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PEAK3/C19orf35	pseudokinase,	a	new	NFK3	kinase	family	member,	inhibits	CrkII	

through	dimerization	

	
Mitchell	Lopez	

	
Abstract	

	

Members	 of	 the	 New	 Kinase	 Family	 3	 (NKF3),	 PEAK1/SgK269	 and	 Pragmin/SgK223	

pseudokinases,	 have	 emerged	 as	 important	 regulators	 of	 cell	 motility	 and	 cancer	

progression.	 Here,	 we	 demonstrate	 for	 the	 first	 time	 that	 C19orf35	 (PEAK3),	 a	 newly	

identified	member	 of	 the	 NKF3	 family,	 is	 a	 kinase-like	 protein	 evolutionarily	 conserved	

across	mammals	and	birds	and	a	novel	 regulator	of	cell	motility.	 In	contrast	 to	 its	 family	

members,	 which	 promote	 cell	 elongation	 when	 overexpressed	 in	 cells,	 PEAK3	

overexpression	does	not	have	an	elongating	effect	on	cell	 shape	but	 instead	 is	associated	

with	 loss	of	actin	 filaments.	Through	an	unbiased	search	 for	PEAK3	binding	partners,	we	

identified	several	regulators	of	cell	motility,	including	the	adaptor	protein	CrkII.	We	show	

that	 by	 binding	 to	 CrkII,	 PEAK3	 prevents	 the	 formation	 of	 CrkII-dependent	 membrane	

ruffling.	This	function	of	PEAK3	is	reliant	upon	its	dimerization,	which	is	mediated	through	

a	 split	 helical	 dimerization	 (SHED)	 domain	 conserved	 among	 all	 NKF3	 family	members.	

Disruption	of	the	conserved	DFG	motif	in	the	PEAK3	pseudokinase	domain	also	interferes	

with	its	ability	to	dimerize	and	subsequently	bind	CrkII,	suggesting	that	the	conformation	

of	the	pseudokinase	domain	might	play	an	important	role	 in	PEAK3	signaling.	Hence,	our	

data	identify	PEAK3	as	an	NKF3	family	member	with	a	unique	role	in	cell	motility	driven	by	

dimerization	of	its	pseudokinase	domain.		
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Introduction	

Conservation	of	the	kinase	domain	

Conserved	motifs	and	structural	elements	

To	date	there	are	about	518	different	kinases	within	the	human	genome,	which	is	about	2%	

of	the	human	genome.	This	is	an	appreciable	amount	of	the	genome	dedicated	to	a	single	

enzymatic	 reaction	 yet	 this	 super	 family	 of	 proteins	 participates	 in	 regulating	 a	 vast	

amount	of	cellular	functions	and	are	vital	to	development,	homeostasis,	and	fitness.	Kinases	

function	as	the	messengers	of	the	cell	whose	response	can	be	initiated	within	seconds,	such	

as	 the	mitogenic	MAPK	 signaling,	 and	 sustained,	 as	 in	mTORC1	which	 regulates	 protein	

synthesis	based	on	nutrient	availability	within	the	cell	(1).	In	this	manner	kinases	are	the	

biochemical	 conduits	 that	 give	 rise	 to	 the	 network	 of	 signaling	 cascades	 that	 allow	

organisms	to	respond	to	a	vast	range	of	stimuli	rapidly	and	with	finite	control.	The	function	

and	regulation	of	kinases	is	tightly	correlated	to	the	conformation	of	the	kinase	domain	and	

the	auxiliary	domains	that	accompany	it.		

The	 greater	 majority	 of	 eukaryotic	 kinases	 share	 a	 set	 of	 canonical	 structural	

features	and	amino	acid	motifs	and	are	the	defining	features	of	a	kinase.	The	definition	of	

kinases	has	evolved	over	time	with	starting	with	Hunter	and	Hanks	(2),	who	used	sequence	

similarities	 to	 define	 a	 set	 of	 canonical	 motifs	 that	 were	 common	 amongst	 the	 known	

kinases.	The	kinome	was	further	defined	by	Manning	and	colleagues	(3),	who	utilized	the	

expanding	 genomic	 databases	 to	 further	 classify	 other	 genes	 as	 kinases	 and	 atypical	

kinases.	 The	 Protein-Kinase	 Like	 fold	 was	 established	 and	 grouped	 genes	 that	 shared	 a	

similar	 tertiary	 structure	 (predicted	 or	 experimentally	 modeled)	 (2).	 Within	 this	
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classification	is	the	superfamily	of	Eukaryotic	Protein	Kinase	(ePK),	which	embodies	most	

kinases,	and	Atypical	Protein	Kinases	(aPK),	which	do	not	have	common	structural	motifs	

but	 are	 different	 from	 ePK	 based	 on	 divergence	 from	 those	 canonical	 motifs	 that	 many	

kinases	possess.	The	annotation	of	a	gene	as	a	potential	kinase	was	based	on	the	presence	

of	 conserved	catalytic	 residues,	 structural	 characteristics	 that	 surround	 the	 catalytic	 site,	

and/or	known	catalytic	function(2-4).	The	heterogeneous	criteria	allowed	for	the	inclusion	

of	 proteins	 with	 a	 protein	 kinase-like	 fold	 but	 are	 otherwise	 sequentially	 divergent	 in	

specific	 defining	motifs	 and	 also	 those	 enzymes	 that	 can	 phosphorylate	 substrates	 other	

than	proteins,	such	as	lipids	or	small	molecules.	

The	key	residues	and	motifs	conserved	in	many	kinases	that	comprise	the	active	site	

where	 ATP	 binds	 are	 some	 of	 the	 defining	 features	 of	 many	 ePK.	 Not	 only	 are	 these	

residues	 highly	 conserved	 in	 many	 active	 kinases	 but	 also	 are	 critical	 for	 catalysis.	 For	

example,	 the	activation	 loop	near	 the	 substrate	and	ATP	binding	pocket	usually	 contains	

phosphorylation	 site(s)	 that	 provides	 a	 negative	 charge	 that	 neutralizes	 other	 positively	

charged	residues	within	the	active	site,	specifically	the	HRD	motif.	The	HRD	motif	is	located	

in	the	catalytic	loop	that	precedes	the	activation	loop	and	serves	as	a	proton	acceptor	from	

the	 hydroxyl	 group	 of	 the	 substrate	 during	 phosphotransfer.	 Another	 defining	 and	

catalytically	important	motif	is	the	DFG	motif	which	is	just	after	the	activation	loop	in	the	

P+1	 loop.	 The	 aspartate	 of	 the	 DFG	 provides	 charge	 support	 for	 Mg2+	 ions	 that	 in	 turn	

provide	stability	for	the	α-	and	β-phosphates	of	ATP,	as	shown	in	the	classic	kinase	model	

Protein	 Kinase	 A	 (PKA,	 PDBID:	 ATP1).	 Additionally,	 the	 rotamer	 conformation	 of	 the	

aspartate	and	phenylalanine	residues	of	 the	DFG	motif	also	cause	a	shift	 in	the	activation	

loop	that	allow	substrates	to	access	to	the	catalytic	site	of	the	kinase	(5).	These	motifs	and	
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loops	are	critical	 for	ePK	function	and	can	have	detrimental	or	hyperactivating	effects	on	

the	catalytic	function	of	kinases	when	they	are	mutated.		

Biological	and	structural	characteristics	of	pseudokinases	

Divergence	of	conserved	catalytic	motifs	and	the	evolution	of	pseudokinases	

Within	ePK	and	spread	across	the	kinome	families	are	proteins	that	have	mutations	in	their	

catalytic	sites	yet	still	retain	enough	sequence	similarities	to	be	considered	part	of	ePK	and	

not	aPK.	These	proteins	are	known	as	pseudokinases	and	are	defined	as	having	a	protein-

kinase	like	fold	but	have	mutations	in	one	or	more	catalytic	residues	including	the	catalytic	

lysine	(Lys72),	HxD	(Asp166)	motif,	DFG	(D184)	motif	and	possibly	mutations	with	in	the	

G-loop	or	activation	 loop	(4).	There	are	about	50	pseudokinases	and	can	be	found	across	

the	major	families	of	kinome,	while	some	are	so	unique	that	they	form	their	own	families	of	

containing	just	a	few	members	(4).	The	origin	of	pseudokinases	had	been	hindered	due	to	a	

lack	 of	 complete	 genomes	 from	 a	 diverse	 range	 of	 organisms	 outside	 of	 Eukaryota	 and	

across	 evolution	 but	 new	 global	 sequencing	 efforts	 provide	 insights	 about	 the	 origin	 of	

pseudokinases	as	well	as	their	sequence	diversity	and	function.		

Pseudokinases	 have	 evolved	 multiple	 times	 in	 the	 course	 of	 evolution	 but	 the	

question	remains	whether	they	are	derived	from	a	once	active	enzyme	or	was	it	always	a	

catalytically	 inactive	 protein.	 Phylogenetics	 reveals	 that	 pseudokinases	 can	 be	 found	 in	

practically	every	domain	of	life	though	one	must	recognize	that	many	microbial	kinases	are	

quite	 different	 from	 eukaryotic	 kinases	 (6,	 7).	 Pseudokinases	 represent	 10%	 of	 all	 ePK,	

which	suggests	that	they	are	not	mere	vestigial	genes	waiting	to	drift	away.	Interestingly,	

this	 percentage	 is	 a	 reoccurring	 value	 for	many	 vertebrate	 organisms	 in	 that	 10%	of	 an	
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organism’s	kinome	will	be	comprised	of	pseudokinases	(6).	Pseudokinases	have	emerged	

multiple	time	across	evolution	which	suggests	that	the	evolutionary	pressures	to	maintain	

the	otherwise	highly	conserved	catalytic	residues	can	relax	in	favor	of	other	functions	that	

may	be	specific	 for	a	given	species’	needs	(8).	As	 the	physiology	of	organisms	diversified	

and	new	biochemical	processes	developed,	so	did	the	diversity	of	pseudokinases.		

Pseudokinases	 can	 be	 found	 as	 far	 back	 as	 bacteria	 and	 archaea	 but	 are	 most	

prevalent	in	eukaryotes.	In	phylogenetic	analysis,	many	pseudokinases	tend	to	group	based	

on	 its	 given	 kingdom	 or	 even	 taxonomic	 domain	 e.g.	 pseudokinase	 families	 that	 were	

grouped	 based	 on	 sequence	 homology	 also	 tended	 to	 group	 by	 taxa	 as	 well.	 In	 some	

extreme	cases	entire	pseudokinase	families	were	found	primarily	in	a	single	species,	which	

can	be	seen	for	the	Rig1	to	Rig3	families	in	Rhizophagus	irregularis.	However	R.	irregularis	

is	quite	unique	and	interesting	because	32%	of	its	kinome	are	pseudokinases,	which	is	an	

expansive	kinome	compared	to	other	fungi	analyzed	(6).	While	some	pseudokinase	families	

are	 only	 extant	 in	 specific	 phyla,	 there	 are	 those	 examples	 that	 span	 across	 different	

taxonomical	 domains.	 	 For	 example	 the	 Two-Component	 System	 (TCS)	 pseudokinase	

family	can	be	found	in	a	broad	range	of	bacteria,	protists,	 fungi,	and	the	phylum	Aveolata	

(i.e.	Toxoplasma	gondii).	While	 there	 is	 not	 a	 clear	 functional	 connection	 between	 these	

proteins,	as	many	have	not	been	functionally	characterized,	it	is	a	clear	example	of	a	family	

of	pseudokinases	that	have	persisted	through	the	tortuous	path	of	evolution.		
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Structural	and	functional	relationship	of	the	pseudokinase	domain	

Both	 kinases	 and	 pseudokinases	 both	 have	 important	 functions	 that	 are	 independent	 of	

catalysis	 but	 rather	 rely	 on	 protein-protein	 interactions.	 These	 functions	 are	 critical	 for	

regulating	a	broad	range	of	processes	yet	how	pseudokinases	are	regulated	is	diverse,	and	

in	 some	 cases,	 still	 remains	 elusive.	 However	 some	 hypothesize	 that	 the	 structural	

elements	 that	 are	 unique	 to	 protein	 kinases	 can	 offer	 some	 insight	 into	 how	 both	 the	

noncatalytic	functions	of	kinases	and	pseudokinases	are	regulated.		

The	catalytic	activity	of	many	predicted	pseudokinases	has	yet	to	be	determined	as	

there	 are	 many	 factors	 that	 contribute	 to	 the	 activity	 of	 a	 kinase	 including	 substrate	

specificity	and	cofactors.	However	Murphy	and	colleagues	have	proposed	a	methodology	

for	determining	if	a	pseudokinase	can	bind	ATP	or	divalent	ions	using	a	thermal	shift	assay.	

This	assay	 relies	on	 the	added	 thermal	 stability	gained	by	binding	ATP	 (or	ATP	analogs)	

and	divalent	cations	and	is	an	orthogoinal	assay	to	classic	 in	vitro	kinase	assay	because	it	

does	not	rely	on	knowing	the	sequence	of	the	specific	substrate,	which	can	be	challenging	

(9).	 They	 conducted	 a	 survey	 of	 35	 different	 kinases	 to	 determine	 if	 the	 pseudokinases	

gained	thermal	stability	when	incubated	with	Mg2+/Mn2+,	ATP,	and	some	analogs,	as	well	as	

some	promiscuous	drugs	that	bind	in	the	catalytic	site	using	recombinant	protein	(9).	The	

pseudokinases	tested	were	grouped	into	the	following	classes:	those	that	cannot	bind	ATP	

or	Mg2+/Mn2+	(Class	1),	ATP	alone	(Class	2),	Mg2+/Mn2+	only	(Class	3),	and	those	that	bind	

both	(Class	4).	While	this	assay	does	not	determine	that	an	enzyme	is	catalytically	active,	it	

provides	important	biochemical	 information	that	 is	 independent	of	cofactors	or	substrate	

specificity.			
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Many	 of	 the	 pseudokinases	 tested	 to	 date	 are	 catalytically	 inactive	 yet	 there	 are	

those	that	have	been	shown	to	be	active	or	require	ATP	or	Mg2+	for	allosteric	purposes.	The	

well	 documented	 Her3	 pseudokinase	 of	 the	 Epithelial	 Growth	 Factor	 Receptor	 (EGFR)	

family	has	been	shown	to	bind	both	ATP	and	cations	as	well	has	been	show	to	have	some	

autophosphorylation	 activity	 despite	 lacking	 the	 catalytic	 aspartate	 of	 the	 HRD	 motif	

(HRN834)	 (9,	 10).	 The	 catalytic	 activity	 of	 Her3	 is	 quite	 low	 and	may	 not	 be	 biologically	

relevant	whereas	 its	 ability	 to	 allosterically	 activate	 other	 EGFR	kinases	 is	 a	much	more	

potent	role	for	Her3	(5).		EGFR	family	kinases	exemplifies	how	the	noncatalytic	functions	of	

kinase	can	be	just	as	vital	as	their	catalytic	function	(reviewed	in	(11)).			

With	no	lysine	(K)	or	WNK	1-4	pseudokinases	have	alterations	within	the	active	site	

that	 accommodate	 for	 its	 specific	 function	 as	 a	 ion	 sensor.	WNK1	 received	 its	 namesake	

due	 to	 mutations	 in	 the	 β3	 lysine	 that	 participates	 in	 coordinating	 ATP	 (12),	 but	 has	

retained	both	 the	conserved	DLG	motif	and	HRD	motif.	The	catalytic	 lysine	 in	 the	β3	has	

been	instead	compensated	for	by	a	lysine	(K233)	in	the	β2	strand	and	functions	similarly	to	

the	catalytic	lysine	in	other	kinases;	K233	is	thought	to	stabilizes	ATP	in	the	pseudoactive	

site	 (12).	While	other	 ion-sensing	kinases,	 such	as	 calcium	calmodulin-dependent	kinase,	

utilizes	a	separate	calmodulin	subunit,	to	bind	and	react	to	changes	in	calcium,	WNK1	binds	

halides	in	the	pseudokinase	domain	in	a	position	where	the	catalytic	lysine	would	typically	

point	near	the	activation	loop	DLG.	Thus	the	lack	of	β3	lysine	allows	for	halides	to	bind	to	

WNK	which	 causes	 dramatic	 changes	 in	 the	 conformation	 of	WNK	 that	make	 it	 inactive	

(13).	WNK	kinases	are	an	example	where	the	pseudokinase	domain	has	taken	on	various	

alternative	functions	(i.e.	binding	halides),	which	cause	global	changes	in	the	pseudokinase	

domain.	Those	changes	in	conformation	found	in	Wnk	pseudokinases	show	how	critical	the	
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conformation	of	 the	pseudokinase	domain	 is	 important	 for	 catalysis	 yet	 there	 are	others	

whose	noncatalytic	activity	is	dependent	on	the	conformation	of	the	pseudokinase	domain.		

The	conformation	of	the	pseudokinase	domain	of	mixed	lineage	kinase	domain	like	

(MLKL)	 pseudokinase	 enables	 oligomerization	 both	with	 itself	 as	well	 as	with	 receptor-

interacting	serine/threonine-protein	kinase	3	(RIPK3).	MLKL	pseudokinase	forms	a	homo-

tetramer	via	an	adjacent	helical	bundle	 (4HB)	domain,	but	also	 forms	an	octomer	with	4	

units	of	RIPK3,	which	together	form	the	necrosome	holoenzyme	that	facilitates	necroptosis.	

The	activated	holoenzyme	is	able	to	puncture	holes	into	the	membrane	during	necroptosis	

(14).	While	MLKL	is	devoid	of	Mg2+	binding	(9),	mutations	to	aspartate	351	(E351K)	of	GFE	

(DFG	 in	 PKA)	 inhibits	MLKL	 ability	 to	 form	 a	 tetramer	 in	 solution	 as	well	 as	 reduce	 its	

ability	 to	 puncture	 lipid	membranes	 (14).	 This	mutation	 causes	 an	 increased	 binding	 to	

ATP,	 which	 is	 inhibitory	 for	 MLKL	 oligomerization	 and	 function,	 and	 is	 also	 thought	 to	

change	the	conformation	of	the	activation	loop.	Also	within	the	activation	loop	are	residues	

T357/S358	that	when	phosphorylated	by	RIPK3	cause	changes	in	the	conformation	of	the	

pseudokinase	 domain	 that	 allow	 the	 release	 the	 4HB	 and	 leads	 to	 oligomerization	 and	

necroptosis	(14,	15).	MLKL	exemplifies	how	the	conformation	of	the	pseudokinase	domain	

is	utilized	as	a	mechanism	of	regulation	and	also	how	this	can	change	the	oligomeric	state	

that	is	essential	for	binding	to	other	proteins.		

Kinase	 and	 pseudokinase	 activity	 and	 biological	 potency	 is	 dependent	 on	 the	

alignment	 of	 conserved	 hydrophobic	 residues	 known	 as	 spines.	 These	 residues	 are	well	

conserved	 and	 their	 alignment	 results	 in	 specific	 conformational	 states	 with	 potentially	

unique	 biological	 capabilities.	 This	 is	 analogous	 to	 GTPases,	which	 upon	 binding	 to	 GTP	

change	conformation	and	is	integral	for	its	function	(16-18).	Similarly,	some	kinases	have	
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non-catalytic	functions,	such	as	catalysis	or	allostery,	that	require	a	specific	conformation	

that	is	achieved	by	binding	to	ATP	(11).	Hydrophobic	residues	from	both	the	N	and	C-lobe	

coordinate	 into	 vertical	 linear	 columns	 or	 spines	 (19-21).	 The	 catalytic	 spine	 is	 created	

when	 the	 aromatic	 adenosine	 ring	 aligns	 in	 the	 back	 of	 the	 active	 site	 with	 other	

hydrophobic	 residues	 that	 align	 into	 a	 column	 or	 spine	 (19)(Reviewed	 in	 (22)).	

Additionally,	the	regulatory	spine	is	near	the	front	of	the	active	site	and	aligns	another	set	

of	hydrophobic	residues	that	also	 form	a	spine	that	 include	the	DFG-Phe	and	the	H/YRD-

Tyr.	The	alignment	of	these	spines	is	critical	for	the	catalytic	and	noncatalytic	functions	of	

protein	 kinases	 as	 shown	 with	 KSR;	 however	 structural	 models	 of	 some	 pseudokinases	

show	how	these	spines	are	disrupted	and	are	incapable	of	catalysis.		

Kinase	 suppressor	 of	 Ras	 (KSR)	 is	 a	 pseudokinase	 with	 low	 catalytic	 ability	 and	

serves	 as	 a	 scaffold	 for	 RAF	 and	MEK	 in	 RAS/MAP	Kinase	 signaling.	 KSR	 participates	 in	

MAPK	signaling	by	forming	a	side-by-side	heterodimer	with	RAF	kinases	that	allosterically	

activates	RAF	leading	to	increased	MEK	phosphorylation	(23).	KSR	lacks	the	catalytic	lysine	

(PKA	K72)	yet	 still	 retains	some	catalytic	ability	 that	has	been	shown	 in	crystallographic	

models	 of	 KSR2	 and	 in	 vivo	 (19,	 24).	 When	 phenylalanine,	 an	 aromatic	 hydrophobic	

residue,	 is	 substituted	 for	 the	 alanine	 (A587F)	 in	 the	 catalytic	 spine,	 it	 mimics	 the	

adenosine	aromatic	ring	of	ATP	and	causes	a	conformation	that	is	in	the	closed	yet	active	

state.	This	allows	for	the	analysis	of	the	noncatalytic	functions	of	the	pseudokinase	domain	

can	be	parsed	from	the	catalytic	functions	without	compromising	the	specific	conformation	

of	 an	 active	 kinase.	 The	 A587F	mutation	 caused	 KRS	 to	 form	 a	 constitutive	 dimer	 with	

BRAF,	which	is	not	true	for	the	WT	KSR,	yet	was	unable	to	cause	phosphorylation	of	MEK	

showing	the	relevance	of	the	catalytic	activity	of	KSR	in	MAPK	signaling	(19).	Further	more	
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it	 also	 speaks	 to	 how	 the	 conformation	 of	 the	 pseudokinase	 domain	 can	 have	 dramatic	

effects	on	its	ability	to	interact	with	other	proteins,	which	in	the	case	of	KSR	A587F,	‘locks’	

the	catalytic	 spine	and	causes	KSR	 to	adopt	a	conformation	 that	allows	 for	a	constitutive	

dimer	with	BRAF.			

New	Kinase	Family	3	pseudokinases	

The	 focus	 of	 my	 thesis	 pertains	 to	 a	 previously	 undescribed	 pseudokinase,	

C19orf35/PEAK3,	and	how	it	regulates	cell	morphology	in	the	context	of	CrkII-dependent	

signaling.	PEAK3,	or	C19orf35	as	it	was	called	until	recently,	had	escaped	annotation	as	a	

protein-kinase	 like	 macromolecule	 during	 the	 first	 edition	 of	 the	 kinome	 annotated	 by	

Manning	and	colleagues,	possibly	due	to	mutations	of	key	catalytic	residues,	the	addition	of	

the	 SHED	 domain,	 and/or	 some	 low	 complexity	 insertions	 within	 the	 pseudokinase	

domain.	While	 PEAK3	 is	 predicted	 to	 have	 a	 protein-kinase	 like	 fold	 based	 on	 sequence	

similarity	to	the	New	Kinase	Family	3	(NKF3)	pseudokinases,	the	tertiary	conformation	of	

the	 domain	 I	 am	 referring	 to	 as	 the	 pseudokinase	 domain	 has	 not	 been	 solved.	 Our	

collaborator	Krzysztof	Pawłowski	from	the	Warsaw	University	of	Life	Sciences	utilized	the	

Fold	 and	 Function	 Assignment	 algorithm(25)	 to	 identify	 C19orf35	 as	 a	 putative	

pseudokinase	based	on	its	predicted	tertiary	structure,	which	 is	similar	to	pseudokinases	

PEAK1	 and	Pragmin.	My	 interest	 in	 this	 protein	was	 focused	on	deciphering	 the	 cellular	

processes	 that	 PEAK3/C19orf35	 participates	 in,	which	 domains	 are	 required	 for	 specific	

functions,	 and	 what	 protein	 binding	 partners	 PEAK3	 interacts	 with	 to	 mediate	 that	

function.	 Moreover,	 my	 work	 puts	 PEAK3	 into	 context	 with	 the	 growing	 body	 of	 work	
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pertaining	to	the	NKF3	pseudokinases	and	provides	the	first	functional	characterization	of	

PEAK3.		

NKF3	pseudokinases	promote	cellular	migration	

Both	 PEAK1	 and	 Pragmin	 are	 known	 to	 promote	 cell	 migration	 and	 participate	 in	 RTK	

signal	 transduction.	 The	 first	 studies	 of	 an	 NKF3	 member	 characterized	 Pragmin	 as	 an	

effector	in	RhoA	signaling	and	promoted	RhoA	activation	(26).	The	increased	activation	of	

RhoA	caused	cells	to	shrink	in	size	and	inhibited	neurite	outgrowth.	However,	 the	role	of	

Pragmin	may	be	may	be	cell-type	specific	because	others	have	shown	that	overexpression	

of	 Pragmin	 in	 gastric	 carcinoma,	 as	 well	 as	 pancreatic	 duct	 epithelial	 cells,	 causes	 cell	

elongation	and	an	increase	in	their	motile	propensity	(27),	(28).	While	the	mechanism	and	

specific	pathway	has	yet	to	be	fully	resolved,	some	have	suggested	that	Pragmin	sequesters	

C-Src	 kinase	 (Csk)	 away	 from	 the	 membrane,	 reducing	 the	 levels	 of	 inhibitory	

phosphorylation	on	Src	Family	kinases	(SFK),	which	is	agonistic	towards`	cell	motility	(29).	

However	 others	 have	 found	 that	 interaction	 the	 between	 Pragmin	 and	 Csk	 leads	 to	 a	

increase	 in	 the	 phosphorylation	 of	 downstream	 target	 proteins	 that	 is	 completely	 Src-

independent	(30).	Furthermore,	others	have	shown	that	overexpression	of	Pragmin	leads	

to	 a	 decrease	 in	 phosphorylation	 of	 Src	 activation	 loop	 coupled	with	 an	 increase	 in	 the	

inhibitory	 pY530,	 further	 cooroborating	 that	 Pragmin	 promotes	 cell	 motility	 in	 a	 Src-

independent	 manner	 (27).	 These	 conflicting	 results	 could	 be	 due	 to	 the	 molecular	

background	 of	 the	many	 cell	 types	 used	 in	 these	 experiments	 yet	 one	 resounding	 result	

across	many	 studies	 is	 the	morphological	 changes	 that	 are	 caused	 by	 overexpression	 of	

Pragmin,	which	mimic	those	seen	for	PEAK1.			
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NKF3	scaffolding	function	facilitate	RTK	signaling	

PEAK1	 serves	 as	 an	 integral	 scaffold	 that	mediates	 changes	 in	RTK	 signaling	output	 that	

promotes	cell	motility.	PEAK1	was	first	discovered	from	phosphotyrosine	enriched	lystaes	

isolated	 from	 pseudopodia,	 followed	 by	 2D-liquid	 chromatography	 and	 tandem	 mass	

spectrometry,	a	process	developed	by	John	Yates’	group	known	as	MudPIT	(31).	Work	by	

Wang	 and	 colleagues,	 followed	 by	 groups	 led	 by	 Richard	 Klemke,	 Jonathan	 Kelber,	 and	

Roger	Daly,	all	made	seminal	discoveries	in	elucidating	the	role	of	PEAK1	in	promoting	cell	

migration	 and	 regulating	 gene	 expression.	 PEAK1	 serve	 as	 a	 lynchpin	 for	 transitioning	

between	the	pro-mitogenic	signaling	complex	to	the	pro-migratory	complex	downstream	of	

EGF	 stimulation	 and	 PEAK1	bound	 to	 Shc	 is	 a	 hallmark	 of	 late-stage	 EGF	 signaling	 (32).	

There	 is	 tight	 temporal	 regulation	 of	 the	 PEAK1-Shc	 complex	 that	 only	 forms	 after	

sustained	mitogen	stimulation	(eg.	EGF),	and	is	also	dependent	on	PEAK1	phosphorylation,	

which	only	occurs	20	minutes	after	sustained	stimulation	(1,	32).	These	studies	and	more	

have	highlighted	how	PEAK1	functions	as	a	scaffolding	protein	that	alters	the	effect	of	RTK	

signaling	in	a	temporally	regulated	fashion.		

The	cellular	response	to	mitogenic	factors	and	cytokines	can	alter	depending	on	the	

levels	 of	 PEAK1	 expression	 and	 increase	 cells	 abilities	 to	 migrate	 and	 activate	 non-

canonical	signaling	pathways.	According	to	the	Human	Cancer	Atlas	and	a	growing	body	of	

research,	 PEAK1	 is	 highly	 expressed	 in	 breast,	 pancreatic,	 and	 other	 types	 of	 cancer	

samples	 and	 also	 correlates	 with	 high-grade	 cancer,	 which	 presents	 physical	 hallmarks	

such	 as	 poorly	 differentiated	 abnormal	 tissue	 morphology	 and	 high	 in	 mesenchymal	

molecular	 markers	 (33-35).	 In	 congruence	 with	 the	 clinical	 observations,	 PEAK1	

expression	can	promote	cell	proliferation	and	migration	in	various	cancer	models	including	
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breast,	non-small-cell	lung	carcinoma,	and	pancreatic	cancers,	all	of	which	show	increases	

in	 metastatic	 behavior	 and	 markers	 (34-37).	 PEAK1	 also	 increases	 Src	 activity	 by	

promoting	activation	loop	phosphorylation	(Tyr416)	in	the	activation	loop,	as	well	PEAK1	

expression	increases	resistance	against	Src	inhibitor	AZM	475271	in	these	same	cells	(38).	

Therefore,	increasing	PEAK1	expression	is	a	mechanism	by	which	cancer	cells	can	bypass	

cell	cycle	regulation	checkpoints	and	increase	in	proliferation.		

Pragmin	also	increases	mitogenic	cell	signaling	but	instead	does	it	through	different	

signaling	 cascades.	 While	 overexpression	 of	 Pragmin	 also	 causes	 an	 increase	 in	 cell	

proliferation	and	migration,	 some	evidence	point	 to	a	dependence	on	 JAK/Stat	activation	

more	 so	 than	 SFK	 (27).	 Inhibition	 of	 Stat3	 completely	 abolishes	 the	 pro-migratory	 and	

proliferative	effects	of	Pragmin	where	as	inhibition	of	EGFR	or	Src	had	little	effect	on	Stat3	

phosphorylation,	suggesting	 that	Pragmin	 is	able	 to	sustain	Stat3	activation	regardless	of	

EGFR	 and	 Src	 activation	 (27).	 Pragmin	 and	 Src	 signaling	 do	 have	 some	 feedback	 in	 that	

Pragmin	does	 increase	 the	 levels	of	 the	 inhibitory	pY530	 in	Src	due	 to	potentiation	of	C-

terminal	Src	Kinase	(Csk)	activity	(29).	However	the	mechanism	and	cellular	effects	of	the	

increased	 Csk	 activity	 do	 have	 some	 confounding	 opinions,	 where	 some	 suggest	 a	

mechanism	 of	 sequestering	 Csk	 away	 from	 the	membrane,	 others	 point	 to	 an	 increased	

focal	adhesion	turnover	due	to	increased	Csk-Pragmin	signaling	or	RhoA	GTPase	mediated	

processes	 that	 promote	 cell	 migration	 (28-30).	 Taken	 together	 we	 find	 that	 PEAK1	 and	

Pragmin	both	have	 serious	 clinical	 implications	due	 to	 their	ability	 to	 imbue	cancer	 cells	

with	RTK	inhibitor	resistance	and	promote	epithelial-to-mesenchymal	transition	(EMT).		

PEAK1	and	Pragmin	both	promote	cell	migration	by	promoting	actin	polymerization	

and	 focal	 adhesion	 stability.	 Focal	 adhesions	 are	 large	 dynamic	 protein	 complexes	 that	
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fasten	 cells	 to	 their	 substrate	 via	 integrin,	 which	 is	 a	 membrane	 protein	 that	 binds	 the	

extracellular	matrix,	as	well	as	paxillin	and	p130Cas	adapter	proteins	on	the	 intracellular	

side	 of	 the	membrane	 that	 promote	 focal	 adhesion	 assembly	 (reviewed	 in	 (39)).	 PEAK1	

promotes	 cell	 motility	 by	 increasing	 paxillin	 and	 p130Cas	 phosphorylation	 as	 well	 as	

binding	to	Crk	proteins	that	promote	actin	polymerization	via	Rho	GTPases	Rac1	and	Rap1	

(31,	40,	41).	PEAK1	knockdown	causes	dysregulation	of	focal	adhesions	by	decreasing	the	

their	lifetime	yet	also	decreases	the	rate	of	dissociation	of	the	complex	(42).	These	results	

show	how	PEAK1	function	is	to	regulate	the	dynamics	of	focal	adhesions	and	reducing	the	

cell’s	ability	to	quickly	form	and	disassemble	these	complexes.		

NKF	domain	architecture	and	structural	domains	

Together,	PEAK1	and	Pragmin	work	 in	 concert	 to	promote	motility	 that	 is	dependent	on	

forming	 homotypic	 and	 heterotypic	 oligomers.	 Proteomic	 studies	mentioned	 above	 have	

found	PEAK1	and	Pragmin	are	part	of	the	same	signaling	complex	and	independent	studies	

have	all	shown	that	PEAK1	and	Pragmin	often	promote	the	same	phenotypic	changes	in	cell	

morphology.	 It	 was	 only	 until	 recently	 that	 the	 importance	 of	 oligomerization	 of	 NKF3	

members	 was	 found	 to	 be	 integral	 for	 Stat3	 activation,	 a	 downstream	 effector	 that	 had	

been	individually	shown	for	PEAK1	and	Pragmin	(27,	36,	43).	The	helical	bundle	near	the	

N-terminal	 region	 of	 the	 pseudokinase	 domain	 is	 necessary	 not	 only	 for	 homotypic	 and	

heterotypic	dimerization	but	also	for	Stat3	activation,	which	led	to	the	canonical	increase	in	

cell	 migration	 (43).	 In	 fact	 much	 of	 the	 N-terminus	 was	 dispensable	 for	 Stat3	

phosphorylation	yet	the	N-terminal	helices	and	pseudokinase	domain	proved	to	be	integral	

(43).	Once	 the	structure	of	Pragmin,	and	 later	PEAK1,	was	elucidated	did	 the	community	
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discover	how	the	N-terminal	helix	and	a	group	of	helices	on	 the	C-terminal	 region	of	 the	

pseudokinase	domain	form	a	completely	new	structure	that	 is	unique	amongst	any	know	

structure	in	the	kinome.			

NKF3	members	 are	unified	 as	 a	 family	by	 the	 sequences	within	 the	pseudokinase	

domain	and	the	adjacent	N-	and	C-	terminal	helices,	which	 is	necessary	for	much	of	 their	

function.		Those	adjacent	helices	fold	back	onto	the	C-lobe	of	the	pseudokinase	domain	into	

an	 ‘XL’	 domain	 known	 as	 the	 Split	 Helical	 Dimerization	 (SHED)	 domain	 (44).	 The	 SHED	

domain	helices	αN1,	αJ	and	αK	 (Pragmin	nomenclature),	 are	held	 together	by	both	polar	

and	nonpolar	residues	that	 lock	the	 intercept	of	 the	 ‘X’	 together	and	 link	the	 ‘X’	 to	 the	C-

lobe	 of	 the	 pseudokinase	 domain.	 Notably	 in	 Pragmin,	 Phe1366	 of	 the	 αJ	 helix	 interacts	

with	Asp1381	of	the	αN1	helix	and	all	of	which	is	surrounded	by	hydrophobic	residues	at	

the	intercept	of	the	‘X’	(45).	Additional	support	comes	from	Asp1381	from	αK	helix	to	the	

top	of	the	αJ	helix	Lys1365	and	Lys1369	and	is	also	shielded	from	the	solvent	by	Phe1366	

of	αJ.	In	this	manner	the	αK	helix	serves	to	hold	the	αJ	helix	near	the	C-lobe	and	αJ	holds	the	

αN1	helix.	In	PEAK1	the	forces	that	stabilize	the	SHED	domain	may	differ	since	the	residues	

at	the	intercept	between	αS	(αN1	in	Pragmin)	and	αK	(αJ	in	Pragmin)	are	largely	nonpolar	

(44).		

The	structural	models	of	PEAK1	and	Pragmin	revealed	the	unique	conformation	of	

the	SHED	domain	and	also	how	it	mediates	homo-dimerization.	The	symmetry	mates	in	the	

crystal	 structures	 of	 both	 PEAK1	 and	 Pragmin	 show	 how	 two	 SHED	 domains	 align	 in	

parallel	to	form	a	symmetrical	twin	‘X’	(30,	44,	45).	Structural	homology	algorithms,	such	

as	the	Dali	server	and	VAST,	which	align	and	assess	structural	similarities,	have	found	that	

there	 are	 no	 known	 structures	 with	 the	 SHED	 domain	 geometry,	 though	 PTEN-induced	
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kinase1	 (PINK1)	does	have	 a	 region	 that	 is	 somewhat	 similar	 (44,	 46).	The	dimerization	

interface	is	also	near	the	intercept	of	the	single	shed	domain	where	Met1363	juts	out	from	

αN1	helix	 to	 form	a	dense	hydrophobic	 interface	 in	 trans	with	 the	 adjacent	αN1	helix	 at	

Ser962,	 Leu963,	 and	 Leu966	 along	with	 the	 αJ	Met1364	 and	Ala1367.	 This	 hydrophobic	

region	 is	 located	 just	 above	 two	 Tyr959,	 one	 from	 each	 monomer,	 that	 hydrogen	 bond	

together.	 Many	 of	 the	 hydrophobic	 residues	 in	 this	 region	 are	 integral	 for	 the	 thermal	

stability	and	dimerization	of	Pragmin	including	Leu955,	Leu966,	and	Met	1363.	In	addition,	

the	dimer	 interface	near	 the	 ‘X’	 intercept	 is	Leu966	 that	 is	 surrounded	by	a	hydrophobic	

pocket	created	by	Met1363,	Phe1366,	Ala1367,	all	of	which	are	in	cis,	and	Val1371	in	trans	

from	 the	 adjacent	 αJ	 helix.	 Additionally	 there	 are	 many	 other	 nonpolar	 residues	 that	

protrude	 into	 hydrophobic	 pockets	 that	 provide	 the	 molecular	 force	 that	 holds	 the	

monomers	together.	

Crk	role	in	motility	and	intracellular	signaling	

Crk	spliceoforms	and	mechanisms	of	inhibition	

The	 adapter	 protein	 CrkII	 serves	 as	 critical	 link	 in	 signaling	 cascades	 downstream	 from	

focal	adhesions	as	well	as	receptor	kinases.	Crk	was	originally	discovered	from	a	chicken	

tumor	 and	 was	 shown	 to	 be	 an	 oncogenic	 driver	 that	 increased	 the	 global	 levels	 of	

phosphorylation	and	was	thus	named	Chicken	tumor	virus	no.	10	regulator	of	kinases	(47).	

Crk	proteins	are	conserved	in	many	different	metazoans	and	Crk	orthologs	can	be	detected	

in	distant	species	such	as	choanoflagellates	(48).	Since	its	discovery	in	the	late	1980’s,	the	

molecular	biology	of	Crk	has	been	well	characterized	yet	remains	an	active	area	of	research	
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for	many	 labs	 due	 to	 its	 role	 signal	 transduction	 as	 well	 as	 its	 conserved	 SH2	 and	 SH3	

domain	architecture.		

Crk	has	two	spliceoforms,	with	CrkI	being	a	truncated	form	of	the	full	length	CrkII,	

and	also	a	Crk	paralog	named	Crk-like	(CrkL)	that	likely	arose	from	a	gene	duplication	(41).	

CrkII	 and	 CrkL	 are	 comprised	 an	 SH2	 domain	 at	 the	 N-terminal	 end	 followed	 by	 two	

tandem	 SH3	 domains	 (N-terminal	 SH3	 domain	 (SH3(N)	 and	 C-terminal	 SH3	 domain	

(SH3(C))	 that	 are	 separated	by	 an	 important	 regulatory	 linker.	 CrkI	 is	 a	 truncated	 splice	

variant	 of	 CrkII	 that	 is	missing	 the	 SH3(C)	 domain	 and	 regulatory	 linker	 suggesting	 that	

CrkI-dependent	signaling	is	controlled	through	an	alternative	mechanism	and	not	through	

the	 regulatory	 linker.	 CrkII/CrkL	 are	 inhibited	 by	 phosphorylation	 of	 Tyr221/207,	

respectively,	 at	 the	 regulatory	 linker	 between	 the	 tandem	 SH3	 domains	 that	 causes	 an	

intramolecular	 binding	 of	 the	 SH2	 domain	 to	 the	 linker	 (49,	 50).	 It	 is	 through	 this	

mechanism	of	regulation	 that	cells	can	control	signaling	 that	emanates	 from	integrin	and	

RTKs	to	GTPase	activity.		

Crk-dependent	GTPase	activation	and	binding	partner	specificity	

Crk	adapter	proteins	are	the	molecular	link	between	RTK	stimulation	and	phosphorylation	

and	 GTPase	 activation,	 which	 cause	 cell	 to	 migrate.	 Both	 Integrin	 and	 EGF	 stimulation	

causes	CrkII	to	localize	to	the	membrane	where	it	associates	with	another	adapter	protein	

p130-Crk	associated	substrate	(P130CAS)	(51,	52).	Once	localized	to	the	membrane,	CrkII	

binds	 DOCK180,	 a	 guanine	 nucleotide	 exchange	 factor	 (GEF)	 for	 Rac1	 GTPase	 (52).	

Overexpression	 experiments	 show	 that	 CrkII,	 DOCK180	 and/or	 p130CAS	 increases	 the	
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motility	and	is	dependent	on	either	Rac1	or	CDC42	but	not	RAS	GTPases	(52-54).	DOCK180	

is	unusual	in	that	it	requires	another	cofactor,	ELMO,	which	seems	to	potentiate	DOCK180	

and	protect	 it	 from	degradation	 (55),	 although	ELMO	does	 not	 bind	 to	 CrkII	 it	 is	 clearly	

needed	 to	 potentiate	 Rac1	 activation	 by	 CrkII	 and	 DOCK180	 (56).	 Rac1	 promotes	

lamellipodia	 formation,	 and	actin	 stress	 fiber	 formation	whereas	deletion	of	Rac1	 causes	

cells	 to	 become	 thin	 and	 loose	 their	 stress	 fibers	 similar	 to	 those	 cells	 that	 have	 a	 CrkII	

knockdown	 (54,	 57,	 58).	 These	 experiments	 highlight	 how	 CrkII	 is	 able	 to	 link	 RTK	

stimulation	 to	GTPase	 activation	 that	 causes	 cells	 to	 change	morphology	 and	 specifically	

increase	their	motility	through	GTPase	activation.			

CrkII	 and	 CrkL	 are	 both	 SH2/SH3	 adapter	 proteins,	 similar	 to	 Grb2	 and	 Nck,	 yet	

bind	 to	 a	 distinct	 proline-rich	motif	 and	 thus	 have	 a	 unique	 set	 of	 binding	 partners	 and	

signaling	pathways.	The	binding	motif	of	Crk	proteins	are	highest	with	the	motif	found	in	

C3G,	a	Rap1	GEF,	and	had	a	significantly	lower	binding	affinity	to	Grb2	compared	to	CrkII	

(142	μM	vs.	1.82	μM,	respectively)	(59).	In	fact	Far	Western	blot	analysis	of	an	array	of	SH3	

domains	 from	different	 proteins,	 including	Grb2,	Nck,	 PI3K,	 Src,	 Fyn,	 Csk,	 Abl,	 and	Plc-γ,	

were	found	incapable	of	binding	the	C3G	peptide	using	this	technique	(59).	The	consensus	

motif	 is	P1-P2-X3-L4-P5-X6-K7,	with	L4	and	K7	having	 the	greatest	detriment	 to	 the	binding	

coefficient	of	any	of	the	residues	in	the	motif	(60).	Interestingly,	the	K7	position	of	the	SOS2	

peptide	 that	 Grb2	 binds	 is	 an	 arginine	 and	 mutating	 K7	 to	 R7	 in	 the	 C3G	 peptide	

dramatically	 increased	 the	 binding	 of	 Grb2	 to	 the	 C3G	 peptide	 (142	 μM	 vs.	 23	 μM,	

respectively),	 showing	 how	 those	 specific	 residues	 confer	 specificity	 for	 a	 given	 SH3	

domain.		
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CrkL	oncogene	and	it	role	in	chronic	myeloid	leukemia	

The	adapter	protein	CrkL	gained	interest	and	notoriety	as	an	oncogene	in	chronic	myeloid	

leukemia	due	 to	 its	 association	with	BRC-ABL	and	 its	 increased	phosphorylation	 in	CML.	

The	 translocation	 of	 chromosome	 9	 and	 22	 is	 a	 hallmark	 of	 CML	 and	 creates	 the	 fusion	

oncogene	 BCR-ABL	 and	 circumstantially	 is	 also	 near	 the	 coding	 region	 of	 CrkL.	 The	

identification	 of	 CrkL	 came	 from	 genomic	 analysis	 near	 the	 t(9;22)	 translocation	 region,	

which	 is	 the	 regulatory	 region	 of	 CrkL.	When	 the	 regulatory	 region	 is	 disrupted	 by	 the	

t(9;22)	translocation,	 it	causes	an	 increase	 in	CrkL	expression	(61).	Similar	to	CrkII,	CrkL	

binds	 paxillin,	 Cbl	 and	 p130Cas	 through	 its	 SH2	 domain	 at	 YxxP	 motifs	 found	 in	 the	

substrate	 proteins	 (62),(63),	 (64).	 CrkL	 also	 binds	 proline-rich	motifs	 via	 its	 N-terminal	

SH3	domain	e.g.	CrkL	recruits	BCR-ABL	to	the	membrane	by	binding	to	the	C-terminal	tail	

of	Abl	via	 its	N-terminal	SH3	domain	 (65).	 Increased	exogenous	CrkL	 in	 leukemia	mouse	

models	 that	 express	 the	 BCR-ABL	 fusion	 protein	 have	 a	 decreased	 lifespan	 compared	 to	

those	only	expressing	BCR-ABL	alone	 (66),	 suggesting	 that	CrkL	 is	 able	 to	potentiate	 the	

oncogenic	 effects	 of	 BCR-ABL.	 CrkL	 has	 identical	 domain	 architecture	 to	 CrkII	 and	 some	

redundant	function	in	vivo,	yet	there	are	also	non-redundant	functions	that	are	critical	for	

development.		

CrkL	and	CrkII	phenotypic	similarities	and	regulatory	differences	

CrkL	 and	 CrkII	 do	 have	 some	 redundancy	 in	 their	 signaling	 pathways	 and	 potential,	 yet	

there	 are	 some	 differences	 that	make	 them	 unique.	 The	 redundancy	 between	 CrkII	 and	

CrkL	can	be	seen	 in	vivo	where	single	knock	out	of	CrkI/II	or	CrkL	specifically	within	the	

kidney	 has	 no	 effect	 on	 kidney	 development,	 specifically	 the	 elongation	 of	 the	 podocyte	
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cells	 that	 create	 the	 epithelial	 filter	 barrier	 (67).	 However	 mice	 kidneys	 with	 the	

CrkI/II/CrkL	 double	 knockout	 have	 reduced	 functionality,	 including	 defects	 in	 podocyte	

extension	that	lead	to	albuminuria,	suggesting	that	Crk	and	CrkL	are	necessary	for	kidney	

development	and	interestingly	they	are	able	to	compensate	for	one	another	(67).		

CrkII	 and	 CrkL	 both	 can	 bind	 GEF	 protein	 C3G	 and	 Dock180	 where	 by	 they	

participate	 in	 GTPase	 activation	 that	 promotes	 cell	 motility	 that	 is	 critical	 during	

development	(52,	68,	69).	Cell	area	is	also	effected	by	CrkII/CrkL	knockout,	where	cells	are	

more	rounded	and	smaller,	however	CrkII	is	better	at	rescuing	cell	morphology	compared	

to	 CrkL,	 suggesting	 that	 CrkII	 is	 a	 more	 potent	 regulator	 of	 cell	 area	 than	 CrkL	 (70).	

Furthermore,	both	Crk-/-	and	CrkL-/-	knockout	mice	die	prenatally,	 suggesting	 that	 they	

are	not	 completely	 redundant	during	development	 (71),(72),(73).	Both	Crk	and	CrkL	are	

expressed	 ubiquitously	 in	 the	 heart	 during	 development	 and	 in	 both	 Crk-/-	 and	 CrkL-/-	

mouse	models	show	signs	of	 craniofacial	and	cardiac	developmental	defects.	While	 there	

are	 clear	 similarities	 in	 expression	 location	 and	 phenotypic	 consequences	 for	 these	

paralogs,	the	structural	orientation	and	ultimately	the	mechanism	of	regulation	set	Crk	and	

CrkL	apart.		 	

CrkL	 and	 CrkII	 are	 both	 SH2/SH3	 adapter	 proteins,	 yet	 the	 conformation	 and	

orientation	of	the	SH2	and	SH3	domains	differs	leading	to	dissimilarity	in	the	accessibility	

of	the	SH3(N)	domain.	Both	CrkII	and	CrkL	have	a	regulatory	tyrosine	in	the	linker	between	

the	 N	 and	 C	 terminal	 SH3	 domains	 (Y221	 and	 Y207,	 respectively).	 It	 has	 been	 well	

established	 that	 CrkII	 is	 inhibited	 by	 phosphorylation	 of	 Y221	 due	 to	 an	 intramolecular	

interaction	 between	 the	 SH2	 domain	 and	 the	 regulatory	 pY221	 motif	 (49,	 74).	

Phosphorylation	 of	 CrkL	 Y207	 also	 causes	 its	 SH2	 domain	 to	 bind	 the	 inhibitory	 linker	
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domain	yet	 this	does	not	 seem	 to	 impede	 the	SH3(N)	 from	binding	 to	 its	 substrate	 (75).	

NMR	structural	analysis	revealed	the	orientation	of	the	SH3(N)	domain	with	respect	to	the	

SH2	domain	differs	between	CrkL	and	CrkII	 such	 that	 the	binding	site	of	CrkII	SH3(N)	 is	

facing	towards	the	SH2	domain	 in	an	occluded	orientation	yet	 the	SH3(N)	binding	site	of	

CrkL	is	facing	outward	toward	the	solution	(75).	The	biochemical	consequence	reveals	that	

the	binding	coefficient	of	CrkL	to	the	Abl	PPII	peptide,	which	both	Crk	and	CrkL	bind	via	the	

SH3(N),	is	unaffected	by	the	intramolecular	interaction	as	it	is	with	CrkII	pY221	(75).	While	

CrkL	pY207	is	still	able	to	bind	to	Abl,	the	SH2	domain	is	bound	to	the	regulatory	linker	and	

is	 indeed	 inhibitory	 due	 to	 changes	 in	 localization	 rather	 than	 through	 occlusion	 of	 the	

binding	site.		

Results	

PEAK3	is	a	distinct	member	of	the	NKF3	family	of	atypical	protein	kinases.	

We	 searched	 for	 distant	 homologs	 of	 protein	 kinases	 in	 the	 human	 proteome	 using	 the	

sensitive	 sequence	 comparison	 algorithm	 Fold	 and	 Function	 Assignment	 System	 (FFAS)	

(25),	 previously	 used	 by	 us	 to	 discover	 novel	 kinase-like	 proteins	 in	 humans	 (SELO	 and	

FAM69/DIA1	 families	 (76,	 77)	 and	 in	 bacteria	 and	 fungi	 (COTH	 (78)).	 The	 only	 novel	

protein	with	a	significant	FFAS	score	found	that	was	not	previously	identified	as	kinase-like	

was	a	single	uncharacterized	protein,	denoted	as	chromosome	19	open	reading	 frame	35	

(C19orf35).	 C19orf35	 has	 the	 closest	 similarity	 to	 the	 PEAK1/SgK269	 and	

Pragmin/SgK223	 pseudokinases	 that	 together	 constitute	 the	 NKF3	 family.	 Recently,	

Lecointre	and	colleagues	reported	the	identity	of	C19orf35	as	a	new	member	of	the	NKF3	
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family,	and	C19orf35	was	annotated	in	the	Universal	Protein	Resource	(Uniprot)	as	PEAK3	

(30).	For	consistency,	from	this	point	on,	we	refer	to	C19orf35	as	PEAK3.	Using	PEAK1	or	

Pragmin	 as	 Blast	 queries	 results	 in	 only	 partial	 alignments	 covering	 fragments	 of	 the	

kinase-like	domain.	However,	the	FFAS	method	is	capable	of	detecting	similarity	over	the	

entire	length	of	the	putative	kinase-like	domain	(Fig.	1A).	The	kinase-like	domain	of	human	

PEAK3	shares	only	approximately	26%	sequence	identity	with	human	PEAK1	and	Pragmin	

due	 to	 low	 complexity	 regions	 (LCRs),	 which	 introduce	 long	 gaps	 in	 the	 pairwise	

alignments.	This	 is	most	 likely	why	the	PEAK3	sequence,	although	present	 in	the	Uniprot	

database	since	2004,	was	not	annotated	as	kinase-like	until	recently.	Even	now,	standard	

protein	domain	annotation	tools	(CD-Search	or	Pfam	HMM)	do	not	report	kinase	similarity	

for	PEAK3.	

LCRs,	defined	as	areas	of	protein	sequences	with	biased	amino	acid	composition,	 located	

within	the	kinase-like	domain	are	a	distinct	 feature	of	NKF3	proteins	(79).	These	regions	

are	 typically	 implicated	 in	 mediating	 protein-protein	 interactions	 (80).	 In	 NKF3	

pseudokinases,	the	LCRs	correlate	with	flexible	regions,	as	 judged	by	missing	coordinates	

corresponding	to	these	sequences	in	the	structures	of	PEAK1	and	Pragmin.	One	example	is	

the	PAPAPAPA	motif	 in	Pragmin	that	 is	 located	between	the	HRD	and	NFL	motifs,	where	

the	NFL	motif	corresponds	to	the	DFG	motif	 in	active	kinases	(SI	Appendix,	Fig.	S1A).	The	

majority	of	the	LCRs	in	PEAK1,	Pragmin,	and	PEAK3	diverge	in	sequence	from	one	another	

and	are	located	in	different	regions.	PEAK3	stands	out	by	having	the	largest	portion	of	its	

kinase-like	domain	sequence	(more	than	20%)	denoted	as	LCRs.	Some	of	these	motifs	are	

relatively	well-conserved	in	evolution,	such	as	the	PPGPPGSPGP	motif	that	is	immediately	

downstream	of	the	DFG	motif	in	PEAK3	(SI	Appendix,	Fig.	S1B).	
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Figure	1	
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Figure 1. Identification of PEAK3 (C19orf35) as a homolog of PEAK1 and Pragmin. (a) 
Protein sequence alignment for the kinase domains of human PEAK1/SgK269, Pragmin/SgK223 
and PEAK3 (C19orf35). Secondary structure elements are denoted based on the Pragmin 
structure (PDB ID: 5VE6), and sequence motifs corresponding to the canonical kinase active site 
motifs (HRD and DFG in classical kinases) are marked in red. Residues involved in 
dimerization, conserved W and C residues, and residues shown to occlude the pseudo-active site 
in Pragmin are marked by the indicated symbols. (b) Phylogenetic tree (PhyML) for selected 
NKF3 kinases. Branches with bootstrap values better than 70% are marked with circles. (c) 
Cartoon representation of the crystal structure of the Pragmin SHED domain/pseudokinase 
module (PDB ID: 5VE6). (d) Zoomed-in view of the pseudoactive site in Pragmin depicting 
residues that occlude the canonical nucleotide-binding pocket. Top numbering is for Pragmin 
residues (PDB ID: 5VE6), bottom in parentheses to predicted corresponding residues in PEAK3. 
The Pragmin D184 residue was modeled in the active site based on the structure of Pragmin 
(PDB: 6EWX).  

Evolutionary	conservation	of	PEAK3	and	its	kinase-like	domain.	

The	 NKF3	 family	 likely	 appeared	 at	 the	 origin	 of	 Metazoa,	 which	 is	 indicated	 by	 the	

presence	 of	 homologs	 in	 sponges	 (Amphimedon)	 and	 placozoans	 (Trichoplax).	 Most	

invertebrates	 (e.g.	 cnidarians,	 echinoderms)	 contain	 a	 single	 member	 of	 the	 family,	

although	 in	 some	 lineages	 (e.g.	 insects	 and	 nematodes),	 the	 NKF3	 family	 has	 seemingly	

been	 lost.	The	division	 into	 the	PEAK1	and	Pragmin	 subfamilies	 likely	occurred	between	

the	emergence	of	chordates	(the	lancelet	Branchiostoma	has	a	single	family	member)	and	

jawed	vertebrates	(Gnathostomata	have	both	PEAK1	and	Pragmin).	The	PEAK3	subfamily	

diverges	from	the	Pragmin	branch	likely	during	the	evolution	of	reptiles	(e.g.	it	is	found	in	

crocodilians)	 and	 is	 present	 in	 birds	 and	 mammals	 (Fig.	 1B).	 Interestingly,	 PEAK3	 is	

missing	in	some	reptile	species	such	as	snakes	and	lizards.	The	early	members	of	the	NKF3	

family,	 i.e.	 proteins	 from	 sponges	 and	 placozoans,	 exhibit	 high	 sequence	 and	 structure	

conservation	with	 those	 found	 in	more	 complex	metazoans	 (e.g.	 vertebrates),	 suggesting	

evolutionarily	conserved	functions	of	these	proteins.	
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The	 kinase-like	 domain	 of	 PEAK3	 is	 highly	 conserved	 in	 evolution	 and	 carries	

unique	sequence	alterations	in	key	catalytic	motifs	found	in	active	kinases	when	compared	

with	PEAK1	and	Pragmin.	Interestingly,	these	alterations	within	the	putative	active	site	of	

PEAK3	vary	markedly	between	species	 (Fig.	1A;	SI	Appendix,	Fig.	S1).	Mammalian	PEAK1	

and	Pragmin	do	not	possess	 a	 conserved	DFG	motif.	However,	PEAK1	and	Pragmin	have	

intact	 HxD	motifs:	 HRD	 in	 PEAK1	 and	 HCD	 in	 Pragmin.	 In	 contrast,	 mammalian	 PEAK3	

contains	 a	 conserved	 DFG	motif,	 while	 the	 HxD	motif	 is	 replaced	 by	 LxE.	 These	 unique	

features	are	not	conserved	in	avian	PEAK3	homologs,	which	have	an	NFF	or	SFF	sequence	

in	 place	 of	 DFG,	 more	 closely	 resembling	 sequences	 present	 in	 PEAK1	 (NFS)	 and	 in	

Pragmin	 (NFL).	 In	 PEAK1	 and	 Pragmin,	 these	 motifs	 are	 almost	 perfectly	 conserved	

irrespective	 of	 a	 species.	While	 HxD	 is	 also	 not	 conserved	 in	 avian	 PEAK3,	 the	 catalytic	

aspartate	 (contained	 within	 the	 HxD	 motif)	 is	 present	 within	 the	 QGD	 sequence	 that	

replaces	the	HxD	motif.	

In	all	species,	PEAK3	has	a	conserved	EN	motif,	corresponding	to	the	EN	sequence	

located	in	PKA	at	positions	170-171	that	coordinates	divalent	cations	(81).	This	feature	is	

also	 present	 in	 PEAK1	 and	 Pragmin	 (Fig.	 1A;	 SI	 Index,	 Fig.	 S1).	 The	 catalytic	 lysine,	

equivalent	to	K72	in	PKA	is	conserved	in	PEAK3	(K204	in	PEAK3),	but	the	glutamate	(E91	

in	PKA)	with	which	 the	catalytic	 lysine	 forms	a	salt	bridge	 in	active	kinases	 is	missing	 in	

PEAK3.	 In	 PEAK1	 and	 Pragmin,	 the	 catalytic	 lysine	 is	 also	 present	 but	 is	 “hijacked”	 by	

interactions	with	three	residues	collectively	termed	the	“inhibitory	triad”	that,	in	addition	

to	other	conserved	residues,	occlude	the	nucleotide	binding	pocket	and	prevent	binding	of	

ATP	 (Fig.	1C	 and	1D)	 	 (30,	44,	45).	These	 residues	are	well-conserved	 in	PEAK3	and	are	

represented	by	D184,	Y187,	L201,	Q231,	and	L311	(Fig.	1A	and	1D).	Collectively,	the	extent	
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of	 mutations	 in	 the	 key	 catalytic	 motifs	 strongly	 indicate	 that	 although	 PEAK3	 diverges	

from	 other	members	 of	 the	NKF3	 family,	 it	 still	 falls	 into	 the	 category	 of	 pseudokinases	

defined	 by	 Manning	 and	 colleagues	 as	 kinases	 that	 lack	 one	 or	 more	 of	 the	 canonical	

catalytic	sequence	motifs	(3,	4).	Hence	all	NKF3	kinases	carry	pseudokinase	characteristics,	

and	 seem	 to	derive	 from	a	 common	NKF3	pseudokinase	 ancestor	 in	 early	Metazoans,	 as	

indicated	 by	 the	 sequence	 variability	 in	 the	 NKF3	 proteins	 and	 reconstruction	 of	 the	

ancestral	NKF3	sequence	(Ancescon	method	(82)).	

PEAK3	interactome.	

With	no	prior	insights	into	the	function	of	PEAK3,	we	took	an	unbiased	approach	to	identify	

its	 interacting	 partners	 using	 immunoprecipitation	 followed	 by	 mass	 spectrometry	

(IP/MS).	Due	to	the	current	lack	of	a	suitable	antibody	for	detection	of	endogenous	PEAK3,	

our	analysis	was	conducted	using	a	3xFLAG-tagged	human	PEAK3	transiently	expressed	in	

HEK293T	cells.	Identified	proteins	that	co-immunoprecipitated	with	PEAK3-3xFLAG	can	be	

categorized	into	several	subgroups:	(i)	CrkII	and	CrkL,	highly	homologous	adaptor	proteins	

that	 regulate	 cell	 proliferation,	 adhesion	 and	 cytoskeletal	 integrity	 downstream	 from	

receptor	tyrosine	kinases	and	integrins	(70,	83);	(ii)	14-3-3	scaffold	proteins	(β,	γ,	η,	and	τ),	

which	 play	 diverse	 roles	 in	 signaling,	 including	 regulation	 of	 cell	 motility,	 survival	 and	

intracellular	protein	trafficking	(84);	(iii)	guanine	nucleotide	exchange	factors	(GEFs)	and	

GTPase-activating	proteins	(GAPs)	 for	Rho	 family	of	small	GTPases,	 including	ASAP1	that	

participates	 in	 actin	 cytoskeletal	 dynamics	 and	 cell	movement	 (85,	 86);	 and	 (iv)	 several	

proteins	connected	to	the	regulation	of	cell	death	and	survival,	 including	SIAH1	ubiquitin	
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ligase	(87),	DRAK1	(88)	and	another	14-3-3	scaffold	protein,	14-3-3σ,	also	known	as	SFN	

(89)	(SI	Appendix,	Table	1).	Collectively,	this	analysis	suggests	that	PEAK3	plays	a	role	in	a	

number	 of	 functions	 involved	 in	 cell	 proliferation,	 survival,	 and	motility.	 The	 function	 of	

PEAK3	 in	 cell	 motility,	 in	 particular,	 was	 underscored	 by	 the	 abundance	 of	 motility	

regulators	in	the	immunoprecipitates.	

PEAK3	interacts	with	CrkII	via	a	proline-rich	motif/SH3	domain	interaction.	

Given	the	documented	roles	of	NKF3	family	members	in	the	regulation	of	cellular	motility	

(27-29,	 31,	 42,	 43,	 90,	 91),	 we	 focused	 our	 functional	 studies	 of	 PEAK3	 on	 the	 adaptor	

protein	CrkII,	which	was	one	of	 the	most	abundant	PEAK3-interacting	proteins	 identified	

by	the	IP/MS	analysis	measured	as	a	high	confidence	score	via	the	comparative	proteomic	

analysis	software	suite	(ComPASS)	(92)	(SI	Appendix,	Table	1).	Primary	sequence	analysis	

of	the	N-terminal	domain	of	PEAK3	revealed	the	presence	of	a	putative	CrkII-binding	site,	

PPPLPK,	located	71	residues	upstream	from	the	predicted	kinase	domain.	This	site	closely	

resembles	 the	consensus	sequence	present	 in	known	binding	partners	of	CrkII,	 including	

the	GEF	proteins	DOCK180	and	C3G	 (Fig.	2A,	B)	 (31,	59,	93).	This	putative	CrkII-binding	

motif	in	PEAK3	is	highly	conserved	across	evolution,	suggesting	a	potential	importance	in	

PEAK3	 function	 (Fig.	 2C).	 Interestingly,	 this	 sequence	 is	 also	 present	 in	 PEAK1	 and	

Pragmin,	and	PEAK1	was	previously	shown	to	co-immunoprecipitate	with	CrkII	(31).	Using	

co-immunoprecipitation,	we	verified	that	transiently	expressed	PEAK3	in	HEK293	cells	 is	

indeed	 able	 to	 bind	 both	 endogenously	 and	 exogenously	 expressed	 CrkII	 (Fig.	 2D;	 SI	

Appendix,	 Fig.	 S2).	Mutation	 of	 residues	 in	 the	 predicted	 CrkII-binding	 site	 (P56A,	 L59A,	
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and	P60A	in	PPPLPK)	completely	abolished	the	ability	of	mutant	PEAK3	(PEAK3-3A)	to	co-

immunoprecipitate	with	CrkII	(Fig.	2D).	CrkII	 is	composed	of	an	SH2	domain	followed	by	

two	 SH3	 domains,	 termed	 N-terminal	 SH3	 domain	 (SH3N)	 and	 C-terminal	 SH3	 domain	

(SH3C).	The	inability	of	the	PEAK3-3A	mutant	to	bind	CrkII	suggested	that	PEAK3	interacts	

specifically	 with	 the	 SH3N	 in	 CrkII,	 which	 has	 previously	 been	 shown	 to	 engage	 similar	

proline-rich	motifs	in	other	CrkII-binding	partners	(52,	59,	93,	94).	Indeed,	mutation	of	the	

SH3N	(CrkII-W170K)	but	not	of	the	SH3C	domain	(CrkII-W276K)	rendered	CrkII	unable	to	

bind	PEAK3	(Fig.	2E).	

PEAK3	 antagonizes	 CrkII-induced	 changes	 in	 cellular	 morphology.	 One	 well-

characterized	 role	 of	 PEAK1	 and	 Pragmin	 is	 the	 regulation	 of	 cell	 morphology	 and	

migration.	Both	PEAK1	and	Pragmin	localize	to	actin	filaments	and	focal	adhesions,	induce	

cell	elongation,	and	promote	cell	migration	when	transiently	expressed	in	cells	(27-29,	31,	

34,	 42,	 43).	 In	 contrast,	 we	 found	 that	 PEAK3	 distributes	 diffusely	 throughout	 the	

cytoplasm	of	COS-7	 cells	 and	U2OS	 cells	upon	 transient	 transfection,	 and	had	 little	 to	no	

effect	 on	 overall	 cell	 shape	 compared	 to	 vector-transfected	 control	 cells	 (Fig.	 3A;	 SI	

Appendix,	 Fig.	 S3).	However,	while	 the	majority	 of	 control	 cells	 retained	prominent	 actin	

filaments	 that	 traversed	 the	 cell	 (16,	 95).	 Those	 cells	 overexpressing	 PEAK3	 exhibited	

notably	fewer	stress	fibers	and	possessed	shorter,	less	organized	actin	filaments,	mirroring	

the	phenotype	typically	observed	in	cells	in	which	the	CrkII	gene	is	knocked	down	(Fig.	3B)	

(96).	
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Figure	2	

Figure 2. PEAK3 binds CrkII. (a) Schematic representation of PEAK1/SgK269, 
Pragmin/SgK223, and PEAK3/C19orf35 domain structure. The locations of the CrkII-binding 
sites and helical regions within the SHED domain are highlighted. (b) Consensus sequence of 
CrkII-binding sites in selected CrkII-binding partners. (c) Sequence logo depicting conservation 
of the CrkII-binding site in PEAK3 homologs. (d, e) Co-immunoprecipitation of FLAG-tagged 
wild type PEAK3 or a CrkII-binding mutant (PEAK3-3A) transiently expressed in HEK293 cells 
with either endogenous CrkII (d) or transiently expressed untagged CrkII variants carrying 
mutations in the SH3 domains (W170K in SH3N and W276K in SH3C) (e). Cell lysates were 
incubated with an anti-FLAG antibody, resolved by SDS/PAGE, and probed with the indicated 
antibodies by western blot. All co-immunoprecipitation data are representative of at least three 
independent experiments. 
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Endogenous	CrkII	participates	in	actin	polymerization	and	positively	regulates	cell	motility	

(51,	 95-99).	 Exogenously	 expressed	 CrkII	 localizes	 to	 the	 cell	 cortex	 where	 it	 induces	 a	

spindle-shaped	 cell	 morphology	 with	 notable	 membrane	 extensions	 resembling	

lamellipodia	 or	 polarized	 membrane	 ruffles	 (50,	 51,	 70,	 100-102).	 These	 morphological	

changes	 can	 be	 visualized	 robustly	 in	 COS-7	 and	U2OS	 cells	 (40,	 51,	 96,	 103),	 hence	we	

used	these	cell	lines	to	measure	the	functional	consequences	of	PEAK3	overexpression	on	

CrkII-dependent	 effects	 on	 cell	morphology.	 Remarkably,	 cells	 co-expressing	 PEAK3	 and	

CrkII	 had	 markedly	 fewer	 membrane	 extensions	 and	 largely	 did	 not	 adopt	 a	 CrkII-

dependent	morphology	(Fig.	3A;	SI	Appendix,	Fig.	S4A).	In	contrast,	the	PEAK3-3A	mutant,	

which	 does	 not	 interact	 with	 CrkII,	 was	 unable	 to	 interfere	 with	 the	 CrkII-dependent	

phenotype	(Fig.	3A;	SI	Appendix,	Fig.	S4A).	

To	quantitatively	compare	these	differences	in	cellular	phenotypes,	we	developed	a	

metric	 in	which	 the	effect	of	CrkII	on	 cell	morphology	 is	measured	as	 an	 increase	 in	 cell	

perimeter	(Fig.	3C).	While	CrkII	overexpression	alone	significantly	increases	cell	perimeter,	

there	is	no	change	in	cell	perimeter	when	CrkII	is	co-expressed	with	wild	type	PEAK3	(Fig.	

3D;	SI	Appendix,	Fig.	S4B).	PEAK3-CA	mutant	has	no	effect	on	CrkII-dependent	increase	in	

cell	perimeter,	supporting	a	conclusion	that	PEAK3	negatively	regulates	CrkII	as	a	result	of	

their	direct	interaction.	
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Figure	3	
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Figure 3. PEAK3 prevents CrkII-dependent lamellipodia-like membrane extensions and 
membrane ruffling. (a) Confocal microscopy imaging of COS7 cells transiently co-transfected 
with a FLAG-tagged wild type or a CrkII-binding deficient mutant of PEAK3 (PEAK3-3A) with 
either an empty vector or untagged CrkII. CrkII was detected with anti-CrkII antibody (green), 
PEAK3 with anti-FLAG antibody (blue) and F-actin with Alexa Fluor 647-conjugated phalloidin 
staining (red). All scale bars correspond to 20 µm. (b) Relative percentage of different actin fiber 
phenotypes measured in COS7 cells transiently transfected with PEAK3 and stained with Alexa 
Fluor 647-conjugated phalloidin (n = 60 cells per group). (c) Schematic illustrating perimeter 
calculation in representative cells from (b). (d) Average perimeter of COS7 cells expressing 
either wild type or a CrkII-binding deficient (PEAK3-3A) variants of PEAK3 with an empty 
vector or untagged CrkII, quantified as described in Materials and Methods. Data represent the 
mean ± SEM of three independent experiments (n = 20 cells in each experiment), *** p < 0.001. 

Negative	regulation	of	CrkII	by	PEAK3	requires	the	C-terminal	domain.	

The	PEAK3	protein	can	be	arbitrarily	subdivided	into	two	distinct	domains:	the	N-terminal	

domain	 that	 contains	 the	CrkII-binding	 site	 and	 the	C-terminal	 domain	 that	 contains	 the	

pseudokinase	 domain.	 We	 exogenously	 expressed	 the	 N-terminal	 domain	 of	 PEAK3	 to	

determine	 if	 it	 alone	 is	 sufficient	 for	 the	 negative	 regulation	 of	 CrkII.	 Unexpectedly,	 a	

construct	 containing	 only	 the	 N-terminal	 domain	 and	 missing	 the	 C-terminally-located	

pseudokinase	domain	 (PEAK3	ΔPK)	did	not	antagonize	CrkII	 function	 (Fig.	4A	 and	4B;	SI	

Appendix,	 Fig.	 S5).	 Even	 more	 surprisingly,	 the	 PEAK3	 ΔPK	 mutant	 was	 also	 unable	 to	

interact	with	CrkII,	despite	the	presence	of	the	intact	CrkII	binding	motif	(Fig.	4C).	Hence,	

while	 the	CrkII	binding	motif	 is	necessary	 to	 support	binding	of	PEAK3	 to	CrkII,	 it	 is	not	

sufficient	 for	 CrkII	 binding	 and	 inhibition,	 demonstrating	 that	 the	 C-terminal	 domain	 of	

PEAK3	plays	an	essential	role	in	mediating	the	PEAK3/CrkII	interaction.	
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Figure	4	

Figure 4. CrkII binding motif is insufficient for PEAK3-dependent inhibition of CrkII. (a) 
Schematic representation of used PEAK3 constructs. (b) Average perimeter of COS7 cells 
transiently expressing either wild type or the ΔPK variants of PEAK3 with an empty vector or 
untagged CrkII. Data represent the mean ± SEM of three independent experiments (n = 20 cells 
in each experiment), *** p < 0.001. (c) Co-immunoprecipitation of FLAG-tagged wild type and 
ΔPK PEAK3 variants, transiently expressed in HEK293 cells, with exogenously expressed, 
untagged CrkII. Cell lysates were incubated with an anti-FLAG antibody, resolved on 
SDS/PAGE, and probed with the indicated antibodies by western blot. Data is representative of 
three independent experiments. 

Predicted	SHED	domain	in	PEAK3.	

Recent	 crystal	 structures	 of	 the	 PEAK1	 and	 Pragmin	 C-terminal	 domains	 have	 revealed	

identical	dimer	forms	composed	of	the	pseudokinase	domains	interacting	through	a	set	of	

helical	 bundles,	 termed	 the	 Split	 Helical	 Dimerization	 (SHED)	 domain	 (30,	 43-45).	 The	

SHED	 domain	 is	 unique	 to	 NKF3	 proteins	 and	 is	 comprised	 of	 the	 helix	 immediately	 N-

terminal	 to	 the	 pseudokinase	 domain	 (αN	 helix)	 and	 three	 helices	 C-terminal	 to	 the	
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pseudokinase	 domain	 (αJ,	 αK,	 αL	 helices)	 that	 form	 an	 "XL"-shaped	 helical	 bundle	

(lettering	of	helices	 reflect	Pragmin	nomenclature	 (45);	PEAK1	helices	are	off-set	by	one	

letter	from	the	αJ	helix	(44))	(30,	44,	44,	45).	

In	PEAK3,	the	highest	sequence	similarity	with	PEAK1	and	Pragmin,	apart	from	the	

pseudoactive	site,	falls	within	the	regions	corresponding	to	the	SHED	domain.	In	the	three	

C-terminal	 α-helices,	 sequence	 identity	 between	 PEAK3	 and	 Pragmin	 is	 34%	 and	 32%	

between	 PEAK3	 and	 PEAK1	 (SI	 Appendix,	 Fig.	 S1	 and	 S6).	 The	 most	 striking	 conserved	

sequence	motifs	 include	 the	 tryptophan	 residue-containing	motifs.	 These	motifs	 include	

the	EDWLCC	sequence	in	the	αK	helix,	WGP	in	the	loop	preceding	the	αJ	helix,	and	WL	in	

the	 αJ	 helix	 (Fig.	 1A	 and	 1C;	 SI	 Appendix,	 Fig.	 S1).	 In	 the	 PEAK1	 and	 Pragmin	 crystal	

structures,	 these	 conserved	 motifs	 are	 involved	 in	 the	 interactions	 between	 the	

pseudokinase	domain	and	the	SHED	domain	(30,	44,	44,	45).	PEAK3	has	remarkably	well-

conserved	sequences	in	these	regions,	indicating	that	the	SHED	domain	is	likely	present	in	

PEAK3	adopting	a	 similar	 structure	 to	 the	ones	 in	PEAK1	and	Pragmin	 (SI	Appendix,	 Fig.	

S6).	Thus,	the	SHED	domain	emerges	as	a	unifying	structural	feature	of	the	NKF3	family	of	

pseudokinases.	

PEAK3	dimerizes	via	the	SHED	domain.	

PEAK1	 and	 Pragmin	 form	 homo-	 and	 hetero-oligomers	 through	 two	 distinct	 dimer	

interfaces,	 one	 involving	 the	 SHED	 domain	 and	 another	 involving	 the	 αG	 helix/A-loop	

interface	 (30,	 43,	 43,	 45).	 Mutation	 of	 these	 interfaces,	 especially	 of	 the	 hydrophobic	

interactions	between	the	helices	in	the	SHED	domain,	impairs	the	signaling	ability	of	these	

pseudokinases	(44,	44,	45).	While	the	SHED	domain	in	PEAK3	is	highly	similar	to	the	SHED	
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domains	of	PEAK1	and	Pragmin	(Fig.	1A),	the	αG	helix/A-loop	interface	is	not	significantly	

conserved	 in	 PEAK3.	 This	 lead	 us	 to	 hypothesize	 that	 PEAK3	 too	 could	 dimerize	 via	 its	

putative	SHED	domain	and	that	this	might	be	critical	for	its	interaction	with	CrkII.	

To	 assess	 the	 ability	 of	 PEAK3	 to	 homodimerize,	we	 co-expressed	HA-tagged	 and	

FLAG-tagged	wild	type	PEAK3	variants	 in	HEK293	cells	and	assessed	their	association	by	

co-immunoprecipitation.	 These	 two	 differentially	 tagged	 PEAK3	 constructs	 robustly	 co-

immunoprecipitated	 (Fig.	 5A;	 SI	 Appendix,	 Fig.	 S7A).	 Based	 on	 the	 crystal	 structures	 of	

Pragmin	 and	 PEAK1,	 we	 designed	 PEAK3	 mutants	 that	 carried	 either	 individual	

substitutions	of	key	residues	 in	the	predicted	dimerization	 interface	or	deletion	of	one	of	

the	 αN,	 αJ,	 or	 αK	 helices	 in	 the	 SHED	 domain	 (Fig.	 5B).	 These	 mutations/deletions	

abolished	the	ability	of	differentially	tagged	PEAK3	variants	to	co-immunoprecipitate	(Fig.	

5C	 and	 5D;	 SI	 Appendix,	 Fig.	 S7B	 and	 S7C),	 while	 control	 mutations	 of	 residues	 located	

within	 the	 SHED	 domain	 helices	 but	 distal	 from	 the	 dimer	 interface	 had	 no	 effect	 (SI	

Appendix,	 Fig.	 S7D).	 These	 data	 suggest	 that	 PEAK3	 self-associates	 through	 the	 SHED	

domain	in	a	manner	analogous	to	PEAK1	and	Pragmin.	
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Figure	5	

Figure 5. PEAK3 dimerization via the pseudokinase/SHED module is necessary for binding 
and inhibition of CrkII. (a) Co-immunoprecipitation of a FLAG-tagged and an HA-tagged 
variants of wild type PEAK3, transiently expressed in HEK293 cells. Cell lysates were incubated 
with an anti-FLAG antibody, resolved by SDS/PAGE, and probed with the indicated antibodies 
by western blot. (b) Left panel: cartoon representation of the Pragmin SHED/pseudokinase 
domain (PK) dimer (PDB ID: 5VE6). Right panel: zoomed in view of the dimerization interface 
depicting interactions between the helices within the SHED domain in Pragmin. Three residues 
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in the dimerization interface marked by sticks and dot representation were selected for 
mutagenesis in PEAK3 based on sequence homology. Top numbering corresponds to Pragmin 
(PDB ID: 5VE6), bottom in parentheses to PEAK3. (c - f) Co-immunoprecipitation of 
homodimerization deficient variants of PEAK3 with wild type PEAK3 (c, d) or with untagged 
CrkII (e, f), all transiently expressed in HEK293 cells. Cell lysates were incubated with an anti-
HA (c, d) or anti-FLAG (e, f) antibody, resolved by SDS/PAGE, and probed with the indicated 
antibodies by western blot. All co-immunoprecipitation data is representative of three 
independent experiments. (g, h) Average perimeter of COS7 cells expressing wild type or 
homodimerization deficient variants of PEAK3 with an empty vector or untagged CrkII. Data 
represent the mean ± SEM of three independent experiments (n = 20 cells in each experiment), 
*p < 0.05, *** p < 0.001.

Dimerization	of	PEAK3	is	necessary	for	CrkII	binding	and	its	negative	regulation.	

While	the	C-terminal	domain	of	PEAK3	does	not	contain	a	CrkII	binding	motif,	 it	plays	an	

essential	 role	 in	 CrkII	 binding	 and	 inhibition,	 as	 demonstrated	 by	 our	 finding	 that	 the	

construct	 missing	 this	 domain,	 PEAK3	 ΔPK,	 was	 unable	 to	 engage	 with	 and	 antagonize	

CrkII-induced	membrane	 ruffling	 (Fig.	 4).	 To	 test	 if	 this	 role	 of	 the	C-terminal	 domain	 is	

linked	 to	 its	 ability	 to	 mediate	 PEAK3	 self-association	 through	 the	 SHED	 domain,	 we	

measured	how	mutations	within	the	SHED	domain	dimer	interface	affect	CrkII	binding.	All	

mutations	that	compromise	PEAK3	dimerization	also	interfered	with	the	ability	of	PEAK3	

to	 interact	 with	 CrkII	 (Fig.	 5E	 and	 5F	 ;	 SI	Appendix,	 Fig.	 S8A).	 Consequently,	 the	 PEAK3	

dimerization	 mutants	 also	 failed	 to	 inhibit	 the	 formation	 of	 membrane	 extensions	 and	

membrane	 ruffles	 caused	 by	 CrkII	 overexpression	 (Fig.	 5G	 and	 5H;	SI	Appendix,	 Fig.	 S8B	

and	S8C).	

Our	data	thus	far	demonstrate	that	the	N-terminal	domain	of	PEAK3	containing	the	

CrkII	binding	motif	is	unable	to	bind	to	or	interfere	with	CrkII	function	when	not	dimerized	

by	 the	C-terminal	domain,	which	contains	 the	pseudokinase	domain.	We	wondered	 if	 the	

functional	 effect	 of	 the	 C-terminal	 domain-mediated	 dimerization	 could	 be	mimicked	 by	

substitution	of	the	C-terminal	domain	with	an	orthogonal	domain	that	drives	constitutive	
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PEAK3	 dimerization.	 To	 test	 this,	we	 fused	 the	N-terminal	 region	 of	 PEAK3	 (residues	 1-

131)	 containing	 the	 CrkII-binding	 site,	 but	 not	 the	 SHED	 domain	 or	 the	 pseudokinase	

domain,	 to	 a	 constitutively	dimeric	 coiled	 coil	 domain	 (PEAK3-diCC)	 (Fig.	 6A).	While	 the	

monomeric	N-terminal	PEAK3	ΔPK	construct	 is	unable	 to	bind	CrkII	 (Fig.	4C),	equivalent	

levels	of	the	immunoprecipitated	PEAK3-diCC	fusion	show	notable	CrkII	binding	(Fig.	6B).	

The	ability	of	this	minimal	construct	to	restore	CrkII	binding	underscores	the	importance	

of	 dimerization	 of	 the	 CrkII	 binding	motif	 as	 a	 determinant	 of	 interaction	 between	CrkII	

and	 PEAK3,	 and	 possibly	 also	 between	 CrkII	 and	 its	 other	 interaction	 partners.	 To	 our	

knowledge	such	property	in	known	CrkII-binding	proteins	has	not	been	described.	

Despite	 the	ability	 to	 interact	with	CrkII,	PEAK3-diCC	did	not	 interfere	with	CrkII-

dependent	membrane	ruffle	 formation	 in	cells	as	observed	 for	 the	wild	 type	PEAK3	(Fig.	

6C;	SI	Appendix,	S9).		
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Figure	6	
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Figure 6. Role of PEAK3 pseudokinase domain in regulation of CrkII extends 
beyond dimerization. (a) Co-immunoprecipitation of untagged CrkII with FLAG-tagged 
dimerization mutants of PEAK3, transiently expressed in HEK293 cells. Cell lysates were 
incubated with an anti-FLAG antibody, resolved by SDS/PAGE, and then probed with the 
indicated antibodies by western blot. (b) Schematic representation of used PEAK3 constructs. (c) 
Average perimeter of COS7 cells transiently expressing either wild type or diCC variants of 
PEAK3 with an empty vector or untagged CrkII. Data represent the mean ± SEM of three 
independent experiments (n = 20 cells in each experiment), *** p < 0.001. (d, e) Co-
immunoprecipitation of the PEAK3 D330N variant with wild type PEAK3 (d) or untagged CrkII 
(e) transiently expressed in HEK293 cells. Cell lysates were incubated with an anti-FLAG 
antibody, resolved by SDS/PAGE, and then probed with the indicated antibodies by western blot. 
All co-immunoprecipitation data are representative of three independent experiments. (f) 
Average perimeter of COS7 cells transiently expressing either wild type or the D330N variant of 
PEAK3 with an empty vector or untagged CrkII. Data represent the mean ± SEM of three 
independent experiments (n = 20 cells in each experiment), *** p < 0.001. 

This	 discrepancy	 possibly	 reflects	 the	 weaker	 binding	 between	 CrkII	 and	 PEAK3-diCC	

compared	to	the	wild	type	PEAK3	(Fig.	6B).	Alternatively,	or	concurrently,	 the	C-terminal	

pseudokinase/SHED	module	 in	 PEAK3	might	 play	 a	 role	 in	 antagonizing	 CrkII	 signaling	

that	extends	beyond	serving	as	a	dimerization	domain	for	the	CrkII	binding	motif.	

Mutation	of	the	DFG	aspartate	impairs	CrkII	regulation	by	PEAK3.	

NKF3	 kinases	 have	 evolved	 multiple	 sequence	 alterations	 within	 their	 pseudokinase	

domains	 relative	 to	 active	 kinases,	 which	 are	 predicted	 to	 render	 them	 catalytically	

inactive.	One	notable	difference	between	PEAK3	and	PEAK1	and	Pragmin	is	conservation	of	

the	DFG	motif	 in	PEAK3.	The	DFG	motif	 is	present	 in	a	number	of	human	pseudokinases,	

although	 its	 importance	 for	 their	 function	 is	 unclear	 (4).	 In	 active	 kinases,	 the	 aspartate	

residue	within	 the	 DFG	motif	 plays	 a	 critical	 role	 in	 catalysis	 by	 coordinating	Mg2+	 ions	

(104).	 In	 a	 subset	 of	 these	 kinases,	 the	 DFG	 motif	 is	 found	 to	 adopt	 two	 distinct	

conformations,	DFG-in	and	DFG-out,	which	are	coupled	to	conformational	changes	in	other	

regions	of	the	kinase	domain	(105).	The	interactions	made	by	the	DFG	aspartate	are	key	to	
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these	changes	(106).	 It	 is	 therefore	possible	that	 in	pseudokinases	that	conserve	the	DFG	

motif,	 such	 as	 PEAK3,	 the	 conformation	 of	 this	 motif	 could	 be	 coupled	 to	 functional	

conformational	changes	in	the	other	parts	of	the	pseudokinase	domain.	

We	 examined	 the	 importance	 of	 the	DFG	motif	 in	 PEAK3's	 function	 as	 a	 negative	

regulator	of	CrkII	by	mutating	the	DFG	aspartate	to	asparagine	(PEAK3	D330N)	and	testing	

the	ability	of	this	mutant	to	homodimerize,	interact	with	CrkII,	and	inhibit	CrkII-dependent	

membrane	 ruffles	 in	 cells.	 Interestingly,	 PEAK3	D330N	did	 not	 dimerize	 as	 efficiently	 as	

wild	 type	 PEAK3	 (Fig.	 6D).	 Consistent	 with	 our	 observation	 that	 PEAK3	 dimerization	 is	

necessary	 for	CrkII	binding,	PEAK3	D330N	exhibited	markedly	 impaired	binding	 to	CrkII	

(Fig.	 6E)	 and	did	not	 inhibit	 CrkII-dependent	morphological	 changes	 to	 cell	 shape	 to	 the	

same	extent	as	wild	type	PEAK3	(Fig.	6F;	SI	Appendix,	Fig.	S10).	These	data	show	that	the	

integrity	of	the	DFG	motif	is	essential	for	PEAK3	function	as	a	negative	regulator	of	CrkII.	

Discussion	

The	PEAK1	 and	Pragmin	pseudokinases	 have	 grown	 in	 prominence	due	 to	 the	 key	 roles	

they	 play	 in	 the	 regulation	 of	 cellular	motility	 and	 oncogenesis	 (107).	 Here,	 we	 present	

evidence	 that	 PEAK3	 is	 a	 close	 homolog	 of	 PEAK1	 and	 Pragmin	 that	 likely	 has	 evaded	

annotation	as	a	kinase	due	to	the	high	LCR	content	within	its	pseudokinase	domain.	Despite	

this	 difference,	 PEAK3	 retains	 features	 that	 are	 characteristic	 of	 the	NKF3	 family.	 These	

include	the	residues	defined	as	the	inhibitory	triad,	which	occlude	the	nucleotide-binding	

pocket.	 Together	 with	 the	 mutations	 of	 several	 catalytic	 residues	 within	 the	 kinases	

domain,	 these	 features	define	PEAK3	as	a	pseudokinase.	Based	on	sequence	analysis	and	

mutagenesis	studies,	we	also	demonstrate	that	PEAK3	self-associates	through	a	conserved	
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SHED	domain	that	flanks	its	pseudokinase	domain,	similar	to	PEAK1	and	Pragmin.	Hence,	

the	presence	of	 the	SHED	domain	and	 its	role	 in	oligomerization	are	defining	and	unique	

features	of	NKF3	kinases.	

Phylogenetic	 analysis	 of	 the	 NKF3	 family	 shows	 that	 the	 ancestral	 NKF3,	 which	

likely	appeared	in	the	ancestor	of	Metazoans,	was	most	similar	to	PEAK1	and	was	already	a	

pseudokinase.	This	protein	had	an	NFS	motif	instead	of	a	DFG	although	it	retained	the	HxD	

motif,	which	became	HCD	in	human	PEAK1,	and	in	some	PEAK1	and	Pragmin	homologs	-	a	

canonical	HRD	motif.	It	is	intriguing	that	mammalian	(but	not	avian)	PEAK3	proteins	have	

apparently	 reverted	 to	 the	DFG	motif	while	 their	HxD	drifted	 into	 the	LxE	motif.	Thus	at	

present,	our	analysis	supports	a	hypothesis	that	NKF3	family	is	an	example	of	a	kinase-like	

family	that	evolved	originally	as	pseudokinases,	similar	to	examples	discussed	by	Kannan	

and	co-workers	(6).	

Our	unbiased	search	for	PEAK3	binding	partners	reveals	a	propensity	for	PEAK3	to	

interact	with	regulators	of	cell	motility,	mirroring	documented	roles	of	PEAK1	and	Pragmin	

(27-29,	31,	42,	43,	43,	90).	While	both	Pragmin	and	PEAK1	are	known	to	contain	proline-

rich	CrkII	binding	motifs,	and	PEAK1	was	shown	to	bind	CrkII	(31),	our	study	is	the	first	to	

describe	 a	 functional	 link	 between	 CrkII	 signaling	 and	 an	 NKF3	 family	 member	 to	 our	

knowledge.	We	show	here	that	PEAK3	regulates	CrkII	in	a	manner	contrasting	that	of	other	

NKF3	 family	 members:	 PEAK3	 inhibits	 CrkII	 while	 PEAK1	 and	 Pragmin	 stimulate	 pro-

motile	signaling	in	cells	and	would	be	therefore	expected	to	potentiate	CrkII	function.	The	

underlying	 mechanism(s)	 for	 these	 differences	 is	 unclear	 but	 could	 reflect	 the	 distinct	

domain	 structure	 of	 PEAK3	 compared	 to	 other	 NKF3	 family	members.	 Both	 PEAK1	 and	

Pragmin	 contain	 large	N-terminal	 regions	 that	 likely	 encode	 numerous	 unique	 functions	
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that	are	absent	 in	PEAK3.	 If	PEAK1	and	Pragmin	do	 indeed	promote	CrkII	 signaling,	 this	

function	may	be	encoded	within	their	N-terminal	domain	that	is	missing	in	PEAK3.	

We	further	demonstrate	that	the	SHED	domain-mediated	dimerization	of	PEAK3	is	

essential	for	its	ability	to	bind	CrkII.	The	emerging	role	of	dimerization	in	binding	seems	to	

stem	from	the	necessity	to	dimerize	the	CrkII-binding	motifs	themselves,	as	efficient	CrkII	

binding	 can	 be	 recapitulated	 when	 these	 sites	 in	 PEAK3	 are	 brought	 together	 by	 an	

orthogonal	 dimerization	 module.	 Since	 the	 CrkII	 binding	 site	 in	 PEAK3	 represents	 the	

canonical	 proline-rich	motif	 found	 in	 other	 known	 CrkII	 binding	 partners,	we	 anticipate	

that	 these	proteins	might	also	regulate	 their	 interaction	with	CrkII	 through	dimerization.	

Some	of	 the	known	CrkII	 interactors,	 such	as	PEAK1	and	Pragmin,	are	known	 to	exist	as	

dimers.	Interestingly,	CrkII	and	its	highly	related	homolog	CrkL,	which	we	also	identified	as	

a	binding	partner	of	PEAK3	in	the	IP/MS	analysis,	have	been	shown	to	form	dimers	(108).	

Hence,	the	inherent	property	of	both	CrkII	and	some	of	its	binding	partners	to	oligomerize	

might	be	an	essential	mechanism	for	regulation	of	their	mutual	interactions	and	signaling.	

While	 necessary	 for	 CrkII	 binding,	 dimerization	 of	 the	 CrkII	 binding	 motif	 is	 not	

sufficient	 for	 CrkII	 inhibition	 by	 PEAK3	 in	 the	 absence	 of	 the	 SHED	 and	 pseudokinase	

domains.	 These	 findings	 suggest	 the	 SHED-pseudokinase	 domain	 module	 plays	 an	

important	 role	 in	 CrkII	 inhibition	 beyond	 supporting	 PEAK3	 self-association.	 One	 such	

function	 could	 be	mediating	PEAK3	heterodimerization	with	 PEAK1	 and	Pragmin,	which	

we	predict	could	occur	based	on	sequence	similarities	within	their	SHED	domains.	Since	all	

NKF3	family	members	have	CrkII-binding	sites,	all	possible	NFK3	homo-	and	heterodimers	

could	 efficiently	 bind	 CrkII	 in	 theory.	 Given	 the	 opposing	 phenotypic	 outcomes	 between	

PEAK3	 and	 other	 NKF3	 members	 on	 cell	 motility,	 heterodimerization	 of	 PEAK3	 with	
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PEAK1	 or	 Pragmin	 could	 interfere	 with	 their	 positive	 signaling	 properties.	 The	

outstandingly	 shorter	 length	 of	 the	 N-terminal	 domain	 in	 PEAK3	 relative	 to	 PEAK1	 and	

Pragmin	suggests	that	PEAK3	may	have	evolved	to	act	as	a	dominant	negative	regulator	of	

PEAK1	and	Pragmin,	and	antagonizes	their	functions	encoded	by	the	N-terminal	domains.	

The	regulatory	role	of	PEAK3	for	other	NKF3	pseudokinases	would	be	consistent	with	the	

later	appearance	of	PEAK3	in	evolution	compared	to	the	other	two	family	members.	Future	

studies	 are	 needed	 to	 parse	 out	 the	 functional	 relationship	 of	 PEAK3	 with	 its	 family	

members.	

An	 additional	 unique	 feature	 of	 PEAK3,	 which	 distinguishes	 it	 from	 PEAK1	 and	

Pragmin,	 is	 the	presence	of	an	 intact	DFG	motif.	Our	data	show	that	mutation	of	 the	DFG	

motif	affects	 the	ability	of	PEAK3	 to	homodimerize	and	subsequently	 interact	with	CrkII.	

The	importance	of	the	DFG	motif	for	PEAK3	function	is	intriguing	due	to	the	critical	role	of	

this	motif	 in	 kinase	 catalysis.	While	 at	 present	we	 cannot	 rule	 out	 that	 PEAK3	might	 be	

catalytically	active,	PEAK3	 is	an	unlikely	candidate	 for	an	active	kinase	based	on	 its	poor	

conservation	of	other	residues	in	the	putative	active	site.	Rather,	the	loss-of-function	effect	

of	 the	 DFG	 mutation	 suggests	 that	 it	 is	 a	 resulting	 conformational	 change	 within	 the	

pseudoactive	site	of	PEAK3	that	influences	its	dimerization	and,	consequently,	its	function.	

DFG	mutations	have	previously	been	shown	to	affect	the	oligomerization	of	other	kinases	

and	pseudokinases.	Notably,	mutation	of	 the	DFG	aspartate	(D161N)	 in	 the	kinase	RIPK3	

induces	oligomerization	and	assembly	of	RIPK3	into	a	multimeric	apoptotic	complex	(107,	

109).	 Other	 kinase-inactivating	 mutations,	 such	 as	 those	 of	 the	 β3	 lysine	 or	 catalytic	

aspartate,	 do	 not	 affect	 RIPK3	 oligomerization,	 indicating	 that	 the	 D161N	 mutation	

stabilizes	 a	 specific	 conformation	 of	 RIPK3	 that	 promotes	 oligomerization	 (109).	 The	
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opposite	effect	is	observed	in	the	pseudokinase	MLKL.	In	MLKL,	the	DFG	motif	is	replaced	

by	 a	 GFE	 motif,	 and	 mutation	 of	 the	 GFE	 glutamate	 (E351K)	 prevents	 MLKL	

oligomerization.	 This	 mutation	 was	 proposed	 to	 stabilize	 a	 conformation	 that	 it	 is	 not	

permissive	 for	 the	 release	 of	 the	 adjacent	 4-helix	 bundle	 (4HB)	 domain	 which	 drives	

oligomerization	(14).	The	SHED	domain	in	NKF3	kinases,	composed	of	helices	flanking	the	

pseudokinase	 domain,	 maintains	 close	 contacts	 with	 the	 pseudokinase	 domain	 in	 the	

crystal	structures	of	PEAK1	and	Pragmin.	It	is	therefore	likely	that	conformational	changes	

within	the	pseudokinase	domain	are	sensed	by	the	SHED	domain	and	can	ultimately	affect	

dimerization.	

Potential	 regulation	of	PEAK3	dimerization	 through	 conformational	 changes	 in	 its	

pseudokinase	domain	presents	an	exciting	opportunity	for	pharmacological	modulation	of	

PEAK3	 oligomerization,	 as	 previously	 achieved	 in	 RIPK3	 (109,	 110).	 While	 RIPK3	

inhibitors	 target	 the	 ATP-binding	 site,	 this	 will	 likely	 not	 work	 for	 PEAK3,	 whose	

nucleotide-binding	pocket	is	predicted	to	be	occluded.	However,	recent	studies	on	another	

pseudokinase,	 TRIB1,	 point	 to	 an	 important	 role	 of	 protein-protein	 interactions	 in	

regulating	the	conformation	of	the	pseudoactive	site.	Like	in	PEAK3,	the	nucleotide-binding	

site	in	TRIB1	is	highly	occluded	and	inaccessible	to	ligands	(9).	Binding	of	the	transcription	

factor	 C/EBPα	 to	 the	 C-lobe	 of	 TRIB1	 alters	 the	 conformation	 of	 the	 pseudoactive	 site,	

including	its	equivalent	DFG	motif	(SLE	in	TRIB1),	which	rotates	to	a	semi-active	position	

upon	C/EBPα	binding	(111).	The	TRIB1	studies	demonstrate	that	distal	binding	events	can	

have	global	effects	on	the	conformation	of	the	pseudoactive	site.	Further	studies	can	reveal	

if	 such	 interactions	 exist	 in	 PEAK3	 and	 whether	 they	 can	 be	 leveraged	 for	 the	

pharmacological	manipulation	of	its	function.	
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The	therapeutic	relevance	of	targeting	PEAK3	remains	to	be	determined,	but	there	

is	clear	therapeutic	potential	(110).While	at	present	there	are	no	known	prevalent	disease-

associated	 mutations	 in	 PEAK3,	 PEAK3	 mRNA	 levels	 are	 significantly	 elevated	 in	 acute	

myeloid	 leukemia	 (AML)	patient	 samples	 relative	 to	other	cancer	 types	 (SI	Appendix,	Fig.	

S11)(112,	113).	The	E3	ubiquitin	ligase	SIAH1,	which	is	a	therapeutic	target	 in	AML	(87),	

was	 identified	 as	 a	 PEAK3	 binding	 partner	 in	 our	 IP/MS	 analysis.	 SIAH1	 targets	 for	

degradation	 the	 oncogenic	 protein	 FMS-like	 tyrosine	 kinase	 3	 with	 internal	 tandem	

duplication	mutation	 (FLT3-ITD),	 a	mutant	 FLT3	 variant	 detected	 in	 40%	 of	 AML	 cases	

(114).	

 It	is	possible	that	PEAK3	interferes	with	this	process	through	direct	interaction	with	

SIAH1.	CrkL,	which	too	was	identified	in	our	IP/MS	screen,	is	one	of	the	downstream	

effectors	of	the	FLT3	signaling	axis	that	contributes	to	 leukemogenesis	(115).	Crk	family	

proteins	are	known	 to	 play	 key	 roles	 in	 cancer	 invasion	 and	migration	 by	 integrating	

and	 amplifying	extracellular	 signals	 (83).	 Genetic	 knockdown	 of	 CrkII	 specifically	

decreases	 the	 cell	migration	 and	malignant	 potential	 of	multiple	 human	 cancer	 cells	

including	 lung,	 breast,	and	ovarian	cancers	(83,	96,	116).	Mechanistically,	 inhibition	of	

CrkII	 leads	to	reduced	or	stochastic	 F-actin	 networks	 and	 reduction	 in	 lamellipodia	

(96,	 99,	 116),	 mirroring	 the	morphological	 changes	 we	 observe	 when	 PEAK3	 is	

overexpressed	 in	 cells.	 Therefore,	pharmacological	targeting	of	PEAK3	could	prove	

useful	in	AML	and	potentially	additionally	types	of	cancers	that	are	susceptible	to	

inhibitors	that	target	cellular	motility	pathways.	
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Materials	and	Methods	

Multiple	 Sequence	 Alignment.	 The	 alignment	 was	 constructed	 using	 the	 Promals3D	

algorithm	and	manually	adjusted	using	FFAS03	(25)	pairwise	alignment	results	for	human	

PEAK3	and	the	two	homologs	PEAK1	and	Pragmin.	Secondary	structure	assignments	from	

PDB	structure	records	for	Pragmin	(PDB	ID:	5VE6)	and	PEAK1	(PDB	ID:	6BHC)	were	added	

to	 the	 final	 alignment.	Low	complexity	 regions	 in	human	members	of	NKF3	 family,	often	

missing	in	the	PDB	structures,	were	identified	using	the	SEG	server	(79).	

Phylogenetic	 tree	 construction.	 29	 sequences,	 representing	 vertebrate	 and	 non-

vertebrate	 animals,	were	used	 to	 construct	 the	phylogenic	 tree.	Homologs	were	 selected	

from	vertebrates	that	possess	representatives	of	the	three	subfamilies	and	from	four	non-

vertebrate	 organisms	 with	 single	 NKF3	 homologs	 (plocozoan	 Trichoplax	 adherens,	 sea	

urchin	 Strongylocentrotus	 purpuratus,	 lancelet	 Branchiostoma	 belheri	 and	 starfish	

Acanthaster	planci).	Multiple	 sequence	 alignment	 of	 the	pseudokinase	domains	was	built	

using	the	Promals3D	algorithm	(117)	with	manual	adjustments.	The	phylogenetic	tree	for	

the	set	of	29	sequences	was	constructed	using	the	PhyML	method	with	aLRT	statistics	for	

calculating	significance	of	branches	(118).	Branches	with	bootstrap	values	better	than	70%	

were	 marked.	 Ancestral	 sequence	 reconstruction	 was	 performed	 using	 the	 Ancescon	

algorithm	(28).	

Sequence	 logos.	Homologs	were	collected	from	the	NCBI	database	by	running	the	BLAST	

program	 with	 kinase	 domains	 of	 human	 PEAK1,	 Pragmin	 and	 PEAK3	 as	 queries	 and	
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maximum	 expect	 value	 of	 1E-6.	 Redundancy	 in	 the	 resulting	 sequence	 set	was	 removed	

using	 CD-hit	 algorithm	 at	 95%	 identity	 level	 (119).	 Assignment	 of	 the	 resulting	

representative	 sequences	 to	 the	 three	 NKF3	 subfamilies	 was	 verified	 by	 sequence	

clustering	 using	 the	 fastNJ	 algorithm.	 Multiple	 sequence	 alignment	 obtained	 using	 the	

Promals3D	 algorithm	 was	 split	 into	 three	 subfamily	 alignments	 with	 matched	 column	

numbering	and	used	to	create	sequence	logos	with	the	WebLogo3	server	(120).	The	logos	

included	 103	 Pragmin	 homologs,	 98	 PEAK1	 homologs	 and	 35	 mammalian	 PEAK3	

sequences.	Avian	PEAK3	sequences	were	not	included	due	to	substantial	heterogeneity	of	

the	N-terminal	regions.		

Plasmids	and	cell	culture.	The	PEAK3	gene	was	synthesized	by	GenScript	and	subcloned	

into	 pcDNA4/TO.	 The	 wild-type	 CrkII	 plasmid	 was	 a	 generous	 gift	 from	 Scott	 Oakes.	

Mutations	 and	 deletions	 were	 introduced	 using	 Quikchange	 mutagenesis	 (Agilent).	 All	

constructs	were	 verified	 via	 DNA	 sequencing	 (Elim	 Biopharm).	 HEK293	 cells	 and	 COS-7	

cells	were	cultured	in	Dulbecco's	modified	Eagle	media	(Life	Technologies)	supplemented	

with	10%	FBS	 (Hyclone)	 and	penicillin	 streptomycin	 (Life	Technologies).	 Epitope-tagged	

constructs	were	 transiently	 transfected	 into	 cells	 using	 Lipofectamine	 3000	 (Invitrogen)	

according	 to	 the	 manufacturer's	 protocols.	 Cells	 were	 transfected	 for	 24	 hours	 prior	 to	

imaging	or	cell	lysis.	

Immunoprecipitation/mass-spectrometry.	 FLAG	 immunoprecipitations	 were	 done	 as	

previously	described	(121,	122).	Specific	details	are	as	follows:	293T	cells	were	transfected	

with	3xFLAG-tagged	 PEAK3	 expression	 construct	 using	 PolyJet	 Reagent	 (SignaGen	
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Laboratories)	 20-24	 hours	 after	 plating	1x107	cells	 per	 14.5	 cm	 dish.	40	 hours	 post-

transfection,	 cells	 were	 dissociated	 and	 washed	 with	 10	 ml	 PBS	 +/-	 10	 mM	 EDTA,	

respectively,	 before	 centrifugation	 at	 ≥	 200xg,	 at	 4°C	 for	 5	minutes.	Cell	 pellets	were	 re-

suspended	in	1	ml	of	0.5%	Nonidet	P-40	Substitute	(Fluka	Analytical)	in	IP	buffer	(50	mM	

Tris-HCl,	pH	7.4,	150	mM	NaCl,	1	mM	EDTA)	supplemented	with	cOmplete	mini	EDTA-free	

protease	 and	 PhosSTOP	 phosphatase	 inhibitor	 cocktails	 (Roche),	 incubated	 on	 a	 tube	

rotator	at	4°C	for	30	minutes,	and	centrifuged	at	3,500xg,	4°C	for	20	minutes.	Cell	lysates,	

20	ml	 anti-FLAG	M2	magnetic	 beads	 (Sigma-Aldrich),	 and	 2	mg	 1xFLAG	 peptide	 (Sigma-

Aldrich)	 in	 0.3	 ml	 IP	 buffer	 were	 incubated	 on	 a	 tube	 rotator	 at	 4°C	 for	2	 hours.	After	

binding,	FLAG	beads	were	washed	with	0.05%	Nonidet	P-40	Substitute	in	IP	buffer	(3	x	1	

ml)	and	transferred	to	a	new	tube	with	a	final	wash	in	1	ml	IP	buffer.	Proteins	were	eluted	

by	 gently	 agitating	 FLAG	 beads	 with	 30	ml	 of	0.05%	 RapiGest	 SF	 Surfactant	 (Waters	

Corporation)	 in	 IP	 buffer	on	 a	 vortex	 mixer	at	 room	 temperature	 for	30	 minutes.	 FLAG-

tagged	protein	expression	and	protein	immunoprecipitation	were	assessed	by	western	blot	

and	silver	stain,	respectively,	before	submitting	10	ml	eluate	for	mass	spectrometry.	Three	

independent	biological	replicates	were	performed	for	FLAG	immunoprecipitations.	

Mass	spectrometry	analysis.	Purified	proteins	eluates	were	digested	with	trypsin	for	LC-

MS/MS	analysis.	Samples	were	denatured	and	reduced	in	2M	urea,	10	mM	NH4HCO3,	2	mM	

DTT	 for	 30	 min	 at	 60°C,	 then	 alkylated	 with	 2	 mM	 iodoacetamide	 for	 45	 min	 at	 room	

temperature.	Trypsin	(Promega)	was	added	at	a	1:100	enzyme:substrate	ratio	and	digested	

overnight	 at	 37°C.	 Following	 digestion,	 samples	 were	 concentrated	 using	 C18	 ZipTips	

(Millipore)	according	to	the	manufacturer's	specifications.	Digested	peptide	mixtures	were	
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analyzed	 by	 LC-MS/MS	 on	 a	 Thermo	 Scientific	 Velos	 Pro	 dual	 linear	 ion	 trap	 mass	

spectrometry	 system	 equipped	 with	 a	 Proxeon	 Easy	 nLC	 II	 high-pressure	 liquid	

chromatography	and	autosampler	system.	Samples	were	injected	onto	a	pre-column	(2	cm	

x	100	µm	I.D.	packed	with	ReproSil	Pur	C18	AQ	5	µm	particles)	 in	0.1%	 formic	acid	and	

then	separated	with	a	one-hour	gradient	from	5%	to	30%	ACN	in	0.1%	formic	acid	on	an	

analytical	column	(10	cm	x	75	um	I.D.	packed	with	ReproSil	Pur	C18	AQ	3	µm	particles).	

The	mass	spectrometer	collected	data	in	a	data-dependent	fashion,	collecting	one	full	scan	

followed	by	20	 collision-induced	dissociation	MS/MS	scans	of	 the	20	most	 intense	peaks	

from	the	full	scan.	Dynamic	exclusion	was	enabled	for	30	seconds	with	a	repeat	count	of	1.	

The	 resulting	 raw	 data	 was	 matched	 to	 protein	 sequences	 by	 the	 Protein	 Prospector	

algorithm	 (123).	 Data	 were	 searched	 against	 a	 database	 containing	 SwissProt	 Human	

protein	 sequences,	 concatenated	 to	 a	 decoy	 database	 where	 each	 sequence	 was	

randomized	 in	 order	 to	 estimate	 the	 false	 positive	 rate.	 The	 searches	 considered	 a	

precursor	mass	 tolerance	of	1	Da	 and	 fragment	 ion	 tolerances	of	0.8	Da,	 and	 considered	

variable	modifications	 for	 protein	 N-terminal	 acetylation,	 protein	 N-terminal	 acetylation	

and	 oxidation,	 glutamine	 to	 pyroglutamate	 conversion	 for	 peptide	 N-terminal	 glutamine	

residues,	 protein	 N-terminal	 methionine	 loss,	 protein	 N-terminal	 acetylation	 and	

methionine	loss,	and	methionine	oxidation,	and	constant	modification	for	carbamidomethyl	

cysteine.	Prospector	data	was	filtered	using	a	maximum	protein	expectation	value	of	0.01	

and	a	maximum	peptide	expectation	value	of	0.05.	Protein	interactions	were	subsequently	

scored	using	the	CompPASS	algorithm	(92).	
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Co-immunoprecipitation	 and	Western	 blot	 analysis.	HEK293	 cells	 (2.5E6	 cells)	were	

seeded	 on	 60	 mm	 dishes	 and	 transfected	 the	 following	 day.	 24	 hours	 post	

transfection,HEK293	cells	were	washed	two	times	on	ice	with	1xPBS	followed	by	lysis	for	

30	minutes	on	ice	(0.5%	Triton	X-100,	0.5%	NP-40,	150	mM	NaCl,	50	mM	Tris	pH8.0,	1	mM	

NaF,	 1	mM	Na(VO4)3,	 1	mM	 EDTA,	 cOmplete	mini	 EDTA-free	 protease	 inhibitor	 cocktail	

(Roche)).	Cells	were	scraped	and	clarified	by	centrifugation	for	10	minutes	at	15,000	rpm.	

The	whole	 cell	 lysates	were	pre-cleared	with	Protein	A	beads	 (Novex)	 for	30	minutes	 at	

4°C.	 The	 pre-cleared	 lysates	 were	 then	 incubated	 with	 antibody/protein	 A	 complexed	

beads	 overnight	 at	 4°C	 (anti-FLAG	 (mouse,	 Sigma),	 anti-HA	 (mouse,	 SCBT)).	 The	 beads	

were	washed	three	times	with	lysis	buffer.	The	bound	proteins	were	eluted	from	the	beads	

using	 SDS-loading	buffer	 and	were	boiled	 at	 95°C	 for	 10	minutes	prior	 to	 SDS/Page	 and	

analysis	 by	 Western	 blot.	 Samples	 were	 run	 on	 12%	 acrylamide	 gels	 before	 being	

transferred	 onto	 PVDF	 membranes	 for	 Western	 blot	 analysis.	 Following	 transfer,	

membranes	were	blocked	 in	5%	milk	diluted	 in	1xTBS	and	1%	Tween-20	(TBS-T)	 for	30	

minutes	 at	 room	 temperature.	Membranes	were	 then	 incubated	with	primary	antibodies	

diluted	 in	 blocking	 buffer	 overnight	 at	 4°C	 (anti-CrkII	 (rabbit,	 Proteintech),	 anti-FLAG	

(mouse,	Sigma	Aldrich;	rabbit,	CST),	and	anti-HA	(mouse,	SCBT)).	Primary	antibodies	were	

washed	off	3	times	for	5	minutes	using	TBS-T.	Membranes	were	incubated	with	secondary	

antibodies	 diluted	 in	 blocking	 buffer	 for	 2	 hours	 at	 room	 temperature	 (anti-mouse	 IgG	

Veriblot,	Abcam;	anti-IgG	Veriblot,	Abcam)	then	washed	4	times	for	5-8	minutes	using	TBS-

T.	Proteins	were	then	visualized	using	ECL	Western	blotting	detection	reagent	(GE)	or		ECL	

prime	(VWR).	
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Immunofluorescence	 analysis.	 COS-7	 cells	 (7.0E4	 per	 well)	 were	 plated	 onto	 glass	

coverslips	and	transfected	the	following	day.	24	hours	post	transfection,	cells	were	fixed	in	

3.7%	 formaldehyde	 in	 PBS	 for	 1	 hour	 at	 room	 temperature	 or	 overnight	 at	 4°C,	 and	

subsequently	permeabilized	using	0.1%	Triton-X	in	PBS	for	5	minutes,	and	incubated	with	

a	blocking	buffer	(1%	BSA	 in	PBS)	 for	5	minutes.	The	primary	antibodies	 in	 the	blocking	

buffer	(anti-FLAG	(rabbit,	CST),	anti-CrkII	(mouse,	SCBT))	were	added	for	1	hour	at	37°C,	

followed	by	secondary	antibodies	(Alexa	Fluor	568	anti-rabbit	IgG	(Life	Technologies)	and	

Alexa	Fluor	488	anti-mouse	IgG	(Life	Technologies))	for	1	hour	at	37°C.	Actin	was	stained	

using	Alexa	Fluor	674	Phalloidin	(Life	Technologies)	for	20	minutes	at	37°C.	Images	were	

acquired	using	a	Nikon	Elipse	Ti	equipped	with	a	CSU-X1	spinning	disc	confocal	and	Andor	

Clara	 interline	CCD	camera	with	a	Nikon	Plan	Apo	60X	oil	 lens.	The	effects	of	PEAK3	and	

CrkII-binding	mutant	 (PEAK3-3A)	 on	 actin	 stress	 fibers	 were	 blindly	 scored.	 Cells	 were	

binned	based	on	the	extent	of	visible	actin	fibers	within	the	cytosolic	region	of	the	cell	into	

3	 categories:	 (1)	 long,	 prominent	 fibers	 that	 traversed	 over	 50%	 of	 the	 cell,	 (2)	 short,	

stochastic	fibers,	or	(3)	no	appreciable	amount	of	polymerized	actin.	Data	is	reported	as	a	

percent	of	the	total	(n=60	cells	per	group	in	each	experiment).	Cell	perimeter	calculations	

were	generated	by	creating	an	ROI	of	each	cell	using	Fiji	and	a	Wacom	tablet.	Each	cell	was	

traced	by	hand	using	the	Wacom	tablet,	and	the	perimeter	of	the	cell	was	calculated	from	

the	cell-shape	vector,	as	shown	in	Fig.	3c.	Data	was	analyzed	using	the	Kruskal-Wallis	test	

for	the	nonparametric	comparison	of	the	means	followed	by	Dunn’s	Multiple	Comparison	

Test	for	pairwise	comparison	between	groups	(124,	125).	
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Mapping	sequence	conservation	onto	known	NKF3	structures.	Structure	mapping	was	

performed	 considering	 sequence	 conservation	 within	 mammalian	 subfamily	 of	 PEAK3	

homologs.	 Alignment	 conservation	 values	 (Jalview	 1.18	 (126))	 were	 used	 for	 residue	

coloring	 (lowest	 conservation	 value	 (0)	 –	white,	 highest	 conservation	 value	 (11)	 –	 red).	

Conservation	scores	were	mapped	onto	PEAK1	dimer	structure	using	UCSF	Chimera	(127).	

Conservation	 mapping	 onto	 the	 solved	 crystal	 structure	 was	 performed	 based	 on	 two	

pairwise	 alignments:	 (1)	 PEAK3	 vs	 PEAK1	 and	 (2)	 PEAK3	 vs	 Pragmin.	 Structures	 for	

dimers	of	human	Pragmin	(PDB	ID:	5VE6)	and	PEAK1	(PDB	ID:	6BHC)	were	rendered	using	

Pymol.	 Residues	 conserved	 in	 the	 alignments	 (strictly	 conserved	 or	 conservative	

replacements,	 as	 judged	 by	 positive	 BLOSUM62	 matrix	 scores	 (128)),	 were	 colored	

according	to	BLOSUM62	scores	as	follows:	yellow:	BLOSUM62	values	from	1	to	3;	orange:	

4-6;	red	(highest	conservation):	7	to	11.		
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Supplemental	Figures	
Supplemental	Figure	1	
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Supplementary	Figure	1.	Sequence	conservation	in	the	NKF3	family.	Aligned	sequence	
logos	 for	 (a)	 Pragmin/SgK223	 sequences,	 (b)	 mammalian	 PEAK3/C19orf35	 sequences,	
and	(c)	PEAK1/SgK269	sequences.	The	motifs	 corresponding	 to	 the	 canonical	 active	 site	
HRD	 encompass	 residues	 214-216	 and	 the	 motifs	 corresponding	 to	 the	 canonical	 DFG	
encompass	 residues	 277-279	 (highlighted	 red).	 The	 conserved	 EN	 motifs	 encompass	
residues	 220-221	 (highlighted	 grey).	 The	 conserved	 SHED	domain	helices	 correspond	 to	
residues	18/19-45	(αN1	 -	highlighted	blue),	 residues	425-250	(Pragmin,	PEAK1)	or	432-
449	 (PEAK3)	 (αJ	 -	 higlighted	magenta),	 and	 residues	 457-469	 (αK	 -	 highlighted	 purple).	
Key	 LCR	 areas	 are	 boxed.	Multiple	 sequence	 alignment	 (Promals3D)	 of	 the	 NKF3	 family	
split	 into	 three	 subfamily	 alignments	 with	 matched	 column	 numbering.	 Sequence	 logos	
created	using	the	WebLogo3	server.		

 

Supplemental	Figure	2	

	
	
Supplementary	Figure	2.	Exogenously	expressed	PEAK3	interacts	with	CrkII.		
Coimmunoprecipitation	of	FLAG-tagged	wild	type	PEAK3,	transiently	expressed	in	HEK293	
cells,	with	exogenously	expressed,	untagged	CrkII.	Cell	lysates	were	incubated	with	an	anti-
FLAG	 antibody,	 resolved	 on	 SDS/PAGE,	 and	 probed	 with	 the	 indicated	 antibodies	 by	
Western	blot.	Data	is	representative	of	three	independent	experiments.		
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Supplemental	Figure	3	

  
Supplementary	Figure	3.	Exogenous	PEAK3	expression	leads	to	a	reduction	of	actin	
stress	fibers.	Confocal	microscopy	imaging	of	U2OS	cells	transiently	co-transfected	with	a	
FLAG-tagged	wild	type	PEAK3.	PEAK3	was	detected	with	anti-FLAG	antibody	(blue)	and	F-
actin	with	Alexa	Fluor	647-conjugated	phalloidin	staining	(red).	All	scale	bars	correspond	
to	20	μm.		
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Supplemental	Figure	4	

	
	
Supplementary	 Figure	 4.	 PEAK3	 antagonizes	 CrkII-dependent	 cell	 ruffling	 in	 U2OS	
cells.	 (a)	 Confocal	 microscopy	 imaging	 of	 U2OS	 cells	 transiently	 co-transfected	 with	 a	
FLAG-tagged	wild	 type	or	 a	CrkII-binding	deficient	 (3A)	mutant	of	PEAK3	with	either	an	
empty	 vector	 or	 untagged	 CrkII.	 CrkII	 was	 detected	 with	 anti-CrkII	 antibody	 (green),	
PEAK3	 with	 anti-FLAG	 antibody	 (blue)	 and	 F-actin	 with	 Alexa	 Fluor	 647-	 conjugated	
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phalloidin	 staining	 (red).	 All	 scale	 bars	 correspond	 to	 20	 μm.	 (b)	 Average	 perimeter	 of	
COS7	cells	expressing	either	wild	type	or	a	CrkII-binding	deficient	(PEAK3-3A)	variants	of	
PEAK3	with	an	empty	vector	or	untagged	CrkII,	quantified	as	described	 in	Methods.	Data	
represent	 the	 mean	 ±	 SEM	 of	 three	 independent	 experiments	 (n	 =	 20	 cells	 in	 each	
experiment).		

	
Supplemental	Figure	5	

	
	
Supplementary	 Figure	 5.	 CrkII	 binding	 motif	 is	 insufficient	 to	 drive	 inhibition	 of	
CrkII	function.	Confocal	microscopy	imaging	of	COS-7	cells	transiently	co-transfected	with	
a	FLAG-tagged	wild	type	or	ΔPK	mutant	of	PEAK3	with	either	an	empty	vector	or	untagged	
CrkII.	CrkII	was	detected	with	anti-CrkII	antibody	(green),	PEAK3	with	anti-	FLAG	antibody	
(blue)	and	F-actin	with	Alexa	Fluor	647-conjugated	phalloidin	staining	(red).	All	scale	bars	
correspond	to	20	μm.		
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Supplemental	Figure	6	
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Supplementary	Figure	6.	Sequence	conservation	in	the	NKF3	family	mapped	onto	3D	
structures.	(a)	Sequence	conservation	within	the	identified	mammalian	PEAK3	homologs	
across	 evolution	 mapped	 onto	 the	 PEAK1	 structure.	 Alignment	 conservation	 values	 are	
represented	 by	 different	 coloring	 (lowest	 conservation	 =	 white,	 highest	 conservation	 =	
red).	(b,	c)	Similarity	between	human	Pragmin	and	PEAK3	(b)	or	human	PEAK1	and	PEAK3	
(c)	mapped	onto	the	three-dimensional	structures	(b,	Pragmin,	PDB:	5VE6;	c,	PEAK1,	PDB:	
6BHC).	 Pairwise	 alignments	 of	 PEAK3	with	 Pragmin	 (b)	 or	 PEAK1	 (c)	 were	 considered.	
Residues	conserved	in	the	alignments	(strictly	conserved	or	conservative	replacements,	as	
judged	by	positive	BLOSUM62	matrix	scores),	rendered	as	ribbons	and	colored	according	
to	the	BLOSUM62	scores	as	follows:	yellow:	BLOSUM62	values	from	1	to	3;	orange:	4-6;	red	
(highest	conservation):	7	to	11.		
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Supplemental	Figure	7	

	
	
Supplementary	 Figure	 7.	Mutations	within	 the	 putative	 SHED	 domain	 disrupts	 the	
ability	 of	 PEAK3	 to	 dimerize.	 (a	 -	 c)	Co-immunoprecipitation	FLAG-tagged	WT	PEAK3	
with	 either	 HA-tagged	 PEAK3	 (a)	 or	 mutant	 variants	 where	 either	 one	 of	 three	 alpha	
helices	 thought	 to	 be	 important	 for	 dimerization	 is	 deleted	 (b)	 or	 residues	 in	 the	helical	
interface	is	mutated	(c),	transiently	expressed	in	HEK293	cells.	Cell	lysates	were	incubated	
with	 an	 anti-FLAG	 antibody,	 resolved	 by	 SDS/PAGE,	 and	 then	 probed	with	 the	 indicated	
antibodies	by	Western	blot.	(d)	Co-immunoprecipitation	of	an	HA-tagged	WT	construct	of	
PEAK3	 with	 a	 FLAG-tagged	WT	 or	 mutants,	 transiently	 expressed	 in	 HEK293	 cells.	 Cell	
lysates	 were	 incubated	 with	 an	 anti-FLAG	 antibody,	 resolved	 by	 SDS/PAGE,	 and	 then	
probed	with	the	indicated	antibodies	by	Western	blot.	All	coimmunoprecipitation	data	are	
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representative	of	at	two	independent	experiments.	

Supplemental	Figure	8	
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Supplementary	 Figure	 8.	 Homotypic	 association	 of	 PEAK3	 is	 required	 for	 its	
interaction	with	CrkII.	(a)	Co-immunoprecipitation	of	untagged	CrkII	with	FLAG-	tagged	
control	dimerization	mutants	of	PEAK3,	transiently	expressed	in	HEK293	cells.	Cell	lysates	
were	incubated	with	an	anti-FLAG	antibody,	resolved	by	SDS/PAGE,	and	then	probed	with	
the	 indicated	 antibodies	 by	 Western	 blot.	 Data	 is	 representative	 of	 three	 independent	
experiments.	 (b)	 Confocal	 microscopy	 imaging	 of	 COS-7	 cells	 transiently	 co-transfected	
with	a	FLAG-tagged	wild	 type	or	ΔαN1	mutant	of	PEAK3	with	either	 an	empty	vector	or	
untagged	CrkII.	CrkII	was	detected	with	anti-CrkII	antibody	(green),	PEAK3	with	anti-FLAG	
antibody	(blue)	and	F-actin	with	Alexa	Fluor	647-conjugated	phalloidin	staining	(red).	All	
scale	bars	correspond	to	20	μm.	(c)	Confocal	microscopy	imaging	of	COS-7	cells	transiently	
co-transfected	with	a	FLAG-tagged	wild	type	or	L146E	dimerization	mutant	of	PEAK3	with	
either	 an	 empty	 vector	 or	 untagged	 CrkII.	 CrkII	 was	 detected	 with	 anti-CrkII	 antibody	
(green),	 PEAK3	 with	 anti-FLAG	 antibody	 (blue)	 and	 F-actin	 with	 Alexa	 Fluor	 647-
conjugated	phalloidin	staining	(red).	All	scale	bars	correspond	to	20	μm.		
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Supplemental	Figure	9	

Supplementary	 Figure	 9.	 Constitutive	 dimerization	 of	 the	 CrkII	 binding	 site	 is	 not	
sufficient	 to	 antagonize	 CrkII	 function.	 Confocal	 microscopy	 imaging	 of	 COS-7	 cells	
transiently	 co-transfected	 with	 a	 FLAG-tagged	 wild	 type	 or	 diCC	mutant	 of	 PEAK3	 with	
either	 an	 empty	 vector	 or	 untagged	 CrkII.	 CrkII	 was	 detected	 with	 anti-CrkII	 antibody	
(green),	 PEAK3	 with	 anti-FLAG	 antibody	 (blue)	 and	 F-actin	 with	 Alexa	 Fluor	 647-	
conjugated	phalloidin	staining	(red).	All	scale	bars	correspond	to	20	μm.		
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Supplemental	Figure	10	

	
	
Supplementary	Figure	10.	Mutation	of	the	DFG	motif	in	PEAK3	diminishes	its	ability	
to	 rescue	 CrkII-dependent	 morphology.	 Confocal	 microscopy	 imaging	 of	 COS-	 7	 cells	
transiently	co-transfected	with	a	FLAG-tagged	wild	type	or	D330N	mutant	of	PEAK3	with	
either	 an	 empty	 vector	 or	 untagged	 CrkII.	 CrkII	 was	 detected	 with	 anti-	 CrkII	 antibody	
(green),	 PEAK3	 with	 anti-FLAG	 antibody	 (blue)	 and	 F-actin	 with	 Alexa	 Fluor	 647-
conjugated	phalloidin	staining	(red).	All	scale	bars	correspond	to	20	μm.		
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Supplemental	Figure	11	
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Supplementary	 Figure	 11.	 PEAK3	 mRNA	 levels	 in	 patient-derived	 AML	 cell	 lines.	
PEAK3	 mRNA	 levels	 in	 patient-derived	 cancer	 cell	 lines	 from	 the	 Cancer	 Genome	 Atlas	
Project.		

Supplementary	Table	1.	List	of	top	interactors	of	PEAK3	as	identified	by	IP/MS.	Top	
interactors	 of	 PEAK3	 identified	 by	 the	 IP/MS	 analysis,	 including	 their	 Uniprot	 ID	 and	
abundance	score.	The	details	of	the	analysis	are	described	in	Methods.	

Supplemental	Table	1	
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