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We describe a framework that addresses concern that the rate of change in any
aging biomarker displays a trivial inverse relation with maximum lifespan. We
apply this framework to methylation data from the Mammalian Methylation
Consortium. We study the relationship of lifespan with the average rate of
change in methylation (AROCM) from two datasets: one with 90 dog breeds
and the other with 125 mammalian species. After examining 54 chromatin
states, we conclude three key findings: First, a reciprocal relationship exists
between the AROCM in bivalent promoter regions and maximum mammalian
lifespan: AROCM « 1/MaxLifespan. Second, the correlation between average
methylation and age bears no relation to maximum lifespan, Cor(Methyl,Age)
1 MaxLifespan. Third, the rate of methylation change in young animals is
related to that in old animals: Young animals’ AROCM o« Old AROCM. These
findings critically hinge on the chromatin context, as different results emerge

in other chromatin contexts.

A fundamental question in biology is why closely related species,
such as mammals, exhibit significant differences in maximum life-
spans (also referred to as maximum longevity or simply longevity).
Years of research have outlined the ecological traits associated with
maximum lifespan. In short, maximum lifespan is closely linked to an
organism’s ability to avoid predation, such as having a large body
size, the capacity to fly, or the skill to burrow underground'”’. The
rate of living theory suggests that the faster an organism’s metabo-
lism, the shorter its lifespan. This theory was initially proposed by
Max Rubner in 1908, following his observation that larger animals
lived longer than smaller ones, and that these larger animals had
slower metabolisms. Rubner’s rate of living theory, which was once
accepted, has now largely been debunked. This shift in perception is
due to the application of modern statistical methods which account
for the effects of both body size and phylogeny. When these factors
are appropriately adjusted for, there is no correlation between
metabolic rate and lifespan in mammals or birds®’. Nonetheless,
contemporary adaptations of the original rate of living theory have
emerged. Many articles have explored the relationship between the
rate of change in various molecular markers and maximum lifespan.
Specifically, maximum lifespan has been connected to the rates of

change in telomere attrition®"*, somatic mutations'*%, and cytosine
methylation®2*,

The strong correlation between maximum lifespan and the rate of
change in various factors (telomeres, somatic mutations, methylation)
raises the possibility that these relationships might merely be artifacts
resulting from the definition of the rate of change. In other words, the
strong correlation with maximum lifespan could be a mathematical
consequence stemming from the calculation of rates of change per
year. To address this concern, we introduce a framework that links the
rate of change in a biomarker to maximum lifespan. We show that any
biomarker of similar positive correlations with age across multiple
species will exhibit an inverse relation with maximum lifespan. Thus
considerable care must be taken to avoid biases deriving from the
definition of the rate of change.

Results

We examine the correlation between methylation dynamics through-
out the lifespan and maximum lifespan using two datasets from the
Mammalian Methylation Consortium®. The first dataset encompasses
blood methylation data from 90 distinct dog breeds, while the second
dataset encompasses many different tissue types from 125 mammalian
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species. We begin with the simpler dog dataset, which consists of a
single tissue, to familiarize the reader with our methodology. Our
primary scientific emphasis is on the mammalian lifespan dataset,
which we analyze in depth.

Rate of change in methylation in dog breeds

Dog breeds exhibit a striking range of lifespans, with some breeds living
up to twice as long as others. A prior study involving two dog breeds
indicated an inverse relationship between methylation change rate and
breed-specific lifespan”. Here we examine the connection between
methylation change rate and the lifespans of dog breeds using a sub-
stantially larger dataset: N =742 distinct blood samples from 90 dif-
ferent dog breeds®. For later applications, we will use the more abstract
term stratum to replace the dog breed. The Average Rate of Change in
Methylation (AROCM) quantifies the velocity or gradient of age-related
changes in a set of cytosines across samples from a given stratum.
Therefore AROCMs depend on the age interval and the set of cytosines.
Assuming there are n (blood) samples within one stratum (dog breed)
and an age range [¢, u], the methylation matrix is

Mpum=(CGyp),  i=12,.,n;j=12,.,m,

where rows represent (blood) samples and columns represent a set of
m CpGs (e.g., CpGs located in a specific chromatin state). For the i-th
sample, the average methylation value Methyl is defined as:

Methyl, = Jm:ICG,-j. @

To enable comparisons with other aging biomarkers, we define the
scaled methylation value as:

where the mean and the standard deviation are taken over samples
i=1,2,.., nwithin each stratum. Now we define the AROCM in one
stratum as the coefficient estimate f; resulting from the univariate
linear regression model:

ScaledM; =B, + B,Age;. 3)
The term average in AROCM reflects that Methyl was defined as the
average value across a specific set of cytosines (equation (1)). In our
analysis of the dog data, we concentrated on the 552 CpGs situated
within the BivProm2+ chromatin state, also known as the Bivalent
Promoter 2 state that is associated with the Polycomb Repressive
Complex 2 (PRC2). The rationale behind selecting this specific chro-
matin state will be presented in our subsequent application concern-
ing mammalian maximum lifespan. A comprehensive description of
chromatin states can be found in Methods. In Methods (equations (11)
to (14)), we derive

Cor(Methyl,Age) 1
SD (R) Lifespan’

AROCM =, = “4)

where R= Llf*;fean is the relative age in each stratum. Equation (4) reveals

that the inverse association between AROCM and maximum lifespan
would hold when the first ratio term C"“"g‘gi:}’g'"*‘ge’ approximates some
constant across the strata (Fig. 1a, b). This raises the concern that the
relationship between the rate of change (AROCM) and 1/Lifespan
might simply result from selecting CpGs with a positive age correla-
tion. To mitigate this concern, we avoided pre-filtering CpGs based on
their age correlations. We chose to define the rate of change in relation
to sets of CpGs associated with chromatin states that were defined with
respect to histone marks (Methods). In practical data applications,
inconsistent age ranges and the associated variability in SD (R) notably

ScaledM. = Methyl; — Mean(Methyl; ) 2) influence the estimation of AROCM and Cor(Methyl, Age). The
i SD (Methyly;.,;) ( dependence of AROCM and Cor(Methyl, Age) on SD (R) usually is
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Fig. 1| AROCMs in blood samples from S = 90 dog breeds. Top panels connect
AROCMs to a Lifespan, b 1/Lifespan, ¢ adult weight, and d Log(Cor(Age, Methyl))
versus Log(Lifespan); bottom panels tie Adj. AROCM to the same factors (e, f, g),

and h Log(Adj.Cor) versus Log(Lifespan). Pearson correlations and corresponding
two-sided t-test p-values are reported in each panel. Gray error bands ind, h are 95%

confidence bands of the LOESS smooth curve fitted to the data. Both adjusted and
unadjusted AROCMs were computed with p = 552 CpGs in bivalent promoter 2
bound by polycomb repressive complex 2 (PRC2) (BivProm2+)*. Each integer label
corresponds to a different dog breed (Supplementary Data 1).
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not of biological interest. Instead, it indicates flaws in sample selection
and study design. To mitigate the impact of these sampling
imperfections, we introduce adjusted values:

Adj. AROCM =AROCM xSD (R)\ " . (5)
This straightforward adjustment multiplies AROCM by a power term of
SD (R). It offers the additional benefit of establishing a simple rela-

tionship with maximum lifespan (Methods equations (17) to (19)):

Adj.Cor(Methyl, Age)

Adj.AROCM = 8 ,
Lifespan ©6)
. . Cor(Methyl, Age)
where Adj.Cor(Methyl, Age) = So®RP

To arrive at a pronounced inverse correlation between Adj.AROCM
and Lifespan, equation (6) suggests minimizing the coefficient of var-
iation in Adj.Cor(Methyl, Age) (see equation (27) in Methods for more
details). When selecting p, we do not take lifespan information into
account. However, this criterion for choosing p faces a statistical
challenge: overfitting, i.e., resulting in an artificially tight inverse rela-
tion between the rate of change and lifespan. Therefore, we advise
presenting results for both the original and adjusted values of AROCM
in practical applications. Since p = 0 implies Adj.Cor = Cor, smaller p
indicates a lesser degree of sampling imbalance and therefore smaller
adjustment. According to the criterion for choosing the adjustment
power, p = 0.1 emerges as a suitable choice for our dog methylation
data (Supplementary Fig. 1).

The low correlation between Adj.Cor(Methyl, Age) and breed
lifespan on a logarithmic scale (r=0.23, p=0.026, Fig. 1h) implies a
strong negative relationship between Adj.AROCM and lifespan on the
log scale, as indicated by Proposition 4. This is validated with a cor-
relation coefficient of r = — 0.75 (Fig. 1e). We also identify positive
correlations between AROCM and average breed weight (Fig. 1c, g),
whichis predictable since breed weight inversely correlates with breed
lifespan. Breed characteristics and methylation-based traits like
AROCM values for individual breeds are detailed in Supplemen-
tary Data 1.

While the adjusted version of AROCM, Adj.AROCM, comes with
drawbacks such as the risk of overfitting and reduced interpretation, it
bears several benefits. First, it often boosts the data signal (r = — 0.75
for the adjusted AROCM versus r = — 0.36 for the unadjusted AROCM,
Fig. 1a, e). Second, it aids in deriving formulas for constants of pro-
portionality (equation (25) in Methods). For instance, the constant is
1.02 in equation (25) among dog breeds in our data (Fig. 1f). In sum-
mary, both the adjusted and unadjusted AROCMs display negative
correlations with lifespan when viewed on a logarithmic scale. Yet, the
correlation is notably stronger in the adjusted AROCM when com-
pared to its unadjusted counterpart. This indicates that the adjusted
version adeptly counteracts the limitations of an imperfect dataset,
particularly the confounding influence of varying SD(R) values.

Mammalian methylation data and chromatin states

Recent investigations have revealed a connection between the rates of
methylation change and the maximum lifespan of mammals'®*~*%***, In
the present study, we revisit this question utilizing a comprehensive
dataset from the Mammalian Methylation Consortium*%. These data
are well suited for comparative aging rate studies, as the mammalian
array platform provides a high sequencing depth at CpGs, which are
highly conserved across mammalian species®. We maintained the
same definitions as in our dog dataset, though strata were classified by
species and tissue types within species. In order to derive reliable
AROCM estimates, we removed outlying species/tissue strata using
criteria detailed in Methods. The analysis of the AROCM defined with
respect to the entire age range [0, Lifespan) involves S = 229 distinct

species/tissue strata. We first calculated AROCMs in all species-tissue
strata (equation (4)) and aggregated them by species for all 54 chro-
matin states identified on the mammalian array (Figs. 2; Supplemen-
tary Data 2). Specifically, the species-level AROCM is defined as the
median across tissue types within that species.

Given that AROCM estimates may exhibit a non-linear relationship
with the inverse of maximum lifespan (Fig. 2b), we calculated the
Spearman correlation (as opposed to the Pearson correlation)
between AROCM and 1/L, the lifespan. The Spearman correlation
coefficients of all chromatin states varied from -0.44 (ReprPC4-) to
0.66 (BivProml+, BivProm2+) (Fig. 2a and Supplementary Data 2).
First, we will discuss chromatin states such as TxEx4-, ReprPC4-, and
Quiesl-. These states typically exhibit high methylation values® and
their AROCM estimates frequently result in negative values. Such
chromatin states, with frequently negative AROCM estimates, typically
exhibit a negative correlation with 1/Lifespan, as indicated by the
Spearman correlation in Fig. 2a. For these states, lower negative
AROCM values correspond to shorter lifespans. Essentially, species
experiencing rapid age-related methylation loss in TxEx4-, ReprPC4-,
and Quiesl- generally have shorter lifespans. However, the lifespan
correlations for chromatin states with negative AROCM values are not
as pronounced as those for states with positive AROCM values. We will
primarily focus on chromatin states that typically exhibit low methy-
lation values and their AROCM estimates frequently result in positive
values. Specifically, the 552 CpGs in the BivProm2+ chromatin state
show the strongest positive correlation with 1/Lifespan. This is why we
used this chromatin state in our prior application to dog breeds. It is
worth noting that similar results can be observed in other chromatin
states with low methylation values, such as BivProml+ and ReprPC1+.

Non-linear relationship across the life course

In various species-tissue strata, a non-linear relationship exists
between age and scaled mean methylation ScaledM (equation (2)),
evident in species like the green monkey, pig, and beluga whale
(Fig. 2d-f). A similar non-linear pattern is observed for relative age R
(Fig. 3). Our Methods section details a parametric model for this
relationship, as described in equations (29) and (30). This non-linearity
poses a mathematical challenge in estimating AROCM. However, this
can be addressed by dividing the age range into segments where linear
relationships are appropriate (Fig. 2d-f). Roughly linear relationships
can be observed when focusing on either young animals (defined by
R < 0.1) or older animals (R > 0.1) (Fig. 3). For instance, in humans, we
designated the young stratum by R < 0.1, corresponding to Age < 12.2
years, while the older stratum was defined as Age>12.2. Using the
definitions of Young and Old, we computed the AROCM for three
specific chromatin states: BivProm2+, BivProml+, and ReprPCl+. For
all three states, we observed two main results: (i) AROCM values are
higher in young animals than in older ones; (ii) a pronounced positive
correlation exists between AROCM values in young and old animals,
with a Pearson correlation coefficient of r > 0.78 (see Fig. 4). The
strong positive correlation (r > 0.78) is noteworthy, even though it can
be mathematically derived under specific assumptions, as outlined in
Methods, concerning the relationship between AROCM,q,,, and
AROCM,;.. The resulting biological insight into the connection
between aging rates in young and old animals was made possible due
to the extensive sample size provided by our Mammalian Methylation
Consortium. To address any concerns regarding the 0.1 threshold for
R, we performed comprehensive sensitivity analyses using thresholds
from 0.2 to 0.9, confirming the robustness of our findings (see Sup-
plementary Data 3).

Adjusted AROCM approximates the inverse of the maximum
lifespan

Given that the coefficient of variation for Adj.AROCM is substantially
lower than that for Lifespan, our mathematical framework predicts an
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a. Corr in 54 chromatin states

b. Median Cor=0.73, p=1e-16

c. Median Cor=0.76, p=1e-16
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Fig. 2 | Age versus mean methylation in select chromatin states in mammals.
a Displays the Spearman correlation between the inverse of mammalian maximum
lifespan 1/L (x-axis) and the AROCM of diverse chromatin states. Each dot repre-
sents one of the 54 universal chromatin states”, with the AROCM defined per
Methods. Only chromatin states with Spearman correlation exceeding 0.6 or below
-0.3 with the inverse of maximum lifespan are labeled. More details are in Sup-
plementary Data 2. The most pronounced correlation is found for CpGs in bivalent
promoter 2 also bound by polycomb repressive complex 2 (BivProm2+). b Scaled
Mean Methylation versus Relative Age across all samples; ¢ Scaled Mean

Methylation against Log-linear Transformed Relative Age in all samples. Black
curves mark the overall trend. In panel c, a linear regression line was fitted per
species. d-f Depicts AROCM calculation for BivProm2+ state in 3 species-tissue
strata. Colored line segments/numbers in each panel represent: Young AROCM for
age interval [0, 0.1L) in green; Old AROCM for age interval (0.1, L) in blue; AROCM
for age interval [0, L) in red. Pearson correlations and corresponding two-sided ¢-
test p-values are reported in b-f. The sample size for each panel is reported on the
x-axis label. Source data are provided as a Source Data file.

inverse correlation between Adj.,AROCM and Lifespan, as indicated by
equation (6) and Proposition 4. Indeed, both the AROCM (r = - 0.85)
and the adjusted AROCM (r = - 0.92) exhibit strong negative corre-
lations with maximum lifespan on the log scale (Fig. 5a, c). The dif-
ference between the two measures is more pronounced when looking
at the original scale (no log transformation): the adjusted AROCM
leads to a high correlation with a/Lifespan (r= 0.96) compared to that
for the unadjusted AROCM (r= 0.72, Fig. 5b, d). A benefit of the
adjusted correlation Adj.Cor(Methyl, Age) is that its mean value
approaches 1.0 across species (mean=1.11, Supplementary Fig. 2i)
since this results in a simple memorable formula: the adjusted AROCM
is roughly equal to 1/Lifespan because a = 1 (equation (6), Fig. 5d).
Supplementary Data 4 provides detailed results on AROCMs and their
adjusted versions.

Strong negative correlations with lifespan can be further observed
when AROCM is defined with respect to young animals only (R < 0.1)
or old animals only (R>0.1, Supplementary Fig. 3). Since maximum
lifespan is positively correlated with average age of sexual maturity
and gestation time, we find that both variables correlate strongly with
AROCM as well (Supplementary Fig. 4). Our findings underscore the
efficacy of the adjusted AROCM in addressing the issue of strata with
widely varying values of SD (R). Traditionally, one might handle the
variability in SD(R) by limiting the analysis to strata that have

approximately similar SD (R) values. To demonstrate that our main
findings are consistent using this conventional method, we conducted
the same analysis on strata with comparable SD (R) values. The results
confirmed our earlier findings of strong correlations between AROCM
and 1/Lifespan, with correlation coefficients of r =0.99 for strata
within SD(R) € (0.2, 0.4) and r = 0.97 for strata within SD (
R) € (0.4, 0.6), respectively (see Supplementary Fig. 5). Similarly, a
stratified analysis reaffirmed our key findings from the dog breed
study (refer to Supplementary Fig. 6).

Our outlier removal algorithm (Methods) was crucial for estab-
lishing strong relationships between AROCM and maximum mamma-
lian lifespan. Without this algorithm, the relationships are substantially
weaker (Fig. 6).

Methylation-age correlation does not relate to lifespan

The correlation between Mean Methylation and Age, denoted as
Cor(Methyl, Age), assumes similar values for long and short-lived
species, e.g., Median Cor(Methyl, Age) = 0.51 for humans, 0.58 for
humpback whale, 0.62 for Asian elephant, 0.66 for mouse, 0.67 for
brown rat, 0.69 for prairie vole. As shown in Fig. 1d, Cor(Methyl, Age)
does not relate to lifespan in the dog data. To delve deeper into the
relationship between Cor(Methyl, Age) and maximum lifespan, we
grouped each species into one of five groups based on their maximum
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Fig. 3 | Scaled mean methylation against relative age or log-linear transformed
relative age in 6 additional species-tissue strata. The correlations increase and
associations become more linear post-transformation. a-c, g-i Scaled Mean
Methylation versus Relative Age, the red dashed line represents the linear fit to
relative age, the blue dashed curve represents the inverse transformation of the
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transformed relative age, where y, is the AROCM defined in equation (29), with
ScaledM; = yo + yiT;. A two-sided z-test is used to calculate the p-values for y;.
Pearson correlations and corresponding two-sided ¢-test p-values are reported in
each panel. The sample size for each panel is reported on the x-axis label. Source
data are provided as a Source Data file.

lifespan: less than 10 years, 10-19 years, 20-24 years, 25-39 years, or
over 40 years. These groupings were designed to ensure a balanced
number of species per group. Our analysis revealed no discernible
trend between either Cor(Methyl, Age) or Adj.Cor and the lifespan
group (Fig. 7). Similarly, we find no relationship between lifespan and
Cor(Methyl, Age) when the latter is defined with respect to young or
old animals (Methods). The analysis mentioned above overlooks a
technical challenge. In our dataset, Cor(Methyl, Age) shows a

correlation with the standard deviation of relative age, with a Pearson
correlation of r = 0.23 in all species-tissue strata and r = 0.27 across
species (Supplementary Fig. 2d, e). This correlation is not ideal, as it
stems from an imbalanced and imperfect data sampling. Ideally, with
all species sampled to have the same distribution in relative age, SD (R)
would remain constant, making Cor(Methyl, Age) and SD (R) inde-
pendent (Methods). The variability in SD (R) led to the introduction of
the adjusted correlation, Adj.Cor (equation (5)). Using an adjustment
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Fig. 4 | AROCM in young animals versus that in old animals. a, b, ¢ Natural log-
transformed values of AROCM in young animals versus AROCM calculated in old
animals. Mean methylation was defined with respect to CpGs located in chromatin
state a BivProm2+, b BivProml+, ¢ ReprPCl+. d, e, f Corresponding plots on the
original scale, i.e., without log transformation. Each dot corresponds to a different

species. Median aggregation was used to combine AROCM results from different
tissues by species. x-axis: AROCM for young samples (Relative Age R < 0.1). y-axis:
AROCM for old samples (R > = 0.1). Samples are labeled by mammalian species
numbers. Each panel reports the Pearson correlation value Cor and the corre-
sponding two-sided t-test p-value. Source data are provided as a Source Data file.

power of p = 0.25 (Supplementary Fig. 1b), Adj.Cor is found to have a
non-significant correlation with SD (R) (Supplementary Fig. 2g, h). A
more detailed presentation of these results using bar plots is available
in Supplementary Figs. 7, 8, and 9.

Adult weight does not confound the relationship between
AROCM and lifespan

Body size (e.g., measured using average adult body mass or adult
weight) is a major determinant of maximum lifespan-with larger ani-
mals living, on average, longer than smaller ones”**, Adult weight is
often a confounding factor in comparative studies of maximum
lifespan®**>*¢, To address this concern, we carried out several analyses
to demonstrate that adult weight does not explain the observed rela-
tionships between AROCM and maximum lifespan. First, we demon-
strate that the correlation between log(AROCM) and log(Weight) is
much weaker than that observed for maximum lifespan (r = -0.66 for
average weight, Supplementary Fig. 10a, versus r = -0.85 for max-
imum lifespan, Fig. 5a). Second, we fit the following multivariate
regression models between the unadjusted AROCM, maximum life-
span and adult weight (Table 1),

M1 : log(L) ~ log(AROCM) + log(Weight),

7
M2 : log(AROCM) ~ log(L) + log(Weight). @

When lifespan is regressed on AROCM and weight on the log scale,
both AROCM and weight are highly significant (model M1, Table 1).

When AROCM is regressed on lifespan and weight on the log scale,
lifespan remains highly significant while weight is not (model M2,
Table 1). These results demonstrate that adult weight has only a weak
effect on the relationship between lifespan and AROCM.

Effect of tissue type on the relationship between AROCM and
lifespan

Most proliferating tissue types have similar values of Cor(Methyl, Age)
but slightly lower correlations can be observed for non-proliferating
tissues such as the cerebellum, cerebral cortex, skeletal muscle, and
heart when looking at all samples irrespective of age (Supplementary
Fig. 11). The lowest age correlation values are observed for the kidney,
but this finding requires further replication. To carry out a formal
analysis of the effect of tissue type, we added indicator variables for
tissue types as covariates to the multivariate regression models that
explored the relationship between AROCM and lifespan:

M3 : log(AROCM) ~ log(L) + log(Weight) + Brain,
M4 : log(AROCM) ~ log(L) + log(Weight)
+ Brain + Skin + Liver + Muscle + Tail,

®

where model M4 added indicator variables for several tissue types.
Both M3 and M4 allow insights into the potential tissue differences in
AROCM estimates, as detailed estimates can be found in Table 1. After
including log(L) as the covariate, only liver tissue had a significant
(positive) association with log(AROCM), (p= 0.03).
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values are reported for each panel. Dotted lines in b, d denote x = y. Supple-
mentary Fig. 3 contains results for young and old AROCM. We conducted an ana-
logous analysis on strata with comparable SD (R) values, see Supplementary Fig. 5.
Source data are provided as a Source Data file.

Phylogenetic effects

The shared genetic, behavioral, and ecological traits among related
species, inherited from common ancestors, can create non-random
associations or phylogenetic signals. Ignoring these phylogenetic
relationships can lead to false correlations or overlook real ones®>%%,
Upon adjusting for phylogenetic relationships, the previously men-
tioned associations persist, albeit with weaker correlation coefficients.
In the case of the dog methylation data, we observed substantial
positive associations in the phylogenetically independent contrasts
(PICs*) of AROCM and breed lifespan (refer to Supplementary Fig. 12).
Here, we recorded a correlation of —0.26 (p = 0.018) for AROCM, and
a correlation of —0.64 (p =7.3 x10™) for Adjusted AROCM.

In the mammalian data, we again found significant positive asso-
ciations in PICs of AROCM and maximum lifespan (Supplementary
Fig. 13). Correlations for this dataset were r=-0.2 (p =0.03) for
AROCM, -0.35 (p = 0.00013) for Adjusted AROCM, and -0.23
(p = 0.022) for Adjusted Old AROCM. Collectively, these findings

indicate a connection between the rate of methylation change in
bivalent promoter regions and maximum lifespan, which holds even
after phylogeny adjustment.

Discussion

We established the Mammalian Methylation Consortium with two
primary objectives. The first objective was to develop DNA
methylation-based measures to track the passage of time, culminating
in the creation of the pan-mammalian methylation clock”. The second
objective aimed to understand the epigenetic correlates of maximum
mammalian lifespan, a goal explored through a trilogy of papers. In the
first paper, we developed multivariate predictors of maximum lifespan
based on cytosine methylation®. This predictor can estimate species-
specific characteristics, such as maximum lifespan, from a DNA sam-
ple, even if the species is unknown. The second paper characterized
individual CpGs and clusters of CpGs (modules) that correlate with
maximum lifespan®, providing insights into the methylation landscape
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Fig. 6 | AROCM versus maximum mammalian lifespan including outlying spe-
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i.e., we skipped the filtering approach described in Methods. a-c Each dot reports a
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values are reported for each panel. Source data are provided as a Source Data file.

of long-lived species. Interestingly, this study found only a weak
overlap between CpGs that correlate with maximum lifespan and those
associated with chronological age. While we understand that a species
characteristic like maximum lifespan is genetically hardwired and does
not change with the individual’s age, this finding challenges the intui-
tive hypothesis that individual aging (the passage of time) must relate
to maximum lifespan (a species characteristic).

The current paper, the final installment in our trilogy on max-
imum lifespan, addresses this hypothesis by integrating our first
objective (correlates of the passage of time, i.e., the rate of change)
with our second objective (maximum lifespan). We initially presented
these results during a TEDxBerkeley talk in February 2020%. It took five
years to publish these findings because we discovered that studies
linking the rate of change in an aging biomarker to maximum lifespan
are inherently biased. Permutation studies revealed that a strong
relationship between the rate of change and maximum lifespan could
arise even without an actual signal in the data, due to the underlying
mathematical definitions. We deemed it necessary to collect a large
dataset and to develop a mathematical framework to highlight and
characterize this bias, as it holds significant relevance for other aging
biomarkers beyond methylation.

The rate of change is not always inversely proportional to the
lifespan

Prior studies have linked the rate of change in methylation to max-
imum lifespan in smaller samples of mammalian species®*****°, and

have suggested a strong positive correlation between methylation rate
changes and the inverse of mammalian lifespan. But this is not always
the case. By leveraging the large dataset from our Mammalian
Methylation Consortium and a careful mathematical framework we
demonstrate that the strong positive correlation between AROCM
and 1/Lifespan is only found in certain chromatin states such as
bivalent promoters (Fig. 2a). In other chromatin states, the correla-
tion between AROCM and 1/Lifespan is either not present or even
reversed (Supplementary Fig. 14). Future studies might delve deeper
into which chromatin regions result in the opposite interpretation,
where a rapid rate of change correlates with an increased maximum
lifespan. Our research initiated this exploration by pinpointing
chromatin states where the rate of change negatively correlates with
1/Lifespan. One intriguing aspect is understanding why chromatin
states like TxEx4-, ReprPC4-, and Quiesl, which negatively correlate
with 1/Lifespan, exhibit a more subdued p-value association com-
pared to their positively correlated counterparts. This might be
attributed to the varied age-related methylation loss patterns across
different tissue types. For example, the TxEx4 high-expression tran-
scription state indicates age-related methylation loss in non-
proliferative tissues”. Yet, in proliferative tissues such as blood or
skin, TxEx4 has diminished enrichment of age-related cytosines
undergoing methylation loss”. Further, the correlation between
mammalian lifespan and AROCM is not significant when employing
all 8970 CpGs that correspond to both eutherians and marsupials
(Supplementary Fig. 15). These findings collectively underscore that
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Table 1| Regression models involving maximum lifespan

Model Covariate Estimate Std. t-value Pr(>|t|)
error
M1: log(Life- (Intercept) 1.54 0.0711 21.7 5.40E-
span) ~ 52
log(AROCM) -0.44 0.026 -16.92 1.80E-
35
log(AverageWeight)  0.09 0.01 9.23 5.10E-
18
M2: log(AR- (Intercept) 1.92 0.18 10.94 9.80E-
OCM) ~ 17
log(Lifespan) -1.3 0.077 -16.92 1.80E-
35
log(AverageWeight)  0.015 0.02 0.76 0.45
M3: log(AR- (Intercept) 1.7 0.19 9 1.20E-
OCM) ~ 16
log(Lifespan) -1.2 0.079 -15 1.80E-
35
log(AverageWeight)  0.015 0.02 0.78 0.43
Brain -0.26 0.19 -1.4 0.16
M4: log(AR- (Intercept) 1.79 0.22 8.24 1.94e-
OCM) ~ 14
log(Lifespan) -1.28 0.08 -16.06 2e-16
log(AverageWeight)  0.03 0.02 122 0.23
Brain 0.03 0.21 0.16 0.87
Blood 0.16 0.15 1.02 0.31
Skin (ON] 0.16 0.7 0.48
Liver 0.50 0.23 213 0.03
Muscle -0.52 0.37 -1.42 0.16
Tail 0.19 0.33 0.59 0.56

We considered animals across the entire age range. We used mean methylation in BivProm2+ for
all species-tissue strata (N = 229). Source data are provided as a Source Data file.

the chromatin context substantially affects the relationship between
AROCM and lifespan.

Chromatin state BivProm?2 is special

Bivalent chromatin states generally exhibit low methylation levels in
most tissues and species and are bound by polycomb repressive
complex 2 (PRC2)?#**2, Many previous articles, including our pan-
mammalian aging studies, have shown target sites of PRC2 gain
methylation with age in most species and tissues”**, We pro-
posed a simple and fundamental equation that links the adjusted
rate of change in bivalent chromatin regions to the inverse of
maximum lifespan (equation (6)). Note that equation (6) does not
involve hidden parameters. Our study strongly suggests that careful
definition and measurement of both Adj. AROCM® and LY, the
choice of power p, and the interval of relative age range will resultin
an actual equality:

1

Adj AROCM® = Gl 9)

Invariants

Our mathematical framework demonstrates that equation (9) is a
consequence of another major finding from our study: the Pearson
correlation between methylation levels and age in selected chromatin
states, Cor(Methyl, Age), does not exhibit a strong correlation with
maximum lifespan. Given the substantial differences in age correlation
values, the term “life history invariant” would be misplaced. However,
our studies indicate that age correlation does not relate to maximum

lifespan across mammals (Fig. 7). Thus, the age correlation in short-
lived species is similar to that in long-lived species, likely explaining the
similar accuracy of epigenetic clocks for both short- and long-lived
species?.

Development versus aging

Previous research has shown that rates of developmental change in
methylation exceed those observed post-puberty in humans***,
Our extensive mammalian dataset supports this observation across
a broad range of species, as shown in Fig. 4. Notably, we have
established a proportional relationship between the rates of
change in young and old animals, a finding consistent across spe-
cies (Fig. 4). The underlying principle of this proportionality is
mathematically articulated in equation (28), which can be derived
from the biological premise that a uniform epigenetic maintenance
mechanism regulates methylation levels across the lifespan of a
species. More specifically, this proportionality emerges from the
hypothesis of a continuous, although potentially non-linear,
increase in cytosine methylation at specific genomic locations
(bivalent promoters) from development through old age. This has
been explicitly formulated in our life course equations (29) and
(30), assuming a non-linear relationship between scaled methyla-
tion (ScaledM) and relative age. From this standpoint, if we con-
sider that identical epigenetic maintenance processes govern
methylation increases in both young and old animals, it logically
follows that AROCM,,,,; and AROCM,,; would be correlated
across different species. Conversely, a lack of correlation would
imply fundamentally distinct epigenetic regulation mechanisms at
different life stages. Biologically, the proportionality between
AROCM,p4ne and AROCM,,4 lends support to deterministic aging
theories, which propose a connection between developmental
changes and those that occur later in life**>°, Our theoretical
model explains, under the premise that young and old animals
share the same epigenetic maintenance mechanisms, why
AROCM,54ng and AROCM,, 4 are linked by a multiplicative constant,
rather than a different type of non-linear but monotonic relation-
ship. Future iterations of our life course equations (29) and (30)
may need to be refined to account for a possible early develop-
mental phase characterized by rejuvenation processes®.

Limitations and future research

Our research has multiple limitations, which stem from the inher-
ent challenges in reliably calculating a rate of change. Careful
examination of outliers in all strata is essential to reliable rate of
change estimates, which we only ensured for the top chromatin
states. To tackle these issues, we developed an outlier removal
algorithm. Without this algorithm, the empirical data aligns far less
with the mathematical formulas (Fig. 6). A notable limitation in our
study is the wide fluctuation in age ranges across various strata
(leading to different values of SD(R)). This can significantly influ-
ence the estimates of the rate of change. To address this, we
introduced adjusted estimates for the rate of change. However,
these adjustments are not without issues, including the risk of
overfitting and challenges in interpretation. We recommend pre-
senting both the unadjusted and adjusted rate of change estimates
in findings, as done in our research. Our results remain consistent
whether using adjusted or unadjusted estimates. Other limitations
relate to potential confounders such as body size, tissue type, and
phylogenetic relationships. Our multivariate model analysis par-
tially addresses these concerns. Our results indicate that the
inverse relationship between AROCM and mammalian lifespan
persists even after adjusting for these confounders. A promising
avenue for research is examining the disparities in methylation rate
changes between sexes. Additionally, it would be fascinating to
investigate potential interventions influencing the AROCM. Many
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interventions influencing the lifespan of mice have been linked to
alterations in age-associated methylation*>"">,

Methods

Ethics

We utilized publicly available data as described in ref. 25. Below, we
detail the species involved, institutions, and relevant ethics pro-
tocol numbers. Mammalian samples, including yellow-bellied
marmots, were collected under the UCLA Institutional Animal
Care and Use protocol (#2001-191-01, renewed annually) and with
permission from Colorado Parks and Wildlife (TR917, renewed
annually). Plains zebra samples were collected under a protocol
approved by the Research Safety and Animal Welfare Administra-
tion, University of California, Los Angeles: ARC #2009-090-31,
originally approved in 2009. General mammalian samples were
approved by the Animal Welfare and Ethics Review Board, Uni-
versity of Rochester Committee on Animal Resources (UCAR),
Animal Protocol #101939/UCAR-2017-033. Human samples were
covered by the University of California, Los Angeles (IRB#15-
001454, IRB#16-000471, IRB#18-000315, IRB#16-002028) and the
Oxford Research Ethics Committee in the UK (reference 10/H0605/
1). Voles were managed under the Institutional Animal Care and Use
Committee (IACUC) of Cornell University (protocol #2013-0102),
following NIH guidelines. Deer mice were handled by the Per-
omyscus Genetic Stock Center, University of South Carolina, with
approval from the IACUC of the University of South Carolina
(protocol #2356-101506-042720). Horses were covered under the
UC Davis IACUC protocols (#19037, #20751, and #21455). The
naked mole rat study was approved by the University of Rochester
Committee on Animal Resources (protocol #2009-054). Beluga
whale research was authorized under NMFS Research Permit 932-
1905-00/MA-009526 and MMPA Permit #20465, issued by the
National Marine Fisheries Service (NOAA). Bowhead whale studies
were approved by Fisheries and Oceans Canada (DFO), LFSP S-19/
20-1007-NU, and Animal Care approval (AUP) FWI-ACC-2019-14.
Killer whale research was conducted under NMFS General Author-
ization No. 781-1725 and scientific research permits 781-1824-01,
16163, 532-1822-00, 532-1822, 10045, 18786-03, 545-1488, 545-1761,
and 15616. Humpback whale research was approved under various
permits, including NMFS permits (21485, 16325, 20465, 14245, 633-
1483, 633-1778, 932-1905), the Canadian Department of Fisheries
and Oceans, and IACUC #NWAK-18-02. For cats, the research was
approved by the Clinical Research Ethical Review Board of the Royal
Veterinary College (URN: 2019 1947-2). The elephant study was
authorized by the management of each participating zoo, reviewed
by zoo research committees where applicable, received IACUC
approval (#18-29) at the National Zoological Park (Smithsonian’s
National Zoo), and was endorsed by the Elephant Taxon Advisory
Group and Species Survival Plan. Rat studies were approved by the
Institutional Animal Ethics Committee of SVKM’s NMIMS Uni-
versity, Mumbai (approval no. CPCSEA/IAEC/P-6/2018), adhering to
CPCSEA guidelines from the Government of India. Dog research
was approved by the Animal Care and Use Committee of the
National Human Genome Research Institute (NHGRI) at NIH (pro-
tocol #8329254). Bat research was conducted with approval from
the University of Maryland IACUC (protocol FR-APR-18-16). Cattle
research was approved by the University of Nebraska IACUC
(approval #1560). Mice research was approved by the University of
Texas Southwestern Medical Center (APN 2015-100925, renewed
every 3 years). Apodemus mouse research was approved by the
University of Edinburgh Ethical Review Committee (UK Home
Office Project License PP4913586). Spiny mouse research was con-
ducted under the approval of the University of Kentucky (protocol
#2019-3254). Finally, shrews and other small species from the
Museum of Biological Diversity at The Ohio State University were

managed under The Ohio State University IACUC (protocol
#2017A00000036).

Statistics and reproducibility

We do not present findings from specific experiments. Rather, DNA
samples were collected opportunistically from available freezer-stored
materials provided by our collaborators. Data collection and analysis
were not conducted blind to variables such as tissue type. Methylation
measurements were taken from different animals, ensuring that no
animal was measured more than once. Our linear regression modeling
and correlation tests assume normality. Severe outliers were excluded
to arrive at a reliable rate of change estimates. To this end, we devel-
oped an outlier removal algorithm described below. Without it, the
empirical data aligns poorly with the mathematical formulas (see
Fig. 6). Below, we outline the quality control measures for our samples
and the statistical methods used in each analysis. Additional details are
provided in Supplementary Note 1.

Selection of dog methylation data

We analyzed methylation profiles from N = 742 blood samples
derived from 93 dog breeds (Canis lupus familiaris). Primary char-
acteristics (sex, age, average life expectancy) for the breeds utilized
are presented in Supplementary Data 1. Standard breed weight and
lifespan were aggregated from several sources as detailed in ref. 26.
We created consensus values based on the American Kennel Club
and the Atlas of Dog Breeds of the World. Lifespan estimates were
calculated as the average of the standard breed across sexes,
compiled from numerous publications consisting primarily of sur-
veys of multi-breed dog ages and causes of death from veterinary
clinics and large-scale breed-specific surveys, which are often con-
ducted by purebred dog associations. Sources for median-lifespan
per dog breed are reported in ref. 26. We calculated the maximum
lifespan for dog breeds by multiplying the median-lifespan with a
factor of 1.33, i.e., MaxLifespan = 1.33 = MedianLifespan. Our results
are qualitatively unchanged if other multipliers are used. Detailed
values on the dog breeds are reported in Supplementary Data 1.
Median lifespans of the 93 breeds ranged from 6.3 years (Great
Dane, average adult breed weight = 64 kg) to 14.6 years (Toy Poodle,
average adult breed weight=2.3kg). Median lifespan estimates
were based on the combined findings of multiple large-scale breed
health publications, utilizing the median and maximum ages for
each breed.

We identified 3 dog breeds (Otterhound, n = 4; Weimaraner n= 3;
Saint Bernard Dog n =2) as outlier strata for which the rate of change
in methylation was not meaningfully estimated according to the fol-
lowing exclusion criteria. In addition to their small sample sizes, the
age ranges are poor all with SD (R) < 0.1, resulting in extreme AROCM
values >0.5 (Supplementary Data 1). The remainder of the dog breeds
all had AROCM values no larger than 0.34. In summary, the following
criteria should be considered for our dog data or other similar data in
the future.

1. Small sample size, i.e.,, n < 3.
2. Low standard deviation in relative age, i.e., SD (R) <0.1.
3. Bad linear regression fit of AROCM, i.e., R> < 0.2.

Selection of mammalian species/tissue strata
The raw data included 249 species-tissue strata from 133 unique spe-
cies (Fig. 6). We selected strata with sufficient sample sizes and no
influential outliers. Similar to the dog data, we excluded strata for the
following reasons.
1. Small sample size of n< 3.
2. Low standard deviation in relative age, i.e., SD (R) < 0.06, to avoid
strata with constant ages.
3. Strata with AROCM values out of range (estimate < -1 or >10)
were omitted if the values in derived/adjacent age intervals were
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not outliers. Toward this end, derived AROCMs were calculated
for different age intervals within the same species/tissue stratum.
For example, a severely outlying value AROCMIO, 0.1 * L] was
declared an outlier if both AROCM[O, 0.2xL] and
AROCMI[O, 0.3« L] fell within the range ( -1, 10) for the same
stratum.

To obtain additional strata for the dog data, we opted for a more
lenient SD(R) cutoff. Given the greater number of strata in the mam-
malian data compared to the dog data (229 versus 94), we selected a
less strict SD(R) threshold of 0.06 instead of 0.1 to ensure sufficient
strata for analysis.

For many of the 133 unique mammalian species, several tissue
types were available. The species characteristics such as maximum
lifespan come from an updated version of the anAge data base’”. We
analyzed S = 229 different species/tissue strata defined on the entire
age range [0, L] (Supplementary Data 3). Out of the 229 strata, 100
involved blood, 73 skin, 26 brain, and 15 liver. Fewer strata were
available for other age ranges. For example, S =128 for the young age
group (defined by [0, 0.1xL]) and S= 221 for the old age group
(defined by [0.1 L, L]).

Methylation platform

Both dog and mammalian data were generated using the same Hor-
vathMammalMethylChip40 platform, which offers high coverage of
approximately 36K conserved CpGs in mammals®®. To minimize
technical variation, all data were generated by a single lab (Horvath)
using a single, consistent measurement platform. Preprocessing and
normalization were performed using the SeSaMe method to define
beta values for each probe*®. The chip manifest file is available on the
Gene Expression Omnibus (GEO) platform GPL28271 and on our
GitHub page™).

Chromatin states

Following the pan-mammalian aging study of the Mammalian Methy-
lation Consortium, we grouped the CpGs into 54 universal chromatin
states that were covered by at least 5 CpGs each”. These 54 chromatin
states encompass those associated with both constitutive and cell-
type-specific activity across a variety of human cell and tissue types®.
In their 2022 study, Vu and Ernst employed a hidden Markov model
approach to generate a universal chromatin state annotation of the
human genome. This was based on data from over 100 cell and tissue
types sourced from the Roadmap Epigenomics and ENCODE projects.
These chromatin states are characterized in relation to 30 histone
modifications, the histone variant (H2A.Z), and DNase | hypersensi-
tivity measurements. We and others have previously found that strong
age-related gain of methylation can be observed in bivalent promoter
states and other states that are bound by Polycomb group repressive
complex 2 (PRC2 binding sites)”’*'*3, To facilitate a detailed analysis of
PRC2 binding, we split each chromatin state into 2 subsets denoted by
StateName+ and StateName- according to PRC2 binding (+ for yes and -
for no). For example, the BivProm2+ is the set of 552 CpGs that reside
in bivalent chromatin state 2 and are bound by PRC2 (Supplemen-
tary Data 5).

Adjusted rate of change and adjusted correlation

The relative age R, defined as the ratio of age to maximum lifespan, is
crucial for disentangling the relationship between rates of change and
maximum lifespan (see Methods). The standard deviation of relative
age, SD (R), reflects the sample ascertainment, collection, and design.
In many real datasets, SD (R) varies across species due to uneven
sampling, which may primarily include young or old animals in some
species. This variability in SD (R) can dilute the signal between the rate

of change and maximum lifespan while affecting Cor(Methyl, Age), as
evidenced in our simulation and empirical studies. Adjusting for SD (R)
amplifies the inherent biological signal in both measures. Applying
these formulas to the methylation data allowed us to present funda-
mental equations that link the rate of change in methylation in specific
chromatin states (e.g. bivalent promoter regions) to maximum lifespan
in mammals.

Here we present a mathematical formalism that links three mea-
surements: i) the rate of change in the biomarker across the life course,
ii) the Pearson correlation between age and the biomarker, and iii) the
standard deviation of relative age. In most empirical datasets, the
standard deviation of relative age is correlated with the Pearson cor-
relation between age and the biomarker (Supplementary Fig. 2), which
reflects the idiosyncrasies of the sample collection. The standard
deviation of age has a confounding effect on both the rate of change
and the correlation between a biomarker and age. To study and
eliminate this confounding effect, we introduce two concepts: adjus-
ted rate of change and adjusted Pearson correlation. We present
mathematical propositions describing the conditions under which
strong relationships between the rate of change and lifespan can be
observed.

In the following, we derive general equations that link the rate of
change (also known as gradient or slope) of any continuous biomarker
of aging (denoted as M € R) to the species maximum lifespan. For
example, M could denote mean methylation in a particular chromatin
state. Assume M= (M, .. M,) and A = (4, .., A,) are two numeric
vectors of n samples for the biomarker M and the Age variable. We will
be using the following definitions surrounding the sample mean,
sample variance and standard deviation, coefficient of varia-
tion, sample covariance, and Pearson correlation.

— 1 n
M=H;M,-,
Var(M)ﬁ%i(M,- —my,
i=1
SD (M)=+/Var (M)
SD (M) 10)

CoefVar (M)=——2,
M

Cov(M,A)= % En:(M,- —M)4; - A),
i=1

Cov(M,A)

\/Var(M)*Var (A)

Next, we define the rate of change, ROC(M; A), as the change in M
resulting from a 1-year increase in age (calendar age in units of years).
Statistically speaking, the rate of change, ROC(M; A), is the slope/
coefficient S, in the univariate linear regression model below,

Cor(M,A)=

M; = By +BiA; + e,

where the index i refers to the i-th tissue sample and the expected
value of the error term ¢; is assumed to be zero. The rate of change can
be estimated by the least squares or the maximum likelihood esti-
mator, ;. Furthermore, it can be expressed in terms of the Pearson
correlation coefficient and standard deviations as follows

Cor(M,A)SD (M)

ROC(M:A)=f; = ~——F A

an

To arrive at a unit-less biomarker, which lends itself to comparisons
with other biomarkers, we standardize M to have mean zero and
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standard deviation one, by scaling it as below,

SD(M)

ScaledM; =

In our dataset, we do not observe a significant correlation between
SD (M) and lifespan (L), see Supplementary Fig. 16. Using SD (
ScaledM) =1, equation (11) becomes

ROC(ScaledM: A) = §, = LorScaledM.A) _ C‘;g':'k)“)

SD(A) 12)

where the latter equation used the fact that the Pearson correlation,
Cor, is invariant with respect to linear transformations. To reveal the
dependence on species maximum lifespan, it is expedient to define
relative age as the ratio of age and maximum lifespan:

A
R;= f 13)

Since the standard deviation is the square root of the variance,
one can easily show that SD (A) = SD (R) = L. Combining equations (12)
and (13) results in

Cor(M,A)/SD (R)

ROC(ScaledM; A) = I

(14)

Since Pearson’s correlation is scale-invariant, the following equality
holds and we will use them interchangeably,
Cor(M, A) = Cor(ScaledM, A) = Cor(M, R).

Proposition 1. Relationship between ROC and Lifespan If the following
condition holds across all strata,

Cor(M, A)/SD (R) = constant, 15)
then equation (14) implies
ROC(ScaledM; A) = %t“"t (16)

Due to sampling bias and uneven distributions of relative age, the
strong condition (15) is usually not satisfied (see, for example, Sup-
plementary Fig. 2f). We propose a simple adjustment to formulate a
weaker, more realistic assumption that leads to a conclusion similar to
equation (16). To this end, we rewrite equation (14) as follows:

Cor(M,A)/SD (RY’

17
i a7

ROC(ScaledM; A) x SD (R)” =

which multiplies both sides by SD (R)*” with a power parameter p. Next
we define:

Adj.ROC(ScaledM:; A, p) = ROC(ScaledM|A) x SD (R) 7,
Cor(R,M)
SD(RY

. (18)
Adj.Cor(M|R, p) =

Note that if SD (R) remains constant across strata, indicative of a per-
fect design, the adjustment essentially involves multiplying or dividing
by a constant, irrespective of the power p. This means the adjustment
leaves the relationship between ROC and lifespan unchanged. On the
other hand, if SD (R) fluctuates across strata-indicative of an imperfect
study the adjustments have the potential to enhance the signal.
Further, note that Adj.ROC becomes the standard definition of the
ROC with p =1.0Onthe other hand, p = 0 implies that Adj.Cor(M|R, p) =

Cor(M, R). We introduce this terminology for several reasons. To
begin with, equation (17) can be succinctly written as follows

Adj.Cor(M|R, p)
—

Adj.ROC(ScaledM; A, p) = 19)

The following material outlines the specific conditions required for the
validity of the equation below:

. c
Adj.ROC=~,

L
where c is a constant. Here, the approximation sign = indicates a
strong linear correlation across strata when assessed on a logarithmic
scale. We start with the log-transformed version of equation (19):

log(Adj.ROC(ScaledM; A, p)) = log(Adj - Cor(M|R, p)) — log(L), (20)

where we assume that the natural logarithm (log) is applicable, i.e., the
adjusted ROC and the adjusted correlation take on positive values.

The above-mentioned definitions and equations apply to each
stratum (e.g., each dog breed). Assuming there are S total strata, we
introduce a superscript in various quantities, e.g., we write L, and
Adj.Cor(M®R®, p), where s = 1,2,. ., S. Define the following 3 vectors
that have S components each

log L= (log(L“)), log(L?),.., log(L(S))>
log Adj Cor(p) = (log Adj.CorM”' R, p)) )

1<s<S

log.Adj.ROC(p) = (log (Adj.ROC(ScaledM(s); A9, p)>)

1<s<S’

For each vector on the left-hand side, we can form the sample mean
and sample variances across S strata,

e 1S .
log.Adj.Cor= 5 Zs=1 log(Adj.Cor(M®|R®))

Var (log.Adj 1S i O ROV o Adi o)
g.Adj.Cor) $2 s log(Adj.Cor(M*|R™)) Iog.AdJACor)

We will present several propositions and outline their proofs. In some
cases, we provide only a rough outline, as exact derivations would
require more complex formalism. The following critical condition
states that lifespan does not correlate with adjusted age correlation on
the log scale:
(Cy

Cor(log.L, log.Adj.Cor(p)) =0. (21)
Condition Cor(log.L, log.Adj.Cor(p)) = O holds when species lifespan
and the Adj.Cor(p) are independent across strata. Our methylation

data suggest that this condition is approximately satisfied for certain
chromatin states (Fig. 7).

Proposition 2. If (C1) holds, then

-1

Cor(log.L,log.Adj.ROC(p)) =
(ogLlogAd ®) /1+ Var (log.Adj.Cor)/Var (log.L)

Proof. Denote vectors x = log.L and y = log.Adj.ROC. With equation
(20) we find that the covariance

Cov(x,y)=Cov(log.L,log.Adj.Cor) — Cov(log.L,log.L)
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By assumption, the first term is zero, which entails that
Cov(x,y)= — Cov(log.L,log.L)= — Var (x)
Similarly, Cov(log.L, log.Adj.Cor) = O implies that

Var (y) = Var (log.L) — 2*Cov(log.L, log.Adj.Cor) + Var (log.Adj.Cor)
=Var (log.L) + Var (log.Adj.Cor)

Thus, the assumption implies that

Cov(x,y)
v/ Var (x)Var (y)
B Var (X)
y/Var (x)(Var (x) + Var (log.Adj.Cor))
1
~\/I+Var(log.Adj.Cor)/Var (log L)’

Cor(x,y)=

The following proposition is
Proposition 2.

a direct consequence of

Proposition 3. If (C1) holds and the ratio

Var (log.Adj.Cor(p)) -
Var (log.L)

Ratio(p) = o, (22)

then
log.Adj.ROC =log.Adj.Cor — log.L.

Proposition 3 implies that Lifespan and Adj.ROC follows a nearly
perfect inverse linear correlation on the log scale (Cor = - 1) if Var (
log.Adj.Cor) <« Var (log.L). The latter condition is typically satisfied in
real data as the range of lifespans across strata is often much larger
than the Adj.Cor values, which is the case for our data from the
mammalian methylation consortium.

Proof. Proposition 2, combined with the assumption that Ratio(p) = 0,
leads to the conclusion that Cor(log.Adj.ROC, log.L) = -1. Given that a
Pearson correlation nearing negative one indicates an almost perfect
linear relationship, this finalizes the proof.

We are now ready to state the main proposition.

Proposition 4. The linear relationship between log.Adj.ROC and log.L
If (C1, equation (21)) holds and the squared coefficient of variation in
Adj.Cor(p) is much smaller than the squared coefficient of variation in
Lie,

CoefVar(Adj.Cor(p))* 0

Rati =
atio(p) CoefVar(L)?

(23)
then

log.Adj.ROC =log.Adj.Cor — log.L. 24)

Proof. In the following, we will show that the assumption (equation
(23)) implies equation (22) in Proposition 3. We will use the following
Delta method approximation for computing the variance of f(X) of a
random variable X,

Var (f(X))=f (E(X))*Var (X),

where Var (X) and E(X) denote the variance and expectation of X,
respectively. With f(x)= log(x), f'(x)=1/x and X = Adj.Cor(p), the
above approximation results in

Var (Adj.Cor(p))

EAdj.Cor(p)? CoefVar’ (Adj.Cor(p))

Var (log(Adj.Cor(p))) =

where CoefVar(-) denotes the coefficient of variation. Analogously, we
have

L Var() _ 2
Var (log(L)) ELY CoefVar-(L).

Therefore, (23) implies (22) and concludes the proof.

Condition (23) is approximately satisfied in the mammalian data
and the dog data: in the mammalian data, CoefVar(Adj.Cor(p)) = 0.28
and CoefVar(L) = 0.91 resulting in Ratio(p) = 0.095. In the dog breed
data, CoefVar(Adj.Cor(p)) = 0.12 and CoefVar(L) = 0.16 resulting in
Ratio(p) = 0.56. The judicious choice of the adjustment power p
resulted in lower coefficients of variation, as can be seen in the com-
parison with the unadjusted values: CoefVar(Cor/SD) = 0.68 for the
mammalian data and 0.24 for the dog data.

Exponentiating both sides of equation (24), we arrive at

® 25

Adj.ROC® = op
L
where c¢(p)= exp(log.Adj.Cor ) is some constant. The choice of the
parameter p will be discussed in the following.

Criteria for choosing the power p in the adjustment

Our aforementioned equations utilize the parameter p, which under-
lies our definitions of the adjusted correlation and the adjusted ROC.
Choosing p = 1results in standard (non-adjusted) versions of the ROC,
but opting for a lower value of p can be advantageous for the following
three reasons: First, Proposition 4 states that a strong linear relation-
ship between log.Adj.ROC and log. L holds if p is chosen to minimize
the coefficient of variation function: C(p) = CoefVar(Adj - Cor(p)). Since
the coefficient of variation is sensitive to outliers, we find it expedient
to use a robust alternative known as the quartile coefficient of dis-
persion (QCOD):

&) - QAP

COD = .
QCODPI= 4. )y Qi)

(26)

where Qi(p) and Qs(p) denote the first and third quartile of the dis-
tribution of Adj.Cor(p). In our empirical studies, we chose p so that it
minimized QCOD (equation (26)), i.e.,
poptimal =arg n}jn QCOD [log(Adj.Cor(p))} (27)
Using the QCOD-based criterion, we determined popimar = 0.1 for
our dog data and p,prima = 0.25 for our mammalian methylation
dataset (refer to Supplementary Fig. 1). Had we employed the
coefficient of variation in place of the QCOD, our choice of p would
have been consistent across both datasets, as depicted in Supple-
mentary Fig. 1. This alignment between the coefficient of variation
and QCOD is well-documented in statistical literature, as cited in***’.
The second reason for choosing the power p relates to an unde-
sirable correlation between the age correlation Cor(M, A) and the
standard deviation of relative age, SD (R) (Supplementary Fig. 2). Our
simulation studies suggest that this positive correlation results from an
imperfect sample ascertainment/study design. This can be mitigated
against by choosing p so that the adjusted age correlation
Adj.Cor(M|R, p) exhibits a weaker correlation with SD (R). In the
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mammalian data, p = 0.25 leads to a non-significant correlation between
Adj.Cor(M|R, p) and SD (R) (Supplementary Fig. 2g, h). Third, our
simulation studies, designed to emulate our mammalian lifespan data,
indicate that with large sample sizes per stratum, Adj.Cor(M|R, p) con-
verges to a value close to 1.0 for p = 0.25 (Supplementary Note 2). This
value of 1.0 significantly simplifies the equations. We use simulations to
study the relationship between the age correlation and the standard
deviation of relative age as a function of the data ascertainment (Sup-
plementary Fig. 17). Further, we explore the effect of the adjustment
power p in Supplementary Fig. 18. The coefficient of variation displays a
U-shape when the power increases, hence a minimum is achievable. The
optimal adjustment power is achieved at 0.25 for most cases. Overall,
these results suggest that p = 0.25 is a good choice for our mammalian
methylation study.

Relation between AROCM, .,z and AROCM, ;4

Here, we provide an outline on how to derive a relationship between
the rate of change in young animals and that in older ones in the s-th
species-tissue stratum, i.e.,

AROCMY

— (s)
(9 g = € % AROCM),.

(28)
where ¢ denotes a constant. We start out by commenting on our
definition of relative age. When dealing with prenatal samples (whose
chronological ages take negative values), it can be advantageous to
slightly modify the definition of relative age as R=4+SL, by including
gestation time (GT) to avoid negative relative ages. For simplicity, we
will assume that our data only contains postnatal samples, allowing us
to define relative age as R= 4. Empirically, we find that the non-linear
relationship between ScaledM and relative age in each stratum can be
approximated using the following function:

ScaledM” =f(R; y)
=15 + e R),
©

where y©© = (02 ,yﬁs)) are stratum-specific constants. Our empirical
studies demonstrate that the following log-linear function fits the data
quite well.

(29)

(R)—{ 10R -1 R>01 (30)
8% logaor)  R<011
Note that the first derivative of g() is given by
10 R>01
"(R)= 31
&R {I/R R<01 (31)

Assuming a linear relationship between ScaledM and A (equation (3))
and a suitably chosen midpoint A, one can approximate AROCM as
follows

AScaledM
AA

z%(ScaledM(s))le

AROCM =

_d
= d_Af (/i‘)l,a0 (32)

d 1
=27 Pk, 1

, 1
=N *g(Ro)Z

where Ry = Ao/L represents the relative age of a young or old indivi-
dual, and we used the chain rule of calculus. We define the AROCM in

young and old animals as the first derivative evaluated at Ay, and
Ao, respectively. These ages should be chosen so that the corre-
sponding relative ages Ryoung and Ry take on values <0.1and >0.,
respectively. With equations (31) and (32), we find

AROCM e = V1 X 55—

Ryoungl-

33)
10
AROCMOld =YX T

With superscripts denoting the s-th species-tissue stratum, it implies
the following linear relationship between the two aging rates

1
) = (S)
AROCM{G, 1y = -y *AROCML, (34)
young

Since the young groups for all strata are defined with the same
cutoff of R =0.1, R(yso)u,, would take similar values across all strata,
which implies that AROCM),..=cxAROCMY),. Empirically, we
can verify the latter relationship (Fig. 4). Across species-tissue
strata, we find that ¢ has a mean value of 7.33 and a standard
deviation of 6.8.

There is an analogous relationship between AROCM,,,z and
AROCM,; when a different function g is used. For instance, when the
function g,(R) = log(10R) (for all values of R) is used, we can derive the
relationship

(S)

R
AROCMY), .. = (;;’d x AROCMY),
'young

is still proportional to AROCM®)

©)
Consequently, AROCM; old’

young
(S)

. . R
vided that the ratio — 2«

‘young

strata. We compared g(R) and g>(R) in our mammalian data as shown in
Supplementary Fig. 19. The median correlation across all species is the
highest using g(R) (r =0.76), compared to the original relative age
(r = 0.73) and g»(R) (r = 0.74).

pro-

remains approximately constant across all

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The individual-level data from the Mammalian Methylation Con-
sortium can be accessed from several online locations. All data from
the Mammalian Methylation Consortium are posted on Gene Expres-
sion Omnibus (complete dataset, GSE223748%%). Additional details
can be found in Supplementary Note 3. The mammalian methylation
array is available through the non-profit Epigenetic Clock Develop-
ment Foundation (https://clockfoundation.org/data-tools/, data avail-
able at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GPL28271). Numerical results generated in this study are provided in
the Supplementary Information/Source Data file. Source data are
provided in this paper.

Code availability

The mammalian methylation array manifest files, genome annotations
of CpG sites including chromatin state information can be found on
Zenodo (https://doi.org/10.5281/zenodo.7574747) and Github https://
github.com/shorvath/MammalianMethylationConsortium/tree/v2.0.
0. The R scripts and software are being distributed through Zenodo/
GitHub at github.com/feizhe/FundamentalEquations(10.5281/
zenodo.12610965).
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