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Abstract

GTPases are molecular switches that regulate a wide range of cellular processes, such as organelle

biogenesis, position, shape, function, vesicular transport between organelles, and signal

transduction. These hydrolase enzymes operate by toggling between an active (“ON”) guanosine

triphosphate (GTP)-bound state and an inactive (“OFF”) guanosine diphosphate (GDP)-bound

state; such a toggle is regulated by GEFs (guanine nucleotide exchange factors) and GAPs

(GTPase activating proteins). Here we propose a model for a network motif between monomeric

(m) and trimeric (t) GTPases assembled exclusively in eukaryotic cells of multicellular organisms.

We develop a system of ordinary differential equations in which these two classes of GTPases are

interlinked conditional to their ON/OFF states within a motif through coupling and feedback

loops. We provide explicit formulae for the steady states of the system and perform classical local

stability analysis to systematically investigate the role of the different connections between the

GTPase switches. Interestingly, a coupling of the active mGTPase to the GEF of the tGTPase was

sufficient to provide two locally stable states: one where both active/inactive forms of the

mGTPase can be interpreted as having low concentrations and the other where both m- and

tGTPase have high concentrations. Moreover, when a feedback loop from the GEF of the tGTPase

to the GAP of the mGTPase was added to the coupled system, two other locally stable states

emerged. In both states the tGTPase is inactivated and active tGTPase concentrations are low.

Finally, the addition of a second feedback loop, from the active tGTPase to the GAP of the

mGTPase, gives rise to a family of steady states that can be parametrized by a range of inactive

tGTPase concentrations. Our findings reveal that the coupling of these two different GTPase

motifs can dramatically change their steady-state behaviors and shed light on how such coupling

may impact signaling mechanisms in eukaryotic cells.
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1 Introduction

Each eukaryotic cell has a large number of GTP-binding proteins (also called GTPases or G

proteins). They are thought to be intermediates in an extended cellular signaling and

transport network that touches on nearly every aspect of cell function (Alberts et al. 2013;

Hamm 1998; Bourne et al. 1990). One unique feature of GTPases is that they serve as

biochemical switches that exist in an “OFF” state when bound to a guanosine diphosphate

(GDP) and can be turned “ON” when that GDP is exchanged for a guanosine triphosphate

(GTP) nucleotide (Alberts et al. 2013; Lipshtat et al. 2010). Turning the GTPase “ON” is the

key rate-limiting step in the activation–inactivation process, requires an external stimulus,

and is catalyzed by a class of enzymes called guanine nucleotide exchange factors (GEFs)

(Rossman et al. 2005). G proteins return to their “OFF” state when the bound GTP is

hydrolyzed to guanosine diphosphate (GDP) via an intrinsic hydrolase activity of the

GTPase; this step is catalyzed by GTPase-activating proteins (GAPs) (Wang et al. 1999).

Thus, GEFs and GAPs play a crucial role in controlling the dynamics of the GTPase switch

and the finiteness of signaling that it transduces (Bos et al. 2007; Cherfils and Zeghouf 2013;

Siderovski and Willard 2005; Ghosh et al. 2017). Dysregulation of GTPase switches has

been implicated in cellular malfunctioning and is commonly encountered in diverse diseases

(Lopez-Sanchez et al. 2014; Ma et al. 2015; Wang et al. 2015; Hartung et al. 2013). For

example, hyperactivation of GTPases (DiGiacomo et al. 2020; Hanahan and Weinberg 2000)

is known to support a myriad of cellular phenotypes that contribute to aggressive tumor traits

(Cardama et al. 2017; Liu et al. 2017). Such traits have also been associated with aberrant

activity of GAPs (DiGiacomo et al. 2020) or GEFs (Sriram et al. 2019; Wu et al. 2019;

O’hayre et al. 2013; Garcia-Marcos et al. 2009; Ghosh 2015; Papasergi et al. 2015). These

works underscore the importance of GTPases as vital regulators of high-fidelity cellular

communication.

There are two distinct types of GTPases that gate signals: small or monomeric (m) and

trimeric (t) GTPases. mGTPases are mostly believed to function within the cell’s interior

and are primarily concerned with organelle function, and cytoskeletal remodeling (Evers et

al. 2000; Etienne-Manneville and Hall 2002; Takai et al. 2001). tGTPases, on the other hand,

were believed to primarily function at the cell’s surface from where they gate the duration,

type, and extent of signals that are initiated by receptors on the cell’s surface (Gilman 1987;

Barr et al. 1992). These two classes of switches were believed to function largely

independently, until the early 1990s when tGTPases were detected on intracellular

membranes, e.g., the Golgi (Barr et al. 1992; Stow et al. 1991), and studies alluded to the

possibility that they, alongside mGTPases, may co-regulate organelle function and structure

(Cancino and Luini 2013). But it was not until 2016 that the first evidence of an example of

functional coupling between the two switches—m- and tGTPases—emerged. Using a

combination of biochemical, biophysical, structural modeling, live cell imaging, and

numerous readouts of Golgi functions, it was shown that m- and tGTPase co-regulate each
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other on the Golgi (Lo et al. 2015). The specific discovery of GIV/Girdin, a nonreceptor

GEF for Gαi, as a platform for crosstalk between trimeric G proteins and monomeric Arf1

GTPases at the Golgi is the main biological motivation of the present study. In Fig. 1a, we

depict where these proteins interact in the cell and what experimentally determined sequence

of events, segregated in space and time, enable the execution of key steps in secretion

through the Golgi. The experiments in Lo et al. (2015) showed that when mGTPase (Arf

family) is turned “ON,” it engages with a GEF for tGPTase (GIV/Girdin; tGEF); the latter

binds and activates tGTPase, of the Gi subfamily, Gαi. The engaged tGEF triggers the

activation of a tGTPase (Gi). Upon activation, the tGTPases activate the GAP for Arf1,

ArfGAP2/3 (mGAP), via the release of “free” Gβγ. The mGAP turns “OFF” the mGTPase

Arf1, thereby terminating the mGTPase signaling. Termination of the mGTPase (Arf1)

activity results in a finite lifetime of the Arf1 signal. This “finiteness” of signal from Arf1 is

critical for membrane trafficking and organelle structure (Donaldson et al. 2005; Rein et al.

2002; Chantalat et al. 2003). Thus, this phenomenon of co-regulation between the two

classes of GTPases was shown to be critical in limiting the duration of mGTPase and

tGTPase signaling on the Golgi membrane, which in turn significantly regulates Golgi shape

and function. In doing so, this dual GTPase circuit converted simple chemical signals into

complex mechanical outputs such as membrane trafficking. Emerging evidence from

protein–protein interaction networks and decades of work on both species of GTPases

suggest that such co-regulation through coupling between the GTPases is possible and likely

occurs on multiple organellar membranes. What advantages do two coupled species of

GTPase switches provide over independent, uncoupled switches? The answer to this

question has not yet been experimentally dissected or intuitively theorized.

Mathematical models of signaling networks have contributed significantly to our

understanding of how network motifs might function (Alon 2019; Bower and Bolouri 2001;

Eungdamrong and Iyengar 2004; Cowan et al. 2012; Morris et al. 2010; Getz et al. 2019).

Continuous-time dynamical systems, commonly represented by systems of ordinary

differential equations (ODEs), are powerful tools for building rich and insightful

mathematical models (Milo et al. 2002). For example, a comprehensive steady-state analysis

of an ODE system helped frame the concept of “zeroth-order ultrasensitivity” where large

responses in the active fraction of a protein of interest are driven by small changes in the

saturated ratio of the enzymes (Goldbeter and Koshland 1981). Similarly, modeling

biochemical networks with dynamical systems also has revealed the existence of bistable

switches and biological oscillators within a feedback network architecture (Ferrell 2002;

Ingolia and Murray 2007; Ferrell and Xiong 2001). The simple system proposed by Ferrell

and Xiong (Ferrell and Xiong 2001) served as a basis for modeling cellular all-or-none

responses and hence crucial for decision-making within several signaling processes.

Dynamical systems have also be used for mapping chemical reactions into differential

equations; when numerically integrated (clustered), these systems can be used to predict the

evolution of large reaction networks (Alon 2007; Neves et al. 2002; Shen-Orr et al. 2002).

For example, clustering methods have revealed the existence of recurrent structures, the so-

called network motifs, the dynamics of which have been inferred with a Boolean kinetic

system of differential equations (Shen-Orr et al. 2002). These models produced various

dynamic features corresponding to the motif structure, which allowed the understanding of
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underlying biology (i.e., gene expression patterns). Furthermore, studies using network ODE

models have revealed that information is processed in cells through intricate connections

between signaling pathways rather than individual motifs (Bhalla and Iyengar 1999, 2001).

From a systems biology modeling perspective, large systems of differential equations are

usually hard to analyze, but when combined with experiments, they can give rise to

quantitative predictions (Logsdon et al. 2014; Finley et al. 2009; Finley and Popel 2013; Yen

et al. 2011; Hornung and Barkai 2008; Hooshangi et al. 2005; Shibata and Fujimoto 2005;

Pedraza and van Oudenaarden 2005; Qiao et al. 2019).

Here we built a mathematical model to investigate the stability properties of the coupled m-

and tGTPase switches, the first example of its kind that has been observed experimentally

(Lo et al. 2015). Beginning with the uncoupled GTPase switches (Fig. 1b) as our starting

point, we specifically sought to understand the stability features of the coupled motif (Fig.

1c). We proposed a system of ODEs and obtained the steady states of this new network

motif to understand the input–output relationships. Given the model formulation and the fact

that we do not know the various kinetic parameters, obtaining these states is critical to our

understanding of this network behavior. Then we studied the dynamic behavior under small

perturbation around these steady states using local stability analysis (Strogatz 1994; Perko

2013). We investigated the different coupling and feedback loops between these two motifs,

all representing the observed biochemical and biophysical events during signal transduction

(Fig. 1d). In Fig. 1e, we summarize the steady states of the system. Our analyses revealed

the existence of steady states and their stability depends on the network connectivity. In

particular, the coupling between the two switches through the connection between mG* and

tGEF (represented by “1”) allowed for the emergence of two steady states with low/high mG

and mG* concentrations, while tG* steady-state concentration remained high in both cases.

On the other hand, low tG* steady-state concentrations were obtained when the feedback

loop tGEF → mGAP was added to the system (represented by “1+2”). Finally, the feedback

loop tG* → mGAP allowed for the emergence of four parametrized families of steady state

within the same low/high configurations. In what follows, we present the model assumptions

and derivation in Sect. 2, the local stability analysis and numerical simulations in Sect. 3,

and discuss our findings in the context of GTPase signaling networks in Sect. 4.

2 Model Development

In this section, we introduce our mathematical model for the GTPase coupled circuit (Fig.

1c). We begin with outlining the model assumptions in Sect. 2.1 and describe the reactions

and governing equations in detail in Sect. 2.2.

2.1 Assumptions

Our model describes the time evolution of the concentrations for the different system

components. Table 1 contains the set of reactions in our system. We explicitly allow for

three connections between the m- and the tGTPase switches based on experimental findings

(Lo et al. 2015) as described below.

• Arrow 1: Represents the coupling of the two switches and represents the

recruitment/engagement of tGEF by mG* (Fig. 1a, b).
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• Arrow 2: Represents the feedback from tGEF to mGAP (Fig. 1a, b).

• Arrow 3: Represents the feedback from tG* to mGAP (Fig. 1a, b).

Additionally, we only consider the toggling of GTPases that are mediated by GEFs and

GAPs that activate and inactivate them, respectively.

To develop the model equations, we considered a well-mixed regime and that the

concentrations of the species are in large enough amounts that deterministic kinetics hold

(Gillespie 2009; Hahl and Kremling 2016). Finally, for mathematical tractability, all

reactions in the system are modeled using mass–action kinetics, and nonlinear kinetics such

as Hill functions or Michaelis–Menten are not considered (Changeux et al. 1967). The

reactions in the coupled circuit and the corresponding reaction rates used in the model are

shown in Table 1.

2.2 Governing Equations

We developed a system of ODEs that describe coupled toggling of two switches, i.e.,

cyclical activation and inactivation of monomeric and trimeric GTPases within the network

motif shown in Fig. 1c and described in Fig. 1d. In what follows, the brackets represent

concentrations, which are nonnegative real numbers. The system of equations is given by

d[mG]
dt = − kon

mG mGEF* [mG] + ko f f
mG mGAP* mG* (2.1)

d mG*
dt = kon

mG mGEF* [mG] − ko f f
mG mGAP* mG* − kon

I [tGEF] mG* (2.2)

d[tG]
dt = − kon

tG tGEF* [tG] + ko f f
tG tGAP* tG* (2.3)

d tG*
dt = kon

tG tGEF* [tG] − ko f f
tG tGAP* tG* − kon

III[mGAP] tG* (2.4)

d[tGEF]
dt = − kon

I [tGEF] mG* (2.5)

d tGEF*
dt = kon

I [tGEF] mG* − kon
II tGEF* [mGAP] (2.6)

d[mGAP]
dt = − kon

III[mGAP] tG* − kon
II tGEF* [mGAP] (2.7)

d mGAP*
dt = kon

III[mGAP] tG* + kon
II [mGAP] tGEF* (2.8)
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where the k’s represent the reaction rate parameter for each reaction rate. Since all of

reactions rates are second order, the k’s have units of 1/[μM s]

To complete the system definition, all model components must have nonnegative initial

conditions. We also assume that the concentrations of [mGEF*] and [tGAP*] are constant

and nonzero in our model. In particular, if kon
I = kon

II = kon
III = 0, then our system describes two

uncoupled GTPase switches (Fig. 1b) such that each has the same dynamics of the single

GTPase model proposed in Lipshtat et al. (2010).

2.3 Nondimensionalization

We introduce a nondimensional version of Eqs. 2.1–2.8 to reduce the number of free

parameters and to obtain a new system of equations that is independent of the units of

measurement. We denote T = kon
mG mGEF* −1

 as the characteristic timescale, ([T] = s).

While there are many choices of timescales, this is the natural choice because it reflects the

timescale of the coupling of the m- and tGTPase switches. We define the characteristic

concentration, Uζ = mGEF*  for ζ ∈ mG, mG*, tG, tG*, tGEF, tGEF*, mGAP, mGAP* , with

units Uζ = μM . These characteristic quantities allow us to express the dimensionless

kinetic rates as ratios between their dimensional forms and the rate of mGTPase activation

kon
mG. In fact, defining

ρo f f
mG =

ko f f
mG

kon
mG , ρon

tG =
kon
tG

kon
mG , ρo f f

tG =
ko f f
tG tGAP*

kon
mG mGEF*

,

ρon
I =

kon
I

kon
mG , ρon

II =
kon
II

kon
mG , ρon

III =
kon
III

kon
mG , t = t

T ,

and [ζ] = [ζ]
mGEF*  for ζ ∈ mG, mG*, tG, tG*, tGEF, tGEF*, mGAP, mGAP* , we drop the tildes

and write the system of dimensionless equations in the following form:

d[mG]
dt = − [mG] + ρo f f

mG mGAP* mG* (2.9)

d mG*
dt = [mG] − ρo f f

mG mGAP* mG* − ρon
I [tGEF] mG* (2.10)

d[tG]
dt = − ρon

tG tGEF* [tG] + ρoff
tG tG* (2.11)
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d tG*
dt = ρon

tG tGEF* [tG] − ρoff
tG tG* − ρon

III[mGAP] tG* (2.12)

d[tGEF]
dt = − ρon

I [tGEF] mG* (2.13)

d tGEF*
dt = ρon

I [tGEF] mG* − ρon
II tGEF* [mGAP] (2.14)

d[mGAP]
dt = − ρon

III[mGAP] tG* − ρon
II tGEF* [mGAP] (2.15)

d mGAP*
dt = ρon

III[mGAP] tG* + ρon
II [mGAP] tGEF* (2.16)

In Sect. 3, we perform a local stability analysis of the system given by Eqs. 2.9–2.16.

3 Mathematical Analysis and Results

In this section, we explore the coupling of the two switches and feedback loops on the

system dynamics. We refer to the nondimensional concentrations and rates of the system

given by Eqs. 2.9–2.16 as solely by concentrations and rates. First, it is convenient to rewrite

our nondimensional ODE system in the form

dx
dt = S ⋅ v(x),

where x represents the vector of concentrations for the different components, S is the

stoichiometric matrix, and v(x) is a vector with the different reaction rates (Famili and

Palsson 2003; Rangamani and Sirovich 2007). Thus, we define the components

x(1) = [mG], x(2) = mG* , x(3) = [tG], x(4) = tG* , x(5) = [tGEF], x(6) = tGEF* , x(7) = [mGAP]
, and x(8) = mGAP* . We also write the reaction velocities as

v1 = x(1), v2 = ρo f f
mG x(2)x(8), v3 = ρon

I x(2)x(5), v4 = ρon
tGx(3)x(6)

v5 = ρo f f
tG x(4), v6 = ρon

II x(6)x(7), v7 = ρon
IIIx(4)x(7) .

The 8 × 7 stoichiometric matrix for the system given by Eqs. 2.1–2.8 is then given by
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S =

arrow 1 arrow 2 arrow 3
mG −1 1 0 0 0 0 0
mG* 1 −1 −1 0 0 0 0
tG 0 0 0 −1 1 0 0
tG* 0 0 0 1 −1 0 −1

tGEF 0 0 −1 0 0 0 0
tGEF* 0 0 1 0 0 −1 0
mGAP 0 0 0 0 0 −1 −1
mGAP* 0 0 0 0 0 1 1

(3.1)

where the rows and columns of S (Eq. 3.1) represent the 8 components and 7 reactions,

respectively. The right null space of S comprises the steady-state flux solutions, and the left

null space contains the conservation laws of the system (Famili and Palsson 2003). On the

other hand, the column space contains the dynamics of the time derivatives, and the rank of

S is the actual dimension of the system in which the dynamics take place. In the following

subsections, we assume that ρo f f
mG , ρon

tG, and ρo f f
tG  are strictly positive and we analyze Eqs.

2.9–2.16 when the mGTPase and tGTPase switches are coupled through: (i) A forward

coupling mG* tGEF only (arrow 1), (ii) forward coupling mG* tGEF and feedback loop

tGEF mGAP (arrows 1 and 2) and (iii) forward coupling connection mG* tGEF and

feedback loops tGEF mGAP and tG* mGAP (arrows 1, 2, and 3). While mathematically,

other combinations of arrows are possible, biologically, these are the only relevant

combinations either for cellular function or for experimental manipulation.

3.1 Forward Coupling Connection: Recruitment of tGEF by Active mGTPases (mG* →
tGEF)

To analyze Eqs. 2.9–2.16 with the forward coupling connection only (arrow 1 in Fig. 1c), we

assume ρon
I > 0 and ρon

II = ρon
III = 0, which means that the feedback loops (arrows 2 and 3) are

not considered this first analysis. This represents the simple connection of the two GTPase

switches, which, in cells, appears to be mediated via activation-dependent coupling of mG*

to tGEF (Lo et al. 2015). In this case, the stoichiometric matrix (Eq. 3.1) is 8 × 5.

Conservation Laws—For this particular system, the total concentrations

tGtot : = [tG] + tG*  and tGEFtot : = [tGEF] + tGEF*  are constant over time and are

strictly positive. For this reason, it is convenient to introduce the fractions 𝒯: = [tG]
tGtot

 and

G: = [tGEF]
tGEFtot

 of inactive tGTPase and tGEF in the system, respectively, and let 𝒯* and 𝒢*

denote the fraction of their active forms. We then use 𝒯 + 𝒯* = 1 and 𝒢 + 𝒢* = 1 to rewrite

the system in the form

d[mG]
dt = − [mG] + ρo f f

mG mGAP* mG* (3.2)
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d mG*
dt = [mG] − ρo f f

mG mGAP* mG* − ρon
I tGEFtot 1 − 𝒢* mG* (3.3)

d𝒯*
dt = ρon

tG tGEFtot 𝒢* 1 − 𝒯* − ρo f f
tG 𝒯* (3.4)

d𝒢*
dt = ρon

I 1 − 𝒢* mG* (3.5)

From the stoichiometric matrix (Eq. 3.1), we observe that [mG] + mG* + tGEF* = C,

where C > 0 is constant over time, and thus,

[mG] + mG* + tGEFtot 𝒢* = C (3.6)

follows by the definition of 𝒢*. We compute the left null space of the stoichiometric matrix

and confirm the total of three conservation laws in this case. The conservation law given by

Eq. 3.6 reduces the system to three unknowns, which eases the steady-state and stability

analysis.

Steady States—To find biologically plausible (nonnegative) steady states of the system

given by Eqs. 3.2–3.6, we must find [mG], mG* , 𝒢* and 𝒯 * such that the time derivatives

in Eqs. 3.2–3.5 are zero and the conservation law given by Eq. 3.6 is satisfied. Therefore, we

must solve the following system:

[mG] − ρo f f
mG mGAP* mG* − ρon

I tGEFtot 1 − 𝒢* mG* = 0

ρon
tG tGEFtot 𝒢* 1 − 𝒯* − ρo f f

tG 𝒯* = 0

1 − 𝒢* mG* = 0

[mG] + mG* + tGEFtot 𝒢* = C

From the third equation above, we must have mG* = 0 or 𝒢* = 1. Thus, we divide the

steady-state analysis in these two cases and summarize our results in the following

proposition, whose proof can be found in “Appendix A.”

Proposition 3.1:  The steady states x = [mG], mG* , 𝒯 *, 𝒢*  of the system given by Eqs.

3.2–3.6 are given by
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• Steady state 1:

x = 0, 0, 1

1 +
ρo f f

tG

ρon
tGC

, C
tGEFtot

(3.7)

if and only if C ≤ [tGEFtot] and

• Steady state 2:

x =
ρo f f

mG mGAP*
1 + ρo f f

mG mGAP*
C − tGEFtot ,

C − tGEFtot

1 + ρo f f
mG mGAP*

,

ρon
tG tGEFtot

ρon
tG tGEFtot + ρo f f

tG , 1 .

(3.8)

if and only if C ≥ [tGEFtot].

Given the explicit expressions for the steady states and the parameter range in which they

exist, we perform a local stability analysis to determine whether these states are stable or

unstable under small perturbations. We adopt the classical linearization procedure based on

the powerful Hartman–Grobman theorem (Strogatz 1994; Perko 2013). We show that the

steady states are locally asymptotically stable, which means that any trajectory will be

attracted to the steady state provided the initial condition is sufficiently close.

Local Stability Analysis—Using that [mG] = C − mG* − tGEFtot 𝒢* (from Eq. 3.6) in

Eqs. 3.2–3.5, we obtain the following three-dimensional system:

d mG*
dt = f 1 mG* , 𝒢*, 𝒯*

d𝒯*
dt = f 2 mG* , 𝒢*, 𝒯*

d𝒢*
dt = f 3 mG* , 𝒢*, 𝒯*

where
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f 1 mG* , 𝒢*, 𝒯* = C − mG* − tGEFtot 𝒢*

−ρo f f
mG mGAP* mG* − ρon

I tGEFtot 1 − 𝒢* mG* ,

f 2 mG* , 𝒢*, 𝒯* = ρon
tG tGEFtot 𝒢* 1 − 𝒯* − ρo f f

tG tGAP* 𝒯*,

and

f 3 mG* , 𝒢*, 𝒯* = ρon
I 1 − 𝒢* mG* .

To perform the local stability analysis, we calculate the Jacobian matrix evaluated at the

steady state

𝒥 mG* , 𝒯*, 𝒢* =

∂ f 1
∂ mG*

∂ f 1
∂𝒯*

∂ f 1
∂𝒢*

∂ f 2
∂ mG*

∂ f 2
∂𝒯*

∂ f 2
∂𝒢*

∂ f 3
∂ mG*

∂ f 3
∂𝒯*

∂ f 3
∂𝒢* mG* , 𝒯*, 𝒢*

(3.9)

and by showing that all its eigenvalues have a negative real part, we can prove that the steady

state is LAS (Strogatz 1994), provided we further assume that the strict inequalities from

Proposition 3.1 hold. This is the content of the following theorem.

Theorem 3.1:  Let C be the conservation quantity from Eq. 3.6. Then,

1. If C < [tGEFtot], steady state 1 (Eq. 3.7) is LAS.

2. If C > [tGEFtot], steady state 2 (Eq. 3.8) is LAS.

Proof: All calculations were done with MATLAB’s R2019b symbolic toolbox using the

functions jacobian and eig to compute the Jacobian matrices and their eigenvalues,

respectively. We proceed with the analysis of each case separately.

1. Suppose C < tGEFtot . As we have seen in the previous subsection, in this case

the steady state is given by Eq. 3.7. The Jacobian matrix (Eq. 3.9) is given by

ρon
I C − tGEFtot − 1 − mGAP* ρo f f

mG 0 − tGEFtot

0 −Cρon
tG − ρo f f

tG ρo f f
tG ρon

tG tGEFtot

Cρon
tG + ρo f f

tG

−ρon
I C

tGEFtot
− 1 0 0

.
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The first eigenvalue in this case is given by λ1 = − Cρon
tG − ρo f f

tG  and the other two

(λ2 and λ3) are such that

λ2 + λ3 = ρon
I C − tGEFtot − ρo f f

mG mGAP* − 1 < 0

and

λ2λ3 = − ρon
I C − tGEFtot > 0

from which we conclude that λ2 and λ3 are both negative, and therefore, the

steady state is LAS.

2. Suppose now that C > tGEFtot . Following our previous analysis, the steady state

is given by Eq. 3.8. The Jacobian matrix in this case is given by

−ρoff
mG mGAP* − 1 0 tGEFtot

ρon
I C − tGEFtot

ρo f f
mG mGAP* + 1

− 1

[0.5cm]0 −ρoff
tG − ρon

tG tGEFtot
ρo f f

tG ρon
tG tGEFtot

ρo f f
tG + ρon

tG tGEFtot

[0.5cm]0 0 −
ρon

I C − tGEFtot

ρo f f
mG mGAP* + 1

and the eigenvalues are given by λ1 = − ρo f f
tG − kon

tG tGEFtot ,

λ2 = − 1 − ρo f f
mG mGAP*  and λ3 = −

ρon
I C − tGEFtot

ρo f f
mG mGAP* + 1

, which are all negative and

this completes the proof. □

The inequality C < tGEFtot  must hold for existence and local asymptotic stability to steady

state 1. Recalling the definition of 𝒢* and that Eq. 3.6 holds for all times, including t = 0,

this relationship between C and tGEFtot  can be rewritten as [mG](0) + mG* (0) < [tGEF](0)

where [tGEF](0) = tGEFtot − tGEF* (0) is initial concentration of cytosolic tGEF that is yet

to be recruited by mG* to the membranes. Similarly, steady state 2 will exist when

[mG](0) + mG* (0) > [tGEF](0). In this case, the reduced system will converge to a state

where some distribution of mG, mG*, tG, tG* are present (Eq. 3.8), given sufficiently close

initial and steady-state concentration values. Thus, the existence of the steady states depends

only on the initial concentrations and not on any kinetic parameters.

Figure 1e illustrates the two possible steady states (gray-colored “1” in the 2 × 2 table)

promoted by the coupling connection. Steady state 1 can be interpreted as a configuration

where the copy numbers of both active and inactive mGTPase are low, while the tGTPase
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copy numbers remain high. On the other hand, in steady state 2, both m- and tGTPases have

high copy numbers in their active and inactive forms. Our results suggest that the coupling

from mG to tGEF, which initiates the coupling between the two G protein switches, can

drive the system to two possible configurations depending on the cellular concentrations of

total mG and tGEF. If the initial tGEF is larger than the total mG, the coupling connection

will result in a significant decrease of the total mG and result in the activation of a fraction

of the tGEF (𝒢* = C
tGEFtot

 in Eq. 3.7). On the contrary, if the initial tGEF is less than the

total mG, then the available tGEF will be fully engaged (𝒢* = 1 in Eq. 3.8), and there will be

a residual mG concentration in the system. We conclude that the initial difference between

the copy numbers of total mG and tGEF (a cytosolic protein that is recruited to the

membrane by mG*) is the main factor determining the steady state of the coupled GTPase

switches.

3.2 Coupled Switches with Feedback Loop tGEF → mGAP: Recruitment of tGEF by
Active mGTPases and tGEF Co-localization with mGAP

We analyze the case where the feedback loop tGEF mGAP (arrow 2 in Fig. 1c) is added to

the coupled system with the forward connection. In cells, this feedback loop represents a

tGEF* co-localization with mGAP on Golgi membranes that facilitates the recruitment of

GAP proteins Fig. 1a, (Lo et al. 2015). To analyze the effects of Arrows 1 and 2 solely, we

thus assume ρon
I > 0, ρon

II > 0 and ρon
III = 0. The model equations are thus given by the

following system:

d[mG]
dt = − [mG] + ρo f f

mG mGAP* mG* (3.10)

d mG*
dt = [mG] − ρo f f

mG mGAP* mG* − ρon
I [tGEF] mG* (3.11)

d[tG]
dt = − ρon

tG tGEF* [tG] + ρoff
tG tG* (3.12)

d tG*
dt = ρon

tG tGEF* [tG] − ρo f f
tG tG* (3.13)

d[tGEF]
dt = − ρon

I [tGEF] mG* (3.14)

d tGEF*
dt = ρon

I [tGEF] mG* − ρon
II tGEF* [mGAP] (3.15)
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d[mGAP]
dt = − ρon

II [mGAP] tGEF* (3.16)

d mGAP*
dt = ρon

II [mGAP] tGEF* (3.17)

As in Sect. 3.1, we first analyze the conservation laws of this particular system. In this case,

the stoichiometric matrix (Eq. 3.1) is 8 × 6.

Conservation Laws—We begin by observing that the total amount of tGTPase is

conserved in this system. Thus, we may use the fraction 𝒯* as in Sect. 3.1 and that is the

first conservation law. The total amount of mGAP is also conserved, as we sum Eqs. 3.16

and 3.17. We can then write

[mGAP] = mGAPtot − mGAP* (3.18)

and substitute the above expression for [mGAP] in Eqs. 3.15 and 3.17. We choose to keep the

concentrations of mGAP as a variable for notational simplicity and do not define its fraction.

Summing Eqs. 3.10, 3.11, 3.15, and 3.17, and integrating over time, we get

[mG] + mG* + tGEF* + mGAP* = C1 (3.19)

where C1 ≥ 0 is constant over time. Moreover, Eqs. 3.14, 3.15, and 3.17 when summed and

integrated give

[tGEF] + tGEF* + mGAP* = C2 (3.20)

for C2 ≥ 0 also constant. We compute the left null space of the stoichiometric matrix (Eq.

3.1) and confirm a total of four conservation laws in this case. The reduced system is given

by the following equations:

d[mG]
dt = − [mG] + ρo f f

mG mGAP* mG* (3.21)

d mG*
dt = [mG] − ρo f f

mG mGAP* mG* − ρon
I [tGEF] mG* (3.22)

d𝒯*
dt = ρon

tG tGEF* 1 − 𝒯* − ρo f f
tG 𝒯* (3.23)

d[tGEF]
dt = − ρon

I [tGEF] mG* (3.24)
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d tGEF*
dt = ρon

I [tGEF] mG* − ρon
II tGEF* mGAPtot − mGAP* (3.25)

d mGAP*
dt = ρon

II tGEF* mGAPtot − mGAP* (3.26)

with the conservation laws given by Eqs. 3.19 and 3.20. Next, we obtain the steady states of

the system.

Steady States and Local Stability Analysis—To find the steady states, we must find

nonnegative solutions of the following system:

−[mG] + ρo f f
mG mGAP* mG* = 0 (3.27)

ρon
tG tGEF* 1 − 𝒯* − ρo f f

tG 𝒯* = 0 (3.28)

[tGEF] mG* = 0 (3.29)

mGAPtot − mGAP* tGEF* = 0 (3.30)

[mG] + mG* + tGEF* + mGAP* = C1 (3.31)

[tGEF] + tGEF* + mGAP* = C2 (3.32)

From Eq. 3.29, we must have [tGEF] = 0 or mG* = 0. Moreover, from Eq. 3.30, tGEF* = 0

or mGAP* = mGAPtot , and thus, we have four possible combinations to analyze.

We study each case separately and obtain the necessary and sufficient inequalities involving

the parameters C1, C2, and mGAPtot  that ensure the existence of each steady state. As in

Sect. 3.1, we also show that the steady states are LAS provided the strict inequalities are

satisfied. We summarize our analysis in the following theorem, whose proof can be found in

“Appendix B.”

Theorem 3.2: The steady states

x = [mG], mG* , 𝒯*, [tGEF], tGEF* , [mGAP*]

of the system given byEqs. 3.19–3.26are given by

• Steady state 1:
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x = 0, 0,
ρon

tG C1 − mGAPtot

ρon
tG C1 − mGAPtot + ρo f f

tG , C2 − C1, C1 − mGAPtot , mGAPtot (3.33)

if and only if C2 ≥ C1 and C1 ≥ mGAPtot . The steady state is LAS if C2 > C1
and C1 > mGAPtot .

• Steady state 2:

x =
ρo f f

mG mGAPtot

1 + ρo f f
mG mGAPtot

C1 − C2 ,
C1 − C2

1 + ρo f f
mG mGAPtot

,

ρon
tG C2 − mGAPtot

C2 − mGAPtot + ρo f f
tG , 0, C2 − mGAPtot , mGAPtot

(3.34)

if and only if C1 ≥ C2 and C2 ≥ mGAPtot . The steady state is LAS if C1 > C2

and C2 > mGAPtot .

• Steady state 3:

x = 0, 0, 0, C2 − C1, 0, C1 (3.35)

if and only if C2 ≥ C1 and C1 ≤ mGAPtot . The steady state is LAS if C2 > C1

and C1 < mGAPtot .

• Steady state 4:

x = 1
1 + ρo f f

mG C2
C1 − C2 , 0, 0, 0, C2 (3.36)

if and only if C1 ≥ C2 and C2 ≤ mGAPtot . The steady state is LAS if C1 > C2

and C2 < mGAPtot .

Recalling the definitions of C1 and C2 and the fact that Eqs. 3.19 and 3.20 hold at all times,

including at t = 0, we can write C1 = [mG](0) + mG* (0) + tGEF* (0) + mGAP* (0) and

C2 = [tGEF](0) + tGEF* (0) + mGAP* (0). In this way, from the inequalities obtained in

Theorem 3.2 for C1 and C2, we obtain relationships among the initial conditions of the

original system (Eqs. 3.10–3.17) that are associated with each one of the four steady states.

For the existence and local asymptotic stability of steady state 1 (Eq. 3.33), where mG and

mG* have zero concentration values, the inequalities C2 > C1 and C1 > mGAPtot  must hold.

The first inequality can be written as [mG](0) + mG* (0) < [tGEF](0), which was obtained in

Sect. 3.1 as the existence condition for the steady state with no mG and mG* (Eq. 3.7). On

the other hand, the inequality C1 > mGAPtot  can be written as
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[mG](0) + mG* (0) + tGEF* (0) > [mGAP](0), where [mGAP](0) is the initial concentration

of cytosolic mGAP that is yet to be recruited by tGEF* to the membranes. Therefore, two

conditions guarantee the existence of steady state 1: (1) The total amount of mG protein

must be initially less than the concentration of tGEF and (2) the sum of the concentrations of

total mG protein and tGEF* must be initially higher than the concentration of mGAP. If both

conditions hold, then Theorem 3.2 ensures that steady state 1 will emerge and the reduced

system (Eqs. 3.21–3.26 along with Eqs. 3.19 and 3.20) will converge to steady state 1,

provided the initial and steady-state concentration values are sufficiently close.

A similar analysis holds for steady states 2, 3, and 4. For simplicity, we present the required

initial conditions for each steady state without repeating the conclusions that follows from

Theorem 3.2. For steady state 2 (Eq. 3.34), where mG, mG*, tG, and tG* are present, the

inequalities C1 > C2 and C2 > mGAPtot  become [mG](0) + mG* (0) > [tGEF](0) and

[tGEF](0) + tGEF* (0) > [mGAP](0), respectively. Hence, the total amount of mG protein

must be initially higher than the concentration of tGEF, and the total amount of tGEF must

be initially higher than concentration of mGAP. For steady state 3 (Eq. 3.35), where mG and

mG* have zero concentration values and the tGTPase is fully inactivated, the inequalities C2

> C1 and C1 < mGAPtot  become [mG](0) + mG* (0) < [tGEF](0) and

[mG](0) + mG* (0) + tGEF* (0) < [mGAP](0), respectively. Hence, the total amount of mG

protein must be initially less than the concentration of tGEF and the sum of the

concentrations of total mG protein and tGEF* must be initially less than the concentration of

mGAP. For steady state 4 (Eq. 3.36), where mG and mG* are present and tG* concentration

is zero, the inequalities C1 > C2 and C2 < mGAPtot  become [mG](0) + mG* (0) > [tGEF](0)

and [tGEF](0) + tGEF* (0) < [mGAP](0), respectively. Hence, the total amount of mG protein

must be initially higher than the concentration of tGEF and the total amount of tGEF must

be initially less than the concentration of mGAP. In this case, the existence of the steady

states also depends only on the initial concentrations and not on any kinetic parameters.

Figure 1e illustrates the four possible steady states (gray-colored “1+2” in the 2 × 2 table)

promoted by the coupled switches in the presence of the feedback loop tGEF mGAP.

Steady states 1 and 2 have the same interpretation of the two steady states obtained in Sect.

3.1. On the other hand, steady states 3 and 4 were obtained through the sole contribution of

the feedback loop tGEF mGAP. These states share the common feature of having tGTPase

fully inactivated. However, steady state 3 can be interpreted as a configuration where the

copy numbers of mG and mG* are low, while in steady state 4, these copy numbers are high.

3.3 Coupled Switches with Feedback Loops tGEF → mGAP and tG* mGAP: Recruitment

of tGEF by Active mGTPases, tGEF Co-localization with mGAP, and Activation of mGAP by
Active tGTPases

We analyze the case where the feedback loop tG* mGAP (arrow 3 in Fig. 1c) is added to

the coupled system in addition to the feedback loop tGEF mGAP. This connection

represents the release of free Gβγ promoting mGAP activation. We analyze the full system

given by Eqs. 2.9–2.16 in the case where ρon
I , ρon

II , and ρon
III are strictly positive. In particular,

we obtain the conservation laws and four one-parameter steady-state families. We also
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obtain the necessary conditions for the conserved quantities that guarantee the existence of

each steady-state family.

Conservation Laws—As in Sect. 3.2, we observe that the total amount of mGAP is

constant over time, so Eq. 3.18 still holds. On the other hand, the total tGTPase follows a

new conservation law that we derive here. Summing Eqs. 2.9–2.12, 2.14, and 2.16 and

integrating over time, we have

[mG] + mG* + [tG] + tG* + tGEF* + mGAP* = C1 . (3.37)

Summing Eqs. 2.11–2.14 and 2.16 and integrating over time, we obtain

[tG] + tG* + [tGEF] + tGEF* + mGAP* = C2 (3.38)

where C1 and C2 must be nonnegative constants. We compute the left null space of the

stoichiometric matrix (Eq. 3.1) and confirm the total of three conservation laws, which are

given by Eqs. 3.18, 3.37, and 3.38. These equations reduce Eqs. 2.9–2.16 to a five-

dimensional system, whose steady states can be obtained.

Steady States—We compute the steady states of the system when the time derivatives in

Eqs. 2.9–2.16 are equal to zero. Removing the linearly dependent equations, the problem

reduces to finding the nonnegative solutions of the following system:

−[mG] + ρo f f
mG mGAP* mG* = 0 (3.39)

−ρon
tG tGEF* [tG] + ρo f f

tG tG* = 0 (3.40)

mGAPtot − [mGAP*] tG* = 0 (3.41)

[tGEF][mG* = 0 (3.42)

tGEF* mGAPtot − [mGAP*] = 0 (3.43)

along with the conservation laws given by Eqs. 3.18, 3.37, and 3.38.

Equation 3.40 gives tG* =
ρon

tG tGEF* [tG]

ρo f f
tG  and Eq. 3.41 then becomes

mGAPtot − mGAP* tGEF* [tG] = 0.
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From Eq. 3.43, we conclude that [tG] can be any nonnegative real number satisfying Eqs.

3.37 and 3.38. We define ξ = [tG] and characterize four ξ-dependent families of steady states

similarly as we did in Sect. 3.2. We summarize our results in the following theorem, whose

proof can be found in “Appendix C.”

Theorem 3.3: Theξ-dependent families of steady states

xξ = [mG], mG* , [tG], tG* , [tGEF], tGEF* , mGAP*

of the system given byEqs. 3.39–3.43with the conservation laws given byEqs. 3.18, 3.37,

and3.38are given by

• Family 1:

xξ = 0, 0, ξ,
C1 − mGAPtot − ξ ρon

tGξ

ρo f f
tG + ρon

tGξ
, C2 − C1,

C1 − mGAPtot − ξ
ρo f f

tG

ρo f f
tG + ρon

tGξ
, mGAPtot

(3.44)

only if0 ≤ ξ + mGAPtot ≤ C1 ≤ C2.

• Family 2:

xξ =
C1 − C2 ρo f f

mG mGAPtot

1 + ρo f f
mG mGAPtot

,
C1 − C2

1 + ρo f f
mG mGAPtot

,

ξ,
C2 − mGAPtot − ξ ρon

tGξ

ρo f f
tG + ρon

tGξ
, 0,

C2 − mGAPtot − ξ ρo f f
tG

ρo f f
tG + ρon

tGξ
, mGAPtot

(3.45)

only if0 ≤ ξ + mGAPtot ≤ C2 ≤ C1.

• Family 3:

xξ = 0, 0, ξ, 0, C2 − C1, 0, C1 − ξ (3.46)

only ifmax 0, C1 − mGAPtot ≤ ξ ≤ C1 ≤ C2.

• Family 4:

xξ =
ρo f f

mG C1 − C2 C2 − ξ

1 + ρo f f
mG C2 − ξ

,
C1 − C2

1 + ρo f f
mG C2 − ξ

, ξ, 0, 0, 0, C2 − ξ . (3.47)

only ifmax 0, C2 − mGAPtot ≤ ξ ≤ C2 ≤ C1.

Recalling the definitions of C1 and C2 and the fact that Eqs. 3.37 and 3.38 hold at all times,

including t = 0, we can infer necessary relationships among the initial conditions for each
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steady-state family. The inequality C1 ≤ C2 can be rewritten as

[mG](0) + mG* (0) ≤ [tGEF](0) is necessary for the emergence of Family 1 (Eq. 3.44) with

zero mG and mG* values, which can be interpreted as a scenario in which nearly all the

available mG proteins are activated to mG*, and that nearly all the mG* species have

successfully engaged with the available tGEFs, thereby maximally recruiting tGEF on the

membranes. For Family 1, mGAPtot ≤ C1 also holds and can be written as

[mGAP](0) ≤ [mG](0) + mG* (0) + [tG](0) + tG* (0) + tGEF* (0), where [mGAP](0) is the

initial concentrations of cytosolic mGAP that is yet to be recruited by tGEF* and tG* to the

membranes. Therefore, two initial conditions are necessary for the existence of Family 1: (1)

The total amount of mG protein must be initially less than the concentration of tGEF and (2)

the summed concentrations of total mG, total tG, and tGEF* must be initially higher than the

concentration of mGAP. Finally, the inequality 0 ≤ ξ + mGAPtot ≤ C1 can be written as

0 ≤ ξ ≤ [mG](0) + mG* (0) + [tG](0) + tG* (0) + tGEF* (0) − [mGAP](0). Remarkably, we

conclude that the initial balance between the summed concentrations of total mG, total tG,

tGEF*, and the available mGAP is the upper bound for the tG concentration, which

completely characterizes the necessary conditions for the emergence of Family 1.

A similar analysis can be done for Families 2, 3, and 4. For the existence of Family 2 (Eq.

3.45), where mG, mG* tG, tG* are present (when ξ > 0), the inequalities C2 ≤ C1 and

mGAPtot ≤ C2 must hold and can be rewritten as [mG](0) + mG* (0) ≥ [tGEF](0) and

[mGAP](0) ≤ [tG](0) + tG* (0) + [tGEF](0) tGEF* (0). Hence, the total amount of mG protein

must be initially higher than the concentration of tGEF and the summed concentrations of

total tG and total tGEF proteins must be initially higher than the concentration of mGAP.

Finally, the inequality 0 ≤ ξ + mGAPtot ≤ C2 indicates that initial balance between the

summed concentrations of total tG, total tGEF and the available mGAP is the upper bound

for the tG concentrations. For Family 3 (Eq. 3.46, where mG and mG* have zero

concentration values and the tGTPase is fully inactivated, the inequality C1 ≤ C2 becomes

[mG](0) + mG* (0) ≤ [tGEF](0). As for Family 1, the total amount of mG protein must be

initially less than the concentration of tGEF. Moreover, from C1 − mGAPtot ≤ ξ, the initial

balance between the summed concentrations of total mG, total tG, tGEF* and the available

mGAP is the lower bound for the tG concentration. For Family 4 (Eq. 3.47), where mG and

mG* are present and tG* concentration is zero, C2 ≤ C1 becomes

[mG](0) + mG* (0) ≥ [tGEF](0). As for Family, 2 the total amount of mG protein must be

initially higher than the concentration of tGEF. Moreover, from C2 − mGAPtot ≤ ξ, the

initial balance between the summed concentrations of total tG, total tGEF and the available

mGAP is the lower bound for the tG concentrations. As noted in the previous subsections,

the existence of the steady states depends only on the initial concentrations and not on any

kinetic parameters.

Figure 1e illustrates the four Families (gray-colored “1+2+3” in the 2 × 2 table) promoted by

the coupling connection mG* tGEF and the feedback loops tGEF mGAP and

tG* mGAP. Families 1 and 2 have a similar interpretation of the steady states 1 and 2
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obtained in Sects. 3.1 and 3.2. On the other hand, Families 3 and 4 were obtained through

contributions of the feedback loop tG* mGAP. These states share the common feature of

having tGTPase fully inactivated. As for steady states 3 and 4, Family 3 can be interpreted as

a configuration where the copy numbers of mG and mG* are low, while in Family 4, those

copy numbers are high.

3.4 Numerical Simulations

To complete our mathematical analysis, we numerically investigate the range of initial

conditions in which the trajectories of the original system (Eqs. 2.1–2.8) converge to the

different steady states. In particular, we illustrate the so-called basins of attraction (Nusse

and Yorke 2012) of the steady states, considering the same combination of connections

between the two GTPase switches from Sects. 3.1–3.3.

In Table 2, we describe each parameter of the system with the corresponding values that we

used in our simulations. All ODEs were numerically solved in MATLAB R2018a with the

function ode15s. The MATLAB codes can be downloaded from the link: https://github.com/

Rangamani-Lab/BMB_Matlab_codes.git.

In Fig. 2, we explore the case where the two GTPase switches are coupled through the

coupling connection mG* tGEF (Fig. 2a). We color the trajectories of the system

according to the comparison between the initial conditions [mG](0) + mG* (0) and tGEF* (0)
from the steady-state analysis in Sect. 3.1. For fixed mG* (0) and [tGEF](0) values, we

consider [mG](0) ranging from 0 to 10 μM, and therefore, [mG](0) + mG* (0) can be less of

higher than [tGEF](0) (blue or red-colored lines and dots). For all simulations, we plot the

trajectories of the system until equilibrium is reached. If [mG](0) + mG* (0) < [tGEF](0), the

system converges to a state where no active mGTPase exists (blue-colored trajectories in

Fig. 2b, c). On the other hand, if [mG](0) + mG* (0) > [tGEF](0), the system converges a state

where the concentration of the active and inactive mGTPase are positive at the final time

(red-colored trajectories). To visualize these results in terms of dose–response curves, in Fig.

2d we plot the final state values of mGtot  and 𝒢* (denoted by s.s) as a function of [mG](0).

The trajectories in the 𝒯* × mGtot  plane are shown in Fig. 2e. We observe a detail showing

that 𝒯* reaches a fixed final value around 0.97 when [mG](0) + mG* (0) > [tGEF](0) (see

magnified view). We observe that the trajectories converge to steady states that agree with

the local stability results from Sect. 3.1. This suggests that the conditions

[mG](0) + mG* (0) < [tGEF](0) and [mG](0) + mG* (0) > [tGEF](0) are not only valid in a

neighborhood of the steady states, but also hold for other initial values satisfying those

inequalities.

Figure 3 illustrates the dynamics of the system when the feedback loop tGEF mGAP
(Arrow 2) is added to the coupling connection (Fig. 3a). In Fig. 3b, we plot several tGEF*
trajectories starting at tGEF* = 5μM for different [mG](0) and [mGAP](0) values. The

resulting rich variety of curves indicate the sensitivity of the system to these initial

conditions. In Fig. 3c, different dose–response curves are generated to show the steady-state

tGEF* values. If [mGAP](0) = 0μ M (blue and red dots), only the coupling connection affects
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the system, since mGAP cannot be activated by tGEF*. When [mGAP](0) = 1 (green

squares), a similar steady-state profile emerges, with [tGEF*] s.s increasing for

[mG](0) ≤ 5μ M and remaining constant [mG](0) > 5. When [mGAP](0) = 8μ M, [tGEF*] is

zero for [mG](0) < 2μ M and increases until [mG](0) < 5μ M. For [mG](0) > 5, the steady state

achieves its maximum value slightly above tGEF* > 2. Finally when [mGAP](0) = 11μ M,

tGEF* becomes fully recruited by mGAP and the [tGEF*] s.s is zero for all [mG](0) values.

In Fig. 3d, we scan the space of initial amounts of mG and mGAP. When

[mGAP](0) > 10μ M, the tGEF*  s.s is zero, while for [mGAP](0) < 10μ M is becomes nonzero

and dependent of [mG](0). In Fig. 3e, f, g, we analyze the tG* concentration values and

obtain similar results.

Figure 4 illustrates the dynamics of the system when the feedback loops tGEF mGAP and

tG* mGAP are added to the coupling connection (Fig. 4a). In Fig. 3b, we plot several

tGEF*  trajectories starting at tGEF* = 5μ M for different [mG](0) and [mGAP](0) values.

In Fig. 3c, different dose–response curves are generated to show the steady-state tGEF*

values. As in the previous case with only one feedback loop, if [mGAP](0) = 0μ M (blue and

red dots), mGAP cannot be activated by tGEF*. When [mGAP](0) = 1 (green squares), a

similar steady-state profile emerges, with [tGEF*] s.s increasing for [mG](0) ≤ 5μ M and

remaining constant [mG](0) > 5. When [mGAP](0) = 8 and 11 μ M, [tGEF*] increases until

[mG](0) < 5μ M. For [mG](0) > 5, the steady state achieves its maximum value. In Fig. 4d,

we scan the space of initial amounts of mG and mGAP and we observe a more graded

response in comparison with Fig. 3. In Fig. 4e, f, g, we analyze the tG* concentration values

and obtain similar results.

In Fig. 5, we investigate the space of initial conditions for mG* and mGAP* in which the

system converges to the different steady states. Figure 5a shows the simplest system where

the two GTPase switches are connected by the coupling mG* tGEF. Two steady states are

obtained depending on the initial amount of mG*. For

mG* (0) < [tGEF](0) − mGAP* (0) = 5μ M, the trajectories converge to steady state 1 with no

mG and mG* concentrations. On the other hand, for

mG* (0) > [tGEF](0) − mGAP* (0) = 5μ M, then the system achieves steady state 2 with non

zero concentrations of both m- and tGTPase. Figure 5b shows the results for the coupling

connection, and feedback loops tGEF mGAP (arrows 1+2). In this particular example, the

four steady states can be achieved for mGAP* (0) and mG* (0) ranging from 0 to 12 μ M

and 0 and 10 μ M, respectively. In the vertical direction, the initial amount of mG* governs

the transitions from steady states 3 to 4 (lower [mGAP*](0)) and 1 to 2 (higher [mGAP*]

(0)). In both steady states 2 and 4 (Eqs. 3.34 and 3.36), the concentrations of mGTPase are

nonzero. Therefore, we predict that an increase of the initial concentration of mG* would

favor the emergence of these two steady states. In the horizontal direction, when the initial

amount of mGAP* increases, the available mGAP (inactive) decreases as we set the total

mGAP as 12 μ M, which reduces the effects of the feedback loops and thus facilitates the

emergence of steady states 1 and 2 where the concentrations of tGTPase are nonzero.

Figure 5c shows a similar colormap for the system with both feedback loops

tGEF mGAP and tG* mGAP. It is worth noticing the expansion of the basin of attraction
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of Families 1 and 2 compared to Fig. 5a, while the basin of Families 3 and 4 shrinks.

Remarkably, in both Fig. 5b, c, there is a critical point (represented by a black cross) of the

intersection of the four basins of attraction. In this case, disturbances in the initial conditions

around that intersection point can drive the system to different steady states. Thus, while

coupling the two GTPase switches with a forward arrow only gives two possible steady

states, the negative feedback afforded by arrows 2 and 3 gives rise to a larger range of

possibilities. Additionally, the existence of a critical point emerges in the presence of the

negative feedback suggesting a rich phase space for this coupled system. Finally, in Fig. 5d–

f, we sample the kon’s from a normal distribution with mean 30(s μ M)−1 and standard

deviation 1(s μ M)−1 and new koff’s from a normal distribution with mean 10(s μ M)−1 and

standard deviation 1(s μ M)−1. We note that the system behavior does not change for changes

in kinetic parameters. By doing so, we illustrate how the basins of attraction remain the

same, given distinct reaction rates with a different order of magnitude.

4 Discussion

GTP-binding proteins (GTPases) regulate crucial aspects of numerous cellular events. Their

ability to act as biochemical switches is essential to promote information processing within

signaling networks. The two types of GTPases—monomeric (m) and trimeric (t)—have

traditionally believed to function independently until recent experimental work revealed that

m- and tGTPases co-regulate each other in the Golgi through a functionally coupled circuit

(Lo et al. 2015). Using a simplified model of ODEs, our analyses have shown that the

coupled switch gives rise to steady-state configurations that cannot be achieved in systems of

isolated GTPase switches. To the best of our knowledge, this is the first modeling effort that

has described the stability properties of these coupled GTPase switches.

A major result from our analysis is a systematic characterization of the steady-state

concentrations of both m- and tGTPases, as well as their GEFs and GAPs. We show the

obtained steady states in all three arrow combinations that were informed by experiments

(Table 3). Remarkably, the different steady states show a variety of configurations in which

both m- and tGTPase can be interpreted as having low or high concentration values. We also

found that the stability properties of these steady states are independent of the choice of

kinetic parameters in this model. This finding could be a result of the choice of governing

equations in our model. However, if this holds true in future experimental validation, it could

indicate that the temporal dynamics of the system are separated from the steady-state

response. We next interpret these different steady states in their biological context.

First and foremost, the coupling of the two switches allows for the emergence of two stable

steady states. The first steady state (Eq. 3.7) has zero mG and mG* values and finite tG and

tG* values. This concentration distribution of the species can be interpreted as a scenario in

which nearly all the available mG proteins are activated to mG*, and that nearly all the mG*

species have successfully engaged with the available tGEFs, thereby maximally recruiting

tGEF on the Golgi membranes. This steady state emerges when the total amount of mG

protein is less than the concentration of tGEF in cells. Similarly, steady state 2 will emerge

when the total concentration of mG is greater than tG. In this case, the reduced system will
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converge to steady state 2 where some finite, nonzero distribution of mG, mG*, tG, tG* is

present (Eq. 3.8), given sufficiently close initial and steady-state concentration values.

When we couple the connection of the two GTPase switches with the feedback loop

tGEF mGAP (arrows 1 and 2 in Fig. 1c, respectively), we obtain four steady states. Steady

states 1 and 2 (Eqs. 3.33 and 3.34) are similar to the two steady states obtained in Sect. 3.1,

although with different concentration values. On the other hand, steady states 3 and 4 (Eqs.

3.35 and 3.36) newly emerge in the system, in which tG* attains zero concentration. This

zero concentration can be interpreted as a scenario in which nearly all the available tGTPase

has cycled through the GTP cycle and is inactivated. The inequalities obtained in Theorem

3.2 for C1 and C2 allow us to obtain relationships among the initial conditions of the original

system (Eqs. 3.10–3.17) that are associated with each one of the four steady states. Two

conditions guarantee the existence of steady state 1: (1) The total amount of mG protein

must be initially less than the concentration of tGEF and (2) the sum of the concentrations of

total mG protein and tGEF* must be initially higher than the concentration of mGAP.

Similar analysis reveals that for steady state 2 (Eq. 3.34), the total amount of mG protein

must be initially higher than the concentration of tGEF, and the total amount of tGEF must

be initially higher than the concentration of mGAP. For steady state 3 (Eq. 3.35), the total

amount of mG protein must be initially less than the concentration of tGEF, and the sum of

the concentrations of total mG protein and tGEF* must be initially less than the

concentration of mGAP. For steady state 4 (Eq. 3.36), the total amount of mG protein must

be initially higher than the concentration of tGEF and the total amount of tGEF must be

initially less than the concentration of mGAP.

Finally, when the coupled switches have both feedback effects on mGAP through Arrows 2

and 3, we obtain four families of steady states. Interestingly, the Families 1–4 resemble the

steady states 1–4 from Sect. 3.2. Family 1 has no mG and mG* at steady state, and both tG

and tG* have nonzero steady-state values (similar to steady state 1). Moreover, Family 2 has

both m- and tGTPases with nonzero steady states (similar to steady state 2). For Family 3,

mG and mG* steady-state values are zero, and the tGTPase is fully inactivated (similarly to

steady state 3). Finally, Family 4 has tGTPase is fully inactivated, and both mG and mG*

have nonzero steady states (similarly to steady state 4). Recalling the definitions of C1 and

C2 and the fact that Eqs. 3.37 and 3.38 hold at all times, including t = 0, we can infer

necessary relationships among the initial conditions for each steady-state family.

Thus, our model shows that when the m- and tGTPase switches are coupled with a simple

forward coupling (Arrow 1), there are two steady states. The addition of feedback from the

tGTPase switch to the mGTPase switch (Arrow 2 alone or Arrows 2 and 3) expands this

space to either 4 steady states or 4 families of steady states. We confirmed that all steady

states obtained with a coupling connection and feedback loop tGEF mGAP (arrow 1 or

arrows 1+2 in Fig. 1c) are locally asymptotically stable. However, when the two feedback

loops are considered along with the coupling connection (arrows 1+2+3 in Fig. 1c), the local

stability analysis cannot be performed because the steady states are not isolated. Instead, we

obtain four one-parameter families that depend on the amount of inactive tGTPase. At this

point, further investigation would be needed to determine the behavior of the system near
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those steady-state families. Even as we aim to develop complex models that are refined with

iterative experimental validations, we note that our analysis gives insight into different

steady states that emerge due to different couplings that may not exist in physiology. Such

insights may become meaningful in the context of disease pathogenesis where copy numbers

of each player in the network motif may change relative to each other and do so dynamically

(e.g., when responding to stress/stimuli), or disease-driving mutations alter their functions

(e.g., activating and inactivating mutations in GTPases, GAPs, or GEFs). What remains

unclear is how these different steady states affect secretion, which is the final biological

readout. Interpreting these results in the context of secretion will require coupling of models

such as the one developed here with models of membrane trafficking (Hassinger et al. 2017;

Alimohamadi and Rangamani 2018) and is an important future direction.

Limitations of this study include a simplified mathematical structure of the model. Despite

this simplification, we find a rich phase space for the coupled GTPase switches by analyzing

the combination of network connections that have more biological meaning. Future studies

could also explore the role of external stimulus, the temporal and spatial organization of

these switches. While the current model is likely incomplete, it serves as a stepping stone for

future adaptations that can be coupled with experimental measurements (Getz et al. 2019),

including dose–response curves, response times, and noise fluctuations, as done recently in

Ghusinga et al. (2020).
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Appendix A.: Proof of Proposition 3.1

We must find nonnegative [mG], mG* , 𝒢*, and 𝒯* satis the following system:

[mG] − ρo f f
mG mGAP* mG* − ρon

I tGEFtot 1 − 𝒢* mG* = 0 (A.1)

ρon
tG tGEFtot 𝒢* 1 − 𝒯* − ρo f f

tG 𝒯* = 0 (A.2)

1 − 𝒢* mG* = 0 (A.3)

[mG] + mG* + tGEFtot 𝒢* = C (A.4)

From Eq. A.3, we must have mG* = 0 or 𝒢* = 1. Thus, we divide the steady-state analysis

in two cases.

Stolerman et al. Page 25

Bull Math Biol. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Case 1: mG* = 0.

From Eq. A.1, we must have [mG] = 0, and from Eq. A.4, we obtain G* = C
tGEFtot

. Since

𝒢* ≤ 1 by definition, we conclude that

C ≤ tGEFtot . (A.5)

Equation A.5 is also sufficient for mG* = 0. Otherwise, if C ≤ tGEFtot  and mG* > 0, then

𝒢* = 1 (Eq. A.3) and from Eq. A.4, we would conclude that [mG] + mG* ≤ 0, which is

impossible.

Finally, by substituting 𝒢* in Eq. A.2, we obtain 𝒯 * = 1

1 +
ρo f f

tG

ρon
tGC

, and therefore, the steady

state is given by

[mG], mG* , 𝒯*, 𝒢* = 0, 0, 1

1 +
ρo f f

tG

ρon
tGC

, C
tGEFtot

Case 2: 𝒢* = 1

In this case, mG* ≥ 0 and from Eqs. A.1 and A.4, we obtain

mG* =
C − tGEFtot

1 + ρo f f
mG mGAP*

and

[mG] =
ρo f f

mG mGAP*

1 + ρo f f
mG mGAP*

C − tGEFtot .

In this case, since the steady state has to be nonnegative, we must have

C ≥ tGEFtot . (A.6)

which is also sufficient for 𝒢* = 1. Otherwise if C ≥ tGEFtot  and 𝒢* < 1, then

mG* = [mG] = 0 (Eqs. A.1 and A.3), and from Eq. A.4, we would have
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C = [mG] + mG* + tGEFtot 𝒢* < tGEFtot ,

which is impossible.

Finally, by substituting 𝒢* = 1 in Eq. A.2, we obtain

ρon
tG tGEFtot 1 − 𝒯* − ρo f f

tG 𝒯* = 0

which gives 𝒯* =
ρon

tG tGEFtot

ρon
tG tGEFtot + ρo f f

tG  and therefore

[mG], mG* , 𝒯*, 𝒢* =
ρo f f

mG mGAP*

1 + ρo f f
mG mGAP*

C − tGEFtot ,

C − tGEFtot

1 + ρo f f
mG mGAP*

,

ρon
tG tGEFtot

ρon
tG tGEFtot + ρo f f

tG , 1 .

Appendix B.: Proof of Theorem 3.2

We begin our proof by computing the steady states of the system, which are solutions of the

algebraic system given by Eqs. 3.27–3.32. We also establish necessary and sufficient

conditions involving the parameters C1, C2, and mGAPtot  for the existence of each steady

state. We then compute the Jacobian matrix of the system and determine the local stability of

the steady state based on the classical linearization procedure (Strogatz 1994).

Steady States

We divide our analysis into four different cases that emerge from the preliminary inspection

of the system given by Eqs. 3.27–3.32.

Case 1: mG* = 0 and mGAP* = mGAPtot .

From Eq. 3.27, we have [mG] = 0 and from Eq. 3.31, tGEF* = C1 − mGAPtot . Thus,

C1 ≥ mGAPtot  since the steady state must be nonnegative. Now Eq. 3.32 gives

[tGEF] = C2 − C1 and that implies C2 ≥ C1.

Finally, Eq. 3.28 yields

ρon
tG C1 − mGAPtot (1 − 𝒯 *) − ρo f f

tG 𝒯* = 0,
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and hence,

𝒯* =
ρon

tG C1 − mGAPtot

ρon
tG C1 − mGAPtot + ρo f f

tG

The steady state is therefore given by

x = 0, 0,
ρon

tG C1 − mGAPtot

ρon
tG C1 − mGAPtot + ρo f f

tG , C2 − C1, C1 − mGAPtot , mGAPtot .

We now observe that the two parameter relations

C1 ≥ mGAPtot and C2 ≥ C1 (B.1)

are sufficient for mG* = 0 and mGAP* = mGAPtot . First, we observe that if C2 ≥ C1 then

mG* = 0. In fact, by subtracting Eq. 3.31 from Eq. 3.32, we obtain

[tGEF] − [mG] + mG* = C2 − C1 ≥ 0,

and hence, [tGEF] ≥ [mG] + mG* . On the other hand, from Eq. 3.29, we must have

[tGEF] = 0 or mG* = 0. Thus, if [tGEF] = 0 then [mG] + mG* ≤ 0, and hence, the

nonnegativeness of the steady state implies [mG] = mG* = 0. Now, Eq. 3.31 gives

tGEF* = C1 − mGAP*  and from Eq. 3.30, we must have mGAP* = mGAPtot  or

tGEF* = 0. If tGEF* = 0, then mGAP* = C1 ≥ mGAPtot , and hence,

[mGAP*] = mGAPtot . Therefore, we have shown that Eq. B.1 imply mG* = 0 and

mGAP* = mGAPtot . Consequently, the steady state in this case must be given by Eq. 3.33.

Case 2: [tGEF] = 0 and mGAP* = mGAPtot

From Eq. 3.32, tGEF* = C2 − mGAPtot , and hence, mGAPtot ≤ C2. From Eq. 3.31, we

must have [mG] + mG* = C1 − C2 and that implies C1 ≥ C2. Now, Eq. 3.27 gives

C1 − C2 − mG* = ρo f f
mG mGAPtot mG*

and therefore

From Eq. 3.28, we must have

ρon
tG C2 − mGAPtot 1 − 𝒯* − ρo f f

tG 𝒯* = 0
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from which we obtain

𝒯* =
ρon

tG C2 − mGAPtot

ρon
tG C2 − mGAPtot + ρo f f

tG

and therefore, the steady state is given by

x =
ρo f f

mG mGAPtot

1 + ρo f f
mG mGAPtot

C1 − C2 ,
C1 − C2

1 + ρo f f
mG mGAPtot

,

ρon
tG C2 − mGAPtot

C2 − mGAPtot + ρo f f
tG , 0, C2 − mGAPtot , mGAPtot

We now observe that the two parameter relations

C2 ≥ mGAPtot and C1 ≥ C2 (B.2)

are sufficient for [tGEF] = 0 and [mGAP*] = mGAPtot .

In fact, if C1 ≥ C2 then [tGEF] = 0 from the same argument as in Case 1. Now, Eq. 3.32 gives

tGEF* = C2 − [mGAP*] and from Eq. 3.30, we must have mGAP* = mGAPtot  or

tGEF* = 0. If tGEF* = 0, then [mGAP*] = C2 ≥ mGAPtot  (from Eq. B.2), and thus,

mGAP* = mGAPtot . Therefore, we have shown that Eq. B.2 imply [tGEF] = 0 and

mGAP* = mGAPtot . Consequently, the steady state in this case must be given by Eq. 3.34.

Case 3: mG* = 0 and tGEF* = 0.

From Eq. 3.27, we have [mG] = 0 and from Eq. 3.28, we also get 𝒯* = 0 since ρo f f
tG > 0.

Now, Eq. 3.31 gives mGAP* = C1, and thus, we must have C1 ≤ mGAPtot . Moreover, Eq.

3.32 results in [tGEF] = C2 − C1 and since all steady states must be nonnegative, we obtain

C2 ≥ C1. In this case, the steady state is given by

x = 0, 0, 0, C2 − C1, 0, C1 (B.3)

We now observe that the two parameter relations

C1 ≤ mGAPtot and C2 ≥ C1 (B.4)

are sufficient for mG* = 0 and tGEF* = 0. In fact, C2 ≥ C1 implies mG* = 0 from the

same argument as in Case 1.
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Now, Eq. 3.31 gives tGEF* = C1 − mGAP*  and from Eq. 3.30, we must have tGEF* = 0

or mGAP* = mGAPtot . If mGAP* = mGAPtot , then tGEF* = C1 − mGAPtot ≤ 0 (from

Eq. B.4), and thus, tGEF* = 0. Therefore, we have shown that Eq. B.4 imply mG* = 0 and

tGEF* = 0. Consequently, the steady state in this case must be given by Eq. 3.35.

Case 4: [tGEF] = 0 and tGEF* = 0

From Eq. 3.32, we obtain mGAP* = C2, and hence, C2 ≤ mGAPtot . From Eq. 3.31, we

have [mG] + mG* = C1 − C2 and that implies C1 ≥ C2 since the concentrations at steady

state must be nonnegative. Eq. 3.27 then gives from which we obtain

mG* = 1
1 + ρo f f

mG C2
C1 − C2 and [mG] =

ρo f f
mG C2

1 + ρo f f
mG C2

C1 − C2 .

From Eq. 3.28, we have 𝒯* = 0,, and therefore, the steady state is given by

x = 1
1 + ρo f f

mG C2
C1 − C2 , 0, 0, 0, C2 .

We now observe that the two parameter relations

C2 ≤ mGAPtot and C1 ≥ C2 (B.5)

are sufficient for [tGEF] = 0 and tGEF* = 0. In fact, if C1 ≥ C2 then by subtracting Eq. 3.32

from Eq. 3.31, we have

[mG] + mG* − [tGEF] = C1 − C2 ≥ 0,

and hence, [mG] + mG* ≥ [tGEF]. On the other hand, from Eq. 3.29, we must have

[tGEF] = 0 or mG* = 0. Thus, if mG* = 0 then [mG] = 0 (from Eq. 3.27), and hence, the

nonnegativeness implies [tGEF] = 0. Hence, we conclude that Eq. B.5 guarantee [tGEF] = 0.

Now, Eq. 3.32 gives tGEF* = C2 − mGAP*  and from Eq. 3.30, we must have

mGAPtot − mGAP* = 0 or tGEF* = 0. If mGAP* = mGAPtot  then

tGEF* = C2 − mGAPtot ≤ 0 (from Eq. B.5), and thus, [tGEF*] = 0. Therefore, we have

shown that Eq. B.5 implies [tGEF] = 0 and tGEF* = 0.

Consequently, the steady state in this case must be given by Eq. 3.36.
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Local Stability Analysis

We begin reducing the ODE system with the conservation laws given by Eqs. 3.19 and 3.20.

In fact, if we write

[mG] = C1 − mG* − tGEF* − mGAP* and
[tGEF] = C2 − tGEF* − mGAP*

then Eqs. 3.21–3.26 can be written in the form

d mG*
dt = f 1 mG* , 𝒯*, tGEF* , mGAP* (B.6)

d𝒯*
dt = f 2 mG* , 𝒯*, tGEF* , mGAP* (B.7)

d tGEF*
dt = f 3 mG* , 𝒯*, tGEF* , mGAP* (B.8)

d mGAP*
dt = f 4 mG* , 𝒯*, tGEF* , mGAP* (B.9)

where

f 1 mG* , 𝒯*, tGEF* , mGAP* = C1 − mG* − tGEF* − mGAP*

−ρo f f
tG mGAP* mG*

−ρon
I C2 − tGEF* − mGAP* mG* ,

f 2 mG* , 𝒯*, tGEF* , mGAP* = ρon
tG tGEF* 1 − 𝒯* − ρo f f

tG 𝒯*,

f 3 mG* , 𝒯*, tGEF* , mGAP* = ρon
I C2 − tGEF* − mGAP* mG*

−ρon
II tGEF* mGAPtot − mGAP* ,

and

f 4 mG* , 𝒯*, tGEF* , mGAP* = ρon
II tGEF* mGAPtot − mGAP* .

The eigenvalues of the Jacobian matrix can be thus calculated for each one of the four steady

states given by Eqs. 3.33–3.36. We prove that all steady states are LAS by showing that the

eigenvalues of the Jacobian matrix are all negative real numbers. We perform the
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calculations with MATLAB’s R2019b symbolic toolbox and analyze each case separately

(see supplementary file with MATLAB codes). We analyze each case separately.

1. If C1 > mGAPtot  and C2 > C1, the Jacobian matrix evaluated at the steady state

given by Eq. 3.33 gives the eigenvalues

λ1 = − ρon
mG C1 − mGAPtot and λ2 = − ρon

tG C1 − mGAPtot − ρo f f
tG

which are negative. Moreover, the other eigenvalues λ3 and λ4 are such that

λ3 + λ4 = ρon
I C1 − C2 − 1 − ρo f f

mG mGAPtot < 0

and

λ3λ4 = − ρon
I C1 − C2 > 0,

and thus, λ3 and λ4 are negative, and hence, the steady state is LAS.

2. If C2 > mGAPtot  and C1 > C2, the Jacobian matrix evaluated at the steady state

given by Eq. 3.34 gives the eigenvalues

λ1 = − ρo f f
tG − ρon

tG C2 − mGAPtot , λ2 = − 1 − ρo f f
mG mGAPtot ,

λ3 = − ρon
II C2 − mGAPtot and λ4 = −

ρon
I C1 − C2

ρo f f
mG mGAPtot + 1

which are all negative, and hence, the steady state is LAS.

3. If C1 < mGAPtot  and C2 > C1, the Jacobian matrix evaluated at the steady state

given by Eq. 3.35 gives the eigenvalues

λ1 = ρon
II C1 − mGAPtot and λ2 = − ρo f f

tG

which are negative. Moreover, the other eigenvalues λ3 and λ4 are such that

λ3 + λ4 = ρon
I C1 − C2 − C1ρo f f

mG − 1 < 0

and

λ3λ4 = − ρon
I C1 − C2 > 0,
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and thus, λ3 and λ4 are negative, and hence, the steady state is LAS.

4. If C2 < mGAPtot  and C1 > C2, the Jacobian matrix evaluated at the steady state

given by Eq. 3.36 gives the eigenvalues

λ1 = − 1 − C2ρo f f
mG , λ2 = ρon

II C2 − mGAPtot , λ3 = − ρo f f
tG

and

λ4 = −
ρon

I C1 − C2
C2ρo f f

mG + 1

which are all negative, and hence, the steady state is LAS.

Appendix C.: Proof of Theorem 3.3

We proceed with the steady-state analysis in the same way of Theorem 3.2. We consider the

same four different cases and calculate the ξ-dependent families of steady states, where ξ ≥ 0
represents the tG concentration. We also obtain necessary relationships for the conserved

quantities C2, C1, and [mGAPtot], as well as admissible intervals for ξ that guarantee the

existence of nonnegative steady states.

Case 1: mG* = 0 and mGAP* = mGAPtot .

From Eq. 3.39, we have [mG] = 0 and subtracting Eq. 3.38 from Eq. 3.37, we get

[tGEF] = C2 − C1 ≥ 0 only if C2 ≥ C1. Substituting [tGEF] on the conservation law given by

Eq. 3.38 and using Eq. 3.40 to write tG* =
ρon

tG[tGEF* ξ

ρo f f
tG , we obtain

ξ +
ρon

tG tGEF* ξ

ρo f f
tG + C2 − C1 + tGEF* + mGAPtot = C2,

and hence,

tGEF* = C1 − mGAPtot − ξ
ρo f f

tG

ρo f f
tG + ρon

tGξ

only if C1 − mGAPtot ≥ ξ. Therefore, in this case the ξ-dependent family of steady states is

given by
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xξ = 0, 0, ξ,
C1 − mGAPtot − ξ ρon

tGξ

ρo f f
tG + ρon

tGξ
, C2 − C1,

C1 − mGAPtot − ξ
ρo f f

tG

ρo f f
tG + ρon

tGξ
, mGAPtot

Case 2: [tGEF] = 0 and mGAP* = mGAPtot

Using Eq. 3.39 to write [mG] = ρo f f
mG mGAPtot mG*  and subtracting Eq. 3.38 from Eq. 3.37,

we obtain the expressions for [mG*] and [mG]

mG* =
C1 − C2

ρo f f
tG mGAPtot + 1

and [mG] =
C1 − C2 ρo f f

tG mGAPtot

ρo f f
tG mGAPtot + 1

,

and thus, we must have C1 ≥ C2. Now looking at Eq. 3.38 and substituting

tG* =
ρon

tG tGEF* ξ

ρo f f
tG  from Eq. 3.40, we obtain

tGEF* = C2 − mGAPtot − ξ
ρo f f

tG

ρo f f
tG + ρon

tGξ

only if C2 − mGAPtot ≥ ξ. Therefore, in this case the ξ-dependent family of steady states is

given by

xξ =
C1 − C2 ρo f f

mG mGAPtot

1 + ρo f f
mG mGAPtot

,
C1 − C2

1 + ρo f f
mG mGAPtot

,

ξ,
C2 − mGAPtot − ξ ρon

tGξ

ρo f f
tG + ρon

tGξ
, 0,

C2 − mGAPtot − ξ ρo f f
tG

ρo f f
tG + ρon

tGξ
, mGAPtot

Case 3: mG* = 0 and tGEF* = 0

From Eqs. 3.39 and 3.40, we have [mG] = 0 and tG* = 0, respectively. Subtracting Eq. 3.38

from Eq. 3.37, in this case we get [tGEF] = C2 − C1 ≥ 0 only if C2 ≥ C1. Now, from the

conservation law given by Eq. 3.37, we obtain mGAP* = C1 − ξ, and thus,

mGAP* ∈ 0, mGAPtot  only if max 0, C1 − mGAPtot ≤ ξ ≤ C1. In this case, the ξ-

dependent family of steady states is given by
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xξ = 0, 0, ξ, 0, C2 − C1, 0, C1 − ξ .

Case 4: [tGEF] = 0 and tGEF* = 0

Equation 3.40 gives tG* = 0 and the conservation law given by Eq. 3.38 yields

mGAP* = C2 − ξ. Now using Eq. 3.39 to write [mG] = ρo f f
mG C2 − ξ mG* , the conservation

law given by Eq. 3.37 gives

mG* =
C1 − C2

1 + ρo f f
mG C2 − ξ

and [mG] =
ρo f f

mG C1 − C2 C2 − ξ

1 + ρo f f
mG C2 − ξ

and since mGAP* ∈ 0, mGAPtot  and the steady states must be nonnegative, we must have

max 0, C2 − mGAPtot ≤ ξ ≤ C2 ≤ C1 .

The ξ-dependent family of steady states is therefore given by

xξ =
ρo f f

mG C1 − C2 C2 − ξ

1 + ρo f f
mG C2 − ξ

,
C1 − C2

1 + ρo f f
mG C2 − ξ

, ξ, 0, 0, 0, C2 − ξ .
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Fig. 1.
A network motif in which two species of GTPases are interlinked. a Recent experimental

findings revealed that monomeric Arf GTPases and trimeric G proteins co-regulate each

other on the Golgi membrane. b Uncoupled monomeric and trimeric GTPase switches are

represented by mGTPase and tGTPase, respectively. The black star denotes the active forms.

Activation and inactivation are regulated by GEFs and GAPs, where the first letter (m or t)

indicates the associated GTPase. c Our proposed mathematical model describes the

interaction between the two GTPase switches. Arrows 1, 2, and 3 show the coupling and

feedback loops that were found experimentally. d Description and biological meaning of

each arrow connecting the GTPase switches. References: (Lo et al. 2015) for arrow 1 (*),

(Lo et al. 2015) for arrow 2 (**), (Lo et al. 2015; Jamora et al. 1997) for arrow 3 (***), and

(Jamora et al. 1997; Stow et al. 1991; Stow and Heimann 1998; Stow 1995; Cancino and

Luini 2013) for evidence of cooperativity between mand tGTPases (****). e For the three

combinations of arrows (1, 1+2, and 1+2+3) chosen in our study, we calculate the steady-

state solutions for the coupled GTPase circuit model
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Fig. 2.
Trajectories of the system and steady states (arrow1). a Schematics with the coupled GTPase

switches and a coupling connection mG* tGEF, represented by arrow 1. b [mG](0) was

changed from 0 to 10 μM and the trajectories of the system were calculated until equilibrium

was reached. In the 𝒢* × mGtot  plane, a linear relationship emerges. The black arrows

indicate the direction of time. If [mG](0) > 5μM, the system converges to a final state where

the concentrations of the active and inactive mGTPase are nonzero. On the other hand, when

[mG](0) < 5μM, the trajectories converge a final state with no mGTPase exists (blue-colored

lines). c Trajectories of the active ([mG]) vs inactive mGTPase ([mG]) for [mG](0). d Dose–

response curves show the steady states (denoted by s.s) for the total mGTPase concentration

and fraction of active tGEF 𝒢*  depending on [mG](0) in the two different scenarios. e

Dynamics in the 𝒯 × mGtot  plane. Parameter values:

mG* (0) = 0μM, 𝒯*(0) = 0.5, 𝒢*(0) = 0.5, mGAP* = 1μM, mGEF* = 1μM, kon = 3(sμM)−1,
ko f f = 1(sμM)−1, tGAP* = 1μM, tGEFtot = 10μM, tGtot = 10μM

.

Simulation time: 5s for b, c, d, and e. Numerical simulations were performed using the

solver ode15s in MATLAB R2018a. All parameters were arbitrarily chosen only to illustrate

the dynamic features of the model (Color figure online)
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Fig. 3.
Trajectories of the system and steady states (s.s) (arrows 1 and 2). a Schematics of the

coupled GTPases with the coupling connection mG* tGEF (arrow 1) and the feedback

loop tGEF mGAP (arrow 2). b tGEF*  trajectories for [mGAP](0) = 0, 1, 8, and 11μM. For

each [mGAP](0) value, we plot two curves for [mG](0) = 1 (dashed) and 10 μM (solid) c

Dose–response curves show tGEF*  s.s when [mG](0) ranges from 0 to 10 μM. If

[mGAP](0) = 0μM (blue and red dots), there will be no mGAP activation and therefore no

effects of the feedback. For [mGAP](0) > 0μM, the feedback becomes effective and generate

different tGEF*  responses. d Colormap for tGEF*  s.s concentrations for a range of [mG]

(0) and [mGAP](0) values. A sharp decrease on tGEF*  occurs when [mGAP](0) ≥ 10μM.

When [mGAP](0) < 10μM, the tGEF*  s.s depend on [mG](0). e [tG*] trajectories for

[mGAP](0) = 0, 5, 9, and 11μM and same [mG](0). f Dose–response curves for [tG*] s.s

depend on [mGAP](0). g Colormap for [tG*] s.s.; lower tG* concentrations result from
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higher [mGAP](0) values, since tGEF* is recruited for mGAP activation. Parameter values:

kon = 3(sμMs)−1, ko f f = 1(sμM)−1, mG* (0) = 0μM, tGEFtot (0) = 10μM, tGEF* (0) = 5μM,
𝒯*(0) = 0.5, tGtot = 10μM, mGAP* (0) = 1μM, tGAP* (0) = 1μM, mGEF* = 1μM

.

Simulation times: 5 s (b and e) and 50 s (c, d, f, and g). Numerical simulations were

performed using the solver ode23s in MATLAB R2018a. All parameters were arbitrarily

chosen only to illustrate the dynamic features of the model (Color figure online)
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Fig. 4.
Trajectories of the system and steady states (s.s) (arrows 1, 2, and 3). a Schematics of the

coupled GTPases with the coupling connection mG* tGEF (arrow 1) and the feedback

loops tGEF mGAP (arrow 2) and tG* mGAP (arrow 3). b [tGEF*] trajectories for

[mGAP](0) = 0, 1, 8, and 11μM. For each [mGAP](0) value, we plot two curves for

[mG](0) = 1 and 10μM. c Dose–response curves show [tGEF*] s.s when [mG](0) ranges from

0 to 10 μ M. If [mGAP](0) = 0μM (blue and red dots), there will be no mGAP activation and

therefore no effects of the feedback loops. For [mGAP](0) > 0μM, the feedback becomes

effective and generate different [tGEF*] responses. d Colormap for [tGEF*] s.s

concentrations for a range of [mG](0) and [mGAP](0) values. A more graded decrease on

[tGEF*] occurs when [mGAP](0) ≥ 10μM in comparison with Fig. 3d. e [tG*] trajectories for

[mGAP](0) = 0, 5, 9, and 11μM and same [mG](0). f Dose–response curves for [tG*] s.s

depend on [mGAP](0) and do not change significantly as [mG](0) increases. g Colormap for
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[tG*] s.s.; lower tG* concentrations result from higher [mGAP](0) values, since tGEF* and

tG* are recruited for mGAP activation. Parameter values:

kon = 3(sμM)−1, ko f f = 1(sμM)−1, mG* (0) = 0μM, tGEFtot (0) = 10μM, tGEF* (0) = 5μM, 𝒯*
(0) = 0.5, tGtot = 10μM, mGAP* (0) = 1μM, tGAP* (0) = 1μM, mGEF* = 1μM

.

Simulation times: 5 s (b and e) and 50 s (c, d, f, and g). Numerical simulations were

performed using the solver ode23s in MATLAB R2018a. All parameters were arbitrarily

chosen only to illustrate the dynamic features of the model (Color figure online)

Stolerman et al. Page 44

Bull Math Biol. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5.
Basins of attraction—dependency on mG*(0)  and mGAP*(0) . a The two steady states of

the system with coupling connection (Sect. 3.1) are only driven by changes in the initial

amount of mG* b When the coupling connection and both feedback loops tGEF mGAP
are considered, we observe the emergence of four regions (green-, yellow-, dark blue-, and

light blue-colored) corresponding to the four steady states from Sect. 3.2 c A similar result

was found when we analyzed the system with the coupling connection and both feedback

loops tGEF mGAP and tG* mGAP. A black cross indicates a critical point at the

intersection of the four basins of attraction. d, e, f The basins of attraction remain unaltered

when considering distinct activation/deactivation rates of different orders of magnitude.

Parameter values for (a), (b), and (c): kon
mG = kon

tG = 3(sμM)−1, kon
i = 3 or 0 (sμM)−1 for

i = I, II, orIII, ko f f
mG = ko f f

tG = 1 (sμM)−1. Reaction rates for panel (D) in (sμM)−1 :

kon
I = 32.9841, kon

II = 30.8527, kon
III = 30.4140, ko f f

mG = 9.0960, kon
mG = 29.4273, ko f f

tG = 10.4226,

kon
tG = 29.8986, Reaction rates for (e) in (sμM)−1: kon

I = 31.5946, kon
II = 29.2870, kon

III = 29.7058,

ko f f
mG = 10.1447, kon

mG = 31.4250, ko f f
tG = 10.4106, kon

tG = 29.8115 Reaction rates for panel (F) in

(sμM)−1 : kon
I = 29.8231, kon

II = 28.6578, kon
III = 31.0219, ko f f

mG = 9.8054, kon
mG = 30.1932,

ko f f
tG = 11.2932, kon

tG = 29.8454. Initial conditions: [mG](0) = 0μM, [tG](0) = 5μM,

tG* (0) = 0μM, [tGEF](0) = 5μM, tGEF* (0) = 0μM, [mGAP](0) = 12μM − mGAP* (0),
tGAP* (0) = 1μM, mGEF* (0) = 1μM (Color figure online)
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Table 1

GTPase circuit reactions and rates used in the model

List of reactions Reaction rate

mG* activation mG+mGEF*
kon
mG

mG* kon
mG mGEF* [mG]

mG* inactivation mG* + mGAP*
ko f f
mG

mG ko f f
mG mGAP* mG*

Coupling from mG* to tGEF (arrow 1) mG* + tGEF
kon
I

tGEF* kon
I [tGEF] mG*

tG* activation tG+tGEF*
kon
tG

tG* kon
tG tGEF* [tG]

tG* inactivation tG* + tGAP*
ko f f
tG

tG ko f f
tG tGAP* tG*

Feedback loop from tGEF to mGAP (arrow 2) tGEF* + mGAP
kon
II

mGAP* kon
II tGEF* [mGAP]

Feedback loop tG* to mGAP (arrow 3) tG* + mGAP
kon
III

mGAP* kon
III[mGAP] tG*
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Table 3

Main results and conclusions from steady-state analysis

Arrows Name Interpretation Required Initial conditions Conclusion

1 Steady-state 1
Steady-state 2

Low mG, mG*. High tG*
High mG, mG*.
High tG*

mG + mG* ≤ tGEF
mG + mG*
≥ tGEF

Feed-forward allows mG and mG* to
achieve low s.s concentrations. High s.s
concentrations of mG, mG*, tG, and tG*
emergeif initial mG+mG* is initially
higher than tGEF.

1+2 Steady-state 1
Steady-state
2
Steady-state 3
Steady-state 4

Low mG, mG*. High
tG,tG*
High mG, mG*,
tG, tG*
Low mG, mG*, tG*
Low tG*. High mG.mG*

mG + mG* ≤ tGEF & mGAP ≤ mG
+ mG* + tGEF*
mG + mG* ≥ tGEF & mGAP ≤ tGEF
+
tGEF*
mG + mG* ≤ tGEF & mGAP ≥ mG +
mG* +
tGEF*
mG + mG* ≥ tGEF & mGAP ≥ tGEF
+
tGEF*

Feed-forward and feedback tGEF →
mGAP allow mG, mG*,and tG’ to
achieve low s.s concentrations
simultaneously. High s.s concentrations
of mG, mG*,tG, and tG* emerge if
initials mG+mG* and tGEF+tGEP are
higher than tGEF and mGAP, resp.

1+2+3 Family 1
Family 2
Family
3
Family 4

Low mG, mG*. High
tG,tG*
High mG, mG*,
tG*
Low mG, mG*, tG*
Low tG*, High mG, mG*

mG + mG* ≤ tGEF & mGAP ≤ mG
+ mG* + tG + tG* + tGEF*
mG + mG* ≥ tGEF & mGAP
≤ tG + tG* + tGEF + tGEF*
mG + mG* ≤ tGEF
mG + mG* ≥ tGEF

Feed-forward, feedback from tGEF to
mGAP and feedback from tG* to mGAP
yields four families of steady-states
where the inactive tG can range within
intervals.

We performed a steady-state analysis of a GTPase coupled circuit that has been observed experimentally. For three biologically relevant
combinations among the coupling connection and two feedback loops, we present the steady states and their interpretation. Moreover, we
established the required initial conditions for the existence of the steady states. Each connection adds to the richness of the functioning of these
coupled GTPase switches
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