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a b s t r a c t

Optimal experiment design (OED) aims to optimize the information content of experimental observa-
tions by designing the experimental conditions. In Bayesian OED for parameter estimation, the design
selection is based on an expected utility metric that accounts for the joint probability distribution of the
uncertain parameters and the observations. This work presents solution methods for two approximate
formulations of the Bayesian OED problem based on Kullback–Leibler divergence for the particular
case of Gaussian prior and observation noise distributions and the general case of arbitrary prior
distributions and arbitrary observation noise distributions when the observation noise corresponds
to arbitrary functions of the states and random variables with an arbitrary multivariate distribution.
The proposed methods also allow satisfying path constraints with a specified probability. The solution
approach relies on the reformulation of the approximate Bayesian OED problem as an optimal control
problem (OCP), for which a parsimonious input parameterization is adopted to reduce the number
of decision variables. An efficient global solution method for OCPs via sum-of-squares polynomials
and parallel computing is then applied, which is based on approximating the cost of the OCP by
a polynomial function of the decision variables and solving the resulting polynomial optimization
problem to global optimality in a tractable way via semidefinite programming. It is established that
the difference between the cost obtained by solving the polynomial optimization problem and the
globally optimal cost of the OCP is bounded and depends on the polynomial approximation error.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The optimal selection of conditions under which experiments
re conducted is crucial for maximizing the information content
f data for inference and prediction, in particular when exper-
ments are time-consuming or resource-intensive to perform.
ptimal experiment design (OED) uses a systemmodel to system-
tically select experimental conditions or designs by maximizing
he information content of observations for parameter inference
r model discrimination [1–6]. Other formulations include the de-
ign of experiments such that the experimental cost is minimized
ubject to bounds on the model uncertainty or other constraints
elated to application performance, typically in the context of use
f the model for control [7,8].
This paper focuses on OED for parameter estimation, which

as been extensively studied in the classical frequentist frame-
ork. Classical OED formulations are based on scalar metrics of
he Fisher information matrix (FIM) such as the alphabetic opti-
ality criteria [9–11]. On the other hand, the design criteria in
ayesian OED approaches are defined in terms of expected utility,

∗ Corresponding author at: Centro de Química Estrutural, Instituto Superior
écnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.

E-mail address: dfmr@tecnico.ulisboa.pt (D. Rodrigues).
ttps://doi.org/10.1016/j.jprocont.2022.05.008
959-1524/© 2022 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
which is often expressed in terms of prior and posterior distribu-
tions of the parameters [12,13]. Generally, Bayesian OED can be
useful when the system observations are noisy, incomplete, and
indirect since the use of prior knowledge allows alleviating the
lack of informative observations [14].

A common choice for the expected utility is the mutual infor-
mation between parameters and observations, defined in terms of
the Kullback–Leibler (KL) divergence from the prior to
the posterior parameter distributions [15,16]. As no closed-form
expression exists for the expected utility for general nonlin-
ear systems [17], a key computational challenge in Bayesian
OED arises from numerical evaluation of the expected utility
using Monte Carlo-based methods [18]. Due to this sample-based
evaluation of the expected utility, Bayesian OED is naturally
formulated as a stochastic optimization problem, which can be-
come prohibitively expensive to solve for OED problems with
large design spaces. Alternatively, gradient-based optimization
approaches such as stochastic approximation [19] and sample
average approximation [20] methods can be used to attain lo-
cally optimal designs. The gradient-based optimization methods
generally require fewer iterations and are potentially much less
expensive than stochastic optimization approaches to Bayesian
OED. However, sample-based approximations of the expected
utility and its gradients via nested Monte Carlo integration over
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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he joint observation and parameter space can be prohibitively
xpensive, even if importance sampling is used [21,22]. Other
ypes of approximation such as Laplace approximation are less
omputationally demanding but can lead to bias [23]. These chal-
enges have been addressed by constructing surrogates for the
odel outputs based on polynomial chaos expansions [13,24,25].
or the case of OED for model discrimination, surrogate models
ased on Gaussian processes have also been proposed [26]. De-
pite these advances, gradient-based methods cannot guarantee
he global optimality of the selected designs in a general context.
or the related problems of design of the optimal input spectrum
n the particular case of linear dynamical systems and design of
he optimal input among the particular class of realizations of a
tationary process in nonlinear dynamical systems, convex prob-
ems have been formulated [27,28]. Furthermore, the handling of
hance path constraints remains a relatively unexplored topic in
ED, with few exceptions [25,29]. The previous remarks show
hat, although OED is a well-established technique that has been
bundantly addressed in the literature, including textbooks [30],
ignificant challenges remain for general nonlinear dynamical
ystems subject to probabilistic constraints.
This paper presents a tractable approach for obtaining glob-

lly optimal solutions to Bayesian OED for constrained nonlinear
ynamical systems with probabilistic uncertainty in model pa-
ameters. We express the expected utility in terms of the KL
ivergence from the prior to the posterior parameter distribu-
ions. In our recent work, we studied the approximation of the
ED problem as Bayes D-optimality of the FIM for the special
ase of Gaussian prior and observation noise distributions [31].
ere, we extend this work to the general case of arbitrary prior
nd observation noise distributions via approximation of the OED
roblem as Monte Carlo integration in the observation space. In
ddition, we propose a method to ensure that the selected design
atisfies path constraints with a specified probability. To this end,
e propose a moment-based reformulation of chance path con-
traints. A sample-based approach is then utilized to compute the
xpected utility and the moments for a given design. To this end,
sparse stochastic collocation scheme for numerical integration
ver the domain of uncertain parameters is used. The quadrature
ule is built upon the notion of orthogonal polynomials, which has
een extensively used in the approximation of functions of ran-
om variables [32]. This novel use of sparse stochastic collocation
n the context of Bayesian OED represents an improvement with
espect to the performance of previous sample-based methods
n terms of number of quadrature points. Moreover, it is known
hat the complexity of optimization problems in a nonconvex
nd global optimization framework scales exponentially with the
umber of decision variables. This is particularly difficult in OED
roblems for dynamical systems since the corresponding designs
nclude time-varying inputs, which result in infinite-dimensional
ecision variables. Thus, we look to formulate the problem in
erms of as few as possible decision variables to enable tractable
olutions. This goal is achieved by the reformulation of the OED
roblem as an optimal control problem (OCP) and the use of a
arsimonious input parameterization, which has been shown to
educe the number of decision variables in OCPs without causing
ny loss of optimality [33,34]. This can be especially useful for
ED problems related to dynamical systems since they typi-
ally result in a large number of design variables. Owing to this
arameterization, a generic polynomial mapping of the design
ariables to the expected utility is established. Based on this
apping, the OCP in terms of few decision variables that results

rom Bayesian OED is approximated as a polynomial optimization
roblem. The approximation method and the establishment of a
uantifiable bound for the error between the solutions to both

roblems is a main contribution of this paper. This approximation

2

leads to a convex problem via the concept of sum-of-squares
polynomials and semidefinite relaxations for which the solution
can be attained in a tractable way with global optimality cer-
tificates [35]. This method for tractable computation of global
solutions is another contribution of this work with respect to
previous optimization methods for Bayesian OED. The proposed
approach is demonstrated on a Lotka–Volterra problem, for which
different scenarios are considered, including non-Gaussian prior
distribution, state-dependent observation noise, and chance path
constraints.

Notation. Matrices are denoted by uppercase and boldface
Latin or Greek symbols. Vectors are denoted by lowercase and
boldface Latin or Greek symbols. Scalars are denoted by italic
Latin or lowercase Greek symbols. Sets are denoted by upper-
case Greek or calligraphic symbols. The superscripts (·)−1 and
(·)T denote the matrix inverse and the matrix transpose, det(·)
denotes the matrix determinant, tr(·) denotes the matrix trace,
the superscript (·)∗ denotes an optimal solution, ∥v∥M =

√
vTMv

and ∥v∥ =
√
vTv denote norms, vi denotes the ith element of

he vector v, Mi,j denotes the element (i, j) of the matrix M, In
enotes the identity matrix of dimension n, 0n and 1n denote the
olumn vectors of zeros and ones of dimension n, p(·) denotes
probability density function, P[·] denotes the probability of an
vent, E[·] and V[·] denote the expected value and variance of
random variable, and N0 denotes the set of natural numbers

including zero.

2. Problem statement

Consider the continuous-time dynamical system given by
dx
dt (t; θ) = f

(
x(t; θ), θ,u(t)

)
, x(t0; θ) = x0 (θ, b) , (1)

where x(t; θ) is the nx-dimensional vector of states that depend
on the nθ -dimensional vector of uncertain parameters θ ∈ Θ

and the nu-dimensional vector of manipulated inputs u(t) ∈

U , f(x, θ,u) is an nx-dimensional smooth vector function, and
x0 (θ, b) are the initial states that depend on θ. The dependence
of the system on the nb manipulated parameters b ∈ B, which are
onstant in contrast to the time-varying inputs u(t), is established
y making the initial conditions depend on b. The input set
restricts u(t) to lie between a lower bound u and an upper

bound u. In addition, the system is subject to the path constraints
h
(
x(t; θ)

)
≤ 0nh , where h(x) is an nh-dimensional smooth vector

unction with h(1)(x, θ,u) :=
∂h
∂x (x)f(x, θ,u) that depends explic-

itly on u. The collection of manipulated variables that comprises
the inputs u(t) and the parameters b is denoted as d ∈ D = U×B.
Noisy measurements y := (y(t1), . . . , y(tT )) ∈ Y are collected at
T instants t1, . . . , tT as

y(tk) = c
(
x(tk; θ)

)
+ e(tk), k = 1, . . . , T , (2)

where e := (e(t1), . . . , e(tT )) is additive measurement noise and
c(x) is a smooth scalar function of the states.

We aim to optimally design d by maximizing the information
ontent of the observations y for estimation of the unknown
arameters θ. To this end, we adopt a Bayesian perspective. Under
given design d and a realization of the observations y, the

hange in the information about θ between a prior probability
ensity function (pdf) p(θ) and a posterior pdf p(θ|y, d) is given
y Bayes’ rule [36]

(θ|y, d) =
p(y|θ,d)p(θ)

p(y|d) , (3)

where p(y|θ, d) denotes a likelihood function, which results in the
evidence

p(y|d) = ∫ p(y|θ, d)p(θ)dθ. (4)
Θ
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In Bayesian OED, the optimal design d∗
∈ D is chosen by

aximizing a so-called expected utility [13]

(d) := ∫ΘU(θ, d)p(θ)dθ, (5)

with the utility function defined as

U(θ, d) := ∫YG (θ, y, d) p(y|θ, d)dy, (6)

where G (θ, y, d) denotes a gain function that quantifies the gain
in reduction of uncertainty of the parameters θ based on the
observations y under the design d [12]. The optimal design is also
subject to chance path constraints that specify a probability of
violation 0 < βk < 1 for each path constraint

qk(t; d) ≥ 1 − βk, k = 1, . . . , nh, (7)

with qk(t; d) := P
[
hk

(
x(t; θ)

)
≤ 0

]
= E

[
H

(
−hk

(
x(t; θ)

))]
and the

unit step H(x). The last equality implies that

qk(t; d) = ∫ΘQk(t; θ, d)p(θ)dθ, k = 1, . . . , nh, (8)

with Qk(t; θ, d) := H
(
−hk

(
x(t; θ)

))
. Note that qk(t; d) is an

integral of a nonsmooth function.
Since the goal is to design d so as to maximize the mutual

information between θ and y for estimation of the unknown
parameters θ, we define the gain function as

GKL (θ, y, d) = log
(

p(θ|y,d)
p(θ)

)
= log

(
p(y|θ,d)
p(y|d)

)
, (9)

which implies that U(θ, d) becomes the KL divergence from the
evidence to the likelihood function

UKL(θ, d) = ∫Y log
(

p(y|θ,d)
p(y|d)

)
p(y|θ, d)dy. (10)

Accordingly, we formulate the Bayesian OED problem as
∗

KL := argmax
d∈D

uKL(d) = ∫ΘUKL(θ, d)p(θ)dθ, s.t. (7). (11)

Remark 1. The design d∗

KL maximizes the expected utility in
terms of the KL divergence from the prior to the posterior dis-
tributions as well as the expected gain in Shannon information
between the distributions, as shown in Appendix A. Hence, a large
KL divergence from the prior to the posterior distributions implies
that the data y are more informative for parameter estimation.

Although the Bayesian OED problem (11) provides a relevant
design with respect to information content, the main challenge
in this problem is its high computational cost relative to classi-
cal OED approaches [18]. For the general nonlinear system (1),
closed-form expressions do not exist for the expected utility
uKL(d) [17], which generally makes the OED problem (11) com-
putationally intractable in its original form. This computational
challenge arises from the numerical evaluation of the expected
utility in (11). In general, uKL(d) must be approximated using
nested Monte Carlo integration over the joint observation and pa-
rameter space, which can become prohibitively expensive [21,22,
25]. The chance path constraints (7) are also intractable in their
original form. Due to the formulation of qk(t; d) as an integral of a
nonsmooth function, its approximation is typically performed via
Monte Carlo integration, which is computationally costly [37].

The goal of this paper is to present a solution method for the
Bayesian OED problem (11) by approximating it as an optimiza-
tion problem that can be efficiently solved to global optimality. To
this end, we first approximate the expected utility uKL(d) and the
chance path constraints (7) in (11) for the two cases of Gaussian
prior and observation noise distributions and arbitrary prior and
observation noise distributions. We then use multivariate inte-
gration based on Gaussian quadrature for efficient sample-based
evaluation of the approximate versions of both the expected
utility and the chance path constraints. Finally, the resulting
constrained optimal control problem is reformulated as a convex
problem via polynomial optimization, which enables the tractable

computation of solutions with global optimality certificates.

3

3. Approximation of Bayesian OED

To address the computational challenge posed by the numeri-
cal evaluation of uKL(d), we approximate the expected utility in
(11) in two cases. Stricter assumptions related to normality of
the prior pdf and observation noise are required in one case,
while only relatively mild assumptions about the prior pdf and
observation noise are required in the other case, as described
in the next subsections. Lastly, we approximate the chance path
constraints (7) to circumvent the numerical evaluation of qk(t; d).

3.1. Expected utility for Gaussian prior pdf and noise

We first address the approximation of the expected utility
uKL(d) in (11) in the case of Gaussian prior pdf and observation
noise according to the following assumptions.

Assumption 1. The noise realizations e(t1), . . . , e(tT ) are in-
dependent and identically distributed (i.i.d.) and drawn from a
normal distribution with zero mean and variance σ 2. Let g(θ, d)
be a T -dimensional vector with gk(θ, d) := c

(
x(tk; θ)

)
for k =

1, . . . , T . Since y = g(θ, d)+e, the likelihood function in (3) takes
the form

p(y|θ, d) = f (y|g(θ, d), σ 2IT ), (12)

where f (x|x̄,Σ x) is the pdf of a multivariate normal distribution
with mean x̄ and covariance Σ x.

Assumption 2. The prior distribution of the parameters θ follows
a multivariate normal distribution with pdf

p(θ) = f (θ|θ̄,Σ θ), (13)

for some mean vector θ̄ and some covariance matrix Σ θ .

These assumptions lead to the following remark.

Remark 2. Under Assumptions 1 and 2, d∗

KL can be approximated
as the design that maximizes the scalar metric of the FIM for
Bayes D-optimality

d∗

D := argmax
d∈D

uD(d) = ∫ΘUD(θ, d)p(θ)dθ, s.t. (7), (14)

which corresponds to the utility function

UD(θ, d) = log
(
det

(
I(θ, d) + Σ−1

θ

))
, (15)

where I(θ, d) is the FIM defined as

I(θ, d) = ∫Y
∂ log p(y|θ,d)

∂θ

T ∂ log p(y|θ,d)
∂θ

p(y|θ, d)dy

=
∂g
∂θ
(θ, d)T

(
σ 2IT

)−1 ∂g
∂θ
(θ, d), (16)

where the last equality results from the fact that ∂ log p(y|θ,d)
∂θ

=

y − g(θ, d))T
(
σ 2IT

)−1 ∂g
∂θ
(θ, d) according to Assumption 1. The

approximation error due to the approximation of d∗

KL by d∗

D de-
pends on the nonlinearity of g(θ, d) with respect to θ and van-
ishes for g(θ, d) linear in θ, as shown in [30]. More specifically,
the approximation error will be small if the following conditions
hold, as shown in Appendix B:

1. The first condition is ∥
(
∫
1
0
∂g
∂θ
(θ+t(θ̂−θ), d)dt− ∂g

∂θ
(θ, d)

)(
θ̂−

θ
)
∥/σ ≪ 1 for all θ such that ∥Σ

−
1
2

θ

(
θ−θ̄

)
∥
2 < F−1

χ2
nθ
(α) and

for all θ̂ such that ∥∫
1
0
∂g
∂θ
(θ + t(θ̂ − θ), d)dt

(
θ̂ − θ

)
∥
2/σ 2 <

F−1
χ2
T
(α), with F−1

χ2
nθ

and F−1
χ2
T

denoting the inverse cumula-
tive distribution function of the chi-squared distribution
with nθ degrees of freedom and T degrees of freedom,
respectively, and α denoting a confidence level.
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2. The second condition is ∥Σ−1
θ

(
I(θ, d) + Σ−1

θ

)−1
−

Σ−1
θ

(
I(θ̄, d) + Σ−1

θ

)−1
∥ ≪ 1 for all θ such that ∥Σ

−
1
2

θ

(
θ−

θ̄
)
∥
2 < F−1

χ2
nθ
(α).

Both conditions express a mild nonlinearity of g(θ, d) with
espect to θ. In particular, the conditions are satisfied (with ≪ 1
replaced by = 0) for g(θ, d) linear in θ, which again implies that
the approximation error vanishes, as shown in Appendix B.

The FIM depends on the sensitivities described by
d
dt

(
∂x
∂θ
(t; θ)

)
=

∂f
∂x

(
x(t; θ), θ,u(t)

)
∂x
∂θ
(t; θ)

+
∂f
∂θ

(
x(t; θ), θ,u(t)

)
, ∂x

∂θ
(t0; θ) =

∂x0
∂θ
(θ, b) , (17)

ince
∂gk
∂θ

(θ, d) =
∂c
∂x

(
x(tk; θ)

)
∂x
∂θ
(tk; θ), k = 1, . . . , T . (18)

Then, the augmented dynamics of the system states and their
sensitivities are described by
dX
dt (t; θ) = F

(
X(t; θ), θ,u(t)

)
, X(t0; θ) = X0 (θ, b) , (19)

ith the nx (nθ + 1) augmented states and initial conditions

(t; θ) :=
[
x(t; θ) ∂x

∂θ
(t; θ)

]
,

0 (θ, b) :=
[
x0 (θ, b) ∂x0

∂θ
(θ, b)

]
. (20)

emark 3. Bayesian OED problems related to different Bayes al-
phabetic optimality criteria could be solved by replacing UD(θ, d)
y other functions of the FIM [12].

emark 4. Another possibility to compute ∂gk
∂θ

(θ, d) for k =

, . . . , T would be to compute adjoint sensitivities instead of the
orward sensitivities ∂x

∂θ
(tk; θ), which would require solving one

ystem of nx differential equations and T systems of nx + nθ
ifferential equations instead of one system of nx (nθ + 1) differ-
ntial equations. However, as described later in the paper, adjoint
ariables are used in this paper to compute sensitivities of the
xpected utility uD(d) with respect to the design d, which requires
xpressing uD(d) directly in terms of a set of (augmented) states.
or this reason, the forward sensitivities ∂x

∂θ
(tk; θ) are considered

or the computation of uD(d).

.2. Expected utility for arbitrary prior pdf and noise

Now, we address the approximation of the expected utility
KL(d) in (11) in the case of arbitrary prior pdf and observation
oise according to the following assumptions.

ssumption 3. The noise realizations e are given by

(tk) = w
(
x(tk; θ)

)
ξk, k = 1, . . . , T , (21)

ith ξ ∈ X drawn from an arbitrary multivariate distribu-
ion with pdf π (ξ|x̄,Σ ξ), where X is a sample space and x̄
nd Σ x are the mean and covariance of ξ. Let g(θ, d) be a
-dimensional vector and J(θ, d) be a T -dimensional diagonal
atrix, with gk(θ, d) := c

(
x(tk; θ)

)
and Jk,k(θ, d) := w

(
x(tk; θ)

)
for

k = 1, . . . , T . Since y = g(θ, d) + J(θ, d)ξ, the likelihood function
in (3) takes the form

p(y|θ, d) =
π

(
J(θ,d)−1(y−g(θ,d))|x̄,Σ ξ

)
det(J(θ,d)) , (22)

which can be replaced in the expressions for p(y|d) in (4) and
UKL(θ, d) in (10).

Assumption 4. The prior distribution of the parameters θ follows
a multivariate distribution with mean θ̄.
4

These assumptions lead to the following remark.

Remark 5. Under Assumptions 3 and 4, d∗

KL can be approximated
as the design

d∗

MC := argmax
d∈D

uMC (d) = ∫ΘUMC (θ, d)p(θ)dθ, s.t. (7), (23)

which corresponds to the utility function

UMC (θ, d) =
1
mξ

∑mξ
k=1 log

(
det(J(θ,d))−1π (ξk|x̄,Σ ξ )

p(g(θ,d)+J(θ,d)ξk|d)

)
, (24)

where the points ξ1, . . . , ξmξ are obtained by sampling in X
according to the pdf π (ξ|x̄,Σ ξ) and independently of the prior
pdf p(θ), and the evidence p(g(θ, d) + J(θ, d)ξk|d) is computed as
in (4) from the likelihood function in (22), that is,
p(g(θ,d)+J(θ,d)ξk|d)

det(J(θ,d))−1 = ∫Θ
p(g(θ,d)+J(θ,d)ξk|θ̂,d)

det(J(θ,d))−1 p(θ̂)dθ̂, (25)

with

p(g(θ,d)+J(θ,d)ξk|θ̂,d)
det(J(θ,d))−1 =

π

(
J(θ̂,d)−1

(
g(θ,d)+J(θ,d)ξk−g(θ̂,d)

)
|x̄,Σ ξ

)
det(J(θ,d))−1det(J(θ̂,d))

, (26)

where the only approximation is the Monte Carlo integration
∫X f (ξ)π (ξ|x̄,Σ ξ)dξ ≃

1
mξ

∑mξ
k=1f (ξk) in the observation space for

some function f (ξ), as shown in Appendix C.

Remark 6. As described in Assumption 3, the concept of ar-
bitrary observation noise in this paper amounts to considering
observation noise e(tk) at each instant tk that corresponds to the
product of an arbitrary function w

(
x(tk; θ)

)
of the states x(tk; θ)

and an element ξk of a vector-valued random variable ξ drawn
from an arbitrary multivariate distribution, which is a rather
general case and encompasses a special but relevant case of state-
dependent noise. The slightly more general case of observation
noise e(tk) at each instant tk that corresponds to an arbitrary
function Wk

(
x(tk; θ), ξ

)
of both the states x(tk; θ) and the vector-

valued random variable ξ drawn from an arbitrary multivariate
distribution, where Wk

(
x(tk; θ), ξ

)
is an element of a vector-

valued function W
(
x(t1; θ), . . . , x(tT ; θ), ξ

)
, could be handled in

a similar way. If W is a bijective and continuously differentiable
function of ξ with invertible Jacobian dW

dξ

(
x(t1; θ), . . . , x(tT ; θ), ξ

)
and inverse function W−1

(
x(t1; θ), . . . , x(tT ; θ), e

)
, then J(θ, d)ξ,

J(θ, d)−1e, π
(
ξ|x̄,Σ ξ

)
det(J(θ, d))−1 in the previous equations

would be replaced by W
(
x(t1; θ), . . . , x(tT ; θ), ξ

)
, W−1

(
x(t1; θ),

. . . , x(tT ; θ), e
)
, π

(
ξ|x̄,Σ ξ

)
det

(
dW
dξ

(
x(t1; θ), . . . , x(tT ; θ), ξ

))−1
,

espectively. However, this more general case is not covered in
ore detail in this paper for improved clarity.

.3. Chance path constraints

The chance path constraints (7) can be approximated in terms
f the first two moments of hk

(
x(t; θ)

)
, that is,[

hk
(
x(t; θ)

)]
+ rk

√
V
[
hk

(
x(t; θ)

)]
≤ 0,

k = 1, . . . , nh, (27)

with the back-off parameter rk. Since V
[
hk

(
x(t; θ)

)]
=[

hk
(
x(t; θ)

)2]
− E

[
hk

(
x(t; θ)

)]2, and assuming that[
hk

(
x(t; θ)

)]
< 0, (27) is equivalent to

r2k
1+r2k

mII
k (t; d) −

(
mI

k(t; d)
)2

≤ 0, k = 1, . . . , nh, (28)

with mI
k(t; d) := E

[
hk

(
x(t; θ)

)]
, mII

k (t; d) := E
[
hk

(
x(t; θ)

)2], which
implies that

mI (t; d) = ∫ M I (t; θ, d)p(θ)dθ, k = 1, . . . , n , (29)
k Θ k h
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k (t; d) = ∫ΘM

II
k (t; θ, d)p(θ)dθ, k = 1, . . . , nh, (30)

ith M I
k(t; θ, d) := hk

(
x(t; θ)

)
, M II

k (t; θ, d) := hk
(
x(t; θ)

)2 [38].
Note that the moments mI

k(t; d) and mII
k (t; d) are integrals of

smooth functions, in contrast to qk(t; d).
One can ensure satisfaction of the chance constraints (7) for

any distribution of hk
(
x(t; θ)

)
, including a heavy-tail distribution,

via the Cantelli–Chebyshev inequality by enforcing the moment
constraints (28) with rk =

√
1−βk
βk

, where βk is the probability
of violation for each constraint in (7) [39]. However, this ap-
proximation of the chance constraints is generally known to be
conservative [40]. On the other hand, assuming that hk

(
x(t; θ)

)
is normally distributed, a tighter approximation is given by rk =

−1(1 − βk), where φ−1 denotes the inverse cumulative distri-
ution function of the standard normal distribution. However,
he assumption of normal distribution of hk

(
x(t; θ)

)
may be too

trong.
Hence, an approach to determine the correct value of the

ack-off parameter rk proceeds as follows [25,41]: (i) choose
n initial guess for rk; (ii) determine the design that maxi-

mizes the approximate expected utilities uD(d) or uMC (d) subject
to the moment constraints (28); (iii) for that design, compute
hk

(
x(t; θ1)

)
, . . . , hk

(
x(t; θmθ )

)
, where the points θ1, . . . , θmθ are

obtained by sampling inΘ according to the pdf p(θ), and estimate
the minimal Hk such that P

[
hk

(
x(t; θ)

)
≤ Hk

]
≥ 1 − βk; (iv)

compute rk = mint

(
Hk−E

[
hk

(
x(t; θ)

)])(√
V
[
hk

(
x(t; θ)

)])−1
, and

return to step (ii) if rk changes more than a specified tolerance.
Note that, even if the computation of hk

(
x(t; θ)

)
in step (iii) is

performed for a large number of samples θ, this does not lead to
a major computational burden since it is done for a single design,
in contrast to the multiple designs that must be evaluated in any
optimization procedure.

In the remainder, we aim to determine the design that maxi-
mizes the approximate expected utilities uD(d) or uMC (d) subject
to the moment constraints (28). A computational challenge that
arises from (14) and (23) is the multivariate integration over Θ ,
which is addressed next.

4. Tractable formulation of the approximate Bayesian OED
problem

This section presents tractable formulations of Problems (14)
and (23). We first express the expected utilities uD(d) or uMC (d)
and the constraint moments mI

k(t; d) and mII
k (t; d) in terms of

multivariate integration in the space of parameters. Then, we
compute uD(d) or uMC (d) and mI

k(t; d), m
II
k (t; d) and formulate

tractable optimal control problems (OCPs).

4.1. Multivariate integration in the space of parameters

To compute a function given by

v(y, d) = ∫ΘV (θ, y, d)p(θ)dθ, (31)

an integral of V (θ, y, d) over Θ is computed by sampling ac-
cording to the pdf p(θ). However, this integration typically re-
quires computing V (θ, y, d) for a very large number of samples θ
to achieve accurate uncertainty propagation, which can become
computationally prohibitive when this procedure is repeated for
different values of y or d [25].

Thus, we compute v(y, d) by selecting mθ quadrature points
θ1, . . . , θmθ and expressing v(y, d) approximately as

v(y, d) ≈ v̂(y, d) =
∑mθ

l=1wlV (θl, y, d) = wTpV (y, d), (32)

with the vector w of mθ weight factors and

p (y, d) = V (θ , y, d), l = 1, . . . ,m . (33)
( V )l l θ

5

We seek to construct an integration rule for the multivariate
integral (31) based on as few quadrature points as possible. It
is known that, even in the univariate case, methods based on
Gaussian quadrature minimize the number of points needed for
exact integration of polynomials of a given degree n̄ [42]. Here,
we use an efficient approach that corresponds to sparse stochas-
tic collocation and is the multivariate equivalent of Gaussian
quadrature [43].

We express V (θ, y, d) as

V (θ, y, d) =
∑

k∈K̄
nθ
n̄
(cV (y, d))k Ψ

(
∆θk)

+ RV (θ, y, d)

= aθ (θ)TcV (y, d) + RV (θ, y, d), (34)

where cV (y, d) is the vector of polynomial coefficients of V (θ, y,
d), Ψ

(
∆θk) denotes the first polynomial that contains the mono-

mial ∆θk in the sequence of orthogonal polynomials with respect
to the prior pdf p(θ) (that is, under the inner product ⟨f , g⟩ =

∫Θ f (θ)g(θ)p(θ)dθ), with k being the vector of monomial powers
in the set K̄nθ

n̄ ⊆ Knθ
n̄ :=

{(
k1, . . . , knθ

)
∈ Nnθ

0 : 0 ≤ k1 + · · · + knθ
≤ n̄

}
in the case of a polynomial of degree n̄ and the defi-

nitions of ∆θ := θ − θ̄ as the deviation of θ around θ̄ and
∆θk

:=
(
θ1 − θ̄1

)k1
. . .

(
θnθ − θ̄nθ

)knθ , aθ (θ) is a vector with el-
ements (aθ (θ))k = Ψ

(
∆θk) for k ∈ K̄nθ

n̄ , and RV (θ, y, d) is
the orthogonal part with respect to aθ (θ). For example, in the
case of statistically independent parameters θ, the polynomials
in aθ (θ) are Hermite polynomials for a normal prior pdf and
Jacobi polynomials for a beta prior pdf [44]. In the general case of
correlated parameters θ or an arbitrary prior pdf, the polynomials
in aθ (θ) can be obtained via the Gram–Schmidt process [45].

The number of polynomials in aθ (θ) is equal to the cardi-
nality |K̄nθ

n̄ | of the set K̄nθ
n̄ . As shown below, the number mθ

of quadrature points for the integration rule depends on |K̄nθ
n̄ |.

Given the fact that K̄nθ
n̄ ⊆ Knθ

n̄ and the definition of Knθ
n̄ , we

know that |K̄nθ
n̄ | ≤ |Knθ

n̄ | =
(nθ+n̄

nθ

)
. However, while |Knθ

n̄ | grows
quickly with the dimension nθ , we aim to keep mθ small even
when nθ is large. Hence, we assume that K̄nθ

n̄ is given by a max-
imum interaction or hyperbolic truncation scheme to introduce
sparsity when nθ is large [46]. For example, in the case of a
maximum interaction scheme with up to pθ interaction terms,
K̄nθ

n̄ = Knθ
n̄ ∩

{(
k1, . . . , knθ

)
∈ Nnθ

0 : limq→0
∑nθ

i=1 k
q
i ≤ pθ

}
, and in

the case of a hyperbolic truncation scheme with a q-norm of the
monomial powers up to pθ , K̄

nθ
n̄ = Knθ

n̄ ∩

{(
k1, . . . , knθ

)
∈ Nnθ

0 :(∑nθ
i=1 k

q
i

)1/q
≤ pθ

}
. Such schemes for introducing sparsity can

potentially eliminate many elements of Knθ
n̄ from K̄nθ

n̄ in the case
of large nθ . Since the polynomials in aθ (θ) are orthogonal with
respect to p(θ), I

|K̄
nθ
n̄ |

= ∫Θaθ (θ)aθ (θ)Tp(θ)dθ holds. This implies
that[
1 0T

|K̄
nθ
n̄ |−1

]
= ∫Θaθ (θ)Tp(θ)dθ. (35)

For some mθ , we can choose a diagonal matrix W of dimension
mθ and points θ1, . . . , θmθ such that

1T
mθWAθ = ∫Θaθ (θ)Tp(θ)dθ, (36)

with (Aθ )l,k = (aθ (θl))k for l = 1, . . . ,mθ and k ∈ K̄nθ
n̄ . Suppose

that (nθ + 1)mθ ≥ |K̄nθ
n̄ | and W and θ1, . . . , θmθ are chosen such

that they satisfy (36). Then, since

v(y, d) = ∫Θaθ (θ)TcV (y, d)p(θ)dθ + ∫ΘRV (θ, y, d)p(θ)dθ
= 1T

mθWpV (y, d) − 1T
mθW (pV (y, d) − AθcV (y, d))

+ ∫ΘRV (θ, y, d)p(θ)dθ
= 1T

mθWpV (y, d) − 1T
mθWpRV (y, d) + ∫ΘRV (θ, y, d)p(θ)dθ,

(37)
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ith
(
pRV (y, d)

)
l = RV (θl, y, d) for l = 1, . . . ,mθ , the integral

(y, d) can be approximated as

ˆ(y, d) = 1T
mθWpV (y, d). (38)

It follows that (32) with wT
= 1T

mθW holds and the approxi-
mation error v̂(y, d)−v(y, d) vanishes when RV (θ, y, d) = 0. More
generally, the approximation error v̂(y, d) − v(y, d) will be small
f RV (θ, y, d) is small, that is, if V (θ, y, d) is well approximated by
polynomial aθ (θ)TcV (y, d) of degree n̄ for some vector cV (y, d)

of polynomial coefficients. This can be the case if V (θ, y, d) is
a sufficiently smooth function of θ, but not if V (θ, y, d) is a
nonsmooth function of θ. Hence, this method for multivariate
integration based on Gaussian quadrature is effective for smooth
functions of θ but less appropriate for nonsmooth functions of θ.

emark 7. A method based on polynomial chaos expansions
ould also be used for approximation of multivariate integrals [13,
5]. Then, the question is how the approximation of v(y, d) in
38) compares to the one obtained by integrating a polynomial
pproximation of V (θ, y, d). It turns out that this approximation
equires mθ ≥ |K̄nθ

n̄ | quadrature points. Hence, we propose the
se of the approach based on Gaussian quadrature since it needs
ewer quadrature points and does not require any regression.

.2. Approximation of expected utility and constraint moments

We now use the previous results to approximate the expected
tilities uD(d) and uMC (d), as well as the constraint moments

mI
k(t; d) and mII

k (t; d), that will be used in the remainder of the
paper. We first apply the approximation in (32) for multivariate
integrals of the form in (31) to uD(d) in (14), which yields

D(d) ≈ ûD(d) =
∑mθ

l=1wlUD(θl, d) = wTpUD (d). (39)

Also, we apply the approximation in (32) for multivariate
ntegrals of the form in (31) to uMC (d) in (23), which yields

uMC (d) ≈ ûMC (d) =
∑mθ

l=1wlUMC (θl, d) = wTpUMC (d). (40)

To compute the function UMC (θ, d), one needs to compute the
evidence p(y|d) for different y. Again, we apply the approximation
in (32) for multivariate integrals of the form in (31) to p(y|d) in
(4), which yields

p(y|d) ≈ p̂(y|d) =
∑mθ

l=1wlp(y|θl, d). (41)

Note that this approximation of p(y|d) is particularly accurate
in the case of large observation noise or small amount of data for
which Bayesian OED is most useful, since the likelihood function
p(y|θ, d) is not concentrated in a small region of the parameter
space in this case. This results in the approximation of the utility
function

UMC (θ, d) ≈ UQ (θ, d) =
1
mξ

∑mξ
k=1 log

(
det(J(θ,d))−1π (ξk|x̄,Σ ξ )

p̂(g(θ,d)+J(θ,d)ξk|d)

)
=

1
mξ

∑mξ
k=1 log

(
det(J(θ,d))−1π (ξk|x̄,Σ ξ )∑mθ

l=1 wlp(g(θ,d)+J(θ,d)ξk|θl,d)

)
, (42)

here p(g(θ,d)+J(θ,d)ξk|θl,d)
det(J(θ,d))−1 is obtained by replacing θ̂ with θl in (26)

and computing the pdf π (·|x̄,Σ ξ), and the approximation

uMC (d) ≈ ûQ (d) =
∑mθ

l=1wlUQ (θl, d) = wTpUQ (d). (43)

Note that the computation of ûQ (d) implies computing the pdf
π (·|x̄,Σ ξ) mθmξ (1+mθ ) times but uses only mθ different values
of θ.

Lastly, we apply the approximation in (32) to mI
k(t; d) and

mII
k (t; d) in (29) and (30), which yields the constraints

r2k
2 m̂

II(t; d) −
(
m̂I (t; d)

)2
≤ 0, k = 1, . . . , nh, (44)
1+rk
k k

6

with the approximations of the moments

mI
k(t; d) ≈ m̂I

k(t; d) =
∑mθ

l=1wlM I
k(t; θl, d) = wTpM I

k
(t; d),

k = 1, . . . , nh, (45)

mII
k (t; d) ≈ m̂II

k (t; d) =
∑mθ

l=1wlM II
k (t; θl, d) = wTpM II

k
(t; d),

k = 1, . . . , nh. (46)

Remark 8. In theory, one could directly apply the approximation
in (32) to qk(t; d) in (8) since qk(t; d) is a multivariate integral
of the form in (31). However, since Qk(t; θ, d) is a nonsmooth
function of θ, the method for multivariate integration based on
Gaussian quadrature is not appropriate for Qk(t; θ, d). In con-
trast, the method based on Gaussian quadrature is effective for
smooth functions of θ such as M I

k(t; θ, d) and M II
k (t; θ, d). For

this reason, we propose to first reformulate the chance path
constraints (7) with (8) as (28) with (29) and (30) and then apply
the approximation in (32) to mI

k(t; d) and mII
k (t; d) in (29) and

(30).

4.3. Reformulation of OED as an optimal control problem

This subsection proposes the explicit reformulation of the
approximate Bayesian OED problem as OCPs for the two cases
considered previously. In the case of Gaussian prior pdf and noise,
we maximize the approximate expected utility ûD(d) in (39) sub-
ject to the path constraints (44) with the approximate constraint
moments m̂I

k(t; d) and m̂II
k (t; d) in (45) and (46). On the other

hand, in the case of arbitrary prior pdf and noise, we maximize
the approximate expected utility ûQ (d) in (43) subject to the
path constraints (44) with the approximate constraint moments
m̂I

k(t; d) and m̂II
k (t; d) in (45) and (46). As shown below, these

two cases involve a different number of differential equations
and states in the OCP. In both cases, the reformulation of the
approximate Bayesian OED problem as OCPs with a finite number
of states is enabled by the approximation in (32) for multivariate
integrals of the form in (31).

4.3.1. Reformulation for Gaussian prior pdf and noise
The approximate expected utility ûD(d) in (39) can be writ-

ten as an explicit function of the states X(t; θ1), . . . ,X(t; θmθ )
from (15), (16), (18), and the same is valid for the approximate
constraint moments m̂I

k(t; d) and m̂II
k (t; d) in (45) and (46). Thus,

these approximations involve the dynamics

R
(
S(t),u(t)

)
:= vec

⎡⎢⎣ F (X(t; θ1), θ1,u(t))
...

F
(
X(t; θmθ ), θmθ ,u(t)

)
⎤⎥⎦ , (47)

for the nR := nx (nθ + 1)mθ states and initial conditions

S(t) := vec

⎡⎢⎣ X(t; θ1)
...

X(t; θmθ )

⎤⎥⎦ , S0(b) := vec

⎡⎢⎣ X0 (θ1, b)
...

X0
(
θmθ , b

)
⎤⎥⎦ . (48)

Hence, we define

φD
(
S(t1), . . . , S(tT )

)
:= 1T

mθWpUD (d), (49)

µD,k
(
S(t)

)
:=

r2k
1+r2k

1T
mθWpM II

k
(t; d) −

(
1T
mθWpM I

k
(t; d)

)2
,

k = 1, . . . , nh. (50)

Accordingly, the Bayesian OED problem (14) can be approxi-
mated by the OCP

d̂∗

D := argmax ûD(d) = φD
(
S(t1), . . . , S(tT )

)
, (51a)
d∈D
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s.t. Ṡ(t) = R
(
S(t),u(t)

)
, S(t0) = S0(b), (51b)

r2k
1+r2k

m̂II
k (t; d) −

(
m̂I

k(t; d)
)2

= µD,k
(
S(t)

)
≤ 0,

k = 1, . . . , nh, (51c)

(15), (16), (18), (51d)

where µ
(1)
D (S,u) :=

∂µD
∂S (S)R(S,u) depends explicitly on u.

4.3.2. Reformulation for arbitrary prior pdf and noise
Since the sample points ξ1, . . . , ξmξ can be chosen in advance,

the approximate expected utility ûQ (d) in (43) can be written
as an explicit function of the states x(t; θ1), . . . , x(t; θmθ ) from
(26), (42), and the same is valid for the approximate constraint
moments m̂I

k(t; d) and m̂II
k (t; d) in (45) and (46). Thus, these

approximations involve the dynamics

r
(
s(t),u(t)

)
:=

⎡⎢⎣ f (x(t; θ1), θ1,u(t))
...

f
(
x(t; θmθ ), θmθ ,u(t)

)
⎤⎥⎦ , (52)

for the nr := nxmθ states and initial conditions

s(t) :=

⎡⎢⎣ x(t; θ1)
...

x(t; θmθ )

⎤⎥⎦ , s0(b) :=

⎡⎢⎣ x0 (θ1, b)
...

x0
(
θmθ , b

)
⎤⎥⎦ . (53)

Hence, we define

φQ
(
s(t1), . . . , s(tT )

)
:= 1T

mθWpUQ (d), (54)

µQ ,k
(
s(t)

)
:=

r2k
1+r2k

1T
mθWpM II

k
(t; d) −

(
1T
mθWpM I

k
(t; d)

)2
,

k = 1, . . . , nh. (55)

Accordingly, the Bayesian OED problem (23) can be approxi-
ated by the OCP

ˆ∗

Q := argmax
d∈D

ûQ (d) = φQ
(
s(t1), . . . , s(tT )

)
, (56a)

s.t. ṡ(t) = r
(
s(t),u(t)

)
, s(t0) = s0(b), (56b)

r2k
1+r2k

m̂II
k (t; d) −

(
m̂I

k(t; d)
)2

= µQ ,k
(
s(t)

)
≤ 0,

k = 1, . . . , nh, (56c)

(26), (42), (56d)

where µ
(1)
Q (s,u) :=

∂µQ
∂s (s)r(s,u) depends explicitly on u.

For the sake of clarity, in the remainder we use the notation
û(d), φ

(
s(t1), . . . , s(tT )

)
, µk

(
s(t)

)
in lieu of ûD(d), φD

(
S(t1), . . . ,

(tT )
)
, µD,k

(
S(t)

)
as well as ûQ (d), φQ

(
s(t1), . . . , s(tT )

)
, µQ ,k

(
s(t)

)
,

but all the following developments are valid for both OCPs (51)
and (56).

5. Reformulation of the OCP as polynomial optimization prob-
lems

This section defines the proposed reformulation of the OCPs
(51) and (56), with the purpose of transforming these OCPs into
polynomial optimization problems that are amenable to global
optimality.

5.1. Solution approach

The inputs that represent the solution to the OCPs (51) and
(56) are composed of several arcs. For each input uj, each arc can
be of type (1) bang–bang, such that it is determined by an equality

or u = u , (2) active-state constraint, such that it is
uj = uj j j

7

determined by an equality µ(1)
k (s,u) = 0 for some k = 1, . . . , nh,

r (3) free, such that it is determined by an equality that stems
rom the dynamics given by r

(
s(t),u(t)

)
, also labeled as singular

n the relevant case of input-affine OCPs with r
(
s(t),u(t)

)
affine

n u(t) [34,47]. Hence, there is a finite number of arc types from
hich arc sequences can be formed. If we consider as plausible
rc sequences only sequences with a number of arcs no larger
han some upper bound n̄a and without consecutive arcs of the
ame type, it follows that the number of plausible sequences is
lso finite. Suppose that we denote the bang–bang arcs as 1L or
U, depending on whether they are determined by uj = uj or

uj = uj. Then, note that: (i) sequences with fewer than n̄a arcs
are particular cases of the sequences with n̄a arcs where some
arcs vanish, and (ii) the sequences that end with an arc of type
3 are not plausible in input-affine OCPs according to Pontryagin’s
maximum principle [48,49]. Hence, by recalling that plausible arc
sequences do not have consecutive arcs of the same type, the
branching factor is 2 for each arc in a plausible sequence for a
single-input OCP, and the number of plausible sequences is equal
to 2n̄a for an input-affine OCP or 3

22
n̄a otherwise. In addition,

one can note that the arcs of types 1L and 1U can be seen as
particular cases of arcs of type 3 since in arcs of types 1L and 1U
the input is constant, while in arcs of type 3 the input is assumed
to be approximated by a linear function. This implies that certain
arc sequences do not need to be considered. For example, for
n̄a = 3, the sequence 1U-1L-1U does not need to considered
ecause it is a particular case of the sequences 1U-3-1U and 3-
L-1U. However, it is not recommendable to express all the arc
equences as particular cases of a hypothetical sequence with n̄a
rcs of type 3 since the number of decision variables for that
equence would be excessive.

emark 9. The effect of non-optimal inputs is different for
rcs of different types: a non-optimal input in bang–bang and
ctive-state constraint arcs has an important effect on the cost
f the OCP, while a non-optimal input in free/singular arcs has
negligible effect on the cost [47]. Hence, we use the fact that
non-optimal input in free/singular arcs has a negligible effect
n the cost to assume that free/singular arcs are approximated
y linear functions of time throughout the paper. Even if the true
ptimal input in a free/singular arc is not a linear function, its
pproximation by a linear function does not have a significant
ffect on the cost and leads to a small loss of optimality. On
he other hand, since a non-optimal input in bang–bang and
ctive-state constraint arcs has an important effect on the cost,
onstraint handling is emphasized in the paper.

Parsimonious input parameterization is an effective approach
or describing the optimal inputs using only a few decision vari-
bles, in contrast to infinite-dimensional variables in the original
CP [33,34]. For a given plausible arc sequence composed of ns+1
ang–bang and free/singular arcs, the inputs are defined by the
ollowing decision variables: the switching times t̄1, . . . , t̄ns to
rcs of types 1 and 3 and the initial conditions of the free/singular
rcs. The difference with respect to a switching point optimiza-
ion approach is precisely the inclusion of the initial conditions
f the free/singular arcs as decision variables, which allow rep-
esenting singular arcs in input-affine OCPs related to complex
onlinear systems [50]. The final time t̄ns+1 = tf is not a decision

variable in this paper. The entry points in arcs of type 2 are given
by the nη-dimensional vector η = (η1, . . . , ηnη ), but the switching
o these arcs cannot occur at arbitrary times since it depends on
he states s. In this paper, we assume that µ(1)(s,u) explicitly
epends on u because otherwise it would be impossible to ensure
hat the state constraint µk

(
s(t)

)
≤ 0 remains active for t > η

nce an entry point η is reached such that µ
(
s(η)

)
= 0 for
k
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ome k = 1, . . . , nh. For example, suppose that µ(1)(s) does not
xplicitly depend on u but µ(2)(s,u) :=

∂µ(1)

∂s (s)r(s,u) explicitly
epends on u. Then, once an entry point η is reached such that
k
(
s(η)

)
= 0 and µ(1)

k

(
s(η)

)
> 0 for some k = 1, . . . , nh, there

exists no u(t) that guarantees that µk
(
s(t)

)
≤ 0 for t > η. In

ontrast, if µ(1)(s,u) explicitly depends on u as assumed, once an
ntry point η is reached such that µk

(
s(η)

)
= 0 for some k =

, . . . , nh, it is possible to choose u(t) such that µ(1)
k

(
s(t),u(t)

)
=

, which ensures that the state constraint µk
(
s(t)

)
≤ 0 remains

active for t > η. Also, we assume that the optimal sequence
of arcs of types 1, 2, and 3 is known for each given sequence
of arcs of types 1 and 3 for clarity and convenience, that is, to
simplify the exposition in the remainder of the paper, although
this assumption is not a requirement.

We aim to apply the parsimonious input parameterization
approach and show how Bayesian OED problems reformulated as
(51) and (56) can be solved efficiently to global optimality. The
proposed approach for global optimality relies on determining: (i)
when and how the globally optimal switching between arcs takes
place for a given plausible arc sequence; and (ii) which sequence
provides the globally optimal solution. Then, addressing question
(i) consists in computing the globally optimal values of the deci-
sion variables for the given arc sequence. For this, we represent
the cost of the OCP as an explicit polynomial function since that
converts the OCP into a set of polynomial optimization problems
(POPs), one for each arc sequence, as shown next. Once question
(i) is addressed for each sequence via parallel computing, it is
trivial to answer question (ii) efficiently.

Hence, the remainder of this section shows how to reformu-
late the OCPs (51) and (56) as a set of POPs, one for each plausible
arc sequence.

5.2. OCP with new decision variables

For a given arc sequence, we describe the input in the ith
time interval

[
t̄i−1, t̄i

)
, for i = 1, . . . , ns + 1, by defining nz,i new

tates and initial conditions for this interval as zi(t) and zi,0. One
an then combine all the states into a vector with a dimension
z := nr + nz,1 + · · · + nz,ns+1

(t) :=

⎡⎢⎣s(t)T

⎡⎢⎣ z1(t)
...

zns+1(t)

⎤⎥⎦
T⎤⎥⎦

T

, (57)

ith corresponding initial conditions z0(b).
The arc type determines the dimension and meaning of the

lements of zi(t), zi,0 and their effect on the inputs u(t) given
y the control law u(t) = c̃

(
z(t)

)
and on the dynamics of zi(t)

given by żi(t) = qi
(
s(t), zi(t)

)
. For bang–bang arcs, zi(t), zi,0 are

of dimension 0 and c̃j
(
z(t)

)
:= uj or c̃j

(
z(t)

)
:= uj for the jth

input. For active-state constraint arcs, zi(t), zi,0 are not needed
and c̃j

(
z(t)

)
is such that µ(1)

k

(
s(t), c̃

(
z(t)

))
= 0 for some k =

1, . . . , nh. For free/singular arcs, since we assume that the jth

input is approximated by a linear function, then zi(t) =

[
ũj,i(t)
p̃j,i(t)

]
and zi,0 =

[
u0
j,i

pj,i

]
are of dimension 2, where u0

j,i and pj,i are

the initial value and slope of the input and ũj,i(t) is its value at
time t , which implies that c̃j

(
z(t)

)
:= ũj,i(t) and qi

(
s(t), zi(t)

)
:=[

p̃j.i(t)
0

]
. The set

{
i : ith arc of uj is of type 3

}
is denoted as Sj,

which implies that nz,1 + · · · + nz,ns+1 = 2
∑nu

j=1 |Sj|. This way
to deal with active-state constraint arcs avoids the need to check
that path constraints are satisfied at a finite number of points
8

t , which typically requires solving a sequence of approximate
problems where the points and the approximations are updated
at each step [51].

Then, upon eliminating input dependencies and rewriting the
OCP in terms of the extended states z, one obtains
φ̃
(
z(t1), . . . , z(tT )

)
:= φ

(
s(t1), . . . , s(tT )

)
and the dynamics

f̃
(
z(t)

)
:=

⎡⎢⎣r
(
s(t), c̃

(
z(t)

))T ⎡⎢⎣ q1 (s(t), z1(t))
...

qns+1
(
s(t), zns+1(t)

)
⎤⎥⎦

T⎤⎥⎦
T

. (58)

Since the design parameters for the given arc sequence are
τ :=

(
t̄1, . . . , t̄ns , z1,0, . . . , zns+1,0, b

)
, the OCP can be reformu-

lated in terms of these new decision variables as

τ∗
:= argmax

τ
φ̂(τ) := φ̃

(
z(t1), . . . , z(tT )

)
, (59a)

s.t. t̄i−1 ≤ t̄i, i = 1, . . . , ns + 1, (59b)

uj ≤ u0
j,s ≤ uj,

uj ≤ u0
j,s + pj,s

(
t̄s − t̄s−1

)
≤ uj, s ∈ Sj, (59c)

ż(t) = f̃
(
z(t)

)
, z(t0) = z0(b), (59d)

which is convenient for numerical optimization since there are
only N := ns + nz,1 + · · · + nz,ns+1 + nb decision variables.

For each entry point η̂j(τ) := ηj, there exists k = 1, . . . , nh
uch that µ̃k

(
z(η̂j(τ)−)

)
< 0, µ̃k

(
z(η̂j(τ))

)
= 0, which means that

˜ k
(
z(t)

)
:= µk

(
s(t)

)
≤ 0 becomes active at t = ηj.

.3. Reformulation as polynomial optimization problems

We aim to reformulate the OCP for each arc sequence as a POP
hat is amenable to global optimization. This entails expressing
he metric φ̂(τ) as a polynomial function [52,53]. To this end, we
ompute φ̂(τ) and its first-order partial derivatives with respect
o τ.

For this, it is essential to consider not only the extended states
(t) and the extended adjoint variables

(t) :=

⎡⎢⎣λ(t)T

⎡⎢⎣ ζ1(t)
...

ζns+1(t)

⎤⎥⎦
T⎤⎥⎦

T

, (60)

ut also the concept of modified Hamiltonian function H̃
(
z(t),

(t)
)

= f̃
(
z(t)

)T
ζ(t). As shown in (59), the extended states z(t)

re described by the differential equations

dz
dt (t) =

∂H̃
∂ζ

(
z(t), ζ(t)

)T
= f̃

(
z(t)

)
, z(t0) = z0(b). (61)

Likewise, the extended adjoint variables ζ(t) are described by
the differential equations
dζ
dt (t) = −

∂H̃
∂z

(
z(t), ζ(t)

)T
= −

∂ f̃
∂z

(
z(t)

)T
ζ(t), ζ(tT ) = 0nz ,

(t−k ) = ζ(tk) +
∂φ̃

∂z(tk)

(
z(t1), . . . , z(tT )

)T
, k = 1, . . . , T , (62)

nd in addition, for each entry point η such that µ̃k
(
z(t)

)
≤ 0

ecomes active at t = η for some k = 1, . . . , nh, it holds that

(η−) = ζ(η) −
∂µ̃k
∂z

(
z(η−)

)T (
f̃
(
z(η−)

)
−f̃

(
z(η)

))T
ζ(η)

µ̃
(1)
k

(
z(η−)

) , (63)

where the last expression is known for the case of state con-
straints of first order, that is, if µ(1)(s,u) :=

∂µ

∂s (s)r(s,u) depends
explicitly on u as assumed, but is unknown for state constraints
of higher order, to the best of our knowledge.
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With these results, one can obtain the first-order partial deri-
atives of φ̂(τ) with respect to τ

∂φ̂

∂ t̄i
(τ) = H̃

(
z(t̄−i ), ζ(t̄−i )

)
− H̃

(
z(t̄i), ζ(t̄i)

)
=

(
f̃
(
z(t̄−i )

)
− f̃

(
z(t̄i)

))T
ζ(t̄i), i = 1, . . . , ns, (64)

∂φ̂

∂zi,0
(τ) = ζi(t0)

T, i = 1, . . . , ns + 1, (65)

∂φ̂

∂b (τ) = λ(t0)T
∂z0
∂b (b). (66)

Then, suppose that there exists τ̄ such that, for all ∆τ ∈ R,

φ̂(τ) =
∑

k∈KN
n

(
cφ̂

)
k∆τk

+ Rφ̂(τ), (67)

where cφ̂ is the vector of polynomial coefficients of φ̂(τ), with(
cφ̂

)
k :=

1
k!

∂kφ̂
∂τk

(τ̄), k the vector of monomial powers in the set
N
n :=

{
(k1, . . . , kN) ∈ NN

0 : 0 ≤ k1 + · · · + kN ≤ n
}

in the case
f a polynomial of degree n, ∆τ := τ − τ̄ the deviation of τ
round τ̄, k! := k1! . . . kN !, ∆τk

:= (τ1 − τ̄1)
k1 . . . (τN − τ̄N)

kN ,
∂k

∂τk
:=

∂k1+···+kN

∂τ
k1
1 ...∂τ

kN
N

, and Rφ̂(τ) is the orthogonal part with respect

o the polynomial basis.
An efficient approach to approximating φ̂(τ) as a polynomial

unction consists in (i) computing the partial derivatives of φ̂(τ)
p to first order with respect to τ and (ii) using multivariate
ermite interpolation to obtain a polynomial of degree n > 1
hat fits the value φ̂(τ l) and the partial derivatives ∂φ̂

∂τ
(τ l) at the

sample points τ l, for l = 1, . . . ,mτ [54]. Note that this requires
o more than computing the extended states z(t) and adjoint
ariables ζ(t) for φ̂(τ) that correspond to each point τ l, which
mounts to solving two systems of nz differential equations for
ach l = 1, . . . ,mτ .

emark 10. One could also avoid computing the partial deriva-
ives ∂φ̂

∂τ
(τ l) and obtain a polynomial that fits only the value φ̂(τ l)

t the sample points τ l, for l = 1, . . . ,mτ . This would require no
ore than computing the extended states z(t) that correspond to
ach point τ l, which would amount to solving one system of nz
ifferential equations for each l = 1, . . . ,mτ . Hence, this would
ntail solving mτ systems of nz differential equations to obtain
τ values for interpolation. In contrast, the approach proposed

n this paper requires solving only 2mτ systems of nz differential
quations to obtain (N + 1)mτ values and partial derivatives for
nterpolation, owing to the computation of the extended adjoint
ariables ζ(t). For this reason, the latter approach was chosen.

Hence, one can compute the coefficient vector ĉφ̂ that mini-
izes

∑
κ∈KN

1
∥pφ̂,κ − Aτ ,κ ĉφ̂∥

2, where
(
ĉφ̂

)
k is an approximation

f
(
cφ̂

)
k, for all k ∈ KN

n , and(
pφ̂,κ

)
l =

∂κ φ̂

∂τκ (τ l), κ ∈ KN
1 , l = 1, . . . ,mτ , (68)

Aτ ,κ
)
l,k =

{
k!

(k−κ)!
∆τk−κ

l , k ≥ κ

0, otherwise,
κ ∈ KN

1 ,

l = 1, . . . ,mτ , k ∈ KN
n . (69)

The vector of polynomial coefficients ĉφ̂ is of dimension
(N+n

N

)
,

while the number of value vectors pφ̂,κ of dimension mτ is N +

1. This means that the number mτ of sample points must be
at least (N+n)!

n!(N+1)! , which is polynomial in N since n is typically
bounded to avoid an overfitting polynomial. In addition, recall
that N is typically small owing to the parsimonious nature of
the input parameterization. This way, although only the partial
derivatives of φ̂(τ) up to first order with respect to τ at the points

are fitted, for l = 1, . . . ,m , the interpolating polynomial
l τ

9

approximates the partial derivatives of φ̂(τ) of higher order (up
o n) with respect to τ in (67).

This yields the polynomial representation of φ̂(τ)

φ̂(τ) =
∑

k∈KN
n

(
ĉφ̂

)
k∆τk. (70)

emark 11. The polynomial function pφ̂(τ) is used to approxi-
ate a mapping between the decision variables τ and a function
f the states s(t) at a finite number of times t1, . . . , tT that do
ot include the switching times t̄1, . . . , t̄ns in τ. In other words,
o switching time t̄i is simultaneously related to the inputs and
utputs of the mapping that is approximated by the polynomial
unction pφ̂(τ). Hence, the polynomial function does not approx-
mate the dependence of any function of the states s(t) on the
eneric time t < tf .

emark 12. To avoid non-smoothness of φ̂(τ) due to the exis-
ence of different sequences of arcs of types 1, 2, and 3 for the
iven sequence of arcs of types 1 and 3, the sample points τ l

ust be restricted to the ones that correspond to the optimal
equence of arcs of types 1, 2, and 3. The procedure is as follows.
or the given sequence of arcs of types 1 and 3, sample points τ l

re chosen. Different points τ l will lead to different sequences of
rcs of types 1, 2, and 3, depending on (i) which state constraints
ecome active and result in arcs of type 2 and (ii) the order of
hese arcs of type 2 with respect to the arcs of types 1 and 3.
or example, suppose that, for a given sequence 1U-3-1U of arcs
f types 1 and 3, it is known that the optimal sequence of arcs
f types 1, 2, and 3 is 1U-3-1U-2, where the arc of type 2 is an
rc with an active state constraint. In this example, some points
l lead to the optimal sequence of arcs 1U-3-1U-2, while other
oints may lead to other sequences such as 1U-3-1U (without
ctive state constraints) or 1U-2-3-1U (with a different order of
he arcs of type 2 with respect to the arcs of types 1 and 3),
mong others. Then, only the points τ l that correspond to the
ptimal sequence of arcs of types 1, 2, and 3 (the sequence 1U-
-1U-2 in the example above) are used for the computation of
he polynomial approximation pφ̂(τ) in (70). This is done to avoid
he non-smoothness of φ̂(τ) that would occur if all the points τ l

ere used to construct the polynomial approximation regardless
f their sequences of arcs of types 1, 2, and 3. Hence, we consider
he problem only for the optimal sequence of arcs of types 1, 2,
nd 3. To this end, we use a support vector machine pη̂j (τ) with
olynomial kernel to decide whether the points τ are such that
ach entry point η̂j(τ) in arcs of type 2 is placed with respect
o t̄1, . . . , t̄ns according to the optimal sequence of arcs of types
, 2, and 3. To construct the support vector machine, the points
l are classified in two groups: the points τ l that correspond to
he optimal sequence of arcs of types 1, 2, and 3 (the sequence
U-3-1U-2 in the example above) are labeled with the value 1,
nd the remaining points are labeled with the value -1. This is
one to prevent the POP from searching values of τ for which
he corresponding sequence of arcs of types 1, 2, and 3 is not the
ptimal one.

Hence, when the metric φ̂(τ) is expressed as a polynomial

φ̂(τ) in the variables τ for a given arc sequence, the OCP for that
rc sequence is reformulated as the POP

min −p ˆ (τ), s.t. pγ̂ (τ) ≥ 0n ,

τ φ γ
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pγ̂ (τ)
)
j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hηj (τ), j = 1, . . . , nη,

ht
j−nη (τ), j = nη + 1, . . . , n̄ψ ,

hb
j−n̄ψ (τ), j = n̄ψ + 1, . . . , n̄ψ + |S|,

h
b
j−n̄ψ−|S|

(τ), j = n̄ψ + |S| + 1, . . . , n̄ψ + 2|S|,

he
j−n̄ψ−2|S|

(τ), j = n̄ψ + 2|S| + 1, . . . , n̄ψ + 3|S|,

h
e
j−n̄ψ−3|S|

(τ), j = n̄ψ + 3|S| + 1, . . . , nγ ,

(71)

here n̄ψ := nη + ns + 1, nγ := n̄ψ + 4|S|,
η

j (τ) := pη̂j (τ), j = 1, . . . , nη, (72a)
t
i (τ) := t̄i − t̄i−1, i = 1, . . . , ns + 1, (72b)
b
i (τ) := u0

s − u, h
b
i (τ) := u − u0

s ,

e
i (τ) := u0

s + ps
(
t̄s − t̄s−1

)
− u,

h
e
i (τ) := u − u0

s − ps
(
t̄s − t̄s−1

)
, s = Si, s ∈ S, (72c)

and γ̂(τ) is defined as pγ̂ (τ). Note that the case of a single input
is considered above for clarity.

Remark 13. The differential equations and initial conditions in
(59d) are removed from (71) since the approximated function
φ̂(τ) is replaced by its polynomial approximation pφ̂(τ), which no
longer depends on any differential equations or initial conditions.

The POP (71) is solved efficiently to global optimality via
reformulation as a hierarchy of convex semidefinite programs
(SDPs) of increasing relaxation order using the concept of sum-
of-squares polynomials [35]. Although the method to solve such
problems to global optimality is out of the scope of the paper,
standard methods for this purpose are described in [52,53]. To
provide some key properties of this reformulation, we introduce
the following definitions:

ϕ(τ) := J(τ) − ξ, J(τ) := −pφ̂(τ), (73a)

gj(τ) :=
(
pγ̂ (τ)

)
j, j = 1, . . . , nγ , (73b)

gnc (τ) := r2v −
∑N

k=1 (τk − τ̄k)
2v , (73c)

where r is a constant, ϕ(τ) is of degree 2v0 or 2v0 − 1 and gj(τ)
is of degree 2vj or 2vj − 1, with cd := maxj=1,...,nc vj, and the
relaxation order d ≥ v := maxj=0,1,...,nc vj.

Then, the POP (71) is equivalent to the problem of computing
the maximum ξ such that ϕ(τ) is strictly positive ∀τ ∈ K ={
τ : gj(τ) ≥ 0,∀j = 1, . . . , nγ

}
. The problem of computing the

global minimum of J(τ) subject to gj(τ) ≥ 0, for j = 1, . . . , nc , can
be formulated as an SDP for some relaxation order d ≥ v = ⌈n/2⌉.
A certificate of the representation in terms of sum-of-squares
polynomials for the order d is obtained upon convergence of the
SDP, which is a certificate of global optimality of the solution τ∗

p
and the cost ξ ∗

= J∗.
As for the complexity of this method, suppose that cd ≥ 1 and

a global optimum is computed and certified for the relaxation
order d = 5. This implies that an SDP has been solved with(N+2d

N

)
=

(N+10)...(N+1)
3628800 equality constraints, one linear matrix

nequality (LMI) of size
(N+d

N

)
=

(N+5)(N+4)(N+3)(N+2)(N+1)
120 , and

c = nγ + 1 LMIs of size
(N+d−vj

N

)
≤

(N+4)(N+3)(N+2)(N+1)
24 . Since

he complexity of SDPs is polynomial in their input size, that is,
he number of constraints and the size of the LMIs, it means that
global solution τ∗

p is computed and certified in polynomial time.
When the globally optimal cost is known for each arc se-

uence, one can check which sequence is the best one. As men-
ioned in Section 5.1, the number of plausible arc sequences in
 H

10
single-input input-affine OCPs is less than 2n̄a . The number of
decision variables for each arc sequence is N = ns + 2|S| ≤ 2n̄a.
This means that, even for a relatively large upper bound n̄a = 5,
less than 2n̄a = 32 arc sequences would be considered, and the
problem for each sequence can be solved in parallel and involves
only N ≤ 2n̄a = 10 decision variables.

5.4. Error due to polynomial approximation

Since the solution to the POP (71) is not exactly the same as
the solution to Problem (59) due to the fact that the polynomial
function −pφ̂(τ) is an approximation of the cost function −φ̂(τ),
the question arises as to whether one can quantify the error in the
optimal solution and the optimal value of the cost of the POP.

Suppose that the global solution to the POP (71) is τ∗
p , for

which na constraints −pγ̂ (τ) ≤ 0nγ given by a selection matrix
Sa are active with Lagrange multipliers ν∗

p ≥ 0na . The Karush–
Kuhn–Tucker (KKT) conditions for τ∗

p are

−
∂p
φ̂

∂τ
(τ∗

p)
T
−

∂pγ̂

∂τ
(τ∗

p)
TSTaν

∗

p = 0N , (74a)

−Sapγ̂ (τ∗

p) = 0na . (74b)

We aim to obtain explicit expressions for (i) the difference
τ between τ∗

p and τ∗, the KKT point of Problem (59) that cor-
responds to τ∗

p , and (ii) the difference δφ̂ between −pφ̂(τ
∗
p) and

−φ̂(τ∗), the cost of Problem (59) at τ∗. It is impossible to obtain
exact and explicit expressions for these differences since that
would involve infinite series expansions around τ∗

p and would
imply explicit solutions to high-degree polynomials for δτ and
φ̂ and the Abel–Ruffini theorem states that there is no closed-
orm algebraic expression for the solution to general polynomial
quations of degree five or higher with arbitrary coefficients [55].
owever, one can obtain explicit expressions for the approxima-
ions of δτ and δφ̂, as well as exact and implicit expressions that
onsider the variations of the second-order derivatives of the cost
nd Lagrangian functions and of the first-order derivatives of the
onstraint functions, which is done in the following theorem.

heorem 1. For a first-order approximation of the KKT conditions
or Problem (59) and a second-order approximation of its cost, the
xplicit difference between the KKT points is

τ ≃

(
Lp − LpZT

p

(
ZpLpZT

p

)−1 ZpLp
)
∂ϵ
φ̂

∂τ
(τ∗

p)
T, (75)

while the explicit difference between the costs is

δφ̂ ≃ ϵφ̂(τ
∗

p) −
∂φ̂

∂τ
(τ∗

p)δτ −
1
2δτ

THpδτ, (76)

ith the Lagrangian L̂(τ, ν) := −φ̂(τ) − νTSaγ̂(τ), the approxima-
tion error ϵφ̂(τ) := −pφ̂(τ) + φ̂(τ) for the cost, and the definitions

p := −
∂2L̂
∂τ2

(τ∗
p, ν

∗
p)

−1, Zp := Sa ∂ γ̂∂τ (τ
∗
p), and Hp := −

∂2φ̂
∂τ2

(τ∗
p).

Implicitly, the exact difference between the KKT points is

δτ =

(
L − LZT (

ZLZT)−1 ZL
)
∂ϵ
φ̂

∂τ
(τ∗

p)
T, (77)

hile the exact difference between the costs is

φ̂ = ϵφ̂(τ
∗

p) −
∂φ̂

∂τ
(τ∗

p)δτ −
1
2δτ

THδτ, (78)

ith the definitions

L := −

(∫ 1
0
∂2L̂
∂τ2

(τ∗

p − ξδτ, ν∗

p − ξδν)dξ
)−1

, (79)

Z :=
∫ 1
0 Sa

∂ γ̂

∂τ
(τ∗

p − ξδτ)dξ, (80)

:=
∫ 1

− 2 1 − ξ
∂2φ̂ (τ∗

− ξδτ)dξ . (81)
0 ( )
∂τ2 p
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roof. The KKT conditions for the solution τ∗
p − δτ to Problem

59) are given by
∂L̂
∂τ

(τ∗

p, ν
∗

p)
T
+ L−1δτ + ZTδν = 0N , (82a)

−Saγ̂(τ∗

p) + Zδτ = 0na . (82b)

Upon using the first-order approximation of these KKT condi-
tions, they become
∂L̂
∂τ

(τ∗

p, ν
∗

p)
T
+ L−1

p δτ + ZT
pδν ≃ 0N , (83a)

−Saγ̂(τ∗

p) + Zpδτ ≃ 0na . (83b)

Hence, from (74), it holds that

L−1δτ + ZTδν =
∂ϵ
φ̂

∂τ
(τ∗

p)
T, (84a)

Zδτ = 0na , (84b)

hich yields (77) by using the blockwise inversion formula, while
he approximation

−1
p δτ + ZT

pδν ≃
∂ϵ
φ̂

∂τ
(τ∗

p)
T, (85a)

Zpδτ ≃ 0na , (85b)

ields the explicit expression for δτ in (75) by using the blockwise
nversion formula.

Then, since the cost of Problem (59) at τ∗ is given by

φ̂(τ∗

p − δτ) = −φ̂(τ∗

p) +
∂φ̂

∂τ
(τ∗

p)δτ +
1
2δτ

THδτ, (86)

78) holds and one can use the second-order approximation

φ̂(τ∗

p − δτ) ≃ −φ̂(τ∗

p) +
∂φ̂

∂τ
(τ∗

p)δτ +
1
2δτ

THpδτ (87)

o obtain the explicit expression for δφ̂ in (76). □

emark 14. Theorem 1 only provides an explicit expression for
he first-order approximation of the difference δτ between τ∗

p , the
lobal solution to the POP (71), and τ∗, the KKT point of Problem
59) that corresponds to τ∗

p . This means that τ∗
p − δτ is a good

pproximation for τ∗ with an explicit expression. One can obtain
he exact KKT point τ∗ of Problem (59) that corresponds to τ∗

p via
ocal optimization of Problem (59) with initial guess τ∗

p − δτ.

Moreover, one can assess the quality of the solution τ∗ ob-
ained by solving the POP (71) to global optimality followed by
ocal optimization of Problem (59). To this end, the following
heorem shows that the difference between the cost −φ̂(τ∗) ob-
ained from (71) and the globally optimal cost of (59) is bounded
nd depends on the polynomial approximation error ϵφ̂ defined
n Theorem 1.

heorem 2. If δφ̂KKT
max is the maximum difference between the costs

f any KKT point of the POP (71) and any corresponding KKT point
of Problem (59), then the difference between −φ̂(τ∗) and the cost of
roblem (59) at its globally optimal solution is at most δφ̂KKT

max − δφ̂
nd is bounded if the error ϵφ̂ is bounded.

roof. The globally optimal solution to Problem (59) is a KKT
oint τKKT of Problem (59) that corresponds to some KKT point
KKT
p of the POP (71), and φ̂(τKKT)−φ̂(τ∗)−δφ̂KKT

max+δφ̂ ≤ pφ̂(τ
KKT
p )−

φ̂(τ
∗
p) ≤ 0 since τ∗

p is the globally optimal solution to the POP
71). In addition, from Theorem 1, δφ̂KKT

max and δφ̂ depend on ϵφ̂ . □

. Design requirements and computational complexity

In this paper, several steps are taken to allow obtaining a
ractable formulation of the Bayesian OED problem. In particular,
everal functions are used as expected utilities:
11
• The original expected utility uKL(d) based on the utility
function UKL(θ, d) that corresponds to a KL divergence.

• The approximate expected utilities uD(d) or uMC (d) based on
the utility function UD(θ, d) that corresponds to a function
of the FIM or the utility function UMC (θ, d) that corresponds
to Monte Carlo integration in the observation space.

• The approximation û(d) that is obtained when the mul-
tivariate integrals uD(d), uMC (d), or p(y|d) in the space of
parameters θ are computed via Gaussian quadrature, which
results in a cost −φ

(
s(t1), . . . , s(tT )

)
for the reformulation

as an OCP.
• The metric φ̂(τ) that is obtained when û(d) is restricted to

designs d that correspond to a certain arc sequence.
• The polynomial approximation pφ̂(τ) of φ̂(τ).

Also, several functions related to each chance path constraint
re used:

• The original function qk(t; d) that specifies the probability of
satisfaction of the path constraint hk

(
x(t; θ)

)
≤ 0.

• The first two moments mI
k(t; d) and mII

k (t; d) of hk
(
x(t; θ)

)
that express the moment-based approximation of the chance
path constraint.

• The approximations m̂I
k(t; d) and m̂II

k (t; d) that are obtained
when the multivariate integrals mI

k(t; d) and mII
k (t; d) in the

space of parameters θ are computed via Gaussian quadra-
ture, which result in a path constraint µk

(
s(t)

)
≤ 0 for the

reformulation as an OCP.

Accordingly, the computational procedure can be summarized
as follows:

1. A set of plausible arc sequences is chosen for the solution
to the OCP that results from reformulation of the OED
problem, which includes only sequences with a number
of arcs no larger than some upper bound n̄a and with-
out consecutive arcs of the same type. Less than 2n̄a arc
sequences would be considered for a single-input input-
affine OCP, and the problem for each sequence can be
solved in parallel. Note that, even for a relatively large
upper bound n̄a = 5, the problem involves only N ≤ 2n̄a =

10 decision variables for a single-input OCP.
2. To compute a global solution τ∗

p to the POP for a given
arc sequence, the polynomial approximation pφ̂(τ) must be
obtained. To this end, the value φ̂(τ l) and partial deriva-
tives ∂φ̂

∂τ
(τ l) are fitted at the sample points τ l, for l =

1, . . . ,mτ . The number mτ of sample points must be at
least (N+n)!

n!(N+1)! , which is polynomial in N since the degree n
of the polynomial approximation is typically bounded.

3. For each sample point τ l, the extended states z(t) and
adjoint variables ζ(t) for φ̂(τ) are computed. This amounts
to solving two systems of nz differential equations for each
l = 1, . . . ,mτ , where nz = nr + nz,1 + · · · + nz,ns+1,
nz,1 + · · · + nz,ns+1 = 2|S| ≤ n̄a for a single-input OCP,
and nr = nxmθ , where nx is the number of states of the dy-
namical system. Once the differential equations are solved
for a given τ l, φ̂(τ l) and ∂φ̂

∂τ
(τ l) are computed by evaluating

the pdf π (·|x̄,Σ ξ) mθmξ (1 + mθ ) times, where mξ is the
number of samples used for Monte Carlo integration in the
observation space.

4. The number mθ of quadrature points must be equal to⌈
|K̄

nθ
n̄ |

nθ+1

⌉
≤

⌈
|K

nθ
n̄ |

nθ+1

⌉
=

⌈
(nθ+n̄)!
n̄!(nθ+1)!

⌉
for exact integration

of polynomials of a given degree n̄ using the multivari-
ate equivalent of Gaussian quadrature, where truncation
schemes can be used to introduce sparsity and to eliminate
many elements of Knθ

n̄ from K̄nθ
n̄ in the case of a large

number n of parameters.
θ
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5. Once the polynomial approximation pφ̂(τ) is obtained, the
global solution to the POP is computed by solving a hier-
archy of convex SDPs of increasing relaxation order, where
each SDP is solved in polynomial time with respect to N
and the relaxation order.

6. Finally, the exact solution τ∗ of the OCP that corresponds to
τ∗
p is obtained via local optimization of the OCP with initial

guess τ∗
p − δτ, which requires an additional sample point

for each iteration of the local optimization solver.

From the procedure above, one can observe that the main
omputational bottleneck is the solution of differential equations.
n total, at least 2 (N+n)!

n!(N+1)!nxmθ differential equations must be
olved for each arc sequence, where N ≤ 2n̄a = 10 for n̄a = 5.
n the other hand, the use of an efficient method for multi-
ariate integration in the space of parameters based on sparse
tochastic collocation and Gaussian quadrature is an important
eature of the proposed approach since it reduces the number
θ of quadrature points, particularly in the case of large nθ , and
nsures that mθ ≤

⌈
(nθ+n̄)!
n̄!(nθ+1)!

⌉
. In particular, mθ is much smaller

than what it would be if Monte Carlo integration had been used
for multivariate integration in the space of parameters. Also, the
number of differential equations for each arc sequence does not
depend on the number T of time instants at which measurements
are available since T may only affect the number mξ of samples
used for Monte Carlo integration in the observation space. In
turn, mξ only affects the number mθmξ (1 + mθ ) of times that
the pdf π (·|x̄,Σ ξ) is evaluated for each sample point τ l, which
is cheaper than the solution of 2nxmθ differential equations. In
summary, the computational complexity for each arc sequence is
polynomial in N , nx, and nθ for fixed n and n̄, and the problem
for each sequence can be solved in parallel, which makes the
computational procedure tractable.

7. Case study

The proposed methods for approximate Bayesian OED are
demonstrated on a Lotka–Volterra (LV) system represented by a
set of nonlinear differential equations that describes the interac-
tion of predator and prey populations. The LV system has been
used as a testbed for optimal control [56,57] and OED [25,58].
The nondimensional governing equations are given as

ẋ1(t) = x1(t) − (1 + θ1) x1(t)x2(t) − 0.4x1(t)u1(t), (88a)

ẋ2(t) = −x2(t) + (1 + θ2) x1(t)x2(t) − 0.2x2(t)u1(t), (88b)

where t ∈ [0, tf ] is the integration time span, with tf = 12. The
differential states x1 and x2 describe the population of the prey
and the predator, respectively. The uncertain parameters, which
must be inferred from experimental observations, are denoted
by θ1 and θ2. The system (88) is integrated using the initial
conditions x0(θ) = [0.5, 0.7]. It is assumed that we can mea-
sure the predator population at the final time step, i.e., y(tf ) =

x2(tf ; θ) + e(tf ). The designed input is allowed to attain values
in a predefined interval, i.e., u1(t) ∈ [0, 1],∀t ∈ [0, tf ]. Two
cases are studied: in the first one, the measurement error is state-
independent and normally distributed, the parameters follow a
normal prior pdf, and no chance constraint is considered; in
the second one, the measurement error is state-dependent, the
parameters follow a beta prior pdf, and a chance constraint is
considered.

7.1. Gaussian distributions with no chance constraint

In this first case, the measurement error e(tf ) is state-indepe-
ndent and normally distributed, and its variance is assumed to be
 o

12
constant and equal to σ 2
= 0.12. The uncertain parameters follow

a bivariate normal prior pdf p(θ) = f (θ|θ̄,Σ θ) with mean θ̄ = 02
and covariance Σ θ = 0.22I2. For this case, which corresponds
to Assumptions 1 and 2, we consider the OCP (51) and use the
notation φ̂(τ) := φD

(
S(t1), . . . , S(tT )

)
.

When linear functions are used to approximate free/singular
arcs, a locally optimal solution consists of 3 arcs: the first arc is
free/singular with u1 < u∗

1(t) < u1, for which an approximation
by a linear function is used; in the second arc, u∗

1(t) = u1; and
in the third arc, u∗

1(t) = u1. This results in an input trajectory
described by the 4 decision variables t̄1, t̄2, u0

1,1, p1,1. The optimal
switching times are t̄∗1 = 5.334, t̄∗2 = 9.477. The optimal initial
conditions for the first arc are the initial value and the constant
slope of the linear function that describes u∗

1(t) in this arc: u0∗
1,1 =

0.482, p∗

1,1 = −0.090. The optimal metric is φ̂(τ∗) = 11.6706.
The local optimality is indicated by the fact that the gradients
(64), (65) are equal to zero and the solution satisfies approxi-
mately the necessary conditions given by Pontryagin’s maximum
principle [49].

We use the mθ = 12 quadrature points and weights shown
in Fig. 1 to compute ûD(d) via integration of UD(θ, d). This cor-
responds to exact integration of Hermite polynomials (the or-
thogonal polynomials with respect to the normal distribution
of p(θ)) up to degree n̄ = 7 using the multivariate equivalent
of Gaussian quadrature, with weights w and points θ1, . . . , θmθ .
Note that, even for this problem with nθ = 2 parameters, the use
of a univariate Gaussian quadrature followed by a tensor product
rule for the choice of points and weights would already require
16 quadrature points. The input u∗

1(t) and the measured state
x∗

2(t; θ) for the realizations θ1, . . . , θmθ are shown in Fig. 2, which
indicates that x∗

2(tf ; θ) is sensitive to variations of θ.
The proposed approach for obtaining global solutions to

Bayesian OED problems is applied by investigating all the 6
plausible arc sequences with a number of arcs no larger than
n̄a = 3. Table 1 reports the execution time of the procedure on
an Intel Core i7 3.4 GHz processor, the optimal metric φ̂(τ∗), and
the optimal values of the decision variables for these plausible
arc sequences. The execution time includes the evaluation of
mτ = 2000 sample points to obtain a polynomial represen-
tation pφ̂(τ) of degree n = 8 and the local optimization of
φ̂(τ) with initial guess τ∗

p needed to compute τ∗ for each arc
sequence. For the very last step of local optimization with an
initial guess that is already close to the solution τ∗, MATLAB’s
fmincon function with optimality tolerance of 10−12 and step
tolerance of 10−15 is used. For all the arc sequences, it is possible
to extract the unique solution τ∗

p to the POP for pφ̂(τ) from the
solution to the SDP for a low relaxation order and certify the
global optimality of τ∗

p . The duration of the formulation of the
SDP and the extraction and certification of the global solution is
much smaller than the execution time of the SDP solver MOSEK
9.2. The table is read as: for each arc sequence, the optimal
values τ∗

= (t̄∗1 , t̄
∗

2 , u
0∗
1,i, p

∗

1,i) of the decision variables allow
obtaining the optimal metric φ̂(τ∗) = ûD(d∗

τ ), where the design
d∗
τ corresponds to τ∗ for each arc sequence. For the design d∗

τ ,
accurate approximations of uD(d∗

τ ) and uKL(d∗
τ ) are also computed.

ne can observe that ûD(d∗
τ ) overestimates uD(d∗

τ ) and uKL(d∗
τ )

onsistently. For comparison, a design dPRBS corresponding to
pseudorandom binary sequence (PRBS) of size 31 would al-

ow obtaining significantly worse results: ûD(dPRBS) = 8.9247,
D(dPRBS) = 8.9200, 2uKL(dPRBS) + K = 8.8370. Moreover, the
xecution time is below 900 s for all arc sequences, and the
equence with the best optimal metrics is 3-1U-1L (highlighted
n bold in the table), that is, the sequence of the locally optimal
olution. In addition, the globally optimal values t̄∗1 , t̄

∗

2 , u
0∗
1,1, p

∗

1,1

f the decision variables for that arc sequence also correspond
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Fig. 1. Contour plot of the prior pdf p(θ) in Section 7.1 and location of the mθ = 12 quadrature points (indicated by markers that consist of white crosses inside
lack circles) used for integration via Gaussian quadrature. The marker size represents the weight of each point.
Fig. 2. Optimal input trajectory (in blue) for the Bayesian OED problem in Section 7.1 with the approximation of the free/singular arc using a linear function. The
trajectories of the measured state (in red) are juxtaposed for the mθ = 12 realizations θ1, . . . , θmθ used for multivariate integration. The relative width of the lines
orresponds to the weights w of these realizations.
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o the optimal values given by the locally optimal solution.
or this optimal design, the covariance matrix of the posterior
arameter distribution computed as in Appendix D becomes
0.01850 0.00938
0.00938 0.01569

]
, while for the design based on a PRBS

he covariance matrix would become
[

0.01898 −0.01665
−0.01665 0.02566

]
,

hich is worse.
In summary, one can show that the locally optimal solution

o the Bayesian OED problem shown in Fig. 2 is also the globally
ptimal solution with no more than n̄a = 3 arcs, and this only
equires solving 6 problems in parallel in less than 900 s. Based
n the computational complexity reported in Section 6, if the
ethod for multivariate integration in the space of parameters
13
ased on sparse stochastic collocation and Gaussian quadrature
s chosen such that the number mθ of quadrature points depends
uadratically on the number nθ of parameters, a similar problem
ith nx = 10 states of the dynamical system and nθ = 10 pa-
ameters could still be considered tractable on a standard laptop.
ecall that, if we had only used local optimization to compute
local solution to (51), we could have obtained a local solution
orse than τ∗ and it would not have been possible to provide
ny guarantee that the local solution is in any way close to the
lobally optimal solution. For example, note that, since even the
pproximation and reformulation of the Bayesian OED problem
esults in an optimization problem with 4 decision variables, it
s impossible to show that τ∗ or any other local solution is the
lobally optimal solution by simply plotting the cost −φ̂(τ) in the
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Table 1
Execution time, optimal metrics φ̂(τ∗) = ûD(d∗

τ ), uD(d∗
τ ), 2uKL(d∗

τ )+ K , where K = log
(
det

(
Σ

−1
θ

))
, and optimal values t̄∗1 , t̄

∗

2 , u
0∗
1,i , p

∗

1,i
of the decision variables for the global solution to the Bayesian OED problem in Section 7.1, for different arc sequences and the
final time tf = 12. The arc sequence with the best optimal value of φ̂(τ∗) is highlighted in bold.

Arc sequence Execution time (s) ûD(d∗
τ ) uD(d∗

τ ) 2uKL(d∗
τ ) + K t̄∗1 t̄∗2 u0∗

1,i p∗

1,i

3-1L-1U 866 11.1308 11.0959 10.9337 2.320 12.000 1.000 0.000 (i = 1)
3-1U-1L 876 11.6706 11.6309 11.4050 5.334 9.477 0.482 −0.090 (i = 1)
1L-3-1L 716 11.5277 11.4599 11.1177 5.130 10.158 1.000 0.000 (i = 2)
1L-3-1U 835 10.6843 10.6181 10.4023 4.978 12.000 1.000 −0.129 (i = 2)
1U-3-1L 690 11.4730 11.4509 11.2201 1.794 9.260 0.000 0.134 (i = 2)
1U-3-1U 779 11.1308 11.0959 10.9337 2.320 12.000 0.000 0.000 (i = 2)
Fig. 3. Contour plot of the prior pdf p(θ) in Section 7.2 and location of the mθ = 19 quadrature points (indicated by markers that consist of white crosses inside
lack circles) used for integration via Gaussian quadrature. The marker size represents the weight of each point.
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-dimensional space of decision variables, but the methods in this
aper guarantee that τ∗ is indeed the globally optimal solution.

.2. Arbitrary distributions with a chance constraint

In this second case, the measurement error e(tf ) =
(
1 +

.1x2(tf ; θ)
)
ξ1 is state-dependent, ξ1 is normally distributed, and

its variance is assumed to be constant and equal to σ 2
= 0.12.

The uncertain parameters follow a bivariate prior pdf p(θ) =∏2
i=1 B(1/2 − θi|a, b), with a = 2 and b = 2, where B(x|a, b)

is the pdf of a univariate beta distribution with parameters a
and b, which corresponds to a prior distribution with mean θ̄ =

02 and covariance 0.05I2. Furthermore, the approximate chance
constraint E

[
h1

(
x(t; θ)

)]
+ r1

√
V
[
h1

(
x(t; θ)

)]
≤ 0 is enforced for

h1
(
x(t; θ)

)
= x1(t; θ) − x1, with x1 = 6.6 and r1 = φ−1(0.95). For

this case, which corresponds to Assumptions 3 and 4, we consider
the OCP (56) and use the notation φ̂(τ) := φQ

(
s(t1), . . . , s(tT )

)
.

When linear functions are used to approximate free/singular
arcs, a locally optimal solution consists of the same 3 arcs as in
the first case. This results in an input trajectory described by the 4
decision variables t̄1, t̄2, u0

1,1, p1,1. The optimal switching times are
t̄∗1 = 5.206, t̄∗2 = 9.330. The optimal initial conditions for the first
arc are the initial value and the constant slope of the linear func-
tion that describes u∗

1(t) in this arc: u0∗
1,1 = 0.538, p∗

1,1 = −0.103.
The optimal metric is φ̂(τ∗) = 2.1724. The local optimality is
indicated by the fact that the gradients (64), (65) are equal to zero
and the solution satisfies approximately the necessary conditions
given by Pontryagin’s maximum principle [49].
 o

14
We use the mθ = 19 quadrature points and weights shown
in Fig. 3 to compute ûQ (d) via integration of UQ (θ, d), which
equires the computation of p̂(y|d) via integration of p(y|θ, d),
s well as m̂I

1(t; d) and m̂II
1(t; d) via integration of M I

1(t; θ, d)
nd M II

1 (t; θ, d). This corresponds to exact integration of Jacobi
olynomials (the orthogonal polynomials with respect to the beta
istribution of p(θ)) up to degree n̄ = 9 using the multivariate
quivalent of Gaussian quadrature, with weights w and points
1, . . . , θmθ . Note that, even for this problem with nθ = 2
arameters, the use of a univariate Gaussian quadrature followed
y a tensor product rule for the choice of points and weights
ould already require 25 quadrature points. Also, note that a

arger polynomial degree is used in this case due to the nested
omputation of multivariate integrals in (43). The input u∗

1(t)
nd the measured state x∗

2(t; θ) for the realizations θ1, . . . , θmθ
re shown in Fig. 4, which indicates that x∗

2(tf ; θ) is sensitive to
ariations of θ. The mean ± r1 standard deviations of the state
∗

1(t; θ) subject to the upper bound x1 = 6.6 is also shown
in Fig. 4. One can observe that the upper bound is marginally
satisfied. As mentioned in Section 3.3, enforcing the approximate
chance constraint E

[
h1

(
x(t; θ)

)]
+ r1

√
V
[
h1

(
x(t; θ)

)]
≤ 0 for the

chosen value of r1 does not ensure satisfaction of the chance
path constraint (7) for h1

(
x(t; θ)

)
. To achieve this goal, one would

have to apply the iterative procedure proposed in Section 3.3
to determine the correct value of r1. However, here we only
show the result of the approach for obtaining global solutions to
Bayesian OED problems for the chosen value of r1, and the result
f the iterative procedure in Section 3.3 is not shown for the sake
f brevity.
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Fig. 4. Optimal input trajectory (in blue) for the Bayesian OED problem in Section 7.2 with the approximation of the free/singular arc using a linear function. The
trajectories of the measured state (in red) are juxtaposed for the mθ = 19 realizations θ1, . . . , θmθ used for multivariate integration. The relative width of the lines
orresponds to the weights w of these realizations. The trajectory of the state subject to an upper bound (in green) is represented in terms of its mean (solid line)
r1 standard deviations (dashed lines).
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The proposed approach for obtaining global solutions to
ayesian OED problems is applied by investigating all the 6
lausible arc sequences with a number of arcs no larger than

¯a = 3. Table 2 reports the execution time of the procedure on
n Intel Core i7 3.4 GHz processor, the optimal metric φ̂(τ∗), and
he optimal values of the decision variables for these plausible
rc sequences. The execution time includes the evaluation of
τ = 6000 sample points to obtain a polynomial representation
φ̂(τ) of degree n = 8 with an approximation error similar to
he previous case and the local optimization of φ̂(τ) with initial
uess τ∗

p needed to compute τ∗ for each arc sequence. For the
ery last step of local optimization with an initial guess that is
lready close to the solution τ∗, MATLAB’s fmincon function with
ptimality tolerance of 10−12 and step tolerance of 10−15 is used.
or all the arc sequences, it is possible to extract the unique
olution τ∗

p to the POP for pφ̂(τ) from the solution to the SDP
or a low relaxation order and certify the global optimality of τ∗

p .
he duration of the formulation of the SDP and the extraction
nd certification of the global solution is much smaller than the
xecution time of the SDP solver MOSEK 9.2. The table is read as:
or each arc sequence, the optimal values τ∗

= (t̄∗1 , t̄
∗

2 , u
0∗
1,i, p

∗

1,i) of
the decision variables allow obtaining the optimal metric φ̂(τ∗) =

ˆQ (d∗
τ ), where the design d∗

τ corresponds to τ∗ for each arc
equence. For the design d∗

τ , accurate approximations of uKL(d∗
τ )

re also computed. One can observe that ûQ (d∗
τ ) underestimates

KL(d∗
τ ) consistently. For comparison, a design dPRBS corresponding

o a pseudorandom binary sequence (PRBS) of size 31 would
llow obtaining significantly worse results: ûQ (dPRBS) = 1.1113,
KL(dPRBS) = 1.2467. Moreover, the execution time is below
600 s for all arc sequences, and the sequence with the best
ptimal metrics is 3-1U-1L (highlighted in bold in the table), that
s, the sequence of the locally optimal solution. In addition, the
lobally optimal values t̄∗1 , t̄

∗

2 , u
0∗
1,1, p

∗

1,1 of the decision variables
or that arc sequence also correspond to the optimal values
iven by the locally optimal solution. For this optimal design,
he covariance matrix of the posterior parameter distribution

omputed as in Appendix D becomes
[
0.02030 0.00812

]
, while
0.00812 0.01683

15
for the design based on a PRBS the covariance matrix would

become
[

0.02378 −0.02153
−0.02153 0.03162

]
, which is worse.

In summary, one can show that the locally optimal solution
o the Bayesian OED problem shown in Fig. 4 is also the globally
ptimal solution with no more than n̄a = 3 arcs, and this only
equires solving 6 problems in parallel in less than 3600 s. Based
n the computational complexity reported in Section 6, if the
ethod for multivariate integration in the space of parameters
ased on sparse stochastic collocation and Gaussian quadrature
s chosen such that the number mθ of quadrature points depends
uadratically on the number nθ of parameters, a similar problem
ith nx = 10 states of the dynamical system and nθ = 10 pa-
ameters could still be considered tractable on a standard laptop.
ecall that, if we had only used local optimization to compute
local solution to (56), we could have obtained a local solution
orse than τ∗ and it would not have been possible to provide

any guarantee that the local solution is in any way close to the
globally optimal solution. For example, note that, since even the
approximation and reformulation of the Bayesian OED problem
results in an optimization problem with 4 decision variables, it
is impossible to show that τ∗ or any other local solution is the
globally optimal solution by simply plotting the cost −φ̂(τ) in the
4-dimensional space of decision variables, but the methods in this
paper guarantee that τ∗ is indeed the globally optimal solution.

8. Conclusions

This paper presented solution methods for obtaining glob-
ally optimal solutions to approximate Bayesian OED problems
for two cases: normal prior and observation noise distributions,
and arbitrary prior and observation noise distributions. The ex-
pected utility for KL divergence was approximated as a Bayes
D-optimality criterion in the former case and as Monte Carlo
integration in the observation space in the latter case. The pro-
posed methods also deal with designed initial conditions and
chance path constraints. Numerical tractability was reinforced by
a sparse stochastic collocation scheme that required only a few
points in the parameter space for approximating the expected
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Table 2
Execution time, optimal metrics φ̂(τ∗) = ûQ (d∗

τ ), uKL(d∗
τ ), and optimal values t̄∗1 , t̄

∗

2 , u
0∗
1,i , p

∗

1,i of the decision variables for the global
solution to the Bayesian OED problem in Section 7.2, for different arc sequences and the final time tf = 12. The arc sequence with
the best optimal value of φ̂(τ∗) is highlighted in bold.
Arc sequence Execution time (s) ûQ (d∗

τ ) uKL(d∗
τ ) t̄∗1 t̄∗2 u0∗

1,i p∗

1,i

3-1L-1U 2666 1.9924 2.1845 2.251 12.000 1.000 0.000 (i = 1)
3-1U-1L 3254 2.1724 2.3451 5.206 9.330 0.538 −0.103 (i = 1)
1L-3-1L 2559 2.1053 2.2603 5.116 10.341 1.000 0.000 (i = 2)
1L-3-1U 2563 1.8626 1.9318 5.378 12.000 1.000 −0.051 (i = 2)
1U-3-1L 2701 2.1318 2.2703 1.556 9.324 0.104 0.115 (i = 2)
1U-3-1U 2613 2.0046 2.1118 2.189 12.000 0.236 −0.024 (i = 2)
θ

θ

l

utility as the cost of an OCP. The approximation of this cost as
an explicit polynomial function of the decision variables allows
for reformulation of the OCP as a set of polynomial optimization
problems, which can be solved to global optimality in a tractable
way via the concept of sum-of-squares polynomials. The paper
showed that the difference between the cost obtained by the
proposed approach and the globally optimal cost of the OCP is
bounded and depends on the polynomial approximation errors.
Moreover, the execution time of the optimization procedure for
each arc sequence considered for the OCP in a relevant case study
indicates that a global solution can be obtained in a tractable way
via a convex SDP.
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ppendix A. KL divergence and Shannon information

In this appendix we present some evidence about the state-
ent in Remark 1.
The posterior expected gain is defined as

(y, d) := ∫ΘG (θ, y, d) p(θ|y, d)dθ, (A.1)

hile the definition of the expected utility (5) based on the
osterior expected gain is given by

(d) = ∫Θ∫YG (θ, y, d) p(y|θ, d)dyp(θ)dθ
= ∫Y∫ΘG (θ, y, d) p(θ|y, d)dθp(y|d)dy

= ∫Yυ(y, d)p(y|d)dy. (A.2)
16
The posterior expected gain that corresponds to the gain func-
tion GKL (θ, y, d) in (9) is the KL divergence from the prior distri-
bution to the posterior distribution

υKL(y, d) = ∫Θ log
(

p(θ|y,d)
p(θ)

)
p(θ|y, d)dθ. (A.3)

Then we show that the design d∗

KL that maximizes the ex-
pected utility for the KL divergence υKL(y, d) also does so for the
expected gain in Shannon information (SI)

υSI (y, d) = ∫Θ log (p(θ|y, d)) p(θ|y, d)dθ

− ∫Θ log (p(θ)) p(θ)dθ, (A.4)

since ∫Yp(y|θ, d)dy = 1 and ∫Yp(y|d)dy = 1 regardless of d,
which implies that

d∗

KL = argmax
d∈D

∫Y∫Θ log (p(θ|y, d)) p(θ|y, d)dθp(y|d)dy

− ∫Y∫Θ log (p(θ)) p(θ|y, d)dθp(y|d)dy, s.t. (7)
= argmax

d∈D
∫Y∫Θ log (p(θ|y, d)) p(θ|y, d)dθp(y|d)dy

− ∫Θ∫Yp(y|θ, d)dy log (p(θ)) p(θ)dθ, s.t. (7)
= argmax

d∈D
∫Y∫Θ log (p(θ|y, d)) p(θ|y, d)dθp(y|d)dy

− ∫Θ log (p(θ)) p(θ)dθ, s.t. (7)
= argmax

d∈D
∫Y∫Θ log (p(θ|y, d)) p(θ|y, d)dθp(y|d)dy

− ∫Y∫Θ log (p(θ)) p(θ)dθp(y|d)dy, s.t. (7)

= argmax
d∈D

∫YυSI (y, d)p(y|d)dy, s.t. (7). (A.5)

Appendix B. Approximation of design for Gaussian prior and
noise distributions

Under Assumptions 1 and 2, for a given θ obtained by sampling
in Θ according to the pdf p(θ) and y obtained by sampling in Y
according to the pdf p(y|θ, d), p(y|d) can be approximated as

p(y|d) = ∫Θ f (y|g(θ, d) + ∫
1
0
∂g
∂θ
(θ + t(θ̂ − θ), d)dt

(
θ̂ − θ

)
,

σ 2IT )p(θ̂)dθ̂

= ∫Θ f (e|∫1
0
∂g
∂θ
(θ + t(θ̂ − θ), d)dt

(
θ̂ − θ

)
,

σ 2IT )p(θ̂)dθ̂

≃ ∫Θ f (e|
∂g
∂θ
(θ, d)

(
θ̂ − θ

)
, σ 2IT )p(θ̂)dθ̂

= f (y|g(θ, d) +
∂g
∂θ
(θ, d)

(
θ̄ − θ

)
,

σ 2IT +
∂g
∂θ
(θ, d)Σ θ

∂g
∂θ
(θ, d)T), (B.1)

which results in a small approximation error if ∥
(
∫
1
0
∂g
∂θ
(θ + t(θ̂ −

), d)dt −
∂g
∂θ
(θ, d)

)(
θ̂ − θ

)
∥/σ ≪ 1 for all θ such that ∥Σ

−
1
2

θ

(
θ −

θ̄
)
∥
2 < F−1

χ2
nθ
(α) and for all θ̂ such that ∥∫

1
0
∂g
∂θ
(θ+ t(θ̂−θ), d)dt

(
θ̂−)

∥
2/σ 2 < F−1

χ2
T
(α), with F−1

χ2
nθ

and F−1
χ2
T

denoting the inverse cumu-
ative distribution function of the chi-squared distribution with nθ
degrees of freedom and T degrees of freedom, respectively, and α
denoting a confidence level, and no approximation error if g(θ, d)
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∫

f
t

s linear in θ since ∥
(
∫
1
0
∂g
∂θ
(θ+t(θ̂−θ), d)dt− ∂g

∂θ
(θ, d)

)(
θ̂−θ

)
∥/σ =

0 in this case. Furthermore,

det
(
σ2IT+

∂g
∂θ

(θ,d)Σ θ
∂g
∂θ

(θ,d)T
)

det
(
σ2IT

)
= det

(
IT +

1
σ2

∂g
∂θ
(θ, d)Σ θ

∂g
∂θ
(θ, d)T

)
= det

(
Inθ +

1
σ2Σ θ

∂g
∂θ
(θ, d)T ∂g

∂θ
(θ, d)

)
=

det
(
I(θ,d)+Σ−1

θ

)
det

(
Σ−1

θ

) , (B.2)

nd
∂g
∂θ
(θ, d)T

(
σ 2IT +

∂g
∂θ
(θ, d)Σ θ

∂g
∂θ
(θ, d)T

)−1 ∂g
∂θ
(θ, d)

=
1
σ2

∂g
∂θ
(θ, d)T

(
∂g
∂θ
(θ, d)Σ θ

1
σ2

∂g
∂θ
(θ, d)T + IT

)−1
∂g
∂θ
(θ, d)

=
(
I(θ, d)Σ θ + Inθ

)−1 1
σ2

∂g
∂θ
(θ, d)T ∂g

∂θ
(θ, d)

= Σ−1
θ

(
I(θ, d) + Σ−1

θ

)−1
I(θ, d)

= Σ−1
θ − Σ−1

θ

(
I(θ, d) + Σ−1

θ

)−1
Σ−1

θ . (B.3)

Then, for a given θ obtained by sampling in Θ according to the
pdf p(θ), UKL(θ, d) in (10) can be approximated as

UKL(θ, d)

≃ ∫Y log
(

f (y|g(θ,d),σ2IT )
f (y|g(θ,d)+ ∂g

∂θ
(θ,d)(θ̄−θ),σ2IT+

∂g
∂θ

(θ,d)Σ θ
∂g
∂θ

(θ,d)T)

)
f (y|g(θ, d), σ 2IT )dy

=
1
2 log

(
det

(
σ2IT+

∂g
∂θ

(θ,d)Σ θ
∂g
∂θ

(θ,d)T
)

det
(
σ2IT

) )
+

1
2∥

∂g
∂θ
(θ, d)

(
θ̄ − θ

)
∥
2(
σ2IT+

∂g
∂θ

(θ,d)Σ θ
∂g
∂θ

(θ,d)T
)−1

−
1
2 tr

(
IT −

(
IT +

1
σ2

∂g
∂θ
(θ, d)Σ θ

∂g
∂θ
(θ, d)T

)−1)
=

1
2 log

(
det

(
I(θ,d)+Σ−1

θ

)
det

(
Σ−1

θ

) )
+

1
2∥Σ

−
1
2

θ

(
θ − θ̄

)
∥
2

Inθ −Σ
−

1
2

θ

(
I(θ,d)+Σ−1

θ

)−1
Σ

−
1
2

θ

−
1
2 tr

(
Inθ − Σ

−
1
2

θ

(
I(θ, d) + Σ−1

θ

)−1
Σ

−
1
2

θ

)
≃

1
2 log

(
det

(
I(θ,d)+Σ−1

θ

)
det

(
Σ−1

θ

) )
+

1
2 tr

((
Inθ − Σ−1

θ

(
I(θ̄, d) + Σ−1

θ

)−1)
(
Σ−1

θ

(
θ − θ̄

)(
θ − θ̄

)T
− Inθ

))
, (B.4)

here the first approximation follows from the approximation of
(y|d) in (B.1) and the second one results in a small approxima-
ion error if ∥Σ−1

θ

(
I(θ, d) + Σ−1

θ

)−1
−Σ−1

θ

(
I(θ̄, d) + Σ−1

θ

)−1
∥

1 for all θ such that ∥Σ
−

1
2

θ

(
θ − θ̄

)
∥
2 < F−1

χ2
nθ
(α), with F−1

χ2
nθ

denoting the inverse cumulative distribution function of the chi-
squared distribution with nθ degrees of freedom and α denoting a
confidence level, and no approximation error if g(θ, d) is linear in
θ since ∥Σ−1

θ

(
I(θ, d) + Σ−1

θ

)−1
−Σ−1

θ

(
I(θ̄, d) + Σ−1

θ

)−1
∥ = 0

in this case. Thus, the corresponding OED can be approximated
as

d∗

KL ≃ argmax
d∈D

∫Θ
1
2 log

(
det

(
I(θ,d)+Σ−1

θ

)
det

(
Σ−1

θ

) )
p(θ)dθ, s.t. (7)

= argmax
d∈D

∫Θ log
(
det

(
I(θ, d) + Σ−1

θ

))
p(θ)dθ, s.t. (7)

= d∗ . (B.5)
D
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Appendix C. Approximation of design for arbitrary prior and
noise distributions

Under Assumptions 3 and 4, UKL(θ, d) in (10) becomes

UKL(θ, d) = ∫X log
(

det(J(θ,d))−1π (ξ|x̄,Σ ξ )
p(g(θ,d)+J(θ,d)ξ|d)

)
π (ξ|x̄,Σ ξ)dξ. (C.1)

The utility function UKL(θ, d) in (C.1) is a multivariate in-
egral that can be approximated via Monte Carlo integration
X f (ξ)π (ξ|x̄,Σ ξ)dξ ≃

1
mξ

∑mξ
k=1f (ξk) in the observation space

or some function f (ξ) using the points ξ1, . . . , ξmξ that are ob-
ained by sampling in X according to the pdf π (ξ|x̄,Σ ξ) and
independently of the prior pdf p(θ). Then, UKL(θ, d) in (C.1) can
be approximated as

UKL(θ, d) ≃
1
mξ

∑mξ
k=1 log

(
det(J(θ,d))−1π (ξk|x̄,Σ ξ )

p(g(θ,d)+J(θ,d)ξk|d)

)
= UMC (θ, d), (C.2)

where the evidence p(g(θ, d) + J(θ, d)ξk|d) is computed as in (4)
from the likelihood function in (22), and the corresponding OED
can be approximated as

d∗

KL ≃ argmax
d∈D

∫ΘUMC (θ, d)p(θ)dθ, s.t. (7)

= d∗

MC . (C.3)

Appendix D. Computation of the posterior covariance

The covariance matrix of the posterior parameter distribution
is computed as follows:

∫Yp(y|d)∫Θ (θ − (∫Θθp(θ|y, d)dθ))
× (θ − (∫Θθp(θ|y, d)dθ))T p(θ|y, d)dθdy

= ∫Yp(y|d)
(
∫ΘθθTp(θ|y, d)dθ

− (∫Θθp(θ|y, d)dθ) (∫Θθp(θ|y, d)dθ)T
)
dy

= ∫Yp(y|d)
(
∫ΘθθT p(y|θ,d)p(θ)

p(y|d) dθ

−

(
∫Θθ p(y|θ,d)p(θ)

p(y|d) dθ
)(

∫Θθ p(y|θ,d)p(θ)
p(y|d) dθ

)T
)
dy

= ∫Y∫ΘθθTp(y|θ, d)p(θ)dθ − ∫Y (∫Θp(y|θ, d)p(θ)dθ)−1

(∫Θθp(y|θ, d)p(θ)dθ) (∫Θθp(y|θ, d)p(θ)dθ)T dy

= ∫Y∫ΘθθT π
(
J(θ,d)−1(y−g(θ,d))|x̄,Σ ξ

)
det(J(θ,d)) p(θ)dθ

− ∫Y

(
∫Θ

π

(
J(θ,d)−1(y−g(θ,d))|x̄,Σ ξ

)
det(J(θ,d)) p(θ)dθ

)−1

(
∫Θθ

π

(
J(θ,d)−1(y−g(θ,d))|x̄,Σ ξ

)
det(J(θ,d)) p(θ)dθ

)
×

(
∫Θθ

π

(
J(θ,d)−1(y−g(θ,d))|x̄,Σ ξ

)
det(J(θ,d)) p(θ)dθ

)T

dy. (D.1)
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