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Abstract

Magnetoelastic Dynamics in Nanomagnetic Metamaterials
Cassidy Berk
5000 years ago cuneiform was imprinted on clay tablets in order to store information
in Mesopotamia. The necessity to store information was due to the increasing
complexity of civilizations which evolved after the Neolithic revolution. Today
magnetic materials are used in order to imprint 0’s and 1’s into the spins of electrons.
Again, this level of technological prowess is a reflection of our growing complexity
as a civilization. Currently, we are in the throes of an information revolution, where
individuals, businesses and governments alike store every possible bit of data
obtainable. The demands of processing this data faster as well as addressing the
massive amount of energy required to store it is going to be a major technological
challenge of the ensuing decades. Being one of the dominant means of storing
information, it is necessary to explore different methods of manipulating the spins in
magnetic structures. Utilizing ultrafast laser pulses enables us to probe the magnetic
system at unprecedentedly fast timescales and using the material’s elastic degree of
freedom may enable more energy efficient control of the spins. At the very least a
more thorough understanding of magnetoelastic interactions in condensed matter

systems is important from a fundamental perspective.

In this thesis, Time Resolved Magneto-Optical Kerr Effect (TR-MOKE)

Spectroscopy is used to characterize magnetic materials. This technique is used to

xXxii



measure the interlayer exchange coupling in magnetic multilayer structures.
Additionally, a novel all-optical method to selectively manipulate spin dynamics in

magnetic multilayers is introduced.

Next, the magnetoelastic coupling in nanomagnetic arrays is presented. The array acts
as a metamaterial due to the dependence of the elastic and magnetic dynamics on the
array geometry. Furthermore, the dynamics are modelled as a forced harmonic
oscillator, where the elastic waves act as the driving term. Finally, the magnetoelastic
coupling in an individual nanomagnet is explored, and is modeled as a pair of coupled
harmonic oscillators. The hybridization between elastic and magnetic oscillations is
observed for the first time, and the angular dependence between the relevant elastic

and magnetic vectors is used to tune the system into the strong coupling regime.
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agnetism, you recall from physics class, is a powerful force that causes certain
items to be attracted to refrigerators”

—Dave Barry
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CHAPTER 1: INFORMATION AND
CIVILIZATION

“In the beginning the earth was a bare plain. All was dark. There was no life, no
death. The sun, the moon, and the stars slept beneath the earth. All the eternal
ancestors slept there, too, until at last they woke themselves out of their own eternity

)

and broke through to the surface.’

-Australian Aboriginal Origin Story

1.1 Early Information Technology

One of the most defining and powerful characteristics of Homo sapiens is their ability
to pass on information. While today we take our ability to send an email, calculate
driving directions, or save a document for granted, achieving this level of information
processing and storage was a gradual process. The first information storage
mechanism was the human brain. While the brain’s information processing ability is
remarkable, we are all aware of the limitations when it comes to memory. The
information tends to become corrupted for a multitude of reasons. Personal biases,
injury, stress, and age all contribute to the corruption of data. Despite these
limitations, in early societies it was the means of storing information. Furthermore,
the information was transferred from generation to generation through oral traditions.

Ancient orators had a remarkable ability to recount long epics. They worked around



the brain’s data corruption issues through the use of mnemonic techniques such as
repetitive rhythmic storytelling. In this way concepts of personal history, rule of law
and religion (often all intertwined into an overall worldview) could be maintained
throughout generations. Information transfer in the way of oral traditions enabled
different cultures to form. Additionally, passing on information was vital as a matter
of survival. For example, by passing on information regarding seasonal changes early
humans were better able to prepare for and live through a harsh winter. Information
on what food was edible, what plants make good medicines and improved hunting

tactics could also be passed down through the ages.

Figure 1.1: Cave art of lions hunting bison from the Cauvet-Pont d’Arc cave in

France. The oldest drawings in this cave date back roughly 30,000 years. Taken from

[1].



Additionally, lessons of morality were interwoven into these oral traditions.
Developing a moral code enabled humans to cooperate more effectively, enhancing
their likelihood of survival. At some point art as a visual aid was incorporated into the
story telling. Of all the senses, vision is the most dominant in human beings—the
majority of information concerning the environment is obtained through sight. Art as
a visual aid to storytelling evoked more imagination in the listeners and enabled a
more effective transfer of information. There are examples of cave art found around
the world dating back as far as 40,000 years ago. Some of the most preserved cave art

can be found in the Chauvet-Pont d’Arc Cave in southeast France. [1] (Fig. 1.1)

1.2 Neolithic Information Technology

Sometime around 12,000 years ago Homo sapiens began settling down into farming
communities. This change is known as the Neolithic revolution and marked the
beginning of more settled societies. As humans settled down, they began to amass
things that they were not able to hold on to as nomadic hunter gatherers. The concept
of personal possessions began to form. During the rise of these communities, symbols
inscribed on various media began to appear. The oldest of these symbols are the Jiahu
symbols inscribed on a tortoise shell found in China which date back 8500 years.
(Fig. 1.2) [2] The exact meaning of the symbols is debated by scholars and may never
be known. However, the act of inscribing information in the form of symbols onto a
permanent medium is a non-trivial development in the information storage ability of

Homo sapiens.
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Figure 1.2: Jiahu symbols found inscribed on a Tortoise shell in Henan, China. The

markings date back to 6600 BC. Taken from [3].

Additionally, farming in these societies provided stability by providing more food
which in turn allowed communities to grow. With larger communities, people began
to assume different roles within society and more complex social and political
systems began to form. More complex societies meant more information was
necessary to hold them together. For example, feeding more people became a
collective effort which meant information on food yield and reserves needed to be
kept track of. Taxes and systems of currency formed around the more complex social
and political arrangements. Keeping track of all of this information quickly became
too complex for a single person or even group of people relying on memory or
abstract symbols inscribed on tortoise shells. As societies became more complex
symbols evolved into an actual writing system. Cuneiform is considered the first
writing system and emerged in Mesopotamia around 3200 BC. The wedge-like

symbols were designed in order to directly convey information in Sumerian. Many of



the tablets were administrative and bureaucratic in origin which reflected the
information needs of these increasingly complex societies. However, some have more
humanitarian historical interest. The Instructions of Shyuruppak are an example of
one of the earliest forms of literature which was used in order to convey ideas of

morality. (Fig. 1.3) [4]
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Figure 1.3: Instructions of Shuruppak. Early example of literature written in

cuneiform on a clay tablet around 2500 BC. Taken from [4].

It must have been quite difficult being an administrator in ancient Sumer, sorting

through clay tablets in an attempt to find a record. The problem was certainly



understood by the ancients and soon a solution was found. Papyrus scrolls were
developed. The scrolls could be rolled up so that many more scrolls could be stored in
the same area as a clay tablet—increasing the information storage density. Writing on
papyrus was much easier than imprinting markings in clay. Additionally, sorting
through sheets of papyrus was easier than moving around large clay tablets making
data retrieval easier. The only downside was that the scrolls were less durable than
clay tablets.

Another development of information technology was the use of alphabets which
mapped phonemes to a particular symbol. The spoken word was then able to be
directly stored onto a medium, either clay tablet or papyrus. This reduced the
complexity of necessitating multiple symbols in order to represent various concepts.
The Phoenician alphabet is the earliest alphabet and was spread throughout the
Mediterranean world by Phoenician traders. It derived from Egyptian hieroglyphs and
from it derived Greek and Latin. Many modern writing systems can therefore be
directly linked to the Phoenician alphabet. [5]

Major developments of information storage technology remained relatively stagnant
for many years until the advent of the printing press in 1451 by Johannes Gutenberg.
This occurred at the beginning of the age of European exploration, when European
ships circled the globe in search of riches and adventure as well as in an attempt to
spread Christianity. The printing press enabled exciting accounts of these voyages to
be spread throughout the populations of Europe which lead to an increase in literacy

among the middle classes. [6] Additionally, it allowed scientists to more effectively



share their discoveries with one another since scientific texts were more easily mass
produced, which brought about the scientific revolution and the enlightenment. The
remarkable change in the availability and communicability of information due to the

printing press was a driving factor contributing to the industrial revolution.

1.3 Industrial Information Storage

Once again information technology was drastically altered by another monumental
change in human civilization—the industrial revolution. Typically traced to the
development of the steam engine by Thomas Newcomen in 1712 [7] the industrial
revolution marked the beginning of industrialized society as well as ushering in
unprecedented developments in science and technology. Machines began to assist
every aspect of human life. As societies industrialized and became more complex,
improvements to information technology followed. In 1725 the punch card was
invented by Joseph Marie Jacquard as a means for representing digital data and
controlling a loom. [8] In 1832 Semen Korsakov conceived of a machine to use
punch cards to store and retrieve information. [9] The industrial revolution also
ushered in the age of electricity. Through the work of Andre-Marie Ampere, Charles-
Augustin de Coulomb, Michael Faraday and James Clerk Maxwell, humanity learned
of the intimate connection between electricity and magnetism. It wasn’t long before
information technology was affected by this newly discovered relationship. Magnetic
materials which are the topic of this thesis became a dominant medium for the storage

of information.



1.4 Magnetic Recording

The first magnetic recording was demonstrated by Valdemar Poulsen in 1898 who
recorded a human voice on a ferromagnetic wire. [10] In 1928 magnetic tape was
invented in Germany. The tape consisted of Fe203 coated on a strip of paper. [11]
Along with the development of the ring shape taped head in 1933 and AC biasing the
quality of audio recording vastly improved. [11] In 1951 tape was used to record
digital data at a density of 256 bits/in?>. The bits are physically represented as the
magnetization orientation of a collection of grains. (Fig. 1.4 a) Improvements to the
bits/in? metric are a perpetual drive of the storage industry. In 1956 the first magnetic
hard disk drive (HDD) was developed by IBM. Known as RAMAC and operating at
2000 bits/in?, this HDD was intended to be used on main frame computers. Today,
HDDs are standard on all personal computers and have storage (areal) densities of
10'2 bits/in? (1 TB/in?). [11] HDDs consist of a disk with a magnetic material as the
storage medium, a head which can both write and read the data, a motor, and circuitry
for signal processing, and motor feedback and control. [12] The write head is a tiny

electromagnet.
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Figure 1.4: (a) Example of bits (red or blue) written into a granular magnetic
material. A bit consists of a region composed of multiple magnetic grains all oriented
in the same direction. Taken from [12]. (b) Energy barrier separating two different
magnetic states. When this barrier becomes comparable to the thermal energy in the

room (kgT), the bits become less stable.

1.4.1 Superparamagnetic Effect

As HDD areal densities increase and the sizes of bits decrease, fundamental limits
become an issue. One limit is due to the superparamagnetic effect. In small
nanoparticles the direction of the magnetization can flip due to the thermal energy of
the room (~300 K). (Fig. 1.4 b) The time between successive flips is given by the

Neel relaxation time [13]

re = 1y0lisT) (L.1)



Where 1, is a characteristic time related to the material, K is the anisotropy constant,
V is the volume, kj is the Boltzmann constant, and T is the temperature. Therefore, as
dimensions decrease, the anisotropy must increase in order to maintain stability.
Increased anisotropy requires more energy to write the bits which is limited by the
accessible magnetic fields of write heads. Therefore, there is a tradeoff between size,

stability and energy consumption. The industry standard for HDD stability is 7,y = 10

years which translates to % > 60. [12]
B

Achieving storage densities of this magnitude has been a continual process of
improving all aspects of the device. Some examples are utilizing perpendicularly
magnetized materials rather than materials that are magnetized in the plane
(longitudinal). (Fig. 1.5) Advantages to perpendicular recording media are that the
superparamagnetic limit is different, allowing the dimensions of the grains to be
scaled down. Additionally, it is possible to use amorphous materials with no grains at

all in which bits are stable at even smaller sizes. [14]
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Figure 1.5: (a) Example of longitudinal recording and (b) perpendicular recording.

Perpendicular recording offers the benefit of increased storage areal densities.

1.4.2 Giant Magnetoresistance

Another major achievement in increasing areal densities came from improvements in
the read head due to the giant magnetoresistance Effect (GMR). GMR was discovered
in 1988 [15] and commercialized by IBM in the 1990°s [16]. GMR is a change in the
resistance due to the mutual orientation of two magnetic thin films separated by a
spacer layer. If the two magnetizations are oriented in the same direction the
resistance is low, if they are oriented in opposite directions the resistance is high.
(Fig. 1.6) This effect improved the SNR of the readout process and allowed smaller

elements to be detected.
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Figure 1.6: (a) When the magnetization of two layers are oriented in the same
direction, current flows through the system more easily—the structure has a low
resistance. (b) When the magnetizations of the layers are anti-parallel there is more

spin scattering resulting in a higher resistance.

1.4.3 Bit Patterned Media

In general there are two ways to address the super-paramagnetic limit. From equation
1.1 we see that in order to maintain the industry stability criteria we can either
increase K or V. While at first glance it would seem that increasing ¥V would be
counterproductive to increasing areal densities this is not entirely true. Replacing
granular media with bit patterned media increases the volume term responsible for the
superparamagnetic effect while decreasing the size of a bit. (Fig. 1.7) This is the case
because in patterned media the KV energy is a function of the isolated nanomagnet
rather than an individual grain as in the case of granular media. [17] While the

patterned nanomagnet is bigger than a grain, it is smaller than the bit area which is
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made up of many grains. Another advantage of patterned media is that transition
noise which occurs due the imperfect boundary between bits in granular media is
eliminated. The major issues facing bit patterned media are systemic. The HDD
industry relies on the technological infrastructure already in place. Fabrication of
patterned bits at competitive dimensions would require a change in the industrial
fabrication process. [12] Additionally, addressing each bit for the read and write
process would require vast improvements to the synchronization between the read
and write heads and the location of the bits. Currently, in granular media the bit

positions are determined by the location of the write head. [17]
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Figure 1.7: Schematic showing the difference between conventional granular media

and patterned magnetic media. Taken from [12].
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1.4.4 Heat Assisted Magnetic Recording

Increasing K is another way of addressing the superparamagnetic limit. A higher K
material is more stable and therefore less likely to be affected by thermal fluctuations.
However, it also requires a larger magnetic field to switch the magnetization
direction. This is limited by the capabilities of the write head. A new technology
which addresses this problem is known as heat assisted magnetic recording (HAMR).
(Fig. 1.8) In this device a laser is incorporated into the write head. The laser locally
heats up the magnetic material which lowers the material’s coercivity enabling it to
be switched by the magnetic field from the write head. When the material cools, the
coercivity returns to normal and the bit remains in its switched state. This allows
higher K materials to be used so that grains can be shrunk down. This technology was
launched in 2019 by Seagate with an areal density of 2 TB/in>. However, areal

densities of 10 TB/in” have been theoretically proposed. [18]
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Figure 1.8: (a) Example of the write process in HAMR. Initially the bit is stored in a
state which is too hard to switch (high coercivity). Application of a laser heats the
magnetic material resulting in a decrease of the coercivity so that the bit can be
affected by the magnetic field from the write coil. As the magnetic material cools it
assumes its original stable state. (b) Schematic of HAMR write head. Taken from

[12].

1.4.5 All-Optical Switching

In addition to improvements of the recording media and read head, novel effects for
writing the bits are being explored. One of the most exciting recent discoveries
concerning ultrafast manipulation of magnetism was all-optical switching (AQOS).
[19] Using circularly polarized femtosecond laser pulses, the orientation of the

magnetization could be switched deterministically. (Fig. 1.9) The switching occurs in
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the absence of an external field and depends on the helicity of the light. The most
likely mechanism causing the switching has been thought to result from the
optomagnetic field induced by the circular polarization of the light and is known as
the inverse Faraday effect. Initially demonstrated in ferrimagnetic films with
circularly polarized light, AOS has also been demonstrated in thin ferromagnetic
films. [20] Additionally, switching has been demonstrated using linearly polarized
pulses in ferrimagnetic structures. [21] In these systems the heat from the laser pulse
causes the different sub-lattices to demagnetize at different rates. The interaction
between the different sublattices” demagnetization dynamics causes the system to
switch orientation. [22] The full microscopic description of AOS that accounts for the
interaction of optomagnetic effects, heating effects, and scattering of the different

sub-systems is STILL being debated. [23]

Figure 1.9: (a) Experimental demonstration of all-optical switching (AOS) on a

GdFeCo thin film. The different contrasts of the film are obtained using a Kerr
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microscope and represent the magnetization orientation. Right handed circularly
polarized light (o*) only affects the magnetization oriented in one direction while
left handed circularly polarized light (¢~) affects the magnetization oriented in the
other direction. (b) Schematic showing how AOS could be used to write bits. Taken

from [19].

1.4.6 Fundamental Questions and Other Technological Applications

Part of the reason AOS is still not understood is that the timescales which govern the
electronic interactions are only recently becoming experimentally accessible. The
advent of femtosecond laser systems have provided a means of probing these
interactions at relevant time scales. The phonon system typically has dynamics
around ~1 ps, the spin system ~100 fs and electron system ~10 fs. [24] Understanding
and manipulating interactions at these timescales could have implications for future
magnetic technologies operating at THz frequencies. (Fig. 1.10 a) A burgeoning field
is that of spintronics (magnonics) which uses the spin of the electron or spinwaves
(magnons) to improve data storage, information processing and communication
technology. [25] Spintronics may supplement or even replace certain areas of
electronics which use the charge as the information processing unit. (Fig. 1.10 b)
Using magnons instead of charge to process information has certain benefits such as
non-dissipative heating (transport of magnons does not cause heating of the device).
Additionally, as device dimensions shrink and the wavelength of the spin wave

decreases, the exchange interaction becomes dominant. The wave velocity of these
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exchange magnons increases with increasing wave vector which has potential in
nanoscale signal transmission devices. [25] Additionally, computing speeds could
increase due to the quadratic scaling of the exchange magnon frequency. [26]
Achieving these technologies will require solutions to problems that are deeply

fundamental in nature.
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Figure 1.10: (a) IHlustration of the timescales of magnetic processes and some

potential technologies which could be impacted. Taken from [24]. (b) Magnons have
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many data processing applications. In some instances magnonics may replace
electronics. However, realistically they will be implemented into existing
technologies which will require mechanisms for converting between spin and charge.

Taken from [26].

1.5 Contemporary Information Technology

We are currently in the throes of an information revolution, where individuals,
businesses and governments alike store every possible bit of data obtainable. The
demands of processing this data faster as well as addressing the massive amount of
energy required to store it is going to be a major technological challenge in the
ensuing decades. Trends in big data, e-commerce and a shift towards internet based
media are contributing to the ever growing energy consumption of data centers.
Currently data centers use roughly 200 terawatt-hours each year. This accounts for
1% of global electricity use. This could rise to 8% of global demand by 2030. [27]
Additionally, the information and communication technology (ICT) industry accounts
for 2% of global carbon emissions. ICT consists of not just data centers which
comprise 0.3% of emissions, but also personal electronic devices, and the network
infrastructure supporting them. This percentage will only increase with the rise of
artificial intelligence and the internet of things in which the number of internet

connected devices is expected to double by 2020. [28] Therefore, in order to meet the
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future electricity demands facing the ICT sector improvements in energy efficiency is

extremely important.

1.6 Metamaterials

As we are faced with new technological challenges sometimes it is necessary to
create a material with novel characteristics. These engineered materials are known as
metamaterials and are created by periodically modifying various parameters to affect
the wavelength of the system of interest (e.g. electromagnetic, magnetic or elastic).
For example, the index of refraction can be altered to produce novel electromagnetic
effects. [29] In this thesis, we will see how the periodic arrangement of nanomagnetic
elements as well as the geometry of an individual element can give rise to novel

elastic and magnetic effects which are connected via the magnetoelastic effect.

1.7 Problem Statement and Chapters

Being a dominant means of storing information, faster and more energy efficient
means of manipulating the spins in magnetic materials is important. As discussed,
femtosecond laser pulses provide a means of manipulating and probing the spin
dynamics at unprecedentedly fast time scales. Additionally, the elastic (phononic)
degree of freedom is an alternative means of manipulating the spins which may aid in
improving the efficiency of future devices. At the very least, a complete
understanding of the various mechanisms concerning the manipulation of the spin
system is necessary from a fundamental point of view. In this thesis, we use ultrafast

optical spectroscopic techniques to characterize and manipulate magnetic materials as
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well as exploring the coupling of elastic and magnetic degrees of freedom in
technologically relevant nanomagnetic arrays and individual isolated nanomagnets.

In Chapter 2 we discuss the quantum mechanical origins of magnetism. Starting from
a single electron and ending with multi-electron atoms in a crystalline environment
we cover the underlying forces which are responsible for the effects discussed in later
chapters. A complete understanding of magnetism is only possible if the quantum
mechanics of atoms and crystals is understood.

In Chapter 3 we continue the theoretical exploration of magnetism into the
macroscopic limit. When a sufficient number of atoms are present, the quantum
physics converges to classical physics and continuum mechanics can be used to
model the magnetization dynamics. In this realm, understanding the magnetic system
is accomplished by breaking the system down into different phenomenological energy
terms. While the quantum physics discussed in Chapter 2 is essential for
understanding the origin of these energies, the dynamics in this thesis are
mathematically described in this macroscopic realm.

In Chapter 4 we cover the theory behind the Time-Resolved Magneto-Optic Kerr
Effect which is the experimental technique used to measure the dynamics in this
thesis. We also discuss the experimental setup and some intuitive concepts necessary
to correctly implement the experiment and analyze the experimental data.

In Chapter 5 we demonstrate how the experimental techniques of chapter 4 can be

applied to characterize magnetic materials. We measure intrinsic magnetic parameters
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of individual magnetic thin films as well as measuring the interlayer exchange
coupling in magnetic multilayer structures.

In Chapter 6 we introduce a novel all-optical technique for manipulating the spin
resonances in multilayer magnetic structures. We show that by appropriately tuning
the timing between two femtosecond laser pulses we are able to selectively quench or
enhance a specific spin wave mode within the multilayer structure.

In Chapter 7 we discuss the magnetic damping parameter in more detail, covering
intrinsic and extrinsic contributions. We also introduce the concept of magneto-elastic
coupling and how it affects the dynamics in arrays of nanomagnetic elements. We
discuss how magneto-elastic effects can be mitigated by controlling the geometry of
the array as well as how they can be used to measure the damping the arrays. These
array structures are metamaterials due to the ability to control their properties through
altering their geometry.

In Chapter 8 we discuss the magneto-elastic dynamics in an individual nanomagnet
which is also dependent on the structure’s geometry. In the individual nanomagnet we
are able to spectroscopically resolve the strong coupling between magnetic and elastic
modes. We show how we can control the extent of the coupling by using an external
magnetic field. Finally, we provide a 2-dimensional mathematical description of the
phenomenon.

In Chapter 9 we summarize the results of the thesis.
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CHAPTER 2: MICROSCOPIC
MAGNETISM

“One can still say that quantum mechanics is the key to understanding magnetism.

When one enters the first room with this key there are unexpected rooms beyond, but

1

it is always the master key that unlocks each door.’

-John H. Van Vleck

2.1 Single electron

Figure 2.1: The electron is a wavelike particle with an intrinsic property known as
spin. The name spin comes from the similarity to angular momentum. However, the

exact nature of what causes spin is debated.
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What is the electron spin? Does it come from the little ball of mass spinning faster
than the speed of light? Does it stem from the circular flow of energy due to the
electron’s wave field? [30] Is it just the basic fundamental quanta of angular
momentum? Can the internal structure of the electron explain it? The origin of the
spin angular momentum has been the source of much debate. What is sure, is that it
exists. For an electron, the spin can take on two quantized values along a given axis

[31]

Szli):i

[SH

| +) (2.1)

Where S, is the spin angular momentum operator projected along the z axis, | ) are
the eigenkets of §,, + g are the eigenvalues, and 7 is the reduced Planck constant. The

two spin states are degenerate in the absence of any external perturbations. If an
external field is applied along the positive z-direction then the degeneracy of the two

states is lifted so that | +) is the lower energy state.

Additionally, if the electron is prepared in a particular spin state (] +) or | —)), the

spin component measured along a different axis is given by [31]
b
ISui 2y =1+ £ 5] ) (2.2)

Where |S,; +) are the eigenkets of the observable S,, along the new axis. S,, also has
eigenvalues ig. Ifu=xthena=b=1.If u=ythena=1andb =i. The total

angular momentum operator can also be defined as
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S-S=52=S2+SI+S2=2h? (2.3)

Figure 2.2 shows the relationship between the total angular momentum and the

quantized values along the z-axis.

Figure 2.2: Relationship between the total spin angular momentum and the

projections onto the z-axis.

25



2.2 Electron and Nucleus

2.2.1 Angular Momentum and Magnetic Moments

Figure 2.3: Vector diagram showing the relationship between the angular
momentum, |, of the electron, which arises due to the circulating electron mass, m,,

and the magnetic dipole, u; resulting from the circulating current, i.

In the presence of a nucleus the electron’s circular motion around the nucleus results
in another form of angular momentum called orbital angular momentum. [32] The

classical equation for angular momentum is
l=m,(rxv) (2.4)
Where m,, is the mass of the eleectron, r is the distance from the nucleus and v is the

electron’s velocity. Because the electron has an intrinsic charge, €, associated with it,
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this circular motion corresponds to a current loop which leads to a magnetic moment.
The classical relation is u = iA, with i = —— and A is the area of the circular loop.

(Fig. 2.3) Putting these together results in the following equation for the orbital

magnetic dipole moment

e

w = (2.9)

2m,

Since e is negative the magnetic moment is antiparallel to the angular momentum.
The importance of this relation cannot be understated as it serves to highlight the
intimate relation between the magnetic moment and angular momentum. It is often

expressed as
p=—g15 1 (2.6)

Where g =% is the Bohr magneton, the fundamental unit for the magnetic

moment. Comparing with equation (2.5) we can see that ug is the magnetic dipole
moment of an electron with |I| = h. g; is the orbital g-factor which is a
dimensionless scaling term that depends on the particle or system it represents.
Additionally, we can assign a spin magnetic moment to the electron due to the

intrinsic spin angular momentum discussed previously
_ UB
Hs = —9s75 S (2.7)

Where gs = —2.0023 is the g-factor for the spin of the electron. From this we see

that the projection of ug onto an axis of quantization is approximately equal to ug.
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2.2.2 Hydrogen-Like Atoms and Atomic Orbitals

A single electron orbiting a nucleus is the Hydrogen atom. The time-independent
Hamiltonian of the Hydrogen atom is given by a kinetic energy term due to the
motion of the electron and a potential energy term due to the binding Coulomb

potential of the nucleus. It is given by

-z 2.8)

2me r

where p is the momentum of the electron and Z is the nuclear charge (Z=1 for the
Hydrogen atom and can take other values for Hydrogen-like atoms). Equation (2.8) is
a quantum well in a spherically symmetric potential and leads to the following

eigenvalue equation known as the Schrodinger equation

Hpnim = EnimPnim (2-9)

Where E,;, IS the energy eigenvalue and ¢,;,, are the eigenfunctions
(wavefunctions) for the electron. Since the potential is spherical the eigenfunctions

are expressed in spherical coordinates

Grim = Ru(MY™ (6, 9) (2.10)

where R,;(r) is the radial component which depends on the distance of the electron
from the nucleus, r, and Y;™(8, ) are spherical harmonics, which describe the polar
(6) and azimuthal (¢) distribution of the wavefunctions. Their expressions are in

every quantum mechanics textbook [31,33] and will not be repeated here.
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These wavefunctions serve as a basis for determining the configuration of more
complex atoms. As we add more electrons, they occupy successive eigenfunctions
given by equation (2.10). The wavefunctions (and thus a particular electron within an
atom) can be identified by the quantum numbers n, | and m. Finding the lowest
energy state of an atom consists in identifying which atomic orbital wavefunctions are
occupied with electrons and which are not. This is accomplished by identifying the
lowest energy orbital wavefunctions in a particular atomic environment. Additionally,
this ground state can be a superposition of multiple wavefunctions. In the spherically
symmetric potential of a Hydrogen-like atom with a single nucleus, the energies of
the eigenfunctions do not depend on 6 or ¢ and we are left with the eigenvalue

equation

HRy(r) = ExRpy () (2.11)

Where E,, are the energy eigenvalues given by [31]

z2e?  ze?

2n2a 21y

E,=-— (2.12)

n2

where a, = mh—; is the Bohr radius and 7, = Za°. The energies depend on the
principal quantum number n, which designates the electron shell. For each successive
n the electron is located farther from the nucleus and another node is introduced in the
radial function. For the n-th level there are n? degenerate states, which can be further

branded by the quantum numbers | and m;. The angular quantum number | designates

the subshell or orbital of the electron with the requirement that [ < n. The values of
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[=0,1,2,3,... correspond to letters s,p,d,f which were chosen based off the first letter
of the spectral properties of alkali metals (sharp, principal, diffuse and fundamental).
Within each subshell (characterized by I) there is a subset of 21 + 1 different spatial
configurations of the orbitals. These are further identified by the magnetic quantum
numbers m;. This number corresponds to the projection of the orbital momentum
onto an arbitrarily chosen axis and can take values {[,l — 1, ..., —1}. In the spherically
symmetric potential of the Hydrogen-like atom the orbitals in the electron shell are
degenerate. The degeneracy within a subshell can be broken by application of an

external magnetic field (Zeeman Effect)}—hence the name magnetic quantum number.
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Figure 2.4: Atomic orbitals. Each row of orbitals is a successive electron shell
characterized by quantum number n. The columns separate the different electron
orbitals or subshells (s,p and d) which are specified by their orbital quantum number

I. The different spatial configurations of the subshells are further specified by their
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magnetic quantum number m;. The spatial designation of each orbital is shown below

its magnetic quantum number.

The two most widely studied and technologically relevant groups of magnetic
materials are the iron group magnetic materials characterized by elements with
unfilled 3d shells and the rare earch elements characterized by elements with an
unfilled 4f shell. Because both of these shells have many orbital states for the elctrons
to occupy, elements with unfilled shells can have a large net magnetic moment even

at room temperature. [34]

2.3 Multi-Electron Atoms

2.3.1 Hartree-Fock Approximation and Slater Determinant
As we add more electrons to the atom, they begin to interact and another term enters
into the Hamiltonian. In the absence of spin orbit interaction or a magnetic field, the

Hamiltonian is given by
l A
j'[ Zl 12 ZZ ei +Zl<] |T r]| (213)

Where similar to above, the first term represents the kinetic energy, summed over all
of the electrons. The second term is the sum of all the potentials due to the nuclear-
electron interactions and the third term is the Coulomb repulsion due to the presence

of the other electrons.
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In order to describe the configuration of an atom using this Hamiltonian a global
eigenfunction which depends on the coordinates of all the electrons must be chosen.
Since electrons are fermions, no two electrons can occupy the same state
simultaneously. This is known as the Pauli exclusion principle and requires that the
global wave function be anti-symmetric* upon interchanging the coordinates of two
electrons (spin or position) and is zero if they occupy the same state.[35] J.C. Slater in
1929 came up with a global wavefunction known as the Slater determinant which

satisfies the antisymmetry criteria

d1(r)  P2(r1) - dn(r1)
'¢1:(r2) ¢2(:r2) ¢N:(r2) (2.14)

.¢1('7”N) ¢2(.7”N) ¢NérN)

‘(l):

2l-

Where ¢i(rj) refers to electron i located at position j. We still use single electron

orbitals to describe the state of the multi-electron atoms. Self-consistently solving

" To see why this is the case, assume two particles, each in a different state ¢1(ry) and @, (7). If
the particles are indistinguishable, then the global state Y of the two-particle system is either
¢1(r) (1) or ¢, (r1)1(r,) Before measurement, we say that the particles exist in a

superposition of both states. Therefore, Y = ¢4 (11) P2 (12) £+ P, (1) P1 (1), where the plus sign
indicates the symmetric state and the minus sign the anti-symmetric state. If the particles are in the
same state, then the anti-symmetric state is Y = ¢ (7)1 (1r3) — ¢, (1)1 (r3) = 0. This

cannot be the case because then the wavefunction vanishes. Therefore, making the global wave

function antisymmetric ensures that the particles do not occupy the same state simultaneously. [35]

32



equation (2.13) with the Slater determinant wavefunction is known as the Hartree-
Fock Approximation. It captures some of the basic physics but unsurprisingly fails to
explain all atomic phenomena. However, the true behavior of the atoms can be
explained by introducing perturbations to this approximation, thus making it relevant

from a conceptual perspective. [36]

As we add electrons to the atom, we are interested in the overall ground state atomic
configuration—which orbitals get occupied first. Due to the Pauli exclusion principle
an electron can only occupy one quantum state at a given time. However, the spin of
the electron provides another degree of freedom. Kramers degeneracy theorem tells

us that in the case of a spin % particle, every state is double degenerate. [36] This
means two electrons can occupy the same orbital as long as they have opposite spin.
We now need another quantum number that we can use to identify a particular
electron, the spin quantum number mg (1/2,—1/2). Additionally, within a given

subshell there are now 2(2l + 1) possible quantum states for the electron to occupy,

where the 2 comes from the two spin states.

2.3.2 LS-Coupling

The angular momentum of all the electrons in a particular atomic configuration can
be summed to get the total orbital angular momentum L = }}; I; and total spin angular
momentum § = Y; s;. If a specific shell is completely filled with electrons, L and S

are zero and the atom has no net magnetic moment. If this is not the case, then the m
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electrons in the unfilled shell will have N = (2(Zlm+ 1)) possible ways to be

distributed among the 2(2[ + 1) orbital states. [36] The N sets of configurational
states each have an L and S associated with them. The sum of total orbital L and spin
S angular momentum results in a Total angular momentum J = L + S, and the sets of
configurations which have the same J are called multiplets. Without other
perturbations to the system (such as spin-orbit coupling) these multiplets are

degenerate.

If spin orbit coupling is introduced to the system then the multiplet energy levels no
longer all have the same energy. There are two methods of coupling the spin and
orbital components which depend on the relative strength of the spin-orbit interaction.
The first method couples the total orbital and spin moments of the atomic
configuration (J = L + S) and is known as Russel-Saunders Coupling. It is valid for
the lighter elements when the coulombic interaction between the electrons (last term
in Eq. 2.13) is greater than the individual electron’s spin-orbit interaction. In this case
the multiplets’ energies are split by introducing spin-orbit coupling as a perturbation.
With heavier elements spin-orbit or jj coupling is stronger than the coulombic
repulsion from the other electrons. In this case the coulombic interaction acts as the

perturbation. (Fig. 2.5)
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Figure 2.5: Vector diagram demonstrating the difference between LS-coupling and

jj-coupling. (a) When electron-electron coulombic interaction is larger than the spin

orbit interaction (1, > V;,) the sum of the electrons’ orbital moments is coupled to

the sum of their spins. (b) If V., < V;, then the individual electron’s orbital moment is

coupled to its spin moment and then the total J is found by summing up the individual

J’s from the different electrons.

2.3.3 Spin-Orbit Coupling

Spin-orbit coupling is a relativistic interaction between the electron and the nucleus.

In the frame of the electron it is the nucleus that is rotating around the electron, not
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the other way around. Therefore the electron feels a magnetic field from the nucleus.

[36]

Hy = ZeZ2 =201 (2.15)

r3 m r3

Where c is the speed of light. The energy of the electron’s spin magnetic moment in

this field is [36]

Zeh 1
Vso = 9a =S| (2.16)

The coordinate frame of the electron is not constant. The electron is being
accelerated by the interaction with the nucleus. Considering this problem
relativistically the electron frame rotates opposite to the rest (Nucleus) frame at half
the Larmor frequency. Therefore a factor of two is added. This is called the Thomas

Correction. [36]

This is only considering the potential from the nucleus f—j and not the potential from

the other electrons. We can absorb the other electrons’ Coulomb potential into the
potential from the nucleus and replace Z with Z,r. Averaging over all the electrons

the energy is given by

Z 21
Where A = £2¢LLE8_ (=
2S5 r

).
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As mentioned earlier, in the realm where Russel-Saunders coupling is valid, the
energy levels of the LS-multiplet are split due to a perturbation from Vs,. The

eigenvalues from the spin-orbit interaction are given by
AL-S) = % A[(L+8)2—12—52] = % AT+ —LIL+1D-SES+1)] (2.18)

Where ] can have values =L+ S,L+S—1,..,|L—S|. Without spin-orbit
coupling the multiplet states can be classified by |L, S, m;, mg). These configurations
with a given value of L and S all have the same energy. Diagonalizing the
Hamiltonian in the presence of spin-orbit coupling causes the state space to change

resulting in the new basis states
IL,S,J,m;) = ¥i¢|L, S, my, mg) (2.19)

Where c; are the Clebsh-Gordon coefficients. The new atomic configurational states
are now described by J and m; and are superpositions of the states described by m,

and mg. [31]

2.3.4 Hund’s Rules

As electrons are added to an unfilled shell, Hund’s rules can be used to predict the
ground state. These rules are empirical, meaning they have been rationalized after
experimental evidence. However, hindsight has explained them as arising from the
Coulomb repulsion of charges as well as the antisymmetric nature of the global
wavefunction. The rules hold well for the 4f atoms which are close to the nucleus and

less exposed to the surrounding crystalline environment. They are not as successful in
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explaining the 3d atoms where the effects of crystal field and quenching of the orbital
angular momentum must be considered. If the first rule does not successfully isolate
the ground state, move on to the second rule, if the second rule still leaves some

degeneracy move on to the third.

1) The multiplet with the maximum multiplicity lies in the lowest energy level.
Since the multiplicity is proportional to (2S + 1), the ground state is the multiplet
that maximizes the value of S. The wavefunction can be decomposed into a spin and
spatial part Yo = PspaceXspin- If the spins are aligned in the same direction
(maximizing S) then xg,i, IS symmetric. This means that ¢, Must be
antisymmetric. The opposite is true if the spins are anti-parallel to one another

(minimizing S). Since the probability of an antisymmetric spatial wavefunction

|¢space|2 = 0 at the origin, there is less of an overall probability of the electrons
occupying the same space at the same time which is preferable since it lowers the
Coulomb potential. Therefore, the lower energy state is the one where the spins are in

the same direction, which maximizes S which maximizes the multiplicity. [37]
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Figure 2.6: Diagram showing symmetric and anti-symmetric wavefunctions and their
probability amplitudes. The anti-symmetric wavefunction has a probability of zero at
the origin which makes it a lower energy state from a coulombic potential point of

view. Taken from [37].

2) Within a given multiplet the term with the largest value of L has the lowest
energy. The reason for this stems from the orbit-orbit interaction and a tendency to
minimize the Coulomb energy. Since electrons in orbits with the same sign of angular
momentum travel the same direction around the nucleus, they will pass one another
less frequently. Thus they will in general be farther away from each other—Ilowering

the Coulomb energy. [37]

3) If the outermost subshell of the atom is les