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ABSTRACT: The capture of carbon dioxide (CO2) is crucial for
reducing greenhouse emissions and achieving net-zero emission
goals. Metal−organic frameworks (MOFs) present a promising
solution for carbon capture due to their structural adaptability,
tunability, porosity, and pore modification. In this research, we
explored the use of a copper (Cu(II))-based MOF called
mCBMOF-1. After activation, mCBMOF-1 generates one-dimen-
sional channels with square cross sections, featuring sets of four
Cu(II) open metal sites spaced by 6.042 Å, allowing strong
interactions with coordinating molecules. To investigate this
capability, mCBMOF-1 was exposed to ammonia (NH3) gas,
resulting in hysteretic NH3 isotherms indicative of strong
interactions between Cu(II) and NH3. At 150 mbar and 298 K,
the NH3-loaded (∼1 mmol/g) material exhibited a 106% increase in CO2 uptake compared to that of the pristine mCBMOF-1.
Carbon-13 solid-state nuclear magnetic resonance spectra and density functional theory calculations confirmed that the sequential
loading of NH3 followed by CO2 adsorption generated a copper−carbamic acid complex within the pores of mCBMOF-1. Our study
highlights the effectiveness of sequential pore functionalization in MOFs as an attractive strategy for enhancing the interactions of
MOFs with small molecules such as CO2.
KEYWORDS: metal−organic frameworks, ammonia, postsynthetic modification, carbon dioxide, capture

■ INTRODUCTION
Carbon dioxide (CO2) emissions into the atmosphere
contribute to the greenhouse effect1,2 caused by the absorption
of infrared rays reflected by the Earth’s surface.3,4 Uncontrolled
greenhouse gas emissions into the atmosphere have played a
pivotal role in global climate change.5,6 According to the data
from the Mauna Loa Observatory,6 the atmospheric
concentration of CO2 reached 422.1 ppm in July 2023,
marking a 31.9% increase from the 1950 level of 320 ppm and
a 50.8% increase from preindustrial levels of 280 ppm.7,8

Despite efforts to set a target of 350 ppm for global
atmospheric CO2 levels, CO2 concentrations continue to
rise.9,10 In 2018, the Intergovernmental Panel on Climate
Change11 reported that surpassing a global temperature
increase of 1.5 °C above the 20th-century average could lead
to severe consequences, and crossing the 2.0 °C threshold
might result in irreversible outcomes. Moreover, higher global
temperatures are expected to exacerbate issues such food and
water scarcity, potentially leading to increased poverty
rates.12,13 Carbon dioxide capture presents a promising
solution to reduce the amount of CO2 entering the atmosphere
or remove CO2 already emitted, such as through the use of

Direct Air Capture systems, which were considered a viable
option in many outlook scenarios and are essential in the IEA
net-zero pathway. However, CO2 capture technologies face
challenges due to high costs associated with material
limitations such as working capacity, degradation, or extensive
energy demand. Therefore, the development of innovative
approaches and new materials is crucial to capture of CO2
effectively and economically.
Metal−organic frameworks (MOFs) are a class of porous

materials composed of metal ions or clusters and organic
linkers, which form extended structures. Their properties,
which include exceptionally high surface areas,14 tailored
functionality,15,16 and permanent porosity,17,18 make them
highly suitable for gas adsorption applications such as CO2
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capture.19,20 Several approaches have been explored to enhance
the interaction between the pores of MOF adsorbents and
CO2.

21 One such approach involves the utilization of
microporous (pore size <20 Å) and ultramicroporous (pore
size <7 Å) MOFs, whose pores possess favorable shapes and
sizes to facilitate host−guest interactions11,22−24 effective for
capturing CO2 even in the presence of water vapor.

25 In a
recent study, MIL-120, an ultramicroporous MOF, was
employed for CO2 capture, resulting in enhanced CO2 uptake
under humid conditions.26 Another well-explored method of
CO2 capture enhancement involves the introduction of open
metal sites through rational design, desolvation, or activation.
Many MOFs, including those from the M-MOF-74 family (M
= Mg, Mn, Fe, Co, Zn, Ni),27,28 zirconium-based UiO-66,29

and HKUST-1,30 have achieved significant CO2 uptakes using
this approach.
Through careful design, either before or after their synthesis,

the affinity of MOFs toward CO2 can be significantly
improved.31−36 One key approach involves pore functionaliza-
tion, wherein terminal uncoordinated functional groups such as
−NH2, −OH, and −COOH are introduced into the organic
linker before MOF synthesis.33,37−39 This results in MOFs
with pores decorated with polarizable functional groups,
thereby leading to increased CO2 uptakes. In a study
conducted by Arstad et al., the impact of an amino-substituted
1,4-benzene dicarboxylate ligand on the CO2 uptake of three
different MOFs (USO-1-Al, USO-2-Ni, and USO-3-In) was
investigated.40 Interestingly, in all three of the MOFs, the

amino-substituted MOF exhibited higher CO2 uptakes than
their unfunctionalized counterparts. USO-2-Ni-NH2 demon-
strated the highest CO2 uptake of 14 wt % (3.18 mmol/g) at 1
bar and 298 K, which represented a discernible increase from
10 wt % (2.27 mmol/g) for the unfunctionalized USO-2-Ni at
the same conditions.40 Other examples of such functionalized
MOFs include CAU-1,41 bio-MOF-11,42 and NH2-MIL-
53(Al).43

The pore surface in MOFs can be modified postsyn-
thesis.33,37,44 Examples of such postsynthetic MOF function-
alization include attaching alkylamines to open metal sites,
which changes the CO2 capture mechanism and significantly
increases CO2 uptake. Darunte et al. found that after loading
the MIL-101(Cr) MOF with tris(2-aminoethyl)amine, the
CO2 uptake increased from ∼0.5 mmol/g in pristine MOF to
∼1.4 mmol/g in amine functionalized MOF at 150 mbar and
298 K.45 Lyu et al. studied the amino acid functionalized
MOF-808 for CO2 capture in humid flue gas conditions, and
they found that after loading glycine in the MOF, the CO2
uptake increased from ∼0.2 mmol/g in the MOF-808 to ∼0.5
mmol/g in MOF-808-Gly at 150 mbar and 298 K.46 Finally,
the functionalization of the pores of Mg2(dobpdc) with N,N′-
dimethylethylenediamine resulted in about a 10-fold increase
in the CO2 uptake.

47−49 In this class of MOFs, CO2 is not
directly attached to open metal sites, replacing alkylamine
molecules, but is instead cooperatively inserted in between the
metal and the amine.

Figure 1. Structure representation of mCBMOF-1. (a) mCBMOF-1 comprises a meta-carborane-dicarboxylate ligand and DABCO. (b) In
mCBMOF-1, each Cu(II) is five coordinated, forming Cu2-paddlewheels. The axial position for each Cu in the paddlewheel is distinct: Cu1 is
bound to an aqua ligand, and Cu2 is bound to the N atom of DABCO. (c) The extended structure of mCBMOF-1 illustrates the generation of the
4Cu site where each Cu is connected to an aqua ligand. (d) Three-dimensional ball and stick packing of mCBMOF-1. Red surfaces represent the
accessible void within the unit cell. (e) The pore topology of mCBMOF-1 after removal of the four aqua ligands bound to the 4Cu site. This results
in the formation of an additional void channel extending along [001]. Atom color code: gray for C, red for O, blue for N, golden for B, sky blue for
Cu, and pale yellow for H.
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In our study, we expand on the postsynthetic functionaliza-
tion approach by coordinating gaseous ammonia (NH3) to the
open metal sites of a Cu(II)-based MOF, mCBMOF-1, to
enhance CO2 adsorption. The activated MOF features four
closely positioned, coordinatively unsaturated Cu(II) centers,
which act as potent Lewis acidic sites known for their strong
affinity for Lewis bases like NH3. By anchoring NH3 molecules
within the MOF pores, we introduce a Lewis basic environ-
ment that enhances the selective capture of the Lewis acidic
CO2 molecules. This stepwise coordination of NH3, followed
by the coordination of CO2, leads to the in situ formation of
carbamic acid within the MOF structure. Our approach is
unique in leveraging the internal pore chemistry to enhance
CO2 capture, demonstrating that the incorporation of a Lewis
basic species within a MOF can significantly amplify its CO2
adsorption capacity.

■ RESULTS AND DISCUSSION

Synthesis and Characterization
The MOF employed in our study is a copper paddlewheel-
based MOF known as mCBMOF-1, with the chemical formula
[Cu2(mCB-L)2(DABCO)0.5(H2O)]·guest molecules, in which
mCB-L refers to 1,7-di(4-carboxyphenyl)-1,7-dicarba-closo-

dodecaborane and DABCO represents 1,4-diazabicyclo[2.2.2]-
octane (Figure 1).50,51 The synthesis of mCBMOF-1 is carried
out in a mixture of water, ethanol, and dimethylformamide
(DMF) (in a ratio of 1:5:5) at 80 °C for 48 h. Powder X-ray
diffraction (PXRD, Figure 2a) was utilized to verify the
identity and purity of the material, while Fourier transform
infrared (FTIR) spectra (Figure S1) confirmed the successful
incorporation of the ligands into the MOF structure. The
MOF crystallizes in tetragonal space group I422, and the
atomic coordinates allow for the following chemical
interpretation of the structure. The mCB ligands, which
feature a chevron shape with an opening angle of 117°, are
linked by Cu2 paddlewheels, forming a 44 net (sql). The top
and the bottom of this two-dimensional layer are decorated
with aqua and DABCO ligands, which complete the
coordination sphere of Cu2 paddlewheels. The DABCO
ligands connect the two-dimensional layer to neighboring
ones, and two such layers are related to each other by a 21-axis
(rotation by 180° followed by translation by b/2). Because
DABCO ligands are present on both sides of each two-
dimensional layer, they extend the coordination to a three-
dimensional 44·66 net (sqp). The structure of mCBMOF-1
consists of two interpenetrating nets, which collectively occupy

Figure 2. Solid-state characterization and sorption isotherms. (a) The powder X-ray diffraction patterns of as-made mCBMOF-1 (shown in red)
are in excellent agreement with the pattern derived from the crystal structure of this material (simulated; shown in black), confirming the bulk
phase purity of the MOF. The PXRD pattern of the ∼1 mmol NH3-loaded mCBMOF-1 (shown in blue) indicates that the MOF retains its
crystallinity. (b) The N2 isotherm for the activated mCBMOF-1, obtained at 77 K and 1 bar, indicates its microporous nature. (c) CO2 isotherms
for the activated mCBMOF-1 collected at 298 and 303 K. (d) Ammonia isotherms of mCBMOF-1. The second NH3 isotherm (colored in blue)
was measured after mCBMOF-1 was reactivated following the first isotherm (colored in red). Filled symbols: adsorption; empty symbols:
desorption.
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67.6% of the unit-cell volume, leaving 32.4% as void space, as
determined by the Void routine of the Olex2 crystallographic
software.52 The void system comprises one-dimensional
channels running along [110], interconnected along [001] by
narrow segments (Figure 1d). Removal of aqua ligands from
the crystal structure increases the void volume to 34.5% and
generates an additional channel along [001] (Figure 1e, Figure
S2), which is potentially accessible for gas diffusion. The
channel is lined with four Cu(II) open metal sites situated at
the vertices of a square, with a distance of 6.042 Å between the
adjacent Cu(II) atoms and 8.545 Å between opposite ones
(Figure S3). This four-Cu2 site plays a key role in the
adsorption properties of mCBMOF-1 (see below).
Thermogravimetric analysis (TGA) of mCBMOF-1 shows a

19% weight loss attributed to the removal of solvent molecules
(water, DMF) present in the voids of the mCBMOF-1 (Figure
S4). The thermal activation of mCBMOF-1 induces a color
change from sky blue to deep navy (Figure S5), which is
consistent with the removal of coordinated water molecules
and the presence of open Cu2+ sites.53 When the activated
mCBMOF-1 is exposed to air, it returns to its original sky-blue
color due to the recoordination of water molecules present in
air to active Cu2+ centers. This phenomenon is in line with
observations seen in other Cu(II)-based MOFs such as
HKUST-154,55 and Cu-MOF-2.53 Furthermore, the ultra-
violet−visible (UV−vis) spectrum of mCBMOF-1 exhibits
an absorption peak with a λmax of 744 nm (Figure S6). This
absorption peak corresponds to the d−d electronic transition
in Cu2+ and gives the material a sky-blue color.
Upon exposure of the activated mCBMOF-1 to gaseous

NH3 at 1 bar for >2 h, it undergoes a color change to dark
purple (Figure S7), and its UV−vis spectrum displays an
absorption peak at λmax of 647 nm (Figure S6). These changes
in the optical properties arise from the coordination of NH3 to
open Cu(II) sites and the positioning of NH3 in the
spectrochemical series. A comparison with the pristine
mCBMOF-1 (λmax = 744 nm) provides valuable insights:
given that H2O is a weak field ligand and NH3 is a strong field
ligand, the energy required for the d−d transition in an amine
complex is higher compared to the aqua complex.56 The
PXRD pattern of NH3-loaded mCBMOF-1 (Figure S8) reveals

that the MOF becomes amorphous, indicating that the metal−
ligand bonds in the MOF are disrupted. FTIR spectroscopy
shows an additional peak at 3320 cm−1, corresponding to N−
H stretching in the bound NH3 molecule (Figures S2 and S9).
When mCBMOF-1 was exposed to a low NH3 concentration
(∼1 mmol/g loading), its PXRD pattern remained crystalline.
The TGA profile of this material is comparable to that of the
as-made MOF (Figure S4), indicating that NH3 loading and
binding to Cu sites do not affect the material’s stability.
Furthermore, 1H and 13C solution NMR in DMSO-d6 of the
controlled (∼1 mmol/g) NH3-loaded mCBMOF-1 demon-
strates the stability of the MOF with no leaching of the mCB
ligand in the solution (Figures S10 and S11).
Adsorption Properties
At 77 K and 1 bar, activated mCBMOF-1 adsorbs N2, as
indicated by its type I adsorption isotherm (Figure 2b, Figure
S12a), with a BET surface area of 996 m2/g. The single point
adsorption total pore volume at p/p0 = 0.90 is 0.516 cm3/g,
which is consistent with 0.632 cm3/g derived from the static
crystal structure of mCBMOF-1 (refined against data collected
at 100 K). The activated mCBMOF-1 displays a low affinity
for CO2, evident from the quasi-linear shape of its adsorption
isotherm (Figure 2c) and a relatively low isosteric heat of CO2
adsorption (Qst) of 28 kJ/mol (Figure 3b). This Qst value
positions mCBMOF-1 among the MOFs with moderate
performance toward CO2 capture such as HKUST-1 (Qst =
24−28 kJ/mol),30,57 UiO-66 (Qst = 26 kJ/mol),29 and MIL-
100(Fe) (Qst = 30 kJ/mol)

57 but falls behind Mg-MOF-74 (Qst
= 47 kJ/mol) with its open metal sites.27

To investigate the NH3 adsorption properties of mCBMOF-
1, NH3 isotherms were recorded (Figure 2d). Pure (99.995%)
NH3 isotherms collected at 298 K and 1 bar demonstrated that
1 g of activated mCBMOF-1 uptakes 11.5 mmol of NH3. This
uptake corresponds to 43.6 molecules of NH3 per unit cell
(Figure 2d), a quantity comparable to what is observed in
other MOFs featuring open metal sites, suggesting a strong
affinity for NH3.

58−63 This remarkable uptake can be explained
by two consecutive phenomena. At low pressures, NH3 (Lewis
base) forms coordination bonds with open Cu sites (Lewis
acid), allowing a maximum of four NH3 molecules to bind in
one unit cell of activated mCBMOF-1. As the pressure

Figure 3. Carbon dioxide uptake and isosteric heat of adsorption. (a) Comparison of the CO2 isotherms for activated mCBMOF-1 (shown in red)
and NH3-loaded (shown in green) at 298 K. At 150 mbar (orange arrow), the NH3-loaded (∼1 mmol/g) mCBMOF-1 exhibited 106% higher CO2
uptake compared to that of mCBMOF-1. (b) Isosteric heat of CO2 adsorption calculated for the activated (red) and NH3-loaded (green)
mCBMOF-1..

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.4c00808
JACS Au 2024, 4, 4833−4843

4836

https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00808?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00808?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00808?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00808?fig=fig3&ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c00808?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


increases, NH3 fills the pores through dispersive interactions
and H-bonds. The high affinity of activated mCBMOF-1 for
NH3 is further supported by the hysteresis observed in its
isotherm (Figure 2d) and the density functional theory- (DFT-
) calculated energy of −119.8 kJ/mol for the preferred NH3
adsorption site (Figure S13). The high value of adsorption
energy indicates that NH3 undergoes chemical bonding within
the MOF, implying that the unsaturated Cu sites act as the
primary adsorption sites.60 Additionally, the desorption curves
reveal that initially only a small amount of NH3 is released, and
even as the pressure decreases to zero, a substantial amount of
NH3 remains in the MOF structure and pores. During the
second isotherm, the hysteresis observed in the NH3 isotherm
at 298 K indicates a maximum uptake of mCBMOF-1 at 5.9
mmol/g (22.5 molecules/unit cell; Figure 2d). The lower NH3
uptake during the second NH3 isotherm is likely attributed to
some NH3 molecules being strongly bound to its active sites
during the first cycle. However, the BET surface area of the
NH3-loaded mCBMOF-1 is 6 m2/g, suggesting that NH3
molecules disrupt its long-range order, and it becomes
nonporous to N2 at 77 K and 1 bar (Figure S12b). When
the amorphous NH3-loaded material is immersed in water, the
resulting material becomes crystalline (Figure S8). This
material is likely to be a new structure, as the Bragg reflections
do not match those of mCBMOF-1, and is porous to N2 at 77
K (Figure S12c). Efforts to elucidate the structure of this new
phase through single-crystal X-ray diffraction have been
unsuccessful due to the polycrystalline nature of the material.
Saturating mCBMOF-1 with NH3 renders it nonporous to N2
at 77 K, as NH3 molecules occupy both the Cu(II)
coordination sites and all the pores. To prevent this, we
exposed the activated mCBMOF-1 to a controlled amount of
NH3 gas, thereby achieving an uptake of ∼1.0 mmol/g,
equivalent to one NH3 molecule binding to one open Cu site.
The resulting material (∼1.0 mmolNH3/g loading) was porous
to N2 at 77 K and 1 bar, and its BET surface area was 686 m2/g
(Figure S12d). The BET surface area of NH3-loaded (∼1.0
mmol/g) mCBMOF-1 is lower than the activated mCBMOF-
1, likely due to a partial loss of crystallinity and/or occupation
of the pores with NH3. Interestingly, controlled ammonia-
loaded (∼1 mmol/g) mCBMOF-1 does not collapse and can
be fully regenerated upon immersion in water, as confirmed by
PXRD (Figure S14a). The BET surface area of regenerated
mCBMOF-1 is 923 m2/g (Figure S14b). Its regeneration is
thought to be due to the recoordination of water molecules to
the 4Cu2 sites, displacing NH3 molecules from the MOF
structure.56 These observations confirm the stability of
mCBMOF-1 when it is loaded with ∼1 mmol/g of NH3.
Elemental analysis of the NH3-loaded (∼1 mmol/g)
mCBMOF-1 indicated the presence of 1.9 molecules of NH3
per formula unit, [Cu2(mCB-L)2(DABCO)0.5(NH3)1.9−x]·
xNH3·0.3H2O (Table S1), some of which are coordinated to
the open Cu centers of mCBMOF-1.64 Overrepresentation of
the NH3 molecules in this formula may stem from the inherent
imprecision of CHN analysis.
Mechanism of CO2 Adsorption

The mCBMOF-1 loaded with a controlled amount of
adsorbed NH3 was further investigated toward CO2 capture.
As shown in Figure 3a and Figures S15 and S16, the material
features type I bent-shaped CO2 adsorption isotherms, a
distinctive feature evident when compared to the CO2
isotherm of activated mCBMOF-1 (Figure 2c). The

consistency in the shape of the CO2 isotherms was verified
across three distinct experiments (Figure S16), emphasizing
the reliability and reproducibility of our findings. At 150 mbar
and 298 K, conditions relevant to postcombustion carbon
capture, the activated MOF exhibited a CO2 uptake of 0.51
mmol/g. However, after doping activated mCBMOF-1 with a
controlled amount of gaseous NH3, the uptake at the same
pressure and temperature increased to 1.05 mmol/g (Figure
3a). A similar increase was observed in Qst at low coverage,
which was 28 kJ/mol for the activated MOF and increased to
39 kJ/mol for the NH3-loaded mCBMOF-1 (Figure 3b).
These findings indicate different CO2 adsorption mechanisms
in the two discussed materials. The enhanced adsorption can
be attributed to the synergy of acid−base interactions and
hydrogen bonding of CO2 and the NH3 groups bound to the
MOF pores through the open metal sites.40,65−68 The CO2
isotherm of the NH3-loaded mCBMOF-1 does not exhibit an
adsorption hysteresis, a characteristic that has not been
detected in other chemisorption-based materials as well.49,69

FTIR and solid-state NMR techniques were employed to
investigate the interactions between CO2 and NH3 within the
pores of mCBMOF-1. In the FTIR spectra, new peaks
emerged at 3300 and 480 cm−1 upon NH3 loading into the
activated MOF, corresponding to N−H and Cu−N stretching
frequencies,70 respectively (Figure S9). In the NH3−CO2
loaded mCBMOF-1, the appearance of additional peaks at
3366 and 1633 cm−1 indicates coordinated NH3 vibra-
tions,71−73 suggesting the possible formation of carbamic
acid upon sequential introduction of NH3 and CO2 into the
pores of mCBMOF-1.
Solid-state 13C NMR was employed to investigate the

structural modification occurring upon the introduction of
NH3 and subsequent CO2 loading in the paramagnetic
mCBMOF-1.74−76 This method was adapted to explore the
binding of NH3 and CO2 in mCBMOF-1. Figure 4 illustrates
the 13C solid-state NMR spectra for the as-made and NH3-
CO2 loaded mCBMOF-1. In the spectrum of the as-made
mCBMOF-1 (Figure 4a), the resonances observed at 31.1,
34.6, and 164.0 ppm are attributed to the carbon atoms of the
guest dimethylformamide (DMF) molecules located within the
MOF pores. The resonance at 49.6 ppm corresponds to the
carbon atom of the m-carborane group, while the peaks within
the range of 132 to 150 ppm represent the aromatic C of the
benzoate fragment of the mCB ligand. Additionally, the peak at
173.3 ppm corresponds to carbonyl C of the carboxylate group
of the ligand. The resonance at 79.7 ppm indicates a single
environment for the carbon atoms in the coordinated DABCO.
This resonance is shifted to the downfield region due to
paramagnetic shift, compared to the free DABCO molecule,
which appears at 47.9 ppm (Figure S17). Some aspects of the
NMR spectra present paramagnetic shifts that are the subject
of further study. The ss-NMR of the activated MOF shows that
the peaks at 31.1, 34.6, and 164 ppm are absent, confirming the
removal of DMF molecules from the pores of the MOF
(Figure S18a). All other peaks in the as-made MOF remain in
the activated MOF, confirming its structural stability. The
successful loading of NH3 in activated mCBMOF-1 is
evidenced by two distinct resonances at 79.7 and 72.0 ppm
for the DABCO ligand in the MOF structure. These
resonances suggest two distinct environments for the carbon
in DABCO: DABCO−Cu-dimer−NH3 and DABCO−Cu-
dimer−open Cu site (Figure S18b). The broadened resonance
at 169.9 ppm, corresponding to the carboxylic carbon of the

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.4c00808
JACS Au 2024, 4, 4833−4843

4837

https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00808/suppl_file/au4c00808_si_001.pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c00808?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


mCB ligand, can be attributed to a dynamic environment
around the Cu-dimer in NH3-loaded mCBMOF-1. Other

peaks closely match the position and intensity of those in
activated mCBMOF-1, underscoring the chemical similarity of
the two materials.
The successful loading of CO2 in the NH3 loaded

mCBMOF-1 is evident from the more distinct peaks in the
13C NMR spectrum compared to those of the as-made MOF
(Figure 4b, Figure S18c). In the NH3-CO2 loaded MOF, the
resonances at 81.6 and 75.8 ppm are attributed to DABCO.
The presence of multiple resonances for DABCO carbon
atoms indicates the emergence of distinct chemical environ-
ments within DABCO. Given that DABCO is bound to one
side of the Cu(II) paddlewheels, occupying the opposite
coordination site can change the electronic structure of Cu(II)
paddlewheels, as evidenced by the chemical shifts of DABCO.
Importantly, the presence of two nonequivalent sites, which are
not equally populated, suggests that only a portion of Cu sites
are coordinated with the NH3 molecules. This is further
supported by the observed peak splitting at 44.8 and 57.1 ppm,
which is thought to be due to the distortion of the mCB ligand
in the MOF structure. Our findings are consistent with our
elemental analysis revealing that each formula unit of
mCBMOF-1 hosts 1.9 molecules of NH3 (chemisorbed and/
or physisorbed). This observation has significant implications
for our DFT results described below. The resonances at 172.9
and 169.8 ppm corresponding to carboxylic carbon of the mCB
ligand can be attributed to a dynamic environment around the
Cu(II) paddlewheels in the NH3-CO2 loaded mCBMOF-1.74

The resonances ranging from 122 to 150 ppm correspond to
the aromatic carbons of the mCB ligand, while the peak at 44.8

Figure 4. Solid-state 13C NMR spectra for (a) as-made mCBMOF-1
(inset: a fraction of mCBMOF-1 and corresponding assignments for
its individual carbon atoms). The resonances at 31.1, 34.6, and 164.0
ppm correspond to the guest DMF molecules encapsulated within the
MOF pores. (b) CO2 loading on the NH3-functionalized mCBMOF-
1. The resonances corresponding to DMF are absent, confirming its
successful activation followed by NH3 and CO2 loading. The
resonance at 161.6 ppm corresponds to the carbonyl carbon of
carbamic acid, indicating that CO2 is chemisorbed upon loading on
the NH3-loaded mCBMOF-1.

Figure 5. Mechanistic overview of the CO2 capture with mCBMOF-1. DFT optimized configurations of (a) activated mCBMOF-1, (b) NH3
absorbed in activated mCBMOF-1, (c) CO2 adsorbed in NH3-loaded mCBMOF-1, (d) transition state of CO2 interacting with NH3 within the
pore of mCBMOF-1, (e) product of the CO2 + NH3 reaction within the pore of mCBMOF-1, and (f) a schematic illustration of the carbamic acid
formation pathway, steps I−IV. Atom color code: gray for C, red for O, blue for N, sky blue for Cu and pale yellow for H.
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ppm corresponds to m-C of the carborane core in the ligand.
In line with the literature, the peak at 161.6 ppm corresponds
to carbon in carbamic acid (H2N−COOH).47,49,77,78 This peak
differs significantly from the carbon peak at 166.1 ppm in
ammonium carbamate (Figure S19), suggesting the formation
of carbamic acid within the pores of our MOF.
The DFT sheds light on the interactions between Cu(II)-

paddlewheels and CO2 or NH3 via isosurface plots of charge
differences (Figure S20) and the formation of carbamic acid
within the pores of the MOF structure (Figure 5). For the
coadsorption intermediate state, the NH3 molecule is adsorbed
on an open Cu(II) site (Figure 5b,f(I)), while CO2 molecules
interact with the adjacent open Cu(II) site (Figure 5c,f(II)).
The coadsorbed CO2 and NH3 molecules further interact with
each other to generate a motif (Cu(II)−NH3−CO2), which is
an exothermic step with the calculated reaction energy of
−15.2 kJ/mol (Figure 5d,f(III) and Figure S13). At the
transition state (TS), the H atom of NH3 approaches the O
atom of the CO2, forming the O�C---N−H intermediate. The
calculated energy of activation is 18.8 kJ/mol, indicating that
the formation of −NH2COOH is kinetically feasible (Figure
5e,f(IV)) with a further energy release of 23.8 kJ/mol. These
results clearly indicate that the presence of the coordinated
NH3 molecule, anchored in the unique environment of four
open Cu(II) sites located in proximity to one another,
significantly improves the immobilization of CO2. This
enhancement results in the formation of the Cu(II)−NH3−
CO2 intermediate followed by the stable Cu(II)−NH2COOH
complex within the pores of mCBMOF-1.
The pathway described in our work for the formation of

carbamic acid differs significantly from the mechanism
reported with Mg2-(dobpdc) and diamines.49,79−81 Mg2-
(dobpdc) is a mesoporous MOF with a pore size of 22 Å
having six Mg(II) open metal sites in the pore.82 When
diamine is introduced into the MOF, it interacts with the metal
in the pore, forming coordination bonds. Subsequently, CO2 is
cooperatively inserted into the Mg−N bond, forming a
carbamate in dry conditions and carbamic acid if water is
present.47,81 The landscape in our microporous mCBMOF-1 is
unique, and both NH3 and CO2 coordinate to metal centers
first and then, due to the proximity of those centers, react to
form carbamic acid (Figure 5f).

■ CONCLUSIONS
Our study reports, for the first time, that sequential pore
functionalization in a MOF with open Cu(II) sites leads to a
106% enhancement of CO2 adsorption at low pressures. The
activated mCBMOF-1 comprises repeating units with four
active open Cu(II) sites positioned in proximity to one another
on vertices of a square cross section of the pore; upon exposure
to NH3, some of these Cu(II) sites, acting as a Lewis acid,
interact with molecules of NH3, a Lewis base, through
coordination bonding. The remaining open Cu(II) sites are
available for subsequent CO2 coordination. When both CO2
and NH3 are anchored in the unique coordination environ-
ment of the pore, they interact with each other, forming a
carbamic acid species, as inferred from our FTIR, 13C solid-
state NMR, and DFT results. This interaction is evident as
NH3-functionalized pores attract CO2 more strongly than the
nonfunctionalized activated mCBMOF-1: the CO2 uptake at
150 mbar and 298 K increases by 106%, and Qst increases by
40%. Discovering MOFs with unique pores geometries and
active sites and applying postsynthetic functionalization could

pave the way for further advancements in CO2 capture from
dilute sources.

■ EXPERIMENTAL SECTION

Materials
All the materials and chemicals used in this study were bought from
commercial sources such as MilliporeSigma, Sigma-Aldrich, and
Tokyo Chemical Industry and used without further purification.
Synthesis of mCB-H2L
1,7-Di(4-carboxyphenyl)-1,7-dicarba-closo-dodecaborane ligand
(mCB-H2L) was synthesized as per the literature procedure.

50

Synthesis of mCBMOF-1
[(Cu2(mCB-L)2(DABCO)0.5(H2O))·2DMF·2H2O]
mCBMOF-1 was synthesized as per the reported procedure.50 Briefly,
DABCO (6.5 mg, 0.059 mmol), mCB-H2L (90 mg, 0.234 mmol),
H2O (1 mL), and DMF (5 mL) were mixed in an 8 dram vial, and the
mixture was sonicated until all the solids were dissolved. Next,
Cu(NO3)2·6H2O (68 mg, 0.234 mmol) was added in ethanol (5 mL)
and sonicated until the metal salt was completely dissolved. The two
solutions were mixed and heated at 80 °C for 48 h to obtain green
crystals. Finally, the crystals were washed with DMF and acetone and
dried at 80 °C to obtain mCBMOF-1.
Activation of mCBMOF-1
A sample of mCBMOF-1 was enclosed in a Schlenk tube and heated
under a vacuum for 24 h at 120 °C using an oil bath to remove water
molecules from the pores.
Loading mCBMOF-1 with Excess NH3

Ammonia loading was conducted using either the 3FLEX gas analyzer
from Micromeritics or the Schlenk methods. In the Schlenk method,
the knob of the tube containing activated mCBMOF-1 was charged
with pure ammonia gas (utilizing a pressure gauge) at 1 bar for ∼1 h,
sealed, and allowed to equilibrate for an additional ∼1 h.
Regeneration of mCBMOF-1 after Ammonia Loading
Ammonia loaded MOF was soaked in water for 15 min with stirring.
After that, it was washed with water followed by acetone and dried at
80 °C.
Loading mCBMOF-1 with a Controlled Amount of NH3

Pristine mCBMOF-1 was introduced into a borosilicate glass tube and
activated under a vacuum for 24 h at 120 °C. A set amount adsorbed
of ∼1.00 mmolNH3/g was achieved with a 3FLEX Adsorption
Analyzer.
Loading the NH3-loaded mCBMOF-1 with CO2

mCBMOF-1 loaded with ∼1.00 mmolNH3/g was transferred to a Parr
reactor, which was then filled with CO2 gas to 1 bar at room
temperature and ∼1 h to achieve equilibrium.
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Data Availability Statement
The data that support the findings of the study are included in
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