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Abstract

Development of a Coupled 3-D DEM-LBM Model for Simulation of Dynamic Rock-Fluid
Interaction

by

Michael Henry Gardner

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Nicholas Sitar, Chair

Scour of rock is a challenging and interesting problem that combines rock mechanics
and hydraulics of turbulent flow. On a practical level, rock erosion is a critical issue facing
many of the world’s dams at which excessive scour of the dam foundation or spillway can
compromise the stability of the dam resulting in significant remediation costs, if not direct
personal property damage or even loss of life. The most current example of this problem is
Oroville Dam in Northern California where massive scour damage to both the service and
emergency spillways during the flood events of February 2017 led to the evacuation of more
than 188,000 people living downstream of the dam.

This research is specifically aimed at developing the ability to numerically evaluate rock-
water interaction, building upon the experimental and analytical work by George and Sitar
[[30],[28], [26], [27], [29]]. The focus is on producing simulation techniques capable of consid-
ering the interaction between three-dimensional polyhedral rock blocks interacting with fluid
such that the complex shape of the blocks is captured in both the fluid and solid numerical
models. Accounting for the rock block geometry and orientations is essential in capturing
the correct kinematic response.

To this end, a three-dimensional, open-source program to generate the fractured rock
mass was developed based on a linear programming approach. The application runs on
Apache Spark which enables it to run locally, on a computer cluster or on the Cloud. The
program automatically maintains load balance among parallel processes and can be scaled
up to meet computational demands without having to make any changes to the underlying
source code. This enables the program to generate real-world scale block systems containing
millions of blocks in minutes.

The second stage of this research effort focused on developing a new open-source Discrete
Element Method (DEM) program capable of analyzing the kinematic response of fractured
rock. The contact detection computations for DEM are also based on a linear programming
approach such that similar logic and data structures can be used in both the block generation
and DEM code, though the DEM code is written in C++. The program was validated against



2

analytical solutions as well as other numerical solutions and has been shown to accurately
capture the kinematic response of three-dimensional polyhedral rock blocks.

The DEM formulation was then extended to perform coupled fluid-solid interaction anal-
yses by coupling it with the weakly compressible Lattice Boltzmann Method (LBM). A
new algorithm, which extends the partially saturated approach, was developed to consider
three-dimensional convex polyhedra moving through the fluid domain. The algorithm uses
both linear programming and simplex integration for the coupling process. The LBM code
and the new fluid-solid coupling algorithm were validated against experimental data and
the capabilities of the new coupled DEM-LBM implementation were explored by evaluating
the performance of the program in simulating several different problems involving fluid-solid
interaction. The results show that the program is able to accurately capture the interaction
between polyhedral rock blocks and fluid; however, further performance improvements are
necessary to simulate realistic, field scale problems. Particularly, adaptive mesh refinement
and multigrid methods implemented in a parallel computing environment will be essential
for capturing the highly computationally intensive and multiscale nature of rock-fluid inter-
action.
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Chapter 1

Introduction

Erosion of rock by water is fundamental in the natural evolution of the landscape; how-
ever, the erosive capacity of water is equally applied to engineered structures. Dam spillways,
bridge abutments and tunnels are all subject to water erosion and damage to the structures’
foundations or the structures themselves can cost millions of dollars to repair and, in the
worst case, cause loss of life.

A sobering example of this is Oroville Dam. Located in the foothills of the Sierra Nevada
in Northern California, the dam sits along the Feather River east of the city of Oroville,
California. Between 6 to 10 February, 2017, approximately 12.8 inches of rain fell in the
Feather River Basin [18], causing much greater than predicted inflows into Lake Oroville.
This led to increased discharge over the service spillway which first showed signs of damage
on February 7. Spillway gates were closed to allow for damage inspection, the reservoir level
increasing all the while. On February 11, water flowed over the emergency spillway for the
first time in the history of the structure. Flow channels were quickly eroded into the natural
material and aggressively headcut towards the spillway crest, as shown Figure 1.1. This is
what triggered the emergency evacuation of approximately 188,000 residents downstream of
the dam. The service spillway gates were re-opened on February 12 and water was allowed
to spill periodically up until mid-May to manage reservoir levels. Figure 1.2 shows the
significant damage caused to the service spillway during this period of time.

Apart from the near-miss in terms of the dam failure, Oroville Dam also highlights the
changing risk associated with large infrastructure located in the near vicinity of expanding
urban environments. The hazard associated with dam failure is much different today than it
was when the structure was first built and this change is not unique to Oroville Dam. This
incident has made dam owners painfully aware of the risk that their structures pose to sur-
rounding communities and the need to re-evaluate the safety of these structures considering
the evolution of the hazard given a dam failure. Re-evaluating these structures requires new
tools that can evaluate the possible failure mechanisms that previous analyses were not able
to capture. As outlined by George [28], overly simplifying the three-dimensional nature of
fractured rock for scour analyses can be problematic and may miss the influence of geologic
structure on rock mass erodibility.
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Figure 1.1: Erosion of the emergency spillway at Oroville Dam in Northern California, 13
February 2017 [82]

To this end, this research builds on the experimental and analytical work by George and
Sitar [[30],[28], [26], [27], [29]] specifically aiming to develop the ability to numerically evalu-
ate rock-water interaction. The focus herein is on producing simulation techniques capable of
considering three-dimensional polyhedral blocks interacting with and moving through fluid.
The natural jointing within rock leads to fractured rock masses comprised of irregularly
shaped polyhedral rock blocks and the orientation of these blocks relative to the geometry
of the slope governs their kinematic response [36]. Therefore, it is essential that the model
for the solid phase is capable of accurately representing the rock block shapes and that the
coupling between the fluid and solid models allows the shape of the blocks to be accurately
captured in the fluid solution.

1.1 Modeling Fractured Rock

The mechanical behavior of fractured rock is governed by the discontinuities within the
rock mass: displacements occur along fractures and joints and the strength of these dis-
continuities is much lower than that of the surrounding competent rock. Additionally, the
orientation of the discontinuities relative to slope geometry dictates the kinematic response
of the rock mass and accurate representation of the discontinuities is essential in identifying
the kinematically correct failure mode [95]. Given these observations, in order to correctly
model fractured rock requires 1.) A numerical technique that can consider the discontinues
nature of the rock and, 2.) A three-dimensional rock mass model generated based on field
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Figure 1.2: Scour damage to service spillway at Oroville Dam in Northern California, 26
February 2017 [58]

observations that accurately captures the jointing within the rock and its orientation relative
to slope geometry.

Modeling the mechanical behavior of the rock mass requires integrating the partial dif-
ferential equations describing its motion—essentially Newton’s second law of motion. Con-
tinuum techniques such as the Finite Element Method (FEM) [121] and Finite Difference
Method (FDM) [65] provide a means to numerically evaluate partial differential equations
and have achieved great success in a wide scope of problems. However, a fundamental as-
sumption in these methods is that the medium being modeled is continuous. Techniques do
exist to account for discontinuities [[37], [31], [111], [87], [22]], but the use-case for these meth-
ods is aimed at problems where the domain is primarily continuous with only a few disconti-
nuities. To address this shortcoming, numerical methods have been developed that explicitly
consider the interaction between discrete particles in a discontinuous system. Specifically,
the Discrete Element Method (DEM) [[11], [13], [41]] and Discontinuous Deformation Anal-
ysis (DDA) [[93], [92]] have gained popularity within geomechanics to model the particulate
nature of geomaterials. DDA parallels FEM in that the blocks are described through a
system of equations where each element is a real isolated block [92]. For dynamic analyses,
the system of equations is solved implicitly. DEM, on the other hand, considers the motion
of each particle individually using explicit time integration. The motion of the particle is
described by Newton’s second law while the interaction of the particle with its neighbors
is captured through explicitly considering particle-particle forces based on a contact law.
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The explicit, decoupled nature of DEM makes it attractive for parallel computations since
only information on the particles’ immediate neighbors is required for calculating contact
forces after which the motion of each block can be updated independently. Additionally, the
extension of DEM to three dimensions is relatively straightforward. Therefore, DEM was
selected to model the mechanical behavior of rock.

A three-dimensional rock mass model is required as an input for the mechanical simula-
tions. Generation of this model can loosely be thought of as mesh generation for discontinu-
ous methods; however, the “mesh” is dictated by the physical orientation of the jointing and
fractures within the rock mass. The model is generated based on field observations, specifi-
cally, the number of joint sets with their strike, dip and spacing as well as their orientation
relative to slope geometry. A challenge in generating a fractured rock mass model is that all
observations are made on the surface and the internal structure of the rock is inferred based
on these surface manifestations. This is a fundamental topic in rock mechanics and many
algorithms have been developed to generate fracture networks and subdivide the rock mass
into individual blocks [[109], [108], [45], [53], [68], [56], [8]]. One particular class of block
cutting algorithms uses linear programming to generate the individual rock blocks [8]. This
method simplifies the implementation of the block cutting algorithm in terms of computer
code development since the blocks and discontinuities are described simply as linear inequal-
ities. Additionally, the contact detection problem for the mechanical model can be solved
using linear programming [7]. This means the blocks generated using the linear program-
ming approach will already be in a format that can be fed into the mechanical model and
much of the code developed for the fractured rock mass generation can be re-purposed in the
mechanical model contact detection. With this in mind, the fractured rock mass generated
as input to the mechanical model was generated using a linear programming approach.

1.2 Rock-Water Interaction

Modeling the interaction between the blocky rock mass and the water flowing over and
through it requires coupling between the numerical models for the solid and the fluid phases.
This means the hydrodynamic forces and moments exerted on the particles need to be ac-
counted for when integrating the equations of motion for the solid phase while the effect of
the particles in and moving through the fluid also needs to be incorporated into the fluid
solver. Simulations that capture this interaction generally follow two approaches. The first
approach incorporates fluid-solid interaction based on a locally-averaged interaction between
the two phases [[2], [105], [112], [104], [71]] while the second approach approach directly simu-
lates hydrodynamic forces on the solid particles [[78], [48], [81], [16]]. In the locally-averaged
approach, the fluid-solid coupling is done by averaging the interactions over a representative
volume and all particles within a local region experience the same hydrodynamic forces. This
makes the method less computationally expensive compared to direct simulation since the
number of solid particles is greater than the number of fluid cells. This approach may be
appropriate in certain applications, but it does not offer sufficient resolution when trying to
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establish the hydrodynamic interaction for individual blocks. Direct simulation of the fluid-
solid interaction attempts to overcome this shortcoming by having a much higher density
fluid mesh compared to the number of solid particles. This approach is able to capture the
variation in hydrodynamic forces on individual particles, but it does come at a much higher
computational cost.

Since the individual behavior of rock blocks is important for the kinematic response of
fractured rock, the direct simulation of rock-fluid interaction is necessary. Methods conven-
tionally used in computational fluid dynamics (CFD), such as FEM [120] and the Finite
Volume Method (FVM) [66] are able to directly solve the hydrodynamic forces and mo-
ments acting on solid particles and, in the case of FEM, can accommodate higher order
methods relatively easily. Both of these methods are able to handle the complex shapes of
rock blocks, but require remeshing if the blocks are allowed to move through the fluid mesh.
This can be computationally prohibitively expensive. In comparison, the Lattice Boltzmann
Method (LBM) [[70], [97]] allows for fluid-solid coupling in a less computationally expensive
fashion. Additionally, LBM is localized in its formulation, making it amenable to adaptive
remeshing and parallel computing—a necessity for direct simulation of fluid-solid interaction.
Consequently, LBM was selected to model rock-water interaction.

1.3 Research Outline

The inherent geometric complexity and discontinuous nature of fractured rock as well the
high computational cost of direct modeling of rock-fluid interaction necessitate numerical
methods that can accurately and efficiently simulate the hydrodynamics of rock erosion. In
terms of modeling the solid phase, DEM is well suited to describe the kinematic response
of fractured rock. The coupling process between DEM and LBM when the rock blocks are
allowed to move through the fluid mesh is comparatively simpler and less computationally
expensive than other CFD methods. The inherently localized nature of both DEM and LBM
makes them attractive candidates for parallel computing.

To this end, a three-dimensional, open-source program to produce the fractured rock
mass was developed based on a linear programming approach as described in Chapter 2.
Next, a three-dimensional DEM program for the analyses of blocky rock mass kinematics
was developed and validated as shown in Chapter 3. Finally, the DEM program was ex-
panded to perform a coupled solid-fluid interaction analysis using a weakly compressible,
three-dimensional LBM formulation. A new coupling algorithm that is able to consider
three-dimensional convex polyhedra moving through the LBM mesh was developed and val-
idated as described in Chapter 4. The LBM computations were accelerated using the C++
library Kokkos [15] which allows for shared memory parallelism on both central processing
units (CPUs) and graphics processing units (GPUs). The capabilities of the new coupled
DEM-LBM implementation were explored by evaluating the performance of the program in
modeling different types of problems involving solid-fluid interaction as shown in Chapter 5.
Chapter 6 concludes with a summary and opportunities and suggestions for future research.



6

Chapter 2

Fractured Rock Mass Generation

The contents of this chapter are primarily from a journal article published in Computers
and Geotechnics in May of 2017 by Michael Gardner, John Kolb and Nicholas Sitar entitled
“Parallel and Scalable Block System Generation” [24].

2.1 Introduction

Generating a realistic representation of the fractured rock mass is the first step in many
analyses—whether evaluating the interaction of fractured rock with water, evaluating the
mechanical behavior of the rock mass itself or considering the fracture network within the
rock for seepage analyses. The orientation and spacing of the joint sets, how persistent they
are and how they intersect each other will fundamentally affect how the rock mass behaves.

This is not a new topic and many researchers have developed algorithms to generate frac-
ture networks and subdivide the rock mass into individual blocks. Warburton [[108], [109]]
presents a methodology for generating a blocky rock mass through sequential subdivision.
His method uses a three-level data structure for describing the blocks—the faces, edges and
vertices describe the geometry of the generated blocks. The scheme developed by Heliot
[45] can generate a rock mass containing non-convex blocks by representing blocks as an as-
semblage of smaller, convex blocks. This method uses a two level data structure containing
vertices and faces to represent the individual blocks. Ikegawa and Hudson [53] developed
the directed body approach in which all discontinuities are introduced simultaneously. The
individual blocks are then extracted from the vertices edges and faces. Additionally, other
researchers [[68], [56]] have developed methods that are able to deal with more complex
geometry using principles of combinational topology; however, these techniques come at
the expense of significant “bookkeeping”. Recently, Boon et al [8] introduced an algorithm
based entirely on linear programming. Instead of explicitly calculating the face, edges and
vertices where discontinuities intersect, the problem is cast as a linear optimization. This
makes it possible to represent the blocks using a single level data structure only describing
the faces that comprise the block. The simplicity and efficiency of this method makes it an
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attractive candidate for large scale parallel computations. The algorithm itself is entirely
decoupled—once a block has been subdivided into two new blocks, the further subdivision
of these blocks can proceed independently. Consequently, this method is naturally parallel
and multiple cuts can be made simultaneously without the need to share information among
processes.

2.2 Apache Spark

The sequential subdivision of the rock mass is an iterative process on the same set of data,
making the parallel, open-source framework Apache Spark [113] an ideal platform for this
approach. Spark can run on many platforms ranging from laptops and personal workstations
with multicore processors to Cloud based computing platforms such as Amazon Elastic Cloud
Compute (EC2). This scalability in computing power without having to make any changes
to the underlying code allows for the analysis of very large problems requiring large amounts
of memory and computing power.

The fundamental abstraction in Spark is Resilient Distributed Datasets (RDDs) [114]
that allow it to keep large data sets in memory and perform computations in a fault tolerant
manner. Spark is able to do iterative transformations on the data extremely quickly since
it avoids writing to disk. Fault tolerance is achieved by tracking the lineage of RDDs—all
operations applied to the RDD are represented through a lineage graph. When a new
operation is applied to the RDD, a new link is added to the graph. Additionally, RDDs
are evaluated lazily: only when a result is requested does Spark execute the transformations
described by the lineage graph to actually materialize the current RDD. In this way, if a
process unexpectedly fails the current state can be quickly reconstructed from the lineage
contained in the graph.

For large scale problems, Spark clusters can be deployed on EC2 using Amazons Elastic
MapReduce (EMR) framework, which automatically allocates and configures a cluster of
EC2 instances to execute Spark tasks submitted by the user. Amazon EC2 falls under the
greater umbrella of Cloud Computingapplications delivered as services over the Internet and
the associated software and hard ware that provide those services [3]. Running large scale
computations on the Cloud offers users several advantages. First, resources can be scaled on
demand to meet the computing requirements of the problem at hand. Second, it is no longer
necessary to invest large amounts of capital in computational hardware and the associated
management and maintenance. Lastly, usage can be scaled up or down as needed so users
only pay for what they use and only use what they need. This makes it possible for anyone
to run large scale computations since it is no longer necessary to physically own a computer
cluster.
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2.2.1 SparkRocks

By taking advantage of Sparks ability to run on any computer system and the scalability
of Cloud Computing, a parallel block cutting program, SparkRocks 1 was developed. The
program is capable of generating large numbers of blocks very quickly. The code is open
source and the necessary inputs to generate a fractured rock mass are based on parameters
that are obtained from field observations, allowing users to quickly translate field measure-
ments into a three-dimensional model. The program was evaluated on different systems—a
laptop, desktop workstation, and Amazon EC2—to illustrate its ability run on different plat-
forms and to verify its scalability. Results show that approximately 8 million blocks can be
generated in roughly 9 minutes when executing on Amazon EC2.

2.3 Block Cutting Algorithm

In the sequential subdivision approach based on linear programming optimization in-
troduced by Boon et al. [8], each discontinuity is introduced individually and checked for
intersection. If it intersects the block, two new blocks are generated. The process continues
sequentially until all discontinuities have been introduced, yielding a representation of the
fractured rock mass. Many block cutting algorithms require a significant amount of book-
keeping in terms of vertices, edges, faces and how all of these elements are connected. From
an implementation perspective, this can be extremely tedious and may not be as robust in
terms of floating point error. The linear programming optimization approach introduced by
Boon et al. greatly simplifies how block cutting is implemented and how each block is repre-
sented in terms of data structure. Here, only a brief overview of this rock cutting algorithm
is given since the details are presented in [8].

The orientations of joints in a fractured rock mass are described by strike and dip, as
shown in Figure 2.1. The block cutting algorithm uses the normal vector of the plane
containing the joint and the distance of that plane to some origin. The strike and dip define
the normal vector of the joint. The distance of the joint plane from the origin is determined
by projecting a vector connecting the origin to a point in the joint plane onto the normal
vector. The global +x, +y and +z axes are oriented North, West and upward.

Using only the joint normal and distance, it is possible to completely describe the volume
defining a polyhedral block. The volume defining a block bounded by N planes is described
by the following equation:

aix+ biy + ciz ≤ di, i = 1, . . . , N (2.1)

The coefficients (ai, bi, ci) represent the normal vector to the ith plane bounding the block
and di is the distance of that plane from some local origin. In vector notation this becomes:

aTi x− di ≤ 0, i = 1, . . . , N (2.2)

1Available at https://github.com/cb-geo/spark-rocks

https://github.com/cb-geo/spark-rocks
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θdip
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Figure 2.1: Description of strike and dip, illustrating relationship to global coordinates

Interior region

bounded by 

linear inequalities

Normal vector defining

linear inequality

Figure 2.2: Volume bounded by set of inequalities. The shaded region represents the block
that is defined by this set of linear inequalities (after ([8]).

In order to subdivide a block, it is necessary to establish whether the block is intersected
by the discontinuity being considered. The novelty in the algorithm presented in [8] is
recasting this problem as a linear program:

minimize s

aTi x− di ≤ s, i = 1, ..., N

aTnewx− dnew = 0

(2.3)
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Here N represents the number of planes that define the block and the discontinuity being
considered is represented by the equality. If s < 0, there is an intersection and the parent
block is split into two child blocks. The child blocks inherit all the parent block’s planes as
well as the intersecting discontinuity with opposite signs for the discontinuity normal vector
for each child block.

As the subdivision continues, some of the discontinuities may become geometrically re-
dundant. It is not necessary to remove these redundancies after each intersection check;
instead they can be removed at a later time as discussed in Section 2.4.2.3. Again, this can
be done by solving a linear program:

maximize cTx

aTi x ≤ di, i = 1, ..., N
(2.4)

Here, c is the normal vector specific to the discontinuity being checked for redundancy and
with associated distance d. If |cTx − d| < ε the discontinuity is not redundant, where ε
represents a numerical tolerance close to zero.

Additionally, SparkRocks takes advantage of two major optimizations to the block cut-
ting process that are presented in [8]. The first optimization draws on an idea common to
contact detection in particle methods (for example, see [74]): the complex geometry of the
polyhedral blocks is enclosed in a simpler shape, in this case a bounding sphere. This enables
a simple and fast check for intersection to determine if a more thorough but computationally
expensive check is necessary. The second optimization is to control the size and aspect ratio
of the blocks that are generated during the slicing process. Unrealistically small or thin
blocks can contaminate the generated blocks, leading to undesirable side effects in the sub-
sequent analyses that use the fractured rock mass as an input. Both of these optimizations
involve the construction and solution of linear programs.

2.4 Implementation on Spark

2.4.1 Translation Into a Parallel Problem

As already stated, the serial approach to cutting blocks can be modified to run in parallel.
Once two child blocks are cut from their parent by a particular joint, they can be treated
independently for the remainder of the block cutting process. In other words, one child’s
intersection with subsequently introduced joints and future subdivisions into further child
blocks has no effect on the subdivision matters of its sibling. This gives rise to a tree
structure of relationships between blocks, depicted in Figure 2.3. Therefore, while processing
each joint in a rock mass, the joint’s intersection with each block cut so far can be computed
independently. We take advantage of this property to construct and solve the linear programs
described in the previous section in parallel and independently on each processor. It is
important to note that the tree structure described is not unique to [8], and any other block
cutting algorithm with this property would lend itself to parallelization.
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Parent

Children

Grandchildren

Figure 2.3: Three Generations of Blocks Cut from a Common Ancestor

In practice, it is necessary to effectively distribute work to the multiple central processing
unit (CPU) cores and nodes that are available. By expressing the current set of blocks cut
from a rock mass as an RDD in the Spark context, it is possible to seamlessly perform parallel
operations on these blocks and scale the associated computation to different quantities of
CPU cores and nodes without changing any of the underlying rock slicing logic. To split up
responsibilities for all of the required rock slicing, we select a small subset of joints to break
the overall rock volume into a group of initial blocks of roughly equal volume. Each block,
and all of that block’s descendants, are then processed independently as illustrated from a
high level in Figure 2.4.

2.4.2 Implementation

A direct translation of the method described in [8] into code does not lead to an efficient
parallel implementation. This section describes important features and refinements necessary
to achieve good performance when dealing with problems at a large scale.

2.4.2.1 Load Balance

Load balance among parallel processes as well as minimizing communication between
them is of primary concern in achieving efficient parallel execution. A solution that achieves
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Figure 2.4: Steps in the Parallel Rock Slicing Process

good load balance may not necessarily feature a reasonable level of communication overhead,
while another solution may have low communication overhead but poor balancing of work
among parallel processes. It is therefore necessary to find a strategy that achieves a balance
between these two demands by taking into account the characteristics of the underlying
framework on which computations are done.

In this case, the initial thought was to focus on load balance. Artificial joints were
introduced to divide the rock volume into equal pieces so that near-perfect load balance is
achieved between parallel processes. However, in order to remove the artificial joints at the
end of the slicing process, all blocks sharing an artificial joint must be recombined in order
to remove that artificial joint from the final rock mass. This involves an exchange of blocks
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over the network among all nodes, which induces a high amount of communication overhead
that slows down the overall rock slicing process and offsets the gains achieved through load
balancing. Currently Spark does not have the necessary communication primitives to directly
manage communication which, in this case, leads to excessive communication to the point
that the majority of the computation time is spent on the removal of artificial joints rather
than the introduction of real joints.

Given these constraints, some of the load balance can be sacrificed in order to minimize
communication. Since the block cutting process is entirely decoupled and can be done
independently, once each node receives a portion of the initial rock volume it can complete
the cutting process without communicating with other nodes. We exploit this by selecting
joints from the input joint sets that divide the initial rock volume into approximately equal
volumes. The blocks generated by cutting the initial rock volume with the selected joints
are used to seed the initial RDD. This idea is illustrated in Figure 2.5. The different colors
represent which portions of the rock mass were processed by which node. In this example
four nodes were used. Each node processed one portion of approximately equal volume and
the last, much smaller volume was processed by the node that completed its subdivision
first.

Figure 2.5: Example of load balance. Here, at least 4 partitions were requested. The different
colors represent which pieces were processed by which node.

Since the joints used to generate the seed blocks are real joints taken from the input
joint sets, it is not possible to achieve perfect load balance. In some instances it may not
be possible to find adequate seed blocks from a single joint set, so it becomes necessary to
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select joints from multiple joint sets. This complicates finding the exact same number of
seed blocks as the number of nodes in the analysis. In most cases, more seed blocks are
generated than what is requested. This is especially the case when selecting joints from
multiple joint sets. Since Spark performs dynamic load balancing internally, having more
seed blocks provides flexibility in managing and maintaining load balance.

2.4.2.2 Lineage

Spark internally tracks the transformations applied to each RDD in a lineage graph. This
allows it to defer the materialization of an RDD until its contents are actually needed by
traversing a path from a previously materialized RDD to the required RDD, applying the
necessary transformations along the way. However, Spark fails when lineage chains in this
graph grow too long. Specifically, this occurred in the initial version of the rock slicing code
depicted in Figure 2.6a, which iterated through each joint in the rock mass, checked for
intersections with any members of the current block RDD, and produced a new RDD in
which any blocks intersecting the joint were cut into two child blocks. Thus, a new RDD
was created for each joint, and a lineage chain formed with a length proportional to the total
number joints, which becomes unwieldy when the number of joint is large.

We resolved this issue by taking advantage of Spark’s fold primitive, as shown in Figure
2.6b. This operation individually examines each joint and creates an intermediate collection
of blocks that are the cumulative result of processing all joints seen so far. The operation
repeats until all joints have been processed, and only the final result is retained. In more
detail, fold starts with an initial element (the seed blocks used for load balancing), and
element i is produced by applying an operation to element i− 1 and the next joint, which in
this case is an intersection check and the necessary slicing of parent blocks into child blocks.
Spark treats a fold as a single transformation and therefore a single link in the lineage chain.
This replaces the original lineage chain, with a length proportional to the number of joints,
with a lineage chain of length one.

2.4.2.3 Redundant Faces

Two child blocks that are cut from a parent inherit all of the parent’s faces as well as a
face along the discontinuity that separates the blocks from each other. Many of these faces
are geometrically redundant and can removed without compromising the integrity of the
block. Boon et al. [8] advocate deferring the removal of geometrically redundant faces until
all blocks have been cut. However, retaining a large number of redundant faces in blocks
during the slicing process increases the size of the linear programs that must be solved when
checking for intersection between blocks and joints. The increase in linear program size leads
to degraded performance as more child blocks are cut from the initial rock volume.

To avoid this deterioration in performance, we periodically remove redundant faces dur-
ing the block cutting process. The frequency at which this removal is performed represents
a tradeoff. Removing redundant faces is somewhat expensive because it involves solving a
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Figure 2.6: Lineage Chains in Spark

linear program for each face of a block, so it cannot be done too often. We found that elim-
inating redundant faces for every 200 joints processed keeps the linear programs reasonably
sized without adding excessive overhead from geometric redundancy checking.

An important consideration in this scheme is the fact that many, if not most, blocks
will not change when additional joints are introduced. Therefore, examining these blocks is
unnecessary work and a source of significant inefficiency. To address this problem, we index
all joints by the order in which they are processed, i.e. the first joint checked for intersection
against all blocks is assigned index 1, the second joint checked is assigned index 2, and so
on. Each block is augmented to track its generation—the index of the joint that cut the
block from its parent, and blocks that were not cut from their parents by any of the 200
most recently introduced joints are skipped.

2.5 Performance

Performance evaluation was done on Amazon EC2 with Amazon Elastic MapReduce
(EMR). EMR can seamlessly configure a Spark cluster on EC2, which makes deploying ap-
plications written for Spark easy to run. All testing was done on compute-optimized instance
types, which are specifically designed for compute-intensive HPC applications. An instance
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in the context of EC2 is a single node. For example, a four node cluster comprises four
instances. The different instance types give the user a choice in the hardware configuration
of the nodes. Testing was done with c3.xlarge, c3.4xlarge and c3.8xlarge instances.
These three instance types span a range of computational power and hardware configura-
tions, shown in Table 2.1.

c3.xlarge c3.4xlarge c3.8xlarge

vCPU 4 16 32
Memory (GB) 7.5 30 60

SSD Storage (GB) 2 x 40 2 x 160 2 x 320

Table 2.1: Amazon EC2 Instance Types Used in Testing

In order to maintain control over the exact number of blocks that were generated, the
input rock volume consisted of a rectangular prism and input joints were defined such that
they divide the rock volume into a specific number of cubes. This allowed easy interpretation
of how well SparkRocks scales.

2.5.1 Partitioning

Load balance among the different nodes is maintained by partitioning the initial rock
mass into approximately equal volumes, as described in Section 2.4.2.1. The number of
partitions - seed blocks - used in block cutting has a significant impact on the efficiency.
Figures 2.7 and 2.8 show the total elapsed times for the three different instance types with
4,000 blocks and 32,000 blocks per node, respectively. Instances with 64,000 blocks per node
showed similar trends. The most important result is that efficiency is highly sensitive to the
number of initial partitions used to seed the RDD. Seeding the RDD with more partitions
gives Spark more freedom in managing parallel execution, as indicated earlier. This trend
is observed independent of the number of nodes. Each node can execute computations in
parallel locally; however, if it receives only a single partition, computations will be serial as
demonstrated by the runs executed on a single node.

When more than one node is used with too few partitions, Spark cannot effectively share
the computational load across all members of the cluster, and some nodes end up doing
much more work than others. By seeding the RDD with more partitions initially, each node
will receive many seed blocks. This allows Spark to locally exploit parallelism and greatly
increase efficiency. This is seen more clearly for tests with more blocks, such as shown in
Figure 2.8 where execution times for large node counts are slower than smaller node counts
for the same number of partitions.

However, when the input data set is too small, larger clusters perform poorer regardless
of the number of partitions. For example, when each node only has 4,000 blocks, as shown
in Figure 2.7, the data set is too small to benefit from the greater computational power
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Figure 2.7: Execution Time vs. Number of Initial Partitions in the Rock Volume - 4,000
Blocks per Node

of larger clusters. The communication overhead required to manage more nodes dominates
total execution time.

Interestingly, in some instances, there is a slight increase in execution time for larger
partition counts. Apparently, with too many partitions the cost of communication among
the nodes begins to outweigh the load balancing benefits, leading to higher execution times.
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Figure 2.8: Execution Time vs. Number of Initial Partitions in the Rock Volume - 32,000
Blocks per Node

However, as can be seen, great speedup is attainable even if the most optimal partition count
is not selected.
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Figure 2.9: Execution Time vs. Number of Initial Partitions in the Rock Volume on a
Four-Node Cluster

2.5.2 Instance Type

Figure 2.9 shows the total execution time of the rock slicing process on a four-node clus-
ter for the three EC2 instance types and for three different problem sizes (4,000 blocks per
node, 32,000 blocks per node, and 64,000 blocks per node). Clusters of two, eight, and
sixteen nodes exhibited similar results. The least powerful instance, c3.xlarge, is affected
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by small initial partition counts far more than the other types. A low partition count pre-
vents all nodes in the cluster from fully participating, which accentuates the disparity in
computational power between the c3.xlarge and the other instance types. As the partition
count increases, the different instance types begin to yield more comparable performance, al-
though c3.xlarge clusters still remain noticeably worse than the alternatives. Interestingly,
the c3.4xlarge and c3.8xlarge demonstrate very similar performance characteristics, not
just at high partition counts but for all partition counts. This implies that there are dimin-
ishing returns to running a well-tuned deployment on more powerful EC2 nodes, and this has
important consequences for users seeking to perform large scale rock slicing on the Cloud.
While Amazon’s price for a c3.8xlarge instance is double that of a c3.4xlarge instance,
one can use the latter without suffering a compromise in performance.

2.5.3 Weak Scaling
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Figure 2.10: Execution time and scaling efficiency as cluster size increases. All experiments
shown here used 64 partitions for all cluster sizes.

The weak scaling of a parallel program is its ability to maintain a constant level of
efficiency while increasing the number of nodes involved in its computations. The problem
size per node is kept constant, so each node performs the same amount of work as new nodes
are added. In the ideal case, the execution time should remain constant as the number
of nodes increases. To test the weak scaling capabilities of SparkRocks, we performed
rock slicing on clusters of increasing size while proportionally increasing the total number
of blocks that are sliced, e.g. a cluster with twice as many nodes slices twice as many
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blocks. The relevant results are included in Figure 2.10 in terms of total execution time and
scaling efficiency. When processing 4,000 blocks per node, SparkRocks demonstrates good
weak scaling behavior, although it can be argued that there are not enough blocks in these
experiments to seriously challenge the system’s scaling abilities. Total execution time slowly
increases as cluster size increases, probably due to the additional communication costs that
are introduced by adding more nodes. Again, c3.4xlarge clusters achieve performance that
is comparable to that of c3.8xlarge clusters.

When processing 32,000 and 64,000 blocks per node, the results become more compli-
cated. As with 4,000 blocks per node, there is only a small performance difference between
c3.8xlarge clusters and c3.4xlarge clusters, particularly at larger cluster sizes. Moreover,
the performance gap between these two instance types and the c3.xlarge clusters also de-
creases as clusters become larger. Larger cluster sizes are therefore able to mask some of
the differences in the capabilities of the underlying hardware. Diminishing scaling returns
begin to appear at the larger cluster sizes, where execution time either decreases very slightly
or increases. This is probably because communication costs start to become the dominant
factor in scaling behavior, as is typical for parallel computing applications.

Figure 2.10 also illustrates a pattern in which execution time decreases in certain places
as cluster size increases, e.g. when moving from two to four nodes. In some sense, this is
better than “perfect” scaling where execution time remains constant as the number of nodes
increases. This behavior is particularly difficult to analyze because Spark gives the user
little control over how their jobs are executed on the underlying cluster of machines. Spark
divides a job into a group of tasks, each of which is completed by an executor – an abstraction
for an independent unit of processing. On Amazon’s Elastic MapReduce platform, Spark
by default dynamically assigns tasks to executors and increases or decreases the number of
executors devoted to a job based on internal heuristics. The improved performance when
increasing cluster size is likely due to the fact that with more machines, and therefore with
more blocks to partition among these machines, Spark has more freedom to balance load
across the cluster and is consequently able to achieve better execution times.

2.5.4 Strong Scaling

Strong scaling is measure of the speedup efficiency when increasing the number of nodes
for a fixed problem size - using more nodes should yield shorter execution times. Based on
the above mentioned results, strong scaling tests were only performed using c3.4xlarge and
c3.8xlarge. These instance types clearly outperformed c3.xlarge and would be reasonable
to use when attempting larger analyses. Figure 2.11 shows the results of these tests, both
in terms of execution time and scaling efficiency. When comparing the execution times, it
is clear that both instances perform equally well with more nodes. The largest difference
in execution times is seen when using 1 and 2 nodes. This makes sense since the problem
size is getting sufficiently large to accentuate the difference in computational power between
c3.4xlarge and c3.8xlarge instances. Using fewer nodes limits parallelism and the more
powerful instance wins out. However, considering the difference in cost and the fact that
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Figure 2.11: Execution Time and Scaling Efficiency as Cluster Size Increases - 134 Partitions

performance is very similar when using 4 nodes or more, c3.4xlarge seems to be a better
starting choice in terms of instance type.

In terms of efficiency, both instance types exhibit similar trends though c3.4xlarge is
somewhat more efficient. If SparkRocks had perfect strong scaling, the speedup would be
equal to the number of nodes used. Most likely, the increase in communication overhead
required to manage the cluster offsets much of the gain in additional resources. Also, the
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strong scaling tests were performed with the same number of initial partitions, regardless of
the cluster size. More in-depth optimization would most likely reveal better strong scaling
with respect to varied initial partitioning.

2.5.5 Practical Implications

From a practical perspective, the results presented in Figure 2.11 reveal that, for most
cases, using the less expensive c3.4xlarge instance type will yield very comparable speedup
at a lesser price - even for as many as 8 million blocks. For greater problem sizes, where
more memory and computational power are necessary, c3.8xlarge is available.

In this context, the computational speed of a single core of a 3.1GHz Intel Core-2-Duo
CPU presented in Boon et al. [8] was compared to SparkRocks running on a laptop with
an Intel Core i7-4720HQ (2.6 GHz) CPU with 4 cores and 10GB of memory, a workstation
with two Intel Xeon E5-2630 v2 (2.3 GHz) CPUs with 12 cores and 20GB of memory, and
an eight-node cluster of c3.4xlarge EC2 instances, using the best partition count for each
problem size. The EC2 cluster features a total of 240GB of memory and 128 vCPUs.

Figure 2.12 is a plot of execution time against problem size. It shows that the parallel
implementation offers orders of magnitude speedup compared to the serial implementation
featured in [8] as the number of available cores and memory increases. In particular, it was
observed that when the execution of SparkRocks is moved from a single desktop to an EC2
cluster, running times decrease by about an order of magnitude for problems of the same
size, while the cluster can also accommodate much larger problems than the lone server.
Running times on the EC2 cluster do not begin to significantly increase until the problem
size becomes quite large. If even larger problem sizes were tested, running time on EC2
should scale similarly to the running times seen on the laptop and desktop deployments.
Overall, performance on EC2 conformed to expectations, as the cluster represents about an
order of magnitude increase in CPU and memory resources compared to the desktop, and it
generally was observed that the execution of SparkRocks is CPU-bound. While the parallel
processes running on different machines within the cluster now have to communicate over the
network, the rock slicing algorithm implementation minimizes this communication, keeping
overhead small and allowing SparkRocks to take nearly full advantage of the additional
resources.

Overall, the parallel implementation in SparkRocks is capable of generating 8,192,000
blocks in roughly 9 minutes on EC2, while a serial analysis running on a desktop CPU is
able to slice only 60,000 blocks in roughly ten minutes [8]. This speed and scalability is
made possible by the use of Spark and the abstractions it provides. Expressing the rock
slicing process as a series of transformations on a resilient distributed dataset of blocks
allows the work to be spread and to scale to all of the nodes and CPU cores available. All
of this was done without changing any of the actual rock slicing code. For the problem sizes
typically seen in engineering practice and research, the SparkRocks parallel implementation
can generate full block systems in a matter of minutes. Historically, access to the kinds
of computing clusters that can provide this level of performance has been prohibitively
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Figure 2.12: Execution Time vs. Problem Size for SparkRocks and Boon et. al. (2015) [8].
Note: x-axis is in log scale

expensive for many. However, with the relatively recent advent of Cloud Computing, users
can forego provisioning their own clusters and access cloud resources instead; paying only for
what they actually use. Thus, these results demonstrate that the computational resources
are no longer a limitation and the solution of real-world scale problems is well within reach.

2.6 Summary

A parallel, scalable open-source application, SparkRocks, was developed that runs on
Apache Spark to allow fast, parallel block system generation. Testing on different systems,
ranging from multiprocessor workstations to Amazon EC2, shows that the parallel imple-
mentation offers orders of magnitude speedup for the solution of large problems. Moreover,
the ability to take advantage of Cloud Computing greatly increases the scale of analyses that
can be attempted. Real-world, large-scale block systems comprising millions of blocks can
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be generated in a matter of minutes. Cloud Computing makes this scale of analysis available
to any user since Cloud resources can be rented as-needed, negating the need to maintain a
local computing cluster. Users only pay for what they use and only use what they need.
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Chapter 3

3D Discrete Element Method for
Analysis of the Mechanical Behavior
of Jointed Rock Masses

3.1 Introduction

The mechanical behavior of fractured rock is governed by the discontinuities within the
rock mass—displacements occur along fractures and joints and the strength of these dis-
continuities is significantly lower than that of the surrounding competent rock. Given this
inherent discontinuous nature of the rock and the highly localized displacements along dis-
continuities, continuum based methods cannot capture the full kinematics of rock mass
response. To address this shortcoming, numerical methods have been developed to explicitly
account for the discrete, particulate nature of fractured rock, such as the Discrete Element
Method (DEM)[11] and Discontinuous Deformation Analysis (DDA)[93]. These methods are
well suited to describe the kinematic interaction between individual rock blocks and, both
DEM, as expanded in [13] and [41], and DDA are able to explicitly model the polyhedral
shape of the individual blocks. In this study DEM was selected to model the fractured rock
mass because its explicit time integration and localized mechanical computations make it an
attractive candidate for parallel computations.

3.2 Contact Detection

The contact detection phase is the most computationally expensive portion of DEM
simulations, accounting for approximately 80% of the total simulation time [50]. Contact
detection can be divided into two separate phases: neighbor search and contact resolution.
During the neighbor search, a block’s nearest neighbors—blocks that are close enough to
possibly be in contact within a given time period or step—are identified. Once this phase
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is completed, each of the nearest neighbors is checked to resolve if the blocks are actually
physically in contact. The following sections describe each of these phases in more detail.

3.2.1 Neighbor Search

During simulations, only blocks in the same vicinity have the possibility of being in
contact, so checking each block against every other block for contact is unnecessary and
inefficient. For example, if the simulation contains N blocks, a näıve implementation would
result in O(N2) operations. To avoid doing this, it is necessary to establish which blocks are
“close enough” to warrant a more detailed, computationally intensive contact check. This is
the purpose of the neighbor search.

Neighbor search algorithms can be divided into two classes: tree-based algorithms and
binning algorithms [110]. Tree-based algorithms [[79], [17], [83]] generally are O(Nln(N))
while binning algorithms [[73], [110], [59]], also called spatial hashing algorithms, are O(N).
The fundamental idea in the neighbor search is to divide the domain into cells—with the size
of cells set for each block individually, as in tree-based approaches, or a tunable parameter,
as in binning approaches—and then map each of the blocks in the domain to the cells that
they occupy [13]. For non-spherical particles, such as blocks, the shape of the particle is
simplified to a bounding box—the smallest box that can contain the particle. This bounding
box is what is used to establish which cells the block is mapped to. Figure 3.1 illustrates the
concepts of both cell mapping and the bounding box as applied in spatial hashing. For the
neighbor search phase in our software, we have implemented the CGRID algorithm [110].
CGRID, compared to the NBS algorithm [73], is able to maintain performance even when
the sizes of particles in the simulation differ significantly, as is often the case for fractured
rock. Additionally, the method can be extended to three dimensions relatively easily.

Once all blocks have been mapped to cells and the neighbors of each block have been es-
tablished, the fine-grained contact resolution phase establishes whether blocks are physically
in contact.

3.2.2 Contact Resolution

The neighbor search establishes which blocks possibly could be in contact, but it is then
necessary to establish which of these neighboring blocks are actually in contact. Here, we
make use of the block’s bounding sphere to first check whether the bounding spheres of the
neighboring blocks overlap. If they do, further contact resolution is required. If not, the
blocks are not in contact.

In the case where further contact resolution is required, several algorithmic approaches
are available. One approach is the common plane algorithm [13]. In this approach the contact
between two neighboring blocks is established based on the relationship of the blocks to the
common plane and not directly to each other. The fast common plane [76] and shortest
link method [75] build upon this approach. Another class of contact resolution algorithms
are the so-called direct search methods [[116], [118], [115], [117]]. While the common plane
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Figure 3.1: Blocks, with bounding boxes shown, moving through background cells. Bounding
box is used to determine which cells block is mapped to.

approach avoids much of the “bookkeeping” in terms of tracking vertices, edges and faces,
both common plane and direct search method suffer from sudden changes in contact type: If
two blocks are initially in a vertex-to-vertex contact, one of the block may move such that the
vertex that was in contact displaces just enough so that the contact is reclassified as vertex-
to-face or vertex-to-edge. This can lead to undesired jumps in the contact force and sudden,
unrealistic changes in the contact normal direction. Another approach that avoids these
undesired effects recasts the contact detection problem as a convex optimization [7]. In this
approach, the particle shape is described using only the faces of the blocks and their distance
from some origin as previously described in Section 2.3. Describing the contact between two
blocks using only the faces is attractive since floating point errors associated with tracking
individual vertices and how they feature in contacts is partially alleviated—floating point
errors are unavoidable, but the algorithm is more robust in terms of accounting for them.
More importantly, the algorithm does not suffer from the sudden transitions in contact types
since “potential particles” [51] are used as a proxy for the particle shape which allows for
smooth transitioning of the contact normal in the vicinity of vertices and edges.

The following is an overview of the contact resolution process, including necessary details
on how it is implemented. A full description of the algorithm is given in [7].

3.2.2.1 Establishing Contact

Following the approach outlined in [7] where the blocks are described using only their
facets, contact is established by solving the following linear program:
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minimize s

ai
Tx− di ≤ s, i = 1, ..., NA +NB

(3.1)

Where NA and NB represent the number of facets of the two neighboring blocks. The two
blocks are in contact if s < −ε where ε is a specified numerical tolerance.

3.2.2.2 Contact Point

Once it has been verified that two blocks are actually in contact, it is necessary to
calculate the contact point—the location at which the interaction forces between the two
blocks are applied. As described in [7], the analytic center of the volume of the region of
overlap is taken the contact point. This is illustrated in Figure 3.2. The analytic center is
then solved for by minimizing the following:

minimize tcTx−
N∑
i=1

log(di − aTi x) (3.2)

Equation 3.2 is solved repeatedly using the log-barrier method with Newton’s method to
find the optimal point—the analytic center—which is then used as the contact point between
the two contacting blocks.

Analytic Center

Figure 3.2: Two colliding blocks with analytic center taken as contact point. Arrows indicate
the direction of normal vectors to block faces. (modified, based on [7])
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3.2.2.3 Contact Normal

To avoid the previously mentioned issues and ambiguities in terms of establishing the
type of contact and the associated contact normal, [7] utilized the concept of “potential
particles” [51]. These potential particles are located entirely inside the block and are used
to efficiently calculate the contact normal regardless of the location of the contact relative
to vertices and edges. Figure 3.3 illustrates the concept of potential particles and how the
normal is calculated for a particular contact point. The potential particle is defined by:

f =
N∑
i=1

〈aix+ biy + ciz − di + r〉2 (3.3)

where the values ai, bi and ci are the components of the normal vectors to the facets of the
block and r is the radius of curvature of the corners. The Macaulay brackets are defined
such that 〈x〉 = 0 and 〈−x〉 = 0. Given this definition, it is important to note that r
should be selected such that it is greater than the maximum overlap expected between any
two particles during the simulation. Generally, the constraints on the time step in terms
of numerical stability enforce that the overlap is significantly smaller than the value of r.
The definition of the potential particle can also be viewed as a distance function where the
distance is set to zero inside the particle and is positive outside the particle. Then, the
normal to the particle is given by the gradient of f as defined in Equation 3.3:

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
where

∂f

∂x
= 2

N∑
i=1

ai〈aix+ biy + ciz − di + r〉

∂f

∂y
= 2

N∑
i=1

bi〈aix+ biy + ciz − di + r〉

∂f

∂z
= 2

N∑
i=1

ci〈aix+ biy + ciz − di + r〉

(3.4)

The contact normal is taken as the average of the contact normals to the potential
particles of the two colliding blocks. The contact overlap is then calculated by finding the
length of the line passing through the contact point in the contact normal direction that
terminates on the surfaces of the two colliding blocks.
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Potential Particle

Actual Particle

Contact Normals

Contact Point

Figure 3.3: Two colliding blocks with contact normals based on each blocks potential particle
shown. Contact normals pass through contact point. (modified, based on [7])

3.3 Contact Forces and Moments

Once contact between two block has been established, the next step is to describe how
they interact with each other—what are the forces and moments between the two blocks.
The contact normal and overlap calculated in the contact resolution phase serve as inputs to
establish the interaction forces between the blocks. In its basic formulation, DEM is modular
in terms of how the contact forces are described and many different formulations exist for
calculating contact forces. In the simplest case, the contact between two blocks is described
as linear elastic in the contact normal direction and frictional, using Coulomb friction with
cohesion, in the tangential direction [41]. More involved models [[107], [103], [86]] are based
on elastic theory and can be considered as variants of [46] for the normal direction and [72]
for the tangential direction. However, these models are primarily applicable to spherical
particles. In the case of polyhedral rock blocks, models have been developed that describe
the behavior of rock joints [[35], [4], [84], [1], [55]] which are more applicable than the models
based on more spherical particle geometry.

For this research, the focus is on the hydromechanical coupling between a single block
and surrounding fluid. Therefore, the use of a highly specialized contact model is not the
primary concern and will not have an effect on the hydrodynamics of the fluid-solid coupling.
Consequently, a linear elastic contact model and Coulomb friction with cohesion were used
to describe the contact forces between the block and boundaries. However, the software
implementation of DEM has been developed in a modular fashion such that more intricate
contact models can be added for future research.
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3.3.1 Forces and Moments

Following the procedure outlined by [41], the translational velocity of the contact—the
velocity of block B relative to block A at the contact point—is calculated by:

vcontact = vB + ωB × (xcontact − xB) + ωA × (xcontact − xA) (3.5)

where xA and xB are the position vectors of the centroids of the two colliding blocks, vA
and vB are the translational velocity of the blocks, ωA and ωB are the angular velocities of
the two colliding blocks and xcontact is the contact point established in the contact resolution
phase.

The displacement at the contact is then calculated as:

∆ucontact = vcontact∆t (3.6)

which is then resolved into normal and tangention components relative to the contact normal:

∆un = ucontact · n̂contact
∆ut = ucontact − (n̂contact ⊗ n̂contact)ucontact

(3.7)

The contact normal is updated at every time step, so existing tangential forces need to be
updated to ensure they still act along the tangential direction of the contact. The tangential
force is updated as:

F updated
t = F old

t − F old
t × (n̂old × n̂updated) (3.8)

The contact displacements are used to calculate the elastic force increments at the con-
tact.The normal force increment is calculated as:

∆Fn = −Kn∆un (3.9)

and the tangential force increment is:

∆F t = −Kt∆utAcontact (3.10)

where Kn is the contact normal stiffness, Kt is the tangential stiffness and Acontact is the con-
tact area. Note that compressive forces are taken as positive. The contact area is calculated
by passing a plane through the contact point with the contact normal. The vertices at the
intersection of this plane and the faces defining the contacting blocks are used to calculate
the contact area by simplex integration [91].

The total normal and tangential forces are then updated as:

F new
n = F old

n + ∆Fn

F new
t = F old

t + ∆F t

(3.11)
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It is necessary to check whether the total normal force is tensile. If it is greater than the
specified cohesion or there is no cohesion, the normal force is set to zero. In the tangential
direction, the shear force is checked against the maximum values:

Fmax = cAcontact + Fntanφ (3.12)

The magnitude of the tangential force is simply the norm F t. If the norm Ft is greater
than Fmax, then the tangential force is set to:

F t = Fmax
F t

‖F t‖
(3.13)

The contact force vector is taken as:

F contact = −Fnn̂contact − F t (3.14)

The total forces and moments acting on each of the contacting blocks are then updated:

Block A:

F updated
A = F previous

A − F contact

Mupdated
A = M previous

A − (xcontact − xA)× F contact

Block B:

F updated
B = F previous

B + F contact

Mupdated
B = M previous

B + (xcontact − xB)× F contact

(3.15)

The total forces and moments calculated above are then used to update the block position
as described in Section 3.3.2.

3.3.2 Time Integration

The equations of translational and rotational motion for an individual rock block are:

ẍi + αẋi =
F i

m
+ gi

ω̇i + αωi =
M i

I

(3.16)

where ẍi and ω̇i are the translational and rotational acceleration of block i ; F i and M i

are the total force and moment acting on block i ; α is a damping constant; and gi is the
gravitational acceleration. The block motion is updated by integrating the equations of
motion.

The block translational motion is integrated using a velocity Verlet finite difference ap-
proach [101] which is O(h2) in time. First, the velocity at time t+ ∆t is calculated as:
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v
t+ ∆t

2
i = v

t−∆t
2

i + ati∆t (3.17)

where ati is the acceleration of block i at time t based on the total force, F Total
i , acting on

the block:

ati =
F Total
i − α|F Total

i |sgn (vti)

mi

(3.18)

where the acceleration is damped proportional to the magnitude of the unbalanced force
acting on the block [12]. The block position is then updated using the velocity at t+ ∆t

2
:

xt+∆t
i = xti + ∆tv

t+ ∆t
2

i (3.19)

The rotational motion is updated using a quaternion-based approached developed by
[57]. This approach guarantees orthonormality of the resulting rotation and also overcomes
gimbal lock of the Euler angles. The rotations are integrated using a fourth-order Runga-
Kutta scheme. The rotations are based on a local coordinate system that is centered at the
block’s center of mass. The orientation of the coordinate system is fixed to the coordinate
axes of the principal moments of inertia of the block. For general polyhedra, these are
calculated using simplex integration [91] and then finding the eigenvalues and eigenvectors
of the resulting inertia tensor—the eigenvalues represent the principal moments of inertia
and the eigenvectors are the axes along which they act.

This local coordinate system is established at the beginning of simulations after which
the rotations are updated as follows. For the first approximation, the rotation is assumed
as:

〈q0, q〉(1) =
∆t

2
〈ω0,ω〉t (3.20)

where the q and ω represent the position and angular velocity quaternions—the first quantity
in the the angle brackets is the scalar value of the quaternion while the second quantity is
the vector portion. The angular velocity is then updated as:

〈ω0,ω〉(2) =Ẽ
(
R
(
〈q0, q〉(1) ◦ 〈r0, r〉t

)
Ĵ−1R

(
〈q0, q〉(1) ◦ 〈r0, r〉t

)T)
×
((
R (〈r0, r〉t) ĴR (〈r0, r〉t)T

)
ωt +MTotal

t ∆t
) (3.21)

where Ẽ represents an operator for constructing a quaterion from a rotation matrix and R
represents an operator for constructing a rotation matrix from a quaternion. The quaternion
〈r0, r〉t is the current orientation of the block and Ĵ are the principal moments of inertia of
the block. The second approximation of the rotation then becomes:

〈q0, q〉(2) =
∆t

2
〈ω0,ω〉(2) (3.22)
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which is used to update the approximation of the angular velocity:

〈ω0,ω〉(3) =Ẽ
(
R
(
〈q0, q〉(2) ◦ 〈r0, r〉t

)
Ĵ−1R

(
〈q0, q〉(2) ◦ 〈r0, r〉t

)T)
×
((
R (〈r0, r〉t) ĴR (〈r0, r〉t)T

)
ωt +MTotal

t ∆t
) (3.23)

The third approximation of the rotation is:

〈q0, q〉(3) =
∆t

2
〈ω0,ω〉(3) (3.24)

which gives an updated an angular velocity:

〈ω0,ω〉(4) =Ẽ
(
R
(
〈q0, q〉(3) ◦ 〈r0, r〉t

)
Ĵ−1R

(
〈q0, q〉(3) ◦ 〈r0, r〉t

)T)
×
((
R (〈r0, r〉t) ĴR (〈r0, r〉t)T

)
ωt +MTotal

t ∆t
) (3.25)

The fourth approximation of the rotation is then given by:

〈q0, q〉(4) =
∆t

2
〈ω0,ω〉(4) (3.26)

The final approximation of the rotation is taken as:

〈q0, q〉 =
1

6

(
〈q0, q〉(1) + 2〈q0, q〉(2) + 2〈q0, q〉(3) + 〈q0, q〉(4)

)
(3.27)

The block’s new orientation and angular velocity are then set as:

〈r0, r〉t+∆t =〈q0, q〉 ◦ 〈r0, r〉t

〈ω0,ω〉t+∆t =
1

6

(
〈ω0,ω〉t + 2〈ω0,ω〉(2) + 2〈ω0,ω〉(3) + 〈ω0,ω〉(4)

) (3.28)

The steps for calculating the displacement and velocity—both translational and rota-
tional—are repeated at each time step until the desired simulation length it reached.

3.3.3 Numerical Stability

The velocity Verlet method is an explicit method and therefore only conditionally stable.
For a single-degree-of-freedom system with zero damping, [74] shows that the system will be
stable when the time step is smaller than:

∆tcritical ≤
2√
K
m

(3.29)

where m is the mass of the particle and K is its stiffness. In a system with many particles,
the critical time step decreases as the number of contacts per particle increases [80]. Since
it is not possible to know the number of contacts each particle will experience throughout
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the simulation, it is not possible to analytically determine what the value for K should be.
[38] suggests the following for the critical time step:

∆tcritical ≤ frac 2

√
mmin

Kmax

(3.30)

where mmin is the mass of the smallest block, Kmax is the maximum contact stiffness, and
frac is a user defined value that is set to 0.1 by default. This value accounts for the fact that
one block may be in contact with several other blocks simultaneously, effectively increasing
the contact stiffness, Kmax.

3.4 Validation

The Discrete Element Method was implemented in C++ using the algorithms described
above. All of the individual pieces of functionality in the code were unit tested using CxxTest

[106]—an open-source unit testing framework for C++. Beyond simple unit tests, integration
testing was also done to verify that the software is able to match analytical solutions as well
as reproduce the kinematics observed in the field for more complicated slope configurations.

3.4.1 Sliding Block Analysis

For polyhedra, the simplest analytical test case is that of a block sliding down an inclined
plane. This tests the ability of the software to properly capture the friction force and the
gravitational acceleration. The free-body diagram for a block sitting on an inclined plane is
shown in Figure 3.4.

x

y

mg
 

mgcos(θ)

mgsin(θ)

mgcos(θ)tan(φ)

θ

Figure 3.4: Free body diagram for block with mass, m, on inclined plane under gravitational
acceleration, g



CHAPTER 3. 3D DISCRETE ELEMENT METHOD FOR ANALYSIS OF THE
MECHANICAL BEHAVIOR OF JOINTED ROCK MASSES 37

For a given gravitational force, the inclination of the plane and the angle of friction
between the block and sliding surface will dictate whether the block slides down the plane
and, if it does, at what rate it will accelerate. In the case where sliding does occur, the
position of the block on the plane is given by:

x (t) = x0 + v0t+
1

2
at2 (3.31)

where x is the position of the block at time t, x0 and v0 are the initial position and velocity
of the block and a is the constant gravitational force acting on the block. The acceleration
is given as a function of the slope and friction angles by:

a = (sin (θ)− tan (φ) cos (θ)) g (3.32)

where θ is the slope angle and φ is the angle of friction between the block and the sliding
plane.
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Figure 3.5: Comparison of Numerical Results with Analytical Solution for Sliding Block

Figure 3.5 shows the comparison of the numerical results with the analytical solution.
The numerical results match the analytical solution very well. The case where the slope
angle and friction angle match was also tested—in this case no sliding should occur—and
sliding did not occur in the numerical analysis. All these tests used a linear elastic contact
model with Coulomb friction for the contact between the block and sliding plane.
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3.4.2 Toppling and Slumping Slope Failure

The orientation of fractures and discontinuities within rock relative to slope configura-
tion govern how failure modes develop [36]. Any discontinuous numerical model needs to
be able capture this phenomenon if it is to be used for analyzing fractured rock. In order
to ensure our implementation of DEM functions correctly, we compared the results from
a three-dimensional DEM analysis with that of a two-dimensional Discontinuous Deforma-
tion Analysis (DDA) [95] that illustrates how geometry of discontinuities affects kinematic
behavior of rock slopes.

(a) Initial configuration from [95]

(b) Initial configuration for this analysis

Figure 3.6: Initial configuration for failure mode analysis

In this analysis, a valley or cut in pervasively jointed rock is shown to have two different
failure modes on either side of the valley—the failure mode is governed by the orientation of
the joints relative to the failure plane. Figure 3.6 shows the initial configuration from [95]
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alongside the initial configuration used in this analysis. Through-going joints dip at 30◦,
forming the sliding plane on either side of the valley. The friction angle along the sliding
plane is 32◦ and the friction angle between the individual rock blocks is 22◦. If the rock mass
was considered as a single wedge on either side of the valley, the analysis would conclude
that both slopes are safe against against sliding. However, as shown in Figure 3.7, the slope
on the right fails by toppling while the slope on the left fails by slumping [95]. Both of these
modes are captured in a single analysis, illustrating the capability of DEM to capture the
kinematics governing failure for different slope configurations. This is an essential feature for
analyzing more complex landslides where different failure modes may initiate as the slope
failure progresses.

(a) Failure modes from [95]

(b) Failure modes for this analysis

Figure 3.7: Slumping (left) and toppling (right) failure modes
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3.4.3 Wedge Sliding

Wedge sliding is a typical failure mode in blocky rock masses. For this type of failure, as
show in Figure 3.8, a rock block slides without rotation along two non-parallel planes along
their line of intersection. This type of failure is typical in blocky rock masses with multiple,
continuous, non-parallel joint sets [36]. Block theory [34] offers an analytical solution for
determining whether a block will fail in this mode. The force F required to stabilize a block
sliding along two planes with normals n̂i and n̂j due to the resultant r of all forces acting
on the block is given by:

F =
1

‖n̂i × n̂j‖2
[|r · (n̂i × n̂j)| · ‖n̂i × n̂j‖

− |(r × n̂j) · (n̂i × n̂j)|tanφi
− |(r × n̂i) · (n̂i × n̂j)|tanφj]

(3.33)

where φi and φj are the angles of friction on the two sliding planes. When F is negative
the block is stable, when F is positive the block is unstable. If F is zero, the block is in
equilibrium and the factor of safety is essentially 1.0. When only gravitational loading is
considered, r = 〈0.0, 0.0,−W 〉 where W is the weight of the block.

Figure 3.8: Blocky rock wedge failing in sliding. Block translates along line of intersection
of sliding planes.

To verify the ability of the DEM implementation to correctly capture the three-dimensional
kinematic behavior of blocky rocks, the results from several wedge failure analyses were com-
pared with the analytical solution from block theory. Table 3.1 shows the comparison of the
numerical results with the predicted values from Equation 3.33. The same set of joints
was used for all analyses while modifying the angle of friction on the sliding planes. The
numerical analysis captures the transition from stable to sliding very well and matches the
results from block theory. For the cases where F was very small and negative—indicating
the block is stable, but not by a great amount—the block displaced only very slightly at the
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beginning of the simulations. However, once enough frictional resistance was mobilized the
block stopped sliding and remained stationary for the remainder of the simulation time.

n̂i n̂j φi φj
F [N ]

(Equation 3.33)
DEM Result

〈0.321,−0.383, 0.866〉 〈0.321, 0.383, 0.866〉

30.0 30.0 -5311.0 No sliding
19.0 19.0 -34.3 No sliding
18.9 18.9 9.9 Sliding
15.0 15.0 1695.3 Sliding
15.0 30.0 -1807.9 No sliding
6.5 30.0 -64.1 No sliding
6.0 30.0 35.9 Sliding
3.0 30.0 632.5 Sliding

Table 3.1: Wedge Sliding: Comparison of numerical results and block theory

3.5 Summary

A three-dimensional DEM program capable of modeling polyhedral particles was devel-
oped in C++. The contact detection computations for DEM are based on a linear program-
ming approach such that similar data structures and logic can be used in both the DEM
program and the block generation application described in Chapter 2. The results of the
validation analyses demonstrate that the program is able to accurately capture the kinematic
response of three-dimensional polyhedral rock blocks.
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Chapter 4

Coupled Discrete Element and Lattice
Boltzmann Methods for Modeling
Rock-Water Interaction

4.1 Introduction

Modeling the interaction between rock and water, requires coupling of the numerical
model for the solid phase—DEM in this case—with a model for the fluid phase. In terms
of the coupling process, there are two primary considerations that need to be taken into
account: 1.) the ability of the fluid model to capture the boundary between the fluid and
solid phases and, 2.) the efficiency of the fluid model when the solid phase is allowed to
move through the fluid domain as the solution progresses.

Methods conventionally used in computational fluid dynamics (CFD), such as the Finite
Element Method (FEM) [120] and Finite Volume Method (FVM) [66], directly solve the
Navier-Stokes equations to describe the evolution of the macroscopic variables of the fluid,
such density and velocity. These methods are able to capture complex boundary shapes
through unstructured and irregular grids and, in the case of FEM, are amenable to higher
order methods. However, the mesh generation can be quite complicated and computation-
ally intensive which can be prohibitive if there are solid particles moving through the fluid
domain—generally necessitating remeshing at every time step.

The Lattice Boltzmann Method (LBM) arrives at the solution of the Navier-Stokes equa-
tions in a much different fashion compared to conventional CFD. LBM solves the mesoscopic
behavior of the fluid in that it describes the behavior of distributions of particles, not the
macroscopic velocity and density nor the behavior of individual particles. The physical ba-
sis of LBM is rooted in the Boltzmann equation, but it can be linked to the macroscopic
behavior of fluid, in effect solving the weakly compressible Navier-Stokes equations. What
makes LBM particularly attractive for modeling fluid-solid interaction is the localized nature
of the method and, more importantly, the ease with which complex shapes moving through
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the fluid domain can be accommodated. As a solid particle moves through the fluid domain,
the state of the nodes that the solid interacts with are updated. Based on the status of the
node, the presence of the solid is accounted for in the fluid solution and the effect of the fluid
on the solid is also considered. Typically, there is no need for remeshing and the change in
the status of each node is incorporated in the computations locally. Given the relative ease
of this coupling process compared to other methods used in CFD, LBM was chosen in this
research to model the fluid-solid interaction.

4.2 The Lattice Boltzmann Method

The Lattice Boltzmann Method solves a discrete form of the Boltzmann equation—the
so-called Lattice Boltzmann Equation (LBE)—to arrive at the solution for various problems
in fluid dynamics. The Lattice Boltzmann Equation [70] was first developed as a response
to the main drawback—statistical noise—of its predecessor Lattice Gas Cellular Automata
[19]. The LBE is derived starting from the force-free Boltzmann equation:

∂f

∂t
+ ξβ

∂f

∂xβ
= Ω(f) (4.1)

Equation 4.1 describes the advection of the distribution function f with particle velocity ξ
[60]. The source term Ω, called the collision operator, on the right hand side of the equation
represents the redistribution of f due to interparticle collisions. The Lattice Boltzmann
Equation is obtained by discretizing Equation 4.1 in velocity space, physical space and time:

fi(x+ ci∆t, t+ ∆t) = fi(x, t) + Ωi(x, t) (4.2)

where ci is the discrete set of velocities which limits the continuous particle velocity ξ to
a carefully selected subset, as described in Section 4.2.1. This equation describes particles
fi(x, t) moving with velocity ci to a neighboring point located at x+ci∆t, as shown in Figure
4.1. This is known as the streaming step. Additionally, the collision operator redistributes
particles among the populations fi at each point—this redistribution models particle colli-
sions. This is known as the collision step and is discussed in more detail in Section 4.2.2.
Together the streaming and collision steps are the fundamental concept of the LBE.

The basic variable in LBM, as shown in Equation 4.2, is the discrete-velocity distribu-
tion function, fi (x, t). This distribution function represents the density of particles with
velocity ci at time t and position x. The macroscopic fluid mass density and momentum
are calculated through weighted sums in velocity space, known as moments, of fi:

ρ (x, t) =
∑
i

f (x, t)

ρu (x, t) =
∑
i

cif (x, t)
(4.3)
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Streaming

Figure 4.1: Distributions streaming between central node and neighbors. The figure on
the left shows distributions prior to streaming, while the figure on the right shows the
distributions post-streaming (After [60])

The connection between the Navier-Stokes equations and the LBE can be determined
through the Chapman-Enskog analysis [9]. Through this analysis, it can be shown that the
LBE models the macroscopic behavior of the Navier-Stokes equations when the kinematic
shear viscosity is related to the relaxation parameters of the collision model as well as the
spatial and temporal discretization.

4.2.1 Velocity Sets

The continuous particle distribution function f (x, ξ, t) spans a seven-dimensional space—x,
y, z, ξx, ξy, ξz and t—which may initially seem prohibitively computationally intensive and
mathematically daunting. However, the moments of the Boltzmann equation give the correct
conservation laws for mass, momentum and energy; the underlying physics is not relevant if
only the correct macroscopic behavior is desired. The moments are weighted integrals of the
particle distribution function in velocity space, so discretization on the velocity space can
be made such that the macroscopic fluid behavior is maintained without having to solve the
full continuous Boltzmann equation.

The discretization of velocity space can be done either through Mach number expansion
[42] or Hermite series expansion [90], though both approaches give the same form of equi-
librium as Navier-Stokes. The resulting discrete velocities, ci, and corresponding weights,
wi, comprise a velocity set. The naming of the velocity sets that discretize velocity space
take the form DdQq where d is the number of spatial dimensions and q is the number of
discrete velocities used in the set. Commonly used velocity sets are D1Q3, D2Q9, D3Q19
and D3Q27. Figure 4.2 shows the velocities for D2Q9 and D3Q27, while Table 4.1 shows the
velocity components and corresponding weights for these two velocity sets. For this research,
the D3Q27 velocity set was used. This velocity set is more computationally and memory
intensive than the D3Q15 and D3Q19 velocity sets, but [94] show the D3Q15 and D3Q19
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velocity sets are not rotationally invariant while the D3Q27 velocity set is. When modeling
high Reynolds number flows this shortcoming can spoil the results [99], making the D3Q27
velocity set the better option for modeling turbulent flow.
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Figure 4.2: D2Q9 and D3Q27 velocity sets

Name Velocities ci Number Weight wi

D2Q9
(0, 0) 1 4/9

(±1, 0), (0,±1) 4 1/9
(±1,±1) 4 1/36

D3Q27

(0, 0, 0) 1 8/27
(±1, 0, 0), (0,±1, 0), (0, 0,±1) 6 2/27

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 12 1/54
(±1,±1,±1) 8 1/216

Table 4.1: D2Q9 and D3Q27 Velocity Sets

In addition, each velocity set has a constant cs given by:

cs =
1√
3

∆x

∆t
(4.4)

where ∆x is the spatial discretization and ∆t is the time step. For isothermal LBM, cs
determines the equation of state:

p = c2
sρ (4.5)

where p is the pressure and ρ is the fluid density. In this case cs represents the model’s speed
of sound. This constant effectively sets an upper limit on what the maximum simulated fluid
velocity can be. Krüger et al. [60] recommend that the simulated fluid velocity should be
less than approximately 0.12cs.
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4.2.2 Collision Operator

The collision operator models inter-particle collisions by redistributing particles among
the different populations fi at each point. Though the collision operator does not retain all
the underlying microscopic physics, it still respects mass and momentum conservation and
recovers the correct macroscopic behavior. The most common and simple collision operator
is the Bhatnagar-Gross-Krook (BGK) collision operator [6].

Ωi (x, t) = −fi (x, t)− f
eq
i (x, t)

τ
(4.6)

This equation implies that all populations fi decay to their equilibrium state f eqi at the same
rate τ . The parameter τ represents the typical time scale at which different hydrodynamic
modes relax to local equilibrium [98] which is why it is called the relaxation time. The
discrete form of the equilibrium distribution function f eqi is [69]:

f eqi (x, t) = wiρ

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− ‖u‖
2

2c2
s

]
(4.7)

where u and ρ are the fluid velocity and density, ci and wi together are the discrete velocity
set and cs is the speed of sound. The macroscopic Navier-Stokes behavior is recovered when
the kinematic shear viscosity ν is related to the relaxation time τ :

ν = c2
s

(
τ − ∆t

2

)
(4.8)

Note the presence of cs—the sound speed associated with the velocity set. This means the
kinematic shear viscosity, relaxation time as well as the temporal and spatial discretization
are all interdependent.

4.2.2.1 Multiple-Relaxation-Time Collision Operators

The simplicity of the BGK collision operator comes at a cost: reduced accuracy, par-
ticularly at large viscosities, and stability, particularly at small viscosities [60]. The BGK
collision operator relaxes all moments at the same rate, but in principle the moments can
all be relaxed at different rates. This is the idea behind the multiple-relaxation-time (MRT)
collision operator [14]—all the different moments can be relaxed at different time scales to
achieve better stability and accuracy. In order to do this, all the populations fi must first be
transformed to moment space, in which the collision step is performed, and then transformed
back to population space, where the streaming step is performed. The MRT LBE is then:

|f (x+ ci∆t, t+ ∆t)〉 − |f (x, t)〉 = −M−1ŜM [|f (x, t)〉 − |f eq (x, t)〉] (4.9)

whereM is the transformation matrix that transforms the distributions functions from veloc-
ity space to moments space, and Ŝ is the diagonal collision matrix: Ŝ = diag (s0, s1, ..., sq−1).

The values along the diagonal of Ŝ are relaxation parameters for the different moments.
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The transformation matrix M is a linear transformation from population space to mo-
ment space. Based on the ordering of the discrete velocities for the D3Q27 lattice used in
this research, the orthogonal moment set was calculated following [25]:

M =



〈1|
〈cix|
〈ciy|
〈ciz|

−2 〈|+ 〈‖ci‖2|
2 〈c2

ix| − 〈c2
iy + c2

iz|
〈c2
iy − c2

iz|
〈cixciy|
〈ciyciz|
〈cixciz|

−4 〈cix|+ 2 〈cixc2
iycixc

2
iz|

−4 〈ciy|+ 2 〈ciyc2
izciyc

2
ix|

−4 〈ciz|+ 2 〈cizc2
ixcizc

2
iy|

4 〈cix| − 6 〈cixc2
iy + cixc

2
iz|+ 9 〈cixc2

iyc
2
iz|

4 〈ciy| − 6 〈ciyc2
ix + ciyc

2
iz|+ 9 〈ciyc2

ixc
2
iz|

4 〈ciz| − 6 〈cizc2
ix + cizc

2
ix|+ 9 〈cizc2

iyc
2
iz|

4 〈1− ‖ci‖2|+ 3 〈c2
ixc

2
iy + c2

iyc
2
iz + c2

ixc
2
iz|
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ixc

2
iy + c2

iyc
2
iz + c2

ixc
2
iz|+ 27 〈c2

ixc
2
iyc

2
iz|

2 〈c2
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ixc

2
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ixc
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iz| − 4 〈c2

ix| − 6 〈c2
iyc

2
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(4.10)

Appendix A contains the calculated values for M and M−1. The values along the diagonal
of Ŝ relax the moments to equilibrium at different time scales. For the D3Q27 lattice, this
gives:

Ŝ = diag(0, 0, 0, 0, s4, s5, s5, s7, s7, s7, s10, s10, s10, s13, s13, s13,

s16, s17, s18, s18, s20, s20, s20, s23, s23, s23, s26)
(4.11)

In this research the parameters proposed by [99] were used:

s4 = 1.54, s10 = 1.5, s13 = 1.83, s16 = 1.4,

s17 = 1.61, s18 = s20 = 1.98, s23 = s26 = 1.74
(4.12)
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As with the BGK collision operator, it is necessary to relate the kinematic viscosity ν to
the the corresponding components of Ŝ [99]:

ν = c2
s

(
1

s5

− 1

2

)
∆t = c2

s

(
1

s7

− 1

2

)
∆t (4.13)

4.2.3 Body Forces

Forces can be included in the LBE by discretizing the continuous Boltzmann equation
with a forcing term. By discretizing velocity space, physical space and time, the LBE with
forces included then becomes:

fi (x+ ci∆t, t+ ∆t)− fi (x, t) = Ωi (x, t) + Si (x, t) (4.14)

where the inclusion of a body force manifests itself as a source term, Si. Huang et al. [52]
compared several different forcing schemes [[89], [69], [43], [39], [62], [61]] for including body
forces in LBM and proved they are identical up to second order. Additionally, the different
schemes demonstrated comparable accuracy for single-phase flows. Given these observations,
the forcing scheme proposed in [39] was used in this research as it was the simplest to build
into the simulation software. Following this scheme, the equilibrium velocity is defined as:

ueq =
1

ρ

∑
i

fici +
F∆t

2ρ
(4.15)

where F is the force density; F = ρg in the case of a gravitational force. The forcing source
term takes the following form:

Si =

(
1− ∆t

2τ

)
wi

(
ci − u
c2
s

+
(ci · u) ci

c4
s

)
· F (4.16)

where u is the fluid velocity and τ is the BGK relaxation time. The inclusion of relaxation
parameters based on an MRT collision operator was done based on [67]. In the forcing
scheme proposed by Guo et al. [39], the macroscopic fluid velocity is calculated by:

u =
1

ρ

∑
i

fici +
F∆t

2ρ
(4.17)

4.2.4 Boundary Conditions

Inclusion of boundary conditions is a necessity for solving partial differential equations.
Though they only apply over a small portion of the domain, their presence may affect the
entire solution. Boundary conditions in the Lattice Boltzmann Method do not manifest as
naturally as they do in other CFD methods such as FEM, since the mesoscopic distribution
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functions fi must be specified based on macroscopic variables ρ and u. In the case of the
D3Q27 lattice, this means that 27 degrees of freedom are specified based on only 4 input
variables. Due to this under-specified nature at boundaries, there are many implementations
of boundary conditions available in LBM.

4.2.4.1 Periodic Boundaries

Periodic boundaries are the simplest type of boundary condition within LBM. This type
of boundary is useful in minimizing the size of the simulation domain when isolating re-
peating flow patterns and, from a more pragmatic perspective, simulating two-dimensional
flow using three-dimensional software—for example, Couette or Poiseuille flow. For periodic
boundaries, flow leaving one side of the domain instantaneously reenters the domain on the
opposite side. As such, both mass and momentum are conserved.

Implementing periodic boundaries in LBM is relatively straightforward [[98], [100]]: the
collision step is unchanged and streaming is achieved similarly to the bulk domain. For the
streaming step, nodes on a periodic boundary exchange populations with interior nodes as
they normally would; however, the populations that stream out of the domain are exchanged
with nodes on the opposite side of the domain.

4.2.4.2 Solid Boundaries

Solid boundaries mark the interface between fluid and solid, and most commonly this
interface is described using a no-slip condition. In LBM, this type of boundary is modeled
using the so-called bounce-back method [[10], [119], [32], [63], [44]]. The basic principle is
that populations hitting a solid boundary are reflected, or bounced back, in the direction
in which they originally came from. This concept is illustrated in Figure 4.3. For full-way
bounce-back [[100], [60]], the collision step for solid boundaries is then described by:

f−i (x, t) = fi (x, t) (4.18)

where f−i indicates the population is reflected back with velocity −ci. The location of the
boundary is midway between the boundary and interior nodes, though this location is only
approximate when using the BGK collision operator—the exact location of the boundary
is viscosity dependent [60]. In order to avoid this viscosity dependence, an MRT collision
operator is used instead of the BGK model which has only one relaxation time.

4.2.4.3 Open Boundaries

Open boundaries comprise inlets, where fluid enters the domain, and outlets, where fluid
exits the domain. These types of boundaries are useful in shrinking the size of the domain
that is to be simulated—a velocity or pressure profile can be introduced that imposes the
expected upstream behavior and allows fluid to leave the domain downstream.
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t = t Post-Collision

Post-Streaming

t = t + Δt Post-Collision

Post-Streaming

Figure 4.3: Illustration of the bounce-back boundary condition. Boundary located midway
between fluid and solid nodes. Shaded areas indicate solid region. (Modified, based on [100]
and [60])

Velocity Boundaries

The fluid velocity at a boundary can be specified using the bounce-back method [62] as
follows:

f−i (xb, t+ ∆t) = fi (xb, t)− 2wiρb
ci · ub
c2
s

(4.19)

where ub is the velocity of the fluid at the boundary and ρb is the density of the fluid at
the boundary. Generally, if the velocity is specified the density will be unknown—standard
LBM is weakly compressible. To solve this problem, the density at the boundary can either
be taken as the system’s average density or as the local fluid density [60]. In this research,
the local density was approximated using extrapolation.

Pressure Boundaries

Pressure boundaries are specified using the anti-bounce-back method [33]:

f−i (xb, t+ ∆t) = −fi (xb, t) + 2wiρb

[
1 +

(ci · ub)2

2c4
s

− ‖ub‖
2

2c2
s

]
(4.20)

where ρb is the density of the fluid at the boundary and ub is the velocity of the fluid
at the boundary. The specified pressure is related to the density using the equation of
state p = c2

sρ. The input pressure is understood as a difference from a reference pressure,
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therefore the density calculated from the equation of state is added to the average density
at the reference pressure. Since the pressure is specified, the fluid velocity is generally not
known and poses a similar problem as seen with velocity boundaries. In this research, the
fluid velocity is estimated using extrapolation.

Non-Reflecting Boundaries

In its formulation, the LBM is weakly compressible—the macroscopic behavior of the
model follows the compressible Navier-Stokes equations. As a consequence of this formula-
tion, initialization of the velocity and density fields may introduce undesired pressure waves
in the solution domain. Enforcing the velocity or pressure at the boundaries using the simple
bounce-back techniques will trap these initial transients, reflecing the waves back into the
domain and potentially spoiling the entire solution. This is especially apparent at outlets.

Characteristic boundary conditions adapted for LBM [[54], [47]] minimize this reflection
of pressure waves back into the domain. For this research, the methodology presented in [47]
has been extended to consider a three dimensionsal domain as well as the presence of a body
force. The effect of viscosity is neglected near the boundaries, yielding the three-dimensional
Euler conservation equations with an external force:

∂tm+A∂xm+B∂ym+C∂zm = g (4.21)

where mT = (ρ, ux, uy, ux) is used for the characteristic variables, gT = (0, gx, gy, gz) for the
external force and the coefficient matrices:

A =


ux ρ 0 0
c2s
ρ

ux 0 0

0 0 ux 0
0 0 0 ux

 , B =


uy 0 ρ 0
0 uy 0 0
c2s
ρ

0 uy 0

0 0 0 uy

 , C =


uz 0 0 ρ
0 uz 0 0
0 0 uz 0
c2s
ρ

0 0 uz

 , (4.22)

Equation 4.21 is a hyberbolic system of equations, therefore the coefficient matrices are
diagonalizable:

Ωx = SAS−1, Ωy = TBT−1, Ωz = UCU−1 (4.23)

where Ωx, Ωy and Ωz contain the eigenvalues of A, B and C:

Ωx = diag (λx,1, λx,2, λx,3, λx,4) = diag (ux − cs, ux, ux, ux + cs) ,

Ωy = diag (λy,1, λy,2, λy,3, λy,4) = diag (uy − cs, uy, uy, uy + cs) ,

Ωz = diag (λz,1, λz,2, λz,3, λz,4) = diag (uz − cs, uz, uz, uz + cs)

(4.24)

One set of diagonalization matrices, essentially extending the choice of [47] to three-
dimensions, is:
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S =


c2
s −csρ 0 0

0 0 1 0

0 0 0 1

c2
s csρ 0 0

 , S−1 =


1

2c2s
0 0 1

2c2s
−1

2csρ
0 0 1

2csρ

0 1 0 0

0 0 1 0

 ,

T =


c2
s 0 −csρ 0

0 1 0 0

0 0 0 1

c2
s 0 csρ 0

 , T−1 =


1

2c2s
0 0 1

2c2s

0 1 0 0

−1
2csρ

0 0 1
2csρ

0 0 1 0

 ,

U =


c2
s 0 0 −csρ
0 1 0 0

0 0 1 0

c2
s 0 0 csρ

 , U−1 =


1

2c2s
0 0 1

2c2s

0 1 0 0

0 0 1 0

−1
2csρ

0 0 1
2csρ



(4.25)

This diagonalization allows incoming and outgoing waves to be separated based on the
eigenvalues and eigenvectors; the separation makes it possible extinguish incoming waves.
The meaning of the diagonalization and how it is used to eliminate incoming waves can be
seen more clearly when considering a particular case along a z-boundary. In this case, the
spatial derivates become:

C∂zm = U−1ΩzU∂zm = U−1L z (4.26)

where

L z =


Lz,1

Lz,2

Lz,3

Lz,4

 (4.27)

With this description, the components Lz,i = λz,iSij∂zmj express the characteristic wave
amplitude variations [85]. The sign of λz,i indicates the direction of the wave—λz,1 = uz− cs
is outgoing on the negative z-boundary and incoming on the positive z-boundary. Following
the idea of [102] as outlined in [47], incoming waves are annihilated by setting their wave
amplitude variations to zero:

Lz,i =

{
λz,iSij∂zmj for outgoing waves

0 for incoming waves
(4.28)

The values of m are then obtained by solving a modified version of Equation 4.21:
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∂tm+ γB∂ym+ γC∂zm = −S−1L x + g along the x-boundary

∂tm+ γA∂xm+ γC∂zm = −T−1L y + g along the y-boundary

∂tm+ γA∂xm+ γB∂ym = −U−1L z + g along the z-boundary

(4.29)

where γ is a factor introduced by [47]. When γ = 1, the two-dimensional case recovers
[102] while γ = 0 will give the one-dimensional approach of [54]. [47] found γ = 3/4 to be
superior; this is the value that was used in this research. In the case of edges or corners,
the characteristic analysis is done for two or three directions, respectively. For example,
Equation 4.21 becomes:

∂tm+ γC∂zm = −S−1L x − T−1L y + g (4.30)

along an x-y edge and

∂tm = −S−1L x − T−1L y −U−1L z + g (4.31)

at the corners.
Before the required values of the density and velocity at the next time step can be

calculated, the spatial derivatives ∂xm, ∂ym and ∂zm must first be approximated. Second-
order finite differences are used based on neighboring values in the lattice[47]:

∂xmi (x) ≈ ∓mi(x)± 4mi(x±∆x)∓mi(x± 2∆x)

2∆x
(4.32)

for derivatives perpendicular to the boundary. The upper signs are for a forward difference
and the lower signs are for a backward difference. Derivatives parallel to the boundary are
approximated by:

∂xmi (x) ≈ mi(x+ ∆x)−mi(x−∆x)

2∆x
(4.33)

With this it is now possible to calculate an estimate of ∂tm. The macroscopic variables
at the next time step are then estimated using a forward Euler time integrator:

mi (x, t+ ∆t) ≈ mi (x, t) + ∆t∂tmi (x, t) (4.34)

Though it is possible to implement a higher order time integrator, it has been shown that
higher order methods [47] perform nearly identically to the less computationally expensive
forward Euler—the error for non-reflecting characteristic boundary conditions is dominated
by other sources.

With the known values of ρ and u at the next time step, the values of the distribution
functions fi can be set accordingly. This is implemented as follows: During the collision step,
no actual collision occurs. Instead, the values for ρ and u for the next time step are estimated



CHAPTER 4. COUPLED DISCRETE ELEMENT AND LATTICE BOLTZMANN
METHODS FOR MODELING ROCK-WATER INTERACTION 54

after which the values of fi are set according to their equilibrium values determined by the
pre-calculated ρ and u.

4.2.5 Turbulence

The standard LBM is restricted to flows with low Reynolds numbers and requires spe-
cial treatment if modeling turbulent flows. In the case of turbulent flows, the grid scale
may not be sufficiently small to capture all scales of different flow features. Large Eddy
Simulation (LES) is a popular approach to account for this large difference in the scale
of flow structures—eddies greater than the grid scale are solved for directly while subgrid-
scale flow structures are accounted for through a subgrid-scale (SGS) eddy viscosity, νSGS.
This additional turbulent viscosity allows for energy to be transferred between resolved and
unresolved scales. In this research, νSGS is calculated using the Wall-Adapting Local Eddy-
visocity (WALE) model [77] which is based on the square of the velocity gradient tensor.
Compared to the classical Smagorinsky approach [96], the WALE model includes both stain
and rotation rates and the eddy viscosity goes naturally to zero in the vicinity of walls.

For the D3Q27 MRT model used in this research, the subgrid-scale eddy viscosity is
added to the kinematic viscosity as follows [99]:

ν + νSGS = c2
s

(
1

s5

− 1

2

)
∆t = c2

s

(
1

s7

− 1

2

)
∆t (4.35)

The subgrid-scale eddy viscosity based on the WALE model is:

νSGS = (Cw∆x)2

(
S d
ijS

d
ij

)3/2(
SijSij

)5/2
+
(
S d
ijS

d
ij

)5/4
(4.36)

where the eddy viscosity constant Cw is 0.32 and the overbar denotes a filtered velocity field.
As shown in Equation 4.36, the SGS eddy viscosity depends on the deformation tensor

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.37)

and the traceless symmetric part of the square of the velocity gradient tensor

S d
ij =

1

2

(
g2
ij + g2

ji

)
− 1

3
δijg

2
kk (4.38)

where gij = ∂ui
∂xj

is the velocity gradient tensor and g2
ij = gikgkj.

4.2.6 LBM Implementation Verification

The Lattice Boltzmann method and all of the above-mentioned features were imple-
mented in C++. Since the resolution required to resolve the fluid pressures acting on indi-
vidual blocks requires many more fluid nodes than solid particles, at present only the fluid
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computations have been accelerated using parallel computing. The parallelization was per-
formed using Kokkos [15], a C++ library aimed at performance portability. By abstracting
both parallel execution and memory layout, the same source code can be compiled to target
a particular computing architecture based on the machine where the program will be exe-
cuted. If the underlying limitations of graphics processing units (GPUs) are respected in the
way that the code is written, code accelerated with Kokkos can be executed in parallel on
both central processing units (CPU) and GPUs.

As with the DEM portion of the software, all individual pieces of the code were unit
tested using CxxTest [106]. Integration testing was then performed to verify the software
is able to match analytical solutions in fluid dynamics for both transient and steady-state
conditions.

4.2.6.1 Couette Flow

Couette flow is a particular case of simple parallel-plate flow where one plate is fixed while
the other plate moves with a constant velocity while a viscous fluid fills the space between
the two plates. Figure 4.4 illustrates this situation and shows the steady-state solution.
Couette flow demonstrates shear-driven fluid motion and, by modeling this numerically, the
ability of the LBM implementation to correctly capture the viscous behavior of fluid.

Stationary Infinite Boundary Plate

Infinite Boundary Plate with Velocity U

Plate separation, h

Figure 4.4: Steady-state velocity profile for Couette flow with two infinite plates separated
by distance h. The top plate moves with constant horizontal velocity U while the bottom
plate is a stationary, no-slip boundary.

The PDE describing the evolution of velocity between the two parallel plates is [5]:
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∂u

∂t
= ν

∂2u

∂y2
(4.39)

with initial condition and boundary conditions:

u(y, 0) = 0, 0 < y < h

u(0, t) = 0, t ≥ 0

u(h, t) = U, t ≥ 0

(4.40)

The solution to this PDE is given by [64]:

u (x, t) = −2U

h

∞∑
n=1

h

nπ
e−ν(

nπ
h )

2
tsin

(nπ
h
y
)

+
U

h
(h− y) (4.41)

Figure 4.5 shows the comparison of numerical results with the analytical solution at
different times. The numerical results match the analytical solution very well and illustrate
the ability of the LBM implementation to capture shear-driven flow correctly.

4.2.6.2 Gravity-Driven Plane Poiseuille Flow

The validity of the body force implementation is tested by modeling gravity-driven plane
Poiseuille flow. For this type of flow two infinite plate are separated by a constant distance,
as shown in Figure 4.6, with a body force g acting on the fluid. The PDE describing this
type of flow is given by:

∂u

∂t
= ν

∂2u

∂y2
+ g (4.42)

with initial condition and boundary conditions:

u(y, 0) = 0, 0 < y < h

u(0, t) = 0, t ≥ 0

u(h, t) = 0, t ≥ 0

(4.43)

The solution for gravity-driven plane Poiseuille flow is given by[21]:

u∗(y∗, t∗) =
P ∗

2

[
(1− y∗2)− 4

∞∑
n=0

(−1)n
cos
(
πy∗

(
n+ 1

2

))
π3
(
n+ 1

2

)3 e−π
2t∗(n+ 1

2)
2

]
(4.44)

where:

t∗ =
tν

h2
, u∗ =

u

U
, y∗ =

y

h
, P ∗ =

gh2

νU
(4.45)
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Figure 4.5: Comparison of numerical results with analytical solution for Couette flow. Solid
lines indicate analytical solution at different times while red diamonds show numerical results
at corresponding times.

The comparison between the analytical solution and numerical results are shown in Figure
4.7. This shows excellent agreement between the numerical results and the analytical solution
at various stages as the flow evolves.

4.3 Fluid-Solid Coupling

Describing the interaction between the fluid and solid phases requires the two separate
models, DEM and LBM, to exchange information. The presence of solids in the fluid mesh
has to be factored into the fluid response, while the hydrodynamic forces and moments act-
ing on the solids need to be included in the equations of motion for the individual blocks.
The boundary conditions described in Section 4.2.4 are generally applicable for more simple
geometries that do not move through the domain and would not be able to model com-
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Figure 4.6: Steady-state velocity profile for gravity-driven plane Poiseuille flow with two
infinite plates separated by distance h. Both boundary plates are stationary, no-slip boundary
conditions

plex polyhedral blocks moving through the fluid domain. Instead, the coupling process
is achieved though the introduction of a special boundary condition—partially saturated
bounce-back—that allows the polyhedral blocks to move through the fluid mesh while still
maintaining a similar form of the LBE.

First introduced by Noble and Torczynski [78], the partially saturated method or gray
LBM accounts for the presence of complex shaped solids within the fluid mesh by considering
the volumetric solid content of each of the lattice cells. As a rock block moves through the
fluid mesh, it may partially or completely cover fluid cells, as shown in Figure 4.8. The LBE
with the BGK collision operator is modified to accommodate the solid phase by introducing
an additional solid collision operator:

fi (x+ ci∆t, t+ ∆t) = fi (x, t) +

[
1−

∑
s

B (εs, τ)

]
ΩBGK
i +

∑
s

B (εs, τ) Ωs
i (4.46)

where εs is the volumetric solid fraction for each block intersecting the fluid node and
B (εs, τ) is a weighting function. B (εs, τ) ranges from 0 (pure fluid) to 1 (pure solid).
When B (εs, τ) = 0 the standard LBE is recovered, while for B (εs, τ) = 1 only the solid
collision operator participates in the collision step. The collision operator for solid nodes is:
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Figure 4.7: Comparison of numerical results with analytical solution for gravity-driven plane
Poiseuille flow. Solid lines indicate analytical solution at different times while red diamonds
show numerical results at corresponding times.

Ωs
i = f−i (x, t)− fi (x, t) + f eqi (ρ,us)− f eq−i (ρ,u) (4.47)

where us is the velocity of the solid particle at time t + ∆t at the node. This form of Ωs
i is

based on the bounce-back of the non-equilibrium portion of the particle distributions [122].
The weighting function is expressed as:

B (εs, τ) =
εs (τ/∆t− 1/2)

(1 + εs) + (τ/∆t− 1/2)
(4.48)

The hydrodynamic force and torque acting on a block moving through the fluid mesh is
calculated as:
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Fluid

Boundary Fluid

Boundary Solid

Interior Solid

Figure 4.8: Polyhedral block moving through fluid mesh. Background grid indicates lattice
nodes which are at the center of fluid cells. Fluid cells are pure fluid, interior solid cells are
pure solid. Boundary fluid and boundary solid cells are some proportion of fluid and solid

F =
∆x3

∆t

∑
xn

B (xn)

(∑
i

Ωs
ici

)

T =
∆x3

∆t

∑
xn

(
B (xn) (xn − xCM)×

∑
i

Ωs
ici

) (4.49)

where xn are all the lattice nodes that are interacting with the block and xCM is the location
of the center of mass of the block. The summation i runs over all directions of the particular
lattice velocity set in use—27 in the case of this research.

4.3.1 Volumetric Solid Fraction

The behavior of the fluid-solid interaction in the case when a fluid cell is neither pure
fluid or pure solid—boundary fluid or boundary solid cells as shown in Figure 4.8—is dic-
tated by the weighting factor B. The value of the weighing function is influenced by the
collision operator parameters and, to a greater extent, the volumetric solid content of the
cell. Therefore, it is important that the volumetric solid content be calculated as accurately
and efficiently as possible. In terms of calculating the volumetric solid fraction, current cou-
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pling algorithms approximate the shape of the particles in terms of the shape of the region of
overlap—[81] for spherical particles and [88] for sphero-polyhedra. For this research, a new
methodology was developed to calculate the volumetric solid content analytically for convex
polyhedra to determine the value of the weighting function. This new method was applied
using an MRT collision operator.

Figure 4.9: Closeup of polyhedral block overlapping fluid cell. The fluid cell is described by
the normals to the cell faces and their distance from the lattice node at the center of the
cell. The hatched region is where the block and fluid cell overlap—this is the solid content
of the fluid cell.

The first step in calculating the volumetric solid content is to determine whether the
block and fluid cell overlap, as shown in Figure 4.9. This is essentially the same problem as
establishing contact between two polyhedral blocks. Thus, for this phase of the calculations
methods used in contact detection for DEM can also be applied to establish whether a block
intrudes on a fluid cell. Here, a linear programming approach [7] is used to establish overlap:

minimize s

ai
Tx− di ≤ s, i = 1, ..., NS +NF

(4.50)

where NS are the faces that define the block and NF are the faces that define the fluid
cell—four faces for a square in two dimensions and six faces for a cube in three dimensions.
ai is the normal vector to the the face and di represents the distance of that face from
some local origin. The same tolerance criteria as described in [7] is used here to establish
overlap—the block and fluid cell overlap if s < −ε where ε is a specified numerical tolerance.
If the block and fluid cell do not overlap then the cell is pure fluid with a volumetric solid
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content of zero. However, if the block and fluid cell do overlap, it is necessary to do further
computations to determine the volumetric solid content.

The region of overlap between the block and fluid cell, shown for the two dimensional
case in Figure 4.9, comprises the solid content. This region is described by a subset of the
faces that define the block and fluid cell and with this subset it is possible to calculate the
solid content. The minimal set of faces that describe this region is established by checking
all faces of the block and fluid cell for redundancy. A particular face nTx ≤ d from the set
NS +NF is checked for redundancy by solving the linear program:

maximize nTx

aix ≤ di, i = 1, ..., NS +NF

(4.51)

The face is not redundant if |nTx − d| < ε. This approach is similar to the removal of
redundant faces during fractured rock mass generation as described in [8].

With this minimal set, it is now possible to calculate the volumetric solid fraction in the
fluid cell. The volume of the region described by this minimal set is calculated using simplex
integration [91]:

Voverlap =

∫ ∫ ∫
V

dx dy dz

=
s∑
i=1

n(i)∑
k=1

SP0P i1P
i
kP

i
k+1

(0, 0, 0)

=
1

6

s∑
i=1

n(i)∑
k=1

∣∣∣∣∣∣
xi1 yi1 zi1
xik yik zik
xik+1 yik+1 zik+1

∣∣∣∣∣∣
(4.52)

Equation 4.52 describes the summation of the volumes of tetrahedra Si—a tetrahedron is a
three-dimensional simplex—that together form the three-dimensional block. This assumes
that the vertices P1, ..., Pn describing each of the faces of the block are oriented counter-
clockwise relative to the outward normal of the face. All vertices are specified relative to a
local origin P0, in this case set to the location of the center of the fluid cell in question.

After the volume of the region of overlap is calculated, the volumetric solid content is
given by εs = Voverlap/Vcell where the volume of the cell is simply the volume of a cube with
side length ∆x. For the D3Q27 MRT collision operator used in this research, the weighting
function is then given by:

B =
εs

(
1
s5
− 1

2

)
(1− εs) +

(
1
s5
− 1

2

) =
εs

(
1
s7
− 1

2

)
(1− εs) +

(
1
s7
− 1

2

) (4.53)
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4.3.2 Coupling Algorithm Validation

The proposed fluid-solid coupling algorithm was implemented in C++. As with all other
portions of the software, all individual pieces of the code were unit tested using CxxTest

[106]. Beyond simple unit tests, the coupling algorithm was tested for physical correctness
by comparing numerical results with several different correlations based on physical experi-
ments.

4.3.2.1 Comparison with experimental data
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Figure 4.10: Comparison of numerically calculated drag coefficient CD for a cube in uniform
flow with regressed experimental data [[40], [23], [49]]. The upstream face of the cube is
oriented perpendicular to flow.

First, the numerically calculated drag coefficient CD was compared with regressions on
numerous experimental results [[40], [23], [49]]. These regressions incorporate both shape of
the particle and the Reynolds number. The value of CD was computed for Reynolds numbers
of 0.3, 30, 90 and 240 for a 1× 1× 1m cube in uniform flow. The upstream face of the cube
was oriented perpendicular to flow. The Reynolds number is given by:

Re =
‖u‖d
ν

(4.54)
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where u is the velocity of the undisturbed fluid and ν is the kinematic viscosity. The
characteristic dimension of the the cube d is defined as the diameter of the volume-equivalent
sphere. The drag coefficient is defined as:

CD =
FD

1
2
ρu2Aproj

(4.55)

where FD is the force component in the direction of flow, ρ is the fluid density and Aproj is
the projected frontal area of the volume-equivalent sphere (Aproj = π(d/2)2).

As shown in Figure 4.10, the calculated drag coefficient from the numerical analyses
matches all three correlations well over the tested range of Reynolds numbers. The three
solid lines are the curves of regressed experimental data and the red squares are the numerical
results.

4.3.2.2 Cube rotated in uniform flow

Figure 4.11: Cube embedded in three-dimensional fluid mesh
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Next, the orientation of the cube relative to the flow field was changed to check whether
the coupling algorithm is able to capture the change in drag coefficient due to the change
in projected area of the cube relative to the direction of fluid flow. The upstream boundary
was set to a constant velocity (u = 〈1.0, 0.0, 0.0〉 m/s) while the downstream boundary
was a non-reflecting characteristic boundary. All other boundaries were periodic. The cube
was rotated around an axis perpendicular to the flow field and simulations were run at
rotation angles of 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ at Reynolds numbers 0.3, 30, 90 and
240 respectively. Figure 4.11 shows the three-dimensional mesh for the case where the cube
was rotated 15◦. Figure 4.12a shows a section through this three-dimensional domain in the
near-vicinity of the block to illustrate the mesh density and Figure 4.12b shows the node
status for the coupling process. Red nodes are fluid, pink nodes are solid, dark blue nodes
are boundary fluid and light blue nodes are boundary solid. The mesh spacing was 0.035m
in all directions giving a mesh with 5,088,448 nodes. The model time was 6.0 seconds with a
time step of 0.0005 seconds. This simulation took approximately 15.7 minutes to complete
on a machine with two Intel Xeon E5-2630 v2 (2.3 GHz) CPUs with 12 cores each (24 cores
total) and 20GB of memory.

(a) Cube embedded in fluid mesh. Cube
is rotated 15◦ around axis perpendicular to
flow direction. Cube side length is 1m and
mesh spacing is 0.035m.

(b) Status of fluid nodes for coupling process.
Red nodes are fluid, pink nodes are solid,
dark blue nodes are boundary fluid and light
blue nodes are boundary solid

Figure 4.12: Sections through three-dimensional domain showing mesh density in the vicinity
of the cube

Figure 4.13 shows the calculated values of CD for the tested rotation angles θ. The
calculated values for the drag coefficient are mirrored around 45◦ as is expected since the
cube is isometric. The maximum projected cross-sectional area is obtained when the cube
is rotated 45◦ relative to the flow direction, giving the highest drag coefficient. Any rotation
away from this orientation leads to a lower projected cross-sectional area and hence a lower
drag coefficient with the lowest values at 0◦ and 90◦. The coupling algorithm is able to
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Figure 4.13: Drag coefficient CD for cubes fixed in uniform flow as a function of rotation of
cube relative to flow direction at Reynolds Number = 0.3, 30, 90 and 240

capture this behavior. Additionally, CD is more sensitive for higher Reynolds numbers which
is consistent with observed behavior. Figure 4.14a shows the resulting velocity field for the
case where the cube was rotated 15◦ relative to flow at Re = 240. The velocity magnitude
is shown in m/s. Figure 4.14b shows this same cube with velocity vectors colored based on
pressure.
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(a) Velocity field magnitude with included
legend given in units of m/s

(b) Velocity field vectors scaled based on
magnitude. Arrows are colored based on
pressure where included legend is in Pascals

Figure 4.14: Cube rotated 15◦ relative to flow direction. The upstream boundary has con-
stant velocity u = 〈1.0, 0.0, 0.0〉m/s while the downstream boundary is a non-reflecting
characteristic boundary. All remaining boundaries are periodic.

4.4 Summary

The DEM implementation described in Chapter 3 was extended to perform coupled
fluid-solid interaction analyses using weakly compressible LBM. A new coupling algorithm,
which extends the paritally saturated approach, was developed to consider three-dimensional
convex polyhedra moving through the fluid domain. The algorithm uses both linear pro-
gramming and simplex integration for the coupling process. The LBM implementation and
new coupling algorithm were validated against analytical solutions from fluid mechanics and
experimental data.
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Chapter 5

Performance Evaluation

The coupled DEM-LBM program has the potential to be used to analyze a variety of
problems involving solid-fluid interaction. To this end, the performance characteristics of
the program were tested using several different scenarios to illustrate its capability and to
identify its current limitations. Thus, in these examples the focus is on the computational
demand for various classes of applications and on identifying where future improvement is
warranted or needed.

5.1 Rock Erosion

The principal motivation for this research was the development of capability to simulate
the erosion of individual rock blocks from a fractured rock mass. As outlined in George [28],
previous studies have focused on simplified cubic or rectangular blocks, but these simplifi-
cations may lead to misleading results as the kinematic response of the rock mass is greatly
influenced by the orientation of the discontinuities. In these simulations, the fractured rock
mass was generated using joint set data from an unlined dam spillway in the Sierra Nevada
in Northern California to ensure the block shapes were more realistic.

First, the dry condition was tested to ensure that the rock mass was stable prior to any
interaction with water. Figure 5.1a shows the initial configuration of the fractured rock
where it can be clearly seen that one joint set dips unfavorably downslope. The block on the
top of this unfavorable joint was unstable and failed in sliding, as shown in Figure 5.1b, and
was removed prior to running analyses with fluid. The remaining rock mass was stable in the
dry condition. The bottom and side boundaries were modeled as rigid, frictional boundaries.

With this stable rock mass, a coupled fluid-solid simulation was performed to investigate
the potential for further erosion due to hydrodynamic loading. The upstream boundary was
held to a constant velocity varying linearly from 0 m/s at the bottom of the channel to 9
m/s at the top of the domain. The downstream boundary was modeled as an outlet using a
non-reflecting characteristic boundary. The fluid in the remainder of the domain was initially
at rest and was allowed to come to equilibrium due to the velocity boundary on the upstream
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(a) Initial configuration of dry rock mass (b) Block sliding along unfavorable discontinu-
ity in dry condition

Figure 5.1: Fractured rock mass generated based on joint set data from unlined dam spillway
in the Sierra Nevada in Northern California

side and gravitational acceleration as the water flowed downslope. During the course of the
simulation, 6.0 seconds model time, one additional block was eroded due to hydrodynamic
loading. Figure 5.2 shows the displacement of the block as well as the velocity magnitude
along a section of the incline. Figure 5.3 shows a closer view of the opening fractures as
the block displaces. The velocity vectors in this figure illustrate how flow through fractures
increases as they open up.

This example problem illustrates the ability of the coupled LBM-DEM program to cap-
ture hydrodynamic loading on the fractured rock as it flows over and against the rock.
However, it also highlights a significant challenge in modeling this class of problem—the
difference in scales required to capture flow both over the rock mass and through the rock
mass. Only once the block has sufficiently displaced does water begin to flow through the
fractures. This is a numerical issue as water most definitely flows through the fractures long
before they have dilated as much as seen in the numerical simulations.

Numerically, blocks are allowed to overlap slightly in the DEM formulation, hence re-
sulting in completely closed fractures. A partial solution to this issue is to define a “virtual
fracture aperture” where the block faces are set back by some amount such that the effective
sizes of the blocks manifested in the fluid mesh are slightly smaller and the fluid mesh is fine
enough for a sufficient number of nodes to be present in the virtual fracture. This approach
is effective in the current implementation of the method only when the simulation domain is
small enough that gross mesh refinement is able to capture the scale of the fractures before
the memory demands for such a fine mesh exceed available hardware capacity.

The computational bottleneck in this type of simulation is the fluid-solid coupling com-
putations—each of the fluid nodes identified as a being on the fluid-solid boundary needs to
be checked for volumetric solid content. In the current code implementation the coupling
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(a) Initial fracture opening

(b) Fractures opening increases as block is eroded by water

Figure 5.2: Rock block sliding on fracture plane due to hydrodynamic loading

computations are still computed in serial while the rest of the fluid computations are exe-
cuted in parallel. As the fluid mesh is refined or the size or number of the blocks is increased,
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(a) Little to no flow inside fractures during initial displacement

(b) Large amount of fluid flowing through fractures as they widen

Figure 5.3: Closer view of fractures and internal rock mass structure during erosion

the number of fluid cells that need to checked for volumetric solid content increases rapidly.
As a result, the coupling computations may take anywhere from 30% to 60% of the total
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computation time depending on the problem configuration.

5.2 Transport of Polyhedral Particles

A different type of simulation problem is the transport of polyhedral particles, such as
sand transport and the movement of particles along a stream bed. In these simulations a
polyhedral block is dropped onto an inclined plane and moves down the plane under the
influence of gravity considering three different conditions. First, the block is allowed to roll
down the plane without any water present—essentially modeling a rock fall. Next, the block
starts from the same initial position, but it is surrounded by stationary fluid. This is achieved
through a D3Q27 MRT collision model without a body force acting on the fluid. Lastly, the
block is again dropped from its initial position, but this time within a fast-moving fluid that
is flowing down the inclined plane with a constant inlet velocity and an outflow boundary at
the bottom of the slope. The fluid model in this instance is a D3Q27 MRT collision model
with gravitational loading on the fluid that causes it to accelerate down the incline.

Figure 5.4a shows the initial block position and Figure 5.4b shows a comparison of the
block displacements for the different cases. The coupling correctly captures the interaction
between the block and fluid: The block in stationary fluid rolls down the slope at a slower
rate compared to the dry case while the fast-moving fluid carries the block downslope at
a faster rate than the block in stationary fluid but it does not bounce as high as the dry
case. Figure 5.5 shows how stream tracers bend round the polyhedral block as it rolls and
is pushed down slope by the fluid.

Computationally what is important to note from these simulations is the simulation time
and mesh density compared to that of the simulations described in Section 5.1. The number
of fluid nodes in this instance is 726,291 while the number of fluid nodes for the rock erosion
example is 33,201. The computation time required for 0.1 seconds of model time for the
block rolling down the incline is approximately 10 minutes while it takes approximately 63
minutes of computation time to simulate 0.1 seconds for the rock erosion example on a com-
puter with 2 Intel Xeon E5-2630 CPUs (6 cores each) and 20GB of memory. This difference
in computation time illustrates the computational demand of the fluid-solid coupling com-
putations and the need to accelerate them in the source code. For the block rolling down the
incline, doubling the size of the domain increases the total computation time less than if the
domain size was held constant but the mesh refined by one order of magnitude. For these
two cases the number of nodes is the same, but the number of fluid-solid boundary nodes is
greater in the case where the mesh is refined. The computation time increases by a factor
of approximately 1.4 for the increased domain size while it increases by a factor of 4.63 for
the refined mesh case, though the number of nodes in the simulations is exactly the same.
This illustrates that the bottleneck in the fluid-solid coupling computations is exacerbated
in cases when a greater fraction of the fluid nodes interact with solids as opposed to just
having more fluid nodes overall.
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(a) Initial position of the polyhedral block for
all test cases

(b) Comparison of block displacements at
model time 1.7 seconds. The blue block is the
dry case, the orange block is the fast-flowing
fluid case and the red block is the stationary
fluid case. In all cases the block continues
rolling down the incline.

Figure 5.4: Polyhedral block rolling down inclined plane

Figure 5.5: Stream tracers bending round the polyhedral block moving through the fluid
mesh

5.3 Uplift Forces on Hydraulic Structures

As evidenced by the damage to the service spillway at Oroville dam, hydraulic uplift
forces at the cracks and joints on slabs in hydraulic structures can pose a major risk to their
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safe and reliable operation. Offsets in the joints or cracks can cause the hydraulic pressures
to be transmitted underneath the slabs causing uplift or erosion of the foundation materials
[20]. The stagnation pressure and flow patterns associated with offset joints was modeled
using the coupled DEM-LBM implementation to illustrate its potential use for this class of
problems and to show how it performs when the solid phase is fixed and does not translate
through the fluid mesh. For these simulations, a 1/8 inch joint with 1/8 inch offset between
slabs was modeled, similar to the physical and numerical experiments performed by Frizell
[20]. Figure 5.6 shows the boundaries for the simulations. The two slabs are separated in
the center of the domain by the joint where the offset between the two slabs can be clearly
seen. The left boundary is the upstream side where fluid enters the domain at a constant
velocity and flows toward the right side of the domain where flow is forced upward by the
offset joint.

Figure 5.6: Two slabs offset by 1/8 inch separated by 1/8 inch joint

Two different cases were evaluated to show how the flow characteristics change depending
on whether the joint is open—water can flow underneath the slabs—or sealed. The resulting
pressure and velocity fields with associated stream tracers are shown for the open joint case
in Figure 5.7 and for the sealed joint case in Figure 5.8. The location of the stagnation
pressure and general flow characteristics agree well with the results presented in [20].

Since the slabs are kept stationary during the simulation, the volumetric solid fraction
only needs to be calculated once at the beginning of the simulation. This greatly improves
the performance since the volumetric solid does not need to be evaluated at every time step.
For the same size time step and approximately the same number of nodes, simulating 0.1
seconds of model time can be completed roughly 20 times faster for these analyses than the
simulations of a block rolling down an incline described in Section 5.2.



CHAPTER 5. PERFORMANCE EVALUATION 75

5.4 Summary

A series of example analyses were performed to assess the performance characteristics of
the coupled DEM-LBM program. Table 5.1 contains relevant details about the hardware
and simulation configurations for the example analyses. The results of the analyses show
that these problems are extremely computationally intensive and further performance im-
provements will be needed to be able to simulate realistic, field scale problems. In particular,
the fluid-solid coupling computations need to be accelerated as they were observed to be a
bottleneck in simulations containing large amounts of solid in the fluid mesh. Additionally,
in the case where fluid flows both over fractured rock and through the fractures within it,
gross mesh refinement will not be able to capture the multiscale nature of the interactions
and realistic solution of the interaction will require adaptive meshing and multigrid methods.

Simulation
Number of

Nodes

Computation
Time per

Model Time

Solid
Fraction
in Fluid
Mesh

Moving/
Fixed Solid?

Rock Erosion 33,201 43,200 Very High Moving

Transport of
Polyhedral
Particles

726,291 5,700 Low Moving
5,704,581 8,570 Very Low Moving
5,704,581 27,770 High Moving

Uplift Forces 86,961 330 High Fixed

Table 5.1: Example Analyses Configurations. All simulations were executed on a machine
with two Intel Xeon E-5-2630 CPUs (12 cores, 24 threads) with 20GB of memory
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(a) Pressure field in and around the joint

(b) Velocity field magnitude

(c) Velocity field tracers

Figure 5.7: Simulation results for 1/8 inch offset slabs with 1/8 inch open joint where water
is able to flow through the joint
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(a) Pressure field in and around the joint

(b) Velocity field magnitude

(c) Velocity field tracers

Figure 5.8: Simulation results for 1/8 inch offset slabs with 1/8 inch closed joint
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Chapter 6

Conclusions and Future Research

The objective of this research was the development of tools for the evaluation and model-
ing of the potential for rock erosion and rock transport by fast flowing water in rock channels
as these processes have been shown to have a significant impact on the performance of un-
lined dam spillways and other structures. The natural jointing within the rock leads to
fractured rock masses comprised of irregularly shaped polyhedral blocks. The orientation
of the blocks relative to slope geometry has been shown to govern the kinematic response
of the rock mass. This inherent geometric complexity and discontinuous nature of the rock
mass requires numerical methods that can model the discrete interactions between indi-
vidual blocks. Additionally, the shape and orientation of the individual blocks within the
rock mass needs to be explicitly accounted for when modeling rock-water interaction—the
hydrodynamic forces acting on each block need to be modeled directly—which is highly
computationally intensive. Therefore, it is necessary to develop tools that can capture the
kinematics of the rock mass response and that take advantage of parallel computing.

To this end, a three-dimensional, open-source program to produce the fractured rock
mass was developed based on a linear programming approach. While this program uses
previously developed techniques for efficient rock mass generation [8], its implementation
is scalable to take advantage of parallel computing based on the computational resources
that are available—whether the computations are executed on a desktop or on the Cloud,
the program and underlying source code are exactly the same. The program automatically
maintains load balance and numerical experiments show that the parallel implementation is
able to maintain essentially “perfect” weak scaling. Compared to the serial implementation
[8], a speedup of approximately 22 can be obtained on a desktop workstation. When scaling
computations up to the Cloud, approximately 8 million blocks can be generated in the same
amount of time as it takes the serial implementation to generate 60,000 blocks.

The second stage of this research effort concentrated on the development of a new open-
source DEM program for analyzing blocky rock mass kinematics. The contact detection
algorithm used for DEM is also based on a linear programming approach [7], which allows for
similar data structures and logic in both the DEM and block generation code. The program
implementation has been verified against analytical solutions as well as other numerical
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solutions and has been shown to accurately capture the three-dimensional kinematic behavior
of polyhedral rock blocks.

The DEM program was then extended to perform a coupled fluid-solid interaction anal-
ysis using a weakly compressible three-dimensional LBM formulation. A new coupling al-
gorithm was developed that is able to consider three-dimensional convex polyhedra moving
through the LBM mesh. The algorithm extends the partially saturated method [78] to ana-
lytically calculate the volumetric solid content in a fluid cell using linear programming and
simplex integration. The LBM implementation was verified against analytical solutions in
fluid mechanics and the coupled DEM-LBM algorithm was validated through comparison
with regressed experimental data. Additionally, the fluid computations were accelerated
using the C++ library Kokkos [15] such that computations can be executed on both the
central processing unit (CPU) and graphics processing unit (GPU). The capabilities of the
new coupled DEM-LBM implementation were then explored by evaluating the performance
characteristics of the program in modeling different types of problems involving solid-fluid
interaction.

6.1 Future Research

The fully coupled DEM-LBM software developed as part of this research effort is capable
of simulating the complex interaction between fractured rock and water. However, the
capability to model full-scale problems is still elusive due to the enormous computational
effort dictated by the multiscale nature of such problems. Therefore, significant future
effort is required to improve the computational speed and model efficiency to allow realistic
representation of natural settings. Thus, future effort should consider incorporating the
stochastic nature of discontinuities within the rock mass, better capturing the multiscale
aspects of rock-fluid interaction and, more pragmatically, enhancing parallel capability of
the simulation software.

In terms of the fractured rock mass generation, the current implementation of the block
cutting algorithm generates a fractured rock mass with persistent joints. However, non-
persistent joints are a common occurrence in natural rock and should be incorporated into
analyzing the behavior of fractured rock. Future work should include a stochastic joint
generator that captures the natural variation in strike, dip, spacing and persistence of dis-
continuities. The current intersection code is able to account for non-persistent joints and
the code that generates the joint sets can be expanded to produce stochastic realizations
such that the natural variability in the rock mass can be considered. This will make it possi-
ble to quantify the uncertainty in the response of the rock mass given its natural variability.
Specifically, reliability methods are available to estimate the probability distribution for rock
scour with a small number of model evaluations and automatically provide sensitivity of the
solution to the uncertain input parameters—discontinuity geometry and strength.

Furthermore, rock scour is a multiscale problem where the size of the rock blocks com-
pared to the fractures varies by orders of magnitude. The required mesh resolution to
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accurately resolve hydrodynamic forces of water flowing over and around rock blocks is
significantly less than the mesh resolution required to capture the interaction between the
fractured rock mass and water flowing through the discontinuities. For example, in the ex-
perimental work by George [28] the diameter of the volume equivalent sphere for the blocks
tested was approximately 8cm with flow depths up to 12cm while the joint aperture was
only 1.8mm. Clearly, the size of the mesh within the fractures would have to be much finer
compared to the rest of the domain and simply applying that fine of a mesh to the entire
simulation domain is not feasible in terms of memory demands. Additionally, once the blocks
start displacing the mesh density requirements would change as the fractures open up and
the blocks begin to move through the fluid mesh. Adaptive meshing and multigrid methods
would be ideal for capturing these different scales of interaction.

Lastly, the high computational and memory demands for three-dimensional direct sim-
ulation of rock-water interaction requires parallel computing and efficient use of computing
resources. The fluid computations have been accelerated to use shared memory parallelism
on both the CPU and GPU; however, the DEM-LBM coupling and DEM computations are
currently executed in serial. As shown in Chapter 5, the fluid-solid coupling computations
are a bottleneck when there is a substantial amount of solid present in the fluid domain. Ac-
celerating this portion of the computations would greatly improve performance and enhance
the capability for simulating fluid-solid interaction at a greater scale. Though the current
parallelization has been implemented using shared memory, future acceleration should also
consider including distributed memory parallelism such that more computational resources
can be brought to bear on increasingly large simulations.
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Appendix A

Transformation Matrices for
MRT-LBM

The transformation matrix M used in the multiple-relaxation-time collision operator
described in Section 4.2.2.1 is calculated from Equation 4.10 with the discrete velocities
ci listed in Table 4.1, as shown in Figure 4.2, for the D3Q27 velocity set. The resulting
tranformation matrix is calculated as:

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 0 0 1 1 1 1 −1 0 0 −1 −1 −1 −1 0 0 −1 −1 −1 −1
0 0 1 0 1 −1 0 0 1 1 1 1 −1 −1 0 −1 0 −1 1 0 0 −1 −1 −1 −1 1 1
0 0 0 1 0 0 1 −1 1 −1 1 −1 1 −1 0 0 −1 0 0 −1 1 −1 1 −1 1 −1 1
−2 −1 −1 −1 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 0 0 0 0 0 0 1 1 1 1
0 2 −1 −1 1 1 1 1 −2 −2 0 0 0 0 2 −1 −1 1 1 1 1 −2 −2 0 0 0 0
0 0 1 −1 1 1 −1 −1 0 0 0 0 0 0 0 1 −1 1 1 −1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 0 0 0 1 −1 0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 0 0 1 −1 1 −1 −1 1 0 0 0 0 0 0 0 1 −1 1 −1 −1 1
0 0 0 0 0 0 1 −1 0 0 1 −1 1 −1 0 0 0 0 0 1 −1 0 0 1 −1 1 −1
0 −4 0 0 −1 −1 −1 −1 0 0 2 2 2 2 4 0 0 1 1 1 1 0 0 −2 −2 −2 −2
0 0 −4 0 −1 1 0 0 −1 −1 2 2 −2 −2 0 4 0 1 −1 0 0 1 1 −2 −2 2 2
0 0 0 −4 0 0 −1 1 −1 1 2 −2 2 −2 0 0 4 0 0 1 −1 1 −1 −2 2 −2 2
0 4 0 0 −2 −2 −2 −2 0 0 1 1 1 1 −4 0 0 2 2 2 2 0 0 −1 −1 −1 −1
0 0 4 0 −2 2 0 0 −2 −2 1 1 −1 −1 0 −4 0 2 −2 0 0 2 2 −1 −1 1 1
0 0 0 4 0 0 −2 2 −2 2 1 −1 1 −1 0 0 −4 0 0 2 −2 2 −2 −1 1 −1 1
4 0 0 0 −1 −1 −1 −1 −1 −1 1 1 1 1 0 0 0 −1 −1 −1 −1 −1 −1 1 1 1 1
−8 4 4 4 −2 −2 −2 −2 −2 −2 1 1 1 1 4 4 4 −2 −2 −2 −2 −2 −2 1 1 1 1
0 −4 2 2 1 1 1 1 −2 −2 0 0 0 0 −4 2 2 1 1 1 1 −2 −2 0 0 0 0
0 0 −2 2 1 1 −1 −1 0 0 0 0 0 0 0 −2 2 1 1 −1 −1 0 0 0 0 0 0
0 0 0 0 −2 2 0 0 0 0 1 1 −1 −1 0 0 0 −2 2 0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 0 0 −2 2 1 −1 −1 1 0 0 0 0 0 0 0 −2 2 1 −1 −1 1
0 0 0 0 0 0 −2 2 0 0 1 −1 1 −1 0 0 0 0 0 −2 2 0 0 1 −1 1 −1
0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 1 1 0 0 0 0 0 0 0 1 −1 0 0 −1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 −1 1 1 −1



(A.1)

and its inverse is calculated as:
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M−1 =
1

216



8 0 0 0 −24 0 0 0 0 0 0 0 0 0 0 0 24 −8 0 0 0 0 0 0 0 0 0
8 12 0 0 −12 12 0 0 0 0 −12 0 0 12 0 0 0 4 −12 0 0 0 0 0 0 0 0
8 0 12 0 −12 −6 18 0 0 0 0 −12 0 0 12 0 0 4 6 −18 0 0 0 0 0 0 0
8 0 0 12 −12 −6 −18 0 0 0 0 0 −12 0 0 12 0 4 6 18 0 0 0 0 0 0 0
8 12 12 0 0 6 18 18 0 0 −3 −3 0 −6 −6 0 −6 −2 3 9 −18 0 0 27 −27 0 0
8 12 −12 0 0 6 18 −18 0 0 −3 3 0 −6 6 0 −6 −2 3 9 18 0 0 27 27 0 0
8 12 0 12 0 6 −18 0 0 18 −3 0 −3 −6 0 −6 −6 −2 3 −9 0 0 −18 −27 0 27 0
8 12 0 −12 0 6 −18 0 0 −18 −3 0 3 −6 0 6 −6 −2 3 −9 0 0 18 −27 0 −27 0
8 0 12 12 0 −12 0 0 18 0 0 −3 −3 0 −6 −6 −6 −2 −6 0 0 −18 0 0 27 −27 0
8 0 12 −12 0 −12 0 0 −18 0 0 −3 3 0 −6 6 −6 −2 −6 0 0 18 0 0 27 27 0
8 12 12 12 12 0 0 18 18 18 6 6 6 3 3 3 6 1 0 0 9 9 9 0 0 0 27
8 12 12 −12 12 0 0 18 −18 −18 6 6 −6 3 3 −3 6 1 0 0 9 −9 −9 0 0 0 −27
8 12 −12 12 12 0 0 −18 −18 18 6 −6 6 3 −3 3 6 1 0 0 −9 −9 9 0 0 0 −27
8 12 −12 −12 12 0 0 −18 18 −18 6 −6 −6 3 −3 −3 6 1 0 0 −9 9 −9 0 0 0 27
8 −12 0 0 −12 12 0 0 0 0 12 0 0 −12 0 0 0 4 −12 0 0 0 0 0 0 0 0
8 0 −12 0 −12 −6 18 0 0 0 0 12 0 0 −12 0 0 4 6 −18 0 0 0 0 0 0 0
8 0 0 −12 −12 −6 −18 0 0 0 0 0 12 0 0 −12 0 4 6 18 0 0 0 0 0 0 0
8 −12 −12 0 0 6 18 18 0 0 3 3 0 6 6 0 −6 −2 3 9 −18 0 0 −27 27 0 0
8 −12 12 0 0 6 18 −18 0 0 3 −3 0 6 −6 0 −6 −2 3 9 18 0 0 −27 −27 0 0
8 −12 0 −12 0 6 −18 0 0 18 3 0 3 6 0 6 −6 −2 3 −9 0 0 −18 27 0 −27 0
8 −12 0 12 0 6 −18 0 0 −18 3 0 −3 6 0 −6 −6 −2 3 −9 0 0 18 27 0 27 0
8 0 −12 −12 0 −12 0 0 18 0 0 3 3 0 6 6 −6 −2 −6 0 0 −18 0 0 −27 27 0
8 0 −12 12 0 −12 0 0 −18 0 0 3 −3 0 6 −6 −6 −2 −6 0 0 18 0 0 −27 −27 0
8 −12 −12 −12 12 0 0 18 18 18 −6 −6 −6 −3 −3 −3 6 1 0 0 9 9 9 0 0 0 −27
8 −12 −12 12 12 0 0 18 −18 −18 −6 −6 6 −3 −3 3 6 1 0 0 9 −9 −9 0 0 0 27
8 −12 12 −12 12 0 0 −18 −18 18 −6 6 −6 −3 3 −3 6 1 0 0 −9 −9 9 0 0 0 27
8 −12 12 12 12 0 0 −18 18 −18 −6 6 6 −3 3 3 6 1 0 0 −9 9 −9 0 0 0 −27



(A.2)
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