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Comparative Analysis of Glycoproteomic Software Using a Tailored Glycan Database 

Reuben Aaron Hogan 

ABSTRACT 

Glycoproteomics is a rapidly developing field, and data analysis has been stimulated by 

several technological innovations. As a result, there are many software tools from which to choose; 

and each comes with unique features that can be difficult to compare. This work presents a head-

to-head comparison of five modern analytical software: Byonic, Protein Prospector, 

MSFraggerGlyco, pGlyco3, and GlycoDecipher. To enable a meaningful comparison, parameter 

variables were minimized. One potential confounding variable is the glycan database that informs 

glycoproteomic searches. We performed glycomic profiling of the samples and used the output to 

construct matched glycan databases for each software. Up to 19,000 glycopeptide spectra were 

identified across three replicates of wild-type SH-SY5Y cells. There was substantial overlap 

among most software for glycoproteins identified, locations of glycosites, and glycans, although 

Byonic reported a suspiciously large number of glycoproteins and glycosites of questionable 

reliability. We show that Protein Prospector identified the most glycopeptide spectrum matches 

with high agreement to known glycosites in UniProt. Overall, our results indicate that 

glycoproteomic searches should involve more than one software to generate confidence. It may be 

useful to consider software with peptide-first approaches and with glycan-first approaches. 
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CHAPTER 1: ALZHEIMER’S, APOE, AND GLYCOSYLATION 

Introduction 

Alzheimer’s Disease (AD) is a neurodegenerative condition that is currently the 5th leading 

cause of death for individuals aged 65 years and older.1  In 2022, it was estimated that 6.5 million 

individuals were living with AD.2 Prevalence is expected to rise in proportion to the median age 

in the United States if novel treatments are not developed.3 By 2060, it is projected that 13.8 million 

people will be living with AD.2,3 The sheer burden of cases will place stress on the United States 

in a number of ways. First, medical care will need to be handled by geriatricians, of which there is 

currently a shortage.3,4  Second, other care will be displaced upon the family. It is estimated that 

$271.6 billion worth of care is provided by caregivers, who are usually family members.3,5  Third, 

medical costs due to AD for the country will total $321 billion in 2022.3,5 Fourth, AD 

disproportionately affects individuals who identify as Black or Latino.6–8  AD is a matter of urgent 

concern.  

Medical treatment for AD has been incomplete. Before 2021, the treatment strategy was to 

mitigate symptoms of the disease.3 With the approval of aducanumab and recently lecanemab, new 

options have become available. Unfortunately, results of clinical trials for aducanumab have been 

mixed, and lecanemab only delays disease progression by 27%.9,10 This is true even though both 

monoclonal antibodies successfully clear amyloid beta plaques, which have long been considered 

one of the two defining histopathological signs of this disease. We need a better understanding of 

the molecular pathogenesis of AD in order to design better treatments. 

APOE has emerged as one of the strongest genetic risk factors for AD.11–15 There are three 

allelic variants of this gene that are abundant in the population: e2, e3, and e4. Each carries a 

differential risk for AD. The e4 allele has been shown to have a dose-dependent relationship with 
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both the likelihood of developing AD and the age of onset.11,16,17 Individuals who have one copy 

of the e4 allele have a threefold increased risk of developing the condition; individuals who have 

two copies have a 12-fold increased risk.16,18–20 From a different angle, it is estimated that up to 

60% of individuals with AD have at least one copy of e4.17,21,22 These numbers are striking, yet 

how e4 influences this disease is unknown. Moreover, e2 is slightly protective against AD, and e3 

is the common “null” allelic variant in the population.11,16,23 That each allele has a differential 

effect on the disease suggests that the ApoE protein might be involved in the pathogenesis of AD. 

Therefore, it is necessary to understand ApoE biology.  

Interestingly, each APOE allele only results in one to two amino acid changes in the 

protein.24 The e4 is the ancestral allele and encodes arginines at sites 112 and 158. The e3 encodes 

an arginine at site 112 but substitutes the arginine at 158 for a cysteine. The e2 encodes for 

cysteines at both sites 112 and 158 and is thought to represent the most recently evolved variant. 

Studies have indicated that these single amino acid substitutions lead to differential effects in how 

the ApoE protein sequesters lipids25, how dynamically it behaves26,27, how tightly it binds to 

receptors28,29, how it affects mitochondrial biology30–32, and how it affects metabolic biology33,34. 

Proteomic analysis in the brain of AD patients complemented with transcriptomics analysis also 

points to an effect at the protein level, not the RNA level.35 Therefore, how different APOE alleles 

modulate the biology is also important. 

ApoE biology is quite complex. This is for two reasons. First, ApoE in the brain has 

multiple sources. Multiple reports have discovered that ApoE is produced by microglia36,37, 

astrocytes25,30,34,36–39, and neurons39–41. Second, ApoE has multiple sinks in the brain. It has been 

reported that ApoE can be uptaken by all the cell types listed above with the addition of 

oligodendrocytes.42–44 It is reasonable to question which source, sink, or combination thereof is 
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the important axis along which ApoE mediates its effects on AD.38,44,44,45 It has been reported in 

the past and reaffirmed recently that ApoE can have a neurotoxic effect at the level of the 

neuron.46,47 Considering that AD is a neurodegenerative condition, it merits consideration of ApoE 

at the level of the neuron.   

Even when narrowed down to the cell type, there is still not consensus on which protein-

protein interactions (PPIs) mediate the process of ApoE secretion or uptake. This motivated our 

lab to apply proteomics by mass spectrometry to generate PPI networks for ApoE. To do this, we 

fused the proximity labeling enzyme APEX to the three common alleles of APOE. We then 

performed affinity purification-mass spectrometry (AP-MS) to identify interacting and nearby 

proteins to ApoE.  

 
Results 

Expression of APOE Proximity Labeling Constructs 

 To generate PPI networks of ApoE, different APOE alleles were fused N- and C-terminally 

to the proximity labeler APEX2. APEX2 is a peroxidase that catalyzes the formation of radicals 

from biotin phenol in the presence of hydrogen peroxide.48,49 Radicals are short-lived and will 

covalently bind to electron-rich amino acids in proteins within a 20 nm radius. Labeled proteins 

can then be purified from the cell lysate for mass spectrometry. In all plasmids, the APEX-APOE 

fusion was placed downstream of a doxycycline-inducible promoter and contained a FLAG tag 

directly preceding APEX2. N2a cells, a mouse neuroblastoma cell line, were transfected with one 

of the APOE constructs and treated with doxycycline for 24 hours. Cells were harvested at 1 day, 

3 days, and 5 days after treatment. Figure 1.1 indicates that N-terminally fused constructs of APOE 

had better expression than C-terminally fused APOE as shown by both an anti-FLAG antibody 

and an anti-ApoE antibody.  
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Figure 1.1: Western Blot Confirms Expression of APEX-APOE Constructs. 10µg of protein 
was loaded into each lane. Positive control is previously validated APEX-APOE protein. 
Negative control is untransfected N2a lysate.  
 

APOE PPI Networks Are Enriched in Glycosylation-Related Proteins 

Having confirmed that N-terminally fused APEX-APOE constructs expressed in cells, we 

then proceeded to perform proximity labeling. For this, we switched to using SH-SY5Y cells, a 

human neuroblastoma cell line. N2a cells grow quickly and will change in morphology if left 

unpassaged for more than two days. Conversely, SH-SY5Y cells grow more slowly and will reach 

confluence within a week. The time to passage for SH-SY5Y cells allows one more leisure to plan 

experiments before tissue culture. Moreover, given that both options are neuroblastoma cells, it 

was preferable to use human cells over mouse to study a human disease. For proximity labeling, 

SH-SY5Y cells were plated into five 15cm dishes for each APOE allele. All dishes were 

transfected with the respective APOE allele. Three of the five dishes were incubated with biotin 

phenol for one hour before adding hydrogen peroxide to initiate proximity labeling. The remaining 

two dishes were incubated with fresh complete media before addition of hydrogen peroxide and 
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served as negative controls. APEX labeling was carried out for 1 minute before quenching the 

reaction and harvesting cells. Cell pellets were lysed. Biotinylated proteins were purified with 

streptavidin coated beads. Proteins were reduced, alkylated, and then digested using trypsin. 

Digested peptides were collected and prepared for analysis by mass spectrometry. Data was 

analyzed using MaxQuant.50 PPIs were scored using SAINTexpress.51 Proteins were considered 

PPIs if they were scored by SAINTexpress both when using spectral counts and when using 

intensities. Proteins were entered into STRING to generate PPI networks. Figure 1.2 displays the 

networks by APOE allele.   

 
Figure 1.2: Glycosylation accounts for at least 50% of PPIs regardless of APOE allele. 
Proximity labeling with APEX N-terminally fused to APOE was used to biotinylate proximal or 
interacting proteins for AP-MS. Biotinylated proteins were purified with Streptavidin and digested. 
Peptides were used for MS. Identified proteins are showed as nodes. Colors denote the fused APOE 
allele (Red = APOE2, Yellow = APOE3, Blue = APOE4). Edges were produced by STRING 
database. Manual annotation was performed to indicate proteins with recorded relationships to 
glycosylation. This information was taken from Essentials of Glycobiology or details provided in 
STRING.  
 
 

The number of detected PPIs differed by APOE allele. The e2 allele recovered the most 

PPIs followed by e3 and then e4. Interestingly, we observed that many of these proteins were 
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mentioned by name or by function in Chapter 39: “Glycans in Glycoprotein Quality Control” of 

the Essentials of Glycobiology textbook.52 The network designates these proteins with a bold 

outline. We discovered that at least 50% of the protein interactions, regardless of APOE allele, 

were related to glycosylation in this way. 

Streptavidin purification is useful for purifying biotinylated proteins but is difficult for 

validating that every protein identified was biotinylated. Streptavidin has such a high binding 

affinity for biotin such that the binding event is irreversible. Therefore, it is challenging to recover 

direct proof of biotinylation by identifying the biotinylated peptide itself with mass spectrometry. 

Therefore, we performed an alternate purification of the same biological samples using an anti-

biotin antibody.53  Anti-biotin antibodies can be denatured, which releases the biotinylated peptide 

for detection. With this workflow, we reanalyzed the samples by mass spectrometry. MaxQuant 

was used to search for the biotinylated peptides.  

 

Figure 1.3: Glycosylation Remains A Significant Theme of Anti-Biotin Antibody Workflow. Anti-
biotin purification of biotinylated peptides was used on the same samples collected in Figure 1.2. 
Biotinylated peptides were searched using MaxQuant. Table on the left displays results from functional 
enrichment of the network on the left.  
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Figure 1.3 shows the results from each allele. Using the anti-biotin antibody, we 

discovered that there were no differences amongst the alleles in regards to biotinylated peptides. 

Importantly, there were several proteins that overlapped with the networks shown in Figure 2. 

Again, manual annotation revealed that there were several proteins mentioned by name or function 

in the Essentials of Glycobiology textbook. Functional enrichment of these proteins also revealed 

that the “Protein Folding in Endoplasmic Reticulum and Ubiquitin-Dependent Glycoprotein 

ERAD” Pathway was one of the enriched themes in this network. Together, these data suggest that 

at least a subset of the ApoE PPIs are centered in a glycosylation pathway.  

It is possible that these results could be an artefact of the expression system that we used. 

Therefore, we compared the results from the e2, e3, and e4 alleles with APEX datasets collected 

in the Krogan Lab from APOL and MAPT. APOL is another apolipoprotein like APOE while 

MAPT is an intracellular cytoskeletal protein. MAPT, commonly referred to as Tau, is related to 

one of the hallmark pathologies of AD. Table 1.1 demonstrates that many of the glycosylation-

related PPIs are common to both apolipoproteins while only one is shared with Tau. These data 

underscore that glycosylation seems to be a theme common to apolipoprotein biology but not to 

any given APEX-fused protein.   
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Table 1.1: Tabular Overlap of Protein-Protein Interactions from APOE, APOL, and Tau. 
PPI networks were all collected using N-terminal fused APEX. Subset of proteins with 
glycosylation ties were used to show overlap across different proteins. 

 
 
Glycosylation as a Unifying Link Between AD and APOE 
 

A large-scale proteomics analysis of AD post-mortem brains identified that 

“Glycosylation/ER” was among the top 3 themes for AD-associated proteins with differential 

abundance between AD and controls.35 Of note, increased abundance of Glycosylation/ER proteins 

was associated with better cognitive performance.35 To further illustrate the connection between 

AD and glycosylation, many proteins implicated with AD pathogenesis are themselves 

glycosylated with evidence for AD-specific N- and O-glycosylation sites (glycosites).54,55 For 

example, Tau protein, which forms hyperphosphorylated aggregates in AD, exclusively develops 

a N-glycosite in AD brains.55–57 Tau is traditionally a cytosolic protein; but formation of an N-

glycosite would enable Tau secretion, which has been reported multiple times in AD patients.58–60 

The existence of AD-specific glycosites suggests that many AD-associated proteins are susceptible 
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to changes in glycosylation.  

ApoE is a known metabolic protein, primarily for its role in lipid trafficking; but there is 

evidence that APOE also has allele-specific effects on glucose metabolism.34,61–64 Individuals with 

the e4 allele have blunted glucose uptake by PET scan in similar regions of the brain to suspected 

AD patients, even at a young age.61–63 ApoE4 protein retains the insulin receptor in the endosomes, 

delaying its recycling to the membrane and mimicking insulin resistance.64  Most importantly for 

glycosylation, e2, e3, and e4 all differentially affect from which carbon sources astrocytes 

construct UDP-hexoses and hexosamines, which are critical substrates for glycosylation.34 

Moreover, a targeted glycoproteomic study of plasma proteins in AD patients found that presence 

of the e4 allele was a confounding variable for multiple glycosites, suggesting that the APOE allele 

can affect glycosylation.65 

How ApoE is able to cause such far-reaching effects is unknown. Yet, ApoE has been 

reported to localize to the nucleus, where it can bind double-stranded DNA with ~3nM KD at a 

sequence motif that is located in the promoter region of up to 3080 genes.66,67 Transcriptional 

changes in response to ApoE could have a wide range of effects that could affect glucose 

metabolism and glycosylation, specifically at the level of glycan synthesis (Figure 1.4).68,69 In 

proteomic data collected by Swaney et al. in N2a mouse neuroblastoma cells stably expressing e3 

or e4, we can show that changes in abundance of enzymes in glycolysis, glycogen & galactose 

metabolism, and the pentose phosphate pathway suggest unique metabolic programs depending on 

the allele (Figure 1.5). 
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Figure 1.4: ApoE as a Transcriptional Regulator of Glycosylation at Multiple Levels. ApoE 
is synthesized and trafficked from the ER to the Golgi. Following exit from the Golgi, it can 
undertake one of multiple routes. Dashed lines represent those paths that have not been 
demonstrated experimentally but can be inferred based on the literature. Solid lines represent paths 
with experimentally demonstrated trafficking. Green check marks represent locations that 
preliminary proximity labeling data in our lab can confirm. ApoE fragment imports into the 
nucleus and functions as a transcription factor. Transcriptional changes can affect any location 
with a question mark, which would in turn affect glycosylation.  
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Figure 1.5: APOE alleles differentially alter enzyme abundance at critical points of glucose metabolism, suggesting unique 
metabolic programs. Glucose is taken up inside the cells and shunted to a variety of different biochemical pathways. Enzyme abundance 
at individual steps can bias the ability of certain pathways to happen relative to others due to competition for the same substrate. Enzymes 
with differential abundance between e3 and e4 at a p value > 0.05 are shown by gene name near to the step catalyzed by that protein.  
The percentage reflects the relative amount more protein in the e3 or e4 condition. Blue indicates that the protein is more abundant in 
the e3 condition; red indicates that the protein is more abundant in the e4 condition. Biochemical map is adapted from the Stanford 
School of Medicine Pathways of Human Metabolism Version 10.18 
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Discussion 
 
 In this chapter, we demonstrated that we could generate PPI networks by APEX-

mediated proximity labeling followed by affinity purification-mass spectrometry for each of the 

three common alleles of APOE: e2, e3, and e4. PPI networks were generated by using 

streptavidin or an anti-biotin antibody during purification. The antibody workflow grants higher 

confidence in reported proteins because the biotinylated peptide of nearby proteins can be 

detected by mass spectrometry whereas in streptavidin purification it must be inferred as any 

protein that is detected by the mass spectrometer. Manual annotation of the networks from both 

workflows demonstrated that several proteins were mentioned by name or by function in a 

chapter of Essentials of Glycobiology that is dedicated to glycoprotein folding quality control. 

We confirmed that these proteins were not an artefact of the APEX fused to the protein. In fact, 

comparison of APOE’s PPI network to APOL’s demonstrated that many of the proteins in this 

pathway were shared by both apolipoproteins. This potentially points to a common part of 

apolipoprotein biology.  

 There is a plethora of ties in the literature that connects AD to glycosylation. There is a 

plethora of ties in the literature that connects AD to APOE. There is currently no work 

elucidating APOE’s ties to glycosylation although there are several works that provide data 

suggestive of a link between the two. Moreover, the proximity labeling data showed here 

indicates that there may indeed be a physical relationship between ApoE protein and proteins 

involved in glycosylation. We also posit a metabolic link between ApoE and glycosylation. This 

theory is laid out as follows. ApoE is produced at the endoplasmic reticulum. It escapes at some 

point during the secretory pathway or during its uptake by another cell. A fragment of ApoE 

localizes to the nucleus. Alternatively, it is possible that there may be a direct line of transport 
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from the endoplasmic reticulum to the nucleus although this has yet to be shown. Once in the 

nucleus, ApoE acts as a transcription factor where it effects the transcription and translation of 

other proteins. In favor of this hypothesis, we can recover PPIs in our network for APOE that 

localize to the endoplasmic reticulum, the Golgi, and the nucleus. Proteomic data previously 

collected by Swaney et al but reanalyzed here and overlaid onto a biochemical pathway map 

suggest that expression of e3 or e4 lead to changes in glycogen and galactose metabolism, 

glycolysis and gluconeogenesis, and the pentose phosphate pathway. These data support the idea 

that ApoE expression leads to metabolic changes in the cell that are allele specific. In particular, 

enzymes with significantly altered abundance are changing the abundance of glucose and its 

isomers as well as substrates for nucleotide synthesis. These data agree with the requirement for 

activated sugar-nucleotide conjugates as synthetic building blocks for glycans. Taken altogether, 

these data outline a clear and direct motivation for performing glycoproteomics in regards to 

APOE alleles.  
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CHAPTER 2: GLYCOPROTEOMIC ANALYSIS 

Introduction 

Protein glycosylation, the enzymatic attachment of sugars to proteins, is a very 

heterogeneous yet common post-translational modification (PTM).70 N-glycosylation, which 

occurs on asparagine residues within a defined motif, is estimated to occur on over half of the 

proteins encoded in our genome.71 Not every potential glycosylation site (glycosite) is always 

occupied. In fact, the specific pattern of occupied glycosites on a given protein, referred to as 

macroheterogeneity, can indicate its function.72–74 To make this process even more complex, the 

sugar chains (glycans) attached at a given glycosite can have different monosaccharide 

compositions, linkages, and branching structures, referred to collectively as microheterogeneity. 

This multifaceted heterogeneity makes glycoproteomics, the large-scale study of glycoproteins, 

challenging.   

Modern glycoproteomics is mostly performed using mass spectrometry and requires 

careful considerations.75,76 First, one must identify a method to enrich glycopeptides from the 

background of mostly unmodified peptides.77 Second, one must select a method of fragmentation 

that generates informative ions about both peptide and glycan parts of the molecule.78 Third, one 

must analyze the spectra in a way that generates confident, reproducible results.79  

For this final consideration, there are a host of software suites that are available.70,75 A 

community evaluation study was published in 2021 to understand how researchers analyzed their 

data and how consistent their results were.80 The study showed that manual analysis was able to 

improve on the best raw search engine outputs, highlighting the room for improvement. Since then, 

several new software have been developed, and some existing tools have been improved. 

A major difference among glycopeptide analysis software is the way in which each 
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software interprets a glycopeptide spectrum. For example, Byonic attempts to identify peptide and 

glycan components in one step, treating the glycan like a large variable modification.81,82 It 

generates a theoretical complete glycopeptide spectrum for all peptide and glycan permutations 

supplied from user databases and then scores spectra based on their match. Other software, such 

as Protein Prospector or MSFraggerGlyco, rely on the mass offset approach.83–85 In this method, 

masses of potential glycopeptides are calculated in the same way as Byonic, but the fragmentation 

spectrum is initially only compared to theoretical peptide fragments from the glycopeptide.   

Having identified the peptide, if there are multiple potential glycans of similar mass, a scoring 

system is applied to determine the best assignment among these. Newer software, such as pGlyco3 

and GlycoDecipher, initially make use of Y-ions.86,87 Y-ions contain the peptide backbone and 

fragments of the glycan. Peptide assignment is performed only after the glycan has been identified. 

Both pGlyco3 and GlycoDecipher flex an ability to identify modified monosaccharides. 

GlycoDecipher can perform glycan database-independent identification, an effective de novo 

glycan construction. MSFraggerGlyco, pGlyco3, and GlycoDecipher employ false discovery rate 

(FDR) calculations for both the peptide and the glycan. This could be a great advance in the field 

over traditional confidence scores, which are difficult to translate into a probability.  

Because of the variety of analytical innovations, it is imperative that another benchmark 

be performed.88 Publications of the newer software each conducted a comparison to competing 

tools.84,86,87,89  However, these only focused on the total number of spectra identified. They did not 

discuss overlap or agreement and did not break down the results in terms of relevant information 

such as unique glycopeptides or glycosites.  There was also no comparison to the literature to 

determine agreement with known information. 
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Herein, we report a comparative benchmarking of five software: Byonic, Protein 

Prospector, pGlyco3, MSFraggerGlyco, and GlycoDecipher. For this benchmark, we acquired a 

novel glycoproteomic dataset from SH-SY5Y cells, a human neuroblastoma derived cell line, 

using strong anion exchange –electrostatic repulsion liquid chromatography (SAX-ERLIC) for 

glycopeptide enrichment followed by high pH reverse phase fractionation (HpH-RPF). Data was 

acquired using stepped collisional energy higher energy collisional dissociation (sceHCD), which 

balances fragmentation quality and acquisition speed to maximize the number of highly quality 

spectra for N-glycopeptide analysis.78 Of highlight, we performed glycomic profiling of the SH-

SY5Y cells to identify the glycans present and constructed matched glycan databases for all 

searches. Downstream analysis compared search engine results based on multiple criteria, 

including agreement with reported glycosites.  
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Methods 

Cell Culture 

SH-SY5Y cells were cultured in 15 cm dishes using DMEM:F12 + 10% FBS with no 

antibiotics and placed in an incubator at 5% CO2 and 98% humidity at 37°C. For subculturing, 

media was aspirated from the cells. Cells were washed once with PBS before adding accutase. 

Cells were incubated at 37°C for 5 minutes. Detached cells were collected and centrifuged at 500g 

for 5 min to pellet in a 1.5 mL microcentrifuge tube. The supernatant was aspirated from the pellet. 

Pellets were frozen on dry ice and stored at -80°C until lysis. Each replicate used here represents 

a cell pellet from separate passages.  

Glycomic Profiling 

For N-glycome profiling, samples were homogenized in an SDS lysis buffer. Proteins were 

denatured using 10 mM DTT. N-glycans were then loaded onto an S-trap plate (Protifi) and 

incubated with PNGase F at 37°C overnight using the manufacturer’s protocol with minor 

adjustments for glycomics.90 Briefly, samples are loaded onto S-trap column using S-trap binding 

buffer (90% methanol, 100mM TEAB). Samples were eluted from S-trap column with two aliquots 

of 60 µL 0.1% TFA. Following incubation, N-glycans were cleaned by Hypercarb column 

(ThermoFisher). Hypercarb was conditioned with 2 column volumes (CVs) of 99.9% acetonitrile 

and 0.1% TFA, followed by 2 CVs of 0.1% TFA. Samples were then loaded onto the columns and 

washed with 4 CVs of 0.1% TFA. Samples were eluted in 50% acetonitrile with 0.1% TFA. N-

glycans were analyzed by PGC-LC-MS/MS on a ThermoFisher TSQ Altis Mass Spectrometer 

coupled to a Vanquish LC system. A targeted N-glycan method utilizing over 200 N-glycan 

standards was used for the analysis, and samples were run over an 80 min gradient. Collision 

energies were previously optimized for each standard. A Dextran ladder was used to normalize 
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retention times across runs.91 Fragmentation pattern and elution order were compared to the 

standard library to make glycan assignments. Data was analyzed using ThermoFisher Freestyle 

software, GlycoWorkbench and Skyline.92,93  

Tryptic Digestion 

A buffer was made of 8M Urea, 100mM Tris-HCl, 10mM TCEP, 40mM 2-

choloroacetamide buffer at pH of 8.0. Frozen cell pellets were lysed in approximately 1mL. 

Mixture was pipetted up and down until homogenous. Lysate underwent two freeze-thaw cycles. 

Then, the lysate was sonicated twice by probe tip for 10s at 20% magnitude. Additional cycles 

were used if the mixture remained viscous. The lysate was incubated at 37°C for 5 min on a 

Thermomixer at 1500 rpm to reduce cysteines. Lysate was diluted to 1.5M Urea with 100mM Tris-

HCl at pH 8.0. Tryspin and Lys-C were added to the lysate at a 1:100 ratio. Digestion ran overnight 

at 37°C and 1200 rpm.  

Desalting 

Following digestion, samples were brought to 1% trifluoroacetic acid (TFA). A Waters 

Sep-Pac Vac tC18 3cc cartridge was conditioned with three CVs of acetonitrile (ACN) followed 

by one column volume of 40% ACN / 0.1% TFA. The column was equilibrated with three column 

volumes of 0.1% TFA. The sample was then loaded onto the column until all the tryptic digest had 

flown through once. The column was washed with three column volumes of 0.1% TFA.  Then, the 

sample was eluted with 2 mL of 40% ACN / 0.1% TFA followed by 2 mL of 80% ACN / 0.1% 

TFA. The eluate was lyophilized by SpeedVac. 

SAX-ERLIC Enrichment 

This protocol was taken from Bermudez and Pitteri 202194. In brief, lyophilized tryptic 

peptides were resuspended in 1 mL of 50 mM ammonium bicarbonate. The SOLA SAXE SPE 
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cartridge was washed with 3mL of ACN. The column was activated using 3mL of 100mM 

triethylammonium acetate. The column was conditioned with 3mL of 1% TFA. The column was 

equilibrated with 3mL of 95% ACN / 1% TFA. Sample was loaded onto the column twice. The 

column was washed using 6mL of 95% ACN / 1%TFA. Enriched glycopeptides were eluted from 

the column in two steps: first with two volumes of 850µL of 50% ACN / 1% TFA and second with 

two volumes of 850uL of 5% ACN / 1% TFA. The two fractions were lyophilized using a 

SpeedVac.  

High pH-Reverse Phase Fractionation (HpH-RPF) 

For HpH-RPF, eight fractions were collected in the following manner. Buffers containing 

50%, 20%, 17.5%, 15%, 12.5%, 10%, 7.5%, and 5% ACN in 0.1% triethylamine in water were 

made. A C18 NEST tip was washed with 200µL of ACN followed by 400µL of 0.1% formic acid. 

Glycopeptides were resuspended in 100µL of 0.1% formic acid. From 5% ACN to 50% ACN, 

100µL of each buffer was added and then eluted by microcentrifuge. All fractions were collected 

and then lyophilized by SpeedVac. Samples were resuspended in 0.1% formic acid before analysis 

by mass spectrometry.  

Mass Spectrometry Acquisition 

The liquid chromatography gradient was 120 min at constant flow of 600nL/min. Buffer A 

was 0.1% formic acid. Buffer B was 80% ACN / 0.1% formic acid. Buffer B gradient from 0 to 

50% was 113 min followed by a short 5 min 95% Buffer B phase before ending at 0% at 120min.  

For Orbitrap Lumos, MS1 resolution was set to 120K. Scan range was 400 to 1800 m/z. 

RF lens was 60%. AGC target was set to 100%. Maximum injection time was 50ms. Dynamic 

exclusion was set to exclude peaks for 60s after first appearance. Only ion charge states 2-8 were 

selected. For MS2, fragmentation was performed with sceHCD 20, 30, 40 nce. Resolution was 
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30K. Scan range was 120 – 2000 m/z. AGC target was set to 200%. Maximum injection time was 

200ms.  

Data Analysis 

All analyses except Protein Prospector were performed on a computer with 1TB RAM and 

an Intel Xeon 2.40GHz CPU. Protein Prospector was submitted as a job to a server for processing 

using its web-based interface. All protein databases used the UP000005640_9606 human proteome 

with one FASTA sequence per protein from UniProt. All glycan databases were informed by 

glycomic profiling results. For a more detailed explanation, see Glycan Database Conversion. Only 

specific tryptic peptides with a maximum of 3 missed cleavages were allowed in all searches. All 

searches allowed for carbamidomethylation as a fixed modification. All searches allowed for 

oxidation of methionine and protein N-term acetylation as variable modifications.  

Protein Prospector Parameters 

Protein Prospector (version 6.5.0) was used for the analysis.  Raw data was converted into 

.mgf format peak list files using in-house software ‘PAVA’, which makes use of Monocle for 

improved monoisotopic peak selection.95  These were filtered for the presence of a HexNAc 

oxonium ion at m/z 204.087 (+/- 20ppm) in MSMS scans.  The filtered peaklist was searched in 

Batch-Tag using the same parameters as for other software, other than Gln->pyro-Glu (N-term) 

was additionally allowed as a variable modification.  Also, to adjust for a calibration error in the 

data, precursor ion mass tolerance considered was a systematic error of 8ppm, then +/- 8 ppm 

tolerance. Fragment tolerance was 20 ppm. The list of identified glycosylated peptides was then 

input into MS-Filter to score glycan assignments and find additional glycoforms.  Minimum 

peptide and glycan scores of 0 and 3 were employed, then the best scoring glycan result for each 

spectrum was reported. 
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pGlyco3 Parameters 

pGlyco3.1 was run in N-glycan mode. Initial search did not include variable modifications 

on the glycan and allowed for a glycan database size of 1e5. Subsequent searches allowed for 2 

max variable modifications on the glycan with a glycan database size of 1e6. Only peptides 

between 6 and 40 amino acids long were allowed. Minimum peptide weight was 600Da. Maximum 

peptide weight was 4000. Carbamidomethylation was allowed as a fixed modification on 

cysteines. Two max modifications were allowed on the peptide. Precursor tolerance was 10ppm. 

Glycan and Peptide FDR thresholds were set to 1%.  

MSFraggerGlyco Parameters 

FragPipe (v21.1) with “N-glyco-HCD” workflow was loaded as default. Only peptides 

between 7 and 50 amino acids long were allowed. Three max modifications were allowed on the 

peptide. Peptide charges between 1 and 4 were considered. Precursor tolerance was 20 ppm. 

Glycan and Peptide FDR thresholds were set to 1%.  

GlycoDecipher Parameters 

GlycoDecipher (v1.0.4) was used. Three max modifications were allowed on the peptide. 

Peptide length was between 6 and 40 amino acids long. Precursor tolerance was set to 5ppm. 

Peptide charges between 2 and 6 were considered. Minimum peptide mass was 600Da. Maximum 

peptide mass was 4500Da.  

Byonic Parameters 

Byonic from Protein Metrics (v5.4.52) was used. One max modification was allowed on 

the peptide. Precursor tolerance was set to 20ppm. Maximum precursor mass was 10000Da.  

MaxQuant Parameters 

Peptides were allowed to be between 7 and 40 amino acids long. Maximum peptide mass 
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was 4600Da. Protein FDR was set to 1%. 

Glycan Database Conversion 

GlyTouCan Accession Numbers from glycomic profiling were used to import 53 glycan 

structures into a GlycoWorkbench file. The GlycoWorkbench file was converted into a glycan 

database file for pGlyco3 (.gdb) using the Convert Glycoworkbench script available in the 

software. The logic of this script creates all the unique fragments from structures in 

GlycoWorkbench. This generated a list of 200 unique glycan structures. Custom scripts were 

created by dictating the logic of conversion to ChatGPT-4 and allowing for it to generate Python 

scripts that could be run in terminal.96 Results were manually inspected for accuracy. This 

approach created glycan databases for Protein Prospector, Byonic, and MSFraggerGlyco. 

GlycoDecipher uniquely uses the GlyTouCan Accession Numbers. In this case, the contents of the 

existing “database.csv” file were replaced with only the GlyTouCan Accession Numbers and 

accessory information.  

Preparation of Results of Glycoproteomic Softwares 

Each glycoproteomic software generates results in a different format. Therefore, to perform 

a comparison, the output required manipulation. For Byonic and GlycoDecipher, ChatGPT-4 was 

used to create a bash script that would concatenate all the results into a single file.96 For 

MSFraggerGlyco, all processing used the “psm.tsv” output. For pGlyco3, the pre-supplied 

“protein_site_analysis.py” script was used to generate a file that contained all information for 

downstream processing. For Protein Prospector, a tab-delimited output of the MS-Filter results 

was used for downstream processing.  

Analysis in R 

Once results from all fractions and replicates could be uploaded in single files, analysis 
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was performed completely in R. Logic for processing and specific functions were dictated to 

ChatGPT-4, which generated scripts that greatly expedited the analysis.96 For Byonic, results were 

filtered for presence of a glycan and a peptide score above 200. For MSFraggerGlyco, results were 

filtered for presence of a single HexNAc as a modification on the peptide. Protein Prospector, 

pGlyco3 and GlycoDecipher required no additional processing because their outputs only included 

glycopeptides.  

Cytoscape 

UniProt IDs for the glycoproteins identified in all software was searched using the STRING 

DB plug-in of Cytoscape. Edge information was set to physical protein interactions with a score 

filter of 0.4. Functional enrichment was performed using the network of proteins against the whole 

genome.  
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Results 

SAX-ERLIC Enrichment With HpH-RPF Produced High Quality Glycopeptide Spectra By All 

Software 

RAW files were searched with MaxQuant to identify non-glycosylated peptides. Although 

peptide-first search engines identify modified and unmodified peptides, we chose MaxQuant as an 

independent search engine to determine the quality of the data. It detected 348,623 spectra in total. 

Then, RAW files were searched using Byonic, Protein Prospector, pGlyco3, MSFraggerGlyco, 

and GlycoDecipher (Figure 2.1, Top).The same FASTA protein database and glycan databases 

were used in each software to minimize software variability. To provide a glycan database specific 

to the sample, glycomic profiling of SH-SY5Y cells was performed (Figure 2.1, Bottom). There 

were 53 N-glycan structures identified (Supplementary Table 2.1). High mannose glycans were 

the most abundant, which has been a reported feature of neuronal tissue97. 
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Figure 2.1: Establishing a Head-to-Head Comparison of Glycoproteomic Softwares. (Top) 
Layout of the different softwares. (Middle) Workflow to generate glycopeptides. (Bottom) 
Workflow for glycomic profiling. Figure was made with BioRender.com.  
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While the number of glycopeptides in a single fraction differed across software, the pattern 

of glycopeptides found across fractions was consistent (Supplementary Figure 2.1). The most 

glycopeptides eluted between 10-15% ACN in 0.1% triethylamine. This underscores the 

hydrophilic nature of most glycopeptides. These plots also indicate that HpH-RPF is effective at 

separating glycopeptides into fractions of relatively even complexity. 

Figure 2.2 summarizes the number of glycopeptide spectrum matches (GPSMs) reported 

by each software. In total there were 26,964 unique GPSMs. Protein Prospector reported the most 

GPSMs (19,717) while pGlyco reported the least (9,482). Other software reported numbers 

between 11,519 and 14,197.  Overall, the mass offset approach software identified the most 

glycopeptide spectra.  

It is interesting that Protein Prospector identified 5,520 more GPSMs than competing 

software. To investigate further, we analyzed the scan numbers to determine how many of these 

were unique spectra and how many were detected by another software (Figure 2.2, Bottom). 4,430 

were spectra that Protein Prospector exclusively identified. The remaining 1,090 were spectra that 

were also assigned in other software. These data suggest that Protein Prospector was more sensitive 

at identifying glycopeptide spectra. It is possible that this is because Protein Prospector is not using 

a glycan FDR threshold like MSFraggerGlyco, pGlyco3, and GlycoDecipher.  
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Figure 2.2: Glycopeptide Spectrum Matches (GPSMs) and Their Overlap. (Top) The number 
of glycopeptide spectral matches that were identified by each software after filtering. (Bottom) 
UpSet plot of the scan numbers reported for each GPSM. 
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As an example of what these additional spectra contain, Table 2.1 summarizes the results 

for the peptide AGPNGTLFVADAYK from Adipocyte Plasma Membrane-Associated Protein. 

Protein Prospector identified more spectra to this peptide than competing software. These covered 

a total of 10 glycoforms, capturing the second most microheterogeneity among software for this 

peptide. GlycoDecipher reported more glycoforms from many fewer spectra, although some of 

these were based on de novo assignment of extra glycoforms outside the glycan database. Another 

example where Protein Prospector identifies more glycoforms than other software is shown in 

Supplementary Figure 2.2, which shows annotated spectra for additional glycoforms reported 

for a peptide from Immunoglobulin superfamily member 3. 

To understand how many of these spectra corresponded to novel information rather than 

redundant glycopeptides, we created an identifier for any combination of a protein, site, and glycan 

(PSG ID). In total, there were 4,383 unique PSG IDs, which represents the total detected diversity 

of glycopeptides in these samples. Figure 2.3 shows that Protein Prospector exclusively identified 

672 / 4,383 (approximately 15%) PSG IDs. These data indicate that the unique results from Protein 

Prospector are not redundant information. In fact, Protein Prospector captured the most PSG IDs 

at 2,559 / 4,383 (approximately 58%) followed by Byonic at 2,490 / 4,383 (approximately 57%).  
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Table 2.1 : Glycoform Coverage of the Peptide AGPNGTLFVADAYK 

 
*7 of these are masses that do not correspond to defined glycans. 
 
 
 

 
 
Figure 2.3: Protein Prospector Captures More Information Content from the Data. UpSet 
plot of the unique protein-site-glycan combination (PSG IDs) by software.  
 
  

Software Spectra Glycoforms 
Protein Prospector 79 10 
pGlyco 62 9 
GlycoDecipher 29 11* 
MSFragger 4 2 
Byonic - - 
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Comparison of the Glycoprotein Identities 

To understand whether common glycoproteins were identified and how many, we plotted 

the overlap in results at the protein level (Figure 2.4). In total, there were 947 unique glycoproteins 

found by at least one software. Of these, 231 glycoproteins (approximately 24%) were found by 

every software, matching the poor overlap seen in the previous community-wide study.80 A large 

portion of the unique glycoproteins came from Byonic, which exclusively identified 382 / 947 

proteins (approximately 40%). In fact, Byonic was an outlier because it identified a total of 749 

glycoproteins where the nearest competitor, MSFraggerGlyco, found a total of 389. By looking at 

the spectra uniquely identified in Byonic, we were able to determine that many of these were 

incorrect assignments (for example, see Figure 2.4). On the other hand, despite reporting the most 

GPSMs, Protein Prospector reported the fewest glycoproteins.  Excluding Byonic, using at least 

two software was sufficient to reproduce at least 254 glycoprotein identities. This would be 65% 

of hits for MSFraggerGlyco or 86% for Protein Prospector.   

Encouragingly, there was good confidence in the commonly reported glycoproteins. Using 

Cytoscape with STRING, a physical interaction network was generated for 231 common 

glycoproteins.  The results were clustered using a granularity level of 4 (Figure 2.5). The network 

was significantly enriched for protein-protein interactions (PPIs) with a reported PPI value of 1.0E-

16 with several visible clusters of proteins. Functional enrichment of the network revealed that the 

top theme from UniProt Keywords categorization was the term “Glycoprotein” (Table 2.2). In 

comparison, functional enrichment for all peptides identified by MaxQuant did not include 

“Glycoprotein” at all but rather “Phosphoprotein”, “Acetylation”, and “Cytoplasm” as top themes 

(Supplementary Table 2.1). These data indicate that for those proteins upon which software 

agree, there is high confidence in their status as glycoproteins. It is worth noting, however, that the 
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number of results exclusively reported by a single software was considerable (Figure 2.5).  

Figure 2.4: Comparison of the Unique Glycoproteins. (Top) UpSet plot of the unique 
glycoprotein results from each software. (Bottom) This is an example of a unique glycopeptide 
assignment by Byonic. The peptide Byonic assigns is KGNYSER with glycan HexNAc4Hex5. 
The peptide comes from HistoneH2A. Protein Prospector assigns this spectrum to an 
unglycosylated peptide from E3 Ubiquitin-protein ligase UHRF1. 
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Figure 2.5: 231 Glycoproteins Shared by All Software. UniProt IDs were imported to Cytoscape 
using the STRING plug-in. Edges denote known physical interactions. Results were clustered with 
granularity score 4.  
 
 
Table 2.2: Functional Enrichment of 231 Shared Glycoproteins. Results were filtered for 
UniProt Keywords.  

# background genes # genes description FDR value p-value 
4386 222 Glycoprotein 1.56E-127 2.32E-130 
3277 178 Signal 3.18E-87 9.46E-90 
3338 126 Disulfide bond 9.86E-36 4.40E-38 
1168 73 Endoplasmic reticulum 2.57E-30 1.53E-32 
314 44 Lysosome 2.91E-30 2.17E-32 

5067 128 Transmembrane 1.34E-19 1.20E-21 
5040 127 Transmembrane helix 2.52E-19 2.63E-21 
7068 151 Membrane 6.84E-18 8.14E-20 
886 41 Calcium 7.49E-12 1.00E-13 

1612 56 Hydrolase 1.18E-11 1.76E-13 
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Comparison of Glycosite Assignments 

Figure 2.6 is an UpSet Plot of glycosite assignments reported by software. In total, there 

were 1,466 unique glycosites discovered in the searches. Of these, 308 (approximately 21%) were 

common to all software. Again, Byonic was an outlier. It exclusively reported 491 / 1,466 unique 

glycosites (approximately 33%). 383 of these were because of the glycoproteins it exclusively 

reported (Figure 2.4). Byonic alone reported a total of 1,123 glycosites where the nearest 

competitor, MSFraggerGlyco, reported 658. As with the glycoprotein-level summary, Protein 

Prospector reported the fewest glycosites. 

There is a sizeable portion of proteins reported in each software to have multiple glycosites. 

Figure 2.7 shows that while most proteins have a single N-glycosite, somewhere between 24 to 

40% have multiple. LRP1 is exceptional in that it has somewhere between 12 and 15 glycosites 

(Supplementary Figure 2.3), as has been observed in prior studies.98 Overall, there is equivalent 

consensus on where glycosites are located (approximately 25% of glycosites reported by all 

softwares) as there is on what proteins are being glycosylated (approximately 24% of glycoproteins 

reported by all softwares). 

A biologically relevant result from glycopeptide search software is the discovery of novel 

glycosites. Hence, glycosites for each UniProtID identified were compared to the glycosites 

discovered by the different software (Figure 2.8). Not all glycosites reported in UniProt were 

expected in the results, but our goal was to understand what percent of those identified in our data 

are also reported in UniProt as a proxy for reliability. Byonic had the lowest agreement with 

UniProt with 54% of the sites identified also reported by UniProt. While it is possible to conclude 

from this that Byonic is more sensitive than competitors, a more likely conclusion given its 

consistently inflated numbers is that it is reporting more spurious results. For reference, Protein 
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Prospector, which identified the most glycopeptide spectra and the fewest glycosites, had the 

highest agreement with 82.71% of its sites also being reported in UniProt.  

 

 

 
Figure 2.6: Comparison of the Unique Glycosites. UpSet plot of the unique glycosites by software. 
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Figure 2.7: Percentages of Proteins with Multiple Glycosites by Software. Pie charts display 
the percentage of glycoproteins identified that had multiple glycosites detected in this dataset. 
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 Figure 2.8: Agreement between Glycosites Assigned in the Software and Glycosites 
Reported on UniProt. For each UniProt ID detected in a software, all glycosites recorded on 
UniProt were collected. Percentages were calculated as the number of glycosites reported in a 
software over all the glycosites reported for each UniProt ID.  
 

Comparison of Glycans 

Overall, the software identified 99 distinct glycans (Figure 2.9). Of these, 25 were common 

to all software. GlycoDecipher exclusively identified 11. This was expected because 

GlycoDecipher performs de novo “monosaccharide stepping” to report glycans not within the 

search space of other software.  After looking for glycopeptides with glycans provided in its 

database, GlycoDecipher tries to identify more glycans by allowing for modifications on the 

monosaccharides to subsequently identify the additional peak/s in a Y-ion series. Most results from 

GlycoDecipher were identified in this manner but could be translated into defined glycan 

compositions (Table 2.3). In most cases, the additional mass was the result of a misassigned 

monoisotopic peak that, when corrected, led to a glycan assignment that was within the glycan 

database considered by other software. However, there were some glycans identified that were not 
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identified in the glycomic analysis, notably those containing phosphate groups.  Standards for these 

glycans were not available for glycomic analysis. These results suggest that GlycoDecipher’s de 

novo approach could be useful but is greatly hampered by its reliability. 

 
Figure 2.9: Comparison of the Unique Glycans. Upset Plot of the glycans identified by each 
software. 
 

Finally, we investigated the frequency of each glycan reported. HexNAc2Hex6 was 

consistently the most identified glycan (Figure 2.10). Interestingly, it was not the most abundant 

glycan from glycomic profiling, which was HexNAc2Hex8 (Supplementary Table 2.2). The 

glycoproteomic results were not evaluated for peak intensity, so this difference presumably 

indicates that HexNAc2Hex6 glycoforms, although more common on proteins, were typically of 
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lower abundance than HexNAc2Hex8. An alternate, less likely explanation could also include a 

small degree of high mannose glycan degradation during sample prep or in the gas-phase.  

Regardless, HexNAc2Hex8 was either the second or third most frequent glycan in glycoproteomic 

searches (Figure 2.10). HexNAc2Hex9 was the second most abundant glycan by glycomic 

profiling and was the third or fourth most frequent glycan depending on the software. Taken 

together, all software identified the most common glycans but differed in their detection frequency. 

Software also differed in the low abundance glycans detected. 

We also investigated the percentage fucosylation and sialylation. Very little sialylation was 

found in this data: 1% or less of IDs by all software. These results matched that of the glycomic 

profiling (Figure 2.11). Fucosylation was more common with up to 20% of glycopeptides reported 

by a given software. Interestingly, this differed from the glycomic profiling results, where 

fucosylated glycans were only 3.77% of the glycans identified. A common error in data analysis 

is to assign two fucose where there is only a sialic acid because two fucose (292.1158 Da) and a 

sialic acid (291.0954) are close in mass. Supplementary Figure 2.4 displays the percent of 

peptides with multiple fucose. Only up to 2% of the glycopeptides in any software contained two 

fucose, which makes it an uncommon occurrence. The high frequency of fucosylation on 

glycopeptides relative to the low abundance of fucosylated glycan by glycomic profiling is not due 

to misassignment. These data suggest that counting the frequency of a glycan on peptides is a poor 

proxy for its relative abundance; peak intensities need to be taken into consideration. 
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Figure 2.10: Most Frequent Glycans and Distribution of Features. Top 10 glycans identified 
by each software with pie charts displaying the percent of fucosylated and sialylated peptides. 
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Figure 2.10: Most Frequent Glycans and Distribution of Features. Top 10 glycans identified 
by each software with pie charts displaying the percent of fucosylated and sialylated peptides. 
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Figure 2.10: Most Frequent Glycans and Distribution of Features. Top 10 glycans identified 
by each software with pie charts displaying the percent of fucosylated and sialylated peptides. 
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Figure 2.10: Most Frequent Glycans and Distribution of Features. Top 10 glycans identified 
by each software with pie charts displaying the percent of fucosylated and sialylated peptides. 
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Figure 2.10: Most Frequent Glycans and Distribution of Features. Top 10 glycans identified 
by each software with pie charts displaying the percent of fucosylated and sialylated peptides. 
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 Figure 2.11: Distribution of Features for All Glycans in Glycomic Profiling. Pie chart 
displays the percent of each of the labelled features by abundance for detected glycans. 
 
 
Usability of Glycoproteomic Software 

Usability of a software greatly influences its longevity with users. A computer with ample 

RAM is critical for MSFraggerGlyco. All 24 RAW files could not be searched with the 16GB of 

RAM available on a high-end laptop or typical desktop computer. Using a computer with 1 TB of 

RAM solved this problem. We did not evaluate the minimum RAM required for MSFragger to 

complete this search.  Provided that there is appropriate RAM, MSFraggerGlyco was the fastest 

software, completing its search in 91.4 minutes (Supplementary Figure 2.5). Byonic was the 

slowest to complete its search at 364.1 minutes. 

The ability to recalibrate the data is useful for a robust glycoproteomic analytical tool. Due 

to the high mass accuracy of modern mass spectrometers a small systematic error in calibration 

1.72% 3.77%
0.02%

93.63%

Classes of Glycans Detected in Glycomic 
Profiling

Sialic Acid Fucose Sialic Acid and Fucose Neither
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can impact search performance. The data in this study had a mass error of on average 8 ppm. Every 

software except Byonic had either a wider default precursor tolerance or automatically adjusted 

for this systematic error.  To get comparable results, Byonic required manual adjustment to a 20 

ppm precursor tolerance (Supplementary Figure 2.6). Some software, such as MSFraggerGlyco 

and pGlyco3, have a larger precursor tolerance and did not require adjustment. Protein Prospector 

and GlycoDecipher had narrower tolerances but could adjust for the systematic error.  

 

Table 2.3: Glycan Misassignments from GlycoDecipher. “Moiety Mass” is the mass of the 
nontraditional monosaccharide reported by GlycoDecipher. “Corresponds to:” shows our 
assessment of what the mass corresponds to based on the value and the spectra. “Operation” 
displays the function applied to correct for the misassignment. Rows with a “#” are major 
structural errors. Bolded rows are examples of uncommon monosaccharides, such as a 
phosphorylated hexose.  
 

Moiety Mass Corresponds to: Operation 

178.06 Hexose + Oxygen Add 2 Hexose, Subtract Fucose 

178.07 Hexose + Oxygen Add 2 Hexose, Subtract Fucose 

178.08 Hexose + Oxygen Add 2 Hexose, Subtract Fucose 

179.07 Hexose + Oxygen, monoisotopic peak misassignment Add 2 Hexose, Subtract Fucose 

179.08 Hexose + Oxygen, monoisotopic peak misassignment Add 2 Hexose, Subtract Fucose 

184.06 Hexose + Na Add Hexose 

187.11 HexNAc - Oxygen Add HexNAc, Add Fucose, Subtract Hexose 

187.12 HexNAc - Oxygen Add HexNAc, Add Fucose, Subtract Hexose 

188.12 HexNAc - Oxygen, monoisotopic peak misassignment Add HexNAc, Add Fucose, Subtract Hexose 

201.02 2 Hexoses + Phosphate Subtract HexNAc, Add 2 Hexose, Add Phosphate.    # 

201.03 2 Hexoses + Phosphate Subtract HexNAc, Add 2 Hexose, Add Phosphate.    # 

203.1 HexNAc Add HexNAc 

203.11 HexNAc Add HexNAc 

203.12 HexNAc Add HexNAc 

204.11 HexNAc, monoisotopic peak misassignment Add HexNAc 

241.08 Hexose + Phosphate Add Hexose, Add Phosphate 

242.04 Hexose + Phosphate Add Hexose, Add Phosphate 

242.05 Hexose + Phosphate Add Hexose, Add Phosphate 

243.04 Hexose + Phosphate Add Hexose, Add Phosphate 

251.11 Hexose + 2 Fucose Add Hexose, Add 2 Fucose, Subtract HexNAc.    # 
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Moiety Mass Corresponds to: Operation 

267.11 HexNAc - Oxygen + Phosphate Add HexNAc, Add Fucose, Subtract Hexose, Add Phosphate 

280.99 5 Hexoses + Phosphate Subtract 3 HexNAc, Add 5 Hexoses, Add Phosphate.    # 

283.07 HexNAc + Phosphate Add HexNAc, Add Phosphate 

307.12 2 Hexoses - Oxygen Add Hexose, Add Fucose.   # 

308.13 2 Hexoses - Oxygen Add Hexose, Add Fucose.   # 

308.14 2 Hexoses - Oxygen Add Hexose, Add Fucose.   # 

308.15 2 Hexoses - Oxygen Add Hexose, Add Fucose.   # 

309.15 2 Hexoses - Oxygen Add Hexose, Add Fucose.   # 

323.12 2 Hexoses, monoisotopic peak misassignment Add 2 Hexoses 

323.13 2 Hexoses, monoisotopic peak misassignment Add 2 Hexoses 

323.14 2 Hexoses, monoisotopic peak misassignment Add 2 Hexoses 

324.11 2 Hexoses Add 2 Hexoses 

324.12 2 Hexoses Add 2 Hexoses 

324.13 2 Hexoses Add 2 Hexoses 

324.14 2 Hexoses Add 2 Hexoses 

324.15 2 Hexoses Add 2 Hexoses 

324.16 2 Hexoses Add 2 Hexoses 

325.12 2 Hexoses, monoisotopic peak misassignment Add 2 Hexoses 

325.13 2 Hexoses, monoisotopic peak misassignment Add 2 Hexoses 

325.14 2 Hexoses, monoisotopic peak misassignment Add 2 Hexoses 

325.15 2 Hexoses, monoisotopic peak misassignment Add 2 Hexoses 

326.13 2 Hexoses, monoisotopic peak misassignment Add 2 Hexoses 

326.14 2 Hexoses, monoisotopic peak misassignment Add 2 Hexoses 

327.15 2 Hexoses, monoisotopic peak misassignment Add 2 Hexoses 

341.16 2 Hexoses + Ammonia Add 2 Hexoses 
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Discussion 

In this work, we complete a head-to-head comparison of five contemporary 

glycoproteomic analytical software: Byonic, Protein Prospector, MSFraggerGlyco, pGlyco3, and 

GlycoDecipher. These five were chosen because of their blend of features that have different 

advantages. We note that this study focused on N-glycoproteins and did not include tools or 

analyses more tailored for O-glycoproteins.88,99,100 Byonic searches for a glycan as a variable 

modification on the peptide. Protein Prospector and MSFraggerGlyco determine the difference in 

mass between the precursor and the unfragmented peptide backbone and use the mass offset to 

define the mass and composition of the glycan. pGlyco3 and GlycoDecipher filter spectra for those 

that contain sufficient Y-ions, which are unfragmented peptides with fragmented glycans, and 

construct the glycan from these fragments. Additionally, MSFraggerGlyco, pGlyco3, and 

GlycoDecipher all calculate a false discovery rate for the glycan to generate an estimate of 

confidence in reported results. 

Based on our results, a single winner is not evident; but there are important lessons. One 

clear finding is that although Byonic was a gold standard in this field and has enabled the 

development of other tools, it appears to produce results of lower reliability than modern 

alternatives. It reports the most unique proteins and glycosites but does not identify the most 

glycopeptide spectra. By spot-checking, we show that some of these are misassignments. 

Additionally, almost 50% of the glycosites reported by Byonic could not be supported by UniProt.  

While Uniprot is in no way comprehensive, one can feel more confident in glycosite assignments 

that have been previously reported. It is possible that Byonic performs poorly because it attempts 

to identify all glycan and peptide ions at once and reports confidence based on scores for the 

presence of certain ions. In the example we show, Byonic may score noisy peaks very highly while 
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ignoring critical information, such as the most abundant peaks in the spectra.  

Glycoproteomic search engines should be selected based on the goals of the experiment. If 

one wants to identify the most glycopeptides as in an exploratory experiment, then mass offset 

approaches would be most favored. Protein Prospector was able to identify the most glycopeptides 

of any software. Among software calculating a glycan FDR, MSFraggerGlyco reported the most 

spectra. Whether the reported glycan FDR is accurate is open to question. Although Protein 

Prospector does not calculate a glycan FDR and instead uses a confidence score, it found the 

greatest number of unique combinations of protein, site, and glycan (PSG IDs). This did not 

sacrifice accuracy, at least with metrics used here for glycoprotein and glycosite assignments, since 

it still reported the least number of glycosites and maintained the highest agreement with UniProt. 

If one wants to focus on the high-confidence structure of the glycan at a given site, pGlyco3 

is a strong choice. Although it does not report the most glycopeptides, its Y-ion approach and 

glycan FDR calculation provide greater confidence in the assignment. Put differently, rather than 

inferring a glycan from its mass, it relies on direct evidence from peaks in the spectrum. Still, it 

has been reported to have a bias in assigning more fucosylated peptides although recent fixes seem 

to have solved this problem as other software reported more fucosylation than pGlyco3.101 

GlycoDecipher’s de novo monosaccharide stepping suffers from problems with accurate glycan 

assignment. Manual inspection revealed that the overwhelming majority of glycans assigned as 

novel could be explained by glycans within the supplied glycan database. Despite that, it is possible 

to correct the results; so there is a clear path forward for this software to improve.  

There is clear benefit to users trying more than one software for a given dataset. Although 

all software agreed on a core set of results, the next largest subsets were the unique results of a 

single software.  At least two software, excluding Byonic, agreed on over half the results. It may 
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prove useful to use one mass offset approach and one Y-ion approach. The mass offset approach 

will identify the most candidate glycopeptides. The Y-ion approach will provide those 

glycopeptides with strong Y-ion coverage, which is important for confident glycan assignment. 

Taken together, these approaches offer complementary information from the peptide and the 

glycan.  

Finally, the use of glycomic profiling to generate a standardized glycan database provided 

greater confidence in assignments, enabled a rigorous comparison, and illustrated what features of 

a glycopeptide software are useful. There are currently few options to validate glycopeptide 

assignments. One can spot check for a specific protein by exo- or endoglycosidase digestion 

followed by Western blotting, but this is low throughput. One can use lectin microarrays, but these 

are custom and costly. Glycomic profiling is one way to corroborate the glycan assignments and 

to limit results to only those glycans which can be identified by other means.  However, the 

GlycoDecipher de novo results did uncover that glycans outside of the database are present even 

after manual correction, so it is important that standards for as many glycans as possible are 

available during the glycomic analysis. Here, we used the glycomic results to ensure that software 

were operating in similar search spaces. While this may not benefit every researcher, it allowed a 

fair comparison of software and was instrumental to discovering the sensitivity of the mass offset 

approach. 

Converting the glycomic results into a database for each glycoproteomic software was 

challenging.  This is partly because some software use input formats that include glycan topology 

whereas others just use compositions; but even among software that use the same type of input, 

there are still formatting differences.  For example, GlyTouCan provides a universal database for 

all glycans and can provide unique identifiers to different levels of resolution (monosaccharide 
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composition, isomer composition, topology, and linkage), but using these identifiers would be 

extremely challenging for comparing software as each software reports different identifiers for the 

same assignment.   A universal glycan database format would be critical to establishing better 

consistency between software and would eliminate a significant amount of work involved in 

reformatting databases.  
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