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I. Introduction

This is a study of the response in a transversely isotropic rod to
a transient input on its end. The material of the rod is arranged so
that the axis of the rod is parallel to axes of isotropy. The input on
the end is not entirely arbitrary in that we specify that it will be a
uniform normael pressure, but its time dependency is left open to choice.
The rod is circular and, as we do not consider a boundary at its far end,
is taken as semi-infinite.

In finding such a response in a rod, one must choose, in the beginning
whether he seeks the response at stations near the input end or far from
the end. The choice is important in deciding thé mathematical method that
is to be used. The choice here is to find the responses at stations near
the end of the rod. This choice does not dictate the method but it narrows
the possibilities.

Three methods have been used successfully for the comparable problem
for isotropic rods. One method was used by Milewitz[l] who employed
integral transform method, then with the use of numerical integration he
obtained the response near the end of the rod. His study is based on an
approximate theory due to Mindlin and Herrma.nnEEJ The second is due to
Bertholf[3] who used the exact three dimensional theory of elasticity and
solved the equations using finite differences. The third solution
‘ technique is the method of characteristics. It is the method of character-
istics that is used here. ’

The method of characteristics, though not unworkable when applied
to differential equations having more than two independent variables, is

appropriate for solving equations with two independent variables usually



one space variable and time. With these two variables one is able to work
convgniently on the space-time plane. Before using the method of character-
istics one must have at hand an approximate theory, employing the two inde-
pendent variables suggested, which describes accurately the motions in
transversely isotropic, circular rods. At the beginning of the study no
such theory was available, so the theory had to be developed. This theory
is presented in a paper by Mengi and McNiven.[u] It is a three-mode theory
resembling closely a theory for isotropic rods by Mindlin and McNiven[5] and
was developed examining closely the behavior of motions in a transversely
isotropic rod dictated by the frequency equation derived from the field
equations of three dimensional elasticity. This exact frequency equation
was derived by McNiven and Mengi.[6] As the matching of the spectral lines
from the approximate theory and the lowest three modes of the exact theory
was excellent, we feel confident that by using the approximate theory we

can predict accurately the response in a rod except perhéps for the very
front of the wave which would be influenced by the higher branches omitted
in the theory.

Using method of characteristics we exploit two circumstances. First,
the approximate equations are hyperbolic, a necessary condition for real
wave propagation velocities, and second because the lines on the space-time
plane, which represent wave fronts, coincide with characteristic lines along
which the governing equations take a greatly simplified, degenerate form.

Using the method of characteristics one is able to reduce the governing
equations of the three-mode theory to two types of equations. The first
type is decay equations which are integrated directly on the space-time
plane to find the behavior on the firét wave front. We explore the

domain behind the first wave front by means of the conanical form of the



governing equations. These are valid along characteristic lines and are
integrated using finite differences.

We assume knowledge of the method of characteristics so we do not
review the method here. What explanation there is, is contalned in the
section on numerical anslysis because the numerical method we use is not
always used when employing characteristics,

In the general theory the elastic constants are left undefined and

the time dependency of the input is left arbitrary. In the numerical
analysis both are specified. We take as our input a step function in
time and find the responses in rods of two different materials. The
first is a fiber reinforced rod and the second is magnesium. The responses
are found at a station approximately one diameter from the end of the
rod. For each of the two materials we calculate four responses. ‘We find
the radial strain € p? the axial strain szz,both on the lateral surface
and along the axis of the rod,and finally the generalized axial stress

' Pz. The responses in the fiber reinforced rod are seen ih Figures 2,
3\and 4 and in the magnesium rod in Figures 5, 6 and 7.

The results are not easy to appraise as thelr appears to be no other

study of transversely isotropic rods with which the results could be com-

pared. However, from our studies, and those of others, on isotropic rods
it is possible to state that of all of the results the only obvious in-

accuracy is contained in the axial strain on the lateral surface for both
materials. The front of the wave will not be stepped as our:results show,

but will start at the origin and rise with a fairly steep slope.




II. The Approximate Theory

The approximate theory governing the axisymmetric motions in trans-
versely isotropic rods was derived in a previous paper[u] and will be
described in the barest outline here.

The rod is circular and has a radius "a". It is referred to &
cylindrical coordinate system (r, 6, z) within which the center of the
end of the rod is located at the origin and positive z is measured along
the axis of the rod. The material is arranged so that axes of isotropy
are parallel to the axis of the rod. The transversely isotropic material
is identified by five elastic constants 115 C1ps Cl3’ c33 and e

In the development which follows, when it is appropriate, we use

indicial notation and all the rules that apply to its use.

The theory is derived from the constitutive equation

T, = caB&B (¢ B=1, ..., 6) s (1)
where
(Ta) - (Trr’ T06° T2z Toy® Typo TrG)
(Ea) = (;rr’ ®00° Eyp° 2562’ 28zr’ 2£r9)
and

rcll 5 cl3 0 0 0
cle cll c13 0 0 0
0 o) 0
(c ) = €13 %3  °©33 (2)
of ’ “
0 0 0 ¢, O 0
0 0 0 0 ¢, O
0 0 0 0 0 £ (c. . -c )
. 2 ‘11712




Tij, Eij being stress and strain tensors respectively,
The theory is described in terms of generalized displacements u, w

and ¢ which are related to the radial and axial displacements u, and u,

according to

u = ru(x, 1)

(3)
w(x, T) + (1 - F9)y(x, 1) ,

o
]

where T = r/a; r is the radial distance,

The constitutive equations_relating these generalized displace-

ments and generalized forces are

a " Y
<_°E) P = @(2 = Y) ;—: u + dKl(Yq - w,

2(;3—) P, = oyow, * 2 (g - 1u
(1)

a
L <;;Z> P, = Kg(du,xl- Ly)
6(=2)p - g2
Qc lp = an},x 3
where the generalized forces are defined by

1
- s
r Jo (Trr * tee)rdr

(5)



The strains are given in terms of the generalized displacements

according to

_ u
Er =K a
: = u
o9 = Kl a
dJ —
€, = ;{w,x + (1 - 2r2)¢,x} (6)

= L
€p = K2 >a (6u,x = by)

o .

EGz = ErG

The theory is contained in the three equations

Y
déwmm-h%Q-h@@-yﬁ;ﬁufMﬁm-lex+§iR=K%%%T

3
dyaw’ + EI&(Y - l)u + 22, Z = dw |
noxx q ’x dcm‘_ ! JrT (7)
2.2 ‘ 6a o
d an"gm + 61(2(611,}{ = l{-lIJ) - -c:): Z =g Kﬁw’TT .
In Egs.(3-7);R = T, »Z=T , and
L , r=a r=a
x = g% s a dimensionless distance
' 8
o 1/2 ( )
_ Ot i . . .
T= K.p‘) , & dimensionless time
and ‘
Szt oS3 T W
Y, & o 5 Yg & o >
q gnn 11
c ~l/2 c,, - ¢ )
= (33 . R S =
Yn KCM) T SR

p is the mass density.



6 is a constant defined as the first nonzero root of Ji(dm) = 0[6],
Jl being the Bessel function of the first kind.
The Ki's (i =1-1U4) are adjustment factors introduced in the theory
to make the three spectral lines of the theory match more closely the
lowest three branches of the exact theory. They are functions of the material

constants ¢

ap°®

III. Formulation of the Problem

The formulation begins by putting the governing equations, Egs. (7),

in the form

1 s
— = o+ = o oo
us, s LY aijuj Bijuj’x (i, j =1, , 1) (10)

* (no sum on i)

This is achieved if we let

o 0 0
2
21+K2
0 —= 0
(o) = oy,
bE(2 - y )Y
0 0 Kiz k; q
675V,
(11)
— _
2K (y, -~ 1)
oy
n
o
(Bij) = 0 0 B 5;5 ’
) n
1\‘K:L(Yg"' 1) n .
K2 g
2
L J




and if we take

(u s Yo u3) = (w, Y u) and

2
15 Yy s 2~ 2"’ ¢y = 2
L 3

Egs. (10) constitute a system of linear hyperbolic equations for
which the method of characteristics was discussed in detail in a paper by

Mengi and McNiven.;7]

For a reasonable range of values of caB we assume that

2 2 2

ey > ¢, > c3 - (12)

We note that ¢, =Y, is the dimensionless form of the longitudinal wave
/2

velocity <;%%> o

Even though the method of characteristics is geneﬁal,and could
be used to handle a large variety of boundary and initial conditions,
we are concerned here with a specific problgm, namely the response of a
semi-infinite rod, initially at rest, whose cylindrical surface is free
of traction, and subjected to a uniform pressure on the end of the rod
that has an arbitrary dependence on time. The boundary conditions take

the form;

R=Z =0
T,,(0s 1) = - £(1)H(z) (13)
TrZ(O, ) =0 .

In Egs. (13), H(t) is the usual Heaviside step function and ()
is a prescribed, continuous function of time,
In terms of the generalized forces the boundary conditions on

the end of the rod can be written:



b (0, ) = ZE(HD)

2
P,(05 T) =0 (1k)
PrZ(O, t) =0 .
Using Eq. (k) these conditions can be expressed in terms of the
generalized displacements according to
Pwax(oa ) + qu(0, 1) = g(t)H(T)
b, (0, T) = 0 (15)
du,x(O, t) = %p(0, 1) =0 s

where

dvi
p=—3 3 a=Kly, -1 g)-=

gl (16)
L

The initial conditions are

u(x, 0) = u,T(x, 0) =0
w(x, 0) = W,T(X, 0) =0 (17)
W(x, 0) = llJ,T(X, 0) =0 .

The problem is one of finding solutions of Egs. (lO)4subject to: the

boundary and initial conditions given by Egs. (15) and (17).

IV. The Method of Characteristics

The rod behavior we are seeking is the response to an input of

normal stress on the end of the rod. As the resulting disturbances will
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move down the rod, the behavior is best understood if it is described
using the notion of wave fronts. The first wave front is defined as
the boundary between disturbed and undisturbed regions of the rod,

while second, third etc., wave fronts are related to the notion of the
arrival of the additional disturbances to an already disturbed material
point. When_the material at a point becomes suddenly distuﬁbed from an
undisturbed state or when an already disturbed material point has some
additional disturbance, it can only do so if some derivatives of the
displacement vector suffers a finite Jump at the point, On the x - T
Plane, a wave front can be represented by a line and by definition that
line will be a characteristic. In our problem the initial conditions
are all zero which means that of a family of characteristic lines, it is
the ones emanating from the origin of the x - T plane that will be the
wave fronts. The order of discontinuity of the characteristic lines
describing the wave fronts will depend on the boundary conditions on the
end of the rod, specifically the dependence on time in the neighborhood
of T =0,

Since Egs. (10) represent three equations, there will be three
wave fronts, Sl’ 32, and S3, shown in Fig. 1. In the boundary conditions
Egs. (13), £(t) is an arbitrary continuous function of t. If £(0) # O,
we will show shortly that along Sl the first derivatives of w will suffer
a finite jump, higher order derivatives of u and § will have finite
Jjumps and that along 82 and S3 the discontinuities will be of order two
or higher for all three generalized displacements. As Sl is a character-
iStic line of first order discontinuity in w, it is necessary to use

decay equations to find Wy and Wy along Sl immediately behind the wave

front,



We turn to the decay equations themselves, Egs. (20), (21) in
reference (7), as they apply to Sl, Se, and S3, and note from the second

of Egs. (11) that Bll = 322 = 633 =‘O. The decay equations are therefore,

[W’x] =4, [W,T] == oA along S,

[q’:x] = A2 s NJ:T] 02A2 along 32 (18)

‘[u’xJ = A3 5 [u,T]

C3A3 along S3 .
In Egs. (18) a set of square brackets implies a finite Jump of the function
they enclose.

The Ai's are constants obtained from the behavior of the boundary
and initial conditions in the neighborhood of the origin of the (x ~ T)
pla.ﬁe. Using boundary conditions Egs. (15) and initial conditions

Egs. (17), and noting that [ul = [w] = [y] = O everywhere in the

(x - 1) plane one obtains

&(0)

il

[W’x(os O) ]

b
[45,(0, 0)] = 0 (19)
, [u, (0, 0)] =0 .
% Comparing Eqs. (18) and (19) we can identiry
| _ &)
A%
(20)

CRERLE

Accordingly the decay equations are
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_ 0 _ clg(O)
[W’X] = Ei()—)' 5 [W’T] == D along Sl
by l=0 » [y, J=o0 along S, (21)
[u’x] =0 s [u,T] =0 along S3 .

It is worth noting that three mode approximate theory indicates no decay
of the first derivatives of the generalized displacements.

From Egs. (21) and from the fact that £(t) is a continuous
function of T we conclude that in tbe disturbed region behind the wave
front Sl all of the first derivatives of the generalized displacements
are continuous so that the canonical form of the equations are appropriate.
Within the framework of the approximate theory these equations, Eqs. (16)

in reference (7), have the form,

+

c

n

+}

1 - dx _
d(wsx) "o d(ws.r) * d-xﬁl?’u:x along ac

1 1

dx _ _
dx(uzij + ﬁesu,x) ’ along E =+ 02 - (22)

i
i

a(v, ) - ;}; a(v, )

4

+
i
#

1
d(uﬂx) = E; d(u’.r) d-x(a33u + ﬁ3lng + 532ll-’,x) along % = ¥ C3 °

Along with the six equations of Egs. (22) we exploit the fact
that the displacement field is continuous and differentiable, so that

along any line on the x - T plane

i

aw = w,_dx + w, dr
X T

ag

= dx + u, dr
du u,x '

by 0x + ¥, dr (23)

giving us nine working equations.



V. Numerical Analysis

We seek the generalized displacements u, § and w and their first
derivatives at a station x and at a time T, and having these we can
calculate the strains and stresses. We refer to Figure 1, which shows
the (x - ) plane. On this plane, the line Sl(x - oyt = 0) divides the
space-time domain into two parts, the domain Dl representing undisturbed
particles and D2 representing particles of the rod which are in motion.
The part D2, which is the part that interests us, is subdivided by means
of one primary and two secondary grids. The primary grid, shown by fine
solid lines, is formed by two sets of parallel lines. The first set
(x - e;T = const) is parallel to the line Sl’ and second set (x + c T =

1
const) has equal but opposite slopes., Each diamond shaped element has

diagonals measuring 2Ax and 2At. The secondary sets of grid lines are\
members of the families x * c,T = constant and x * c3r = constant. They
are shown dotted in Figure 1, and are used when analyzing an individual
element. As the dotted lines fall within the element, the domain of
dependence of a point is conserved,

In what follows the nine quantities u, u,x, u,T, Yy w,x, w’r’
ﬁ; w;#, w,fyéiévcbhsidéred;>fof cénvenience, to be the nine elements
of the vector yye To establish v; in the region D2, we start at the
origin and along Sl, where they are known from the decay equations, and
fan out into the region element by element. To be more explicit, we know
vi at the points 0 and 1 in Figure 1, and using a technique to be ex-
plained shortly, we find v at the point 2. Having ‘A at the points 1, 2,

end 3, we use the same technique to find vy at the point 4, and so forth.



1k

In explaining the technique we refer to element M shown in
Figure 1, and to its detached enlargement. The yi's are known at points Al’
A7 and A2 and are sought at the point A. As there are nine unknowns,
we need nine equations to establish them.,

The boundary lines AAl and AA2 are the characteristic lines
*1
point A we draw the characteristic lines AA3 and AAuywith slopes + Css

- T = constant, and x + cyT = constant respectively. Through the

| and characteristic lines AA5 and AA6 with slopes * c3. The values of
i; y; are calculated at A3 and A5 by interpolating the values at Al and A7,
and at Ah and A6 by interpolating the values at A7 and A2, Six of the
nine equations come from using six canonical equations, Egs. (22),

one each along the six characteristic lines per element converging on A.

The three remaining equations are equations (23). As these are

valid for any line in the (x - T) plane, we choose to use them along

the diagonal line AA7 (x = constant). The nine elements of y; are found

at A by solving the nine equations by the method of finite differences.
For an element L adjacent to the line x = 0, the procedure is the

same except that the three equations along the three lihes X = cT =

constant (i = 1, 2, 3) must be replaced by the end boundary conditions

at x = 0, Egs. (15);

ov, () + qu(a) = g(4a)
v, (8) =0 (2k)
du,X(A) - hy(a) =0 .,

When one is dealing with numerical methods of this kind, conver-

. gence must be congidered. In the Appendix of reference (7), it is shown




15

that for a fixed point (x*, T*) on the (x - T) plane, the error becomes

zero as the mesh size At goes to zero.

VI. Numerical Results

The choice is to calculate and exhibit three quantities: +the
radial strain € e the axial force Pz and the axial strain €y For an
input on the end of the rod, f(t) = P, (a constant) is chosen. With the
method of characteristics £(t) can be an arbitrary function and this
particular choice is made for the following reason; as the three mode
approximate theory is limited to frequencies less than that of the cut-
off frequency of the second axial shear mode, it is advisable to choose
an input function for which the magnitude of its Fourier transform de-
creases with increasing frequency. The Fourier transform of PO
decreases as (1/w) with increasing frequency.

Numerical results are found for two different rods. One (rod 1)

is made of a fiber reinforced material having the material constants

C C
e R R 5-4-2- = 0.165 ;
€33 33
(25)
(o] - C
23 < 0,176 -gl‘—L‘- = 0.104 ,
33 33

and the other (rod 2) is made of magnesium having the material constants

C
= =095k 5 220390 ;
33 33
(26)

o] (o
3 = 0,326 ; _5_4& = 0.277 .
¢33 33
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Numerical analysis is carried out using a mesh sgize dictated by
Ax = 0.10. The response is evaluated at the station x = 7.60, about one
diameter from the end of the rod. The responses are shown in Figures
(2-4) for material 1 and in Figures (5-7) for material 2. The
approximate theory accommodates a distribution of the axial strain
across a rod cross section and so Figures 3 and 6 show a plot of this
strain at the center of the rod as well as on its lateral surface. The
computations show that at any station, Epp?. €y, and Pz asymptotically
approach their static values as time increases indefinitely, which

ensures the stability of the numerical Procedure,
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CAPTIONS FOR FIGURES

Description of characteristic lines and wave fronts on the

(x - T) plane.

Radial strain for rod 1 at the station z = 1 diam.

Axial strain for rod 1 at the station z = 1 diam.
Axial generalized force for rod 1 at the station z = 1 diam.

Radial strain for rod 2 at the station z =~ 1 diam.

Axial strain for rod 2 at the station z =~ 1 diam.

Axial generalized force for rod 2 at the station z =~ 1 diam.,



FIG. |
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