereas others are, as

far as we know, unmeasured. The values reported in Table 2.1 are point estimates from a

simulation-based inference optimization procedure [1]. The estimated values for microscopic

binding rate, diffusion of the motor head, and ADP binding are all within an order of mag-

nitude of previously reported estimates, even after considering a smaller motor-microtubule

binding radius (Figure A.11). To our knowledge, the weak-tethering strength κw has not

been reported elsewhere, but we note it is significantly weaker than other physical forces in

the system and may correspond to electrostatic attraction. The limiting ADP release rate

estimated by our model is ≈ 2/s. This parameter has a wide range of values reported in

the literature, ranging from slow rates in the vicinity of ours, as well as significantly faster

rates on the order of hundreds per second. We defer discussion of this important parameter

and its subtle interpretation to the Discussion. As further validation of this optimization

procedure for point estimates, we also performed a separate simulation-based inference tech-

nique, sequential approximate Bayesian computation (sABC) [103] to obtain samples of an

(approximate) posterior distribution shown in Figure 2.4. The reason for this method was

two-fold: for one, the agreement between the point estimates arising from the two procedures

validates the approximations involved in the techniques, and the latter sABC approach pro-

duces valuable uncertainty quantification that we were unable to employ but may very well

be possible using the techniques of [1]. Further details on these procedures can be found in

the Materials and Methods. Somewhat surprisingly, all parameters of the model seem to be

identifiable, as shown in the relatively tightly-shaped posterior distributions.
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prior
posterior

Figure 2.4: Estimates of microscopic parameters from fitting the ADP-diffusion model. Joint
(Approximate) Posterior Distribution of ADP release Model Parameters. Black curves in
the marginal densities from sequential approximate Bayesian Computation (sABC) are the
posterior distributions, and the grey curves are the priors. A kernel density estimator [43]
was applied to discrete samples to form posterior estimate curves.
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2.3.4 Most motors strongly bind via tubulin-stimulated ADP re-

lease

These quantitative estimates of the underlying microscopic rates provide qualitative lessons

about motor binding. Referring to the model schematic in Figure 2.3, motors can achieve the

strong binding state either through an intermediate weak binding state (State 3) after which

ADP release occurs, or directly from a diffusing state (State 2). Although we do not observe

these transitions directly, their relative proportions can be deduced from the data and are

investigated in Figure 2.5. Our proposed binding process can be conceptually decomposed

into two components: the physical search process of the motor binding (either weakly or

strongly) to the microtubule, and an ADP release step. Figure 2.5A demonstrates the

predicted relative contribution of the physical search component to the overall binding time.

Specifically, the panel shows the fraction of time stochastic simulations of the full binding

process spent in States 1 and 2, where the motor is unbound completely and searching for

the microtubule. This fraction was calculated by determining the portions of time spend

unbound in each simulation, and then taking the average. For all motor lengths, the fraction

of time in the searching state increases as the distance between the cargo and microtubule

increases, ranging from about 20% to 80% of full binding time. Moreover, for a fixed distance

(60 nm), the fraction of time searching increases as the length of the motor decreases. These

trends can be interpreted as the diffusion-based physical search step always contributing

a meaningful rate limitation to the process. However, from this panel alone, the typical

binding pathway cannot be deduced. As physical search takes varying of the portion of the

total binding time, is ADP release always, never, or sometimes the rate-limiting component?

Figure 2.5B addresses this question by computing the fraction of stochastic simulations that

end up strongly bound (State 4) by entering through the tubulin-stimulated ADP release

pathway (from State 3). These portions show that for all motor lengths and distances,

effectively all binding events (about 99%) enter through this state.
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portion increases. Panel B: Portion of all binding events that weakly and then strongly bind
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experimental conditions (motor length and mean spacing between cargo and microtubule).
Parameters for simulation are from Table 2.1.

25



Motors could, in theory, release ADP while undergoing diffusive search, and then strongly

bind directly (States 2 to 4). To understand why this pathway does not seem to contribute

to the binding time, we show the full effective predicted binding transition frequencies in

2.5C, averaged over all motor lengths and distances. A full report of the relative proportions

and effective rates of each transition can be found in Figures A.4 and A.5. From State 1,

most (over 80%) of initial binding interactions arise via a preliminary weak binding state and

subsequent ADP release (States 3 to 4). However, we predict that some transitions to State

2 (ADP release while unbound) occur. From State 2, there may seem to be a paradox that

the transition rate between States 2 to 4 is very low, which one might interpret as the ADP

released motor state having low affinity for the microtubule, but we emphasize this quantity

is a byproduct of the competing rates between physical binding and ADP capture. That is,

State 2 does not have a lower affinity for the microtubule, but rather, occurs less often than

ADP rebinding. Therefore, the ADP release before physical search is too transient to provide

a viable binding pathway. Altogether, our results suggest tubulin-stimulated ADP-release

after weak binding is the typical pathway for kinesin binding.

2.3.5 Binding rates can be distinctly modified by physical and

chemical factors

The quantity and structure of experimental data have thus far allowed for significant progress

in understanding binding from retrodictive reconciliation with a model. We conclude with

predictions that emphasize the broader lessons and may serve as the basis of validation in

future experiments. The exploration of typical binding events in the previous section points

toward conceptualizing this process as a distinct mechanical diffusive search and a chemical

step from the nucleotide state. Regulation and perturbations of each of these components

should therefore be discernible. To explore these two scenarios, we predict how the binding

times should be altered in two hypothetical experimental perturbations shown in Figure 2.6.
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Figure 2.6: Predicted binding time changes from chemical and physical perturbations. A: An
example of a chemical change, kADP,Fast

off , was varied in the simulation and resulting simulated
binding times are plotted. Data are presented as mean ± SEM. B: Physical changes, such
as changing the cargo size, can also be made to study the resulting binding times.

In the first, panel A shows how if one could modulate the tubulin-stimulated ADP-release

rate, the effective spatially-dependent binding rate shifts up or downward for all distances. In

contrast, numerous physical experiments could plausibly alter the physical properties of the

system. In Figure 2.6B, we show the predicted effect of changing the cargo size, which would

consequently modify the overall diffusivity of the ensemble and the random search time. For

short distances that are not limited by this diffusive search, the difference is negligible, but

for long distances, the effect becomes magnified. Predictions for other motor lengths can be

found in Figure A.6. While we do not currently have the technological capability to validate

these experimental predictions (e.g., the ability to disentangle the competition between ADP

and ATP binding to the motor head prior to the motor binding), we hope they will be the

basis of future validation or invalidation of our proposed binding model.
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2.4 Discussion

2.4.1 Conclusion

Altogether, our results point toward a model of the initial binding between a cargo-bound

kinesin and a microtubule track being more complex than a diffusion-limited search of the mo-

tor head that is presumed elsewhere [130, 126]. Motivated by the known mechano-chemistry

of motor stepping, where the nucleotide state of each motor head dictates microtubule affinity

[9, 37, 38], we posit that the observed binding times correspond to a nucleotide-state-limited

strong binding event. In this conceptual model, the primary binding pathway is a prelimi-

nary weak binding from physical search, followed by the motor being weakly tethered to the

microtubule. During this weak tethering, ADP is released from one of the heads and the mo-

tor becomes strongly bound. The rate-limiting component transitions between ADP release

and physical search as the cargo-microtubule distance increases, arising from the competition

between these rates. To validate this hypothesis, we considered a coarse-grained computa-

tional model that incorporates both diffusive search and the ADP state of motor heads,

and through simulation-based inference and model selection, ultimately found compelling

agreement with the experimental measurements. With only observed binding times, com-

putational modeling reveals unobserved details of the binding process and predicts that the

“typical” binding event is modulated distinctly by both environmental and physical factors.

From a design perspective, these orthogonal modulations allow for more fine-grained control

and malleability than either separately.

The emergent model of an ADP-release rate-limiting kinesin binding warrants further dis-

cussion. Due to the inability to observe the behavior of individual motor heads, our com-

putational model forgoes this complexity and implements weak and strong binding states

agnostic to the underlying biochemistry. The simulation-based inference procedure and its

validation rigorously show that a model with this weak-to-strong transition fits the binding
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data more closely than without these states. This agreement primarily arises from the fitted

≈2/s rate of strong binding after weak binding. Based on the known mechanochemistry of

kinesin, we attribute this weak-to-strong transition to an ADP release of one of the motor

heads [9, 37, 38]. However, this rate is commonly reported on the order of ≈100/s [29],

allowing for the rapid procession of the motor on this same rate-limiting timescale. This

presents an apparent contradiction to our hypothesis, as this fast rate indeed fails to explain

the apparent delay seen in binding times. Reconciliation arises from the findings of [105],

principally the result that ADP release rate of each kinesin head is highly sensitive to the

load applied to it. When both kinesin heads are bound to the microtubule, the release rate

for ADP from the front head (under load) is indeed very rapid. However, The ADP release

rate for kinesin when only a single head is bound (and not under load) is much lower. Our

model describes the transition from kinesin completely unbound to the MT to a single-head

attachment and therefore corresponds to this slow unloaded, microtubule-stimulated ADP

release rate. This slower ADP release rate has been reported in the literature with notewor-

thy agreement with our estimated rate. In [28], the authors find a bimodal distribution of

ADP release rates: one fast, and a second, slower rate of 0.4-2.3/s. This is in close agreement

with the rates of 2.3-3.3/s found in [100]. These same authors later report a faster value of

31.5/s [101], but note this is an average of fast and slow rates. In a more recent study [2] find

an ADP exchange rate of ≈0.5/s that can be modulated by engineering longer neck linkers.

Indeed, like these studies, our work cannot resolve the precise underlying biochemistry of

individual motor heads. However, the remarkable agreement between the fitted weak-to-

strong transition rate arising from our work and the slow unloaded ADP release found in the

literature provides convincing evidence of their connection. Moreover, the emergence of the

unloaded ADP rate reveals more insight into the underlying mechanics between the motor

heads in the attachment process.

Motor binding times have been estimated and measured many times prior [123, 27, 82, 25],

but these studies cannot easily disentangle the physical configuration the binding arises
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from, whether it be from a landing experiment, DNA origami, or motors re-attaching while

another is already bound. The absence of this consideration juxtaposes the increasing body

of evidence that spatial organization plays a vital role in motor binding [63, 93, 125, 11]. By

distilling both the experimental assay and corresponding model to the minimal ingredients

of a single motor attachment, we can clarify this process with unprecedented precision and

generalizability. That is, while we have shown that our model successfully recapitulates

the experimental data from our optical trap assay, we have moreover provided quantitative

details about the underlying process that can be used to calculate binding times in other

configurations. That is, one could imagine taking our fitted model and adapting it to DNA-

origami cargo to reconcile the observed binding rates of [27, 25]. Discrepancies between

the predictions and observations may occur, but these provide crucial details about the

underlying chemistry and physics that we advocate warrant further investigation.

2.4.2 Limitations and Assumptions

We have not, and likely cannot ever fully rule out other conceptual models and confounding

factors of binding time. The key qualitative feature we sought to replicate was the binding

delay on the order of 1 second in close-proximity cargoes. Our ADP release model successfully

recapitulates this, and we provide testable hypotheses that can be used to invalidate the

model in Figure 2.6. We considered several other possible factors that may explain or

contribute to this delay. The most pressing possibility is whether this delay arises as an

artifact of failure to detect optical trap displacements faster than this. Assuming an unloaded

kinesin velocity of around 500 to 1000 nm/s, a 15 nm bead displacement for detection

corresponds to fractions of a second and does not explain the observed delay on the order

of a second. Furthermore, we struggle to speculate what a realistic initial configuration of

the motor may be, as a more detailed model of the cargo resetting in the optical trap likely

requires consideration of hydrodynamic effects that couple rotation, motion, and distant-
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dependent diffusivity [106]. We made the crude assumption that the motor was configured

downward initially due to the fast timescale between cargo resetting in the trap, but this is

likely not the case. However, based on our estimates (Figure A.7) and others estimate [11] a

cargo taking 0.2 seconds to complete a full rotation at this viscosity. To test the robustness

of this result, we extended the model to also approximately incorporate near-wall diffusivity

hindrance from hydrodynamics [31, 15, 59] and find that there is some slowdown at far

distances with random initial motor configurations, shown in Figure A.10. In a previous

study from the lab [12], it was found that a reduced bead size does reduce the binding

time slightly. Altogether this evidence points toward supporting our conceptual model that

cargo rotation and hydrodynamics do play a role in motor binding time, but alone fail to

explain the magnitude of delay seen at close binding distances. One last possibility we note

is the conceptual model where a motor begins in a ”crumpled” state, and then unfurls with

some delay to bind. Our model of the kinesin stalk is crude, and one could imagine other

possibilities such as a worm-like chain model considered for the neck linker [55]. However,

these models primarily differ when under load, rather than undergoing a diffusive search.

Therefore, we leave the investigation of other polymer models for the stalk to future work.

We note the coarse-grained approximation of the whole motor head as a single spatial point

with a single nucleotide state due to the inability to resolve further detail from available

data. We leave to future work more detailed models that incorporate in vivo complexities,

including motor attachments diffusing on the surface of cargo [63, 93, 125] or cargoes with

with multiple motors. Lastly, we identify that this binding model may be limited to kinesin,

and perhaps even only some kinesins. Future investigation warrants investigating other

motors binding details, e.g., dynein, through the procedure outlined in this work. When

more details, such as the dynein on- and off-rates, can be brought to light, these details

can be combined with our work to understand our model’s and the observed binding delay’s

context in vivo.
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2.4.3 Context in Cytoskeletal-Motor Systems

The focus of this work is understanding the binding between a single cargo-bound kinesin and

a microtubule track. This setup follows the spirit of a now long-established and successful line

of investigation of cytoskeletal-motor assemblies by isolating fundamental building blocks.

We attempt to situate our advances in the broader context of the wildly complex array of

cytoskeletal-motor interactions and the feedback between them. We emphasize the chemo-

mechanical nature of our binding model in the context of the enormous literature on how

physical and chemical changes to microtubules affect motor behavior. For instance, geometry

of the microtubule network dictates cargo-microtubule distances [17, 74] by pulling the cargo

closer to the microtubule via tethers such as dynactin [4], or pushing it away via microtubule-

associating proteins (MAPs) [56], and motors themselves reorganize microtubules through

forces [126]. A zoo of microtubule-associating-proteins (MAPs) and the tubulin code are

known to interfere with motor function [46, 102], including in the recruitment of motors [45,

61, 23]. Our model may shed light on explaining the mechanisms by which these microtubule

decorations modify motor binding, and serve as the basis for future investigation. Through

the decomposition of how chemical and physical factors modulate binding, our study may

be the basis for discerning the mechanism of MAPs regulation of motors. For instance,

one could imagine C-terminal tails may serve as physical tethers or may alter nucleotide

states, and such an investigation remains for the future. More broadly, this understanding

serves as a key step toward understanding how cells regulate binding to direct cargo and

perform even more cytoskeletal-motor functions such as coordinate mitosis [81]. Moreover,

this understanding may help aid in the design of increasingly sophisticated synthetic systems

[92], where spatial distances can be prescribed.
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2.4.4 Broader Lessons for Probing Protein-Protein Interactions

The difficulty in directly observing protein-protein interactions makes their study challeng-

ing. Two main avenues of approaches have been historically successful, each at extremes of

chosen level of detail. Molecular dynamics simulations are a gold standard for predicting

interactions. We build on the immense insight they have illuminated on the interactions be-

tween microtubules and kinesin [83, 99] and otherwise would not have considered the ADP

release in our model. However, these approaches built from microscopic components have

immense difficulty in scaling up to more complex systems with multiple interacting com-

ponents, such as between motor, cargo, and cytoskeletal filaments. At the other extreme,

”spherical cow” models of diffusion-limited reactions [107, 42] have revealed many quali-

tative lessons of protein-protein interactions, but remain challenging to quantitatively link

with data because even the inclusion of modest complexities like orientation constraints [8]

make the analyses prohibitively complex.

Our work adds a timely vignette to other studies [6, 132, 32] that illustrates the value of

striking an intermediate level of complexity in understanding protein-protein interactions.

This balance allows for the incorporation of microscopic details from more fine-grained stud-

ies but remains vigilantly coarse-grained to directly connect with data. We highlight major

components of the work that we believe will be of broader use in other probing of protein-

protein interactions, such as understanding the competition between peptides and kinases

for the same binding site on a transcription factor, or disentangling folding and aggregration

rates in protein. For one, we leveraged measuring interactions in a variety of conditions.

Equipped with only a single motor length or trapped distance, the diffusion model would

have fit to a seemingly satisfactory degree. By probing a model’s ability to explain data

across conditions, we were able to identify the ADP model. Furthermore, our work was

made possible by recent advances in simulation-based inference [18]. While model fitting

has historically been bogged down in the complications of the procedure, we now live in an
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age where it is plausible to perform inference on any model that can be thought of (and simu-

lated), with rapidly improving techniques beyond those we utilized in this work [66]. Neither

of these lessons is specific to the context of cytoskeletal-motor interactions, and therefore

we hope serves as an outline for other pursuits in data-driven discovery of protein-protein

interactions.

2.5 Methods

2.5.1 Optical Trap Experiments

The optical trapping setup was assembled on an inverted Nikon TE200 microscope using

a 980 nm, single mode, fiber-coupled diode laser (EM4 Inc). The laser power was set to

achieve a trap stiffness, κt, of ∼0.045 pN nm−1 while using the polystyrene bead of 0.56 µm

(streptavidin conjugated, Spherotech).

Single motor experiments were carried out in the motility buffer (80 mM Pipes pH 6.9, 50

mM CH3COOK, 4 mM MgSO4, 1 mM DTT, 1 mm EGTA, 10 µM taxol, 1 mg mL−1 casein).

In all the rebinding rate assays, single-motor kinesin-coated polystyrene beads were prepared

just before the measurements. The motors DK-406-His/DK-560-His/DK-746-His (Kinesin-

1, aa 1-560/Drosophila Kinesin aa 1-406/ Drosophila Kinesin aa 1-746; His tag at c-term)

were diluted to ∼20 nM before mixing with ∼1 pM of biotinylated penta-His- antibody

conjugated streptavidin beads stored at 4°C. This ratio produced the bead binding fraction

of 10-15% and was maintained to maximize the probability of finding single motor beads in

the solution (a bead binding fraction less than 30% corresponds to a single motor regime

[10]). The bead-motor incubation (∼50 µL volume) was carried out at room temperature for

10 minutes. At the end of incubation, the sample chamber with preassembled microtubules

was washed with ∼50 µL of warm filtered buffer just before injecting the incubated mixture.
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Experiments were carried out at room temperature in a motility buffer supplemented with

2 mM ATP and oxygen-scavenging system (0.25 mg mL−1 glucose oxidase, 30 µg mL−1

catalase, 4.5 mg mL−1 glucose).

In general, small dust or debris in the solution gets pulled into the trap along with the bead.

Trapped dust interferes with motor rebinding to microtubules. To prevent this interference,

the large dust particles and aggregates of casein in the buffer were removed using a 100 nm

centrifugal filter (Millipore). Another potential issue is the stage drift during measurement,

and it was minimized with an automated drift correction system using an xyz piezo stage

(PI) and custom software.

All kinesin proteins were purified using HIS-tag and MT affinity purification after expressing

them in Rosetta bacterial cells as described earlier [89]. DK406 plasmid was procured from

Addgene (plasmid ID #129764, generously supplied by William Hancock lab). DK746 was

designed in the lab after modifying the full-length DK980, also procured from Addgene

(plasmid ID: #129762, William Hancock lab), using restriction enzyme digestion.

2.5.1.1 Binding Detection

Bead displacements in the trap registered by a position-sensitive diode (PSD; First Sensor

AG) were acquired at 3kHz using an analog-to-digital converter (ADC) card. The digitized

PSD data was smoothed with a 40 point fast Fourier transform (FFT) filter and analyzed

by custom Matlab code to score all the peaks greater than 15 nm and lasting more than 0.01

seconds (30 data points). The experimental method is fully described in [88].
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2.5.1.2 Maintaining Bead-Microtubule Separation

Autocorrelated template matching of defocused fiduciary bead immobilized on the surface

served as feedback signal to maintain a stable bead-microtubule separation. The method

was developed using an autocorrelation of a template image with real-time images of the

fiduciary beads to generate a parameter called match score (degree of matching). It is

custom-developed to study protein-protein interactions using an optical trap. To describe

it briefly, fiduciary beads were immobilized on the coverslip and an image of the bead was

recorded at 200 nm below the surface to serve as a reference library image. The key parameter

here is the match score (value = 0 for no match and 1000 for perfect match with the library

image) and when the template used is a bead in focus, this score exhibits quadratic behavior

in the vicinity of the surface. Thus, score change per nm of the focus shift is negligible when

the bead is in perfect focus. However, when a defocused bead image is used as a reference

library image, the score change/nm is as high as 1% for every 10 nm z-focus change. This

parameter was used as a feedback signal both to increment and lock the z-position at a fixed

level using an automated focus locking system developed in-house using an xyz-piezo-stage,

image grabber cards, and labVIEW. In the experiments, the distance between the trapped

bead and the Surface-attached microtubule is altered by moving the surface. In principle,

moving the surface by causes a slightly smaller change (≈12% less) in the distance between

the trapped bead and the surface, due to the mismatch in refractive indices. This has not

been corrected for in the data presented.

2.5.2 Brownian Dynamics Simulation

The simulation consists of a motor that is bound to a cargo and a microtubule. The cargo

is a three-dimensional sphere and is subject to translational and rotational diffusion. The

motor’s condition is dependent on whether an ADP molecule is bound to it and whether
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it is bound to the microtubule. Whether the motor is weakly or strongly bound to the

microtubule is dependent on whether it is bound to an ADP molecule. The transitions

through these states (Figure 2.3) are simulated using a Gillespie-style algorithm [30]. The

motor is defined by its location of attachment to the cargo and its head location. Locations

of the motor head and cargo center are calculated using the Euler-Maruyama method [49].

The microscopic binding between the motor head and microtubule follows a standard ”Doi

model” for chemical reactions [68]: when the motor heads come within binding reach of the

microtubule, it has a constant rate of binding to it; otherwise, this rate is 0. The motor

behaves as a spring, and when they are bound, they experience and exert force. When the

motor is weakly bound to the microtubule, its off-rate depends on force. ADP molecules

can also bind and unbind to the motor head at constant rates, but the ADP off-rate is

dependent on whether the motor is weakly bound to the microtubule. The equations of

motion for the cargo and motor are constructed by discretizing a set of stochastic ordinary

differential equations derived from force balance.

2.5.2.1 ADP Release Model Description

This model is three-dimensional and mesoscale. A set of stochastic ordinary differential

equations is used to describe the location of the cargo sphere and the motor that is attached

to it. The motor transitions stochastically between discrete states (Figure 2.3), and these

transitions occur as Poisson processes. The force that the motor exerts on the cargo is

modeled as a one-way spring:

F⃗m
(
a⃗, h⃗

)
=


−κm

(∣∣∣⃗h− a⃗
∣∣∣− Lm

)(
h⃗−a⃗

|⃗h−a⃗|

)
+ F⃗w

∣∣∣⃗h− a⃗
∣∣∣ > Lm

0
∣∣∣⃗h− a⃗

∣∣∣ ≤ Lm

,
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where a⃗ and h⃗ are the motor anchor and head locations, respectively, κm is the motor stiffness

constant, Lm is the motor rest length,

F⃗w =


κw

(
a⃗MT − h⃗

)
motor is weakly bound to the MT

0 motor is unbound from the MT

,

κw is the weak spring between the motor head and the microtubule, and a⃗MT is where the

motor head is weakly bound on the microtubule. There is a torque that is exerted on the

cargo:

τ⃗m
(
a⃗, h⃗, c⃗

)
=


(⃗a− c⃗)× F⃗m

(
a⃗, h⃗

)
weakly bound to MT

0 otherwise

,

where c⃗ is the cargo center location. Thus, we have ordinary differential equations (modeled

after the Langevin equation):

dc̃ (t)

dt
=

1

6πηR
F⃗m

(
a⃗ (t) , h⃗ (t)

)
+

1

6πηR
F⃗ b (t) , (2.1)

and

dθ̃ (t)

dt
=

1

8πηR3
τ⃗m

(
a⃗ (t) , h⃗ (t) , c⃗ (t)

)
+

1

8πηR3
τ⃗ b (t) , (2.2)

where η is the water viscosity, R is the cargo sphere radius, θ is the cargo orientation, and

F⃗ b and τ⃗ b are the Brownian force and torque, respectively, which are random variables with

mean 0 and variance 2kBTξc, and ξc is the drag coefficient of the cargo. According to the
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Euler-Maruyama method, a discrete formulation of Equations 2.1 and 2.2 will be:

c⃗ (tn+1) = c⃗ (tn) +
1

6πηR
F⃗m

(
a⃗ (tn) , h⃗ (tn)

)
△t

+

√
2
kBT

6πηR
△tG⃗c (tn)

and

θ⃗ (tn+1) = θ⃗ (tn) +
1

8πηR3
τ⃗m

(
a⃗ (tn) , h⃗ (tn) , c⃗ (tn)

)
△t

+

√
2

kBT

8πηR3
△tG⃗θ (tn) ,

where n is the current time step, and G⃗c and G⃗θ are mutually uncorrelated vectors of

independent and identically distributed (i.i.d.) Gaussian random variables with mean 0 and

variance 1. The cargo cannot phase through the microtubule. Since we are simulating optical

trap experiments, we add a force from the trap on the cargo:

c⃗ (tn+1) = c⃗ (tn) + κt (c⃗ (1)− c⃗ (tn)) (2.3)

+
1

6πηR
F⃗m

(
a⃗ (tn) , h⃗ (tn)

)
△t+

√
2
kBT

6πηR
△tG⃗c (tn) , (2.4)

where κt is the trap stiffness. We can now determine the motor anchor location by inputting

the cargo axis of rotation θ⃗ (tn+1)− θ⃗ (tn) and this axis’ length as the magnitude of rotation

(in radians) into a rotation matrix M (tn):

a⃗ (tn+1) = M (tn) (⃗a (tn)− c⃗ (tn)) + c⃗ (tn) + (c⃗ (tn+1)− c⃗ (tn)) . (2.5)
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Similarly to Equations 2.1 and 2.2, we discretize ordinary differential equations for the motor

head position:

h⃗ (tn+1) = h⃗ (tn) +
1

ξm
F⃗m△t+

√
2DmG⃗m, (2.6)

where ξm = kBT/Dm is the motor drag coefficient, Dm is the motor head diffusion con-

stant, and G⃗m is the uncorrelated i.i.d. Gaussian random variable of mean 0 and variance

1. The motor head cannot phase through the microtubule and the cargo. Since in exper-

iments, the microtubule lies on the coverslip surface, the motor head cannot diffuse under

the microtubule. A list of all variables used are described in Table 2.2.

Table 2.2: List of Variables.

Variable Description

F⃗m Force from motor head

a⃗ Position on cargo where motor is anchored

h⃗ Position of motor head

F⃗w Force from weak bond between the motor and the microtubule

a⃗MT Position on microtubule where motor is weakly bound

τ⃗m Torque that motor exerts on cargo

c⃗ Position of cargo center

θ⃗ Cargo rotation

tn Time at the nth time step

F⃗ b Brownian force

τ⃗ b Brownian torque

G⃗c, G⃗θ and G⃗m Gaussian random variables

We also considered an extended model that approximately accounts for the near-wall dif-

fusivity hindrance from hydrodynamics [31, 15]. In lieu of fully incorporating the detailed
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hydrodynamics, an undertaking outside the scope of this work [106, 85], we employ the clas-

sical Brenner correction formulae [31, 59]. As an approximation based on the assumption

that the z -direction motion dominates the binding time, we rescale the entire rotational

and translation drag coefficients of the cargo by the analytical perpendicular z -dependent

rotational and translational diffusivities. Specifically, we rescale η in the translational up-

date eqn. (2.4) by (1 − (9/8)(R/z) + (1/8)(R/z)3)−1 and the translational η in eqn. (??)

by (1 − (5/16)(R/z)3 + (15/256)(R/z)6)−1 where R is the radius of the cargo and z is the

distance from the cover slip to the center of the cargo. Notably, this neglects the asymmetry

in perpendicular and parallel directions, and leave these details to future work.

Transitions between each motor state (Figure 2.3) are modeled as Poisson processes, with

rates as follows:

λADP
off =


kADP
off ADP-bound and MT-unbound

kADP,Fast
off ADP-bound and weakly bound to MT

0 motor is ADP-unbound

(2.7)

λADP
on =


kADP
on motor is ADP-unbound

0 motor is ADP-bound

(2.8)

λMT
on =


kMT
on unbound from MT and within dMT

kADP,Fast
off motor is weakly bound to microtubule

0 motor is not within dMT

, (2.9)
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where dMT is the binding distance between the motor head and the microtubule, and

λMT
off =


kMT
off · expFw/F d weakly bound to MT

0 motor is MT-unbound

, (2.10)

where F d is the motor’s critical detachment force. Parameter values are listed in Tables 2.1

and 2.3. The particular choice of dMT = 5nm was made based on the approximate size of

kinesin-1, but varying this parameter has little effect on the resulting fit (cumulative absolute

fitting errors were at most 0.01s different), shown in Figure A.11.

Table 2.3: Measured parameters. ∗Unmeasured estimate. †Measured estimate. The motor
length includes the antibody that binds the motor to the cargo (about 10 nm).

Parameter Description Value

κm Motor stiffness (pN/nm) [51] 0.3200

κt Trap stiffness (pN/nm)† [0.045 0.045 0.03]

Lm Motor length (nm)† Varies

η Fluid Viscosity (pN · s/nm2) 1e-05

R Radius of cargo bead (nm) 280

kbT Boltmann constant (pN · nm) 4.114

dMT MT Binding range (nm)∗ 5

F d Critical detachment force (pN) [54] 4

2.5.2.2 Numerical Simulation

The model is simulated forward in time. Time steps are either equal to dtmax, the maxi-

mum time step the system can undergo, or they are determined through the Gillespie-style

algorithm if the next motor state-change event (i.e., bound or unbound to microtubule,
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ADP released or unreleased), also determined by the Gillespie-style algorithm, occurs before

tn + dtmax. An appropriate dtmax (0.004) was chosen with a convergence test (Figure A.8).

To implement the Gillespie-style algorithm, exponential random variables from distributions

with means set by each Poisson (Equations 2.7, 2.8, 2.9 and 2.10) were generated at each

time step. After the Gillespie-style algorithm determines the next event and when it occurs,

the time step is used to determine the locations of the cargo center and the motor’s head

and anchor (Equations 2.4, 2.5 and 2.6).

Table 2.4: Hyperparameters for priors used in estimated posterior densities, all taken to be
lognormal distributions.

Parameter Mean Standard Deviation

kADP
off 10−2 0.001

kADP
on 103 100

kADP,Fast
off 100.3 1

kMT
on 101.7 100

kMT
off 10−1 0.01

Dm 103.3 100

κw 10−2.7 0.001

To mimic experimental practices, simulations are allowed to simulate 100 seconds. If the

motor does not strongly bind to the microtubule during this time, the simulation starts over.

This method is similar to the experiment, where the assay is run for 100 seconds screening

for a binding event to occur before trapping a different cargo. The simulation is written in

MATLAB, and takes approximately 0.1 seconds to simulate 1 second of the system. Example

snapshots of the simulation are shown in (Figure A.1).
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2.5.3 Model Fitting, Cross-Validation

The model is fit through two distinct approximate inference procedures, the reconciliation

of which serves as a validation for the approximations. The first procedure is a Bayesian

optimization procedure [1] to obtain a single point estimate for the parameter values. The

loss function is the squared distance over the mean binding times (and therefore neglects

the full distributional information) and the estimated mean binding time over S = 1000

simulations, and these estimates are used in Figure 2.2 and Table 2.1.

To obtain uncertainty quantification seen in Figure 2.4, we also employ a sequential Monte

Carlo approximate Bayesian computation approach [103]. These techniques are far slower

than the optimization procedure and require the specification of a prior distribution for each

parameter, but provide some notion of uncertainty quantification, and were used to generate

Figure 2.4 with some data withheld. That is, because of the heavy computation expense,

only the shortest motor at 0 nm average distance between the cargo and microtubule, the

mid-length motor at 40 nm average distance, and the longest motor at 80 nm average dis-

tance were used in the fitting. The maximum a posteriori (MAP) estimates from this latter

procedure closely agree those of the first procedure, supporting the validity of both. Further-

more, in Table A.1, we show the inference procedures successfully infer rates from synthetic

data. Lognormal priors are chosen for all parameters, and hyperparameters are shown in

Table 2.4. Hyperparameters were chosen based on the range of values reported in the liter-

ature for each parameter when available. Otherwise, they were chosen to be approximately

uninformative with large standard deviations. Initially, 100 simulations estimate the bind-

ing times in the model, and weights in the sequential Monte Carlo algorithm are defined

as wi = π/(
∑

wi−1Ki), where Ki is the perturbation kernel for the ith sequence, i > 1.

We use a Gaussian distribution for K. These new samples are then used to simulate more

mean binding times until 100 samples are generated resulting in a relative error lower than

1.8. Eight more sequences follow in this same manner, each time the relative error threshold
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decreases by 0.2. A kernel density estimator was then applied to the resulting samples shown

in Figure 2.4.

The cross-validation procedure in Figure 2.2 was implemented by fitting the models using the

aforementioned point estimate optimization scheme with data withheld, and then test error

defined to be N−1
∑N

i=1(ti− t̂i)/ti, a percentage error over the test scenarios. This procedure

is validated in Figure A.9 showing cross-validation successfully identifying the correct model

when tested against synthetic data.

2.5.4 Software Availability

MATLAB code to reproduce our results (compatible with version R2020a) is available at

https://github.com/trininguyen/MotorBinding.
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Chapter 3

Computational modeling reveals a

catch-and-guide interaction between

kinesin-1 and tubulin C terminal tails

3.1 Abstract

Protein-protein interactions make up a very large bulk of cellular activity; however, they are

still not very well-understood. Each of these interactions vary in their physical configurations

(e.g. average distance from each other) and their tunable properties (e.g. reaction rates),

which make them very difficult to study. One example of these interactions are the pro-

teins on the microtubule surface interacting with motor proteins to control traffic on these

filaments. Previous research has found that tubulin C terminal tails on the microtubule

affect intracellular transport; specifically, cleaving these tails from the microtubule results in

both shorter motor runlengths and slower velocities, suggesting that they assist with motor

processivity and velocity on the microtubule, but it is not clear how this assistance happens.
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In this work, we explore the different stages in the kinesin motor step cycle in which the

tails can assist with both motor runlength and velocity. We consider three possible models:

catching detaching motors, guiding the motor head’s search for the next microtubule bind-

ing site, and stimulating ADP release. Using stochastic simulations and model fitting, we

find that guiding the motor head’s search for the next microtubule binding site is the most

probable model of the tails’ assistance, as this model fits all of the experimental data used,

whereas the other two models cannot be fitted to the data with reasonable parameters. This

work provides insight into motor-CTT interactions that currently cannot be observed in ex-

periments. Understanding this interaction is essential in understanding other integral details

of transport, such as post-translational modifications on CTTs and the tubulin code that

regulates microtubule traffic. By fully understanding the mechanisms by which all of the

many components in transport use to interact with each other, we can further understand

the requirements of a healthy cell and advance cell therapies accordingly.

3.2 Introduction

Numerous protein-protein interactions take place within cells, with each interaction subject

to being modulated by the cell itself (e.g. via post-translational modifications and protein

concentrations) [111]. These modulations increase the number of potential reactions and pro-

cesses in the cell, making understanding these interactions difficult, and even with specific

measurements of these interactions, it is difficult to integrate the complexity into predictive

models. One such interaction involves intracellular cargoes, such as lipid droplets or mito-

chondria, engaging with microtubules via motor proteins to be transported to their needed

locations in a timely manner [33]. Efficient intracellular transport is vital for cellular func-

tion. Motor proteins, such as kinesin, facilitate this transport by binding to the cargoes and

transporting them along microtubules [114]. However, this is no simple feat. The traffic on
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microtubules is fairly complicated, as there are different types of motor proteins that travel

in opposing directions. In addition to these motor proteins, other microtubule-associated

proteins, such as tau and MAP-7, take up space on the microtubule surface, and motors

must carefully navigate through this crowded traffic. The different cargoes that motor pro-

teins transport also differ in shapes and sizes, adding to the highly complex traffic. Due to

this complexity, a holistic understanding of transport is still yet to be acheived. The effects

of understanding this process extends outside of this process itself. Because this system plays

an important role in cell biology with combinatorial complexity and it is manipulatable via

single-molecule studies [10, 51, 79, 98, 101, 104], the intracellular transport system offers a

valuable model for studying protein-protein interactions as well.

Despite the intense complexity on microtubules, the cell can impressively regulate motor

protein traffic using the ”tubulin code”, in which post-translational modifications are per-

formed on specific areas of the microtubule, affecting the recruitment of proteins at specific

moments [46] or areas of the cell [39, 52]. With this control, the cell can transport several

different cargoes simultaneously. Most of the post-translational modifications are made on

tubulin C terminal tails (CTTs), which extend from each tubulin monomer on the micro-

tubule [80]. The role of CTTs, with or without modifications, on microtubules is unclear,

mostly because the affect of these tails vary greatly between different motors they interact

with and whether the tail came from an α or β tubulin monomer [94, 61], and this variation

makes understanding CTTs difficult. But, they are part of the cell’s “tubulin code”, which

has been evident in experimental results that show their affect on transport [24]. For ex-

ample, an experimental study from [102] found that cleaving the CTTs from microtubules

results in shorter processivity and slower velocity for the motor protein kinesin-1, suggesting

that CTTs (without any modifications) can modulate the kinetics of at least some motor

proteins. However, the mechanism by which CTTs can aid these motors on the microtubule

remains unknown, since it is difficult to directly observe the mechanisms that control motor

stepping. While experiments can measure how far and fast motors walk on the microtubule,
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they cannot reveal the different conformational states the motor undergo in order to make

stepping possible. This challenge must be overcome in order to further our understanding of

the interactions between a CTT and a motor, which we can then use to understand the CTT

post-translational modification effects on transport and the functionings of a healthy cell.

Modeling and computational simulation may by helpful in overcoming this challenge and pro-

viding insight into CTTs where experiments cannot, specifically by integrating mathematical

models with existing knowledge of these motor states.

Here, we use a computational approach to explore possible models of the contribution CTTs

can provide to kinesin-1’s processivity (Figure 3.1). Specifically, we are interested in a model

that can reproduce CTTs lengthening motor processivity and speeding up velocity, with a

reasonable parameter regime. Deriving such a model is not straightforward, as there are

models that suggest CTTs lengthen motor processivity but slow down its velocity, or that

they make motors faster but fall off the microtubule sooner. There are also models that can

explain both results, but with an unrealistic parameter regime. We consider three different

models in hopes that one could satisfy all of those conditions: (1) CTTs catch motors

that unbind from the microtubule, (2) they guide the motor head’s diffusive search for the

next microtubule binding site during stepping, and (3) they stimulate ADP-release similarly

to microtubule-stimulated ADP release [104]. Each of these models, at first thought, seem

equally plausible to explain the perplexing result in [102], as they seem to satisfy at least one

of our three modeling requirements. To carefully explore these models, we computationally

simulate these models by expressing them as Markov chain models and fitting their unknown

parameters to experimental data from [102]. After this analysis, we find that the “catch”

model could not explain both processivity and velocity experimental data simultaneously,

since the model could theoretically result in an extension of runlengths, but the mechanism

would slow down motor stepping, instead of speeding it up as seen in experiments. We

also find that the third model could not predict processivity on cleaved microtubules with

reasonable parameters. However, the second model matches all of the available observed
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data, which makes this model a strong candidate that can explain the role of CTTs. Not

only can this model explain the result from [102], but it may also explain why CTTs are

positioned close to binding sites on the microtubule [46].

Mean Velocity
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 these CTT results?

μ = 530 nm/s
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Processivity & Velocity Distributions
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Figure 3.1: Possible CTT Mechanisms for Motor Processivity Assistance. Left: The ideal
model that can explain how CTTs can assist motors on microtubules will need to explain
all of the displayed data, with physiologically feasible parameters. Right: Possible models
explored that may explain the data. First model: CTTs catch motors as they unbind from
the microtubule and pull them back. Second model: One of the motor’s head is dangling
as it searches for a microtubule binding site to take the next step. CTTs help guide this
dangling head to that next binding site. Third model: CTTs speed up ADP release.
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3.3 Results

3.3.1 By catching unbound motors, CTTs can extend their run-

lengths on the microtubule, but would also slow them down

in the process.

We simulate a motor (not bound to any cargo) walking on the microtubule using a Gillespie

algorithm [30]. This simulation includes the model of the kinesin-1 step-cycle in existing

literature [69], so ADP, ATP, and phosphate release and binding are all involved (Figure 3.2).

This general model of kinesin stepping is as follows: one of the motor’s head strongly binds

to the microtubule when it comes into contact with the microtubule and ADP is released

from that head. ATP then binds to this head, which results in a change of orientation in

which the other head now switches forward. This head now needs to come into contact

with the next binding site on the microtubule and await ADP release to finish the motor’s

step. If phosphate release on the bound head happens before ADP is released from the front

dangling head, then the motor becomes unbound. This model does not include interactions

between a CTT and the motor. To consider CTTs assisting the motor, we included another

state (State 9 in Figure 3.3a) to this model, where it is possible for a CTT to catch the

motor as it unbinds from the microtubule and hold it until it can rebind to the microtubule.

Most of the parameters were taken from estimates in the existing literature (Table 3.1). The

unknown parameters of this model were then fitted to the experimental data from [102],

which included distributions of runlength and velocity of motors on wildtype microtubules

and fold comparisons of mean runlength and velocity of motors on microtubules with CTTs

cleaved compared to motors on wildtype microtubules. With the addition of the “caught

state”, State 9, we hoped that this catching mechanism would allow the motor to walk on the

microtubule further than when CTTs are absent, as seen in [102], and indeed we were able to

fit this model to the experimental processivity results (Figure 3.3b), and there does seem to
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be a processivity advantage that CTTs provide to motors (Figure 3.3c). Thus, by catching

motors, CTTs can decrease unbinding events and the motors can stay on the microtubules

longer, resulting in longer runlengths. However, the model’s velocity did not match that of

the experimental data (Figure 3.3d), since there is an additional state in the model that does

not provide any method for faster runs. Thus, it is not likely that CTTs can help motors by

only catching them before they unbind from the microtubule.

3.3.2 Guiding dangling motor heads close to the next microtubule

binding site results in an increase in both runlength and

velocity.

Since the catching mechanism does allow for longer processivity, we opted to retain it in

the next model that we explored. To speed up velocity, we predict that CTTs interact with

the motor earlier on in the kinesin step-cycle, while the motor is still very much bound to

the microtubule. Specifically, when one motor head is bound to the microtubule, the other

is unbound and searching for the next binding site to take its next step. In this unbound

position, the motor may bind to a nearby CTT, and since CTTs are very near microtubule

binding sites [46], the CTT could speed up this dangling head’s diffusive search for the next

binding site by guiding this head to that site. Figure 3.4a shows the different states of

this model, where a CTT binds to the dangling motor head in State 9 and guides it to the

microtubule in State 7. A speed up in velocity would require for the transitions from State

6 to 9 then 7 be overall faster than the transitions from 6 to 7. The catching mechanism

from Figure 3.3 is now in State 10, where if the bound head becomes unbound, the CTT

still holds on to the motor. However, this model does not need to solely depend on State

10 to extend runlengths, as the addition of State 9 allows for another possible state the

motor can enter from State 6 that is not back to State 2 (and subsequently, detachment
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Figure 3.2: Model of Kinesin Stepping in Existing Literature. Current models of stepping
do not consider the motor’s interaction with the CTT. The motor can strongly bind to the
microtubule when ADP is released from the microtubule-bound head (State 3) [69]. ATP
binding to this head results in the trailing head (blue head) switching forward (State 5).
ADP-release from this head results in another strong binding to the microtubule (State 8),
which allows the motor to finish taking one step.
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Figure 3.3: Catching motors results in longer run lengths but slower velocities. (a) This
model is similar to Figure 3.2, with an additional state (State 9) that considers the CTT
catching unbound motors. The model can recapture observed runlengths (b) but fails to
do so for velocity (d). n = 4000 simulations using parameters from Table 3.1. Red curves
are wildtype (with CTTs) data from [102]. (c) Mean runlengths for the model in (a) (with
CTTs) was taken from 4000 simulations. Mean run lengths from the model in Figure 3.2
(with CTTs cleaved from the microtubule) were then compared to these means. n = 3 ±
SEM.
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to State 1). From Figure 3.4f, we can see that this model indeed does not enter State 10

much, and thus does not rely on it to fit to observed runlengths. We also considered a model

that considers only the guiding mechanism without any catching assistance (Figure B.1),

and this model’s predictive power was comparable to the Catch+Guide model, with no

significant difference in the predictive errors. The Catch+Guide model was able to match

both the experimental data’s runlength and velocity (Figure 3.4b and c). In addition, the

fold differences in runlength and velocity between setups with CTTs and those with cleaved

CTTs also match those that were previously observed [102] (Figure 3.4d and e). Thus,

CTTs acting as a guide for dangling motor heads to the next microtubule binding site is a

compelling and likely mechanism.

3.3.3 The model that considers CTTs stimulating ADP release

cannot explain experimental data with reasonable parame-

ters.

Previous studies have found that when both kinesin motor heads bind to the microtubule, the

tubulin from the microtubule stimulates ADP-release at a faster rate of ∼120 s−1 [37, 100].

Since CTTs are essentially made up of tubulin, we wondered if the CTT could also stimulate

ADP release from the motor heads. To explore the possibility of this mechanism, we allowed

in our simulations for ADP-release to occur at a stimulated rate if the motor binds to the

CTT, as well as when it binds to the microtubule (Figure 3.5a). Since the previously esti-

mated release rate of ∼120 s−1 was obtained from experiments using wild type microtubules

(with CTTs), the release rate for microtubules with cleaved CTTs may be slower to result

in slower motor velocities. Thus, to evaluate the predictive power of this model, we first

fitted the unknown motor-microtubule binding rate, motor-CTT binding rate, and motor-

CTT unbinding rate to the wild type processivity and velocity data, using a fixed stimulated
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Figure 3.4: CTTs guiding dangling motor heads to the next microtubule binding site model
matches both experimental runlengths and velocities (Continued on the following page.)
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Figure 3.4: (a) A CTT binds to the unbound motor head while the other motor head is
bound to the microtubule (State 9). The CTT can then guide it to the next microtubule
binding site, ideally speeding up its search for this site. The catching mechanism is still
considered in this model (State 10). (b and c) Experimentally observed runlengths (red
curve, b) and velocities (c) [102] over computationally simulated runlengths and velocities
(blue bars) from motors on wildtype microtubules (with CTTs). n = 4000 simulations. (d
and e) Runlengths and velocities presented as ratios over that of the setup with CTTs, as
mean ± SEM, n = 3 runs of 4000 simulations each. Third bars are ratios of motors on
cleaved microtubules data over motors on wild type microtubules from [102]. (f) Probability
of a motor being in a certain state in the model at a given time. States 8 and 4 are the same
and thus grouped together under State 4.

ADP-release rate of ∼120 s−1. We then fitted the unknown slower stimulated ADP-release

rate for cleaved microtubules to the cleaved microtubule experimental velocity data, with

fixed values for the motor-microtubule and -CTT binding and motor-CTT unbinding rates,

obtained from the previous fit with the wild type data. To obtain reasonable fits with the

experimental velocity, this slowed-down rate had to be decreased by about 50% (Table 3.1).

With these fitted values, we predicted the cleaved microtubule experimental processivity

data (Figure 3.5b). This prediction resulted in no decrease in runlength, which does not

match the experimental data. We then tried to slow down the unloaded (one-headed) stimu-

lated ADP-release rate that occurs from States 2 to 1 in the cleaved microtubule simulations

as well. Since the fitted loaded rate decreased by about 50%, we lowered the unloaded rate

to the same magnitude. By doing so, we retained the match in velocity, so the loaded rate

does not affect velocity. We also observed a reduction in processivity; however, the reduction

was not enough to match the experimental data. Thus, it is not likely that CTTs can assist

motors solely by stimulating ADP-release.

3.4 Discussion

Previous work has indicated that CTTs help extend kinesin-1 processivity and quicken its

velocity. Our computational results ruled out some possible models of the CTTs assisting
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Figure 3.5: CTTs stimulating ADP release model cannot explain data with reasonable pa-
rameters. (a) Diagram of model. (b) Fitted model results does not match experimental
data, even when the unloaded ADP-release rate from State 2 was adjusted.
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motors on the microtubule. The catching model and the ADP-release model could only fit

to either experimental processivity or velocity data, but they could not fit both. However,

simulating CTTs guiding dangling motor heads to their next microtubule binding site al-

lowed for successful fitting to all experimental data used. This model could also explain

experimental results from other studies; for example, the lack of guiding assistance from the

CTTs could explain the result in [112], in which the authors have found that cleaving the

CTTs increases backstepping, which may be more likely to happen without the CTT pulling

the motor head forward. Thus, we believe this model can explain at least partially the role

of CTTs on microtubules.

The fitted parameters from our models provide further support of the CTT-guiding model

(Table 3.1). For example, extremely high rates had to be utilized to allow the CTT-catch

model to fit experimental processivity data; however, despite the high motor-microtubule

on-rate, the velocity predicted by this model is still much lower than the observed data.

Theoretically, the parameters in the ADP model can be tuned further to result in a closer

fit to the experimental data; however, we do not believe the extent of the tuning is phys-

iologically feasible. Specifically, we believe the unloaded ADP-release rate in the cleaved

microtubule case should be decreased the same magnitude as the loaded rate. We believe we

chose a fairly low motor-microtubule on-rate, since inference shows that the possible values

for this parameter can be high for this model to fit the experimental velocity (Figure B.2).

In contrast, the fitted parameters from the CTT-guiding model are more reasonable and not

extreme.

While the relationship between motor proteins and microtubules has been extensively stud-

ied, much is still unknown about the role of CTTs. Understanding the mechanisms that

CTTs use in intracellular transport will provide insight into post-translational modifications

made on the microtubule as part of the tubulin code [46]. Many studies are currently focused

on attempting to understand these post-translational modifications and their impact on a
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healthy cell [14, 121, 5, 118], and most of these modifications occur on CTTs [46]. There-

fore, to fully understand the impact of these modifications, it first must be understood how

CTTs behave without any modifications. Specifically, more experiments need to be con-

ducted to observe CTT behavior. For example, an experiment can confirm our CTT-guiding

model, perhaps by measuring the movement of the unbound leading motor head of motors

on wildtype microtubules vs. cleaved microtubules via light-scattering methods [47]. In this

experiment, a result of the motor head’s position concentrated in a specific area on wild-

type microtubules, and the motor head’s position scattered on cleaved microtubules, would

validate our model. Even without experiments, we can still use computational methods to

eliminate other CTTs models, which further supports the possibility of our CTT-guiding

model.

It is important to note that we believe our model applies specifically to kinesin-1, in which

this kinesin’s positively-charged areas on its motor domains have a weak attraction to the

negatively-charged CTTs [109]. Namely, the parameter regime that resulted from our model

fitting is specific to kinesin-1. A different computational study for dynein has posited a

similar model in which the CTT guides dynein motor heads to the microtubule [108]. Other

studies have found that CTTs (without any post-translational modifications) may not assist

other motors [102, 61], possibly also due to electrostatic incompatibility [34], but post-

translational modifications can change the charge of the CTTs, controlling how the CTTs

can affect motor processivity. Although CTTs may not assist these motors, their absence do

have an effect on the motors [102], and the mechanism for these effects are not understood.

Future studies can use our approach of combining computational models of processivity and

velocity measurements with the motor stepping cycle to pinpoint where CTTs may influence

motor behavior.

Altogether, at first thought, each of our explored models seem very plausible in explaining

the role of CTTs. Using theory, we can take a closer look at these models and eliminate
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those that cannot be justified statistically. Our remaining model can be confirmed through

experiment, making a combined theoretical-experimental approach very effective in studying

cellular behavior.

3.5 Methods

3.5.1 Simulation

We simulate an unbound kinesin-1 motor diffusing to a microtubule, binding to it, and

walking on it. Transitions between each state are modeled as Poisson processes, with rates

from Table 3.1. These transitions are simulated using a Gillespie algorithm [30]. At each

time step, the time to the next step is computed as

∆t =
1∑
ri

· ln 1

w1

,

where r is the rate of the ith reaction and w1 is a random number between 0 and 1. To

determine which reaction will occur at t+∆t, we find the smallest integer i that satisfies

i∑
i′=1

r′i > w2

∑
i

ri,

where w2 is another random number between 0 and 1. We take runlength to be the entire

length the motor walks on the microtubule until it falls off completely from the microtubule

(the motor unbinds from the microtubule and a CTT). We take velocity to be this runlength

over the total time the motor was on the microtubule. The simulation is written in Matlab.
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Table 3.1: Parameters Used in Simulations. MT: microtubule, WT: wildtype

Parameter (s−1) Catch Catch &
Guide

Stimulated
ADP-release

States, Citation

Motor-MT on-
rate

1.8e4 410 3973 1 to 2, 3 to 4, 6 to 7,
Fitted

Motor-MT off-
rate

0.7 0.7 0.7 2 to 1, 4 to 3, 7 to 6 [10,
116, 123, 62]

Motor-CTT on-
rate

2.6e6 767 437 2 to 9 in Catch, 6 to 9 in
Catch+Guide and ADP,
11 to 10 in ADP, Fitted

Motor-CTT off-
rate

548 76 370 9 to 1 in Catch, 9
to 6 and 10 to 1 in
Catch+Guide, 9 to 6
and 10 to 11 in ADP,
Fitted

Motor-MT
CTT-assisted
on-rate

- 510 - 9 to 7 in Catch+Guide,
Fitted

Loaded ADP
off-rate

120 120 120 for WT; 50
for cleaved

7 to 8, 9 to 10 in ADP,
Fitted for ADP [37, 100]

Unloaded ADP
off-rate

2 2 2 for WT; 0.8
for cleaved

2 to 3, Fitted for ADP
[37, 100]

Phosphate on-
rate

0.001 0.001 0.001 6 to 5 [95]

Phosphate off-
rate

100 100 100 6 to 2 [19]

ATP on-rate 4000 4000 4000 3 to 2, 8 to 7, 10 to 9 in
ADP [19]

ATP on-rate 100 100 100 3 to 5, 4 to 5 [19]

ATP hydrolysis
rate

200 200 200 5 to 6 [19]
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3.5.2 Model Fitting

To infer the parameters of our models, we fit all models to experimental data from [102] using

a simple approximate Bayesian computation algorithm [103] and selecting the parameters

that resulted in the smallest absolute error (maximum a posteriori estimate). Uniform priors

were used. The available data consisted of processivity mean and variance, velocity mean

and variance, and fold comparisons of the cleaved microtubule cases for both processivity

and velocity means. The cross-validation analysis (Figure B.1) was performed similarly, but

only using the velocity data for training and subsequently the processivity data for testing.

The simple approximate Bayesian computation algorithm is as follows:

while n ≤ N do

Sample θ∗ from prior π(θ)

for i = 1 to N do

Determine predicted runlengths and velocities using θ∗

end for

Calculate mean and variance of predicted runlengths and velocities

Calculate absolute error between predicted and experimental values

end while

Take θ∗ that resulted in the smallest error.

To produce Figure B.2, the above algorithm was used on the ADP-release model and the

parameters that resulted in the lowest 1% absolute error were chosen. Only experimental

data from the wildtype microtubules were used.
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Chapter 4

Summary and Conclusions

By studying the motor interacting with the microtubule and CTTs, we not only gain more

insight into the complex intracellular transport system, but we also learn how we may study

other similar complex biological systems. Specifically, this dissertation provides examples

of how we may use computational models to study mechanisms that currently cannot be

observed through experiments. We have presented multiple mechanisms in which the motor

may use to perform effective intracellular transport on the microtubule, and we have provided

thorough analyses of the plausibility of each of these mechanisms. The motor’s involvement

in intracellular transport is essential for healthy cellular function; therefore, a thorough

understand of the motor’s interactions with the microtubule is pertinent. The motor mainly

interacts with the microtubule in three ways, two of which are binding (discussed in Chapter

2) and stepping (discussed in Chapter 3). In both chapters, we consider models that vary

in mechanisms and number of states within a model, and the race of reactions in which

these mechanisms may occur. These interactions occur at a very microscopic scale and thus

are very difficult to observe via experiments. However, we have shown that by combining

the data that we can collect with theoretical and computational analyses, we can deepen

our understanding of these complicated and miniscule systems. Thus, we are presenting a
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holistic analysis on a biological system and an example of how other complex systems can

also be studied.

4.1 Complex motor-microtuble binding

The motor binding to the microtubule is arguably the most important process in intracellular

transport since it is the very first process of transport. Of the three major processes of

transport (binding, walking, and unbinding), binding happens to be the most difficult process

to understand and observe, mainly due to the difficulty in disentangling all of the mechanisms

that occur immediately before and after binding. Specifically, it is difficult to pinpoint the

exact moment that binding occurs. It was previously assumed that binding occurs very

simply and that the only significant mechanism involved in binding is the motor diffusing

to the microtubule. However, our single-molecule measurements have shown that simple

diffusion is not a likely model for binding, especially because simple diffusion cannot explain

the observed binding delay that occurs when the motor does not need much diffusion to come

into contact with the microtubule. This finding motivated us to rethink the binding process

and consider whether there are other subprocesses that may be rate-limiting and significant.

While we presented compelling support for the accelerated ADP-release rate model, we

believe the more significant result from this work is that motor-microtubule binding is not

simple and is a multi-step process.

We approached this problem by electing to control the spacing between the cargo and mi-

crotubule in vitro. In vivo, this spacing is also varied depending on the proteins covering the

microtubule surface that the cargo is diffusing towards. Some proteins will pull the cargo

closer to the microtubule [4], and others will push the cargo away [56]. With our results,

we have predicted the time scales at which the cargo will bind to the microtubule in each

of these cases. These estimated time scales give insight into the results of the microtubule’s
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tubulin code, and perhaps the goal and purpose of this code. The effects of spacing between

two interacting proteins is not unique to the intracellular transport system. Cell-signaling-

involved proteins that need to be recruited to tethered proteins on the cell surface also face

the problem of having their targeted binding sites obscured by the crowding effects of neigh-

boring proteins [32]. The methods used in this work could be applied to study the complex

traffic system at the cell surface as well.

4.2 CTT assistance with physical search during step-

ping

Once the motor successfully binds to the microtubule, it must walk on it for several steps

(about 250 steps for kinesin-1 [2]) in order to transport the cargo to its needed destination.

With extreme traffic on the microtubule, how can the motor succeed in making so many steps

with the odds stacked against it? Experimental results suggested that CTTs may provide

assistance to these motors; however, these results are not straightforward. According to

these results, the tails can help the motor stay on the microtubule and allow to it transport

its cargo in a very timely manner. It is not obvious how the tails achieve this feat. For

example, we were initially very confident in the potential of the Catching model that we

explored. In this model, CTTs definitely keep the motor on the microtubule for longer

runlengths. However, as seen from Chapter 3, the model could not explain CTTs speeding

up the motors. Thus, this problem was not trivial.

The difficulty in not being able to observe the CTT-motor interaction directly in experiments

and the non-trivial manner of the problem makes modeling an ideal method to study CTTs.

Some CTT interactions cannot be observed in experiments, and the interactions that can be

observed require methods that are very energy-, material-, and time-consuming, and it is not
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obvious which experimental methods are best to study these tails. It is very possible that

after months of experiments, it would finally be apparent that the results are inconclusive.

There is also the issue that a hypothesis may prove itself to fail in an experiment, and so more

experiments need to be conducted to test other hypotheses. However, using computational

methods can speed up the process of exploring different hypotheses. In addition, with the

predictions from the models in our work, experimentalists can now more carefully select

methods that would verify our models. Further modeling also needs to be completed to

support our model, such as determining the strength and stiffness the CTT requires in order

to pull on the motor head. This quantification would provide details into the CTT structure

that are currently unknown. Therefore, computational methods must be combined with

experimental methods to efficiently study these complex systems.

4.3 Conclusions

While intracellular transport has been extensively studied, this dissertation focuses on trans-

port processes that involve details and steps that remain obscure to scientists. This has been

accomplished by taking advantage of computational methods and combining them with ex-

perimental methods. Both methods alone have their weaknesses: there are limitations to

what can be observed through experiments, and the insights gained from modeling remain as

hypotheses until they can be proven and/or observed through experiments. However, if we

attempt to model the limited experimental data, and subsequently test those models with

more experiments, we can efficiently study complex biological processes.
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[60] C. Leduc, O. Campàs, K. B. Zeldovich, A. Roux, P. Jolimaitre, L. Bourel-Bonnet,
B. Goud, J.-F. Joanny, P. Bassereau, and J. Prost. Cooperative extraction of membrane
nanotubes by molecular motors. Proceedings of the National Academy of Sciences,
2004.

[61] D. Lessard, O. Zinder, T. Hotta, and K. Verhey. Polyglutamylation of tubulin’s c-
terminal tail controls pausing and motility of kinesin-3 fmaily member kif1a. Journal
of Biological Chemistry, 2019.

[62] Q. Li, S. King, A. Gopinathan, and J. Xu. Quantitative determination of the proba-
bility of multiple-motor transport in bead-based assays. Biophysical Journal, 2016.

[63] Q. Li, K.-F. Tseng, S. J. King, W. Qiu, and J. Xu. A fluid membrane enhances the
velocity of cargo transport by small teams of kinesin-1. Biophysical Journal, 2018.

[64] W. Liang, Q. Li, K. Faysal, S. King, A. Gopinathan, and J. Xu. Microtubule defects
influence kinesin-based transport in vitro. Biophysical Journal, 2016.

[65] J. Liepe, P. Kirk, S. Filippi, T. Toni, C. P. Barnes, and M. P. Stumpf. A framework for
parameter estimation and model selection from experimental data in systems biology
using approximate bayesian computation. Nature protocols, 2014.

[66] J.-M. Lueckmann, J. Boelts, D. Greenberg, P. Goncalves, and J. Macke. Benchmarking
simulation-based inference. In International conference on artificial intelligence and
statistics, 2021.

[67] L. Mabonga and A. Kappo. Protein-protein interaction modulators: advances, succeses
and remaining challenges. Biophysical Reviews, 2019.

72



[68] S. Marbach and C. E. Miles. Coarse-grained dynamics of transiently bound fast linkers.
The Journal of Chemical Physics, 2023.

[69] K. Mickolajczyk, N. Deffenbaugh, J. Ortega Arroyo, and W. Hancock. Kinetics of
nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle. Proceed-
ings of the National Academy of Sciences, 2015.

[70] H. Miki, Y. Okada, and N. Hirokawa. Analysis of the kinesin superfamily: insights
into structure and function. Trends in Cell Biology, 2005.

[71] C. Miles and J. Keener. Bidirectionality from cargo thermal fluctuations in motor-
mediated transport. Journal of Theoretical Biology, 2017.

[72] C. Miles, S. Lawley, and J. Keener. Analysis of nonprocessive molecular motor trans-
port using renewal reward theory. Society for Industrial and Applied Mathematicians
Journal on Applied Mathematics, 2018.

[73] B. Milic, J. Andreasson, W. Hancock, and S. Block. Kinesin processivity is gated by
phosphate release. Proceedings of the National Academy of Sciences, 2014.

[74] S. Mogre, J. Christensen, S. Reck-Peterson, and E. Koslover. Optimizing microtubule
arrangements for rapid cargo capture. Biophysical Journal, 2021.

[75] G. Morfini, M. Burns, L. Binder, N. Kanaan, N. LaPointe, D. Bosco, R. Brown Jr.,
H. Brown, A. Tiwari, L. Hayward, J. Edgar, K. Nave, J. Garberrn, Y. Atagi, Y. Song,
G. Pigino, and S. Brady. Axonal transport defects in neurodegenerative diseases.
Journal of Neuroscience, 2009.

[76] V. C. Nadar, A. Ketschek, K. A. Myers, G. Gallo, and P. W. Baas. Kinesin-5 is
essential for growth-cone turning. Current Biology, 2008.

[77] W. Nam and B. Epureanu. Highly loaded behavior of kinesins increases the robust-
ness of transport under high resisting loads. Public Library of Science Computational
Biology, 2015.

[78] A. Nicolas, K. Kenna, A. Renton, N. Ticozzi, F. Faghri, R. Chia, and et al. Genome-
wide analyses identify KIF5A as a novel ALS gene. Neuron, 2018.

[79] T. Nishizaka, H. Miyata, H. Yoshikawa, S. Ishiwata, and K. Kinosita Jr. Unbinding
force of a single motor molecule of muscle measured using optical tweezers. Nature,
1995.

[80] E. Nogales, S. Wolf, and K. Downing. Structure of the alpha beta tublin dimer by
electron crystallography. Nature, 1998.

[81] K. M. Ori-McKenney and R. J. McKenney. Tau oligomerization on microtubules in
health and disease. Cytoskeleton, 2023.

73



[82] H. Palacci, O. Idan, M. J. Armstrong, A. Agarwal, T. Nitta, and H. Hess. Velocity
fluctuations in kinesin-1 gliding motility assays originate in motor attachment geometry
variations. Langmuir, 2016.

[83] A. Pan, A. Pan, B. Brooks, and X. Wu. Molecular simulation study on the walking
mechanism of kinesin dimers on microtubules. Current Advances in Chemistry and
Biochemistry, 2021.

[84] L. Popovic, S. McKinley, and M. Reed. A stochastic compartmental model for fast ax-
onal transport. Society for Industrial and Applied Mathematicians Journal on Applied
Mathematics, 2011.

[85] C. L. Porter, S. L. Diamond, T. Sinno, and J. C. Crocker. Shear-driven rolling of
dna-adhesive microspheres. Biophysical Journal, 120(11):2102–2111, 2021.

[86] H. Rafii-Tabar and R. Tavakoli-Darestani. Modelling the stochastic dynamics of bi-
ological nano-motors: an overview of recent results. Journal of Computational and
Theoretical Nanoscience, 2009.

[87] C. Rakers, M. Bermudez, B. G. Keller, J. Mortier, and G. Wolber. Computational
close up on protein–protein interactions: how to unravel the invisible using molecular
dynamics simulations? Wiley Interdisciplinary Reviews: Computational Molecular
Science, 2015.

[88] B. Reddy, N. Allipeta, and S. Gross. A new method to experimentally quantify dy-
namics of protein-protein interactions. accepted to Communications Biology, 2023.

[89] B. Reddy, S. Tripathy, M. Vershinin, M. Tanenbaum, J. Xu, M. Mattson-Hoss,
K. Arabi, D. Chapman, T. Doolin, C. Hyeon, and S. P. Gross. Heterogeneity in
kinesin function. Traffic, 2017.

[90] N. Reed, D. Cai, G. Blasius, E. Jih, E. Meyhofer, J. Gaertig, and K. Verhey. Micro-
tubule acetylation promotes kinesin-1 binding and transport. Current Biology, 2006.

[91] E. Reid, M. Kloos, A. Ashley-Koch, L. Hughes, S. Bevan, I. Svenson, and et al. A
kinesin heavy chain(KIF5A) mutation in hereditary spastic paraplegia (SPG10). Amer-
ican Journal of Human Genetics, 2002.

[92] G. Saper and H. Hess. Synthetic systems powered by biological molecular motors.
Chemical reviews, 2019.

[93] N. Sarpangala and A. Gopinathan. Cargo surface fluidity can reduce inter-motor
mechanical interference, promote load-sharing and enhance processivity in teams of
molecular motors. Public Library of Science Computational Biology, 2022.

[94] M. Sataric, D. Sekulic, S. Zdravkovic, and N. Ralevic. A biophysical model of how α
tubulin carboxy-terminal tails tune kinesin-1 processivity along microtubule. Journal
of Theoretical Biology, 2017.

74



[95] W. Schief, R. Clark, and A. Crevenna. Inhibition of kinesin motility by ADP and phos-
phate supports a hand-over-hand mechanism. Proceedings of the National Academy of
Sciences, 2004.

[96] G. Schreiber, G. Haran, and H.-X. Zhou. Fundamental aspects of protein- protein
association kinetics. Chemical reviews, 2009.

[97] G. Schreiber and A. E. Keating. Protein binding specificity versus promiscuity. Current
opinion in structural biology, 2011.

[98] A. Seitz, H. Kojima, K. Oiwa, E. M. Mandelkow, Y. H. Song, and E. Mandelkow.
Single-molecule investigation of the interference between kinesin, Tau and MAP2c.
The European Molecular Biology Organization Journal, 2002.

[99] X.-X. Shi, Y.-B. Fu, S.-K. Guo, P.-Y. Wang, H. Chen, and P. Xie. Investigating role
of conformational changes of microtubule in regulating its binding affinity to kinesin
by all-atom molecular dynamics simulation. Proteins: Structure, Function, and Bioin-
formatics, 2018.

[100] T. Shimizu and et al. Expression, purification, ATPase properties, and microtubule-
binding properties of the ncd motor domain. American Chemistry Society, 1995.

[101] T. Shimizu, K. Thorn, A. Ruby, and R. Vale. ATPase kinetic characterization and
single molecule behavior of mutant human kinesin motors defective in microtubule-
based motility. American Chemistry Society, 2000.

[102] M. Sirajuddin, L. Rice, and R. Vale. Regulation of microtubule motors by tubulin
isotypes and post-translational modifications. Nature Cell Biology, 2014.

[103] S. Sisson, Y. Fan, and M. Tanaka. Sequential Monte Carlo without likelihoods. Pro-
ceedings of the National Academy of Sciences, 2007.

[104] H. Sosa, E. Peterman, W. Moerner, and L. Goldstein. ADP-induced rocking of the
kinesin motor domain revealed by single-molecule fluorescence polarization microsopy.
Nature Structural Biology, 2001.

[105] U. Sotaro and S. Ishiwata. Loading direction regulates the affinity of ADP for kinesin.
Nature Structural and Molecular Biology, 2003.

[106] B. Sprinkle, E. B. Van Der Wee, Y. Luo, M. M. Driscoll, and A. Donev. Driven
dynamics in dense suspensions of microrollers. Soft Matter, 2020.

[107] A. Szabo, K. Schulten, and Z. Schulten. First passage time approach to diffusion
controlled reactions. The Journal of chemical physics, 1980.

[108] N. Tajielyato, L. Li, Y. Peng, J. Alper, and E. Alexov. E-hooks provide guidance and
a soft landing for the microtubule binding domain of dynein. Scientific Reports, 2018.

[109] K. Thorn, J. Ubersax, and R. Vale. Engineering the processive run length of the kinesin
motor. Journal of Cell Biology, 2000.

75
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(a) (b)

(c)

Figure A.1: Simulation Snapshots. The simulation starts as in (a), where the motor (red
line) is anchored (blue dot) to the bottom of the cargo (green sphere). The microtubule
(turquoise cylinder) is centered at (0,0), and the axes depict locations of other components
with respect to the microtubule center, in nanometers. As the simulation continues, the
cargo and the motor diffuses with respect to force laws (b). The simulation ends when the
motor strongly binds to the microtubule (c). Time (seconds) at which each event occurs is
shown above figures.
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Figure A.2: Full distributions of binding times. Simulated data from ADP release model
(red) is plotted over experimental data (blue). Overlap between distributions is shown in
grey.
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Figure A.3: Cumulative distributions of binding times. Simulated data from ADP
release model (red) is plotted over experimental data (blue). Same information as Figure
A.2 but CDF instead of PDF.
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Figure A.4: Macroscopic rates of state transitions. Rates for each transition in the
ADP+Diffusion model estimated with respect to average distance between the microtubule
and the cargo for each motor length. Parameters from Table 2.1 were used.
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Figure A.5: Proportion of Transitions. Of the two possible transitions out of each state,
the relative proportions are shown. Parameters from Table 2.1 were used.
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Figure A.6: Other Parameter Sweeps on Binding Times. kADP,Fast
off (a-b) and cargo

size (c-d) were varied in the ADP release model. Data are presented as mean ± SEM.
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Figure A.7: Cargo Rotation Time. The motor anchor’s initial position on the cargo is
either fixed at the bottom of the cargo (left) or randomized (right), and the time for the
motor to perform a diffusive search of the microtubule was simulated. n = 500.
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Figure A.8: Time step convergence study. Maximum time step was varied and converged
to a common binding time. 0.004 was the largest maximum time step that resulted in
a binding time that is relatively similar to the results from smaller maximum time step.
n = 1000.

Table A.1: Posterior Density Method Validation. Simulated data was generated using the
ADP release model and the Simulated Values. A sequential Monte Carlo approximate
Bayesian computational algorithm was performed on the fake data and recovered the simu-
lated values (Estimated Value).

Parameter Simulated Value Estimated Value

kADP
off 0.8 0.78

kADP
on 1000 1021.3

kADP,Fast
off 6.3 6.22

kMT
on 10 9.83

kMT
off 1 0.89

Dm 1000 987.56

κw 0.005 0.0057
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(a) Synthetic data from ADP release model
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Figure A.9: Cross-Validation Test. Synthetic data was simulated using either the ADP
release model (a) or the Simple Diffusion model (b), and both the ADP release and the
Simple Diffusion models’ performance were evaluated using k-fold cross-validation.
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Figure A.10: Impact of Hydrodynamic Effects On Binding Time. To investigate the role
of hydrodynamic near-wall effects, we modified the rotational and translational diffusion
coefficients by their z-dependent orthogonal corrections via the classical Brenner formulae,
neglecting the parallel-to-wall asymmetry as an approximation. The blue curve without
correction shows the same prediction as the main text diffusion model for 33 nm motors.
The red curve adds the Brenner correction, showing a slight increase in binding time at far
distances. To further magnify the effect, random starting orientations (yellow) of the cargo
add additional slowdown with hydrodynamics but fail to explain the short distance delays.
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Figure A.11: Role of Motor-Microtubule Binding Radius in Fitting. To investigate how
changing the binding radius dMT affects inferred parameter values, we sweep over ranges
smaller and larger than the one considered in the main text (5 nm) and fit the full model on
all 3 motor lengths. As dMT becomes smaller, kMT becomes larger, but remains on the same
order of ≈ 100s−1. Over this range, cumulative absolute fitting errors differed at most 0.01s.
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Figure B.1: Both models were trained on experimental velocity data and subsequently tested
on processivity. Absolute error between the predicted and experimental processivity is pre-
sented as mean ± SEM. Predictive performance of both models were not significantly differ-
ent from each other (p = 0.43).
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Figure B.2: Inference was performed on the CTT-stimulating-ADP-release model using a
simple approximate Bayesian computation method. The parameters that resulted in the
lowest 1% absolute error between simulation and experimental data from wildtype micro-
tubules were chosen.
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