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Summary

The DNA guanine quadruplexes (G4) play important roles in multiple cellular processes, including 

DNA replication, transcription and maintenance of genome stability. Here, we showed that Yin 

Yang-1 (YY1) can bind directly to G4 structures. ChIP-Seq results revealed that YY1 binding sites 

overlap extensively with G4 structure loci in chromatin. We also observed that YY1’s dimerization 

and its binding with G4 structures contribute to YY1-mediated long-range DNA looping. 

Displacement of YY1 from G4 structure sites disrupts substantially the YY1-mediated DNA 

looping. Moreover, treatment with G4-stabilizing ligands modulates the expression of not only 

those genes with G4 structures in their promoters, but also those associated with distal G4 

structures that are brought to close proximity via YY1-mediated DNA looping. Together, we 

identified YY1 as a novel DNA G4-binding protein, and revealed that YY1-mediated long-range 

DNA looping requires its dimerization and occurs, in part, through its recognition of G4 structure.
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Introduction

The DNA guanine quadruplexes (G4) are stable secondary structures of DNA that form in 

guanine-rich regions of the genome.1 Although the in vitro formation of G4 has been known 

for decades, only until recently have the formation and biological functions of G4 in cells 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*Corresponding Author: Yinsheng Wang, Tel.: (951) 827-2700; Fax: (951) 827-4713; Yinsheng.Wang@ucr.edu.
Author contributions
L. L. and Y. W. conceived the project; P. W., W. M. and M. H. performed the G quadruplex pull-down experiments and analyzed the 
mass spectrometry data; L. L., M. W., Z. G. and W. M. performed the plasmid construction and cell culture experiments; L. L. and Z. 
G. performed the in-vitro binding assay. L. L. performed the ChIP-Seq, HiChIP-Seq, RNA-Seq and relevant data analysis; W.R. and 
J.S. assisted the protein expression and purification. L. L. and P. W. analyzed the data; L. L. and Y. W. wrote the manuscript, which 
was reviewed and commented by all co-authors.

Declaration of Interests
The authors declare that they have no conflicts of interest with the contents of this article.

HHS Public Access
Author manuscript
Nat Chem Biol. Author manuscript; available in PMC 2021 May 16.

Published in final edited form as:
Nat Chem Biol. 2021 February ; 17(2): 161–168. doi:10.1038/s41589-020-00695-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been demonstrated.1–3 Computational analysis of potential G4-forming sequences uncovered 

more than 376,000 G4 sequence motifs in the human genome.4 Additionally, chromatin 

immunoprecipitation-sequencing (ChIP-Seq) analysis with the use of G4 structure-specific 

antibodies revealed approximately 10,000 potential G4 sites in chromatin of cultured human 

cells.5–7 Moreover, several DNA G4-recognition proteins have been identified, including 

DNMT1, hnRNP A1, nucleolin, PARP1, SLIRP, etc.3,8–11 The large number of G4 sites 

detected in chromatin and the existence of multiple cellular proteins for G4 structure 

recognition suggest the crucial functions of G4 structures in cells. Indeed G4 structures have 

been shown to assume important roles in various DNA metabolic processes including 

replication, transcription and repair.1–3

Yin Yang-1 (YY1) − a zinc finger-containing transcription factor12 − is ubiquitously 

expressed and modulates many crucial biological and cellular processes, including DNA 

replication/transcription/repair, cell proliferation/differentiation, and embryogenesis.12–14 

Recently, YY1 was found to promote the formation of enhancer-promoter loops, which 

involves YY1’s interaction with duplex DNA harboring a consensus YY1-binding motif.15

Here, we identified, by using an unbiased quantitative proteomic method, YY1 as a putative 

G4-binding protein. We also demonstrated that YY1 is capable of interacting directly with 

G4 DNA in vitro and in cells, and this interaction contributes to YY1-mediated long-range 

DNA looping and gene expression regulation.

Results

Identification of YY1 as a candidate G4-binding protein

We recently reported a stable isotope labeling by amino acid in cell culture (SILAC)-based 

quantitative proteomic workflow for the discovery of G4-binding proteins, which involved 

the use of biotin-conjugated G4 DNA probes derived from the promoters of KIT and MYC 
genes and the human telomere (hTEL), along with the corresponding mutated sequences 

incapable of folding into G4 structures (M4).11 The proteomic data also revealed YY1 as a 

candidate G4-binding protein, with the SILAC protein ratios (G4/M4 probes) being 

1.92±0.11, 1.77±0.11 and 2.02±0.21 for the cKIT, cMYC and hTEL probes, respectively 

(Extended Data Fig. 1). Representative ESI-MS and MS/MS for a tryptic peptide derived 

from YY1, FAQSTNLK, are shown in Supplementary Fig. 1 and Supplementary Fig. 2.

YY1 binds directly with G4 structures in vitro

We next asked whether the interaction between YY1 and G4 structure is direct by measuring 

the binding affinities between recombinant human YY1 protein and G4 or M4 probes using 

fluorescence anisotropy (Fig. 1). To this end, we first purified GST-tagged YY1 protein and, 

because GST is known to form a homodimer,16 we removed the GST tag and further 

purified the tag-free YY1 protein (see Materials and Methods). The results showed that 

recombinant YY1 binds strongly with all three G4 structures, with the Kd values being 

26.7±2.2, 26.3±2.1 and 82.0±5.3 nM for G4 structures derived from cKIT, cMYC and 

hTEL, respectively (Fig. 1a–c). The binding affinities toward M4 probes, are at least 10-fold 
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lower than that toward G4 DNA (Fig. 1a–c). These results demonstrate that YY1 binds 

directly and strongly with G4 structures in vitro.

We also examined whether the binding between YY1 and G4 alters the folding of G4 

structure. The circular dichroism (CD) spectra for the G4 DNA probes in YY1-DNA 

complexes are very similar to those of the free G4 DNA probes (Extended Data Fig. 2), 

underscoring that the interaction with YY1 does not alter the folding of G4 structures.

Pyridostatin (PDS) and 5,10,15,20-tetra-(N-methyl-4-pyridyl)porphyrin (TMPyP4) are 

small-molecule ligands that bind specifically and stabilize G4 structures.17,18 Our results 

from electrophoretic mobility shift assay (EMSA) showed that both PDS and TMPyP4 could 

displace YY1 from G4 structure in vitro (Fig. 1d–f), further substantiating YY1’s capability 

in binding directly with G4 structure.

Duplex DNA with a sequence motif of 5′-AANATGGC-3′ was previously identified as the 

consensus YY1-binding sites.19,20 For comparison, we also measured the Kd value for YY1 

in binding with a consensus motif-carrying duplex DNA, and it turned out that the binding 

affinity (Kd = 11.6±0.8 nM, Supplementary Fig. 3) was only slightly higher than those 

observed for its binding with G4 structures.

The role of YY1 zinc finger domain in binding with G4

YY1 is highly conserved in vertebrates, where its homologs in human, chimpanzee, dog, 

mouse, rat and chicken share > 80% amino acid sequence identity (Supplementary Fig. 4). 

YY1 contains a poly-histidine cluster, a REPO domain and four zinc fingers (Extended Data 

Fig. 3a). The zinc fingers, located in the C-terminal portion of YY1 and involved in its 

binding with duplex DNA, are identical among these species (Extended Data Fig. 3 and 

Supplementary Fig. 4), suggesting that the functions of the zinc finger domain in YY1 are 

highly conserved.

To assess which segment of YY1 protein is involved in its binding with G4 structure, we 

generated several truncated or mutated fragments of YY1 protein and measured their 

binding affinities towards G4 DNA (Extended Data Fig. 3 and Supplementary Fig. 5). Our 

results showed that YY1 fragments lacking the C-terminal zinc finger (YY11–382) or with a 

cysteine in the third zinc finger being mutated to a serine (YY1C360S) exhibit markedly 

diminished binding affinities toward G4 structure (Extended Data Fig. 3b–c). On the other 

hand, truncated YY1 proteins without the N-terminal 230 (i.e. YY1231–414) or 292 (i.e. 

YY1293–414) amino acids display similar or slightly stronger binding affinities towards hTEL 

G4 structure relative to full-length YY1 (Extended Data Fig. 3d–e). Neither YY1231–414 nor 

YY1293–414, however, exhibits selective binding toward G4 over M4 (Extended Data Fig. 

3d–e). Together, the above results support that the C-terminal zinc-finger domain of YY1 is 

required, but not sufficient, for the protein to discriminate G4 structure from single-stranded 

M4.

The capability of YY1 in binding to both consensus motif-containing duplex DNA and G4 

DNA and the requirement of the zinc finger domain for both binding modes suggest that 

these two types of bindings may compete with each other. To test this, we assessed the 
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binding of YY1 with G4 structure or duplex DNA harboring the YY1 consensus motif in the 

presence or absence of different concentrations of unlabeled G4 DNA or the consensus 

motif-bearing duplex DNA (Supplementary Fig. 3). It turned out that both competitors could 

repress, in a concentration-dependent manner, YY1’s binding with G4 or YY1 consensus 

motif-containing duplex DNA (Supplementary Fig. 3), underscoring the competitive binding 

of YY1 towards G4 structure and the consensus motif-containing duplex DNA.

YY1 binds with G4 structures in cells

We next investigated the interactions between YY1 with G4 structures in cells by using 

ChIP-Seq analysis. To this end, we employed CRISPR-Cas9 to incorporate a tandem affinity 

tag (3×Flag-2×Strep) to the C-terminus of endogenous YY1 protein in HEK293T cells 

(YY1-TAPTAG, Supplementary Fig. 6). ChIP-Seq analysis with the use of anti-Flag 

antibody and the YY1-TAPTAG cells led to the detection of 12,063 significant peaks (Fig. 

2). An analysis of the overlap between YY1 ChIP-Seq peaks and G4 ChIP-Seq peaks (a 

BG4 ChIP-Seq dataset from the NCBI GEO database) showed that approximately 39% 

(4721 out of 12063) of YY1 ChIP-Seq peaks in our dataset overlap by at least one base pair 

with G4 ChIP-Seq peaks with a hypergeometric p-value of 1.184E-126 (Fig. 2a–b). 

Substantial overlaps (3965 and 3648 out of 12063 peaks, or 33% and 30%, respectively) 

were also observed after expanding the size windows of overlap analysis to 8 and 30 base 

pairs (Supplementary Table 1b–c), which correspond to the lengths of YY1-binding motif 

and G4 DNA, respectively.

It is worth noting that 3086 out of the 8955 BG4 ChIP-Seq peaks correspond to potential 

quadruplex-forming sequencing (GGGN1–7GGGN1–7GGGN1–7GGG, with N being any of 

the four canonical nucleotides).4 This parallels the previous G4 sequencing results and 

shows that ~70% of observed G4 sequences could not be assigned to the computationally 

predicted quadruplex-forming sequences.21 This was attributed to the formation of G4 

structures with long loop regions (>7 bases) and/or the involvement of non-contiguous 

guanine(s) in G4 formation.21 In this vein, it is of note that the BG4 antibody employed for 

the ChIP-Seq analysis recognizes G4 structures in general, where it cannot differentiate 

parallel, anti-parallel and mixed parallel/anti-parallel configurations of G4 structures.5

We also analyzed statistically the peak width and distribution of signal enrichment for the 

overlapping peaks identified from the YY1 ChIP-Seq and BG4 ChIP-Seq results (Extended 

Data Fig. 4). We found that the mean widths for YY1 and BG4 ChIP-Seq peaks are very 

similar, and the enrichment signal summits for YY1 and BG4 ChIP-Seq peaks overlap with 

each other (Extended Data Fig. 4). Among the 4721 overlapping peaks in BG4 ChIP-Seq 

and our YY1 ChIP-Seq datasets, 2603 are located in gene promoters and 925 harbor the 

YY1 consensus motif (Supplementary Table 1a). High levels of overlaps were also found for 

the BG4 ChIP-Seq dataset and two other YY1 ChIP-Seq datasets from the NCBI GEO 

database (Supplementary Fig. 6c–d and Supplementary Table 1). Among the 4603 and 3186 

overlapped peaks found between BG4 ChIP-Seq and the two YY1 ChIP-Seq datasets 

(GSM1010753 and GSM110897), 2504 and 1684 are located in gene promoters, and 1195 

and 1120 contain the YY1 consensus motif, respectively (Supplementary Table 1). These 
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results revealed that YY1 binds with G4 structures in cells, and more than half of the 

overlapped peaks are located in gene promoters.

We also assessed how treatments with PDS and TMPyP4, which could bind to G4 structures 

in cells,22,23 impact the interaction between YY1 with G4 structures in cells. The results 

from ChIP-Seq experiments with the YY1-TAPTAG cells showed that the treatment with 

PDS or TMPyP4 led to significantly diminished interaction of YY1 with its binding regions 

(Fig. 2c and Supplementary Fig. 7), with the most pronounced diminutions being observed 

for those YY1 ChIP-Seq peaks that overlap with BG4 ChIP-Seq peaks (Fig. 2d–e). 

Moreover, treatment of cells with PDS or TMPyP4 resulted in a progressive decrease in the 

chromatin localization of YY1 (Fig. 2f–g), where we co-treated cells with MG132, a 

proteasome inhibitor, to minimize protein degradation during the treatment. Together, these 

results lent further evidence that YY1 binds with G4 structures in cells, and this binding 

could be perturbed by G4-stabilizing ligands.

YY1-G4 interactions in YY1-mediated DNA looping

YY1 was recently shown to be an important regulator for long-range DNA looping.15,24,25 

We next assessed whether YY1-G4 binding functions in this process by employing HiChIP-

Seq, a method developed for monitoring protein-directed chromatin conformation.26 The 

results from HiChIP-Seq experiments with the use of YY1-TAPTAG cells showed that 

treatment with PDS or TMPyP4 led to significant reductions in YY1-mediated DNA looping 

(Fig. 3a and Supplementary Fig. 8). Statistical analysis revealed that the percentage of DNA 

looping modulated by YY1 in a distance range of 5–200 kb is markedly attenuated upon 

treatment with PDS or TMPyP4 (35.6%, 9.4% and 9.9% for control, PDS- and TMPyP4-

treated cells, respectively. Fig. 3b). Likewise, treatment with PDS or TMPyP4 resulted in 

weaker interactions between the genomic regions occupied by YY1 (ChIP-Seq peaks) and 

their surrounding regions (Fig. 3c and Supplementary Fig. 9). These results demonstrated 

that YY1’s role in DNA looping involves its interaction with G4 structures.

To further assess the role of G4 structure in YY1-mediated DNA looping, we asked how 

unwinding of G4 structure by ectopic overexpression of a G4 resolvase (i.e. BLM 

helicase27) modulates the YY1-mediated DNA-DNA interaction (Extended Data Fig. 5). In 

this vein, we confirmed that overexpression of BLM led to substantially diminished signal 

for G4 structure and YY1 binding at the selected loci (Extended Data Fig. 5a–d). In 

addition, HiChIP followed by real-time quantitative PCR (HiChIP-qPCR) experiment 

showed that the BLM helicase-mediated unwinding of G4 structure abrogated the YY1-

mediated DNA looping at these sites (Extended Data Fig. 5d–e).

We also mutated the G4-forming sequence at a specific genomic locus by using CRISPR/

Cas9-based genome editing to disrupt its capability to fold into G4 structure (Fig. 4 and 

Supplementary Fig. 10). We found that the mutation indeed attenuated markedly the 

formation of G4 structure and diminished pronouncedly the binding of YY1 to the site, as 

revealed by BG4 ChIP-qPCR and YY1 ChIP-qPCR analyses, respectively (Fig. 4b–c). 

Moreover, HiChIP-qPCR results revealed that the mutation abolished the YY1-mediated 

DNA looping involving the site (Fig. 4d). This result substantiated the involvement of YY1-

G4 structure interaction in YY1-mediated DNA looping.
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Dimerization of YY1 promotes DNA-DNA interactions

YY1 protein is known to undergo dimerization, which promotes DNA-DNA interactions 

through the protein’s binding with its consensus sequence motif in duplex DNA.15,28 We 

also investigated whether YY1 dimerization enhances YY1-mediated DNA-DNA 

interactions in vitro. First, we confirmed, by using gel-filtration chromatography, that tag-

free YY1 exists primarily as a dimer in solution (Extended Data Fig. 6). Second, our 

quantitative EMSA experiment revealed a 1:1 binding stoichiometry between YY1 and G4 

DNA, indicating that each YY1 dimer can bind to two DNA G4 structures (Extended Data 

Fig. 6c–d).

We next examined, by employing a proximity ligation assay, the role of YY1 in facilitating 

the interactions between different DNA elements, including duplex DNA harboring a YY1 

consensus motif (motif), G4 DNA (G4), and its mutated counterpart that is unable to fold 

into G4 structure (M4) (Extended Data Fig. 7a). The results showed that the presence of 

YY1 led to augmented ligation efficiencies between G4 and G4, and between G4 and motif 

(Extended Data Fig. 7b). Moreover, addition of a YY1 motif-containing duplex competitor 

to the ligation mixture led to pronounced diminutions in the efficiency of ligation of DNA 

elements containing G4 and/or motif (Extended Data Fig. 7b). Parallel control experiments 

showed that YY1 promotes the ligation between motif and motif, but not between M4 and 

M4, motif and M4, or G4 and M4 (Extended Data Fig. 7c). Additionally, the inclusion of a 

G4-stabilizing agent, PDS or TMPyP4, in the ligation mixture led to markedly diminished 

ligation between G4 and G4 (Extended Data Fig. 7d). These results support that the YY1’s 

dimerization and its binding with G4 DNA enable long-range interactions between G4 DNA 

and another G4 DNA or a consensus motif-harboring duplex DNA.

To further examine the role of YY1’s dimerization in DNA looping, we generated a 

separation-of-function mutant of YY1, which maintains its capability in recognition of G4 

structures, but loses its ability to dimerize. Viewing that YY1231–414 and YY1293–414 are 

present as a dimer and a monomer, respectively (Extended Data Fig. 6a–b), we generated a 

truncated variant of YY1 with the linker region between the REPO and zinc finger domains 

being deleted (YY1Δ231–290) (Fig. 4a). We found that this truncated form of YY1 exists as a 

monomer in solution, while maintaining a ~ 10-fold selectivity in binding toward G4 over 

M4 DNA (Extended Data Fig. 8). Owing to the inherent dimerization ability of GST, GST-

YY1Δ231–290 is present as a dimer in solution (Extended Data Fig. 8). Our proximity ligation 

assay results showed that the GST-tagged YY1Δ231–290, but not its tag-free counterpart, 

enhanced the ligation between two G4 DNA probes (Extended Data Fig. 8e), supporting that 

dimerization of YY1 is crucial for DNA-DNA interaction in vitro.

We next asked how loss of dimerization modulates YY1’s ability in promoting DNA looping 

in cells. Our ChIP-qPCR results revealed that both YY1Δ231–290 and GST-YY1Δ231–290 are 

capable of binding toward G4 structures in cells (Fig. 4f); YY1Δ231–291, however, fails to 

promote DNA looping in cells, and fusion with the GST tag rescues the protein’s ability in 

enhancing DNA looping (Fig. 4g). These results, therefore, demonstrate that dimerization of 

YY1 is indispensable for its function in promoting DNA looping in cells.
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YY1-G4 binding regulates gene expression

YY1 was first identified as a transcription factor for its function in activation or suppression 

of gene expression,15,29 and the above results showed that PDS and TMPyP4 are capable of 

disrupting the interactions between YY1 and DNA G4 structures (Fig. 1d–f and Fig. 2c–h). 

Therefore, we next asked whether genetic depletion of YY1, or treatment with PDS or 

TMPyP4 influences those genes that are modulated by G4 structure. For this purpose, we 

performed RNA-Seq analysis to assess, at the transcriptome-wide scale, the alterations in 

gene expression elicited by genetic depletion of YY1 and/or treatment with PDS (Fig. 5, 

Extended Data Fig. 9 and Supplementary Figs. 11–12). Statistical analysis showed a strong 

correlation between PDS-regulated and YY1-regulated genes (Pearson r > 0.67), 

underscoring the role of YY1-G4 structure interaction in YY1-mediated gene regulation 

(Fig. 5, Extended Data Fig. 9 and Supplementary Fig. 11). Moreover, the RNA-Seq results 

revealed that YY1 can positively or negatively regulate the expression of genes through its 

interaction with G4 structures.

We also validated the RNA-Seq results by assessing the mRNA expression levels of six 

representative genes (i.e. MANF, PDHB, MYC, PGBD5, SLC25A28 and TMEM145) by 

using RT-qPCR. These six genes were chosen on the basis of the presence of G4 structures 

and the occupancy of YY1 in their promoter regions (Fig. 5 and Extended Data Fig. 9). The 

results showed that the expression levels of MANF, PDHB and MYC genes were markedly 

attenuated, whereas those of PGBD5, SLC25A28 and TMEM145 genes were substantially 

elevated in HEK293T cells upon treatment with PDS or TMPyP4, or upon shRNA-mediated 

knockdown of YY1 (Fig. 5, Extended Data Fig. 9 and Supplementary Fig. 12).

We also assessed whether the long-range DNA looping elicited by YY1-G4 binding plays a 

role in gene regulation. To this end, we monitored the mRNA expression levels of two genes, 

TRMT12 and EHD3, which do not carry G4 structures in their promoters but are associated 

with G4 structure at a remote site via YY1-mediated DNA looping (Fig. 6a–b and Extended 

Data Fig. 10a–b). Our results showed that the mRNA expression levels of these two genes in 

HEK293T cells were pronouncedly diminished upon shRNA-mediated knockdown of YY1, 

or upon treatment with PDS or TMPyP4 (Fig. 6c and Extended Data Fig. 10c).

Next we examined whether this observation can be extended to other genes at the genome-

wide scale by integrating the results obtained from YY1 ChIP-Seq, BG4 ChIP-Seq, HiChIP-

Seq and RNA-Seq data. To this end, we focused on those genes whose promoters are 

occupied by YY1 (based on YY1 ChIP-Seq data), don’t fold into G4 structures (based on 

BG4 ChIP-Seq data) and interact with remote sites through YY1-mediated DNA looping 

(based on YY1 HiChIP-Seq data). We divided these genes into two groups based on whether 

the remote site adopts G4 structure (based on BG4 ChIP-Seq) (Supplementary Fig. 13). We 

found that PDS treatment differentially modulated the expression of these two groups of 

genes, with more pronounced changes being observed for those genes interacting with a 

distal site carrying G4 structure than those without (Supplementary Fig. 13). Moreover, 

shRNA-mediated knockdown of YY1 abrogated the differences elicited by PDS treatment, 

and this is true for both the up- and down-regulated genes (Supplementary Fig. 13). These 

results, therefore support that YY1’s role in transcriptional regulation involves, in part, the 

long-range DNA looping forged by its interaction with G4 structures.
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Discussion

YY1 is an extensively studied transcription factor and it functions in many important 

biological processes,12,13,15 where duplex DNA sequences with a consensus motif were 

previously identified as YY1-binding sites.15,20 Here, we demonstrated that YY1, apart from 

binding to its consensus motif sequences in duplex DNA, is capable of interacting directly 

with G4 structures in vitro and in cells (Fig. 1 and Fig. 2). Further analysis showed that the 

C-terminal zinc finger domain of YY1 is indispensable for its interaction with G4 structure. 

Our results from the YY1Δ231–291 truncation mutant showed that YY1’s recognition of G4 

structures also entails the N-terminal portion of the protein, though the linker region between 

the REPO and zinc finger domains of the protein is dispensable for this recognition 

(Extended Data Fig. 3 and Extended Data Fig. 8). It will be important to solve, in the future, 

the structure of YY1 in complex with G4 DNA so as to gain insights into the similarities and 

differences in YY1’s recognition of G4 structure versus duplex DNA.

Spatial organization is a fundamental element in 3D genome architecture and transcription 

regulation; however, not much is known about how 3D genome architecture is regulated and 

which proteins are involved.15,30–32 In this vein, CTCF and cohesin were shown to 

contribute to 3D genome organization.30,32 Recently, YY1 was found to function in this 

process by enabling enhancer-promoter interactions.15 Our results unveiled a novel 

molecular determinant for YY1’s function in this process, i.e. through its binding with G4 

structures, where displacement of YY1 from G4 structures, unwinding of G4 structures by 

overexpression of BLM helicase, and mutation of a G4-forming sequence using CRISPR/

cas9-mediated genome editing all disrupt YY1-mediated DNA looping (Fig. 3, Extended 

Data Fig. 5, Extended Data Fig. 7 and Supplementary Fig. 10).

Based on our results, we proposed a mechanistic model, where the dimerization of YY1 

allows for its concurrent binding of two consensus sequence motifs, two G4 structures, or 

one consensus sequence motif and one G4 structure, thereby enabling DNA looping. Our 

model is supported by results from proximity ligation assay showing that YY1 can promote 

the ligation between these DNA elements (Extended Data Fig. 7), from analytical gel-

filtration assay revealing that YY1 forms a dimer in vitro (Extended Data Fig. 6), and from 

quantitative EMSA assay demonstrating that YY1 binds to G4 DNA at 1:1 stoichiometry 

(Extended Data Fig. 6). Moreover, our identification of a separation-of-function mutant of 

YY1 - which is defective in dimerization, but proficient in discriminating G4 structure from 

single-stranded DNA - and demonstration that the mutation abrogates the YY1-mediated 

DNA looping in cells lend further support of our mechanistic proposal (Fig. 4).

Disruption of binding between YY1 and G4 structure with the use of G4-stabilizing ligands, 

PDS or TMPyP4, and genetic depletion of YY1 led to altered expression of not only those 

genes harboring G4 structures in their promoters (Fig. 5 and Extended Data Fig. 9), but also 

those genes that do not carry G4 structures in their promoters but are linked with G4 

structure at a remote site through YY1-mediated DNA looping (Fig. 6 and Extended Data 

Fig. 10). These results support that YY1-G4 interaction not only regulates the expression of 

proximal genes, but also distal genes through long-range DNA looping. This represents a 

very important mechanism for YY1-regulated gene expression.
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Numerous studies have documented the association between YY1 and human cancer, and 

YY1 is also considered as a potential prognostic biomarker and therapeutic target.33,34 In 

this vein, YY1 is overexpressed in multiple types of cancer, and its overexpression is also 

correlated with poor therapeutic outcomes.33,34 In addition, YY1 is known to regulate a 

number of cancer-related genes.33,34 Furthermore, G4 structures are over-represented in 

many cancer-related genes, and multiple studies revealed markedly increased presence of G4 

structures in cancer cells,35 indicating the involvement of G4 in cancer development. In this 

study, we reveal that YY1’s functions in modulating gene expression and DNA looping 

depend, at least in part, on its binding with G4 structure. Hence, the interaction between 

YY1 and G4 perhaps can be exploited for the therapeutic interventions of human cancer in 

the future.

Together, our work unveils a novel mode of DNA recognition for a well-studied transcription 

factor, YY1 (i.e. in its binding with G4 DNA), and reveals the role of this type of molecular 

recognition in modulating long-range DNA looping and gene expression. Our study also 

uncovers that the G4 structure-mediated gene regulation can occur not only through G4 

structures in promoter regions of genes, but also via distal G4 structures that are brought into 

close proximity through long-range DNA looping. Therefore, the present work illustrates 

new molecular determinants for DNA looping, and offers insights into the functions of YY1 

and G4 structures in gene regulation.

Online Methods

Cell lines

HEK293T (293T) cells were purchased from ATCC (Manassas, VA). Cells were maintained 

in Dulbecco’s modified Eagle’s medium (DMEM, life Technologies) supplemented with 

10% fetal bovine serum (FBS, Invitrogen) and 100 unit/mL penicillin/streptomycin at 37 °C 

in a humidified incubator with 5% CO2.

Generation of Recombinant YY1 Proteins

The coding sequence (CDS) of human YY1 gene was amplified by PCR and inserted into 

the pGEX plasmid linearized by BamHI and XhoI restriction digestion enzymes. For 

truncated proteins, the corresponding CDS was amplified by PCR and inserted into the 

pGEX plasmid using the same method. The plasmids were transformed into Rosetta (DE3) 

pLysS Escherichia coli cells and the cells cultured in LB medium at 37 °C. After OD600 

reached approximately 0.6, the culture was cooled to 20 °C and the protein expression was 

induced with 1 mM isopropyl 1-thio-β-D-galactopyranoside (IPTG, Sigma) at 20 °C for 

approximately 12 hr. The cells were then harvested and lysed in a buffer containing 20 mM 

Tris (pH 7.5), 500 mM NaCl, 10% glycerol, and 2 mM DTT. After centrifugation, the 

supernatant was collected and GST-tagged proteins were purified with Glutathione 

Superflow Agarose (Pierce) following the manufacturer’s recommended procedures. Elution 

was performed using a buffer containing 20 mM Tris (pH 7.5), 250 mM NaCl, 10% 

glycerol, 2 mM DTT, and 20 mM reduced glutathione. The GST-tagged protein was digested 

with 3C protease for overnight to remove the GST tag. The tag-free protein was further 

loaded onto the heparin column (GE Healthcare) and eluted with a NaCl gradient (0.25 – 1.0 
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M) in a buffer containing 20 mM Tris (pH 7.5), 10% glycerol and 2 mM DTT. The fractions 

containing the target protein were pooled, concentrated and further purified by size 

exclusion chromatography on a HiLoad 16/600 Superdex 200 pg column (GE Healthcare). 

The proteins were quantified using Bradford Protein Assay Kit (Bio-Rad), and their purities 

verified by SDS-PAGE analysis and A260/280 measurement (Supplementary Fig. 5 and 

Extended Data Fig. 8). The analytical gel filtration chromatography was performed using a 

Superdex 200 10/300 column (GE Healthcare) in a buffer containing 20 mM Tris-HCl (pH 

7.5), 250 mM KCl, 10% glycerol and 5 mM DTT.

Fluorescence Anisotropy

Fluorescence anisotropy measurements were conducted as previously described.11 Briefly, 

5-carboxytetramethylrhodamine (TAMRA)-labeled DNA probes were annealed in a buffer 

containing 10 mM Tris-HCl (pH 7.5), 100 mM KCl and 0.1 mM EDTA to form G4 

structure. The binding assays were performed with 10 nM labeled DNA and the indicated 

concentrations of recombinant YY1 protein in a binding buffer containing 10 mM Tris-HCl 

(pH 7.5), 100 mM KCl, 10 μM ZnCl, and 1 mM DTT. After a 30-min incubation on ice, 

fluorescence anisotropy was measured on a Horiba QuantaMaster-400 spectrofluorometer 

(Photon Technology International), with the excitation and emission wavelengths being 550 

and 580 nm, respectively. The instrument G factor was determined before anisotropy 

measurements. The data were fitted according to the following equation:

Aobs = Ao + ΔA ×
DNA + Protein + Kd − DNA + Protein + Kd

2 − 4 × DNA Protein
2 × DNA

In the equation, [DNA] and [Protein] denote the DNA and protein concentrations, 

respectively. Aobs is the observed anisotropy value. A0 is the anisotropy value in the absence 

of protein. ΔA represents the total change in anisotropy between free and fully bound DNA, 

and Kd is the equilibrium dissociation constant.36

Electrophoretic mobility-shift assay (EMSA)

For protein-DNA binding, 25 nM TAMRA-labeled DNA was incubated with different 

concentrations of full-length YY1 protein, or its truncated or mutated counterparts in a 

binding buffer containing 10 mM Tris-HCl (pH 7.5), 100 mM KCl, 10 μM ZnCl, 1 mM DTT 

and 3% glycerol on ice for 30 min. The samples were then loaded onto a 6% polyacrylamide 

gel in TBE buffer (40 mM Tris-HCl, pH 8.3, 45 mM boric acid and 1 mM EDTA) at 4 °C. 

The samples were run at 120 V at 4 °C for 30 min. The gels were imaged with Odyssey 

Imaging Systems (LI-COR Biosciences).

Circular Dichroism (CD) Spectroscopy

The DNA probes (2.5 μM) were annealed in a buffer containing 10 mM Tris-HCl (pH 7.5), 

100 mM KCl and 0.1 mM EDTA to form G4 structure. The CD spectra for the DNA probes 

were recorded at room temperature on a Jasco-815 spectrometer (Easton, MD) in the 

wavelength range of 200–320 nm, and the scan rate was 1 nm/sec. For assessing how YY1 

binding modulates G4 folding, the annealed DNA probes were incubated with an equal 
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concentration of the purified YY1 protein at room temperature for 30 min, and the CD 

spectra were subsequently acquired as noted above. The CD spectrum for the YY1 protein 

itself was then subtracted from the composite CD spectra of the YY1-G4 DNA complexes.

In vitro Proximity Ligation Assay

For proximity ligation assay, 20 nM DNA fragments containing G4 or YY1 consensus motif 

were incubated with 100 nM YY1 protein in a binding buffer containing 10 mM Tris-HCl 

(pH 7.5), 100 mM KCl, 10 μM ZnCl2 and 1 mM DTT at 20 °C for 30 min. The mixture was 

subsequently diluted and the DNA fragments were ligated in a mixture containing 2 U/μL 

T4 DNA ligase, 2 U/μL T4 polynucleotide kinase and 1× T4 DNA ligase buffer at 30 °C for 

10 min. The reactions were terminated immediately afterwards by heating at 65 °C for 5 

min. The resulting mixture was diluted, and real-time quantitative PCR was employed to 

quantify the ligation products. The sequences for the DNA fragments and primers used in 

the quantitative PCR are listed in Supplementary Table 2.

Chromatin Fractionation and Western Blot

Chromatin fractionation was performed as described.37 The cells were grown to 60–70% 

confluence, treated with 20 μM MG132 for 4 hr, and then treated with 20 μM PDS or 5 μM 

TMPyP4 at 37 °C for 12 hr. The chromatin fraction was isolated using a step-wise procedure 

with a cytoplasmic lysis buffer (10 mM Tris-HCl, pH 8.0, 0.34 M sucrose, 3 mM CaCl2, 2 

mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 0.5% NP-40, and protease inhibitor cocktail), a 

nuclear lysis buffer (20 mM HEPES, pH 7.9, 1.5 mM MgCl2, 1 mM EDTA, 150 mM KCl, 

0.1% NP-40, 1 mM DTT, 10% glycerol, and protease inhibitor cocktail) and a chromatin 

isolation buffer (20 mM HEPES, pH 7.9, 1.5 mM MgCl2, 150 mM KCl, 10% glycerol, 

protease inhibitor cocktail and 0.15 unit/μL benzonase). The proteins were again quantified 

by Bradford assay. After separation on a 10% SDS-PAGE, the proteins were transferred to a 

nitrocellulose membrane (Bio-Rad). After blocking with blotting-grade blocker (Bio-Rad), 

the membrane was incubated in a solution containing primary antibody and 5% BSA for 2 

hr, and then incubated in a 5% blotting-grade blocker containing the HRP-conjugated 

secondary antibody. The Western blot signal was detected using ECL Western blotting 

detection reagent (Amersham). Primary antibodies used in this study included histone H3 

(Cell Signaling Technology, 9715S; 1:10000), YY1 (Santa Cruz Biotechnology, SC-7341; 

1:2000), Anti-Rabbit IgG Peroxidase antibody (Sigma, A0545; 1:10000), Anti-mouse IgG 

HRP antibody (Santa Cruz Biotechnology, SC-516102; 1:10000), and β-actin (Cell 

Signaling Technology, 4967S; 1:5000).

Reverse-Transcription Quantitative PCR (RT-qPCR)

RT-qPCR was conducted as previously described.37 Total RNA was extracted with Omega 

Total RNA Kit I (Omega) and quantified. Reverse transcription was performed using M-

MLV Reverse Transcriptase (Promega) for cDNA synthesis. RT-qPCR was carried out using 

iQ SYBR Green Supermix (Bio-rad) on the CFX96 RT-qPCR detection system (Bio-rad). 

Primers used for RT-qPCR are listed in Supplementary Table 2.
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Targeted Integration and Mutation with CRISPR-Cas9

YY1-TAPTAG cell line was generated in HEK293T background using CRISPR-Cas9, 

following previously reported procedures.11 The guide sequence for YY1 or G4 site was 

inserted into the pX330 plasmid (Addgene, Cambridge, MA, USA) which expresses 

hSpCas9. The guide sequence for YY1 was 5′-GAGAAGACCCTTCTCGACCA-3′. The 

donor plasmid for tagging YY1 (3×Flag-2×Strep tag) was synthesized (gBlock, Integrated 

DNA Technologies) and inserted into pUC19. For CRISPR-mediated mutation of an 

endogenous G4 site, the donor plasmid for the mutated G4 sequences was inserted into 

pUC19. After co-transfection with the two plasmids, the single-cell colonies were isolated 

and Western blot was performed to screen for the insertion of the tandem tag using anti-YY1 

antibody (SC-7341, Santa Cruz Biotechnology). Sanger sequencing was performed to 

confirm the mutation of the sequence for the endogenous G4 site.

Chromatin Immunoprecipitation-Sequencing (ChIP-Seq)

ChIP experiments were conducted as previously described with a few modifications.15,37 

YY1-TAPTAG cells were cultured in DMEM medium with or without 20 μM PDS or 5 μM 

TMPyP4 for 12 hr before cross-linking. Approximately 2×106 cells were cross-linked with 

1/10 volume of freshly prepared 11% formaldehyde solution at room temperature for 10 

min, and quenched with 125 mM glycine for 5 min. After washing with 1× PBS for three 

times, the cells were resuspended in a lysis buffer I (50 mM HEPES-KOH, pH 7.5, 140 mM 

NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100, and protease 

inhibitors cocktail) at 4 °C on a rotator for 10 min.

After centrifugation, the pellet was resuspended in lysis buffer II (10 mM Tris-HCl, pH 8.0, 

200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, and protease inhibitor cocktail) at 4 °C for 10 

min with rotation. The pellet was subsequently resuspended in the sonication buffer (20 mM 

Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton X-100, and protease 

inhibitor cocktail). Sonication was conducted using a Covaris S220 sonicator for 6 min with 

a peak incident power of 140, a duty cycle of 5%, and 200 cycles per burst at 4 °C. After 

centrifugation at 16000 g for 15 min, the supernatant was incubated with anti-Flag antibody 

(Cell Signaling Technology, 2368S) for 2 hr. Protein A/G Plus-Agarose (Santa Cruz) was 

then added and the mixture was incubated at 4 °C overnight. After washing, DNA was 

eluted from the beads with 100 mM NaHCO3 and 1% SDS at 68 °C for 2 hr. Cross-links 

were subsequently reversed and proteins digested with proteinase K at 65 °C overnight. 

After purification, RNA in the resulting DNA samples were removed with RNase A. Finally, 

the DNA was purified using QIAquick PCR Purification Kit (Qiagen).

DNA sequencing library was prepared using NEBNext Ultra™ DNA Library Prep Kit for 

Illumina (NEB) following the manufacturer’s instructions. The purified DNA libraries were 

subsequently quantified using Agilent 2100 Bioanalyzer and multiplexed for sequencing on 

a NextSeq500 Sequencing System (Illumina).

The sequencing reads of ChIP-Seq were checked with FastQC (version 0.68) and aligned to 

human hg19 reference genome using Bowtie2 (version 2.3.4.1) with the configuration of 

bowtie2-q-N 0–L 22.37 Peak calling was performed using the Model-based Analysis of 
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ChIP-Seq (MACS2 2.1.1) with the following configuration: MACS2 callpeak-f BAM-g 2.7e

+9–n YY1-ChIP.38 The UCSC Genome Browser was used to visualize the mapping results.
39 The overlap of ChIP-seq peaks was analyzed using custom script. In detail, each peak in 

the two BED files were compared, and those peaks overlapped in the two ChIP-Seq datasets 

(i.e. YY1 and BG4 ChIP-Seq) by at least 1 base pair are considered overlapping peaks, 

following previously published procedures.3,40 Parallel analyses were also conducted by 

employing the criterion that the BG4 and YY1 ChIP-Seq peaks overlap by at least 8 or 30 

base pairs (Supplementary Table 1). For motif analysis, the genomic sequence of each peak 

was extracted, where the consensus motif of “AANATGGC” and its complementary strand 

of “GCCATNTT” were searched and counted. The ChIP-seq peaks were visualized using the 

UCSC Genome Browser on Human GRCh37/hg19.

For BG4 ChIP-qPCR experiment, chromatin was immunoprecipitated using BG4 antibody, 

which was purified as described,7 following the aforementioned procedures. After 

purification of the BG4 antibody-enriched DNA fragments, quantitative PCR was performed 

using the primers listed in Supplementary Table 2.

HiChIP-Seq and HiChIP-qPCR

HiChIP was conducted following the previously described procedures.15 Before cross-

linking, the YY1-TAPTAG cells were mock-treated, or treated with 20 μM PDS or 5 μM 

TMPyP4 for 12 hr. Approximately 5×106 cells were cross-linked using freshly prepared 1% 

formaldehyde solution at room temperature for 10 min, and quenched with 125 mM glycine 

for 5 min. After washing for 3 times, the cells were incubated in HiChIP lysis buffer (10 mM 

Tris-HCl, pH 8.0, 10 mM NaCl, and 0.2% IGEPAL CA-630 with protease inhibitors 

cocktail) at 4 °C for 30 min with rotation. After centrifugation, the cells were washed again 

with HiChIP lysis buffer and centrifuged. The resulting pellet was resuspended in 0.5% SDS 

and incubated at 60 °C for 10 min. To the mixture was added 1.5% Triton X-100 to quench 

the SDS. After incubation at 37 °C for 15 min, the chromatin was then digested with HindIII 

(NEB) in NEB CutSmart Buffer (NEB) at 37 °C for 6 hr. The restriction enzyme was 

subsequently inactivated by heating at 65 °C for 20 min. Biotin-labeled dCTP was 

incorporated to the restriction fragment overhangs in the Fill-in master mix (0.25 mM 

biotin-14-dCTP, 0.25 mM dCTP, 0.25 mM dGTP, 0.25 mM dTTP, and 50 U Klenow 

fragment of DNA Polymerase I in NEB CutSmart Buffer). The reaction was continued at 37 

°C for 2 hr with rotation. Labeled DNA was ligated in a ligation master mix (1% Trion 

X-100, 0.1 mg/mL BSA, and 250 U T4 DNA ligase in T4 Ligation Buffer) at 16 °C for 4 hr 

with rotation.

The ligated chromatin was collected by centrifugation at 2500 g for 5 min and resuspended 

in ChIP sonication buffer (50 mM HEPES-KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 1 

mM EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS and protease inhibitor 

cocktail). Chromatin immunoprecipitation was conducted under the same conditions as 

described above. After elution, RNA and proteins in the samples were removed by digestion 

with RNase A and proteinase K, respectively. The samples were subsequently incubated at 

65 °C overnight to reverse the cross-links, and the DNA was purified from the mixture using 

QIAquick PCR Purification Kit (Qiagen).
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After purification, the fragmented DNA was enriched using the streptavidin C1 magnetic 

beads (Invitrogen, 65001). The beads were washed twice with Tween washing buffer (5 mM 

Tris-HCl, pH 7.5, 0.5 mM EDTA, 1 M NaCl, 0.05% Tween-20) and subsequently 

resuspended in 2× biotin binding buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 2 M NaCl). 

An equal volume of purified DNA was added, and incubated at room temperature for 15 

min. The magnetic beads were then washed twice with Tween washing buffer, twice with 

binding buffer, and then once with TE buffer (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA). 

The magnetic beads were collected and the DNA sequencing libraries were constructed 

using NEBNext Ultra™ DNA Library Prep Kit for Illumina (NEB) following the 

manufacturer’s instructions. The purified DNA libraries were subsequently quantified using 

Agilent 2100 Bioanalyzer and multiplexed for sequencing on a NextSeq500 Sequencing 

System (Illumina).

For HiChIP-Seq data analysis, the reads were aligned to human hg19 reference genome 

using the Map with BWA-MEM (0.7.15.1.) tool with a gap extension penalty setting of 50 

(bwa mem-A1-B4-E50-L0).41 The interaction matrix was subsequently built with 

hicBuildMatrix (2.1.0) tool with restriction site being set to HindIII (hicBuildMatrix–

binSize 5000–restrictionSequence AGCT).42 The visualization of the HiChIP data was 

performed with hicPlotMatrix (2.1.0) tool.42

For HiChIP-qPCR experiment, the DNA was purified after chromatin immunoprecipitation, 

and was used for quantitative PCR with the primers being listed in Supplementary Table 2.

RNA-Seq and Data Analysis

Total RNA was extracted from cells with Omega Total RNA Kit I (Omega). The NEBNext® 

Ultra™ II RNA Library Prep Kit for Illumina was used to produce the RNA sequencing 

library. rRNAs were removed using the NEBNext rRNA Depletion Kit, and the resulting 

RNA samples were treated with DNase I to remove residual DNA. The rRNA-depleted RNA 

was incubated in NEBNext First Strand Synthesis Reaction Buffer by heating at 94°C for 15 

min on a thermal cycler. The fragmentized RNA was reverse-transcribed using First Strand 

synthesis enzyme Mix (NEB) with random primers. The NEBNext Second Strand Synthesis 

Enzyme Mix (NEB) was used to perform the second-strand synthesis. After purification 

with AMPure XP Beads, the sequencing library was subsequently prepared as described 

above. The DNA was barcoded with NEBNext Multiplex Oligos for Illumina (NEB), and the 

resulting library was subjected to sequencing analysis on an Illumina HiSeq4000 insturment.

The sequencing reads of RNA-Seq were aligned to human hg38 reference genome using 

HISAT2 (2.1.0) with the configuration of hisat2-q-x −1 −2-S. Transcript abundance was 

determined using featureCounts (1.6.4) with the configuration of featureCounts-T 4-t exon-g 

gene_id. Differential gene expression was analyzed with DESeq2 (2.11.40.6).

DATA AVAILABILITY

The ChIP-Seq, HiChIP-Seq and RNA-Seq data generated in this study have been deposited 

into the NCBI GEO database (For ChIP-Seq and HiChIP-Seq data: GEO accession number, 

GSE128106. For RNA-Seq: GEO accession number, GSE142075). The ChIP-Seq data for 
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Ishikawa and SK-N-SH cells were obtained from NCBI GEO database with accession 

numbers of GSM1010753 and GSM1010897, respectively.43 The two G4 ChIP-Seq data 

were obtained from NCBI GEO database with accession numbers of GSE99205 and 

GSE107690.3,7 The human hg19 reference genome was downloaded from https://

hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips.

Code Availability

Custom codes used in this work are available from https://github.com/linliucr/UCR_code.

Extended Data

Extended Data Fig. 1. Proteome-wide identification of G quadruplex-binding proteins.
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Volcano plots showing the quantification results of G quadruplex-binding proteins identified 

from SILAC-based interaction screening. The −Log10(P value) was plotted against the 

log2(ratio G4/M4). YY1 is labeled in red.

Extended Data Fig. 2. Circular dichroism (CD) spectra of the three G4 sequences in the absence 
or presence of tag-free YY1 protein.
a-c, CD spectra of cMYC G4 (a), YY1 (b) and cMYC G4-YY1 complex (c). d-f, 
Comparison of CD spectra for G4 probes in the presence or absence of YY1 protein. The 

CD spectra for the G4 probes in the presence of YY1 protein were obtained by subtracting 

the CD spectrum of the YY1 protein from the composite spectra of the protein-G4 DNA 

complexes.
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Extended Data Fig. 3. Zinc finger domain of YY1 is essential, but not sufficient for the specific 
binding toward G4 structure.
a, A schematic diagram depicting the domain structure of YY1 protein. b-e, Fluorescence 

anisotropy for monitoring the bindings of mutant (YY1C360S) and truncated (YY11–382, 

YY1231–414, and YY1293–414) YY1 proteins with hTEL G4 and the corresponding M4 DNA 

probes. The data represent the mean ± S.E.M. of results obtained from 3 independent 

experiments.
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Extended Data Fig. 4. Statistical analyses of YY1 ChIP-Seq and BG4 ChIP-Seq data.
a, The ChIP-seq signal enrichment of YY1 ChIP-Seq and BG4 ChIP-Seq based on the 

overlapped peaks for the two datasets. The YY1 ChIP-Seq and BG4 ChIP-Seq average 

signal enrichments are plotted against the BG4 overlapped peaks. b, Analysis of peak width 

distribution for YY1 ChIP-seq and BG4 ChIP-seq data.
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Extended Data Fig. 5. Unwinding of G4 structures with the overexpression of BLM helicase 
disrupts the YY1-mediated DNA looping.
a-b, Reads enrichment of two regions from BG4 ChIP-Seq and YY1 ChIP-Seq. The long-

range DNA interactions monitored in HiChIP-PCR experiment are labeled with red arches, 

and the regions monitored in BG4 ChIP PCR experiments are indicated with blue triangles. 

c-d, BG4 ChIP and YY1 ChIP enrichments at the two sites were markedly diminished after 

ectopic overexpression of BLM helicase (BLM-O.E.). e, YY1-mediated DNA looping is 

disrupted by overexpression of BLM helicase. HiChIP-PCR quantification results of YY1-

mediated DNA looping in HEK293T cells with and without the overexpression of BLM. 

Shown in (c-e) are mean ± S.E.M. of results obtained from 3 independent experiments. The 

p values were calculated by using two-tailed, unpaired Student’s t test: **, p < 0.01; ***, p < 

0.001.
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Extended Data Fig. 6. Analysis of YY1 dimerization and binding stoichiometry of the YY1-G4 
DNA complex.
a-b, Gel filtration chromatography revealed the dimerization of YY1 and truncated 

YY1231–414, but not YY1293–414. c-d, The binding stoichiometry of YY1:G4 DNA was 

analyzed using EMSA. The stoichiometry in binding of YY1 to G4 DNA matches with the 

theoretical curve in 1:1 binding stoichiometry. The data represent mean ± S.E.M. from 4 

independent experiments.
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Extended Data Fig. 7. YY1 promotes interactions between DNA elements containing its 
consensus sequence motifs (Motif), G4 DNA (G4), or both.
a, A scheme depicting the in vitro proximity ligation assay for assessing the ability of YY1 

to enhance DNA-DNA interactions involving G4 structures and/or YY1 consensus motifs. b, 

qPCR quantification results of the proximity ligation products formed between motifs, 

between G4 structures, and between motif and G4 structure in the presence or absence of 

YY1 protein. c, qPCR quantification results revealed the inability of YY1 in promoting the 

ligation between M4 (i.e. mutated sequence of G4 that can no longer fold into G4 structure) 

and G4, motif, or M4. d, qPCR quantification results of the proximity ligation products 

formed between G4 structures in the absence or presence of PDS or TMPyP4. The data 

represent mean ± S.E.M. of results from three independent experiments.
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Extended Data Fig. 8. Dimerization of YY1 promotes long-range DNA looping.
a, SDS-PAGE for monitoring the purified recombinant truncated forms of YY1 that is 

incapable of dimerization, but able to discriminate G4 structure from single-stranded DNA. 

b, Gel filtration chromatography revealed that YY1Δ231–290 (calculated monomer MW: 38.4 

kDa) exists as a monomer, and GST-YY1Δ231–290 is present as a dimer (calculated monomer 

MW: 66.3 kDa). c-d, Fluorescence anisotropy for monitoring the binding of YY1Δ231–290 

and GST-YY1Δ231–290 protein with G4 structure and the corresponding mutated sequence 

(M4) derived from the MYC promoter. e, Proximity ligation assay showing that YY1 and 

GST-YY1Δ231–290, but not YY1Δ231–290, is capable of promoting ligation between G4 DNA 

sequences.
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Extended Data Fig. 9. Regulation of gene expression by YY1-promoter G4 interactions.
a-c, Quantification of mRNA expression levels of MYC (a), SLC25A28 (b) and TMEM145 
(c) genes after shRNA-mediated knockdown of YY1 and/or PDS/TMPyP4 treatment. Top of 

each panel shows read enrichments from BG4 ChIP-Seq and YY1 ChIP-Seq. The data 

represent mean ± S.E.M. of results from three independent experiments.
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Extended Data Fig. 10. YY1-G4 binding participates in transcription regulation of EHD3 genes 
through long-range DNA looping.
a, Read enrichments obtained from BG4 ChIP-seq and YY1 ChIP-Seq experiments. b, 
Normalized interaction frequency between the two sites linked with a red arch in a in 

HEK293T cells with or without PDS/TMPyP4 treatment, as captured by YY1 HiChIP. c, 
Quantification results for the mRNA expression levels of EHD3 genes in HEK293T cells 

after knockdown of YY1 and/or with PDS/TMPyP4 treatment. The data represent mean ± 

S.E.M. of results from three independent experiments.
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Fig. 1. 
Tag-free YY1 binds selectively with G quadruplex DNA. a-c, Fluorescence anisotropy for 

monitoring the binding of YY1 protein with G4 structures and the corresponding mutated 

sequences derived from the promoters of KIT (a) and MYC (b) genes, or the human 

telomere (c). The data in (a-c) represent mean ± S.E.M. from 3 independent experiments. d-
f, EMSA results showing the binding of YY1 towards G4 structure without treatment (d) or 

upon treatment with different concentrations of PDS (e) or TMPyP4 (f). The EMSA 

experiments were performed independently for three times with similar results.
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Fig. 2. 
YY1 interacts with G4 structure in cells. a, Comparisons of YY1 ChIP-Seq data with BG4 

ChIP-Seq data. b, A Venn diagram showing the overlap between YY1 ChIP-Seq and BG4 

ChIP-Seq peaks. c, Comparison of YY1 ChIP-Seq data acquired for cells with or without 

PDS/TMPyP4 treatment. The p values were calculated by using the hypergeometric test. d-e, 
Enrichment ratios of YY1 ChIP-Seq peaks containing different motifs after treatment with 

PDS or TMPyP4. BG4, peaks overlapped with BG4 ChIP-Seq peaks; Y, peaks containing 

YY1 consensus motif; BG4Y, peaks containing both YY1 consensus motif and overlapped 

with BG4 ChIP-Seq. The data in (d-e) represent mean ± S.E.M. In d, n = 370, 1194 and 638 

for BG4, Y, and BG4Y, respectively; In e, n = 378, 1198 and 639 for BG4, Y and BG4Y, 

respectively. In d-e, the two-tailed Student’s t test was used to calculate the p values. ***, p 
< 0.001. p = 3.1E-15 for Y, and p = 1.6E-20 for BG4Y in d; p = 2.0E-6 for Y, and p = 

5.0E-11 for BG4Y in e. f-g, Chromatin localization of YY1 after PDS (f) or TMPyP4 (g) 

treatment, where the experiments were performed independently for three times with similar 

results.
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Fig. 3. 
Disruption of YY1’s binding with G4 structure attenuates YY1-mediated DNA looping. a, 
HiChIP interaction map of chromosome 17 in 293T cells that were untreated (left), or 

treated with PDS (middle) or TMPyP4 (right). b, Statistical analysis of HiChIP interaction 

distance of 5–200 kb after PDS or TMPyP4 treatment. c, A heat map depicting the 

interactions between YY1 ChIP-Seq peaks and the surrounding region (−200 kb to 200 kb) 

after PDS or TMPyP4 treatment.
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Fig. 4. 
YY1-G4 interaction and dimerization of YY1 promote long-range DNA looping. a, A 

schematic diagram showing the design of CRISPR/Cas9-based editing of an endogenous 

G4-forming sequence. b-c, BG4 ChIP and YY1 ChIP enrichments of the site were 

substantially attenuated after mutation of the G4 sequence. d, YY1-mediated DNA looping 

was disrupted by mutation of the G4 sequence. Shown are the HiChIP-qPCR quantification 

results of YY1-mediated DNA looping in HEK293T cells with or without mutation of G4 

sequence. e, A schematic diagram depicting the truncated YY1 protein that is defective in 

dimerization. f, ChIP enrichments for YY1Δ231–290 and GST-YY1Δ231–290 at Sites 1 and 2. 

Sites 1 and 2 are the same sites as described in Extended Data Fig. 5. g, HiChIP-qPCR 

quantification results of YY1Δ231–290- and GST-YY1Δ231–290-mediated DNA looping. The 

data represent mean ± S.E.M. of results obtained from 3 independent experiments. The p 
values were calculated by using two-tailed Student’s t test: **, p < 0.01. ***, p < 0.001. p = 

0.0012 in b; p = 0.0015 in c; p = 0.0011 in d; p = 0.000031 and 0.0013 for YY1 and GST-

YY1Δ231–290, respectively, for site 1, and p = 0.0000034 and p = 0.0047 for YY1 and GST-

YY1Δ231–290, respectively, for site 2 in g.

Li et al. Page 30

Nat Chem Biol. Author manuscript; available in PMC 2021 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Regulation of gene expression by YY1-promoter G4 interactions. a-d, Dot plot showing the 

correlation of gene expression between PDS-treated and shYY1-treated or shYY1+PDS-

treated cells. Shown are average ratios of RNA-seq results from two biological replicates. n 

= 14707 genes for Pearson correlation calculation in a-d. e-g Quantification of mRNA 

expression levels of MANF (e), PDHB (f) and PGBD5 (g) genes in HEK293T cells with 

shRNA-mediated knockdown of YY1 and/or after PDS/TMPyP4 treatment. Top of each 

panel shows read enrichments from BG4 ChIP-Seq and YY1 ChIP-Seq. The data represent 

mean ± S.E.M. of results from three independent experiments.
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Fig. 6. 
YY1-G4 binding participates in transcription regulation of the TRMT12 gene through long-

range DNA looping. a, Read enrichments obtained from BG4 ChIP-seq and YY1 ChIP-Seq 

results. b, Normalized interaction frequency involving the sites linked with a red arch in a in 

HEK293T cells with or without PDS or TMPyP4 treatment, as captured by YY1 HiChIP. c, 
Quantification of mRNA expression levels of TRMT12 in HEK293T cells after knockdown 

of YY1 and/or with PDS/TMPyP4 treatment. The data represent mean ± S.E.M. of results 

from three independent experiments.
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