
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Magnetoelastic Dynamics in Nanomagnetic Metamaterials

Permalink
https://escholarship.org/uc/item/5mj818rc

Author
Berk, Cassidy Russell

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5mj818rc
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

SANTA CRUZ 

 

MAGNETOELASTIC DYNAMICS IN NANOMAGNETIC 

METAMATERIALS 
 

A dissertation submitted in partial satisfaction 

of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

In 

 

ELECTRICAL ENGINEERING 

 

by 

 

Cassidy R. Berk 

 

June 2019 

 

 

The Dissertation of Cassidy Berk is approved:  

 

 

       

Professor Holger Schmidt, chair   

 

 

         

Professor Nobuhiko Kobayashi   

 

 

                               

Professor Michael Isaacson    

 

 

 

 

       

Lori Kletzer 

Vice Provost and Dean of Graduate Studies 

 



Copyright © by 

Cassidy R. Berk 

2019 

 



iii 

 

Table of Contents 

CHAPTER 1: INFORMATION AND CIVILIZATION .............................................. 1 

1.1 Early Information Technology ........................................................................... 1 

1.2 Neolithic Information Technology ..................................................................... 3 

1.3 Industrial Information Storage ........................................................................... 7 

1.4 Magnetic Recording ........................................................................................... 8 

1.4.1 Superparamagnetic Effect .......................................................................... 9 

1.4.2 Giant Magnetoresistance .......................................................................... 11 

1.4.3 Bit Patterned Media .................................................................................. 12 

1.4.4 Heat Assisted Magnetic Recording .......................................................... 14 

1.4.5 All-Optical Switching .............................................................................. 15 

1.4.6 Fundamental Questions and Other Technological Applications .............. 17 

1.5 Contemporary Information Technology .......................................................... 19 

1.6 Metamaterials ................................................................................................... 20 

1.7 Problem Statement and Chapters ..................................................................... 20 

CHAPTER 2: MICROSCOPIC MAGNETISM ......................................................... 23 

2.1 Single electron .................................................................................................. 23 

2.2 Electron and Nucleus ....................................................................................... 26 

2.2.1 Angular Momentum and Magnetic Moments .......................................... 26 

2.2.2 Hydrogen-Like Atoms and Atomic Orbitals ............................................ 28 

2.3 Multi-Electron Atoms ...................................................................................... 31 

2.3.1 Hartree-Fock Approximation and Slater Determinant ............................. 31 

2.3.2 LS-Coupling ............................................................................................. 33 

2.3.3 Spin-Orbit Coupling ................................................................................. 35 

2.3.4 Hund’s Rules ............................................................................................ 37 

2.4 Multiple Atoms ................................................................................................ 40 

2.4.1 Crystal Field ............................................................................................. 40 



iv 

 

2.4.2 Quenching of Orbital Angular Momentum .............................................. 43 

2.4.3 Hubbard Model ........................................................................................ 45 

2.4.4 Exchange Interaction ................................................................................ 47 

2.4.5 Heisenberg Approximation ...................................................................... 49 

CHAPTER 3: MACROSCOPIC MAGNETISM (MICROMAGNETICS) ............... 51 

3.1 Magnetization Vector ....................................................................................... 51 

3.2 Free Energy ...................................................................................................... 53 

3.2.1 Zeeman Energy ........................................................................................ 54 

3.2.2 Exchange Energy ...................................................................................... 55 

3.2.3 Bilinear Exchange Energy ........................................................................ 58 

3.2.4 Demagetization Field and Shape Anisotropy Energy .............................. 58 

3.2.5 Magnetocrystalline Anisotropy Energy ................................................... 65 

3.2.6 Magnetostriction ....................................................................................... 67 

3.3 Dynamics ......................................................................................................... 71 

3.4 Free Energy Resonance .................................................................................... 74 

CHAPTER 4: EXPERIMENTAL SETUP AND THEORY ...................................... 78 

4.1 Introduction ...................................................................................................... 78 

4.2 Stroboscopic Measurements............................................................................. 79 

4.3 The Pump Excitation ........................................................................................ 82 

4.3.1 Three Temperature Model ........................................................................ 83 

4.3.2 Thermal Anisotropy Pulse ........................................................................ 85 

4.4 The Probe Detection ......................................................................................... 87 

4.4.1 Gyrotropic Media ..................................................................................... 87 

4.4.2 Normal Modes .......................................................................................... 91 

4.4.3 Faraday Effect .......................................................................................... 94 

4.4.4 Magneto-Optic Kerr Effect ...................................................................... 97 

4.5 Detection ........................................................................................................ 101 

4.5.1 Crossed Polarizer .................................................................................... 101 



v 

 

4.5.2 Balanced Photodiodes ............................................................................ 104 

4.6 TR-MOKE Experiment .................................................................................. 108 

4.6.1 Beam Paths ............................................................................................. 108 

4.6.2 Excitation Geometry Considerations ..................................................... 110 

4.6.3 Time Domain Analysis ........................................................................... 112 

4.6.4 Discrete Fourier Transform Linewidth .................................................. 114 

CHAPTER 5: ALL-OPTICAL MEASUREMENT OF INTERLAYER EXCHANGE 

COUPLING IN FE/PT/FEPT THIN FILMS ............................................................ 117 

5.1 Introduction .................................................................................................... 117 

5.2 Film Properties ............................................................................................... 118 

5.3 Acoustic and Optic Modes ............................................................................. 119 

5.4 Single Film Resonance –Kittel Formula ........................................................ 121 

5.4.1 Single Film TR-MOKE Measurements .................................................. 123 

5.5 Multilayer Film Resonance ............................................................................ 125 

5.5.1 Multilayer TR-MOKE Measurements ................................................... 127 

5.6 OOMMF Simulations .................................................................................... 132 

5.7 Conclusion ..................................................................................................... 134 

CHAPTER 6: MULTI-PULSE METHOD FOR SELECTIVE CONTROL OF 

MAGNETIZATION PRECESSSIONS IN MAGNETIC MULTILAYERS ........... 135 

6.1 Introduction .................................................................................................... 135 

6.2 Double-Pump Configuration .......................................................................... 136 

6.3 Demonstration on Single Layer ..................................................................... 138 

6.4 Demonstration on Multilayer Structure ......................................................... 141 

6.5 Representation in the Complex Plane ............................................................ 145 

6.6 Spin Pumping and Damping .......................................................................... 147 

6.7 Conclusion ..................................................................................................... 154 

CHAPTER 7: MAGNETO-ELASTIC DYNAMICS DUE TO SURFACE 

ACOUSTIC WAVES IN NANOMAGNETIC ARRAYS ....................................... 155 

7.1 Introduction .................................................................................................... 155 



vi 

 

7.2 Intrinsic vs. Extrinsic Damping...................................................................... 157 

7.2.1 Elliot-Yafet (Spin-Flip) Scattering ......................................................... 157 

7.2.2 Extrinsic Mechanisms ............................................................................ 159 

7.2.3 Pump Probe Alignment .......................................................................... 162 

7.3 Damping in Nanomagnet Arrays Using TR-MOKE ...................................... 163 

7.3.1 Magnetoelastic Coupling in Arrays ........................................................ 164 

7.3.2 Effect of Array Geometry on SAW Influence........................................ 168 

7.3.3 Effect of Array Geometry on Damping .................................................. 176 

7.2.4 Measurement of Damping using SAW Pinning Width .......................... 178 

7.4 Conclusion ..................................................................................................... 184 

CHAPTER 8: STRONGLY COUPLED MAGNON-PHONON DYNAMICS IN A 

SINGLE NANOMAGNET ....................................................................................... 186 

8.1 Introduction .................................................................................................... 186 

8.2 Coupled Resonances and Avoided Crossings ................................................ 188 

8.3 Analytical Derivation ..................................................................................... 189 

8.2.1 2D Elastic Dynamics .............................................................................. 191 

8.2.2 Magnetic Dynamics ................................................................................ 193 

8.2.3 Coupled Dynamics ................................................................................. 196 

8.4 Magnon-Phonon Anti-Crossings .................................................................... 201 

8.4.1 Tuning the Coupling into the Strong Coupling Regime ........................ 208 

8.4.2 Loss Rates and Cooperativity ................................................................. 211 

8.5 Conclusion ..................................................................................................... 217 

CHAPTER 9: FUTURE OF INFORMATION TECHNOLOGY AND SUMMARY

................................................................................................................................... 219 

REFERENCES ......................................................................................................... 224 

 

 



vii 

 

 

Table of Figures 

Figure 1.1: Cave art of lions hunting bison from the Cauvet-Pont d’Arc cave in 

France. The oldest drawings in this cave date back roughly 30,000 years. Taken from 

[1]. ................................................................................................................................. 2 

Figure 1.2: Jiahu symbols found inscribed on a Tortoise shell in Henan, China. The 

markings date back to 6600 BC. Taken from [3]. ......................................................... 4 

Figure 1.3: Instructions of Shuruppak. Early example of literature written in 

cuneiform on a clay tablet around 2500 BC. Taken from [4]. ...................................... 5 

Figure 1.4: (a) Example of bits (red or blue) written into a granular magnetic 

material. A bit consists of a region composed of multiple magnetic grains all oriented 

in the same direction. Taken from [12]. (b) Energy barrier separating two different 

magnetic states. When this barrier becomes comparable to the thermal energy in the 

room 𝑘𝐵𝑇, the bits become less stable. ........................................................................ 9 

Figure 1.5: (a) Example of longitudinal recording and (b) perpendicular recording. 

Perpendicular recording offers the benefit of increased storage areal densities. ........ 11 

Figure 1.6: (a) When the magnetization of two layers are oriented in the same 

direction, current flows through the system more easily—the structure has a low 

resistance. (b) When the magnetizations of the layers are anti-parallel there is more 

spin scattering resulting in a higher resistance. .......................................................... 12 

Figure 1.7: Schematic showing the difference between conventional granular media 

and patterned magnetic media. Taken from [12]. ....................................................... 13 

Figure 1.8: (a) Example of the write process in HAMR. Initially the bit is stored in a 

state which is too hard to switch (high coercivity). Application of a laser heats the 

magnetic material resulting in a decrease of the coercivity so that the bit can be 

affected by the magnetic field from the write coil. As the magnetic material cools it 

assumes its original stable state. (b) Schematic of HAMR write head. Taken from 

[12]. ............................................................................................................................. 15 



viii 

 

Figure 1.9: (a) Experimental demonstration of all-optical switching (AOS) on a 

GdFeCo thin film. The different contrasts of the film are obtained using a Kerr 

microscope and represent the magnetization orientation. Right handed circularly 

polarized light 𝜎 + only affects the magnetization oriented in one direction while left 

handed circularly polarized light 𝜎 − affects the magnetization oriented in the other 

direction. (b) Schematic showing how AOS could be used to write bits. Taken from 

[19]. ............................................................................................................................. 16 

Figure 1.10: (a) Illustration of the timescales of magnetic processes and some 

potential technologies which could be impacted. Taken from [24]. (b) Magnons have 

many data processing applications. In some instances magnonics may replace 

electronics. However, realistically they will be implemented into existing 

technologies which will require mechanisms for converting between spin and charge. 

Taken from [26]. ......................................................................................................... 18 

Figure 2.1: The electron is a wavelike particle with an intrinsic property known as 

spin. The name spin comes from the similarity to angular momentum. However, the 

exact nature of what causes spin is debated. ............................................................... 23 

Figure 2.2: Relationship between the total spin angular momentum and the 

projections onto the z-axis. ......................................................................................... 25 

Figure 2.3: Vector diagram showing the relationship between the angular 

momentum, l, of the electron, which arises due to the circulating electron mass, 𝑚𝑒, 

and the magnetic dipole, 𝝁𝒍 resulting from the circulating current, i. ........................ 26 

Figure 2.4: Atomic orbitals.  Each row of orbitals is a successive electron shell 

characterized by quantum number n. The columns separate the different electron 

orbitals or subshells (s,p and d) which are specified by their orbital quantum number 

l. The different spatial configurations of the subshells are further specified by their 

magnetic quantum number 𝑚𝑙. The spatial designation of each orbital is shown below 

its magnetic quantum number. .................................................................................... 30 

Figure 2.5: Vector diagram demonstrating the difference between LS-coupling and 

jj-coupling.  (a) When electron-electron coulombic interaction is larger than the spin 

orbit interaction (𝑉𝑒𝑒 > 𝑉𝑠𝑜) the sum of the electrons’ orbital moments is coupled to 

the sum of their spins. (b) If 𝑉𝑒𝑒 < 𝑉𝑠𝑜 then the individual electron’s orbital moment is 

coupled to its spin moment and then the total J is found by summing up the individual 

j’s from the different electrons. ................................................................................... 35 



ix 

 

Figure 2.6: Diagram showing symmetric and anti-symmetric wavefunctions and their 

probability amplitudes. The anti-symmetric wavefunction has a probability of zero at 

the origin which makes it a lower energy state from a coulombic potential point of 

view. Taken from [36]. ............................................................................................... 39 

Figure 2.7: (a) Position of atom (red dot) in cubic crystalline environment 

surrounded by negative point charges. (b)   The d-orbitals that point in the direction 

of the point charges have a higher energy and form 𝑒𝑔 doublet group. (c) The orbitals 

that do not point directly at the negative point charges form the 𝑡2𝑔triplet group and 

have a lower energy. Taken from [39]. ....................................................................... 42 

Figure 2.8: Probability amplitude of wavefunctions demonstrating (a) No quenching 

of the orbital moment. The wavefunction is complex, made up of a superposition of 

wavefunctions with the same 𝑚𝑙.  (b) Partial quenching of the orbital momentum.  In 

this case the spin-orbit interaction still has some effect so as to mix the two real 

wavefunctions with the same 𝑚𝑙. (c) Total quenching of the orbital momentum. The 

effect from the crystal field causes 𝑥𝑦 to be the ground state.  This is a real 

eigenfunction and therefore has zero expectation value for 𝐿𝑧.  Taken from [39]. .... 44 

Figure 3.1: At lower temperatures all of the dipoles are aligned due to the exchange 

interaction and the magnetization vector which is the net dipole moment per unit 

volume is large.  As the temperature increases, thermal energy excites the spins so 

that they are no longer perfectly aligned with one another.  This causes the magnitude 

of the magnetization vector to decrease.  The temperature at which the net magnetic 

moment is zero is known as the Curie Temperature. .................................................. 52 

Figure 3.2: Free energy landscape (a) only considering the exchange energy causes 

all the spins to be aligned but with no preferential direction. All directions are 

energetically equivalent. (b) Applying an external field along the z-direction will 

deform the free energy surface creating an energy minimum. The direction of the 

magnetization vector is normal to the surface at the minimum (along the z-direction).

..................................................................................................................................... 54 

Figure 3.3:  Magnetization vectors for different spins, 𝑚𝑖 and 𝑚𝑗 separated by a 

distance 𝚫𝒓. ................................................................................................................. 55 

Figure 3.4: Exchange constant terms for different crystallographic structures. ........ 57 



x 

 

Figure 3.5: Field generated by a magnetic dipole which tends to align neighboring 

dipoles along the field lines.  The field strength depends inversely on the distance, but 

it also depends on the mutual orientation between the dipoles which can cause 

alignment in different directions. ................................................................................ 59 

Figure 3.6: Diagram showing the different regions used to derive the 

demagnetization energy. The total dipole field 𝑯𝒅𝒊𝒑 is obtained by subtracting from 

the internal demagnetization field 𝑯𝒅 the field 𝑯𝑹 which is the field within a sphere 

of radius R and then adding the individual dipole interactions within the sphere, 

ℎ𝑖,𝑟<𝑅. The summation within the sphere depends on the relative positions of the 

dipoles and can be absorbed into the magnetocrystalline anisotropy. Furthermore, if 

the magnetization is homogeneous within the sphere, then 𝑯𝑹 can be attributed solely 

to the surface charge which is given by the equation for the volume of a sphere. This 

term is constant and can be neglected. 𝑯𝒅 can also be decomposed into surface and 

volume terms, and if the magnetization is homogeneous within the magnetic body 

then 𝑯𝒅 arises solely due to the surface contribution, which leads to the concept of 

shape anisotropy. Taken from [45]. ............................................................................ 60 

Figure 3.7: Coordinate systems and free energy landscapes for (a) uniaxial 

anisotropy given by equation (3.34) with 𝐾0 = 0 and 𝐾1 < 0. (b) 𝐾0 = 0 and 𝐾1 > 0 

(similar to hcp Co) (c) Magnetocrystalline anisotropy energy landscape for cubic 

crystal with 𝐾0 = 1 and 𝐾1 = 1 (similar to bcc Fe) (d) 𝐾0 = 1 and 𝐾1 = −1 (similar 

to fcc Ni). .................................................................................................................... 67 

Figure 3.8: (a) Landau-Lifshitz (LL) equation dictates the magnetization vector’s 

rotation around the effective field, 𝐻𝑒𝑓𝑓.  (b) The Landau-Lifshitz-Gilbert (LLG) 

equation models the precession of the magnetization while including a 

phenomenological damping term, 𝛼 in the direction 𝑴 ×
𝒅𝑴

𝒅𝒕
. ................................... 73 

Figure 3.9: The Magnetization precession can be mapped to the {𝟏, 𝟐, 𝟑} coordinate 

system defined by the direction of the magnetization vector and the plane of the cone 

due to the precession of 𝑴. 𝒎𝟑 is along the direction of 𝑴 at equilibrium (3), 𝒎𝟐 is 

parallel to the xy plane (2) and 𝒎𝟏 is orthogonal to 𝒎𝟐 and 𝒎𝟑 (1)  . ...................... 74 

Figure 4.1: Illustration of the concept behind the stroboscopic pump-probe method. 

The pump ((𝜆𝑃𝑢𝑚𝑝 = 400 nm) pulses are separated by Δ𝑡𝑝𝑢𝑚𝑝 which for a repetition 

rate of 76MHz is 13ns. By the time each new pump pulse arrives, the system has fully 

relaxed back to equilibrium.  At time 𝑡1 each probe (𝜆𝑃𝑟𝑜𝑏𝑒 = 400 nm) pulse (which 



xi 

 

has the same repetition rate as the pump pulses) is separated from a corresponding 

pump pulse. Since the magnetization follows the same dynamical path upon 

excitation, the probe pulse for a given pump-probe separation reads the same 

magnetic state. The data for each time step is an average of the signal from all the 

probe pulses. In order to read a later state of the magnetic evolution and acquire the 

next data point 𝑡2, the path length of the probe pulse is increased which results in the 

probe pulse being delayed by Δ𝑡. ................................................................................ 80 

Figure 4.2: (a) Schematic showing the interaction between the electron, lattice and 

spin subsystems and (b) an example of the time evolution of the different subsystems 

governed by the rate equations (4.1) – (4.3).  The red line corresponds to the 

excitation laser pulse. The subscripts e, l, and s correspond to the electron, lattice and 

spin systems, respectively. The evolution of the spin system is shown for a metal 

(blue dotted line) and a dielectric (blue dashed line). Taken from [68]. .................... 84 

Figure 4.3: Schematic demonstrating how the influence of a thermal pulse acts as an 

excitation mechanism for the precession of the magnetization. (a) Initially the 

magnetization (M) is at rest, oriented along the equilibrium direction of the effective 

field (solid black arrow, 𝑯𝒆𝒇𝒇).  (b) Upon irradiation from an ultrashort laser pulse 

(𝑡 = 0), the elevated temperature causes the value of 𝑀𝑆 to decrease. This changes 

the direction of the effective field and causes the magnetization to precess around the 

new effective field direction, 𝑯′𝒆𝒇𝒇. (c) After a short time (𝑡 = 𝑡𝑒𝑞) the system has 

cooled and the magnetization has regained the original value of 𝑀𝑆. However it is no 

longer aligned along the initial effective field direction, 𝑯𝒆𝒇𝒇. Therefore, it again 

begins to precess around the new (original) equilibrium direction. ............................ 85 

Figure 4.4: (a) Electrons oscillate around their equilibrium positions as they interact 

with an electromagnetic field.  Due to their orientation in a helical structure their 

motion will cause a time varying B-field along the direction of electromagnetic wave 

propagation.  This induces an extra polarization of the electrons in the medium. (b) 

For the case of a plasma in an external B-field, the motion of the electrons due to the 

electromagnetic wave causes an additional Lorentz force on the electrons.  This 

induces an extra polarization of the electrons. ............................................................ 89 

Figure 4.5: The normal modes in gyrotropic media are (a) Left (LHC) and (b) right 

handed circular polarization (RHC). (c) When RHC and LHC have the same 

amplitude and phase their sum results in linear polarization along the y-direction. (d) 

If there is a phase offset between the RHC and LHC modes then the resultant linear 



xii 

 

polarization is rotated. (e) If the amplitudes of the RHC and LHC modes are different 

then the summed wave is elliptically polarized. ......................................................... 94 

Figure 4.6: When linearly polarized light enters an optically active medium, it splits 

into two circularly polarized modes. Because the medium has different refractive 

indices, the two modes propagate at different speeds and a phase difference is 

introduced between the modes as it propagates through the medium.  This leads to a 

rotation of the polarization. Additionally, the two modes have different attenuation 

coefficients so that the relative amplitudes are different after propagating through the 

medium.  This introduces ellipticity to the light. The light that emerges is thus 

elliptically polarized with the major axis of the ellipse rotated. ................................. 96 

Figure 4.7: Schematic showing the different Kerr effect layouts. (a) In the Polar 

configuration the the z-component, 𝑚𝑧, of the magnetization is responsible for 

affecting the light. The incident light can come at an angle or normal to the sample 

surface.  (b) The longitudinal configuration is sensitive to the in-plane component of 

the magnetization that is parallel to the plane of incidence, 𝑚𝑦. The incident light 

must come at an angle in order to be affected, therefore it is necessary to be careful to 

separate any possible polar effects. (c) In the Transverse configuration the 

magnetization that is perpendicular to the plane of incidence is responsible for 

affecting the light. Unlike the previous two configurations which affect the angle and 

ellipticity of the light, this configuration only affects the reflectivity. ....................... 99 

Figure 4.8: Schematic of the crossed polarizer configuration discussed in text.  Light 

is sent through a polarizer (L) oriented at 90° with respect to the plane of incidence so 

that the light is s-polarized. After light is reflected off the sample (R) the polarization 

is rotated (𝜃𝐾) and it becomes slightly elliptic due to the Kerr effect.  The light then 

passes through another polarizer (L) oriented at 0° with respect to the plane of 

incidence.  The light that passes through the second polarizer is proportional to the 

Kerr rotation due to the reflection. The intensity is detected by a photodiode (PD). 104 

Figure 4.9: Schematic of the balanced polarizer configuration discussed in text.  

Light is sent through a polarizer (L) oriented at 90° with respect to the plane of 

incidence so that the light is s-polarized. After light is reflected off the sample (R) the 

Kerr effect causes the polarization to be rotated (𝜃𝐾) and become slightly elliptic.  

The light then passes through a polarizing beam splitter (PBS) oriented at 45° with 

respect to the plane of incidence. This splits the light into two even components so 

that the difference signal is “balanced”. Dynamic changes in the difference (-) of the 

signal from the two photodiodes (PD) give information on the magnetic system and 



xiii 

 

changes in the sum (+) of the signal from the photodiodes give information on the 

non-magnetic system. ............................................................................................... 107 

Figure 4.10: Schematic illustration of the experimental setup described in the text. 

Beam Splitter (BS); Delay Stage (DS); Linear Polarizer (𝐿(𝛼𝑃)); Dichroic Filter 

(DF); Charge Coupled Device camera (CCD); Witec Microscope (WM); Permanent 

Magnets (PM); Second Harmonic Generator (SHG); Mechanical Chopper Wheel 

(MCW); Color Filter (CF); Polarizing Beam Splitter (PBS); Balanced Photodiodes 

(BPD) ........................................................................................................................ 110 

Figure 4.11: Precessional and excitation characteristics for a thin film with an in-

plane easy axis. (a) If the magnetization is oriented normal to the surface by 

application of a strong external magnetic field, then the precession will be in the xy 

plane and will contribute no z-component.  Therefore, there will be no detected signal 

in a polar Kerr configuration. (b) If the magnetization is oriented along the easy axis, 

then the pump pulse will heat up the magnetization which will cause the magnitude of 

the magnetization vector to decrease.  However, there will be no subsequent 

precession because the effective field direction will not change.  (c) If the 

magnetization is canted with respect to the easy axis, then the pump pulse will perturb 

the system so that the magnetization precesses and there will also be a component of 

the precession along the z-direction so that it will be detectable in the polar Kerr 

configuration. ............................................................................................................ 111 

Figure 4.12: (a) Raw TR-MOKE signal from a thin Ni film with 𝐻 = 5𝑘𝑂𝑒 and 

𝜃𝐻 = 30°. At 𝑡 = 0 the pump pulse excites the system.  This causes the sample to 

heat up and demagnetize which is represented as a rapid change in the signal. On a 

slower time scale the magnetization precesses around the effective field.  There is still 

some residual heat in the system which is represented as a slowly decaying backdrop 

to the oscillation. (red line)  (b) By subtracting the slowly decaying backdrop from 

the raw signal the pure dynamical motion given by the LLG equation is left. (c) Using 

an Fast Fourier Transform (FFT) algorithm we can transform the time signal into the 

frequency domain...................................................................................................... 113 

Figure 4.13: (a) The decaying oscillation of a Ni film (H=6 kOe) (b) Fitting the DFT 

spectra from (a) to a Lorentzian gives 𝐹𝑊𝐻𝑀 = 2.8 ± 0.14 GHz. (c) Demonstration 

of the effect of the broadening due to the finite scan length. The Conv data points are 

obtained by convolving a Lorentzian associated with the intrinsic loss with a Sinc 

function associated with the finite time duration. Fitting the convolved signal gives  



xiv 

 

𝐹𝑊𝐻𝑀 = 2.89 GHz. (d) DFT spectra and fit to a Lorentzian after using a Hamming 

window to the data in (a), showing a smaller but non-neglible broadening. ............ 116 

Figure 5.1: Schematic of the multilayer structure studied in this chapter. .............. 117 

Figure 5.2: (a) The Fe and Pt atoms are randomly distributed in the A1 phase. (b) 

The L10 phase is characterized by a very high magnetocrystalline anisotropy. The Fe 

and Pt atoms occupy successive planes in the crystal............................................... 118 

Figure 5.3: The exchange coupled modes consist of (a) an Acoustic Mode in which 

the two coupled magnetization vectors oscillate in-phase with one another, and (b) an 

Optic mode in which the magnetization vectors oscillate out-of-phase with one 

another.  The sign of 𝐽1 dictates which mode has the lower energy. ........................ 119 

Figure 5.4: FMR spectra demonstrating the resonance fields of Ferromagnetic and 

Anti-ferromagnetically coupled films.  The solid line is the uncoupled case. The 

dashed and the dotted lines are the coupled cases, with the dotted line corresponding 

to a coupling twice that of the dashed line.  Care should be taken when comparing 

results from TR-MOKE and FMR experiments.  In FMR with a fixed frequency, the 

external field is varied through resonance so that the position of the higher energy 

mode occurs at a lower applied field.  In TR-MOKE the field is held fixed and the 

frequencies measured simultaneously so that the higher energy mode has a higher 

frequency at that applied field. Taken from [92]. ..................................................... 121 

Figure 5.5: a) Experimental geometry for single film measurements (Fe or FePt) b) 

Fits of equation (5.8) (lines) to experimental data (symbols) at three angles over a 

range of applied fields for (b) single Fe film and (c) single FePt film. Taken from 

[86]. ........................................................................................................................... 124 

Figure 5.6: Fits of equation (5.11) (lines) to experimental data (symbols) at three 

angles over a range of applied fields for  (a) Fe / Pt(x = 0 nm) / FePt (b) Fe / Pt (x = 

0.5 nm) / FePt (c) Fe / Pt (x = 1.0 nm) / FePt and (d) Fe / Pt (x = 1.5 nm) / FePt (e) 

Experimental geometry of multilayer measurements. Taken from [86]. .................. 127 

Figure 5.7: (a) Fourier transforms of TR-MOKE time traces for the trilayers with 

different Pt spacer layer thickness at θH = 30˚ and Ha = 4 kOe.  The solid red arrow is 

a guide to mode 1 and the dashed blue arrow a guide to mode 2. (b) Mode frequencies 

vs. Pt thickness for Ha = 4 kOe. (c) Fourier amplitudes of the modes at different Pt 

thickness. Taken from [86]. ...................................................................................... 128 



xv 

 

Figure 5.8: (a) Effective magnetization of the two layers.  The dotted line is the 

strongly coupled 𝑀𝑒𝑓𝑓
∗  where the two films can be treated as having a single effective 

magnetization. (b) Extracted interlayer exchange constant vs. Pt thickness. (c) Optic 

mode amplitude and 1/𝐽1normalized to Pt = 1.5 nm values vs. Pt thickness. Taken 

from [86]. .................................................................................................................. 130 

Figure 5.9: Simulation (lines) on top of experimental Fourier maps normalized at 

each Ha. The small Fourier amplitude of the optic mode is difficult to see in the 

Fourier map so it has been highlighted in the (a) Fe / Pt(0.5 nm) / FePt film and the 

(b) Fe / Pt(1.0 nm) / FePt film.  (c)  The experimental Fourier map of the strongly 

coupled Fe/FePt film with simulation (line) using the modified magnetic parameters 

𝑀𝑒𝑓𝑓
∗  and 𝛾∗. Taken from [86]. ................................................................................. 132 

Figure 6.1: Schematic of the double pump experimental setup discussed in the text. 

Beam Splitter (BS); Neutral Density Filter (ND); Mirror 1 (M1); Mirror 2 (M2); 

Distance between BS and M1 (𝑑1); Distance between BS and M2 (𝑑2); Pump 1 

power (𝑃1); Pump 2 power (𝑃2); Time delay between pump pulses (∆𝑡𝑝). .............. 136 

Figure 6.2: (a) Representation of the magnetization vector as a phasor in the complex 

plane.  The black arrow is the precession of the magnetization due to the initial pulse.  

If the second pulse is timed such that the position of the magnetization vector is 

𝑒𝑖𝜃 = −1 or 𝜋 out of phase with respect to 𝑡 = 0, the precession can be quenched 

(solid red).  If the second pulse arrives when the magnetization vector is 𝑒𝑖𝜃 = 1 or 

back in phase with respect to the 1st pulse, the precession can be enhanced (dotted 

green).  (b) The real part of the phasor can be used to visualize the time dependence 

of the control. Each arrow indicates a different time 𝑡(𝑚) discretized by successive 

values of m. (c) TR-MOKE time and frequency domain signals of the dynamics from 

a single pulse on a Ni thin film (30nm). (d) By tuning the arrival time of the 2nd 

pulse, the magnetic precession can be quenched or (e) enhanced. Taken From [117].

................................................................................................................................... 139 

Figure 6.3: (a) Phasor and time domain signals of a 10nm Fe film for different pump 

power ratios (𝑃2 𝑃1⁄ )..  (b) Fast Fourier Transform (FFT) of the time domain signals 

corresponding to the different ratios. (c) The reason the ratio is less than unity is that 

as the magnetization precesses it spirals closer and closer to the equilibrium position 

in the center of the circle. The quenching is shown for the case where 𝑚 = 3. Taken 

From [116]. ............................................................................................................... 141 



xvi 

 

Figure 6.4: (a) Schematic of the magnetic multilayer structure. (b) Attempting to 

quench the FePt resonance (R1) gives discrete values of the location of the Fe 

resonance (R2) in time  𝑡1
(𝑚)

 which can be mapped onto the complex plane.  The 

arrows show a symmetric path of the position of R2 for successive m traced out in the 

complex plane starting with the black dashed arrow at 𝑚 = 1. (c) Real component of 

the phasors for the Fe(10nm) / Pt(5nm) / FePt(10nm) multilayer. (d) Fourier 

transform and phasor diagram of the stack subjected to only one pulse displaying two 

resonances corresponding to the different magnetic layers. (e) Fourier transform and 

phasor diagram demonstrating the quenching of the FePt layer and (f) the Fe layer. 

Taken From [116]. .................................................................................................... 143 

Figure 6.5: Chord length in the complex plane as a function of the frequency ratio of 

two resonances. Assuming R1 is being quenched (𝜃1 = 2𝑚 − 1𝜋), the insets show 

the location and direction of R2 for increasing m at ratio intervals of 0.1.  For 

𝑓2/𝑓1 = 1 both resonances will be quenched for all m and when 𝑓2/𝑓1 = 2, R2 will 

always be enhanced. More complex symmetries are possible depending on the ratio, 

but this example shows how the chord length and the path symmetry depend on the 

ratio and how by tuning the frequency ratio different locations of R2 can be obtained 

for different values of m. Taken From [116]. ........................................................... 146 

Figure 6.6: Spin pumping induced damping (𝛼 − 𝛼0) for Py films of varying 

thicknesses for different adjacent non-magnetic materials. The additional damping 

due to spin pumping depends on the thickness of the Py layer as well as on the 

adjacent material. Pt and Pd have short spin relaxation times and act as strong spin 

sinks causing a larger effect on the damping than Ta. Cu has a long spin relaxation 

time and has virtually no effect on the damping. Taken from [120]. ....................... 149 

Figure 6.8: Quenched and Unquenched damping for the Fe(2nm) / Cu (5nm) / Fe 

(10nm) multilayer. Quenched refers to the case where the other layer has been shut 

off. For example, red quenched means that the 10nm Fe layer has been shut off so 

only 2nm Fe is precessing. ........................................................................................ 153 

Figure 7.1: Schematic of different scattering processes between electrons (blue solid 

arrows) and phonons (red dotted arrows). ................................................................ 157 

Figure 7.2: (a) In the presence of a weak magnetic field the distribution of local 

anisotropy fields causes slightly different effective fields in each region (visualized 

by different directions of the magnetization vectors within different regions). This 

causes the different regions to precess at different frequencies which causes the 



xvii 

 

damping to appear to be larger. (b) When the applied field is sufficiently strong, the 

local variation of the anisotropy field is negligible (arrows all same direction) and all 

the regions precess at the same frequency.  (c) This effect can be seen in the 𝛼𝑒𝑓𝑓 vs. 

𝐻𝑎 graph. At low fields the damping is higher until it approaches a saturation point at 

high fields which is approximately the intrinsic Gilbert damping. ........................... 160 

Figure 7.3: (a) Schematic of inhomogeneous excitation due to similarity in the sizes 

of the pump (blue) and probe (red) pulses. The different amplitudes of the excited 

region cause a spin wave with non zero k to form and cause an increase in the 

damping of the system. (b) When the pump is large, the effects of disorder are 

reduced and with a smaller probe pulse, the area that is being probed is more 

homogeneous. ........................................................................................................... 162 

Figure 7.4: (a) Non-magnetic Al periodic nanostructures of size d with pitch, p. 

Taken from [149]. (b) After irradiation of a femtosecond pump pulse the elastic 

dynamics of a structure with 𝑑 = 200 nm displays a 1𝑝 dependence on the array 

pitch (Type II modes). The Type I modes are independent of the pitch and are due to 

the vibration of the elements themseleves (depend on d). Taken from [149]. (c) A 

strain pulse is launched in the Al film which travels through the GaAs Substrate to the 

(Ga,Mn)As magnetic film where the dynamics are detected by the probe pulse. Taken 

from [148]. (d) The strain pulse initiates magnetic dynamics due to the magneto-

elastic interaction in the magnetic film. A combination of these two effects occur in 

nanomagnetic arrays. Taken from [147]. .................................................................. 164 

Figure 7.5: (a) SEM image of a periodic Ni array of 156 nm wide squares with a 

pitch of 330nm. The colors indicate the wavelength and direction of the different 

SAW modes. (b) 2D Spatial Fourier transform of the periodic array from (a). The 

geometric arrangement of the elements cause discrete points in the spatial Fourier 

transform which correspond to the different SAWs. (c) Magnetic and (d) non-

magnetic (elastic) 𝐻𝑎 vs. Frequency dynamics. The non-magnetic spectra shows field 

independent frequencies corresponding to the SAWs. In the magnetic spectra (c) there 

is a magnetic mode that changes with 𝐻𝑎. However, as it passes through the SAW 

frequencies it is pinned and enhanced. ..................................................................... 167 

Figure 7.6: (a)  SEM images of the periodic array (top) and the random aperiodic 

pattern (bottom).  (b)  2D Spatial Fourier Transforms of the patterns. The dashed line 

in the Random 2D Fourier Transform corresponds to the k-vector with the largest 

average Fourier amplitude, and the solid lines to the limits of SAW influence as 

defined in the text.  (c)  Average radial Fourier amplitude as a function of k-vector 



xviii 

 

magnitude (𝑘𝑟).  The periodic array displays discrete k-vectors while the randomized 

pattern has a continuous spread in k-vectors.  The dashed line is a Gaussian fit to this 

distribution and the solid line the e−1cutoff.  The arrow is the maximum average 

radial Fourier amplitude. Taken from [156]. ............................................................ 170 

Figure 7.7: (a) Measured TR-MOKE Fourier spectra of the periodic array. The non-

magnetic channel displays well-defined field-independent SAW resonances. The 

magnetic response is pinned at these SAW frequencies. Dotted black line is the 

simulated Kittel mode. (b) In the randomized array, the non-magnetic channel shows 

a drastically reduced signal from the SAWs, indicating that their dominant influence 

has been suppressed. In the magnetic channel the intrinsic Kittel mode has been 

restored. There is still slight driving of the magnetization from SAWs at 9.6 GHz and 

12.7 GHz. Dotted black line is the simulated Kittel mode. Taken from [155]. ........ 172 

Figure 7.8: Side-by-side comparison of absolute Fourier spectra at different applied 

fields for (a) periodic and (b) randomized array. The periodic spectra are dominated 

by field-independent modes at the SAW frequencies (dashed lines), while the 

randomized array shows a dominant, strongly field-dependent peak at the Kittel 

resonance (red arrows). At 4.5 kOe, the absolute Fourier amplitude of the restored 

Kittel mode is ~2x larger than the amplitude at that frequency in the periodic array. 

Taken from [155]. ..................................................................................................... 175 

Figure 7.9:  (a)  Example of random array TR-MOKE time trace (H = 6 kOe) and fit 

to Eqn. (2) (R²=0.88); (b) Effective damping of the Kittel mode or dominant mode in 

the periodic array along with 95% confidence intervals of the fit.  (c)  The effective 

damping in the random pattern shows a restoration of the intrinsic relaxation with 

high confidence especially at higher fields. In the intermediate region there is still 

some driving due to weaker radial SAWs. Taken from [155]. ................................. 177 

Figure 7.10: Magnetic channel Fourier amplitude spectra measured on the (a) Ni and 

(b) Co arrays with comparison to non-magnetic reflectivity channel. Time sections of 

t = 1500–2500 ps were analyzed. The dashed white lines indicate the SAW 

frequencies analyzed.  (c-d) Normalized complex Fourier amplitude of the magnetic 

signal traced at 𝑓𝑆𝐴𝑊, after phase adjustment and scaling with the nonmagnetic signal. 

The circles and squares represent the real and imaginary parts, respectively. The solid 

and the dashed lines are the fits with the Lorentzian shape. The obtained pinning 

width Δ𝐻𝑃, pinning width error and Gilbert damping parameter estimated with Eq. (6) 

are also displayed. (e) 𝛼𝑒𝑓𝑓 displays effects due to inhomogeneous broadening and 

approaches the value of a film measured at 6 kOe (straight lines). .......................... 183 



xix 

 

Figure 8.1: (a) In the {x,y,z} coordinate system, the x and y directions are defined by 

the edges of the nanomagnet and the z-direction is the surface normal. The external 

field 𝑯 is applied at 𝜃𝐻 = 60° with respect to the surface normal. This cants the 

magnetization vector 𝑴𝒔 out of the plane to an angle 𝜃𝑀with respect to the surface 

normal and to an in-plane angle, 𝜑𝑀 from the x-axis. The phononic modes 𝒌 are 

characterized by their mode indices and their in-plane angle, 𝜑𝑘. 𝜑𝑚𝑝 is the in-plane 

angle between 𝑴𝒔 and 𝒌.  (b) The magnetization precession can be mapped to the 

{1,2,3} coordinate system defined by the direction of the magnetization vector and 

the plane of the cone due to the precession of 𝑴𝒔. 𝒎𝟑 is along the direction of 𝑴𝒔 at 

equilibrium, 𝒎𝟐 lies in the film plane and 𝒎𝟐 is orthogonal to 𝒎𝟐  and 𝒎𝟑. ......... 190 

Figure 8.2: (a) DFT spectra from TR-MOKE measurement at 3.6 kOe of the non-

magnetic signal. The time trace is shown in the inset. These frequencies do not 

change with applied field. Although the (2,1) mode is hard to see in this scan due to 

its much smaller amplitude compared to the other modes, its presence is verified by 

observing the full colormap of the magnetic signal.  (b) Fit of the phononic modes to 

equation (8.7). ........................................................................................................... 193 

Figure 8.3: (a) DFT spectra of the magnetic channel from TR-MOKE measurements 

at 1 kOe – 6kOe (left to right) for 𝜃𝐻 = 30°, 45° and 60°   (b) Fits of the magnetic 

resonances to equation (8.14) at 𝜃𝐻 = 30°, 45° and 60° over a range of applied field 

strengths. ................................................................................................................... 196 

Figure 8.4: Angular dependences of the various trigonometric terms (8.19-8.23) 

governing the coupling given by equations 8.17 and 8.18. ...................................... 199 

Figure 8.5: Example of solution to the magnon-phonon part of equation (8.26).  

When 𝜔𝐶 = 0, the two solutions are attributed to the phononic and magnonic 

resonances.  If 𝜔𝐶 ≠ 0, then the two systems are coupled, and close to the region 

where the magnon and phonon modes are degenerate the modes split and the two 

solutions have both magnon and phonon character. ................................................. 201 

Figure 8.6: (a) Scanning electron microscope image of 330nm x 330nm x 30nm Ni 

nanomagnet. (b) When the pump pulse (400nm) irradiates the sample, the deposited 

heat causes the element to thermally expand, which causes the element to vibrate at 

eigenfrequencies determined by the geometry and material properties. Additionally, 

the heat perturbs the magnetization causing the spins to precess around the effective 

field.  Due to magnetostriction, the spin and phonon systems are coupled to one 

another. A probe pulse (800nm) which is delayed in time monitors the dynamics 



xx 

 

following excitation. (c) Fourier amplitude spectra normalized for each field bin of 

the magnetic and (d) the non-magnetic detection channels. The arrows and dotted 

lines are indicators of the phononic eigenfrequencies.  The positions of these 

frequencies match in the magnetic and non-magnetic spectra. ................................. 202 

Figure 8.7: (a) Different vibrational modes measured in arrays of 200nm Al 

nanomagnets. Type II modes (red outline) depend on the pitch of the arrays and Type 

I are the intrinsic vibrations of the elements themselves and are independent of the 

pitch. Taken from [194]. (b) The crossings in periodic arrays (SEM in inset) 

discussed in chapter 7 are due to type II modes (c) whereas the crossings in an 

isolated nanomagnet (SEM in inset) discussed in this chapter are due to type I modes. 

(d) The coupling for Type II modes is more akin to a forced oscillation since the 

elastic energy is dominated by the SAW vibrations (red arrow). (e) With type I modes 

the coupling is more direct, occurring within the element itself............................... 205 

Figure 8.8: Close-ups of the Fourier amplitude spectra exhibiting anti-crossings for 

the (a) (1,1) and (b) (2,0) modes.  The amplitudes are normalized within each figure. 

Next to each colormap are the Fourier spectra obtained from the TR-MOKE time 

trace for the range of applied fields selected by the dotted gray box in the colormap. 

The two peaks are indicated by the red arrows. The inset in (a) is the boxed region 

Fourier transformed over a longer time length to display the two modes more clearly. 

(c) Simultaneous fits of equation (8.26) to the frequencies of the (1,1) and (d) (2,0) 

modes. The error in the frequencies is the FFT resolution obtained from the time 

duration of each frequency component in the signal.  (e) Mode splitting energy of the 

(1,1) and (2,0) crossings............................................................................................ 206 

Figure 8.9: (a) Normalized H vs. 𝜑𝑚𝑝 plot of the weighted angular coupling term 

(𝜔1𝐶2 + 𝜔2𝐶1). (b) Due to the experimental geometry, only certain out of plane 

angles of the magnetization 𝜃𝑀 were accessible for the range of applied fields 

employed in the experiment. (c)  The calculated frequency splitting as a function of 

𝜑𝑚𝑝 (dotted line in fig 8.9a) as well as the minimum frequency splitting taken from 

the data.  The y-error was calculated from the FFT resolution. For the x-error a 

resolution of ±10° was assumed for the in-plane positioning of the nanomagnet. (d) 

The experimental configuration and the measured spectra with fits to equation (8.26) 

when the magnetization is oriented along the edge of the square so that it is parallel 

with the (2,0) phononic mode and (e) after rotating the nanoelement so that 𝜑𝑚𝑝 =

45°. The spectrum shows an increase in the splitting of the two modes and the fit 

matches the rotation within ±10°. ............................................................................ 210 



xxi 

 

Table 8.1: Coupling, Loss rates and cooperativities for the different crossings. ..... 214 

Figure 8.11: Cooperativities of the 3 crossings. The first two are within the 

intermediate coupling regime while the 3rd is in the strong coupling regime. The DFT 

spectra at the crossover points are shown next to the colormaps. ............................ 215 

Table 8.2: Coupling and loss rates for the different crossings extracted from the time 

domain fits and from the DFT spectra (all values in GHz)....................................... 216 

Figure 8.12: Crossover points and peakfit data for (a) the (1,1) crossover, (b) the 

(2,0) crossover at 0° and (c) the (2,0) crossover at 45°. (d) The FWHM of the peaks 

and the mode splitting for the different crossings. .................................................... 217 

 

 

 

 

 

 

 

 

 

 

  



xxii 

 

Abstract 

Magnetoelastic Dynamics in Nanomagnetic Metamaterials 

Cassidy Berk 

5000 years ago cuneiform was imprinted on clay tablets in order to store information 

in Mesopotamia. The necessity to store information was due to the increasing 

complexity of civilizations which evolved after the Neolithic revolution. Today 

magnetic materials are used in order to imprint 0’s and 1’s into the spins of electrons. 

Again, this level of technological prowess is a reflection of our growing complexity 

as a civilization. Currently, we are in the throes of an information revolution, where 

individuals, businesses and governments alike store every possible bit of data 

obtainable. The demands of processing this data faster as well as addressing the 

massive amount of energy required to store it is going to be a major technological 

challenge of the ensuing decades. Being one of the dominant means of storing 

information, it is necessary to explore different methods of manipulating the spins in 

magnetic structures. Utilizing ultrafast laser pulses enables us to probe the magnetic 

system at unprecedentedly fast timescales and using the material’s elastic degree of 

freedom may enable more energy efficient control of the spins. At the very least a 

more thorough understanding of magnetoelastic interactions in condensed matter 

systems is important from a fundamental perspective.  

In this thesis, Time Resolved Magneto-Optical Kerr Effect (TR-MOKE) 

Spectroscopy is used to characterize magnetic materials. This technique is used to 
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measure the interlayer exchange coupling in magnetic multilayer structures. 

Additionally, a novel all-optical method to selectively manipulate spin dynamics in 

magnetic multilayers is introduced.  

Next, the magnetoelastic coupling in nanomagnetic arrays is presented. The array acts 

as a metamaterial due to the dependence of the elastic and magnetic dynamics on the 

array geometry. Furthermore, the dynamics are modelled as a forced harmonic 

oscillator, where the elastic waves act as the driving term. Finally, the magnetoelastic 

coupling in an individual nanomagnet is explored, and is modeled as a pair of coupled 

harmonic oscillators. The hybridization between elastic and magnetic oscillations is 

observed for the first time, and the angular dependence between the relevant elastic 

and magnetic vectors is used to tune the system into the strong coupling regime. 

 

 

 

 

 

 

 



xxiv 

 

Acknowledgements  

It is interesting to reflect on my mindset as I entered graduate school and began the 

undertaking of this PhD. Fresh to California, bright eyed and full of hope, I had a full 

two years of undergraduate research under my belt and was ready to tackle the 

problems of magnetism (whatever that was). The plan was to start at the ground floor 

and address the issues in magnetism arising at the level of quantum electrodynamics 

and work my way up from there.  

I knew research would be challenging, but I did not know the extent of the 

psychological effects that the scientific process has on a fresh researcher—most 

notably the failure, and the sense of perpetually wandering around in the dark, lost 

and feeling personally to blame. However, I was also unaware of the sheer joy of 

discovery that occurs after spending time lost, and how much perspective occurs at 

the end of the process. I feel extremely fortunate and grateful to have had this 

experience and am conscious of all of those who helped me throughout: 

First off, my advisor Holger Schmidt who supported me from beginning to end. His 

meticulous ability to pick out relevant information and his solid reliance on 

quantitative proof has rubbed off on me and without a doubt made me a better 

scientist. 

Second, my parents, Lon Berk and Linda Wetzel and my sister Norah Berk who 

offered their ear and words of wisdom whenever I needed them. 

Third, the Applied Optics Group. I have enjoyed everyone who I have had the 

opportunity to work with. However I must make some special shoutouts. Yu Yahagi, 



xxv 

 

who mentored me as I first started on this endeavor, and taught me that most 

problems can be solved through patience and Mike Jaris, my magnetic brother in 

arms. 

Lastly, I must give a special thanks to The Knutzens who provided me with a 

hilarious and creative outlet during these years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxvi 

 

 

 

 

 

 

 

 

 

 

 

“Magnetism, you recall from physics class, is a powerful force that causes certain 

items to be attracted to refrigerators” 

—Dave Barry 
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CHAPTER 1: INFORMATION AND 

CIVILIZATION 
 

 “In the beginning the earth was a bare plain. All was dark. There was no life, no 

death. The sun, the moon, and the stars slept beneath the earth. All the eternal 

ancestors slept there, too, until at last they woke themselves out of their own eternity 

and broke through to the surface.” 

-Australian Aboriginal Origin Story 

 

1.1 Early Information Technology 

One of the most defining and powerful characteristics of Homo sapiens is their ability 

to pass on information. While today we take our ability to send an email, calculate 

driving directions, or save a document for granted, achieving this level of information 

processing and storage was a gradual process. The first information storage 

mechanism was the human brain. While the brain’s information processing ability is 

remarkable, we are all aware of the limitations when it comes to memory. The 

information tends to become corrupted for a multitude of reasons. Personal biases, 

injury, stress, and age all contribute to the corruption of data. Despite these 

limitations, in early societies it was the means of storing information. Furthermore, 

the information was transferred from generation to generation through oral traditions. 

Ancient orators had a remarkable ability to recount long epics. They worked around 
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the brain’s data corruption issues through the use of mnemonic techniques such as 

repetitive rhythmic storytelling. In this way concepts of personal history, rule of law 

and religion (often all intertwined into an overall worldview) could be maintained 

throughout generations. Information transfer in the way of oral traditions enabled 

different cultures to form. Additionally, passing on information was vital as a matter 

of survival. For example, by passing on information regarding seasonal changes early 

humans were better able to prepare for and live through a harsh winter. Information 

on what food was edible, what plants make good medicines and improved hunting 

tactics could also be passed down through the ages. 

 

 

Figure 1.1: Cave art of lions hunting bison from the Cauvet-Pont d’Arc cave in 

France. The oldest drawings in this cave date back roughly 30,000 years. Taken from 

[1]. 
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Additionally, lessons of morality were interwoven into these oral traditions. 

Developing a moral code enabled humans to cooperate more effectively, enhancing 

their likelihood of survival. At some point art as a visual aid was incorporated into the 

story telling. Of all the senses, vision is the most dominant in human beings—the 

majority of information concerning the environment is obtained through sight. Art as 

a visual aid to storytelling evoked more imagination in the listeners and enabled a 

more effective transfer of information. There are examples of cave art found around 

the world dating back as far as 40,000 years ago. Some of the most preserved cave art 

can be found in the Chauvet-Pont d’Arc Cave in southeast France. [1] (Fig. 1.1)  

1.2 Neolithic Information Technology 

Sometime around 12,000 years ago Homo sapiens began settling down into farming 

communities. This change is known as the Neolithic revolution and marked the 

beginning of more settled societies. As humans settled down, they began to amass 

things that they were not able to hold on to as nomadic hunter gatherers. The concept 

of personal possessions began to form. During the rise of these communities, symbols 

inscribed on various media began to appear. The oldest of these symbols are the Jiahu 

symbols inscribed on a tortoise shell found in China which date back 8500 years. 

(Fig. 1.2) [2] The exact meaning of the symbols is debated by scholars and may never 

be known. However, the act of inscribing information in the form of symbols onto a 

permanent medium is a non-trivial development in the information storage ability of 

Homo sapiens. 
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Figure 1.2: Jiahu symbols found inscribed on a Tortoise shell in Henan, China. The 

markings date back to 6600 BC. Taken from [3]. 

 

Additionally, farming in these societies provided stability by providing more food 

which in turn allowed communities to grow. With larger communities, people began 

to assume different roles within society and more complex social and political 

systems began to form. More complex societies meant more information was 

necessary to hold them together. For example, feeding more people became a 

collective effort which meant information on food yield and reserves needed to be 

kept track of. Taxes and systems of currency formed around the more complex social 

and political arrangements. Keeping track of all of this information quickly became 

too complex for a single person or even group of people relying on memory or 

abstract symbols inscribed on tortoise shells. As societies became more complex 

symbols evolved into an actual writing system. Cuneiform is considered the first 

writing system and emerged in Mesopotamia around 3200 BC. The wedge-like 

symbols were designed in order to directly convey information in Sumerian. Many of 
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the tablets were administrative and bureaucratic in origin which reflected the 

information needs of these increasingly complex societies. However, some have more 

humanitarian historical interest. The Instructions of Shyuruppak are an example of 

one of the earliest forms of literature which was used in order to convey ideas of 

morality. (Fig. 1.3) [4] 

 

 

Figure 1.3: Instructions of Shuruppak. Early example of literature written in 

cuneiform on a clay tablet around 2500 BC. Taken from [4]. 

 

It must have been quite difficult being an administrator in ancient Sumer, sorting 

through clay tablets in an attempt to find a record. The problem was certainly 
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understood by the ancients and soon a solution was found. Papyrus scrolls were 

developed. The scrolls could be rolled up so that many more scrolls could be stored in 

the same area as a clay tablet—increasing the information storage density. Writing on 

papyrus was much easier than imprinting markings in clay. Additionally, sorting 

through sheets of papyrus was easier than moving around large clay tablets making 

data retrieval easier.  The only downside was that the scrolls were less durable than 

clay tablets. 

Another development of information technology was the use of alphabets which 

mapped phonemes to a particular symbol. The spoken word was then able to be 

directly stored onto a medium, either clay tablet or papyrus. This reduced the 

complexity of necessitating multiple symbols in order to represent various concepts. 

The Phoenician alphabet is the earliest alphabet and was spread throughout the 

Mediterranean world by Phoenician traders. It derived from Egyptian hieroglyphs and 

from it derived Greek and Latin. Many modern writing systems can therefore be 

directly linked to the Phoenician alphabet. [5] 

Major developments of information storage technology remained relatively stagnant 

for many years until the advent of the printing press in 1451 by Johannes Gutenberg. 

This occurred at the beginning of the age of European exploration, when European 

ships circled the globe in search of riches and adventure as well as in an attempt to 

spread Christianity. The printing press enabled exciting accounts of these voyages to 

be spread throughout the populations of Europe which lead to an increase in literacy 

among the middle classes. [6] Additionally, it allowed scientists to more effectively 
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share their discoveries with one another since scientific texts were more easily mass 

produced, which brought about the scientific revolution and the enlightenment. The 

remarkable change in the availability and communicability of information due to the 

printing press was a driving factor contributing to the industrial revolution. 

1.3 Industrial Information Storage 

Once again information technology was drastically altered by another monumental 

change in human civilization—the industrial revolution. Typically traced to the 

development of the steam engine by Thomas Newcomen in 1712 [7] the industrial 

revolution marked the beginning of industrialized society as well as ushering in 

unprecedented developments in science and technology. Machines began to assist 

every aspect of human life. As societies industrialized and became more complex, 

improvements to information technology followed.  In 1725 the punch card was 

invented by Joseph Marie Jacquard as a means for representing digital data and 

controlling a loom. [8] In 1832 Semen Korsakov conceived of a machine to use 

punch cards to store and retrieve information. [9] The industrial revolution also 

ushered in the age of electricity. Through the work of Andre-Marie Ampere, Charles-

Augustin de Coulomb, Michael Faraday and James Clerk Maxwell, humanity learned 

of the intimate connection between electricity and magnetism. It wasn’t long before 

information technology was affected by this newly discovered relationship. Magnetic 

materials which are the topic of this thesis became a dominant medium for the storage 

of information.  
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1.4 Magnetic Recording 

The first magnetic recording was demonstrated by Valdemar Poulsen in 1898 who 

recorded a human voice on a ferromagnetic wire. [10] In 1928 magnetic tape was 

invented in Germany. The tape consisted of Fe2O3 coated on a strip of paper. [11] 

Along with the development of the ring shape taped head in 1933 and AC biasing the 

quality of audio recording vastly improved. [11] In 1951 tape was used to record 

digital data at a density of 256 bits/in
2
. The bits are physically represented as the 

magnetization orientation of a collection of grains. (Fig. 1.4 a)  Improvements to the 

bits/in
2
 metric are a perpetual drive of the storage industry. In 1956 the first magnetic 

hard disk drive (HDD) was developed by IBM. Known as RAMAC and operating at 

2000 bits/in
2
, this HDD was intended to be used on main frame computers. Today, 

HDDs are standard on all personal computers and have storage (areal) densities of 

1012 bits/in
2
 (1 TB/in

2
). [11] HDDs consist of a disk with a magnetic material as the 

storage medium, a head which can both write and read the data, a motor, and circuitry 

for signal processing, and motor feedback and control. [12] The write head is a tiny 

electromagnet. 
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Figure 1.4: (a) Example of bits (red or blue) written into a granular magnetic 

material. A bit consists of a region composed of multiple magnetic grains all oriented 

in the same direction. Taken from [12]. (b) Energy barrier separating two different 

magnetic states. When this barrier becomes comparable to the thermal energy in the 

room (𝑘𝐵𝑇), the bits become less stable.  

 

1.4.1 Superparamagnetic Effect 

As HDD areal densities increase and the sizes of bits decrease, fundamental limits 

become an issue. One limit is due to the superparamagnetic effect. In small 

nanoparticles the direction of the magnetization can flip due to the thermal energy of 

the room (~300 K). (Fig. 1.4 b) The time between successive flips is given by the 

Neel relaxation time [13] 

𝜏𝑁 = 𝜏0𝑒
(

𝐾𝑉

𝑘𝐵𝑇
)
     (1.1) 
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Where 𝜏0 is a characteristic time related to the material, K is the anisotropy constant, 

V is the volume, 𝑘𝐵 is the Boltzmann constant, and T is the temperature. Therefore, as 

dimensions decrease, the anisotropy must increase in order to maintain stability. 

Increased anisotropy requires more energy to write the bits which is limited by the 

accessible magnetic fields of write heads. Therefore, there is a tradeoff between size, 

stability and energy consumption. The industry standard for HDD stability is 𝜏𝑁 = 10 

years which translates to 
𝐾𝑉

𝑘𝐵𝑇
> 60. [12] 

Achieving storage densities of this magnitude has been a continual process of 

improving all aspects of the device. Some examples are utilizing perpendicularly 

magnetized materials rather than materials that are magnetized in the plane 

(longitudinal). (Fig. 1.5) Advantages to perpendicular recording media are that the 

superparamagnetic limit is different, allowing the dimensions of the grains to be 

scaled down. Additionally, it is possible to use amorphous materials with no grains at 

all in which bits are stable at even smaller sizes. [14] 
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Figure 1.5: (a) Example of longitudinal recording and (b) perpendicular recording. 

Perpendicular recording offers the benefit of increased storage areal densities. 

 

1.4.2 Giant Magnetoresistance 

Another major achievement in increasing areal densities came from improvements in 

the read head due to the giant magnetoresistance Effect (GMR). GMR was discovered 

in 1988 [15] and commercialized by IBM in the 1990’s [16]. GMR is a change in the 

resistance due to the mutual orientation of two magnetic thin films separated by a 

spacer layer. If the two magnetizations are oriented in the same direction the 

resistance is low, if they are oriented in opposite directions the resistance is high. 

(Fig. 1.6) This effect improved the SNR of the readout process and allowed smaller 

elements to be detected. 
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Figure 1.6: (a) When the magnetization of two layers are oriented in the same 

direction, current flows through the system more easily—the structure has a low 

resistance. (b) When the magnetizations of the layers are anti-parallel there is more 

spin scattering resulting in a higher resistance. 

 

1.4.3 Bit Patterned Media 

In general there are two ways to address the super-paramagnetic limit. From equation 

1.1 we see that in order to maintain the industry stability criteria we can either 

increase 𝐾 or 𝑉. While at first glance it would seem that increasing 𝑉 would be 

counterproductive to increasing areal densities this is not entirely true. Replacing 

granular media with bit patterned media increases the volume term responsible for the 

superparamagnetic effect while decreasing the size of a bit. (Fig. 1.7) This is the case 

because in patterned media the KV energy is a function of the isolated nanomagnet 

rather than an individual grain as in the case of granular media. [17] While the 

patterned nanomagnet is bigger than a grain, it is smaller than the bit area which is 
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made up of many grains. Another advantage of patterned media is that transition 

noise which occurs due the imperfect boundary between bits in granular media is 

eliminated. The major issues facing bit patterned media are systemic. The HDD 

industry relies on the technological infrastructure already in place. Fabrication of 

patterned bits at competitive dimensions would require a change in the industrial 

fabrication process. [12] Additionally, addressing each bit for the read and write 

process would require vast improvements to the synchronization between the read 

and write heads and the location of the bits. Currently, in granular media the bit 

positions are determined by the location of the write head. [17] 

 

Figure 1.7: Schematic showing the difference between conventional granular media 

and patterned magnetic media. Taken from [12]. 
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1.4.4 Heat Assisted Magnetic Recording 

Increasing K is another way of addressing the superparamagnetic limit. A higher K 

material is more stable and therefore less likely to be affected by thermal fluctuations. 

However, it also requires a larger magnetic field to switch the magnetization 

direction. This is limited by the capabilities of the write head. A new technology 

which addresses this problem is known as heat assisted magnetic recording (HAMR). 

(Fig. 1.8) In this device a laser is incorporated into the write head. The laser locally 

heats up the magnetic material which lowers the material’s coercivity enabling it to 

be switched by the magnetic field from the write head. When the material cools, the 

coercivity returns to normal and the bit remains in its switched state. This allows 

higher K materials to be used so that grains can be shrunk down. This technology was 

launched in 2019 by Seagate with an areal density of 2 TB/in
2
. However, areal 

densities of 10 TB/in
2
 have been theoretically proposed. [18]  
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Figure 1.8: (a) Example of the write process in HAMR. Initially the bit is stored in a 

state which is too hard to switch (high coercivity). Application of a laser heats the 

magnetic material resulting in a decrease of the coercivity so that the bit can be 

affected by the magnetic field from the write coil. As the magnetic material cools it 

assumes its original stable state. (b) Schematic of HAMR write head. Taken from 

[12]. 

 

1.4.5 All-Optical Switching 

In addition to improvements of the recording media and read head, novel effects for 

writing the bits are being explored. One of the most exciting recent discoveries 

concerning ultrafast manipulation of magnetism was all-optical switching (AOS). 

[19] Using circularly polarized femtosecond laser pulses, the orientation of the 

magnetization could be switched deterministically. (Fig. 1.9) The switching occurs in 
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the absence of an external field and depends on the helicity of the light. The most 

likely mechanism causing the switching has been thought to result from the 

optomagnetic field induced by the circular polarization of the light and is known as 

the inverse Faraday effect. Initially demonstrated in ferrimagnetic films with 

circularly polarized light, AOS has also been demonstrated in thin ferromagnetic 

films. [20] Additionally, switching has been demonstrated using linearly polarized 

pulses in ferrimagnetic structures. [21] In these systems the heat from the laser pulse 

causes the different sub-lattices to demagnetize at different rates. The interaction 

between the different sublattices’ demagnetization dynamics causes the system to 

switch orientation. [22] The full microscopic description of AOS that accounts for the 

interaction of optomagnetic effects, heating effects, and scattering of the different 

sub-systems is STILL being debated. [23] 

 

 

Figure 1.9: (a) Experimental demonstration of all-optical switching (AOS) on a 

GdFeCo thin film. The different contrasts of the film are obtained using a Kerr 
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microscope and represent the magnetization orientation. Right handed circularly 

polarized light (𝜎+) only affects the magnetization oriented in one direction while 

left handed circularly polarized light (𝜎−) affects the magnetization oriented in the 

other direction. (b) Schematic showing how AOS could be used to write bits. Taken 

from [19]. 

 

1.4.6 Fundamental Questions and Other Technological Applications  

Part of the reason AOS is still not understood is that the timescales which govern the 

electronic interactions are only recently becoming experimentally accessible. The 

advent of femtosecond laser systems have provided a means of probing these 

interactions at relevant time scales. The phonon system typically has dynamics 

around ~1 ps, the spin system ~100 fs and electron system ~10 fs. [24] Understanding 

and manipulating interactions at these timescales could have implications for future 

magnetic technologies operating at THz frequencies. (Fig. 1.10 a) A burgeoning field 

is that of spintronics (magnonics) which uses the spin of the electron or spinwaves 

(magnons) to improve data storage, information processing and communication 

technology. [25] Spintronics may supplement or even replace certain areas of 

electronics which use the charge as the information processing unit. (Fig. 1.10 b) 

Using magnons instead of charge to process information has certain benefits such as 

non-dissipative heating (transport of magnons does not cause heating of the device). 

Additionally, as device dimensions shrink and the wavelength of the spin wave 

decreases, the exchange interaction becomes dominant. The wave velocity of these 
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exchange magnons increases with increasing wave vector which has potential in 

nanoscale signal transmission devices. [25] Additionally, computing speeds could 

increase due to the quadratic scaling of the exchange magnon frequency. [26] 

Achieving these technologies will require solutions to problems that are deeply 

fundamental in nature.  

 

 

Figure 1.10: (a) Illustration of the timescales of magnetic processes and some 

potential technologies which could be impacted. Taken from [24]. (b) Magnons have 
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many data processing applications. In some instances magnonics may replace 

electronics. However, realistically they will be implemented into existing 

technologies which will require mechanisms for converting between spin and charge. 

Taken from [26]. 

 

1.5 Contemporary Information Technology 

We are currently in the throes of an information revolution, where individuals, 

businesses and governments alike store every possible bit of data obtainable. The 

demands of processing this data faster as well as addressing the massive amount of 

energy required to store it is going to be a major technological challenge in the 

ensuing decades. Trends in big data, e-commerce and a shift towards internet based 

media are contributing to the ever growing energy consumption of data centers. 

Currently data centers use roughly 200 terawatt-hours each year. This accounts for 

1% of global electricity use. This could rise to 8% of global demand by 2030. [27] 

Additionally, the information and communication technology (ICT) industry accounts 

for 2% of global carbon emissions. ICT consists of not just data centers which 

comprise 0.3% of emissions, but also personal electronic devices, and the network 

infrastructure supporting them. This percentage will only increase with the rise of 

artificial intelligence and the internet of things in which the number of internet 

connected devices is expected to double by 2020. [28] Therefore, in order to meet the 
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future electricity demands facing the ICT sector improvements in energy efficiency is 

extremely important.  

1.6 Metamaterials 

As we are faced with new technological challenges sometimes it is necessary to 

create a material with novel characteristics. These engineered materials are known as 

metamaterials and are created by periodically modifying various parameters to affect 

the wavelength of the system of interest (e.g. electromagnetic, magnetic or elastic). 

For example, the index of refraction can be altered to produce novel electromagnetic 

effects. [29] In this thesis, we will see how the periodic arrangement of nanomagnetic 

elements as well as the geometry of an individual element can give rise to novel 

elastic and magnetic effects which are connected via the magnetoelastic effect.  

1.7 Problem Statement and Chapters 

Being a dominant means of storing information, faster and more energy efficient 

means of manipulating the spins in magnetic materials is important. As discussed, 

femtosecond laser pulses provide a means of manipulating and probing the spin 

dynamics at unprecedentedly fast time scales. Additionally, the elastic (phononic) 

degree of freedom is an alternative means of manipulating the spins which may aid in 

improving the efficiency of future devices. At the very least, a complete 

understanding of the various mechanisms concerning the manipulation of the spin 

system is necessary from a fundamental point of view. In this thesis, we use ultrafast 

optical spectroscopic techniques to characterize and manipulate magnetic materials as 
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well as exploring the coupling of elastic and magnetic degrees of freedom in 

technologically relevant nanomagnetic arrays and individual isolated nanomagnets.  

In Chapter 2 we discuss the quantum mechanical origins of magnetism. Starting from 

a single electron and ending with multi-electron atoms in a crystalline environment 

we cover the underlying forces which are responsible for the effects discussed in later 

chapters. A complete understanding of magnetism is only possible if the quantum 

mechanics of atoms and crystals is understood. 

In Chapter 3 we continue the theoretical exploration of magnetism into the 

macroscopic limit. When a sufficient number of atoms are present, the quantum 

physics converges to classical physics and continuum mechanics can be used to 

model the magnetization dynamics. In this realm, understanding the magnetic system 

is accomplished by breaking the system down into different phenomenological energy 

terms. While the quantum physics discussed in Chapter 2 is essential for 

understanding the origin of these energies, the dynamics in this thesis are 

mathematically described in this macroscopic realm. 

In Chapter 4 we cover the theory behind the Time-Resolved Magneto-Optic Kerr 

Effect which is the experimental technique used to measure the dynamics in this 

thesis. We also discuss the experimental setup and some intuitive concepts necessary 

to correctly implement the experiment and analyze the experimental data. 

In Chapter 5 we demonstrate how the experimental techniques of chapter 4 can be 

applied to characterize magnetic materials. We measure intrinsic magnetic parameters 
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of individual magnetic thin films as well as measuring the interlayer exchange 

coupling in magnetic multilayer structures.  

In Chapter 6 we introduce a novel all-optical technique for manipulating the spin 

resonances in multilayer magnetic structures. We show that by appropriately tuning 

the timing between two femtosecond laser pulses we are able to selectively quench or 

enhance a specific spin wave mode within the multilayer structure. 

In Chapter 7 we discuss the magnetic damping parameter in more detail, covering 

intrinsic and extrinsic contributions. We also introduce the concept of magneto-elastic 

coupling and how it affects the dynamics in arrays of nanomagnetic elements. We 

discuss how magneto-elastic effects can be mitigated by controlling the geometry of 

the array as well as how they can be used to measure the damping the arrays. These 

array structures are metamaterials due to the ability to control their properties through 

altering their geometry. 

In Chapter 8 we discuss the magneto-elastic dynamics in an individual nanomagnet 

which is also dependent on the structure’s geometry. In the individual nanomagnet we 

are able to spectroscopically resolve the strong coupling between magnetic and elastic 

modes. We show how we can control the extent of the coupling by using an external 

magnetic field. Finally, we provide a 2-dimensional mathematical description of the 

phenomenon. 

In Chapter 9 we summarize the results of the thesis. 
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CHAPTER 2: MICROSCOPIC 

MAGNETISM 
 

“One can still say that quantum mechanics is the key to understanding magnetism. 

When one enters the first room with this key there are unexpected rooms beyond, but 

it is always the master key that unlocks each door.” 

-John H. Van Vleck 

 

2.1 Single electron 

 

Figure 2.1: The electron is a wavelike particle with an intrinsic property known as 

spin. The name spin comes from the similarity to angular momentum. However, the 

exact nature of what causes spin is debated. 
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What is the electron spin? Does it come from the little ball of mass spinning faster 

than the speed of light? Does it stem from the circular flow of energy due to the 

electron’s wave field? [30] Is it just the basic fundamental quanta of angular 

momentum?  Can the internal structure of the electron explain it? The origin of the 

spin angular momentum has been the source of much debate.  What is sure, is that it 

exists. For an electron, the spin can take on two quantized values along a given axis 

[31] 

𝑺𝒛| ±⟩ = ±
ℏ

2
| ±⟩     (2.1) 

Where 𝑺𝒛 is the spin angular momentum operator projected along the z axis, | ±⟩ are 

the eigenkets of 𝑺𝒛, ±
ℏ

2
 are the eigenvalues, and ℏ is the reduced Planck constant. The 

two spin states are degenerate in the absence of any external perturbations. If an 

external field is applied along the positive z-direction then the degeneracy of the two 

states is lifted so that | +⟩ is the lower energy state. 

Additionally, if the electron is prepared in a particular spin state (| +⟩ or | −⟩), the 

spin component measured along a different axis is given by [31] 

|𝑆𝑢; ±⟩ =
𝑎

√2
| +⟩ ±

𝑏

√2
| −⟩    (2.2) 

Where |𝑆𝑢; ±⟩ are the eigenkets of the observable 𝑺𝒖 along the new axis. 𝑺𝒖 also has 

eigenvalues ±
ℏ

2
. If 𝑢 = 𝑥 then 𝑎 = 𝑏 = 1. If  𝑢 = 𝑦 then 𝑎 = 1 and 𝑏 = 𝑖. The total 

angular momentum operator can also be defined as 
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𝑺 ∙ 𝑺 = 𝑺𝟐 = 𝑆𝑥
2 + 𝑆𝑦

2 + 𝑆𝑧
2 =

3

4
ℏ2    (2.3) 

Figure 2.2 shows the relationship between the total angular momentum and the 

quantized values along the z-axis. 

 

 

Figure 2.2: Relationship between the total spin angular momentum and the 

projections onto the z-axis. 
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2.2 Electron and Nucleus 

2.2.1 Angular Momentum and Magnetic Moments 

 

Figure 2.3: Vector diagram showing the relationship between the angular 

momentum, l, of the electron, which arises due to the circulating electron mass, 𝑚𝑒, 

and the magnetic dipole, 𝝁𝒍 resulting from the circulating current, i. 

 

In the presence of a nucleus the electron’s circular motion around the nucleus results 

in another form of angular momentum called orbital angular momentum. [32] The 

classical equation for angular momentum is 

𝒍 = 𝑚𝑒(𝒓 × 𝒗)    (2.4) 

Where 𝑚𝑒 is the mass of the eleectron, r is the distance from the nucleus and v is the 

electron’s velocity. Because the electron has an intrinsic charge, e, associated with it, 
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this circular motion corresponds to a current loop which leads to a magnetic moment. 

The classical relation is 𝜇 = 𝑖𝐴, with 𝑖 =
𝑒𝑣

2𝜋𝑟
 and A is the area of the circular loop. 

(Fig. 2.3) Putting these together results in the following equation for the orbital 

magnetic dipole moment  

𝝁𝒍 =
𝑒

2𝑚𝑒
 𝒍     (2.5) 

Since e is negative the magnetic moment is antiparallel to the angular momentum. 

The importance of this relation cannot be understated as it serves to highlight the 

intimate relation between the magnetic moment and angular momentum. It is often 

expressed as 

𝝁𝒍 = −𝑔𝑙
𝜇𝐵

ℏ
 𝒍     (2.6) 

Where 𝜇𝐵 =
𝑒ℏ

2𝑚𝑒
 is the Bohr magneton, the fundamental unit for the magnetic 

moment. Comparing with equation (2.5) we can see that 𝜇𝐵 is the magnetic dipole 

moment of an electron with |𝒍| = ℏ. 𝑔𝑙 is the orbital g-factor which is a 

dimensionless scaling term that depends on the particle or system it represents. 

Additionally, we can assign a spin magnetic moment to the electron due to the 

intrinsic spin angular momentum discussed previously 

𝝁𝑺 = −𝑔𝑆
𝜇𝐵

ℏ
 𝑺    (2.7) 

Where 𝑔𝑆 = −2.0023 is the g-factor for the spin of the electron. From this we see 

that the projection of 𝝁𝑺 onto an axis of quantization is approximately equal to 𝜇𝐵.  
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2.2.2 Hydrogen-Like Atoms and Atomic Orbitals 

A single electron orbiting a nucleus is the Hydrogen atom.  The time-independent 

Hamiltonian of the Hydrogen atom is given by a kinetic energy term due to the 

motion of the electron and a potential energy term due to the binding Coulomb 

potential of the nucleus. It is given by 

ℋ =
𝑝2

2𝑚𝑒
−

𝑍𝑒2

𝑟
    (2.8) 

where p is the momentum of the electron and Z is the nuclear charge (Z=1 for the 

Hydrogen atom and can take other values for Hydrogen-like atoms). Equation (2.8) is 

a quantum well in a spherically symmetric potential and leads to the following 

eigenvalue equation known as the Schrödinger equation 

ℋ𝜙𝑛𝑙𝑚 = 𝐸𝑛𝑙𝑚𝜙𝑛𝑙𝑚    (2.9) 

Where 𝐸𝑛𝑙𝑚 is the energy eigenvalue and 𝜙𝑛𝑙𝑚 are the eigenfunctions 

(wavefunctions) for the electron. Since the potential is spherical the eigenfunctions 

are expressed in spherical coordinates  

𝜙𝑛𝑙𝑚 = 𝑅𝑛𝑙(𝑟)𝑌𝑙
𝑚(𝜃, 𝜑)   (2.10) 

where 𝑅𝑛𝑙(𝑟) is the radial component which depends on the distance of the electron 

from the nucleus, r, and 𝑌𝑙
𝑚(𝜃, 𝜑) are spherical harmonics, which describe the polar 

(𝜃) and azimuthal (𝜑) distribution of the wavefunctions. Their expressions are in 

every quantum mechanics textbook [31,33] and will not be repeated here.  
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These wavefunctions serve as a basis for determining the configuration of more 

complex atoms. As we add more electrons, they occupy successive eigenfunctions 

given by equation (2.10). The wavefunctions (and thus a particular electron within an 

atom) can be identified by the quantum numbers n, l and m. Finding the lowest 

energy state of an atom consists in identifying which atomic orbital wavefunctions are 

occupied with electrons and which are not. This is accomplished by identifying the 

lowest energy orbital wavefunctions in a particular atomic environment. Additionally, 

this ground state can be a superposition of multiple wavefunctions. In the spherically 

symmetric potential of a Hydrogen-like atom with a single nucleus, the energies of 

the eigenfunctions do not depend on 𝜃 or 𝜑 and we are left with the eigenvalue 

equation 

ℋ𝑅𝑛𝑙(𝑟) = 𝐸𝑛𝑅𝑛𝑙(𝑟)    (2.11) 

Where 𝐸𝑛 are the energy eigenvalues given by [31] 

𝐸𝑛 = −
𝑍2𝑒2

2𝑛2𝑎0
= −

𝑍𝑒2

2𝑟𝑛
    (2.12) 

where 𝑎0 =
ℏ2

𝑚𝑒2 is the Bohr radius and 𝑟𝑛 =
𝑛2𝑎0

𝑍
. The energies depend on the 

principal quantum number n, which designates the electron shell. For each successive 

n the electron is located farther from the nucleus and another node is introduced in the 

radial function. For the n-th level there are 𝑛2 degenerate states, which can be further 

branded by the quantum numbers l and 𝑚𝑙. The angular quantum number l designates 

the subshell or orbital of the electron with the requirement that 𝑙 < 𝑛. The values of 
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l=0,1,2,3,… correspond to letters s,p,d,f  which were chosen based off the first letter 

of the spectral properties of alkali metals (sharp, principal, diffuse and fundamental). 

Within each subshell (characterized by l) there is a subset of 2𝑙 + 1 different spatial 

configurations of the orbitals. These are further identified by the magnetic quantum 

numbers 𝑚𝑙. This number corresponds to the projection of the orbital momentum 

onto an arbitrarily chosen axis and can take values {𝑙, 𝑙 − 1, … , −𝑙}.  In the spherically 

symmetric potential of the Hydrogen-like atom the orbitals in the electron shell are 

degenerate. The degeneracy within a subshell can be broken by application of an 

external magnetic field (Zeeman Effect)—hence the name magnetic quantum number. 

 

 

Figure 2.4: Atomic orbitals.  Each row of orbitals is a successive electron shell 

characterized by quantum number n. The columns separate the different electron 

orbitals or subshells (s,p and d) which are specified by their orbital quantum number 

l. The different spatial configurations of the subshells are further specified by their 



31 

 

magnetic quantum number 𝑚𝑙. The spatial designation of each orbital is shown below 

its magnetic quantum number. 

 

The two most widely studied and technologically relevant groups of magnetic 

materials are the iron group magnetic materials characterized by elements with 

unfilled 3d shells and the rare earch elements characterized by elements with an 

unfilled 4f shell. Because both of these shells have many orbital states for the elctrons 

to occupy, elements with unfilled shells can have a large net magnetic moment even 

at room temperature. [34]  

2.3 Multi-Electron Atoms 

2.3.1 Hartree-Fock Approximation and Slater Determinant 

As we add more electrons to the atom, they begin to interact and another term enters 

into the Hamiltonian. In the absence of spin orbit interaction or a magnetic field, the 

Hamiltonian is given by  

ℋ = ∑
𝑝𝑖

2

2𝑚

𝑍
𝑖=1 − ∑

𝑍𝑒2

𝒓𝑖

𝑍
𝑖=1 + ∑

𝑒2

|𝒓𝑖−𝒓𝑗|

𝑍
𝑖<𝑗    (2.13) 

Where similar to above, the first term represents the kinetic energy, summed over all 

of the electrons. The second term is the sum of all the potentials due to the nuclear-

electron interactions and the third term is the Coulomb repulsion due to the presence 

of the other electrons. 
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In order to describe the configuration of an atom using this Hamiltonian a global 

eigenfunction which depends on the coordinates of all the electrons must be chosen. 

Since electrons are fermions, no two electrons can occupy the same state 

simultaneously.  This is known as the Pauli exclusion principle and requires that the 

global wave function be anti-symmetric* upon interchanging the coordinates of two 

electrons (spin or position) and is zero if they occupy the same state.[35] J.C. Slater in 

1929 came up with a global wavefunction known as the Slater determinant which 

satisfies the antisymmetry criteria  

𝜓 =
1

√𝑁!
|

𝜙1(𝑟1) 𝜙2(𝑟1)
𝜙1(𝑟2) 𝜙2(𝑟2)

⋯ 𝜙𝑁(𝑟1)
⋯ 𝜙𝑁(𝑟2)

⋮ ⋮
𝜙1(𝑟𝑁) 𝜙2(𝑟𝑁)

⋱ ⋮
⋯ 𝜙𝑁(𝑟𝑁)

|   (2.14) 

Where 𝜙𝑖(𝒓𝑗) refers to electron i located at position j. We still use single electron 

orbitals to describe the state of the multi-electron atoms. Self-consistently solving 

                                                 
*
 To see why this is the case, assume two particles, each in a different state 𝜙1(𝑟1) and 𝜙2(𝑟2). If 

the particles are indistinguishable, then the global state 𝜓 of the two-particle system is either 

𝜙1(𝑟1)𝜙2(𝑟2) or 𝜙2(𝑟1)𝜙1(𝑟2) Before measurement, we say that the particles exist in a 

superposition of both states.  Therefore, 𝜓 = 𝜙1(𝑟1)𝜙2(𝑟2) ± 𝜙2(𝑟1)𝜙1(𝑟2), where the plus sign 

indicates the symmetric state and the minus sign the anti-symmetric state.  If the particles are in the 

same state, then the anti-symmetric state is 𝜓 = 𝜙1(𝑟1)𝜙1(𝑟2) − 𝜙1(𝑟1)𝜙1(𝑟2) = 0. This 

cannot be the case because then the wavefunction vanishes. Therefore, making the global wave 

function antisymmetric ensures that the particles do not occupy the same state simultaneously. [35] 
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equation (2.13) with the Slater determinant wavefunction is known as the Hartree-

Fock Approximation. It captures some of the basic physics but unsurprisingly fails to 

explain all atomic phenomena. However, the true behavior of the atoms can be 

explained by introducing perturbations to this approximation, thus making it relevant 

from a conceptual perspective. [36]  

As we add electrons to the atom, we are interested in the overall ground state atomic 

configuration—which orbitals get occupied first. Due to the Pauli exclusion principle 

an electron can only occupy one quantum state at a given time.  However, the spin of 

the electron provides another degree of freedom. Kramers degeneracy theorem tells 

us that in the case of a spin 
1

2
 particle, every state is double degenerate. [36] This 

means two electrons can occupy the same orbital as long as they have opposite spin. 

We now need another quantum number that we can use to identify a particular 

electron, the spin quantum number 𝑚𝑆 (1
2⁄ , − 1

2⁄ ). Additionally, within a given 

subshell there are now 2(2𝑙 + 1) possible quantum states for the electron to occupy, 

where the 2 comes from the two spin states. 

2.3.2 LS-Coupling 

The angular momentum of all the electrons in a particular atomic configuration can 

be summed to get the total orbital angular momentum 𝑳 = ∑ 𝒍𝑖𝑖  and total spin angular 

momentum 𝑺 = ∑ 𝒔𝑖𝑖 . If a specific shell is completely filled with electrons, L and S 

are zero and the atom has no net magnetic moment. If this is not the case, then the 𝑚 
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electrons in the unfilled shell will have 𝑁 = (2(2𝑙 + 1)
𝑚

) possible ways to be 

distributed among the 2(2𝑙 + 1) orbital states. [36] The N sets of configurational 

states each have an L and S associated with them.  The sum of total orbital L and spin 

S angular momentum results in a Total angular momentum 𝐉 = 𝐋 + 𝐒, and the sets of 

configurations which have the same J are called multiplets. Without other 

perturbations to the system (such as spin-orbit coupling) these multiplets are 

degenerate. 

If spin orbit coupling is introduced to the system then the multiplet energy levels no 

longer all have the same energy.  There are two methods of coupling the spin and 

orbital components which depend on the relative strength of the spin-orbit interaction. 

The first method couples the total orbital and spin moments of the atomic 

configuration (𝐉 = 𝐋 + 𝐒) and is known as Russel-Saunders Coupling. It is valid for 

the lighter elements when the coulombic interaction between the electrons (last term 

in Eq. 2.13) is greater than the individual electron’s spin-orbit interaction. In this case 

the multiplets’ energies are split by introducing spin-orbit coupling as a perturbation. 

With heavier elements spin-orbit or jj coupling is stronger than the coulombic 

repulsion from the other electrons.  In this case the coulombic interaction acts as the 

perturbation.  (Fig. 2.5) 
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Figure 2.5: Vector diagram demonstrating the difference between LS-coupling and 

jj-coupling.  (a) When electron-electron coulombic interaction is larger than the spin 

orbit interaction (𝑉𝑒𝑒 > 𝑉𝑠𝑜) the sum of the electrons’ orbital moments is coupled to 

the sum of their spins. (b) If 𝑉𝑒𝑒 < 𝑉𝑠𝑜 then the individual electron’s orbital moment is 

coupled to its spin moment and then the total J is found by summing up the individual 

j’s from the different electrons. 

 

2.3.3 Spin-Orbit Coupling 

Spin-orbit coupling is a relativistic interaction between the electron and the nucleus. 

In the frame of the electron it is the nucleus that is rotating around the electron, not 



36 

 

the other way around.  Therefore the electron feels a magnetic field from the nucleus. 

[36] 

𝐻𝑁 = 𝑍𝑒
𝒓×𝒗

𝑟3 =
𝑍𝑒ℏ

𝑚

1

𝑟3 𝒍   (2.15) 

Where c is the speed of light. The energy of the electron’s spin magnetic moment in 

this field is [36] 

𝑉𝑆𝑂 =
𝑍𝑒ℏ

𝑚
𝑔𝜇𝐵

1

𝑟3 𝒔 ∙ 𝒍    (2.16) 

The coordinate frame of the electron is not constant.  The electron is being 

accelerated by the interaction with the nucleus.  Considering this problem 

relativistically the electron frame rotates opposite to the rest (Nucleus) frame at half 

the Larmor frequency.  Therefore a factor of two is added.  This is called the Thomas 

Correction. [36] 

This is only considering the potential from the nucleus 
𝑍𝑒

𝑟3 and not the potential from 

the other electrons.  We can absorb the other electrons’ Coulomb potential into the 

potential from the nucleus and replace 𝑍 with 𝑍𝑒𝑓𝑓. Averaging over all the electrons 

the energy is given by 

𝑉𝑆𝑂 = 𝜆(𝑳 ∙ 𝑺)     (2.17) 

Where 𝜆 =
𝑔𝑍𝑒𝑓𝑓𝜇𝐵

2

2𝑆
〈

𝟏

𝑟3
〉. 
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As mentioned earlier, in the realm where Russel-Saunders coupling is valid, the 

energy levels of the LS-multiplet are split due to a perturbation from 𝑉𝑆𝑂.  The 

eigenvalues from the spin-orbit interaction are given by 

𝜆(𝑳 ∙ 𝑺) =
1

2
 𝜆[(𝐿 + 𝑆)2 − 𝐿2 − 𝑆2] =

1

2
 𝜆[𝐽(𝐽 + 1) − 𝐿(𝐿 + 1) − 𝑆(𝑆 + 1)]    (2.18) 

Where 𝐽 can have values 𝐽 = 𝐿 + 𝑆, 𝐿 + 𝑆 − 1, … , |𝐿 − 𝑆|. Without spin-orbit 

coupling the multiplet states can be classified by |𝐿, 𝑆, 𝑚𝑙 , 𝑚𝑆⟩.  These configurations 

with a given value of L and S all have the same energy.  Diagonalizing the 

Hamiltonian in the presence of spin-orbit coupling causes the state space to change 

resulting in the new basis states  

|𝐿, 𝑆, 𝐽, 𝑚𝐽⟩ = ∑ 𝑐𝑖|𝐿, 𝑆, 𝑚𝑙 , 𝑚𝑆⟩𝑖    (2.19) 

Where 𝑐𝑖 are the Clebsh-Gordon coefficients.  The new atomic configurational states 

are now described by 𝐽 and 𝑚𝐽 and are superpositions of the states described by 𝑚𝑙 

and 𝑚𝑆. [31] 

2.3.4 Hund’s Rules 

As electrons are added to an unfilled shell, Hund’s rules can be used to predict the 

ground state. These rules are empirical, meaning they have been rationalized after 

experimental evidence. However, hindsight has explained them as arising from the 

Coulomb repulsion of charges as well as the antisymmetric nature of the global 

wavefunction. The rules hold well for the 4f atoms which are close to the nucleus and 

less exposed to the surrounding crystalline environment. They are not as successful in 
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explaining the 3d atoms where the effects of crystal field and quenching of the orbital 

angular momentum must be considered. If the first rule does not successfully isolate 

the ground state, move on to the second rule, if the second rule still leaves some 

degeneracy move on to the third. 

1) The multiplet with the maximum multiplicity lies in the lowest energy level.  

Since the multiplicity is proportional to (2𝑆 + 1), the ground state is the multiplet 

that maximizes the value of S. The wavefunction can be decomposed into a spin and 

spatial part 𝜓𝑡𝑜𝑡 = 𝜙𝑠𝑝𝑎𝑐𝑒𝜒𝑠𝑝𝑖𝑛.  If the spins are aligned in the same direction 

(maximizing S) then 𝜒𝑠𝑝𝑖𝑛 is symmetric.  This means that 𝜙𝑠𝑝𝑎𝑐𝑒 must be 

antisymmetric.  The opposite is true if the spins are anti-parallel to one another 

(minimizing S). Since the probability of an antisymmetric spatial wavefunction 

|𝜙𝑠𝑝𝑎𝑐𝑒|
2

= 0 at the origin, there is less of an overall probability of the electrons 

occupying the same space at the same time which is preferable since it lowers the 

Coulomb potential. Therefore, the lower energy state is the one where the spins are in 

the same direction, which maximizes S which maximizes the multiplicity. [37] 
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Figure 2.6: Diagram showing symmetric and anti-symmetric wavefunctions and their 

probability amplitudes. The anti-symmetric wavefunction has a probability of zero at 

the origin which makes it a lower energy state from a coulombic potential point of 

view. Taken from [37]. 

 

2) Within a given multiplet the term with the largest value of L has the lowest 

energy.  The reason for this stems from the orbit-orbit interaction and a tendency to 

minimize the Coulomb energy. Since electrons in orbits with the same sign of angular 

momentum travel the same direction around the nucleus, they will pass one another 

less frequently. Thus they will in general be farther away from each other—lowering 

the Coulomb energy. [37] 

3) If the outermost subshell of the atom is less than half filled (𝑚 < 2𝑙 + 1), then the 

lowest energy state is the one with the lowest value of J. If the outermost subshell is 

more than half filled (𝑚 > 2𝑙 + 1) then the opposite is true—the lowest energy state 
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is the one with the highest value of J.  This is a consequence of spin-orbit coupling. 

[39] 

2.4 Multiple Atoms 

2.4.1 Crystal Field 

As we add atoms together to form a crystal, the atom’s surrounding environment 

changes.  The neighboring atoms within the crystal add potentials to the Hamiltonian. 

One way to imagine how this would affect the environment is to imagine the 

neighboring atoms as being represented by point charges. [36] 

𝑉𝑐𝑟𝑦𝑠𝑡 = ∑
𝑒𝑖

|𝒓−𝑹𝒊|𝑖     (2.20) 

Where 𝑹𝒊 is the position of the neighboring ion and 𝑒𝑖 is its charge. This added term 

to the Hamiltonian in equation (2.13) lifts the degeneracy of the (2𝑙 + 1) orbitals 

within a subshell.  However, the energy of the orbitals depends entirely on the 

position of the ions and therefore on the symmetry of the crystal. Transforming 

equation (2.20) into spherical coordinates and expanding in spherical harmonics gives 

the following series [38] 

𝑉𝑐𝑟𝑦𝑠𝑡 = ∑ ∑ 𝑟𝑘𝑞𝑘𝑚𝐶𝑚
(𝑘)(𝜃, 𝜑)𝑘

𝑚=−𝑘
∞
𝑘=0   (2.21) 

Where 

𝑞𝑘𝑚 = (
4𝜋

2𝑘+1
)

1
2⁄ 𝑍𝑒2

𝑎𝑘+1
∑ 𝑌𝑘𝑚

∗ (𝜃𝑖 , 𝜑𝑖)
𝑁𝑠
𝑖=1   (2.22) 
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And 

𝐶𝑚
(𝑘)(𝜃, 𝜑) = (

4𝜋

2𝑘+1
)

1
2⁄

𝑌𝑘𝑚(𝜃, 𝜑)   (2.23) 

𝑁𝑠 is the number of surrounding point charges, a is the radial position of the point 

charges, r the radial position of the electron and 𝑌𝑘𝑚(𝜃, 𝜑) are spherical harmonics. 

Although this expression looks daunting, the main point is that the exact 

representation of the expanded terms changes depending on the symmetry of the 

crystal (location of point charges). Additionally, since the wavefunctions are also 

comprised of spherical harmonics, each term in the expansion is responsible for the 

perturbation of a different orbital.†  [39] 

 

                                                 
†
 An interesting side note is the application of group theory to the splitting of the 

orbitals. Assume all the orbitals in a particular subshell form a space. Applying 

transformations dictated by the symmetry of a particular crystalline environment 

allows certain orbitals to transform into others. The sets of orbitals that transform into 

themselves form a subspace and have the same energy. [39] 
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Figure 2.7: (a) Position of atom (red dot) in cubic crystalline environment 

surrounded by negative point charges. (b)   The d-orbitals that point in the direction 

of the point charges have a higher energy and form 𝑒𝑔 doublet group. (c) The orbitals 

that do not point directly at the negative point charges form the 𝑡2𝑔 triplet group and 

have a lower energy. Taken from [40]. 

 

The different energies of the orbitals relates back to the Coulomb repulsion. As an 

example, for a free ion the d-orbitals all have the same energy in free space.  But in a 

cubic crystalline environment |𝑥𝑦⟩, |𝑥𝑧⟩ and |𝑦𝑧⟩ (𝑡2𝑔 orbitals) have lower energy 

than |𝑧2⟩ and |𝑥2 − 𝑦2⟩ (𝑒𝑔 orbitals). (Fig. 2.7) This is because the 𝑡2𝑔 orbitals do not 
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point in the direction of the neighboring ions whereas the 𝑒𝑔 orbitals do which costs 

coulombic energy. [40] 

2.4.2 Quenching of Orbital Angular Momentum 

Depending on the strength of the Crystal field compared to the spin orbit interaction, 

the crystal field can quench the orbital momentum of the electrons. If the ground state 

configuration is degenerate the state can be composed into a superposition of 

wavefunctions with the same 𝑚𝑙.  As an example we consider the |𝑥𝑦⟩ and |𝑥2 − 𝑦2⟩ 

wave functions which are characterized by 𝑚𝑙 = ±2. These are real wavefunctions 

with the only difference arising in their azimuthal dependence. The superposition of 

these two real wavefunctions is also a solution to the Schrödinger equation. The linear 

combination is a complex wavefunction represented as [40] 

|±2⟩ = |𝑥2 − 𝑦2⟩ ± |𝑥𝑦⟩ = 𝑅𝑛𝑙(𝑟)𝑇𝑙
𝑚(𝜃)𝑒±𝑖2𝜑  (2.24) 

Where 𝑅𝑛𝑙(𝑟) is the radial function defined earlier and 𝑇𝑙
𝑚(𝜃) is a function which 

only depends on the polar angle.   

The expectation value for orbital momentum of the wavefunction is 

⟨±2|𝐿𝑧|±2⟩ = ±2ℏ    (2.25) 

Where 𝐿𝑧 = −𝑖ℏ
𝜕

𝜕𝜑
. The probablility distribution of this wavefunction is shown in 

figure 2.8a.  However, if the crystal field is strong enough it can split this degenerate 

ground state so that the new ground state is non-degenerate. Assuming the cubic 
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crystal field discussed earlier this would make the |𝑥𝑦⟩ state the new ground state.  

This state is a real eigenfunction and since 𝐿𝑧 is imaginary the expectation value is  

⟨𝑥𝑦|𝐿𝑧|𝑥𝑦⟩ = 0    (2.26) 

Hence the term quenching of the orbital momentum. The electric field from the 

crystalline environment locks in the orbital moment so the wavefunction is more of a 

standing wave (cos 𝜑) rather than a travelling wave (𝑒𝑖𝑚𝜑). [40] Quenching the 

orbital momentum costs energy through the spin-orbit interaction, so depending on 

the relative strengths of the crystal field and the spin-orbit interaction intermediate 

cases can arise as well. 

 

 

Figure 2.8: Probability amplitude of wavefunctions demonstrating (a) No quenching 

of the orbital moment. The wavefunction is complex, made up of a superposition of 

wavefunctions with the same 𝑚𝑙.  (b) Partial quenching of the orbital momentum.  In 

this case the spin-orbit interaction still has some effect so as to mix the two real 

wavefunctions with the same 𝑚𝑙. (c) Total quenching of the orbital momentum. The 
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effect from the crystal field causes |𝑥𝑦⟩ to be the ground state.  This is a real 

eigenfunction and therefore has zero expectation value for 𝐿𝑧.  Taken from [40]. 

 

Quenching of the orbital moment is dominant in the iron-series elements since the 3d 

electrons which are responsible for the magnetism are more exposed to the electric 

field from the surrounding crystalline environment. Quenching is not present in the 

rare-earth elements, where the magnetism arises from the 4f electrons which are 

located closer to the nucleus and are shielded from the surrounding crystalline electric 

field by 5d, 5s and 6s electrons.  

2.4.3 Hubbard Model 

One consequence of this change is that the outer electrons’ wavefunctions start to 

overlap with neighboring atoms. The electrons are then allowed to move around to 

nearest neighbor atoms. Their probability of “hopping” to neighboring atoms is given 

by a hopping integral, 𝑡𝑖𝑗. However, each hop comes at a cost of Coulomb energy if 

the electrons occupy the same orbital (obviously with different spin). [41] This is the 

Hubbard model for electrons in solids named after John Hubbard. It was originally 

intended to explain the itinerant nature of electrons in 3d metals.  The Hamiltonian of 

this system is given by 

ℋ𝐻𝑢𝑏𝑏 = ∑ 𝑡𝑖𝑗𝑎𝑖,𝜎
+

𝑖,𝑗,𝜎 𝑎𝑗,𝜎 + 𝑈 ∑ 𝑛𝑖,↑𝑖 𝑛𝑖,↓   (2.27) 
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Where 𝑎𝑖,𝜎
+  creates, 𝑎𝑖,𝜎 annihilates and 𝑛𝑖,𝜎 = 𝑎𝑖,𝜎

+ 𝑎𝑖,𝜎 is the number of electrons with 

spin σ at lattice point i. The first term is the kinetic energy term and arises from the 

overlap of the wave functions 

𝑡𝑖𝑗 = ∫ 𝑑3𝑟  𝜙𝑖
∗(𝒓)𝑉𝐶𝑟𝑦𝑠𝑡𝜙𝑗(𝒓)   (2.28) 

Where 𝑉𝐶𝑟𝑦𝑠𝑡 is the crystal potential (Eq. 2.21).[36]  The second term is the potential 

energy that arises from electrons that occupy the same site. 

𝑈 = ∫ 𝑑3𝑟1𝑑3𝑟2  |𝜙𝑗(𝒓𝟏)|
2 𝑒2

|𝑟12|
 |𝜙𝑗(𝒓𝟐)|

2
   (2.29) 

If 𝑡𝑖𝑗 is large compared to U, then electrons are free to move about the crystal.  This is 

the case for the 4s electrons in the transition metal ferromagnets.  The 3d electrons are 

somewhere in between.  Because they are closer to the nucleus they are less screened 

than the 4s electrons and feel the draw of the nuclear potential more.  Although they 

are able to move about the crystal the Coulomb interaction correlates them with one 

another through the exchange interaction. Finally if U is much greater than 𝑡𝑖𝑗 the 

electrons behave more like the isolated atom.  This is the case in the rare-earth 4f 

electrons which are localized close to the nucleus. This model has been used to 

explain Mott transitions when the values of U and 𝑡𝑖𝑗 are varied to change the state 

from an insulator to a metal. [41] 
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2.4.4 Exchange Interaction 

If the neighboring atoms are also magnetic in their isolated state and are close 

together in a crystalline environment the inter-atomic exchange tends to align all the 

electrons’ spins. Assuming two hydrogen like atoms, the Hamiltonian of the electrons 

is given by 

ℋ = ∑
𝑝𝑖

2

2𝑚

𝑁
𝑖=1 − ∑ ∑

𝑍𝐴𝑒2

𝒓𝐴,𝑖

𝑁
𝑖=1

2
𝐴=1 + ∑

𝑒2

|𝒓𝑖−𝒓𝑗|

𝑁
𝑖<𝑗   (2.30) 

Notice the similarity to equation (2.13) except that instead of adding up the electrons 

on a particular atomic site, are adding up the electrons on the outer orbitals of each 

atom.  We assume that the filled lower energy orbitals are all tightly bound to the 

nucleus and so do not feel the influence of the electrons on neighboring atoms as 

much as the outer electrons do.  Considering two electrons, since their total 

wavefunction must be anti-symmetric and 𝜓𝑡𝑜𝑡 = 𝜙𝑠𝑝𝑎𝑐𝑒𝜒𝑠𝑝𝑖𝑛 then we have the 

following possibilities 

𝜓𝑆 = 𝜙𝑠𝑦𝑚𝜒𝑎𝑛𝑡𝑖    (2.31) 

𝜓𝑇 = 𝜙𝑎𝑛𝑡𝑖𝜒𝑠𝑦𝑚    (2.32) 

𝜙𝑠𝑦𝑚 =
1

√2
[𝜙1(𝒓1)𝜙2(𝒓2) + 𝜙2(𝒓1)𝜙1(𝒓2)]  (2.33) 

𝜙𝑎𝑛𝑡𝑖 =
1

√2
[𝜙1(𝒓1)𝜙2(𝒓2) − 𝜙2(𝒓1)𝜙1(𝒓2)]  (2.34) 
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𝜙1(𝒓1)𝜒𝑠𝑦𝑚 = {

𝜒↑(𝒓1)𝜒↑(𝒓2)
1

√2
[𝜒↑(𝒓1)𝜒↓(𝒓2) − 𝜒↓(𝒓1)𝜒↑(𝒓2)]

𝜒↓(𝒓1)𝜒↓(𝒓2)

   (2.35) 

𝜒𝑎𝑛𝑡𝑖 =
1

√2
[𝜒↑(𝒓1)𝜒↓(𝒓2) − 𝜒↓(𝒓1)𝜒↑(𝒓2)]   (2.36) 

Where 𝜙𝑖(𝒓𝑗) refers to electron i located at position j. 𝜒𝜎(𝒓𝑗) refers to the electron at 

position j with spin 𝜎 ∈ {↑, ↓}. Simply considering the last term in the Hamiltonian 

(Eq. 2.30), which is the Coulombic interaction (ℋ𝐶𝑜𝑢𝑙) between the electrons, we can 

express the expectation value as [42]  

𝐸 = 〈𝜓|ℋ𝐶𝑜𝑢𝑙|𝜓〉 = 𝐾12 ± 𝐽12   (2.37) 

Where + corresponds to 𝜓𝑆 and – to 𝜓𝑇 and  

𝐾12 = ∫|𝜙𝑖(𝒓1)|2 𝑒2

|𝒓𝑖−𝒓𝑗|
|𝜙𝑗(𝒓2)|

2
𝑑3𝑟1𝑑3𝑟2   (2.38) 

𝐽12 = ∫ 𝜙𝑖
∗(𝒓1)𝜙𝑗

∗(𝒓2)
𝑒2

|𝒓𝑖−𝒓𝑗|
𝜙𝑖(𝒓2)𝜙𝑗(𝒓1) 𝑑3𝑟1𝑑3𝑟2 (2.39) 

The expectation value becomes a function of the spatial wavefunctions due to the 

orthogonality of the spin eigenfunctions. The first term (Eq. 2.38) is the Coulombic 

interaction between electrons on neighboring sites.  It is the same as the energy given 

in the Hubbard Model. The second term (Eq. 2.39) is a coulombic interaction that 

arises due to the quantum nature of fermions. It stems from the anti-symmetric nature 

of the wavefunctions which are represented as Slater Determinants in order to account 

for the Pauli exclusion principle.  
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2.4.5 Heisenberg Approximation 

Although it is the spatial overlap of the orbitals that dictate the value of 𝐽12, it is 

convenient to relate this interaction to the spin system since the orbital state directly 

corresponds to the state of the spin system (Eqs. 2.31-2.36). The total spin of the two 

electron system is given by 𝑺 = 𝒔𝟏 + 𝒔𝟐 so that the operator 𝑺𝟐 = 𝒔𝟏
𝟐 + 𝒔𝟐

𝟐 + 2𝒔𝟏 ⋅

𝒔𝟐.  This shows that the eigenvalues of the total spin system depend on the mutual 

orientation of 𝒔𝟏 and 𝒔𝟐. [40] Using the operator −1

2
− 2𝒔𝟏 ⋅ 𝒔𝟐 we can rewrite the 

energy (Eq. 2.37) as [42] 

𝐸 = 𝐾 − 1

2
𝐽12 − 2𝐽12𝒔𝟏 ⋅ 𝒔𝟐    (2.40) 

Rather than expressing the different energy eigenvalues as arising due to the 

symmetric or asymmetric spatial wave functions, they are expressed as the mutual 

orientation of the spins. The spin dependent part of this energy is referred to as the 

Heisenberg Exchange Hamiltonian 

ℋ𝑒𝑥 = −2𝐽12𝒔𝟏 ⋅ 𝒔𝟐    (2.41) 

Referring back to equation (2.30) where each atom has more than one spin the last 

term due to the coulombic interaction takes the form  

ℋ𝑒𝑥 = −2 ∑ 𝐽𝑖𝑗𝒔𝒊 ⋅ 𝒔𝒋
𝑁
𝑖<𝑗 = −2𝐽𝑺𝟏 ⋅ 𝑺𝟐  (2.42) 

Where 𝑺𝟏 = ∑ 𝒔𝒊𝑖  and 𝑺𝟐 = ∑ 𝒔𝒋𝑗  and the exchange interaction was assumed to be 

isotropic and the same between all the electrons on the neighboring atoms. If 𝐽 > 0 
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then the lowest energy arises from parallel spins and the material is said to be 

ferromagnetic.  On the other hand, if 𝐽 < 0, then the lowest energy state is when the 

spins are anti-parallel and the material is said to be anti-ferromagnetic. [42] 

This model works well for explaining the magnetism of insulating magnetic atoms, 

but not as well at explaining the ferromagnetism that arises in materials such as Fe, 

Ni, and Co where the electrons are itinerant (allowed to move around the crystal). 

[42] However, it is an important phenomenological result and plays an important role 

in macroscopic magnetization theory discussed in the next chapter. 
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CHAPTER 3: MACROSCOPIC 

MAGNETISM (MICROMAGNETICS) 
 

“Electric and magnetic forces. May they live forever, and never be forgot, if only to 

remind us that the science of electromagnetics, in spite of the abstract nature of its 

theory, involving quantities whose nature is entirely unknown at the present, is really 

and truly founded on the observations of real Newtonian forces, electric and 

magnetic respectively” 

-Oliver Heaviside 

 

3.1 Magnetization Vector 

When the material under consideration is much larger than the atomic distances 

between atoms, the quantum mechanical effects discussed earlier manifest themselves 

in classical analogues and the behavior of the system can be modelled using 

continuum mechanics. This realm of magnetism is known as Micromagnetics. The 

magnetization of the material is represented by the macroscopic magnetization vector 

which is a sum of all of the dipoles per unit volume [43] 

𝑴(𝑇) =
∑ 𝝁

𝑽
      (3.1) 

𝑴 is not a constant of temperature, T. Thermal contributions excite the spins, which 

cause them to lose coherence with one another. At a critical temperature known as the 
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Curie Temperature (𝑇𝐶) the spins lose total coherence and 𝑴(𝑇𝐶) = 0. (Fig. 3.1) 

Furthermore, the Magnetization vector is a continuous function of the position, 𝒓, 

throughout the material  

𝑴(𝒓) = 𝑀𝑆𝒎(𝒓)     (3.2) 

Where 𝑀𝑆 is the saturation magnetization, and 𝒎 ⋅ 𝒎 = 1. Since we are now in a 

realm consisting of many atoms whose energies depend on temperature, 

thermodynamics and statistical physics become useful in describing the macroscopic 

magnetic states. 

 

Figure 3.1: At lower temperatures all of the dipoles are aligned due to the exchange 

interaction and the magnetization vector which is the net dipole moment per unit 

volume is large.  As the temperature increases, thermal energy excites the spins so 

that they are no longer perfectly aligned with one another.  This causes the magnitude 

of the magnetization vector to decrease.  The temperature at which the net magnetic 

moment is zero is known as the Curie Temperature. 
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3.2 Free Energy 

An extremely useful thermodynamic potential for understanding the properties of a 

magnetic material is the magnetic free energy 

𝐹(𝑇, 𝑴, 𝜖) = 𝑈 − 𝑇𝑆      (3.3) 

Where U is the internal energy of the magnetic system, T is the temperature, S is the 

entropy, 𝑴 is the magnetization vector which has a directional dependence and 𝜖 is 

the strain.[44]. The internal energy U is fixed and intrinsic to the particular magnetic 

system while 𝑇𝑆 is the extra energy due to the temperature and entropy. 𝐹(𝑇, 𝑴, 𝜖) is 

therefore a measure of the amount of work obtainable from the magnetic system. The 

directional dependence of 𝑴 arises from various energy terms such as exchange 

energy, anisotropy energy (magneto-crystalline and shape), magnetostatic energy and 

magnetostriction, which all compete to preferentially align the magnetization vector 

in particular directions. A more experimentally useful thermodynamic potential is the 

Gibbs free energy [45] 

𝐺(𝑇, 𝑩, 𝜖) = 𝐹 − 𝑩𝑴     (3.4) 

Where 𝑩 is the magnetic flux.  B can be altered experimentally by application of an 

applied field, 𝑯𝒂. In equilibrium at constant temperature, (
𝜕𝐹

𝜕𝑀
)

𝑇
= 0 which gives the 

following relation 

(
𝜕𝐺

𝜕𝑀
)

𝑇
= −𝑩 = −𝜇0𝑯𝑒𝑓𝑓     (3.5) 
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Where 𝑯𝑒𝑓𝑓 is the effective field within the magnetic material.  As we will see in this 

section, the resonance of the magnetic system depends on the effective field (and 

therefore on the Gibbs free energy). Therefore, by changing the applied field 𝑯𝒂 we 

can change the Gibbs free energy, which changes the resonance characteristics of the 

system, which we can probe experimentally. This allows us to learn about inherent 

characteristics of the magnetic material.  But first, we must discuss the various 

contributions to the free energy. 

3.2.1 Zeeman Energy 

The first energy term is due to the presence of an externally applied magnetic field 

and is known as the Zeeman energy. [43] It is given by 

𝐸𝑍 = − ∫ 𝑴 ⋅ 𝑯𝒂 𝑑𝑉      (3.6) 

The energy minimum is the direction in which the magnetization is aligned parallel to 

the magnetic field. 

 

Figure 3.2: Free energy landscape (a) only considering the exchange energy causes 

all the spins to be aligned but with no preferential direction. All directions are 
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energetically equivalent. (b) Applying an external field along the z-direction will 

deform the free energy surface creating an energy minimum. The direction of the 

magnetization vector is normal to the surface at the minimum (along the z-direction). 

 

3.2.2 Exchange Energy 

 

 

Figure 3.3:  Magnetization vectors for different spins, 𝑚𝑖 and 𝑚𝑗 separated by a 

distance 𝚫𝒓.  

 

The exchange energy arises from the Heisenberg exchange Hamiltonian.  

Considering the exchange between two spins [46] 

𝐸𝑒𝑥 = −2𝐽𝑖𝑗𝑺𝒊 ⋅ 𝑺𝒋 = −2𝐽𝑆2𝑐𝑜𝑠𝜙𝑖𝑗    (3.7) 

Where 𝜙𝑖𝑗 is the angle between neighboring spins. Since the exchange energy is 

extremely strong at short distances we can assume that there is negligible difference 
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in the orientation of neighboring spins so that 𝜙𝑖𝑗 ≈ |𝒎𝒊 − 𝒎𝒋| (Fig. 3.3).  The 

exchange energy then becomes  

𝐸𝑒𝑥 = −2𝐽𝑆2 [1 −
1

2
(𝒎𝒊 − 𝒎𝒋)

2
]    (3.8) 

Because 𝒎(𝒓) is a continuous function of position, eq. (3.8)  can be re-written as 

𝐸𝑒𝑥 = −2𝐽𝑆2 [1 −
1

2
(𝒎(𝒓) − 𝒎(𝒓 + 𝚫𝒓))

2
]   (3.9) 

Where 𝚫𝒓 is the distance between two magnetic moments.  Taylor expanding 

𝒎(𝒓 + 𝚫𝒓) in 𝚫𝒓 gives 

𝐸𝑒𝑥 = 𝐽𝑆2(𝚫𝒓 ⋅ 𝛁𝒎)2    (3.10) 

Where the constant term has been dropped since we can always redefine the zero 

point of energy and so it doesn’t affect any energy minimization procedures. In order 

to obtain the total energy of the system we sum up the contribution over the nearest 

neighbors, 𝚫𝒓, then integrate over the entire material 

𝐸𝑒𝑥 = 𝐽𝑆2 ∫ ∑ (𝚫𝒓𝒊 ⋅ 𝛁𝒎)2
𝑖 𝑑𝑉    (3.11) 

Because the summation depends on the position of the nearest neighbors, the exact 

representation of the exchange energy depends on the crystalline symmetry of the 

material.  As an example, for a simple cubic lattice the summation is over the six 

nearest neighbors 𝚫𝒓𝒊 = 𝑎(±1, ±1, ±1), where 𝑎 is the lattice spacing.  Since one 

volume element is one unit cell of the lattice (𝑎3 for the cubic lattice), the Exchange 

energy becomes 
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𝐸𝑒𝑥 = 𝐴 ∫(𝛁𝒎)2 𝑑𝑉     (3.12) 

Where A is the exchange constant or stiffness constant and depends on the symmetry 

of the crystal. Various expressions of A for different crystal lattices are shown in 

figure 3.4. It should be emphasized that this expression is valid only if the angle 

between neighboring spins is very small, so that changes in the direction of 𝒎 occur 

over long distances. Therefore, the model is not valid at higher temperatures when 

thermal fluctuations are of comparable magnitude between the neighboring exchange 

energy. [46] Additionally this energy only depends on the mutual orientation of the 

spins.  There is no reference to an outside coordinate system, so if this were the only 

energy term the spins would all be aligned, but could point in any direction. (Fig. 3.3) 

 

 

Figure 3.4: Exchange constant terms for different crystallographic structures. 
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3.2.3 Bilinear Exchange Energy 

In addition to the intralayer exchange energy mentioned earlier, there also exists an 

interlayer exchange energy due to the presence of another magnetic material in close 

proximity. [47,48] This is known as the bilinear exchange coupling. Instead of 

measuring the energy as a gradient due to slight variations of the spins over 

(comparatively) long distances, we treat the two magnetic materials as macrospins. 

The bilinear exchange coupling energy between the two magnetization vectors is 

𝐸𝐵𝐿 = −𝐽1
𝑴𝟏∙𝑴𝟐

𝑀𝑆1𝑀𝑆2
     (3.13) 

Where 𝐽1 is the temperature dependent exchange coupling between the two layers. 

Similar to the intralayer exchange term, a positive value tends to align the spins in the 

same direction and a negative value aligns the spins in opposite directions. Typically, 

𝐽1 decreases with increasing spacer thickness, and for certain spacers 𝐽1 has been 

shown to be an oscillatory function of the distance between the layers, switching 

between ferromagnetic and anti-ferromagnetic coupling with decreasing magnitude. 

[49]  

3.2.4 Demagetization Field and Shape Anisotropy Energy 

In addition to the quantum mechanical exchange interaction orienting the spins, the 

classical dipole-dipole interaction between magnetic moments on different atomic 

sites, 𝝁𝒊 plays a role.   
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Figure 3.5: Field generated by a magnetic dipole which tends to align neighboring 

dipoles along the field lines.  The field strength depends inversely on the distance, but 

it also depends on the mutual orientation between the dipoles which can cause 

alignment in different directions. 

 

Taking into account the interaction between all the dipoles gives [46] 

𝑬𝑴 = −
𝟏

𝟐
∑ 𝝁𝒊 ⋅ 𝒉𝒊𝒊      (3.14) 

Where the 1

2
 adjusts for counting the interactions between the same dipoles twice. The 

field 𝒉𝒊 at point i is given by the contribution from all the other dipoles. (Fig. 3.5) 

𝒉𝒊 = ∑ −
𝝁𝒋

|𝒓𝒊𝒋|
𝟑𝒋 +

𝟑(𝒓𝒊𝒋⋅𝝁𝒋)𝒓𝒊𝒋

|𝒓𝒊𝒋|
𝟓     (3.15) 
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To find the equilibrium configuration of the magnetic body using equations (3.14) 

and (3.15) would require a summation over the entire magnetic material and would be 

quite cumbersome. Therefore, it is useful to decompose the magnetic body into two 

regions. (Fig. 3.6)  

 

 

Figure 3.6: Diagram showing the different regions used to derive the 

demagnetization energy. The total dipole field 𝑯𝒅𝒊𝒑 is obtained by subtracting from 

the internal demagnetization field 𝑯𝒅 the field 𝑯𝑹 which is the field within a sphere 

of radius R and then adding the individual dipole interactions within the sphere, 

ℎ𝑖,𝑟<𝑅. The summation within the sphere depends on the relative positions of the 

dipoles and can be absorbed into the magnetocrystalline anisotropy. Furthermore, if 

the magnetization is homogeneous within the sphere, then 𝑯𝑹 can be attributed solely 

to the surface charge which is given by the equation for the volume of a sphere. This 
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term is constant and can be neglected. 𝑯𝒅 can also be decomposed into surface and 

volume terms, and if the magnetization is homogeneous within the magnetic body 

then 𝑯𝒅 arises solely due to the surface contribution, which leads to the concept of 

shape anisotropy. Taken from [46]. 

 

The first region is a sphere surrounding lattice point i with a radius R, and the other 

region the rest of the magnetic body. [44] Within the sphere, the field at point i can be 

obtained by summing up the contributions from all of the dipoles within the sphere 

(eqns. (3.14) and (3.15)). This contribution to the energy is more sensitive to the 

distribution of the dipoles in direct proximity of point i. If R is sufficiently large 

compared with the atomic distance between atoms, then the field at point i due to the 

distribution of dipoles outside of R can be approximated as arising from the 

continuous magnetization vector 𝑴(𝑟) which can further be decomposed into a 

surface and a volume contribution as shown in the following. [46] 

Assuming the absence of any currents or displacement currents Maxwell’s equations 

are given by 

𝛁 ⋅ 𝑩 = 0      (3.16) 

𝛁 × 𝑯 = 0      (3.17) 

Where B is the magnetic induction and H is the magnetic field. B is related to H and 

M by 
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𝑩 = (𝑯 + 4𝜋𝑴)     (3.18) 

Introducing a scalar potential 𝜙, the magnetic field can be rewritten as  

𝑯 = −∇𝜙      (3.19) 

Equation (3.16) and (3.18) then give 

∇2𝜙 = 4𝜋∇ ⋅ 𝑴     (3.20) 

Which is only valid inside the magnetic body, since 𝑴 = 0 outside.  Due to the 

mathematical similarity with electrostatics and electric charge, it is helpful to 

introduce the concept of a volume magnetic charge density which is given by 

𝜌 = −4𝜋∇ ⋅ 𝑴     (3.21) 

So that we are left with Poisson’s equation  

∇2𝜙 = −𝜌      (3.22) 

It should be re-emphasized that this similarity is purely a mathematical convenience 

that doesn’t necessarily reflect a similarity in the intrinsic mechanisms causing the 

charge effects.  Namely, the electric charge is a point charge whereas the magnetic 

charge arises from a dipole. However, the mathematical similarity allows the partial 

differential equation (Eq. 3.22) to be solved in the same manner as the electrostatic 

problem of a point charge. By introducing the function [50] 

𝐺(𝑟, 𝑟′) =
1

4𝜋|𝒓−𝒓′|
     (3.23) 

known as Green’s function which is meant to represent a unit point charge and 

integrating over all space we get the following solution for the potential 
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𝜙 = ∫ 𝑑3 𝑟 𝑮(𝒓, 𝒓′) 𝝆(𝒓′) = − ∫ 𝑑3 𝑟 
𝛁⋅𝑴(𝒓′)

|𝒓−𝒓′|
    (3.24) 

However, the discontinuity of 𝑴(𝒓′) on the boundary of the magnetic material must 

be taken into consideration. Applying Gauss’s theorem to the surface of the body 

gives the surface contribution to the potential.  The potential can then be decomposed 

into volume and surface parts so that  

𝜙 = − ∫ 𝑑3 𝑟 
𝛁⋅𝑴(𝒓′)

|𝒓−𝒓′|
+ ∫ 𝑑𝑆 

𝐧̂⋅𝑴(𝒓′)

|𝒓−𝒓′|
    (3.25) 

Where 𝐧̂ is the normal vector to the surface. Continuing with the electrostatics 

analogy leads to the concept of an effective surface magnetic charge given by 

𝜎 = 𝐧̂ ⋅ 𝑴(𝒓′)     (3.26) 

The field is then given by 

𝑯𝒅 = ∫ 𝑑3 𝑟 
𝛁⋅𝑴(𝒓′)(𝒓−𝒓′)

|𝒓−𝒓′|𝟑 − ∫ 𝑑𝑆 
𝐧̂⋅𝑴(𝒓′)(𝒓−𝒓′)

|𝒓−𝒓′|𝟑     (3.27) 

This internal field is known as the demagnetizing field since it tends to oppose the 

direction of an externally applied field. (Fig. 3.6) 

Returning to the magnetic body decomposed into two regions, we can calculate the 

field a dipole within the sphere feels by taking the internal demagnetization 

field (𝑯𝒅), and subtracting from it the field within the volume of the sphere (𝑯𝑹), 

then adding the field due to the dipoles in the sphere (𝒉𝒊,𝒓<𝑹) 

𝑯𝒅𝒊𝒑 = 𝑯𝒅 − 𝑯𝑹 + 𝒉𝒊,𝒓<𝑹     (3.28) 
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Substituting this field into equation (3.14) and integrating over the magnetic body 

gives the energy 

𝐸𝑀 = −
1

2
∫ 𝑴 ⋅ 𝑯𝒅𝒊𝒑 𝑑𝑉     (3.29) 

If we assume that the magnetization is homogeneously magnetized (∇ ⋅ 𝑴(𝒓′) = 0) 

then the volume contribution disappears for both 𝑯𝒅 and 𝑯𝑹. Equation (3.29) can 

then be re-written 

𝐸𝑀 = −
1

2
∫ 𝑴 ⋅ (𝑯𝒅 +

4𝜋

3
𝑴 + 𝒉𝒊,𝒓<𝑹) 𝑑𝑉    (3.30) 

Where 
4𝜋

3
𝑴 is the surface contribution from the sphere.  Since this term is a constant, 

it doesn’t affect any energy minimization procedure and can be removed.  The last 

term will depend on the symmetry of the crystal just like the magnetocrystalline 

energy and so can be absorbed into that term.  Furthermore, its strength is negligible 

in most cases. [44]  Therefore, we are left with 

𝐸𝑀 = −
1

2
∫ 𝑴 ⋅ 𝑯𝒅 𝑑𝑉     (3.31) 

Where in the case of a homogeneously magnetized body, 𝑯𝒅 is only a function of the 

surface charge and therefore determined by the shape of the magnetized body. 𝑯𝒅 can 

be represented as a tensor N which depends on the shape of the object so that [46] 

𝐸𝑀 = −
1

2
∫ 𝑴 ⋅ 𝑵 ⋅ 𝑴 𝑑𝑉     (3.32) 

The internal demagnetization field orients the magnetization along certain directions 

dictated by the shape of the magnetic body. This effect is known as shape anisotropy 
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3.2.5 Magnetocrystalline Anisotropy Energy 

Due to the effects from the crystal field discussed in the previous chapter, certain 

orbitals have lower energy than others. This leads to a preferential direction for the 

spins due to spin-orbit coupling, which from a macroscopic point of view translates 

into a preferential direction for the magnetization vector along certain 

crystallographic directions. This macroscopic energy preference is known as 

magnetocrysalline anisotropy. 

If we assume no applied field and no strain to the magnetic system, the free energy 

becomes a function of only the temperature and the direction of the magnetization 

𝐹(𝑇, 𝛀𝑴). [44] In spherical coordinates 𝛀𝑴 = (sin 𝜃 cos 𝜙 , sin 𝜃 sin 𝜙 , cos 𝜃) where 

𝜃 and 𝜙 are the polar and azimuthal directions defined relative to the crystal axis.  

This free energy can be expanded in a series and the Temperature dependence can be 

absorbed into the coefficients to obtain 

𝐹(𝑇, 𝛀𝑴) = 𝐾0(𝑇) + 𝐾1(𝑇)𝑓1(𝜃, 𝜙) + 𝐾2(𝑇)𝑓2(𝜃, 𝜙) + ⋯  (3.33) 

Where 𝐾𝑖(𝑇) are the anisotropy constants and the functions 𝑓𝑖 combine terms of the 

same order. Due to time inversion symmetry which states that the Hamiltonian must 

be unchanged with respect to time, 𝐹(𝛀𝑴) = 𝐹(−𝛀𝑴)—the opposite orientation 

must be a local minimum as well. This allows us to cancel odd power terms in the 

series. [44] The functions 𝑓𝑖(𝜃, 𝜙) depend on the symmetry of the crystal which 

should come as no surprise since the microscopic mechanism of the 

magnetocrystalline anisotropy is the crystal field. The difference between the two lies 
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in the representation. Whereas the crystal field potential was represented as a series 

expansion of atomic orbitals, the magnetocrystalline anisotropy energy is represented 

phenomenologically by expanding trigonometric functions along crystallographic 

directions.  

The simplest case is known as uniaxial anisotropy and is exhibited in hcp crystal 

structures. The energy is given by [51] 

𝐸𝑀𝐶 = 𝐾0(𝑇) + 𝐾1(𝑇) sin2 𝜃𝐶 + 𝐾2(𝑇) sin4 𝜃𝐶    (3.34) 

With 𝜃𝐶  defined relative to the c-axis. In this case magnetization is stable along the c-

axis if 𝐾1(𝑇) > 0 and along the a-axis if 𝐾1(𝑇) < 0. (Fig. 3.7) For hcp Co, 𝐾1(𝑇) =

7.66 × 106 erg ∙ cm−3. 

For a cubic crystal structure the energy is given by [51] 

𝐸𝑀𝐶 = 𝐾0(𝑇) + 𝐾1(𝑇)(𝛼1
2𝛼2

2 + 𝛼2
2𝛼3

2 + 𝛼3
2𝛼1

2) + 𝐾2(𝑇)𝛼1
2𝛼2

2𝛼3
2 + ⋯  (3.35) 

Where 𝛼𝑖 = 𝑐𝑜𝑠(𝜃𝑖) and 𝑖 ∈ {𝑎, 𝑏, 𝑐} are the crystallographic axes. (Fig. 3.7) For bulk 

bcc Fe the easy axis is along the [100] direction and 𝐾1(𝑇) = 5.48 × 105 erg ∙ cm−3. 

For fcc Ni the easy axis is along the [111] direction and 𝐾1(𝑇) = −12.63 × 105 erg ∙

cm−3. [44] 
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Figure 3.7: Coordinate systems and free energy landscapes for (a) uniaxial 

anisotropy given by equation (3.34) with 𝐾0 = 0 and 𝐾1 < 0. (b) 𝐾0 = 0 and 𝐾1 > 0 

(similar to hcp Co) (c) Magnetocrystalline anisotropy energy landscape for cubic 

crystal with 𝐾0 = 1 and 𝐾1 = 1 (similar to bcc Fe) (d) 𝐾0 = 1 and 𝐾1 = −1 (similar 

to fcc Ni). 

 

3.2.6 Magnetostriction  

The magnetocrystalline anisotropy discussed in the previous section assumed that 

there is no strain in the system (𝜀 = 0) which implied that the positions of the anions 

were fixed. The energy minimum was the direction that minimized the coulombic 

repulsion between the orbitals and the anions.  If we apply a magnetic field, the spins 
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(which are coupled to the orbitals) want to point along the direction of the field. If the 

field is not oriented along an easy direction (direction of minimum anisotropy energy) 

but rather a hard direction (direction of maximum anisotropy energy) then the spins 

cannot fully align with the magnetic field due to the repulsion of the orbitals from the 

neighboring anions.  However, if we allow the anions to move from their equilibrium 

position by introducing strain into the system, then the coulombic repulsion may be 

minimized at the cost of some of strain energy. This effect results in an elongation of 

the magnetized sample and is known as magnetostriction. It was first recognized in 

1842 by James Prescott Joule. [52] 

This occurs in magnetic materials without the presence of external fields as well, 

since there are internal fields such as the demagnetization field.  If the magnetic body 

is not homogeneously magnetized, it can break up into domains where the 

magnetization points in different directions. The demagnetizing fields and thus the 

strain will then vary throughout the magnetic body especially at the edges of the 

domains.  

Energy consideration of magnetostriction requires three energy terms which all 

depend on the symmetry of the crystal: the magnetocrystalline energy, the elastic 

energy and the magnetoelastic energy. For the case of a crystal with cubic symmetry 

the elastic energy is given by [52] 

𝐸𝐿 =
1

2
𝑐11(𝜀11

2 + 𝜀22
2 + 𝜀33

2) + 𝑐12(𝜀11𝜀22 + 𝜀22𝜀33 + 𝜀33𝜀11) + 2𝑐44(𝜀12
2 +

𝜀13
2 + 𝜀23

2)     (3.36) 
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Where 𝜺𝒊𝒋 = (
𝜕𝑢𝑖

𝜕𝑥𝑖
+

𝜕𝑢𝑗

𝜕𝑥𝑗
) 2⁄  is the strain along various crystallographic directions, 𝒖𝒊 

is the displacement vector and 𝑖, 𝑗 = {1,2,3} are the crystallographic directions. 

The magnetocrystalline energy discussed in the previous section depends on the 

location of the neighboring atomic sites. However, these positions are displaced due 

to the presence of strain in the system. This dependence of the magnetocrystalline 

anisotropy on the strain energy is called the magneto-elastic energy and can be 

obtained by expanding the magnetocrystalline anisotropy as a Taylor series with 

respect to the strain [53] 

𝐸𝑀𝐶 = 𝐸𝑀𝐶
0 + ∑ (

𝜕𝐸𝑀𝐶

𝜕𝜀𝑖𝑗
)

0

𝜺𝒊𝒋𝑖≥𝑗     (3.37) 

Where 𝐸𝑀𝐶
0  is the undistorted magnetocrystalline anisotropy. Considering only the 

lowest order term gives  

𝜕𝐸𝑀𝐶

𝜕𝜀𝑖𝑖
= 𝐵1𝛼𝑖

2      (3.38) 

𝜕𝐸𝑀𝐶

𝜕𝜀𝑖𝑗
= 𝐵2𝛼𝑖𝛼𝑗     (3.39) 

Where 𝐵1and 𝐵2 are called the magneto-elastic coupling constants and 𝛼𝑖 are 

directional cosines with respect to a crystallographic axis. These terms represent the 

rate of change of the anisotropy with respect to strain along particular directions. [52] 

The lowest order contribution to the magneto elastic energy is  

𝐸𝑀𝐸 = 𝐵1(𝛼1
2𝜀11 + 𝛼2

2𝜀22 + 𝛼3
2𝜀33) + 2𝐵2(𝛼1𝛼2𝜀12 + 𝛼2𝛼3𝜀23 + 𝛼3𝛼1𝜀31) (3.40) 

The total energy of the system given by 
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𝐸 = 𝐸𝑀𝐶 = 𝐸𝑀𝐸 + 𝐸𝐿    (3.41) 

In order to find the equilibrium configuration the energy is minimized with respect to 

the strain  

𝜕𝐸

𝜕𝜀𝑖𝑗
= 0     (3.42) 

This results in six equations which can be solved to find the change in length of the 

magnetized body.  The usual form is given by for a demagnetized sample and is 

[51,54] 

𝛿𝑙

𝑙
=

3

2
𝜆100 (𝛼1

2𝛽1
2 + 𝛼2

2𝛽2
2 + 𝛼3

2𝛽3
2 −

1

3
) + 3𝜆111(𝛼1𝛼2𝛽1𝛽2 + 𝛼2𝛼3𝛽2𝛽3 +

𝛼3𝛼1𝛽3𝛽1) (3.43) 

Where 𝛼𝑖 are directional cosines for the magnetization and 𝛽𝑖 are directional cosines 

for the direction of 𝛿𝑙. [53] 𝜆100 and 𝜆111 are the magnetostriction constants and 

correspond to the maximum strain when a magnetic crystal is fully magnetized along 

the [100] and [111] crystallographic directions respectively.  They are related to the 

magneto-elastic and the strain tensor components by [52] 

𝜆100 = −
2

3

𝐵1

𝑐11−𝑐12
     (3.44) 

𝜆111 = −
𝐵2

3𝑐44
      (3.45) 

In the case of a polycrystalline sample, the magnetostriction is averaged out over the 

crystallographic directions within each grain and becomes isotropic. In this case the 

magnetostriction constant takes a single value given by [52] 

𝜆𝑆 =
2

5
𝜆100 +

3

5
𝜆111     (3.46) 
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The inverse effect is also possible whereby an induced strain in the system can affect 

the magnetization and is known as inverse magnetostriction. In chapter 7 we will look 

at how dynamic strain waves drive the magnetization via inverse magnetostriction. In 

chapter 8 we will look at the case when both magnetistriction and inverse 

magnetostriction processes are coupled—the precessing magnetization induces a 

dynamic strain which in turn modifies the magnetization and vice versa. 

3.3 Dynamics 

From a technological perspective, understanding the dynamic motion of the spins is 

extremely important. For example, writing speeds in hard disk drives are determined 

by how fast the spins reorient themselves with an applied field. Improving writing 

speeds thus relies on understanding the properties governing the spins’ collective 

motion. [55] Additionally, from a fundamental point of view, the collective motion 

can provide insight into the microscopic interactions between the atoms.  

The quantum mechanical motion of the spins in the presence of a magnetic field is 

given by [43] 

𝑖ℏ
𝑑

𝑑𝑡
〈𝑺〉(𝑡) = 〈[𝑺, ℋ(𝑡)]〉     (3.47) 

Where 〈𝑺〉(𝑡) is the mean value of the spin operator, and ℋ(𝑡) is the Hamiltonian 

associated with the spins’ interaction with the magnetic field and is given by 

ℋ(𝑡) = −
𝑔𝜇𝐵

ℏ
𝑺 ∙ 𝑩(𝒕)     (3.48) 
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Plugging in equation (3.48) into equation (3.47) and applying the commutation 

relations [𝑆𝑖, 𝑆𝑗] = 𝑖ℏ𝜖𝑖𝑗𝑘𝑆𝑘 where 𝑖, 𝑗, 𝑘 ∈ {𝑥, 𝑦, 𝑧} and 𝜖𝑖𝑗𝑘 is the Levi-Civita symbol 

gives the following 

𝑑

𝑑𝑡
〈𝑺〉(𝑡) =

𝑔𝜇𝐵

ℏ
(〈𝑺〉 × 𝑩(𝒕))     (3.49) 

From Chapter 2 we recall that 𝝁𝑺 = −𝑔𝑆
𝜇𝐵

ℏ
𝑺 = −𝛾𝑺 where 𝛾 = 𝑔𝑆

𝜇𝐵

ℏ
 is known as 

the gyromagnetic ratio. Equation (3.49) can now be rewritten as  

𝑑

𝑑𝑡
𝝁𝑺 = −𝛾(𝝁𝑺 × 𝑩(𝒕))     (3.50) 

Summing up the collective motion of all of the dipoles in a unit volume allows us to 

replace 𝝁𝑺 with the magnetization vector (Eq. 3.1).  Additionally, we can replace the 

magnetic induction with the magnetic field giving [43] 

𝑑

𝑑𝑡
𝑴(𝒕) = −𝛾0(𝑴 × 𝑯(𝒕))     (3.51) 

Where 𝛾0 = 𝜇0𝛾. This is equation is known as the Landau-Lifshitz Equation and 

represents the motion of the magnetization vector around the effective field. (Fig. 3.8)  

The frequency of precession depends on the strength of both 𝑀𝑆 and H. However, in 

this form the magnetization will precess around the magnetic field forever. Damping 

of the system can be introduced into the equation phenomenologically by replacing H 

with  

𝑯𝒆𝒇𝒇,𝜶 = 𝑯 − 𝛼
1

𝛾𝑀𝑆

𝒅𝑴

𝒅𝒕
     (3.52) 

Where 𝛼 is a phenomenological parameter known as the Gilbert damping parameter 

that describes the damping of the magnetization vector towards the equilibrium 
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direction along the effective field. (Fig. 3.8)   Plugging equation (3.52) into equation 

(3.513.) gives 

𝑑

𝑑𝑡
𝑴(𝑡) = −𝛾0(𝑴 × 𝑯(𝑡)) +

𝛼

𝑀𝑆
(𝑴 ×

𝒅𝑴

𝒅𝒕
)    (3.53) 

This equation is known as the Landau-Lifshitz-Gilbert Equation (LLG) and is the 

core of micromagnetics. (Fig. 3.8)  All magnetic processes in the micromagnetic 

regime are modelled according to this equation or with equations that have slight 

modifications to it. 

 

 

Figure 3.8: (a) Landau-Lifshitz (LL) equation dictates the magnetization vector’s 

rotation around the effective field, 𝐻𝑒𝑓𝑓.  (b) The Landau-Lifshitz-Gilbert (LLG) 

equation models the precession of the magnetization while including a 

phenomenological damping term, 𝛼 in the direction 𝑴 ×
𝑑𝑴

𝑑𝑡
. 
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3.4 Free Energy Resonance 

We are now in a position to revisit the Free energy and see how it relates to the 

precessional motion of the magnetization. One common method of deriving the 

resonance condition is known as the Smit and Beljers method [56] and uses spherical 

coordinates.  However, here we will introduce a method which relies on Cartesian 

coordinates. 

 

Figure 3.9: The Magnetization precession can be mapped to the {𝟏, 𝟐, 𝟑} coordinate 

system defined by the direction of the magnetization vector and the plane of the cone 

due to the precession of 𝑴. 𝒎𝟑 is along the direction of 𝑴 at equilibrium (3), 𝒎𝟐 is 

parallel to the xy plane (2) and 𝒎𝟏 is orthogonal to 𝒎𝟐 and 𝒎𝟑 (1)  . 

 



75 

 

The expressions for the free energy discussed so far utilize coordinate systems that 

are defined relative to either the crystallographic axes or some sort of lab frame of 

reference determined by the geometry of the sample. We were able to construct free 

energy landscapes based on these coordinate systems which had energetically 

favorable directions for the magnetization vector. In order to see how the free energy 

landscape affects the resonance frequency of the magnetic system it is convenient to 

transform to a coordinate system given by the variables {𝟏, 𝟐, 𝟑}‡ where 𝟑 points 

along the equilibrium magnetization direction, 𝟐 is in the film plane and 𝟏 is 

orthogonal to 𝟐 and 𝟑.   Since we assume small variations in the 𝟏 and 𝟐 directions 

and no change in 𝑀𝑠 the {𝟏, 𝟐, 𝟑} coordinate system allows us to represent the 

precession as two systems of equations instead of three. The change in coordinate 

systems is shown in figure 3.9 and the transformation is given by 

(
𝒙
𝒚
𝒛

) = (

cos 𝜃𝑀 cos φ𝑀 − sin φ𝑀 sin 𝜃𝑀 cos φ𝑀

cos 𝜃𝑀 sin φ𝑀 cos φ𝑀 sin 𝜃𝑀 sin φ𝑀

−sin 𝜃𝑀 0 cos 𝜃𝑀

) (
𝟏
𝟐
𝟑

)   (3.54) 

The tendency for the magnetization to orient along certain energetically preferable 

directions can be thought of as arising due to an effective field with contributions 

                                                 
‡
 Although the same numbers are used, it is important to emphasize that this is a 

different coordinate system than the (1,2,3) coordinate system defined earlier along 

the crystallographic directions. The crystallographic coordinate system should be 

reconciled with the lab frame for the discussion in this section. 
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from each of the energy terms. From equation (3.5) the effective field can be derived 

from the Gibbs free energy in the {𝟏, 𝟐, 𝟑} coordinate system by 

∇𝑚𝐺 = (
𝜕𝐺1

𝜕𝑚1
𝟏 +

𝜕𝐺2

𝜕𝑚2
𝟐 +

𝜕𝐺3

𝜕𝑚3
𝟑) = −𝜇0𝑯𝒆𝒇𝒇   (3.55) 

Where 𝛁𝒎 =
𝜕

𝜕𝑚1
𝟏 +

𝜕

𝜕𝑚2
𝟐 +

𝜕

𝜕𝑚3
𝟑. Taylor expanding the 𝟏 and 𝟐 components 

along the 2-dimensional surface given by the base of the cone of precession gives 

𝜕𝐺1

𝜕𝑚1
=

𝜕

𝜕𝑚1
(

𝜕𝐺1

𝜕𝑚1
) 𝒎𝟏 +

𝜕

𝜕𝑚2
(

𝜕𝐺1

𝜕𝑚1
) 𝒎𝟐    (3.56) 

𝜕𝐺2

𝜕𝑚2
=

𝜕

𝜕𝑚1
(

𝜕𝐺2

𝜕𝑚2
) 𝒎𝟏 +

𝜕

𝜕𝑚2
(

𝜕𝐺2

𝜕𝑚2
) 𝒎𝟐    (3.57) 

Which allows us to write the effective field as 

𝜇0𝑯𝒆𝒇𝒇 = − (
𝐺11𝑚1 + 𝐺12𝑚2

𝐺12𝑚1 + 𝐺22𝑚2

𝐺3

)     (3.58) 

Where 𝐺𝑖𝑗 =
𝜕

𝜕𝑚𝑖𝜕𝑚𝑗
𝐺│𝒎=𝒎0

 with 𝒎0 being the equilibrium position. Since we are 

only interested in the resonance frequency we can neglect the damping and use the 

Landau-Lifshitz equation (Eq. 3.51). Replacing 𝑯 with 𝑯𝒆𝒇𝒇 and using 𝑴𝑗(𝑡) =

𝑴0𝑗𝑒−𝑖𝜔𝑡 we obtain after some algebra the following system of equations 

(
𝐺12 −

𝑖𝜔𝑀

𝛾
𝐺22 − 𝐺3

𝐺11 − 𝐺3 𝐺12 +
𝑖𝜔𝑀

𝛾

) (
𝑚1

𝑚2
) = (

0
0

)    (3.59) 

Since a system of equations has a solution other than the trivial solution if and only if 

the determinant is zero, we set the determinant of the coefficient matrix equal to zero 

which yields 
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𝜔2

𝛾2
= (𝐺22 − 𝐺3)(𝐺11 − 𝐺3) − 𝐺12

2
     (3.60) 

The frequency 𝜔 is therefore a function of the partial derivatives of the Free energy. 

This is a rather general result, but is important for learning about the intrinsic 

properties of the magnetic system as we will see in later chapters. 
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CHAPTER 4: EXPERIMENTAL SETUP 

AND THEORY 
 

‘‘I happen to have discovered a direct relation between magnetism and light, also 

electricity and light, and the field it opens is so large and I think rich.’’ 

-Michael Faraday 

 

4.1 Introduction 

Femtosecond pump-probe spectroscopy is an extremely powerful experimental 

method which allows for the time-domain study of ultrafast dynamical processes in a 

variety of systems. [57,58,59] Pump-probe experiments are used to study carrier 

lifetimes in semiconductor materials and nanostructures, [60] vibrational modes of 

molecules, [61] and to image tissue. [62,63] In the field of magnetism, the 

development of femtosecond pulsed laser systems not only provided a novel 

excitation mechanism of the magnetic order but also enabled the observation of the 

dynamics on femtosecond timescales. Pump-probe experiments on magnetic 

materials seek to expose fundamental phenomena related to the scattering and energy 

channels between electron, spin and lattice systems [64,65,66] and provide a means 

for observation of the dynamical motion of the spins. 
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4.2 Stroboscopic Measurements 

The experiments in this thesis were conducted using the Time Resolved Magneto-

Optic Kerr Effect (TR-MOKE) which is an all optical method where the magnetic 

system is both excited and probed using ultrashort laser pulses. Furthermore, it is a 

stroboscopic technique, which means that the full time evolution of the system is 

comprised of a series of snapshots taken at various stages. (Fig. 4.1) Some advantages 

to TR-MOKE are that the magnetic resonances can be measured at a continuous set of 

field strengths and angles simply by changing the position of permanent magnets and 

no consideration has to be given to the relative geometry between static and driving 

fields as in microwave experiments. Additionally, there are no extra fabrication steps 

to prepare the sample for measurement (e.g. deposition of co-planar waveguides). 

TR-MOKE also possesses a high spatial resolution that is limited only by the 

diffraction limit of the focusing optic. [67] The time resolution, which is limited by 

the pulse duration, is typically in the sub-picosecond range, which allows for the 

observation of the spin dynamics into the THz regime. [67]   
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Figure 4.1: Illustration of the concept behind the stroboscopic pump-probe method. 

The pump (𝜆𝑃𝑢𝑚𝑝 = 400 nm) pulses are separated by Δ𝑡𝑝𝑢𝑚𝑝 which for a repetition 

rate of 76MHz is 13ns. By the time each new pump pulse arrives, the system has fully 

relaxed back to equilibrium.  At time 𝑡1 each probe (𝜆𝑃𝑟𝑜𝑏𝑒 = 400 nm) pulse (which 

has the same repetition rate as the pump pulses) is separated from a corresponding 

pump pulse. Since the magnetization follows the same dynamical path upon 

excitation, the probe pulse for a given pump-probe separation reads the same 

magnetic state. The data for each time step is an average of the signal from all the 

probe pulses. In order to read a later state of the magnetic evolution and acquire the 
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next data point (𝑡2), the path length of the probe pulse is increased which results in 

the probe pulse being delayed by Δ𝑡. 

 

A 400nm pump pulse excites the magnetic system which causes the spins to precess 

at a characteristic frequency determined by the various energy terms discussed in 

chapter 3. The characteristic frequencies of ferromagnetic materials are typically in 

the GHz range corresponding to picosecond oscillation periods. The timing between 

sequential pump pulses is such that the system has completely damped back to its 

equilibrium position by the time the next pump pulse arrives. An 800nm probe pulse 

arrives after the pump pulse and reads the state of the system. The pump and probe 

pulses are different wavelengths so that they can be separated using an optical filter. 

Because the magnetization follows the same trajectory on its journey from excitation 

to equilibrium, if the probe pulse arrives at the same time after the pump it will be 

probing the same state of the spin system.  The state of the magnetic system for a 

given time after excitation can be extracted from the signals of multiple probe pulses 

averaged out using a lock-in detector. The next snapshot in time can be obtained by 

elongating the optical path length of the probe pulse which causes it to arrive at a later 

time.  This process continues until the system has damped to equilibrium resulting in 

a series of snapshots which show the time evolution of the magnetic system. This 

process is represented in figure 4.1 for two time snapshots.  
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4.3 The Pump Excitation  

The excitation of magnetic materials with ultrashort electromagnetic pulses is a rich 

topic of fundamental research. Laser pulses on the femtosecond timescale place the 

system into a highly non-equilibrium state which offers the possibility to explore the 

intimate relationship between electron, phonon and spin subsystems. In 1996 

Beaupaire et al. demonstrated the ultrafast demagnetization of a nickel film following 

the excitation of a femtosecond laser pulse. [68] This was a startling result since the 

observed time for demagnetization required a transfer of angular momentum on a 

timescale that challenged existing theories concerning energy transfer between 

different subsystems.  Additionally, the experiment opened up the idea for 

manipulation of the magnetization state using light rather than conventional excitation 

techniques such as an applied magnetic field. The manipulation of the magnetization 

using light can be broken down into three types of effects that are attributed to 

different interactions between the electromagnetic wave and the material—thermal 

effects, nonthermal effects and optomagnetic effects. [69] Materials with different 

electronic structures such as metals, semiconductors and dielectrics provide different 

means for uncovering the physics governing the interplay between electromagnetic 

energy and the interactions between subsystems. So far, the intrinsic material 

response to an ultrashort light pulse in the first picosecond after excitation is poorly 

understood.    
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4.3.1 Three Temperature Model 

Although the atomistic mechanisms governing the interactions between the 

subsystems is elusive, a phenomenological description describing their energy 

transfer rates does exist.  This model consists of three coupled differential rate 

equations modeling the temperature evolution of the subsystems. [69,70] 

𝐶𝑒
𝜕𝑇𝑒

𝜕𝑡
= ∇ ∙ (𝜅∇𝑇𝑒) − 𝐺𝑒𝑙(𝑇𝑒 − 𝑇𝑙) − 𝐺𝑒𝑠(𝑇𝑒 − 𝑇𝑠) + 𝑆(𝑡)  (4.1) 

𝐶𝑠
𝜕𝑇𝑆

𝜕𝑡
= −𝐺𝑒𝑠(𝑇𝑠 − 𝑇𝑒) − 𝐺𝑠𝑙(𝑇𝑠 − 𝑇𝑙)    (4.2) 

𝐶𝑙
𝜕𝑇𝑙

𝜕𝑡
= −𝐺𝑒𝑙(𝑇𝑙 − 𝑇𝑒) − 𝐺𝑠𝑙(𝑇𝑙 − 𝑇𝑠)    (4.3) 

𝜅 is the thermal conductivity, 𝑆(𝑡) is the heat generated from the laser pulse, 𝐺𝑖𝑗 is 

the coupling between the i and j systems, 𝑇𝑖 is the temperature and 𝐶𝑖 the heat 

capacity of system i. The subscripts  e, l and s stand for electron, lattice and spin 

systems. This model can be further simplified into a two-temperature model between 

the electron and lattice (phonon) systems. [71,72]  
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Figure 4.2: (a) Schematic showing the interaction between the electron, lattice and 

spin subsystems and (b) an example of the time evolution of the different subsystems 

governed by the rate equations (4.1) – (4.3).  The red line corresponds to the 

excitation laser pulse. The subscripts e, l, and s correspond to the electron, lattice and 

spin systems, respectively. The evolution of the spin system is shown for a metal 

(blue dotted line) and a dielectric (blue dashed line). Taken from [69].  

 

Due to the high optical frequencies of the femtosecond laser pulse, the electron 

system is the only system able to immediately respond. Additionally, the smaller heat 

capacity of the electron system means it can reach an extremely high temperature.  

Following excitation, the electron system equilibrates with the lattice system due to 

electron-phonon coupling, which gradually heats up the lattice system (generating 

phonons) while cooling off the electron system. The coupling with the spin system 

offers channels for the angular momentum transfer from the electron system into the 
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other subsystems. [69] Within the first few picoseconds all three systems approach 

equilibrium. 

4.3.2 Thermal Anisotropy Pulse 

As interesting and mysterious as the first picosecond is, the dynamics studied in this 

thesis took place on longer timescales (~1-2ns) where the systems were all in 

equilibrium. The excitation of the magnetic system by the pump pulse is the tool to 

initiate magnetic dynamics rather than the direct object of study. Its effect on the 

magnetization vector can be understood as arising due to thermal effects. 

 

 

 

Figure 4.3: Schematic demonstrating how the influence of a thermal pulse acts as an 

excitation mechanism for the precession of the magnetization. (a) Initially the 

magnetization (M) is at rest, oriented along the equilibrium direction of the effective 

field (solid black arrow, 𝑯𝒆𝒇𝒇).  (b) Upon irradiation from an ultrashort laser pulse 
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(𝑡 = 0), the elevated temperature causes the value of 𝑀𝑆 to decrease. This changes 

the direction of the effective field and causes the magnetization to precess around the 

new effective field direction, 𝑯′𝒆𝒇𝒇. (c) After a short time (𝑡 = 𝑡𝑒𝑞) the system has 

cooled and the magnetization has regained the original value of 𝑀𝑆. However it is no 

longer aligned along the initial effective field direction, 𝑯𝒆𝒇𝒇. Therefore, it again 

begins to precess around the new (original) equilibrium direction.  

 

In order to initiate the magnetization dynamics, an external magnetic field is applied 

in a direction with some component along a hard anisotropy axis. The direction of the 

magnetization is oriented along the direction of the effective field which is a 

combination of the internal energy terms and the applied field as discussed in chapter 

3. For example, in the case of a thin film the demagnetization energy attempts to align 

the magnetization in-plane and is proportional to the magnitude of 𝑀𝑆. If an external 

field is applied with a component out of plane, the external field will partially 

counteract the demagnetization field resulting in the magnetization vector oriented 

somewhat out of plane. When the system is irradiated by the pump pulse the electron 

system is excited, which changes the magnitude of the magnetization vector since 

𝑴(𝑇𝑒,2) <  𝑴(𝑇𝑒,1) when 𝑇𝑒,2 > 𝑇𝑒,1. Because the demagnetization field (and 

magnetocrystalline anisotropy) is proportional to the value of the magnetization 

vector, the excitation changes the direction of the effective field.  If this happens on a 

timescale faster than the precessional period of motion, then the magnetization cannot 
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follow this change and 𝑴 begins to precess around the new effective field. [73] After 

the temperature has returned to equilibrium (restoring the original value of the 

magnetization vector and thus the original value of the anisotropy terms) 𝑴 once 

again finds itself displaced and begins to precess around the original equilibrium 

direction. [74] The excitation by the pump pulse thus acts as an effective anisotropy 

pulse knocking the magnetization vector out of equilibrium. This process is 

demonstrated in figure 4.3. The precessional motion that occurs after the subsystems 

have equilibrated in temperature and the magnetization vector has returned to its 

original magnitude is the motion which is probed in the experiments in this thesis.  

4.4 The Probe Detection 

Having explained the manner in which the magnetization is excited by the pump 

pulse we turn to the probe pulse. Understanding the interaction of the probe pulse 

with a magnetic material is more nuanced for the purposes of this thesis and the 

remainder of this chapter will be devoted to elucidating this interaction. 

4.4.1 Gyrotropic Media 

The electronic response to a propagating light wave in a medium is given by 

𝑫 = 𝜀0𝜀𝑟𝑬     (4.4) 

Where 𝑫 is the electric displacement, 𝑬 the electric field 𝜀0 is the permittivity of free 

space and 𝜀𝑟 is the relative permittivity. [75] In gyrotropic (optically active) media 

the corresponding equation is given by 
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𝑫 = 𝜀𝑬 + 𝑖𝜀0𝑮 × 𝑬    (4.5) 

Where 𝜀 = 𝜀0𝜀𝑟 is the absolute permittivity and 𝑮 is the gyration vector.   

It is instructive to understand the mechanisms responsible for an electronic response 

given by equation (4.5). Gyrotropic responses to electromagnetic waves can occur in 

materials with helical structures.  The motion of the electrons in a helical structure 

acts like a solenoid of current which generates a time varying B-field (Fig. 4.4). [76] 

−
𝜕𝐵

𝜕𝑡
= ∇ × 𝑬     (4.6) 

All of the little solenoids in the material further modify the polarization state of the 

electrons. Assuming a monochromatic plane wave of the form 𝑬 = 𝐸0𝑒𝑖(𝒌∙𝒓−𝜔𝑡)  the 

change in the polarization is given by 

∆𝑷 = (−
𝜕𝐵

𝜕𝑡
) = ∇ × 𝑬 = 𝑖𝜉𝒌 × 𝑬   (4.7) 

Where 𝜉 is a scalar that changes sign depending on the helicity of the intrinsic 

structure (right vs. left). This change in polarization contributes to the electric 

displacement vector so that the medium behaves gyrotropically [75] 

𝑫 = 𝜀𝑬 + ∆𝑷 = 𝜀𝑬 + 𝑖𝜉𝒌 × 𝑬   (4.8) 

In this case 𝑮 =
𝜉𝒌

𝜀0
. 
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Figure 4.4: (a) Electrons oscillate around their equilibrium positions as they interact 

with an electromagnetic field.  Due to their orientation in a helical structure their 

motion will cause a time varying B-field along the direction of electromagnetic wave 

propagation.  This induces an extra polarization of the electrons in the medium. (b) 

For the case of a plasma in an external B-field, the motion of the electrons due to the 

electromagnetic wave causes an additional Lorentz force on the electrons.  This 

induces an extra polarization of the electrons. 

 

Another example is the electronic response of a plasma in the presence of a magnetic 

field. [76] The instantaneous velocity v due to the displacement of the electrons from 

the propagating electric field can be obtained by considering the force acting on the 

electrons by the Electric field 

𝑚
𝑑𝒗

𝑑𝑡
= 𝑒𝑬     (4.9) 
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Again assuming a monochromatic plane wave for the electric field and solving for v 

we get  

𝒗 =
−𝑖𝑚𝑒

𝜔
𝑬     (4.10) 

If a magnetic field is applied to a material the electrons will feel the Lorentz force  

𝑭 = 𝑒𝒗 × 𝑩     (4.11) 

This force will cause an additional displacement of the electrons which results in a 

contribution to the polarization 

∆𝑷 = −𝑒𝑭 = −𝑒 (
−𝑖𝑚𝑒

𝜔
𝑬) × 𝑩   (4.12) 

This contribution gets added to the electric displacement  

𝑫 = 𝜀𝑬 + ∆𝑷 = 𝜀𝑬 + 𝑖𝛾𝑩 × 𝑬   (4.13) 

Where in this case 𝑮 =
𝛾𝑩

𝜀0
 and 𝛾 is the magnetogyration coefficient. [76] 

These two examples serve to show how the interaction of an electric field and matter 

in different environments can lead to additional polarization effects which influence 

the electronic response of the medium.  The first example is a case of spatial 

dispersion due to the helical organization of the structure and is related to 𝒌, and the 

second case is an example of temporal dispersion due to the presence of the magnetic 

field and is related to 𝜔. [76] 
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Ferromagnetic materials have gyrotropic responses without the influence of an 

external field. The effect in ferromagnetic materials is considerably stronger as well. 

Using the model of a plasma in the presence of a uniform field the effective field 

necessary to explain the observed effects in ferromagnetic bodies is on the order of 

106 − 107 Oe.  This is the same order of magnitude as the Weiss field which was 

intended to explain the origin of ferromagnetism. [77] Although, we know that the 

mechanism responsible for the alignment of the spins in ferromagnetic materials is 

due to the exchange interaction, the order of magnitude correspondence is a clue that 

the mechanism causing the gyrotropy in ferromagnets is related to the alignment of 

the spins in the same direction.  It was shown that ferromagnetic gyrotropy arises 

from the electromagnetic field interaction with the atomic orbitals which has a net 

direction of the angular momentum due to the exchange interaction. Due to the spin-

orbit interaction this corresponds to a dependence on the spin direction. [78] 

Regardless of the intrinsic mechanisms involved optically active media are 

characterized by an electric displacement vector in the form of equation (4.5) which 

causes 𝜀 to become a tensor with off diagonal terms.  

4.4.2 Normal Modes 

Now that we have a classical sense of what causes materials to be optically active we 

can go into more detail concerning the effect the off-diagonal dielectric tensor 

elements have on electromagnetic waves.  The simplest case to analyze is when 𝑮 is 

in the z-direction and the electromagnetic wave also propagates along z so that the 
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only oscillations occur in the x-y plane. [79] If the material is isotropic then the 

electric permittivity tensor becomes 

𝜀 = (

𝜀𝑥𝑥 𝜀𝑥𝑦 0

−𝜀𝑥𝑦 𝜀𝑥𝑥 0

0 0 𝜀𝑧𝑧

)    (4.14) 

Where all of the components can be complex, and the microscopic mechanisms 

concerning 𝜀𝑥𝑦 depend on the gyrotropic media under consideration.  

The Maxwell equations concerning the propogating electromagnetic wave are given 

by 

∇ × 𝑬 = −𝜇0
𝜕𝑯

𝜕𝑡
    (4.15) 

∇ × 𝑯 = 𝜀0𝜺 ∙
𝜕𝑬

𝜕𝑡
    (4.16) 

Again we consider a plane wave. The E and H componenets are given by 

𝑬 = 𝐸0𝑒𝑖(𝒌∙𝒓−𝜔𝑡)    (4.17) 

𝑯 = 𝐻0𝑒𝑖(𝒌∙𝒓−𝜔𝑡)    (4.18) 

So that equations (4.15) and (4.16) become 

𝒌 × 𝑬 = 𝜔𝜇0𝑯    (4.19) 

𝒌 × 𝑯 = −𝜔𝜀0𝜺 ∙ 𝑬    (4.20) 

Plugging (19) into (16) and noting that 𝒌 × (𝒌 × 𝑬) = 𝒌(𝒌 ∙ 𝑬) − 𝑘2𝑬 we get 
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𝒌(𝒌 ∙ 𝑬) − 𝑘2𝑬 + 𝜔2𝜇0𝜀0𝜺 ∙ 𝑬 = 0   (4.21) 

We set 𝑘0
2 = 𝜔2𝜇0𝜀0, 𝑵 = 𝒌/𝑘0 and keep in mind the electric field oscillations are 

perpendicular to the propagation direction (𝒌 ∙ 𝑬 = 𝟎). [79] Finally, since there is no 

electric field component along the z-direction (along propagation) we can reduce the 

matrix to a two-dimensional eigenvalue equation 

(
𝜀𝑥𝑥 𝜀𝑥𝑦

−𝜀𝑥𝑦 𝜀𝑥𝑥
) ∙ 𝑬 = 𝑁2𝑬   (4.22) 

Solving the characteristic equation gives the following eigenvalues 

𝑁±
2 = 𝜀𝑥𝑥 ± 𝑖𝜀𝑥𝑦    (4.23) 

With eigenvectors 
1

√2
(

1
𝑖

) and 
1

√2
(

1
−𝑖

), which means that 𝐸𝑥 = ±𝑖𝐸𝑦.  These 

eigenvectors correspond to right (RHC) and left (LHC) handed circularly polarized 

light and form an orthonormal basis in gyrotropic media. The eigenvalues are the 

refractive indices of the two modes. The normal modes are  

𝑫± = 𝑁±
2 (

1
±𝑖

) 𝐸0𝑒−𝒊𝜔𝑡   (4.24) 

The physical interpretation is that light propagating in gyrotropic materials is 

decomposed into components of the normal modes—right and left handed circularly 

polarized light. The respective amplitude of these two modes dictates the amount of 

elipticity. The phase difference between the modes determines the angle of the major 

axis of the ellipse (angle of polarization). (Fig. 4.5) 
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Figure 4.5: The normal modes in gyrotropic media are (a) Left (LHC) and (b) right 

handed circular polarization (RHC). (c) When RHC and LHC have the same 

amplitude and phase their sum results in linear polarization along the y-direction. (d) 

If there is a phase offset between the RHC and LHC modes then the resultant linear 

polarization is rotated. (e) If the amplitudes of the RHC and LHC modes are different 

then the summed wave is elliptically polarized. 

 

4.4.3 Faraday Effect 

From equation (4.24) it is clear that the two normal modes experience different 

indices of refraction within gyrotropic media. The implications are twofold and arise 
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due to the real and imaginary parts of the indices of refraction.  First, as the modes 

propagate through gyrotropic media they travel at different speeds 𝑣± = 𝑐 𝑅𝑒{𝑁±}⁄  

(𝑁 = 𝜀
1

2⁄ ).  Second, they are attenuated at different rates 𝛼± = −𝜔 ∙ 𝐼𝑚{𝑁±} 𝑐⁄ . 

Therefore, as light travels through a gyrotropic medium for a distance l, it will 

experience a phase difference between the two circular polarization components due 

to their different velocities. This will result in a rotation of the polarization angle 

given by [79] 

𝜃𝐹 =
𝜔𝑙

2𝑐
𝑅𝑒(𝑁+ − 𝑁−)    (4.25) 

Also, they will attenuate at different rates. This changes the relative amplitudes of the 

normal modes which affects the ellipticity of the light 

𝜂𝐹 = −
𝜔𝑙

2𝑐
𝐼𝑚(𝑁+ − 𝑁−)   (4.26) 

The different absorption coefficient for RHC and LHC light is the basis for magnetic 

circular dichroism experimental techniques. We can decompose the refractive indices 

of the RHC and LHC light into their corresponding real and imaginary parts 𝑁± =

𝑛± + 𝑖𝑘±. Subtracting the two eigenalues given by equation (4.23), and keeping in 

mind that the dielectric tensor components can be complex so that 𝜀𝑥𝑦 = 𝜀′𝑥𝑦 +

𝑖𝜀"𝑥𝑦. Then setting 𝑛 =
𝑛++𝑛−

2
, 𝑘 =

𝑘++𝑘−

2
, ∆𝑛 = 𝑅𝑒(𝑁+ − 𝑁−) = 𝑛+ − 𝑛− and 

∆𝑘 = 𝐼𝑚(𝑁+ − 𝑁−) = 𝑘+ − 𝑘−  gives [79] 

𝜀′𝑥𝑦 = 𝑛∆𝑘 + 𝑘∆𝑛    (4.27) 
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𝜀"𝑥𝑦 = 𝑘∆𝑘 − 𝑘∆𝑛    (4.28) 

Which allows us to express the rotation angle and the ellipticity as [79] 

𝜃𝐹 =
𝜔𝑙

2𝑐

𝑘𝜀′𝑥𝑦−𝑛𝜀"𝑥𝑦

𝑛2+𝑘2
    (4.29) 

𝜂𝐹 = −
𝜔𝑙

2𝑐

𝑛𝜀′𝑥𝑦+𝑘𝜀"𝑥𝑦

𝑛2+𝑘2     (4.30) 

Therefore, the rotation and the ellipticity are related to the off-diagonal 𝜀𝑥𝑦 dielectric 

tensor components.  

 

 

Figure 4.6: When linearly polarized light enters an optically active medium, it splits 

into two circularly polarized modes. Because the medium has different refractive 

indices, the two modes propagate at different speeds and a phase difference is 

introduced between the modes as it propagates through the medium.  This leads to a 

rotation of the polarization. Additionally, the two modes have different attenuation 

coefficients so that the relative amplitudes are different after propagating through the 
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medium.  This introduces ellipticity to the light. The light that emerges is thus 

elliptically polarized with the major axis of the ellipse rotated. 

 

4.4.4 Magneto-Optic Kerr Effect  

The different indices of refraction for the RHC and LHC modes also cause reflected 

light to experience a rotation and change in ellipticity as well.  So far we have been 

discussing the effect the off diagonal components of the dielectric tensor have on 

light in rather specific configurations.  In the general case of light reflecting off a 

ferromagnetic sample the dielectric tensor becomes 

𝜀 = 𝜀𝑥𝑥 (

1 −𝑖𝑄𝑚𝑧 𝑖𝑄𝑚𝑦

𝑖𝑄𝑚𝑧 1 −𝑖𝑄𝑚𝑥

−𝑖𝑄𝑚𝑦 𝑖𝑄𝑚𝑥 1
)   (4.31) 

Where 𝑄 = 𝑖
𝜀𝑥𝑦

𝜀𝑥𝑥
 and 𝑚𝑥, 𝑚𝑦 and 𝑚𝑧 are directional cosines of the magnetization 

vector M. [80,81] By solving Maxwell’s equations subject to the following boundary 

conditions (no surface charges) 

𝒏 ∙ (𝑫2 − 𝑫1) = 0    (4.32) 

𝒏 × (𝑬2 − 𝑬1) = 0    (4.33) 

𝒏 ∙ (𝑩2 − 𝑩1) = 0    (4.34) 

𝒏 × (𝑯2 − 𝑯1) = 0    (4.35) 
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we obtain a relation between the s and p components of the incident and reflected 

light which is given by 

(
𝑬𝒔

(𝒓)

𝑬𝒑
(𝒓)) = (

𝑟𝑠𝑠 𝑟𝑠𝑝

𝑟𝑝𝑠 𝑟𝑝𝑝
) (

𝑬𝒔
(𝒊)

𝑬𝒑
(𝒊))    (4.36) 

Where [80] 

𝑟𝑝𝑝 =
𝑛2 cos(𝜃1) − 𝑛1 cos(𝜃2)

𝑛2 cos(𝜃1) + 𝑛1 cos(𝜃2)
−

𝑖2𝑛1𝑛2 cos(𝜃1) sin(𝜃2) 𝑄𝑚𝑥

𝑛2 cos(𝜃1) + 𝑛1 cos(𝜃2)
 

   (4.37) 

𝑟𝑠𝑝 =
𝑖𝑛1𝑛2 cos(𝜃1) (𝑚𝑦 sin(𝜃2) + 𝑚𝑧 cos(𝜃2))𝑄

(𝑛2 cos(𝜃1) + 𝑛1 cos(𝜃2))(𝑛1 cos(𝜃1) + 𝑛2 cos(𝜃2)) cos(𝜃2)
 

  (4.38) 

𝑟𝑠𝑠 =
𝑛1 cos(𝜃1) − 𝑛2 cos(𝜃2)

𝑛1 cos(𝜃1) + 𝑛2 cos(𝜃2)
 

    (4.39) 

𝑟𝑝𝑠 = −
𝑖𝑛1𝑛2 cos(𝜃1) (𝑚𝑦 sin(𝜃2) − 𝑚𝑧 cos(𝜃2))𝑄

(𝑛2 cos(𝜃1) + 𝑛1 cos(𝜃2))(𝑛1 cos(𝜃1) + 𝑛2 cos(𝜃2)) cos(𝜃2)
 

  (4.40) 

𝜃𝑖 is the angle with respect to the surface normal vector in medium i., Analyzing 

these reflection coefficients reveals the manner in which the reflected light is altered. 

The effect on the light arises from the angle of incidence (𝜃1) and the directional 
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components of the magnetization. The Kerr rotation 𝜃𝐾 and ellipticity 𝜂𝐾 for s and p 

polarized light can be given by the reflection coefficients [80] 

𝜃𝐾
(𝑠)

+ 𝑖𝜂𝐾
(𝑠)

=
𝑟𝑝𝑠

𝑟𝑠𝑠
     (4.41) 

𝜃𝐾
(𝑝)

+ 𝑖𝜂𝐾
(𝑝)

=
𝑟𝑠𝑝

𝑟𝑝𝑝
     (4.42) 

 

 

Figure 4.7: Schematic showing the different Kerr effect layouts. (a) In the Polar 

configuration the the z-component, 𝑚𝑧, of the magnetization is responsible for 

affecting the light. The incident light can come at an angle or normal to the sample 

surface.  (b) The longitudinal configuration is sensitive to the in-plane component of 

the magnetization that is parallel to the plane of incidence, 𝑚𝑦. The incident light 

must come at an angle in order to be affected, therefore it is necessary to be careful to 

separate any possible polar effects. (c) In the Transverse configuration the 

magnetization that is perpendicular to the plane of incidence is responsible for 
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affecting the light. Unlike the previous two configurations which affect the angle and 

ellipticity of the light, this configuration only affects the reflectivity. 

  

The effects can be decomposed into three configurations. (Fig. 4.7) 

1) Polar configuration – The polar configuration is sensitive to the z-component 

of the magnetization and has the effect of mixing the s and p components of 

the incident beam via 𝑟𝑠𝑝 and 𝑟𝑝𝑠. This results in a rotation of the polarization 

axis and introduction of ellipticity upon reflection from the sample. Tracing 

back to the dielectric tensor this effect is the result of the 𝜀𝑥𝑦 and 𝜀𝑦𝑥 

components.  There are two manners in which this effect can be taken 

advantage of. First, if the sample is magnetized only along the z-direction then 

𝑚𝑧 will be the only term entering into the reflection coefficients. Any effect 

on the polarization of the light at any angle of incidence can be attributed to 

the 𝑚𝑧 component.  Second, if the sample is magnetized in some arbitrary 

direction so that 𝑚𝑥, 𝑚𝑦 and 𝑚𝑧 components are present, then incident light 

which is normal to the sample surface will only be sensitive to the 𝑚𝑧 

component. 

2) Longitudinal configuration – The Longitudinal configuration is sensitive to 

the magnetization component that lies within the plane of incidence, 𝑚𝑦.  𝑚𝑦 

also leads to a mixing of the s and p components of the incident beam via 𝑟𝑠𝑝 

and 𝑟𝑝𝑠 which results in a rotation of the polarization and introduction of 
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ellipticity.  This effect comes from the 𝜀𝑥𝑧 and 𝜀𝑧𝑥 components of the 

dielectric tensor.  If the sample is magnetized entirely along the y-direction 

then any effect on the polarization will be due to 𝑚𝑦. However, the incident 

light must come at an angle due to the sin(𝜃2) dependence.  If the sample is 

magnetized in an arbitrary direction then the change in polarization will be 

due to 𝑚𝑦 and 𝑚𝑧 components.   

3) Transverse Configuration – The transverse configuration is sensitive to the 

magnetization component that is orthogonal to the plane of incidence, 𝑚𝑥. 

This effect comes from the 𝜀𝑦𝑧 and 𝜀𝑧𝑦 components of the dielectric 

tensor. 𝑟𝑝𝑝 is the only reflection coefficient with an 𝑚𝑥 dependence.  In this 

case the amplitude of the incident p-polarized light is affected with the 

maximum effect occurring at an angle of incidence of 45 degrees. 

4.5 Detection 

So far we have seen how light is affected by interacting with magnetic materials. 

Therefore, if we know the state of the light before the interaction with the magnetic 

material and we analyze the light after it has been altered we can make inferences 

concerning the magnetic system.  Detecting the change in the light upon reflection 

can be accomplished utilizing a few different measurement schemes. [73] 

4.5.1 Crossed Polarizer 

In the crossed polarizer configuration two linear polarizers are used in order to 

analyze the probe signal. (Fig. 4.8)  The first polarizer sets the initial state of the 



102 

 

incoming light by polarizing the light along a certain direction and is known as the 

polarizer.  The second polarizer is responsible for separating out the effect the 

magnetic material has on the polarization and is known as the analyzer. In order to 

calculate how light is affected as it interacts with various optical components and 

materials we use the methods of Jones matrices, which breaks down each interaction 

the light has into matrices which describe the effect on the polarization of light.  

Assuming the electric field is polarized (if it is unpolarized the method of Mueller 

Matrices must be used [82]), it can be decomposed into s and p components so that 

𝑬 = (
𝐸𝑠

𝐸𝑝
)     (4.43) 

The matrix for a linear polarizer is given by 

𝐿(𝛼) = ( sin2 𝛼 sin 𝛼 cos 𝛼
sin 𝛼 cos 𝛼 cos2 𝛼

)   (4.44) 

Where 𝛼 is the angle measured from the plane of incidence. In the crossed polarizer 

configuration light first interacts with the polarizer oriented at an angle 𝛼𝑃, then is 

reflected off the magnetic material and finally passes through the analyzer oriented at 

an angle 𝛼𝐴. (Fig. 4.8) The mathematical description relating the final electric 

field, 𝑬𝒇 to the initial electric field, 𝑬𝒊 in matrix form is given by  

𝑬𝒇 = 𝐿(𝛼𝐴) ∙ 𝑅 ∙ 𝐿(𝛼𝑃) ⋅ 𝑬𝒊    (4.45) 

Where R is the 2 × 2 reflection matrix (Eq. 4.36).  
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If 𝛼𝑃 = 90° so that the light is completely s-polarized as it irradiates the sample, and 

making the further assumption that 𝛼𝐴 ≪ 1, so that the polarizer and analyzer are 

essentially “crossed” leads to [73] 

𝑬𝒇 = (
𝛼𝐴

2𝑟𝑠𝑠 + 𝑟𝑝𝑠𝛼𝐴

𝛼𝐴𝑟𝑠𝑠 + 𝑟𝑝𝑠
) 𝑬𝒊    (4.46) 

The detectors are sensitive to the intensity, 𝑰 = 𝑬𝒇𝑬𝒇
∗. Keeping terms only up to 2nd  

order we get  

𝐼 = 𝑅(𝛼𝐴
2 + 2𝛼𝐴𝜃𝐾 + 𝜃𝐾

2 + 𝜂𝐾
2)   (4.47) 

Where the 𝜃𝐾 and 𝜂𝐾 are given by equation (4.41) with the superscript dropped. In 

order to see how this signal is modified by the action of the pump pulse we take the 

partial derivatives and keep terms that are linear with resepect to 𝜃𝐾. This gives the 

dynamic change in the intensity. [73] 

Δ𝐼(𝑡) = 𝛼𝐴
2Δ𝑅(𝑡) + 2𝑅0𝛼𝐴Δ𝜃𝐾(𝑡)   (4.48) 

From this we can see that the change in the intensity of the light is proportional to the 

change in the Kerr rotation, Δ𝜃𝐾(𝑡) and has a background scaling factor due to the 

nonmagnetic contributions of 𝛼𝐴
2Δ𝑅(𝑡). These two effects cannot be separated in this 

configuration. 
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Figure 4.8: Schematic of the crossed polarizer configuration discussed in text.  Light 

is sent through a polarizer (L) oriented at 90° with respect to the plane of incidence so 

that the light is s-polarized. After light is reflected off the sample (R) the polarization 

is rotated (𝜃𝐾) and it becomes slightly elliptic due to the Kerr effect.  The light then 

passes through another polarizer (L) oriented at 0° with respect to the plane of 

incidence.  The light that passes through the second polarizer is proportional to the 

Kerr rotation due to the reflection. The intensity is detected by a photodiode (PD). 

 

 4.5.2 Balanced Photodiodes 

In a balanced photodetector configuration the light that is reflected off of the 

magnetic sample is passed through a polarizing beam splitter (PBS) which splits the 

light into two components orthogonal to one another. (Fig. 4.9) The magnitude of the 
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two components depends on the relative orientation of the polarized light with the 

plane of incidence of the PBS. For simplicity we assume that the plane of incidence 

of the PBS is the same as the plane of incidence given by the reflection off the 

magnetic sample. In the Jones formulism, the orthogonal components of the light are 

represented as two equations [73] 

𝑬𝒇,𝟏 = 𝐿(𝛼𝑃𝐵𝑆) ∙ 𝑅 ∙ 𝐿(𝛼𝑃) ⋅ 𝑬𝒊   (4.49) 

𝑬𝒇,𝟐 = 𝐿(𝛼𝑃𝐵𝑆 − 90) ∙ 𝑅 ∙ 𝐿(𝛼𝑃) ⋅ 𝑬𝒊   (4.50) 

Where as in the crossed polarizer case 𝛼𝑃 = 90°. Taking the difference in the 

intensity of the two beams gives 

𝑰 = 𝑰𝟏 − 𝑰𝟐 = 𝑅[(sin4 𝛼𝑃𝐵𝑆 − cos4 𝛼𝑃𝐵𝑆)(𝜃𝐾
2 + 𝜂𝐾

2 − 1) + 4𝜃𝐾 sin 𝛼𝑃𝐵𝑆 cos 𝛼𝑃𝐵𝑆]

 (4.51) 

Where 𝑰𝒊 = 𝑬𝒇,𝒊𝑬𝒇,𝒊
∗ . If 𝛼𝑃𝐵𝑆 = 45°, then the beam will be split into two equal parts 

so that the signal from the two photodetectors is “balanced”.  Taking the partial 

derivatives of equation (4.51) gives the dynamic signal which is given by [73] 

Δ𝐼(𝑡) = 2𝜃0Δ𝑅(𝑡) + 2𝑅0Δ𝜃𝐾(𝑡)   (4.52) 

Since Δ𝑅(𝑡) 𝑅0⁄ ≪ Δ𝜃𝐾(𝑡) 𝜃0⁄  the dynamic response becomes 

Δ𝐼Δ(𝑡) = 2𝑅0Δ𝜃𝐾(𝑡)     (4.52) 
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Where the Δ subscript indicates that the dynamic signal is due to the difference in the 

intensity of the two signals. This is an improvement over the crossed polarizer 

configuration because the magnetic and non-magnetic contributions to the signal have 

been separated. [73] 

Additionally, if we take the sum of the intensities 

𝑰 = 𝑰𝟏 + 𝑰𝟐 = 𝑅 + 𝜃𝐾
2 + 𝜂𝐾

2   (4.53) 

Since 𝑅 ≫ 𝜃𝐾 the dynamic response becomes 

Δ𝐼Σ(𝑡) = Δ𝑅(𝑡)    (4.54) 

Where the Σ subscript indicates that the dynamic signal is due to the sum of the 

intensity of the signals.  Using the balanced photodetector configuration we are able 

to detect the magnetic and non-magnetic contributions to the signal at the same time 

by splitting the reflected light into equal components and taking the difference and 

the sum of the intensities. For the previous two examples, it is not critical that the 

initial polarization be s polarized.  That was only used a means to simplify the 

mathematics. However, it is always a good idea to consider the polarization state of 

the probe pulse since it does affect the reflection coefficients in certain 

configurations.  
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Figure 4.9: Schematic of the balanced polarizer configuration discussed in text.  

Light is sent through a polarizer (L) oriented at 90° with respect to the plane of 

incidence so that the light is s-polarized. After light is reflected off the sample (R) the 

Kerr effect causes the polarization to be rotated (𝜃𝐾) and become slightly elliptic.  

The light then passes through a polarizing beam splitter (PBS) oriented at 45° with 

respect to the plane of incidence. This splits the light into two even components so 

that the difference signal is “balanced”. Dynamic changes in the difference (-) of the 

signal from the two photodiodes (PD) give information on the magnetic system and 

changes in the sum (+) of the signal from the photodiodes give information on the 

non-magnetic system. 
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4.6 TR-MOKE Experiment 

The experiments in this thesis were conducted using the balanced photo detector 

configuration. The reason is because for magneto-phononic structures the non-

magnetic and magnetic information complement one another. The 165-fs probe 

(800nm) and pump (400nm) pulses were focused onto the sample using various 

microscope objectives. A microscope (Witec alpha300) was used to position the 

objective and the sample with submicron resolution. An external magnetic field was 

applied using a pair of Nd permanent magnets and the orientation and magnitude of 

the field was characterized using a gauss meter. At each applied field the time-

dependent signal from the magnetic and non-magnetic channels were background 

corrected and converted into the frequency domain using a Fast Fourier Transform 

(FFT).  

4.6.1 Beam Paths 

Figure 4.10 shows a schematic of the experimental setup. The light exiting the fs 

Laser cavity is split by a beam splitter (BS1). Part of the split light is sent through a 

second harmonic generator (SHG) where the frequency is doubled to produce the 

pump pulse at a wavelength of 400nm. The pump pulse is than sent through a 

mechanical chopper wheel (MCW) which serves as a reference to the lock-in 

amplifiers.  The other component of light serves as the probe pulse and has a much 

lower power then the pump pulse so that it has a negligible effect on the magnetic 

system. After the beam splitter the probe pulse goes through a delay stage which is 
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used to adjust the arrival time Δt of the probe pulse.  Then the probe pulse is 

polarized (𝐿(𝛼𝑃)).  The orientation of the polarizer is adjusted to balance the 

difference signal.  Next the probe passes through a beam splitter (BS2) which is used 

to recombine the reflected light. Next, the two beams are recombined using a dichroic 

filter (DF). The two beams are then sent through another beam splitter which is 

positioned so as to be able to image the beams and the sample surface using a camera 

(CCD). Both beams are then focused onto the sample using the Witec Microscope 

(WM). The reflected beams are sent back along their incoming paths.  The dichroic 

filter should reflect most of the pump pulse out of the reflected path. When the probe 

reaches BS2 it is diverted from the path and sent through a color filter so as to get rid 

of any possible residual 400nm pump energy.  The 800nm beam is then split by a 

polarizing beam splitter (PBS) and focused onto a pair of photo-diode detectors 

(BPD) which had been balanced as discussed previously.  The detectors are 

connected to a circuit which outputs the difference (Δ) and sum (Σ) signals to two 

lock-in amplifiers which are then read by a LabView program on a computer. 
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Figure 4.10: Schematic illustration of the experimental setup described in the text. 

Beam Splitter (BS); Delay Stage (DS); Linear Polarizer (𝐿(𝛼𝑃)); Dichroic Filter 

(DF); Charge Coupled Device camera (CCD); Witec Microscope (WM); Permanent 

Magnets (PM); Second Harmonic Generator (SHG); Mechanical Chopper Wheel 

(MCW); Color Filter (CF); Polarizing Beam Splitter (PBS); Balanced Photodiodes 

(BPD) 

 

4.6.2 Excitation Geometry Considerations 

In the configuration shown in figure 4.10, the probe beam is sensitive to the z-

component of the magnetization. Therefore, the relative geometry of the applied field 

and the anisotropy directions of the sample are important for excitation and detection. 

For example, assuming for simplicity the sample is a polycrystalline thin film, so that 

the demagnetization field is the dominant anisotropy term and acts to orient the 
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magnetization vector in the film plane. If the effective field points normal to the 

sample surface (this can be accomplished by applying a significantly strong external 

field in the direction normal to the plane) then the magnetization precession will only 

be in the xy plane. (Fig. 4.11a) Despite the fact that the magnetization is rotating, the 

precession will have no z-component and therefore will not be detectable in the polar 

Kerr configuration.  Additionally, if the effective field is within the film plane which 

is an easy direction for the magnetization vector, then the pump heat pulse will not act 

as an anisotropy pulse and no precession will be initiated. (Fig. 4.11b) Alternatively, 

if the magnetization vector is canted at an angle then the magnetization can be 

perturbed and the precession will have a component along the z-direction so that it 

can be detected in the polar Kerr configuration.  

 

 

Figure 4.11: Precessional and excitation characteristics for a thin film with an in-

plane easy axis. (a) If the magnetization is oriented normal to the surface by 

application of a strong external magnetic field, then the precession will be in the xy 

plane and will contribute no z-component.  Therefore, there will be no detected signal 

in a polar Kerr configuration. (b) If the magnetization is oriented along the easy axis, 
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then the pump pulse will heat up the magnetization which will cause the magnitude of 

the magnetization vector to decrease.  However, there will be no subsequent 

precession because the effective field direction will not change.  (c) If the 

magnetization is canted with respect to the easy axis, then the pump pulse will perturb 

the system so that the magnetization precesses and there will also be a component of 

the precession along the z-direction so that it will be detectable in the polar Kerr 

configuration. 

 

Considerations such as these must be tailored to the particular sample under study and 

to the Kerr configuration of the experiment. For example, if the frequency 

characteristics are needed for the out of plane magnetization configuration then the 

longitudinal or transverse Kerr effects could be used.  In fact, it is possible to utilize 

multiple Kerr configurations simultaneously [83,84] to construct a profile of the 

magnetization trajectory in multiple dimensions. 

4.6.3 Time Domain Analysis 

For the experimental configuration discussed above, the TR-MOKE signal is due to a 

single component of the magnetization (𝑚𝑧) and can be modelled as [85] 

𝜃𝐾 = 𝑎 + 𝑏𝑒−(𝑡 𝑡0⁄ ) + 𝐴 sin(𝜔𝑡 + 𝜑)𝑒−(𝑡 𝜏⁄ )   (4.55) 

Where 𝑎 is a background signal, the second expression is a decaying signal which is 

due to the transient heating of the electron system by the heat pulse and the final term 
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is due solely to the precessional dynamics of the magnetization vector as given by the 

LLG equation. By subtracting out the exponential background we are left with a pure 

decaying sinusoid 

𝜃𝐾 = 𝐴 sin(𝜔𝑡 + 𝜑)𝑒−(𝑡 𝜏⁄ )    (4.56) 

Where 𝜔 is the resonance frequency discussed in chapter 3 and  

𝜏 =
1

𝜔𝛼
      (4.57) 

Where 𝛼 is the Gilbert damping parameter.  This term will be discussed in more 

depth in Chapter 7. Figure 4.12 shows an example of the process of converting the 

raw signal into the pure oscillation dynamics modelled in the LLG equation. 

 

 

Figure 4.12: (a) Raw TR-MOKE signal from a thin Ni film with 𝐻𝑎 = 5𝑘𝑂𝑒 and 

𝜃𝐻 = 30°. At 𝑡 = 0 the pump pulse excites the system.  This causes the sample to 

heat up and demagnetize which is represented as a rapid change in the signal. On a 

slower time scale the magnetization precesses around the effective field.  There is still 
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some residual heat in the system which is represented as a slowly decaying backdrop 

to the oscillation. (red line)  (b) By subtracting the slowly decaying backdrop from 

the raw signal the pure dynamical motion given by the LLG equation is left. (c) Using 

an Fast Fourier Transform (FFT) algorithm we can transform the time signal into the 

frequency domain. 

4.6.4 Discrete Fourier Transform Linewidth 

An important question is whether we can extract the damping of the system based on 

the linewidth of the discrete Fourier transform spectra (DFT is calculated using FFT 

algorithm). Since the TR-MOKE signal is of finite duration (limited either by the 

length of the scan, or when the signal drops below the noise level), this is equivalent 

to a decaying sinusoid multiplied by a rectangular windowing function in the time 

domain. In the frequency domain, this corresponds to a Lorentzian convolved with a 

Sinc function, which leads to broadening of the DFT linewidth. [86]  

This effect is demonstrated on a clean Ni film resonance in figure 4.13 below. The 

decaying oscillation of a Ni film (H = 6 kOe) is fit to equation 4.56 which gives a 

relaxation time 𝜏 = 300 ps. (Fig. 4.13a) Equation 4.56 Fourier transformed is a 

Lorentzian centered at 𝑓 = 𝜔 2𝜋⁄ . Since the relaxation time dictates the width of the 

Lorentzian, the full width at half maximum of the Lorentzian should be FWHM=

1 𝜋𝜏⁄ = 1.06 GHz.  However, fitting the experimental DFT spectra to a Lorentzian 

gives a much larger value of 𝐹𝑊𝐻𝑀 = 2.8 ± 0.14 GHz. (Fig. 4.13b) 
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In order to mimic the effect of the finite time window, we take a Lorentzian with a 

𝐹𝑊𝐻𝑀 = 1.06 GHz corresponding to the intrinsic loss of the oscillation and then 

convolve the Lorentzian with a Sinc function corresponding to a rectangular window 

of 1000 ps in the time domain (length of the scan). Fitting the convolved signal gives  

𝐹𝑊𝐻𝑀 = 2.89 GHz which matches the FWHM given by the DFT from the data 

within error and supports the fact that the finite length of the data is causing a spread 

in the spectra. (Fig. 4.13c) 

Although we apply a Hamming window to the time signal in order to decrease the 

effects of the broadening by reducing the effect of the side lobes of the Sinc function, 

the DFT linewidth is still broadened (1.6x larger than the intrinsic value). (Fig. 4.13d) 
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Figure 4.13: (a) The decaying oscillation of a Ni film (H=6 kOe) (b) Fitting the DFT 

spectra from (a) to a Lorentzian gives 𝐹𝑊𝐻𝑀 = 2.8 ± 0.14 GHz. (c) Demonstration 

of the effect of the broadening due to the finite scan length. The Conv data points are 

obtained by convolving a Lorentzian associated with the intrinsic loss with a Sinc 

function associated with the finite time duration. Fitting the convolved signal gives  

𝐹𝑊𝐻𝑀 = 2.89 GHz. (d) DFT spectra and fit to a Lorentzian after using a Hamming 

window to the data in (a), showing a smaller but non-neglible broadening. 
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CHAPTER 5: ALL-OPTICAL 

MEASUREMENT OF INTERLAYER 

EXCHANGE COUPLING IN Fe/Pt/FePt 

THIN FILMS 
 

‘‘Simple it may be, but not ineffectual; rude, but not crude.’’ 

- John Kerr 

 

5.1 Introduction 

In this chapter we will apply a few of the concepts introduced in chapters 3 and 4 to 

the characterization and manipulation of Fe/Pt(x)/FePt multilayer films (Fig. 5.1). 

The results have been published in ref [87]. The experimental procedure for 

extracting magnetic parameters will be demonstrated for the measurement of the 

interlayer exchange coupling in the Fe/Pt(x)/FePt multilayers. However, this general 

procedure can be applied to measure other magnetic parameters as well.   

 

Figure 5.1: Schematic of the multilayer structure studied in this chapter. 
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5.2 Film Properties 

The films were deposited by DC magnetron sputtering from Fe and Pt targets at an 

argon pressure of 3.5 µbar, while the substrates were at room temperature. Co-

deposition was applied to create the Fe52Pt48 alloy. The substrates are thermally 

oxidized, (100)-cut, p-doped silicon wafers with an oxide thickness of 100 nm. These 

films are polycrystalline with the chemically disordered A1 phase of FePt. The A1 

phase is an fcc crystal structure with a random distribution of the Fe and Pt atoms. 

[88]  The L10 phase is another formation of FePt that is extensively studied due to its 

extremely high magnetocrystalline anisotropy.  It is characterized by the successive 

layering of Fe and Pt atoms in the fcc crystalline structure. [89] (Fig. 5.2) 

 

 

Figure 5.2: (a) The Fe and Pt atoms are randomly distributed in the A1 phase. (b) 

The L10 phase is characterized by a very high magnetocrystalline anisotropy. The Fe 

and Pt atoms occupy successive planes in the crystal. 
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5.3 Acoustic and Optic Modes 

Magnetic multilayers are critical in magnetic storage technology.  The giant 

magnetoresistance (GMR) effect, where the resistance of a magnetic multilayer 

depends on the relative orientations of the layers, has transformed the industry [90]. 

GMR is used in devices such as sensors, read heads and MRAM. [91] Additionally, 

multilayers in the form of exchange-coupled composite and exchange spring 

composite media have improved ultrahigh-density magnetic recording media by 

enabling the scaling down of magnetic grain size while also overcoming the 

superparamagnetic limit.[92] Critical to the design of these devices is knowledge of 

the interlayer exchange coupling constant 𝐽1. As the coupling of the layers (𝐽1) 

increases, the dynamics of the film sample changes, giving rise to coupled modes 

which exist in both layers, an in-phase acoustic mode and an out of phase optic mode 

with frequencies and intensities that depend on the strength of 𝐽1. (Fig. 5.3) 

 

 

Figure 5.3: The exchange coupled modes consist of (a) an Acoustic Mode in which 

the two coupled magnetization vectors oscillate in-phase with one another, and (b) an 
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Optic mode in which the magnetization vectors oscillate out-of-phase with one 

another.  The sign of 𝐽1 dictates which mode has the lower energy. 

The sign of 𝐽1 determines whether the coupling is parallel (ferromagnetic) or anti-

parallel (anti-ferromagnetic).  Additionally, it dictates the relative energies of the 

modes. For 𝐽1 > 0 (ferromagnetic) the lower energy state is the one which aligns the 

spins parallel to one another.  In the acoustic mode all the spins precess in phase and 

are not canted with respect to each other—satisfying the energy minimum criteria.  

For the Optic mode, the spins precess out of phase and are therefore slightly canted 

relative to one another. This canting causes the optic mode to have a higher energy, 

which corresponds to a higher resonance frequency than the acoustic mode. [93] 

Applying the opposite argument for when 𝐽1 < 0 (anti-ferromagnetic) explains why 

the optic mode has a lower energy (lower frequency) than the acoustic mode. In field 

swept Ferromagnetic Resonance (FMR, constant frequency), ferromagnetic coupling 

can be inferred from a spectrum where the optic mode resonance is at a lower field 

than the acoustic mode. In a TR-MOKE experiment the field is fixed and so a higher 

frequency optic mode is indicative of ferromagnetic coupling. 
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Figure 5.4: FMR spectra demonstrating the resonance fields of Ferromagnetic and 

Anti-ferromagnetically coupled films.  The solid line is the uncoupled case. The 

dashed and the dotted lines are the coupled cases, with the dotted line corresponding 

to a coupling twice that of the dashed line.  Care should be taken when comparing 

results from TR-MOKE and FMR experiments.  In FMR with a fixed frequency, the 

external field is varied through resonance so that the position of the higher energy 

mode occurs at a lower applied field.  In TR-MOKE the field is held fixed and the 

frequencies measured simultaneously so that the higher energy mode has a higher 

frequency at that applied field. Taken from [93]. 

 

5.4 Single Film Resonance –Kittel Formula 

In order to measure the exchange coupling in the multilayers we must first study the 

properties of the individual layers.  For a single film, the Gibbs Free energy is given 

by 

𝐺 = −𝜇0𝑯 ∙ 𝒎 + 𝐵𝑑𝑚𝑧
2    (5.1) 
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Where 𝑚𝑧 is the z-component of the magnetization and 𝐵𝑑 = 2𝜋𝑀𝑆 is the 

demagnetization energy of a thin film.  In the {𝟏, 𝟐, 𝟑} coordinate system introduced 

in chapter 3, this becomes 

𝐺 = −𝜇0(𝐻𝟏𝑚1 + 𝐻𝟐𝑚𝟐 + 𝐻𝟑𝑚3) + 𝐵𝑑(−𝑠𝑖𝑛 𝜃𝑀𝑚1 + cos 𝜃𝑀 𝑚3)2 (5.2) 

Where 𝜃𝑀 is the angle of the magnetization with respect to the z-axis. Referring back 

to equation (3.60) we get the following for the partial derivatives of the free energy  

𝐺11 =
𝜕2𝐺

𝜕𝑚1
2 = 2𝐵𝑑(𝑠𝑖𝑛2 𝜃𝑀) = 4𝜋𝑀𝑆(𝑠𝑖𝑛2 𝜃𝑀)  (5.3) 

𝐺21 = 𝐺12 =
𝜕

𝜕𝑚1

𝜕𝐺

𝜕𝑚2
=

𝜕

𝜕𝑚1
𝜇0(𝐻𝟐) = 0   (5.4) 

𝐺22 =
𝜕

𝜕𝑚2

𝜕𝐺

𝜕𝑚2
=

𝜕

𝜕𝑚2
𝜇0(𝐻𝟐) = 0    (5.5) 

𝐺3 = −𝜇0𝐻3 + 4𝜋𝑀𝑆 cos2 𝜃𝑀    (5.6) 

So that the equation for the resonance frequency (Eq. 3.60) becomes 

𝜔2

𝛾2 = √(𝜇0𝐻3 − 4𝜋𝑀𝑆 cos2 𝜃𝑀)(𝜇0𝐻3 − 4𝜋𝑀𝑆 cos 2𝜃𝑀)  (5.7) 

Where 𝐻3 = 𝐻𝑎 cos(𝜃𝑀 − 𝜃𝐻) and 𝜃𝐻 is the angle of the applied field with respect to 

the z-axis. This is the well known Kittel Formula for a thin magnetic film. [94] The 

term 4𝜋𝑀𝑆 comes from the demagnetization energy and has units Oe. It is responsible 

for aligning the magnetization in the plane. There are cases where the 

magnetocrystalline anisotropy may prefer to orient the magnetization out of the plane 
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while the demagnetization field may try and align it in the plane.  When there are 

competing anisotropies they may be combined into one effective term, 𝑀𝑒𝑓𝑓 whose 

sign elucidates the overall tendency of the anisotropies. 𝑀𝑒𝑓𝑓 > 0 indicates a stable 

direction for the magnetization oriented normal to the film plane and 𝑀𝑒𝑓𝑓 < 0 

orienting the magnetization in the film plane. The samples studied here are 

polycrystalline, so that the only contributrion to 𝑀𝑒𝑓𝑓 is from the demagnetization 

field and we can write 𝑀𝑒𝑓𝑓 = −4𝜋𝑀𝑆. Equation (5.7) then becomes 

𝜔2 = 𝛾√(𝜇0𝐻3 + 𝑀𝑒𝑓𝑓 cos2 𝜃𝑀)(𝜇0𝐻3 + 𝑀𝑒𝑓𝑓 cos 2𝜃𝑀)  (5.8) 

In order to find 𝜃𝑀 equation (5.2) can be minimized with respect to 𝜃𝑀  

𝜕𝐺

𝜕𝜃𝑀
=

𝜕

𝜕𝜃𝑀

(−𝜇0𝐻𝑎𝑀𝑆 cos(𝜃𝑀 − 𝜃𝐻) + 2𝜋𝑀𝑆 cos2 𝜃𝑀) = 0 

⟹ 𝐻𝑀𝑆 sin(𝜃𝑀 − 𝜃𝐻) + 2𝜋𝑀𝑆 sin(2𝜃𝑀) = 0   (5.9) 

Which can be solved self-consistently with equation (5.8) in order to calculate the 

resonance frequency, 𝜔. 

5.4.1 Single Film TR-MOKE Measurements 

Using the TR-MOKE setup discussed in chapter 4 we measured the frequencies of the 

magnetic systems at various applied fields and angles. Then the magnetic parameters 

𝛾 and 𝑀𝑒𝑓𝑓 were numerically fit to the precession frequencies at all applied field 

strengths and angles simultaneously by self-consistently solving for the equilibrium 
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magnetization positions, 𝜃𝑀 (Eq. 5.9) and the single film Kittel formula. (Eq. 5.8) 

[94] 

𝐻𝑎 and 𝜃𝐻 were known from the experimental geometry and so were held fixed. 

Fitting three sets of angles as opposed to one or two lowered the sum of squared error 

by roughly 20% for the Fe fits and 40% for the FePt fits.  Additionally, multiple 

angles ensures that the sign of 𝑀𝑒𝑓𝑓 is accurate, since fitting only one angle can have 

degenerate solutions for in-plane and out-of-plane anisotropies.   

 

 

Figure 5.5: a) Experimental geometry for single film measurements (Fe or FePt) b) 

Fits of equation (5.8) (lines) to experimental data (symbols) at three angles over a 

range of applied fields for (b) single Fe film and (c) single FePt film. Taken from 

[87]. 

 

Fitted values for Fe were 𝛾 =  1.89e7 𝑟𝑎𝑑 𝑂𝑒−1 𝑠−1  and 𝑀𝑒𝑓𝑓 =  −19.07 𝑘𝑂𝑒. The 

FePt values were 𝛾 =  1.91e7 𝑟𝑎𝑑 𝑂𝑒−1 𝑠−1 and 𝑀𝑒𝑓𝑓 =  −7.95 𝑘𝑂𝑒. The absence 
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of any in-plane anisotropy was verified by taking resonance measurements at multiple 

in-plane angles and observing no changes in the frequencies. Therefore, the 

demagnetization field is the only anisotropy term and, 𝑀𝑆 = 1526 𝑒𝑚𝑢 𝑐𝑚−3  for Fe 

and  𝑀𝑆 = 633 𝑒𝑚𝑢 𝑐𝑚−3 for FePt. The fits to the single film data are shown in 

figure 5.5 and show excellent agreement with the data. The single film 𝛾 and 𝑀𝑆 

values were then used as constants in the fitting algorithm of the Fe/Pt(x nm)/FePt 

film samples. 

5.5 Multilayer Film Resonance  

When two ferromagnetic films are separated by a non-magnetic spacer, the interlayer 

exchange couples the two films so that the total free energy of the multilayer system 

is a combination of the individual energies of the multilayer films in addition to a 

term which exchange couples the layers. [95] It is given by: 

𝐺 = ∑ −𝑑𝑖𝑯 ∙ 𝒎𝒊 + 𝑑𝑖𝐵𝑑,𝑖𝑚𝑧,𝑖
2 − 𝐽1𝒎𝟏 ∙ 𝒎𝟐

2
𝑖=1   (5.10) 

Where 𝑑𝑖 is the thickness of film i, 𝑀𝑒𝑓𝑓,𝑖 = −4𝜋𝑀𝑆,𝑖, 𝒎𝒊 is the normalized 

magnetization vector of film i and H is the applied field vector.  The first term is the 

Zeeman energy, the second the demagnetization energy and the last the exchange 

energy due to the coupling between the films. 

Following the procedure outlined in chapter 3 for solving the Landau-Lifshitz (LL) 

equation of motion for the time dependent components of the magnetization, leads to 

the following characteristic equation: 
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−
𝜔4

𝛾1𝛾2
+ 𝑎𝜔2 + 𝑏 = 0     (5.11) 

with 

𝑎 = −
𝐻1

(2)
𝐻3

(2)

𝛾1
2

−
𝐻4

(1)
𝐻2

(2)

𝛾1𝛾2
+

𝐻1
(1)

𝐻3
(1)

𝛾2
2

−
𝐻2

(1)
𝐻4

(2)

𝛾1𝛾2
   (5.12) 

𝑏 = 𝐻1
(1)

𝐻1
(2)

𝐻3
(2)

𝐻3
(1)

− 𝐻1
(1)

𝐻4
(1)

𝐻1
(2)

𝐻4
(2)

− 𝐻2
(1)

𝐻3
(1)

𝐻2
(2)

𝐻3
(2)

+ 𝐻2
(1)

𝐻4
(1)

𝐻2
(2)

𝐻4
(2)

 (5.13) 

Where 𝛾𝑖 is the gyromagnetic ratio of film i, and the 𝐻𝑗
(𝑖)

 values are given by: 

𝐻1
(𝑖)

= −𝑀𝑒𝑓𝑓,𝑖 cos(2𝜃𝑀,𝑖) −
𝐽1

𝑀𝑆,𝑖𝑑𝑖
cos(𝜃𝑀,𝑖 − 𝜃𝑀,𝑗) − 𝐻 cos(𝜃𝑀,𝑖 − 𝜃𝐻) (5.14) 

𝐻2
(𝑖)

=
𝐽1

𝑀𝑆,𝑖𝑑𝑖
cos(𝜃𝑀,𝑖 − 𝜃𝑀,𝑗)   (5.15) 

𝐻3
(𝑖)

= 𝑀𝑒𝑓𝑓,𝑖 cos2(𝜃𝑀,𝑖) −
𝐽1

𝑀𝑆,𝑖𝑑𝑖
cos(𝜃𝑀,𝑖 − 𝜃𝑀,𝑗) − 𝐻 cos(𝜃𝑀,𝑖 − 𝜃𝐻) (5.16) 

𝐻4
(𝑖)

=
𝐽1

𝑀𝑆,𝑖𝑑𝑖
     (5.17) 

Where 𝜃𝑖,𝑗 is the angle of the magnetization of film i,j, and 𝜃𝐻  is the angle of the 

applied field, both with respect to the surface normal. The real and positive solutions 

of eqn. (5.11) are the acoustic (in-phase) and optic modes (out-of-phase).[93,96]  
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5.5.1 Multilayer TR-MOKE Measurements 

 

Figure 5.6: Fits of equation (5.11) (lines) to experimental data (symbols) at three 

angles over a range of applied fields for  (a) Fe / Pt(x = 0 nm) / FePt (b) Fe / Pt (x = 

0.5 nm) / FePt (c) Fe / Pt (x = 1.0 nm) / FePt and (d) Fe / Pt (x = 1.5 nm) / FePt (e) 

Experimental geometry of multilayer measurements. Taken from [87]. 

 

TR-MOKE scans at multiple applied fields and angles were performed on the 

multilayers as well. This yielded two frequencies for each scan (acoustic and optic). 

These frequencies were then fit by self-consistently solving for both magnetization 

orientations and using equations (5.11 – 5.17) to fit the frequencies, with 𝐽1 and 
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𝑀𝑒𝑓𝑓,𝑖 as fitting parameters.  The fits of the Fe / Pt (x nm) / FePt films are displayed 

in figure 5.6. 

 

 

Figure 5.7: (a) Fourier transforms of TR-MOKE time traces for the trilayers with 

different Pt spacer layer thickness at θH = 30˚ and Ha = 4 kOe.  The solid red arrow is 

a guide to mode 1 and the dashed blue arrow a guide to mode 2. (b) Mode frequencies 

vs. Pt thickness for Ha = 4 kOe. (c) Fourier amplitudes of the modes at different Pt 

thickness. Taken from [87]. 
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Figure 5.7a) shows the TR-MOKE Fourier spectra of the multilayer films taken at 

𝜃𝐻 = 30° at 𝐻𝑎 = 4 𝑘𝑂𝑒 for the different Pt spacer thicknesses. There is an obvious 

qualitative difference between the spectra. For x > 1.5 nm, there are two clearly 

resolvable modes which maintain their positions and relative amplitudes. In this 

regime (x > 1.5 nm) these modes are attributed to the Kittel modes of the individual 

layers—indicating that the two films are decoupled. When x ≤ 1.5 nm, the dynamics 

begin to change.  The system enters the exchange coupled regime and the two layers 

begin to be coupled through the bilinear exchange constant 𝐽1. [97] In the exchange 

coupled regime, the in-phase acoustic mode (mode 1) and the out-of-phase optic 

mode (mode 2) exist throughout the whole structure. As the Pt thickness decreases 

further, the acoustic mode frequency approaches an asymptotic limit and the optic 

mode frequency continues to increase (figure 5.7a) and 5.7b)).  x = 1.5 nm can be 

identified as the threshold between the two regimes due to the change in the relative 

amplitudes of the two modes (figure 5.7c). As the coupling increases (Pt thickness 

decreases) energy from the optic mode is funneled into the acoustic mode.[93] This is 

visualized in figure 5.7c) which shows the Fourier amplitudes of the two modes as a 

function of Pt thickness. In the exchange coupled regime (x ≤ 1.5 nm), the low 

intensity optic mode exists at a higher frequency indicating ferromagnetic coupling 

(𝐽1 > 0) at all Pt thicknesses measured.   
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Figure 5.8: (a) Effective magnetization of the two layers.  The dotted line is the 

strongly coupled 𝑀𝑒𝑓𝑓
∗  where the two films can be treated as having a single effective 

magnetization. (b) Extracted interlayer exchange constant vs. Pt thickness. (c) Optic 

mode amplitude and 1 𝐽1⁄  normalized to Pt = 1.5 nm values vs. Pt thickness. Taken 

from [87]. 

 

Using the methodology described previously, 𝐽1 and 𝑀𝑒𝑓𝑓,𝑖 were fit for all the film 

samples. Figure 5.8 shows the evolution of these parameters as a function of Pt 

thickness.  For x ≥ 1.5 nm the effective magnetizations of the two layers are the same 

as the single film values. At the threshold of exchange coupling (x = 1.5 nm) the 

effective magnetizations begin to evolve. As the layers are brought closer together 

𝑀𝑒𝑓𝑓,1 (FePt single film) approaches zero and 𝑀𝑒𝑓𝑓,2 (Fe single film) approaches the 

strongly coupled 𝑀𝑒𝑓𝑓
∗  (dashed line). At this point most of the dynamics arise within 

the in-phase acoustic mode and the system is better represented as a single film with a 

modified effective magnetization and gyromagnetic ratio given by: 
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𝑀𝑒𝑓𝑓
∗ =

𝑑1𝑀1𝑀𝑒𝑓𝑓,1+𝑑2𝑀2𝑀𝑒𝑓𝑓,2

𝑑1𝑀1+𝑑2𝑀2
    (5.18) 

𝛾∗ =
𝑑1𝑀1+𝑑2𝑀2

𝑑1𝑀1 𝛾1⁄ +𝑑2𝑀2 𝛾2⁄
     (5.19) 

Figure 5.8b) is the extracted bilinear exchange constant (𝐽1) at the different Pt 

thicknesses.  Once again, effects from the ferromagnetic coupling start emerging at x 

= 1.5 nm.  Between x = 1 nm and x = 0.5 nm there is a drastic increase in the 

magnitude of 𝐽1. When the system is fully coupled (x = 0 nm) the exchange constant 

reaches a maximum of 2.89 erg/cm
2
. The thickness at which the coupling begins as 

well as the 𝐽1 values derived are consistent with those measured in similar 

systems.[97,97] The positive values of 𝐽1 at all Pt thicknesses indicate no 

antiferromagnetic coupling which can be attributed to the electronic structure of Pt. 

[98] A confirmation of the exchange coupling can be seen in the intensity of the optic 

mode which follows a dependence given by 

𝐼𝑂𝑃 ∝
|𝑀𝑒𝑓𝑓,1−𝑀𝑒𝑓𝑓,2|

𝐽1
     (5.20) 

The optic mode intensity decreases as the coupling strength (𝐽1) increases and is zero 

with identical films. [93,99] This is shown in figure 5.8c) by normalizing both the 

optic mode’s Fourier amplitude and 1 𝐽1⁄  value to the x = 1.5 nm values where the 

coupling begins. Additionally, consideration must be given to the temperature 

increase of the material due to the absorption of the laser pulse. Using a two-

temperature model the estimated temperature increase in the samples measured in this 
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study is around 20 K.[100]  The effect that this increase has on 𝐽1 is less than the error 

associated with the fits and can therefore be neglected.[101,102]   

5.6 OOMMF Simulations 

 

Figure 5.9: Simulation (lines) on top of experimental Fourier maps normalized at 

each Ha. The small Fourier amplitude of the optic mode is difficult to see in the 

Fourier map so it has been highlighted in the (a) Fe / Pt(0.5 nm) / FePt film and the 

(b) Fe / Pt(1.0 nm) / FePt film.  (c)  The experimental Fourier map of the strongly 

coupled Fe/FePt film with simulation (line) using the modified magnetic parameters 

𝑀𝑒𝑓𝑓
∗  and 𝛾∗. Taken from [87]. 

 

In order to further confirm the extracted parameters, micromagnetic simulations were 

performed using the OOMMF (Object Oriented MicroMagnetic Framework) software 

package. Figure 5.9 shows the micromagnetic simulations for three of the exchange 

coupled samples. The colormaps show the experimental data from the TR-MOKE 

scans normalized at each magnetic field value. The solid black and dotted gray lines 
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are the simulated acoustic and optic frequencies respectively. A 20 x 20 nm2 lateral 

area is simulated with film thicknesses of 10nm for each layer. Periodic boundary 

conditions are applied along the x and y edges so as to mimic an infinite thin film.  

Cell sizes of 2.5 nm are used in the x, y and z directions.  The input parameters for the 

Pt = 0.5 nm and 1 nm trilayers (Fig. 5.9a and 5.9b) were the single film 𝑀𝑆 and 𝛾 

values and 𝐽1 from the fits of the trilayers’ mode spectra. The simulations display 

excellent agreement with the optic mode, validating the 𝐽1 parameter that was 

extracted.  The positions of the simulated acoustic modes are slightly off with an 

average discrepancy of less than 1 GHz. The duration of the TR-MOKE time scans 

are 1ns which corresponds to a frequency resolution of 1 GHz. Therefore, the 

simulations are within acceptable experimental error. However, this discrepancy can 

be explained by the modified anisotropy of the coupled layers which is not taken into 

account in the simulations. Figure 5.9c) shows a simulation of the strongly coupled 

layer stack with no spacer (Pt = 0 nm). In this case, a single, homogeneous film was 

simulated using the modified 𝑀𝑒𝑓𝑓
∗  and 𝛾∗ (Eqns. 5.18 and 5.19). The simulation and 

the experimental results match extremely well, corroborating the conclusion that the 

two films are strongly coupled with a modified gyromagnetic ratio and effective 

magnetization. This represents further validation of the effective magnetization trends 

that were seen in the exchange coupled fits of figure 5.8. 
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5.7 Conclusion  

In this chapter we applied the concepts introduced in the previous chapters in order to 

measure the dynamics of Fe/Pt(x)/FePt multilayers. The ferromagnetic exchange 

coupling varied as a function of x. By fitting the precession frequencies at multiple 

magnetic field strengths and angles, the accuracy of the fitting algorithm was 

improved.  As the Pt thickness was decreased below 1.5 nm, the effective 

magnetizations of the multilayer system changed. 𝑀𝑒𝑓𝑓,1 approached zero and 𝑀𝑒𝑓𝑓,2 

approached that of a strongly coupled system, which is phenomenologically described 

as being a single film with a modified effective magnetization and gyromagnetic 

ratio. Additionally, the bilinear exchange constant was found to reach a maximum 

value of 2.89 erg/cm
2
. These findings were backed through micromagnetic 

calculations. 
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CHAPTER 6: MULTI-PULSE METHOD 

FOR SELECTIVE CONTROL OF 

MAGNETIZATION PRECESSSIONS IN 

MAGNETIC MULTILAYERS  
 

“There is no perfectly shaped part of the motorcycle and never will be, but when you 

come as close as these instruments take you, remarkable things happen, and you go 

flying across the countryside under a power that would be called magic if it were not 

so completely rational in every way.”  

-Robert M. Pirsig (Zen and the Art of Motorcycle Maintenance) 

 

6.1 Introduction  

In this chapter, we demonstrate a new method to manipulate the magnetic multilayer 

structures which were characterized in the previous chapter. By introducing another 

pump pulse so we have a double-pump configuration, and by tuning the delay 

between the two pump pulses we can selectively suppress a given spin wave within a 

multimodal magnetic structure while maintaining the precession of the other.  This 

effect has been demonstrated using acoustic pules, [103] and in garnets, [104] but we 

show that the same control can be initiated by pure optical excitation in a structure 

consisting of technologically relevant metallic magnetic materials. The desire for 

techniques which can manipulate the magnetization without an external magnetic 
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field is motivated by the data storage and communication industries.[105] Some 

advantages of all-optical control are that it is extremely fast, and non-destructive to 

the magnetic material. From a materials science perspective, magnetic multilayers 

have been extensively studied to explore fundamental questions on topics such as 

interfacial magnetism [106] and spin transport phenomena.[107,108] Tailoring 

magnetic multilayers gives rise to novel physical characteristics which have been 

exploited for technological benefits, [109,110,111] With all of this in mind, direct 

access to a specific layer in a multilayer structure by optical means is highly 

desirable.  

6.2 Double-Pump Configuration 

 

Figure 6.1: Schematic of the double pump experimental setup discussed in the text. 

Beam Splitter (BS); Neutral Density Filter (ND); Mirror 1 (M1); Mirror 2 (M2); 
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Distance between BS and M1 (𝑑1); Distance between BS and M2 (𝑑2); Pump 1 

power (𝑃1); Pump 2 power (𝑃2); Time delay between pump pulses (∆𝑡𝑝). 

 

For the double-pump approach, a beam splitter (BS) is introduced into the blue pump 

path which splits the 400nm pump pulse into two paths. (Fig. 6.1) The two paths have 

neutral density filters (ND) so as to independently control the power of the two pump 

pulses (P1 and P2). After being reflected off mirrors (M1 and M2) their paths are 

recombined at the beam splitter. The position of M1 is held fixed so 𝑑1 does not 

change. M2 is placed on a micrometer to change 𝑑2 which controls the separation in 

time of the two pulses, ∆𝑡𝑝. The separation of the two pulses ∆𝑡𝑝 = 𝑐 2∆𝑑⁄  where 

∆𝑑 = 𝑑2 − 𝑑1and the 2 comes from the fact that the light will have to travel distance 

2𝑑𝑖 before being recombined at the beamsplitter.  ∆𝑡𝑝 is therefore adjusted by 

changing 𝑑2. 

Various magnetic materials were used in order to demonstrate the breadth of this 

technique. A 30nm thick Ni film was prepared by electron beam deposition at room 

temperature on a Si(100) substrate. Additionally, a 10nm Fe film and a multilayer 

structure of Fe (10nm) / Pt (5nm) / FePt (10nm) were deposited by DC magnetron 

sputtering from Fe and Pt targets using an argon pressure of 3.5 μbar while the 

substrates were at room temperature. Co-deposition was applied to create the 

chemically disordered A1 FePt alloy. The substrates are thermally oxidized, (100)-
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cut, p-doped silicon wafers with an oxide thickness of 100nm. All magnetic thin 

layers exhibit an easy axis magnetization in the film plane. 

6.3 Demonstration on Single Layer 

We first demonstrate the technique on a 30nm thick Ni film. The dynamic control of 

the magnetization vector can be understood by looking down the cone of precession 

and visualizing the rotation of the magnetization as a phasor given by 𝑀(𝑡) = 𝑒𝑖𝜃 

where 𝜃 = 𝜔𝑡 and 𝜔 = 2𝜋𝑓 (Fig. 6.2a). At 𝑡 = 0 the pump pulse hits the sample and 

acts as an effective anisotropy pulse which perturbs the magnetic system, knocking 

the magnetization vector out of equilibrium. [112,113] The displacement of the 

magnetization vector is proportional to the fluence of the laser pulse, and in the 

phasor diagram corresponds to 𝑀(0)  = 1. When 𝑡 > 0, the magnetization evolves as 

a damped oscillation at a frequency given by the Kittel formula. [114] The damping 

of the precession is a function of various material and structural properties and is an 

important parameter in the characterization of magnetic materials. [115,116] While 

the magnetization is precessing, its location can be mapped to the unit circle by 

translating by θ (Fig. 6.2a). Our core idea is that by tuning the timing of the arrival of 

the second pump pulse after the first pulse, the magnetization can be either quenched 

or enhanced. The position of M for these situations is given by  

𝑒𝑖𝜃 = {
−1, 𝜃 = (2𝑚 − 1)𝜋, 𝑞𝑢𝑒𝑛𝑐ℎ𝑒𝑑
    1, 𝜃 = 2𝑚𝜋,             𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑

   𝑚 ∈ ℕ  (6.1) 
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Each successive value of m corresponds to a different time 𝑡(𝑚) which is visualized 

by looking at the real part of 𝑀(𝑡) (Fig. 6.2b). The magnetization precession of the 

Ni film initiated by a single pump pulse is shown in figure 6.2(c) which shows a 

damped sinusoid and a single peak in Fourier space corresponding to the Kittel mode. 

Figure 6.2(d) shows the effect of quenching on the precession and figure 6.2(e) shows 

the effect of enhancement.    

 

Figure 6.2: (a) Representation of the magnetization vector as a phasor in the complex 

plane.  The black arrow is the precession of the magnetization due to the initial pulse.  

If the second pulse is timed such that the position of the magnetization vector is 

𝑒𝑖𝜃 = −1 or 𝜋 out of phase with respect to 𝑡 = 0, the precession can be quenched 

(solid red).  If the second pulse arrives when the magnetization vector is 𝑒𝑖𝜃 = 1 or 

back in phase with respect to the 1st pulse, the precession can be enhanced (dotted 
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green).  (b) The real part of the phasor can be used to visualize the time dependence 

of the control. Each arrow indicates a different time 𝑡(𝑚) discretized by successive 

values of m. (c) TR-MOKE time and frequency domain signals of the dynamics from 

a single pulse on a Ni thin film (30nm). (d) By tuning the arrival time of the 2nd 

pulse, the magnetic precession can be quenched or (e) enhanced. Taken From [117]. 

 

Due to the damping, quenching of the magnetization requires an appropriate balance 

of the power ratio between the two pump pulses. In figure 6.3(a), time traces of the 

magnetization dynamics and illustrations of the corresponding phasor diagrams in a 

10nm Fe film show the effect of different power ratios (𝑃2 𝑃1⁄ ). For larger ratios, the 

magnetization precession is not suppressed—it is knocked past equilibrium and 

precesses in a smaller cone. Only at the correct ratio is the precession quenched. If the 

ratio were decreased further, 𝑀 would not be knocked far enough towards the 

equilibrium position and would continue to precess around a smaller cone. The level 

of suppression of the precession for the different pump ratios is displayed clearly in 

the Fast Fourier Transform (FFT) of the signals, which shows a range of control, from 

partial suppression to full quenching (Fig. 6.3b). With each successive m, the power 

ratio required for quenching will change since at each 𝑡(𝑚) the magnetization has 

damped out closer to equilibrium (Fig. 6.3c). Since the pulse energy is proportional to 

the displacement of M, for larger m, smaller pulse energies are necessary to bring M 

back to equilibrium—lowering the power ratio. 
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Figure 6.3: (a) Phasor and time domain signals of a 10nm Fe film for different pump 

power ratios (𝑃2 𝑃1⁄ ).  (b) Fast Fourier Transform (FFT) of the time domain signals 

corresponding to the different ratios. (c) The reason the ratio is less than unity is that 

as the magnetization precesses it spirals closer and closer to the equilibrium position 

in the center of the circle. The quenching is shown for the case where 𝑚 = 3. Taken 

From [117]. 

 

6.4 Demonstration on Multilayer Structure 

The same line of reasoning can be extended to selectively control the magnetization 

dynamics in a system consisting of multiple resonances such as a magnetic multilayer 

structure. Technologically relevant spintronic devices such as magnetic random 

access memory (MRAM) have multiple layers consisting of different materials. [118] 
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The new double-pump technique opens an opportunity to excite and analyze them 

individually. As a demonstration of this control, we use two resonances and assume 

we would like to observe a single resonance in the structure.  This means we will 

quench one resonance while maintaining the precession of the other. Figure 6.4(a) 

shows a schematic of the multilayer magnetic films used in this demonstration. The 

structure of Fe (10nm) / Pt (5nm) / FePt (10nm) displays two distinct frequencies due 

to the different saturation magnetizations, 𝑀𝑠, of the Fe and the FePt layers. The 5nm 

of Pt ensures that the exchange coupling between the two layers is suppressed.[119] 

There are now two parameters to consider, 𝜃1 and 𝜃2.  

At an external field of 6kOe applied at 30° with respect to the surface normal the 

frequencies of the two magnetic layers are 𝑓1 = 16 GHz (FePt) and 𝑓2 = 25 GHz 

(Fe), where the subscript denotes the layer index. If we are trying to suppress the FePt 

resonance (R1) which precesses with an angular frequency 𝜔1, then the second pulse 

must arrive at times 𝑡1
(𝑚)

=
(2𝑚−1)𝜋

𝜔1
.  If we chose the correct power ratio, then for any 

time 𝑡1
(𝑚)

, R1 will be quenched.  However, we also need to consider the effect of the 

second pulse on the Fe resonance (R2).  Its magnetization vector’s map onto the unit 

circle will be given by the discrete locations 𝜃2
(𝑚)

= 𝜔2𝑡1
(𝑚)

. In figure 6.4(b) the 

location of the magnetization vector of R2 in the unit circle at times 𝑡1
(𝑚)

 is shown for 

𝑚 = 1 − 16. A safe way to assume that R2 is maintained is to require that 

𝑅𝑒 {𝑒𝑖𝜃2
(𝑚)

} > 0. This ensures the magnetization is mapped onto the right half of the 

unit circle. The m values that satisfy this criterion are shown in the shaded portion of 
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figure 6.4(b). The first m that satisfies this criterion is 𝑚 = 2.  Depending on the 

damping and how close R2 is to the +1 position on the unit circle, R2 may even be 

enhanced.  The real component of the phasors for the two frequencies is shown in 

figure 6.4(c) with the solid red arrow indicating the time 𝑡1
(2)

= 83𝑝𝑠 corresponding 

to 𝑚 = 2 (the second time the R1 vector is at a quenching location). In figure 6.4(d) 

the frequency spectrum for a single pulse is shown. There are two clear modes 

corresponding to the two resonances of the FePt (R1) and the Fe (R2) systems. 

 

Figure 6.4: (a) Schematic of the magnetic multilayer structure. (b) Attempting to 

quench the FePt resonance (R1) gives discrete values of the location of the Fe 

resonance (R2) in time  𝑡1
(𝑚)

 which can be mapped onto the complex plane.  The 
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arrows show a symmetric path of the position of R2 for successive m traced out in the 

complex plane starting with the black dashed arrow at 𝑚 = 1. (c) Real component of 

the phasors for the Fe(10nm) / Pt(5nm) / FePt(10nm) multilayer. (d) Fourier 

transform and phasor diagram of the stack subjected to only one pulse displaying two 

resonances corresponding to the different magnetic layers. (e) Fourier transform and 

phasor diagram demonstrating the quenching of the FePt layer and (f) the Fe layer. 

Taken From [117]. 

 

Figure 6.4(e) shows the case discussed above where the second pulse arrives at 

𝑡1
(2)

= 83𝑝𝑠, quenching the FePt resonance. The frequency spectrum clearly indicates 

that only the Fe system is precessing whereas the FePt resonance has been completely 

turned off. The same procedure can be applied to shut off the Fe resonance while 

maintaining the FePt system.  In this case, 𝑡2
(2)

= 63𝑝𝑠 which is shown by the dotted 

blue arrow in figure 6.4(c). The frequency spectrum where Fe has been quenched is 

shown in figure 6.4(f). This procedure allows for the selective excitation of particular 

magnetic systems in a complex magnetic structure. This same reasoning can be 

applied to control N oscillations precessing at different frequencies.  If we are trying 

to quench frequency i, we require 𝑡𝑖
(𝑚)

=
(2𝑚−1)𝜋

𝜔𝑖
, and then find the value of m for 

which 𝑅𝑒 {𝑒
𝑖𝜃𝑗

(𝑚)

} > 0 for all 𝑖 ≠ 𝑗 where 𝜃𝑗
(𝑚)

=
𝑓𝑗

𝑓𝑖
(2𝑚 − 1)𝜋 to sustain all the 

other precessions. 
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6.5 Representation in the Complex Plane 

For the remaining discussion we will assume a system consisting of two frequencies 

and that we are quenching layer 1, while maintaining the resonance of layer 2. 

The projections of R2 onto the unit circle when R1 is at a quenching location depend 

on the ratio of frequencies 𝑓2 𝑓1⁄ , since 𝜃2
(𝑚)

=
𝑓2

𝑓1
(2𝑚 − 1)𝜋. The path traced out in 

the complex plane determines the variability of control of the magnetic systems. Two 

extreme examples are if 𝑓2 𝑓1⁄  is an odd integer, then R1 will not be able to be 

quenched without also quenching R2. Alternatively, if 𝑓2 𝑓1⁄  is an even integer, then 

for each time 𝑡1
(𝑚)

, R1 will be quenched and R2 enhanced.  Increased control of the 

systems is possible with more elaborate paths in the complex plane and analyzing the 

symmetries can be useful for optimizing the control of the two oscillations. 
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Figure 6.5: Chord length in the complex plane as a function of the frequency ratio of 

two resonances. Assuming R1 is being quenched (𝜃1 = (2𝑚 − 1)𝜋), the insets show 

the location and direction of R2 for increasing m at ratio intervals of 0.1.  For 

 𝑓2 𝑓1⁄ = 1 both resonances will be quenched for all m and when 𝑓2 𝑓1⁄ = 2, R2 will 

always be enhanced. More complex symmetries are possible depending on the ratio, 

but this example shows how the chord length and the path symmetry depend on the 

ratio and how by tuning the frequency ratio different locations of R2 can be obtained 

for different values of m. Taken From [117]. 
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The chord length of the path traced out in the complex plane by the unquenched 

resonance (R2) at successive 𝑡1
(𝑚)

 is given by 𝑙 = √sin2 (𝜋
𝑓2

𝑓1
), and serves as a 

convenient metric for determining the location of the R2 magnetization vector. Aside 

from the length, the path direction and symmetry are also determined by 𝑓2 𝑓1⁄ . 

Figure 6.5 shows the chord length as a function of the ratio of the frequencies.  The 

insets in the graph show the paths for different frequency ratios at intervals of 0.1. 

The arrows indicate the starting point (𝑚 = 1) and direction of the R2 path. If 

materials with different frequency vs. applied field relations are used, different ratios 

could be accessible simply by tuning the external field.  This would allow the position 

R2 to be tuned utilizing an external magnetic field and would allow for a more 

complex control of the magnetization dynamics of the system. Depending on the 

ratio, larger or smaller values of m may be necessary to obtain the desired position of 

R2. Therefore, the damping must be taken into consideration. For a given frequency 

ratio, the desired position of R2 may not be accessible if R1 has already damped out 

to equilibrium.  

6.6 Spin Pumping and Damping 

When a spin polarized current is injected into a ferromagnetic material a torque is 

applied to the magnetization via the spin current. This is known as spin-transfer-

torque (STT) and is a widely studied effect with extensive technological implications. 

[120] However, the opposite effect also occurs—a precessing magnetization emits a 

spin polarized current. Because the angular momentum is carried away by the spin 
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currents, this effect can have drastic consequences for the damping of the magnetic 

system. [121] Therefore, the ability to suppress a given spin wave resonance in 

multilayer structures opens up the opportunity to investigate any influence that a 

precessing magnetization in one layer may have on the damping in the adjacent layer 

in a novel manner. 

In order to understand the spin pumping effect in a bit more detail, we will at first 

focus on a single layer surrounded by a non-magnetic material. The magnitude of the 

change in the damping of the magnetic system depends on the thickness of the 

magnetic material. In 3d ferromagnetic materials the spin-coherence length is smaller 

than a nanometer.[122] Therefore, the spin current is reabsorbed in the magnetic 

material and there is no loss of angular momentum. However, at the interface of the 

magnetic material with a non-magnetic material the spin current can propagate into 

the adjacent material causing an increase in the damping of the magnetic system.  

Additionally, the effect on the damping depends on the spin relaxation properties of 

the adjacent material.  If the spin relaxation time is short, spin states are consistently 

available and the adjacent material acts as a spin sink. This leads to an increase in the 

damping of the magnetic material. Conversely, if the adjacent non-magnetic material 

has a long spin relaxation time, new spin states are not available for occupancy so the 

spin current cannot propagate into the adjacent material and less angular momentum 

is lost from the magnetic material. The spin-pumping induced  increase in damping is 

given by the difference between the measured damping, 𝛼, and the intrinsic damping, 
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𝛼0. The dependence of the spin-pumping induced damping (𝛼 − 𝛼0) on the thickness 

of the magnetic material for various non-magnetic adjacent materials is shown in 

figure 6.6. 

 

 

Figure 6.6: Spin pumping induced damping (𝛼 − 𝛼0) for Py films of varying 

thicknesses for different adjacent non-magnetic materials. The additional damping 

due to spin pumping depends on the thickness of the Py layer as well as on the 

adjacent material. Pt and Pd have short spin relaxation times and act as strong spin 
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sinks causing a larger effect on the damping than Ta. Cu has a long spin relaxation 

time and has virtually no effect on the damping. Taken from [121]. 

 

In a multilayer magnetic structure, if the spacer between the magnetic layers has a 

long spin relaxation time then spins can propagate through the spacer layer and both 

magnetization precessions are able to pump spin currents back and forth. Therefore, 

the angular momentum lost from one layer due to pumping out spin current is 

balanced by the spin current coming in from the other magnetic layer (assuming 

similar magnetic materials).  If one of the layers is shut off, then that layer would act 

as a spin sink, absorbing the spin current from the adjacent layer. This would cause 

the damping of the precessing layer to increase. This has been demonstrated 

experimentally using FMR [122,123]   

Utilizing the technique discussed in this chapter opens up the possibility for 

observation of the enhanced damping due to spin pumping using TR-MOKE. Some 

benefits to this over FMR would be that measurements of both layers precessing vs. 

only one layer precessing could be obtained for a wide variety of magnetization 

configurations.  

 



151 

 

Figure 6.7: (a) Fourier spectra and the corresponding time traces with the fits for the 

unquenched case where both layers are precessing and for the quenched case where 

only one layer is left precessing. (b) colorcoded schematic of the multilayer structure 

to serve as a reference to the (c) damping analysis of the quenched and unquenched 

resonances. Quenched refers to the case where the other layer has been shut off. For 

example, red quenched means that the Fe layer has been shut off so only FePt layer is 

precessing. 

 

With all of this in mind, we analyzed the damping parameters of the different layers 

in the Fe / Pt(xnm) / FePt structures while both layers were oscillating and while only 

one was active (Fig. 6.7). [124] Somewhat surprisingly, we observed no dependence 

on the damping of a layer on the oscillation of the other. This could be due to a few 

reasons. First, it is unclear how the spin pumping/absorption effect occurs with 
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different magnetic materials. Second, the layers were relatively thick (10nm). Lastly, 

the Pt layer which separates the magnetic materials acts as a strong spin scatterer so 

that minimal spin current could penetrate to the adjacent layers for larger Pt 

thicknesses. [125] For thinner Pt spacers the exchange interaction becomes relevant 

which adds an additional complication to the analysis.  

In order to mitigate these issues, we designed an Fe (2nm) / Cu (5nm) / Fe (10nm) 

multilayer. As can be seen in figure 6.6 Cu has little effect on the damping of a 

ferromagnetic layer. This is because Cu has a long spin relaxation time. Therefore, 

the spins should be able to traverse the length of the Cu layer into the other 

ferromagnetic layer without scattering.  Any change to the damping of one 

ferromagnetic layer would therefore be attributed to spins being pumped from the 

other ferromagnetic layer. The different thicknesses of the ferromagnetic materials 

were used so that the different layers have different frequencies due to different 

demagnetization fields. If both layers are precessing at the same time then the spin 

currents through the Cu should balance one another and the damping should remain 

low. However, if the 10nm Fe layer is shut off then it should act as a spin sink, 

absorbing all the spin current from the 2nm Fe layer causing the damping of the 2nm 

Fe layer to increase. We would expect to see less of an effect on the 10nm Fe layer 

due to shutting off the 2nm Fe layer since the effect is less strong for thicker samples.  

The results can be seen in figure 6.8 and once again show no dependence of the 

precession of one layer on the damping of the other.  One explanation for this could 

be due to the fact that at each applied field the different layers have different energies 
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for the spin states due to the different demagnetization fields. Therefore, there are no 

spin states available in one layer for the spins emerging from the other. In order to 

utilize the two-pump technique two different frequencies are required. Perhaps this 

complication can be mitigated through clever design of magnetic structures or 

methods of excitation. 

 

 

Figure 6.8: Quenched and Unquenched damping for the Fe(2nm) / Cu (5nm) / Fe 

(10nm) multilayer. Quenched refers to the case where the other layer has been shut 

off. For example, red quenched means that the 10nm Fe layer has been shut off so 

only 2nm Fe is precessing. 
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6.7 Conclusion 

We have introduced a new ultrafast pump-probe technique for selectively 

manipulating the magnetization dynamics of metallic multimodal magnetic structures. 

This is accomplished by purely optical means. The manipulation of the magnetic 

oscillations is demonstrated experimentally on a magnetic multilayer system with two 

resonances. By tailoring the delay of the two pump pulses, the resonance of an 

individual system was quenched while maintaining the resonance of the other system. 

A convenient representation for the manipulation of the systems was discussed in the 

context of mapping out the magnetization vector’s position in the complex plane. 

Additionally, the technique was utilized in order to measure the precession dependent 

damping in various multilayer structures. 
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CHAPTER 7: MAGNETO-ELASTIC 

DYNAMICS DUE TO SURFACE 

ACOUSTIC WAVES IN 

NANOMAGNETIC ARRAYS 
 

“He connected the mechanism for the clock to a mechanical ballerina ,and the toy 

danced uninterruptedly to the rhythm of her own music for three days. That discovery 

excited him so much more than any of his other hair-brained undertakings”  

― Gabriel García Márquez (One Hundred Years of Solitude) 

 

7.1 Introduction 

Manipulating the spins in magnetic materials has been the focus of intense 

research with the end goal being increasing the performance of computing. These 

spintronic devices utilize the spin degrees of freedom and depend critically on various 

material properties.  One parameter, the Gilbert damping constant α, has received 

bounteous attention in the field. Knowledge of this parameter is critical for the 

development of many spintronic devices, including spin transfer torque magnetic 

random access memories (STT-MRAMs) and heat-assisted magnetic recording 

(HAMR). In these devices, α determines critical device operation characteristics such 

as the threshold switching current density [126], switching time [127], and transition 

jitters [128] and can be determined using different experimental techniques [129,130]. 
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Time-resolved magneto-optical Kerr effect (TR-MOKE) analysis is one of them that 

is well suited to investigating nanomagnets due to its high spatial resolution and 

sensitivity [131,132]. This technique is based on using the decay time and frequency 

to calculate the damping of optically excited small angle magnetization precessions 

[130]. At low fields, this effective damping contains both intrinsic and extrinsic 

mechanisms and converges to the intrinsic Gilbert damping at high fields [130,133].  

Separation of extrinsic effects from the intrinsic magnetic relaxation is essential in 

order to make a valuable assessment of the Gilbert damping parameter. In this 

chapter, we will discuss sources of relaxation in TR-MOKE measurements. 

Additionally, we will discuss complications that arise when using TR-MOKE to study 

relaxation dynamics in nanomagnetic arrays—the pump pulse initiates both magnetic 

dynamics as well as generating surface acoustic waves (SAWs) which couple to one 

another via the magneto-elastic interaction. Furthermore, this chapter will serve as an 

introduction to experimental measurements on magneto-elastic dynamics in 

nanomagnetic arrays. We will see that the geometry of the array is a critical 

parameter controlling the elastic as well as the magnetic dynamics. Lastly, we will 

show how these magneto-elastic effects can be lessened as well as utilized in order to 

extract a meaningful determination of the Gilbert damping parameter. Because the 

system dynamics can be engineered to produce novel properties through altering the 

geometry, this system falls under a class of materials known as metamaterials. 
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7.2 Intrinsic vs. Extrinsic Damping 

The damping in magnetic systems is one of the most experimentally and theoretically 

studied aspect of magnetic dynamics. The relaxation of the magnetic system is a 

collective many body process which makes separating all the different relaxation 

mechanisms extremely difficult. [134] Before continuing, a distinction must be made 

between what differentiates intrinsic and extrinsic mechanisms. In a nutshell, intrinsic 

mechanisms are those which are inherent to the magnetic system, where the 

relaxation is a direct effect of the “intrinsic” timescales relating interactions between 

spin, electric and phononic degrees of freedom and is rooted in the spin orbit 

coupling. [135] Extrinsic mechanisms are caused by magnetic disorder or non-local 

dissipation process and are typically the result of modifications to the magnetic 

structure’s environment or of inhomogeneities throughout the sample. In order to gain 

an understanding of intrinsic and extrinsic mechanisms we will review some 

examples which contribute to relaxation in magnetic systems. 

7.2.1 Elliot-Yafet (Spin-Flip) Scattering 

 

Figure 7.1: Schematic of different scattering processes between electrons (blue solid 

arrows) and phonons (red dotted arrows). 
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The relaxation mechanism in Elliot-Yafet scattering arises due to the interaction 

between a phonon and an electron. (Fig. 7.1) Because of the spin orbit interaction the 

spin states of an electron wavefunction are mixed [136] 

𝜑𝑘,↑ = [𝑎𝑘(𝑟)|↑⟩ + 𝑏𝑘(𝑟)|↓⟩]𝑒𝑖𝑘∙𝑟    (7.1) 

Where k is the wave-vector and 𝑎𝑘 and 𝑏𝑘 are the probabilities of spin up and spin 

down states respectively. We assume that 𝑎𝑘 > 𝑏𝑘 so that the majority of spins are in 

the spin up state.  The Hamiltonian describing the spin-flip interaction is [137] 

ℋ𝑠𝑓 = ∑ 𝐷𝑘,𝑞𝑐𝑘+𝑞,↑
+ 𝑐𝑘,↓𝑏𝑞 + 𝐷𝑘,−𝑞

∗ 𝑐𝑘,↓
+ 𝑐𝑘−𝑞,↑𝑏𝑞 + 𝐷𝑘,𝑞𝑐𝑘+𝑞,↑

+ 𝑐𝑘,↓𝑏−𝑞
+ + 𝐷𝑘,−𝑞

∗ 𝑐𝑘,↓
+ 𝑐𝑘−𝑞,↑𝑏−𝑞

+
𝑘,𝑞   

(7.2) 

Where q is the wave vector of the phonon, the electron and phonon creation and 

annihilation operators are 𝑐𝑘,𝜎
+ , 𝑐𝑘,𝜎 and 𝑏𝑞

+, 𝑏𝑞 with 𝜎 ∈ {↑, ↓}. We are interested in 

the matrix element which mixes spins of different orientations.  This will occur with a 

transfer of angular momentum and can be given by 

⟨𝜑𝑘+𝑞,↓|ℋ𝑠𝑓|𝜑𝑘,↑⟩    (7.3) 

Where the key terms of interest are those which mix spin up or down states and are 

represented by 𝑊↑,↓ = ⟨↑|ℋ𝑠𝑓|↓⟩ and 𝑊↓,↑ = ⟨↓|ℋ𝑠𝑓|↑⟩. The total magnetic moment is 

proportional to the population difference of the spins Δ𝑁 = 𝑁↑ − 𝑁↓. Furthermore, the 

change in the population difference is given by [136] 
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𝑑Δ𝑁

𝑑𝑡
= 2(𝑊↑,↓ − 𝑊↓,↑)    (7.4) 

Where the 2 comes from the fact that a spin-flip changes the population difference by 

2. [136] If 𝑁0 is the equilibrium population difference then the relaxation time τ can 

be given by [138] 

𝑑Δ𝑁

𝑑𝑡
= −

Δ𝑁−𝑁0

𝜏
    (7.5) 

This expression describes the rate of change of the population difference of the spin-

up and spin-down electrons and since the population difference is proportional to the 

magnetic moment, the relaxation time describes the damping of the magnetic 

moment. In a nutshell the spin-flip scattering occurs because due to the spin orbit 

interaction the orthogonal spin states are mixed for an electron. Even though the 

probability of being in one state is overwhelming there does exist a non-zero 

probability of being in the other state. Through scattering with a phonon the state of 

the electron is able to change to a state with the opposite spin with the angular 

momentum associated with this change being transferred to the phonon. Eventually 

the magnetic system will relax to equilibrium.  This relaxation process is an intrinsic 

mechanism. Other sources of intrinsic damping are the breathing fermi surface 

[139,140] and the s-d orbital interaction [141].  

7.2.2 Extrinsic Mechanisms 

Extrinsic damping mechanisms cause the experimentally observed damping to be 

larger than the intrinsic value. [142] Experimental conditions make it impossible to 
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measure a single lattice cell or an individual atom. Therefore, the signal that is 

acquired comes from the dynamics of many regions within a relatively large area. 

These different regions may have slightly different properties due to imperfections in 

fabrication which can affect the local anisotropy field. In the case of nanomagnet 

arrays, slightly different shapes will cause slightly different demagnetization fields. 

Additionally, spins located at a surface or at an interface experience different 

conditions than spins located in the bulk of the magnet.  Due to these different 

anisotropy fields the precession frequencies will be slightly different for each local 

region.  The signal is a summation of all of the different regions, and so the spread in 

frequencies will lead to a dynamic dephasing of the TR-MOKE signal which will 

cause the signal to damp out quicker than that associated with the intrinsic relaxation 

of the material. (Fig. 7.2) [143]  

 

 

Figure 7.2: (a) In the presence of a weak magnetic field the distribution of local 

anisotropy fields causes slightly different effective fields in each region (visualized 

by different directions of the magnetization vectors within different regions). This 

causes the different regions to precess at different frequencies which causes the 
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damping to appear to be larger. (b) When the applied field is sufficiently strong, the 

local variation of the anisotropy field is negligible (arrows all same direction) and all 

the regions precess at the same frequency.  (c) This effect can be seen in the 𝛼𝑒𝑓𝑓 vs. 

𝐻𝑎 graph. At low fields the damping is higher until it approaches a saturation point at 

high fields which is approximately the intrinsic Gilbert damping. 

 

The measured damping including extrinsic contributions is called the effective 

damping, 𝛼𝑒𝑓𝑓. It is convenient to work in the frequency domain in order to 

mathematically express these relationships. The damping of a system is related to the 

linewidth in the frequency domain.  The effective damping is thus given by the 

effective linewidth which has contributions from intrinsic Δ𝜔𝑖𝑛𝑡 and extrinsic Δ𝜔𝐼𝐻 

(also known as inhomogeneous) effects. The effective linewidth is given by 

Δ𝜔𝑒𝑓𝑓 = Δ𝜔𝑖𝑛𝑡 + Δ𝜔𝐼𝐻    (7.6) 

Where Δ𝜔𝑖𝑛𝑡 = 2 𝜏⁄  and τ is the intrinsic relaxation of the system. [144,145] The 

inhomogeneous broadening is given by Δ𝜔𝐼𝐻 = |𝜕𝜔 𝜕⁄ 𝑀𝑒𝑓𝑓|Δ𝑀𝑒𝑓𝑓 where 𝑀𝑒𝑓𝑓 is 

the effective anisotropy field defined in Chapter 5.  For the case where the 

magnetization is applied in the film plane an analytic solution can be found for the 

effective linewidth. In this case 𝜔 = 𝛾𝐻𝑎  and when 𝐻𝑎 > 𝑀𝑒𝑓𝑓, Δ𝜔𝑒𝑓𝑓 is given by 

Δ𝜔𝑒𝑓𝑓 = 𝛼𝛾(2𝐻𝑎 − 𝑀𝑒𝑓𝑓) +
𝛾𝐻𝑎

2√𝐻𝑎
2−𝐻𝑎𝑀𝑒𝑓𝑓

Δ𝑀𝑒𝑓𝑓   (7.7) 
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If 𝐻𝑎 ≫ 𝑀𝑒𝑓𝑓 and Δ𝑀𝑒𝑓𝑓 ≪ 1 then Δ𝜔𝑒𝑓𝑓 = Δ𝜔𝑖𝑛𝑡 = 2𝛼𝛾𝐻𝑎 so that  

𝛼 =
1

𝜏𝜔
      (7.8) 

Therefore, the intrinsic damping is typically found by applying a sufficiently high 

magnetic field so that the inhomogeneous contributions are negligible to the signal.  

7.2.3 Pump Probe Alignment 

 

 

Figure 7.3: (a) Schematic of inhomogeneous excitation due to similarity in the sizes 

of the pump (blue) and probe (red) pulses. The different amplitudes of the excited 

region cause a spin wave with non zero k to form and cause an increase in the 

damping of the system. (b) When the pump is large, the effects of disorder are 

reduced and with a smaller probe pulse, the area that is being probed is more 

homogeneous. 

An example which serves to show how increased damping can occur due to 

experimental conditions arises if there is imperfect overlap between the pump and 
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probe beams, or if the size of the pump beam is too small. Since the effective 

anisotropy pulse is proportional to the fluence of the laser pulse, the excitation by the 

pump pulse is spatially inhomogeneous.  

(Fig. 7.3a) The spins are therefore not perfectly collinear and so the exchange and 

demagnetization energy cause an additional torque to the mean magnetization vector 

contributing to an enhanced damping. [135] This is known as disorder broadening 

and arises due to the formation of spin waves with non-zero values of k— this 

enhanced damping is proportional to the spatial gradient of M (𝑴 × 𝑑∇2𝑴 𝑑𝑡⁄ ). 

[146]. This example shows why the pump pulse should be as large as possible—the 

closer the excited spins are to a k=0 spin wave, the less of an effect due to the 

disorder of the spins. Additionally, if the probe is smaller than the pump, the signal 

will be from a more homogeneously excited area. (Fig. 7.3b) 

7.3 Damping in Nanomagnet Arrays Using TR-MOKE 

Understanding nanomagnet dynamics in densely packed arrays is important due to 

their potential applications in next generation spintronic devices. While the intrinsic 

magnetic response of a nanomagnet is most naturally studied using a single element 

[147], measurements on arrays are valuable as they may be the only way to generate 

large enough magneto-optical signals to observe the dynamics of a given system and 

because they provide a complementary set of information that helps identify extrinsic 

effects due to inter-element variations and interactions. However, a side effect of 

pumped pulse excitation in regularly patterned arrays is the simultaneous generation 
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of surface acoustic waves (SAWs) due to the thermal expansion of the elements upon 

irradiation with the pump pulse.  

7.3.1 Magnetoelastic Coupling in Arrays 

 

Figure 7.4: (a) Non-magnetic Al periodic nanostructures of size d with pitch, p. 

Taken from [150]. (b) After irradiation of a femtosecond pump pulse the elastic 

dynamics of a structure with 𝑑 = 200 nm displays a 1 𝑝⁄  dependence on the array 

pitch (Type II modes). The Type I modes are independent of the pitch and are due to 

the vibration of the elements themseleves (depend on d). Taken from [150]. (c) A 

strain pulse is launched in the Al film which travels through the GaAs Substrate to the 

(Ga,Mn)As magnetic film where the dynamics are detected by the probe pulse. Taken 
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from [148]. (d) The strain pulse initiates magnetic dynamics due to the magneto-

elastic interaction in the magnetic film. A combination of these two effects occur in 

nanomagnetic arrays. Taken from [148]. 

 

The heating from the pump pulse has two important effects on the array. Firstly, the 

anisotropy is rapidly modified causing the magnetization to precess around the 

effective field [149]. Secondly, the heating causes a ubiquitous thermal expansion of 

all the elements. This thermal expansion launches elastic waves in the substrate. Each 

element thus acts as a node for launching elastic oscillations into the substrate. The 

periodic arrangement of the elements cause the elastic waves to interfere 

constructively to create surface acoustic waves (SAWs). These SAWs exist at specific 

frequencies determined by the array geometry and the substrate material [150] and 

have been extensively investigated recently due to the emerging field of phononic 

bandgap materials. In these systems, the phononic band structure is a function of 

material properties as well as the position and size of elements in arrays which create 

stopbands in the spin-wave spectrum [151,152,153]. Time-resolved studies on 

periodic arrays of Al nanoelements revealed that the SAW frequencies depend 

inversely on the array pitch. (Fig. 7.4)   For small mass loading, the eigen-frequencies 

of the SAWs can be approximated as [150] 

𝑓𝑖𝑗 =
𝑣√𝑖2+𝑗2

𝑝
       (7.9) 
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where v is the velocity of the SAW in the substrate, p is the pitch of the array, and (i, 

j) the indices of the SAW mode k-vector.  

The SAWs travel through the substrate according the elastic wave equation 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2 = ∑
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗

3
𝑗=1      (7.10) 

where i, j =1, 2, 3 denote the Cartesian coordinates, 𝜌 is the density, 𝑢𝑖 is the 

displacement. 𝜎𝑖𝑗 is the Cauchy stress tensor [154] given by 

𝜎𝑖𝑘 =
1

2
𝐶𝑖𝑗𝑘𝑙

𝜕

𝜕𝜀𝑖𝑘
𝜀𝑖𝑗𝜀𝑘𝑙   (7.11) 

Where 𝐶𝑖𝑗𝑘𝑙 are the components of the stiffness tensor, 𝜀𝑖𝑗 = (
𝜕𝑢𝑖

𝜕𝑥𝑖
+

𝜕𝑢𝑗

𝜕𝑥𝑗
) 2⁄  are the 

strain components and 𝑢𝑖 are the mechanical displacements. 

The elements are on top of the substrate and therefore the SAWs dynamically modify 

the elastic strain in the elements, 𝜀𝑖𝑗(𝑟, 𝑡), which magneto-elastically drives the 

magnetic system. (Fig. 7.4)  This interaction manifests itself as an additional energy 

term in the free energy of the nanomagnetic element 

𝐸𝑀𝐸 = 𝐵1(𝜀𝑥𝑥(𝑟, 𝑡)𝑚𝑥
2 + 𝜀𝑦𝑦(𝑟, 𝑡)𝑚𝑦

2 + 𝜀𝑧𝑧(𝑟, 𝑡)𝑚𝑧
2)

+ 2𝐵2 (𝑚𝑥𝑚𝑦𝜀𝑥𝑦(𝑟, 𝑡) + 𝑚𝑥𝑚𝑧𝜀𝑥𝑧(𝑟, 𝑡) + 𝑚𝑦𝑚𝑧𝜀𝑦𝑧(𝑟, 𝑡)) 

    (7.12) 

where 𝐵1, 𝐵2 are the magneto elastic constants defined in chapter 3.2.6.  This is the 

energy term describing magnetostriction, however the strain components 𝜀𝑖𝑗 now 

have a position and time dependence since they are caused by propagating SAWs.  
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This additional energy term dynamically modifies the frequency and lifetime of the 

magnetic oscillations. It causes an extrinsic contribution to the magnetic relaxation. 

 

 

Figure 7.5: (a) SEM image of a periodic Ni array of 156 nm wide squares with a 

pitch of 330nm. The colors indicate the wavelength and direction of the different 

SAW modes. (b) 2D Spatial Fourier transform of the periodic array from (a). The 

geometric arrangement of the elements cause discrete points in the spatial Fourier 

transform which correspond to the different SAWs. (c) Magnetic and (d) non-
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magnetic (elastic) 𝐻𝑎 vs. Frequency dynamics. The non-magnetic spectra shows field 

independent frequencies corresponding to the SAWs. In the magnetic spectra (c) there 

is a magnetic mode that changes with 𝐻𝑎. However, as it passes through the SAW 

frequencies it is pinned and enhanced.  

 

Due to the magneto-elastic coupling (Eq. 7.12), the optically generated SAWs can 

drive the magnetization dynamics in nanostructured arrays. This causes the spin 

precession resonances to be pinned at the SAW frequencies over an extended applied 

field range around the point where the magnetic and SAW resonances are degenerate. 

(Fig. 7.5) We will discuss how this opens up the possibility for utilizing SAWs as an 

extra degree of freedom for investigating nanomagnet arrays in section 7.3.4  

However, for traditional TR-MOKE measurements the SAW induced magnetization 

dynamics complicate the extraction of the intrinsic magnetic response.  

7.3.2 Effect of Array Geometry on SAW Influence 

The effects of the SAWs on the magnetization dynamics can be mitigated by altering 

the array geometry from a periodic to a randomized pattern so as to restore the 

intrinsic magnetic response. Figure 7.6 (a) shows SEM images of the two samples 

investigated, exhibiting a periodic (top) and an aperiodic randomized (bottom) 

pattern, respectively. They were fabricated using electron beam lithography on a 

(100) Si substrate capped by a 110 nm thick hafnium oxide antireflection coating as 

reported [155]. They are both comprised of 30nm thick 156nm wide polycrystalline 
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Ni squares. In the periodic array the elements have a pitch of 330nm corresponding to 

a fill factor of 0.22. This same fill factor is used in the randomized pattern so that the 

only difference between the two is the arrangement of the Ni squares. The elements 

have an easy axis in the sample plane with an  𝑀𝑒𝑓𝑓 = 1807 Oe.   

In order to understand the influence of the nanomagnet array geometry on the 

generation of SAWs, it is instructive to analyze the array geometry in Fourier space. 

Figure 7.6 (b) shows the two-dimensional spatial Fourier transforms of the two 

samples under investigation. In the periodic array, the regular arrangement of 

elements in particular directions manifests itself as discrete points in Fourier space. 

The spacing of these points is a function of the array pitch. Each point corresponds to 

a different SAW eigenmode launched in that direction. The observed frequencies 

(Fig. 7.7) agree well with equation (7.9) using 𝑣 = 2673 𝑚
𝑠⁄  - predominantly 

determined by the elastic properties of the antireflection coating layer, where the 

majority of the elastic energy is confined [154]. In figure 7.6 (c), the average spatial 

Fourier amplitude vs. k-vectors of constant magnitude i.e. kr = √kx
2 + ky

2 is plotted. 

This is instructive since the (1,0) and (0,1) SAW modes are propagating in orthogonal 

directions, yet have the same magnitude in k-space for this square array, and therefore 

the same frequencies. This means they are both responsible for modifying the 

magnetization precession at that frequency. The same is true with higher order SAWs 

as well. 
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Figure 7.6: (a)  SEM images of the periodic array (top) and the random aperiodic 

pattern (bottom).  (b)  2D Spatial Fourier Transforms of the patterns. The dashed line 

in the Random 2D Fourier Transform corresponds to the k-vector with the largest 

average Fourier amplitude, and the solid lines to the limits of SAW influence as 

defined in the text.  (c)  Average radial Fourier amplitude as a function of k-vector 

magnitude (𝑘𝑟).  The periodic array displays discrete k-vectors while the randomized 

pattern has a continuous spread in k-vectors.  The dashed line is a Gaussian fit to this 

distribution and the solid line the e−1cutoff.  The arrow is the maximum average 

radial Fourier amplitude. Taken from [156]. 
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In contrast, the randomized pattern exhibits a smeared isotropic ring in k-space. The 

spread of the ring corresponds to a distribution of distances of neighboring elements, 

and the radial symmetry emphasizes that this distribution exists in all directions. The 

average spatial Fourier amplitude for k-vectors of different magnitude is more 

continuous in nature as seen in figure 7.6 (c), indicating a spread in the radial 

periodicity. By fitting a Gaussian distribution to this average we can estimate e−1 

limits of the spread in radial pitches to be 196nm – 694nm, where p = 1
k⁄ . This 

distribution of pitches causes a spread in the launched SAWs. Assuming the same 

speed of sound in the substrate as in the periodic array (~2700m/s), SAWs may exist 

across a broad band of frequencies between 3.8-13.8 GHz. These limits are displayed 

in figure 7.6 (b) and 1(c) as solid lines. The k-vector with the maximum radial 

averaged Fourier amplitude corresponds to a pitch of 305nm and is displayed as a 

dashed line in Fig. 1(b). The SAW that corresponds to this pitch has a frequency of 

8.8 GHz. From this analysis, it can be expected that the SAW influence on the 

magnetization dynamics is substantially reduced, while not being completely 

eliminated. 
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Figure 7.7: (a) Measured TR-MOKE Fourier spectra of the periodic array. The non-

magnetic channel displays well-defined field-independent SAW resonances. The 

magnetic response is pinned at these SAW frequencies. Dotted black line is the 

simulated Kittel mode. (b) In the randomized array, the non-magnetic channel shows 

a drastically reduced signal from the SAWs, indicating that their dominant influence 

has been suppressed. In the magnetic channel the intrinsic Kittel mode has been 

restored. There is still slight driving of the magnetization from SAWs at 9.6 GHz and 

12.7 GHz. Dotted black line is the simulated Kittel mode. Taken from [156]. 
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Figure 7.7 shows the magnetic and non-magnetic response of the two samples 

represented as TR-MOKE Fourier spectra maps at each external applied field value, 

calculated from the background-corrected time traces of the magneto-optic signal 

[154]. The signals were normalized to the intensity of the highest Fourier peak in 

each figure. The following results are all independent of laser spot location. In the 

periodic array, the non-magnetic channel displays a field-independent response with 

constant frequencies. These frequencies correspond to the discrete SAW eigenmodes 

given by equation (7.9). The resonance near 15 GHz corresponds to the surface 

skimming longitudinal wave which has an in-plane displacement and higher phase 

velocity than the SAW Rayleigh waves [154,157]. 

The magnetic channel shows a much more complex response. Two field-dependent 

center and edge Kittel modes are present at low applied fields, but as the H-field is 

increased, the intrinsic modes and the SAW frequencies approach degeneracy. As this 

occurs, the mechanical oscillations of the SAWs magneto-elastically couple to the 

magnetization. This drives the magnetic precession and pins it at a fixed frequency 

across a large field range. The TR-MOKE Fourier amplitude reaches a maximum at 

degeneracy. The coupling of the elastic and magnetic degrees of freedom occur at all 

SAW eigenmodes in the array and makes observation of the intrinsic Kittel modes 

nearly impossible, especially at high fields—above 4kOe. Furthermore, it is 

impossible to initiate magnetic precession without SAWs by reducing the laser 

fluence. As the pump fluence is lowered SAWs continue to be excited even after the 

Kittel mode signal disappears.   
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Figure 7.7 (b) shows the same plots for the aperiodic random pattern. In the non-

magnetic channel, the field-independent SAW resonances are no longer present. A 

comparison of the TR-MOKE frequency spectra of the non-magnetic plots obtained 

from the two samples demonstrates how effective altering the pattern geometry is on 

the suppression of the SAWs. A similar effect was recently observed in CoFeB films 

that were vertically stacked in a periodic and aperiodic fashion [158]. In the aperiodic 

pattern’s magnetic channel the intrinsic Kittel modes have been restored. The dotted 

black line is the simulated Kittel Mode for these elements and shows that the intrinsic 

magnetic response can be measured all-optically by altering the array geometry. A 

slight enhancement of the TR-MOKE Fourier Amplitude through weaker residual 

radial SAWs is observed. This is a result of the fact that the spatial frequency content 

of the randomized array is not perfectly flat due to constraints from element size and 

fill factor as discussed above. The strongest residual pinning occurs at 9.6 GHz, close 

to the predicted value of 8.8 GHz. A second, weaker pinning site at 12.7 GHz also 

falls within the e−1 range specified previously. This deviation in the maximum 

pinning frequency can be explained by a slightly different SAW propagation speed in 

this array. Another source of this discrepancy could arise from a larger periodicity in 

a specific direction that is averaged out in the radial average. Apart from these slight 

enhancements, the SAW influence on the magnetization dynamics has been removed. 

We further corroborate this conclusion by directly comparing the Fourier spectra at 

selected fields as shown in Fig. 3. At low fields the Kittel Mode in the Periodic array 

is still visible.  However, at high fields we see that the spectrum in the periodic array 
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is dominated by the SAW modes at the frequencies extracted from the non-magnetic 

channel (dashed lines) which do not shift with applied field. In contrast, the spectrum 

for the randomized array show a single dominant peak at the frequency of the Kittel 

mode which does show the expected field dependence. The absolute value of the 

Fourier amplitude at the Kittel resonance (red arrows) is ~2x larger in the randomized 

array at 4.5kOe, clearly showing that the intrinsic magnetic response has been 

restored. We note that the Kittel mode amplitudes cannot be directly compared at 

6kOe because the SAW dominates the response at that field. 

  

 

Figure 7.8: Side-by-side comparison of absolute Fourier spectra at different applied 

fields for (a) periodic and (b) randomized array. The periodic spectra are dominated 

by field-independent modes at the SAW frequencies (dashed lines), while the 

randomized array shows a dominant, strongly field-dependent peak at the Kittel 
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resonance (red arrows). At 4.5 kOe, the absolute Fourier amplitude of the restored 

Kittel mode is ~2x larger than the amplitude at that frequency in the periodic array. 

Taken from [156]. 

 

7.3.3 Effect of Array Geometry on Damping 

The question arises whether this degree of randomization is sufficient to enable a 

meaningful analysis of the magnetic properties of the sample. In order to answer this 

question, we analyzed the effective damping, an important parameter in the 

characterization of magnetic materials. The effective damping, αeff, was extracted 

from the TR-MOKE time traces by fitting exponentially decaying sinusoidal 

oscillations to all the resonances visible in the Fourier spectrum using 

𝑀(𝑡) = ∑ 𝑀0𝑒−𝑡
𝜏𝑖

⁄ sin(𝜔𝑖𝑡 + 𝜑𝑖)
𝑛
𝑖    (7.13) 

where 𝜔𝑖 is the Kittel frequency and 𝜏𝑖 is the decay time of oscillation i, which are 

related to the effective damping through 𝜏ᵢ = 1
𝜔ᵢ𝛼𝑒𝑓𝑓,𝑖

⁄ . At each field at which the 

Kittel mode was resolvable 𝛼𝑒𝑓𝑓,𝑖 corresponding to the Kittel mode was extracted. 

This was not always possible in the periodic array because the precession was pinned 

at the SAW frequencies, often times with multiple pinning frequencies occurring at 

the same field. In these cases, the dominant resonance, defined as the frequency with 

the largest TR-MOKE Fourier Amplitude in the vicinity of the Kittel mode, was 

analyzed.  Fig. 4 shows the effective damping at each field value in the periodic and 

random arrays along with the 95% confidence intervals of the fit. In an unpatterned 
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film, as the applied field is increased, the effective damping gradually decreases, 

approaching the intrinsic Gilbert damping at high fields [159,160] (red dashed line). 

However, the effective damping in the periodic array follows this trend only at low 

fields at which the Kittel mode could still be observed. Once pinning to SAWs 

occurs, the sample displays a much lower apparent damping than the film damping 

because the SAWs driving the magnetization precession are less damped. There are a 

few intermediate points where the Kittel mode could be resolved. However, the SAW 

frequencies dominate the signal which leads to very large uncertainty in the Kittel 

mode fit. Therefore, the intrinsic damping cannot be reliably extracted from the 

periodic array.  

 

 

Figure 7.9:  (a)  Example of random array TR-MOKE time trace (H = 6 kOe) and fit 

to Eqn. (2) (R²=0.88); (b) Effective damping of the Kittel mode or dominant mode in 

the periodic array along with 95% confidence intervals of the fit.  (c)  The effective 

damping in the random pattern shows a restoration of the intrinsic relaxation with 

high confidence especially at higher fields. In the intermediate region there is still 

some driving due to weaker radial SAWs. Taken from [156]. 
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In the random pattern, on the other hand, the intrinsic response has been restored, and 

the extracted effective damping matches that of the unpatterned film over the entire 

field range (Fig. 7c). In particular, 𝛼𝑒𝑓𝑓 approaches the same value as the film at high 

fields (~0.035) [154,158] with high confidence. This indicates that the damping is the 

same in both the film and the nanoelements, suggesting that the fabrication process of 

the nanomagnets does not have an effect on the intrinsic damping in these Ni squares. 

We note that 𝛼𝑒𝑓𝑓 is slightly lower than the film values at various intermediate points 

due to the residual effects from SAWs in the frequency range ~4-14 GHz as discussed 

above. Additionally, the high-field damping value is slightly higher than intrinsic 

values reported on Ni.  This can be attributed to other extrinsic damping effects such 

as variations in the local anisotropy field and two-magnon scattering [161]. 

7.2.4 Measurement of Damping using SAW Pinning Width 

As mentioned earlier the effect of the SAWs on the magnetization dynamics offers a 

new degree of freedom for manipulating the spins in nanopatterned devices. In ref 

[162], arrays of different materials with different damping coefficents and magneto-

elastic coefficients were compared in order to determine the influence on the pinning 

width. It was shown that the width of the pinning region depends on the effective 

damping coefficient 𝛼𝑒𝑓𝑓.  This enables us to extract the field-dependent effective 

damping 𝛼𝑒𝑓𝑓 directly from the pinning linewidth, and even recover the intrinsic 
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Gilbert damping at large applied fields. Therefore, the magneto-elastic coupling to 

SAWs is not detrimental, but rather provides an alternative path towards damping 

analysis in patterned arrays for a wide range of damping values. 

In order to understand this pinning effect, we must understand how the elastic 

deformations alter the magnetic free energy. In the static regime, without an external 

perturbation, the magnetic free energy density G0 of an isotropic thin film, is given 

by [163]  

𝐺0 = −𝑯𝒂 ∙ 𝒎 + 𝑀𝑒𝑓𝑓𝑚𝑧
2 + 𝑐𝑜𝑛𝑠𝑡    (7.14) 

where 𝒎 = 𝑴 𝑀𝑆⁄ , 𝑯𝒂 is the externally applied magnetic field and 𝑀𝑒𝑓𝑓 = 4𝜋𝑀𝑆 is 

the effective field given by the shape anisotropy.  In equilibrium, the magnetization is 

oriented along a minimum of 
0G .  

In addition to the magnetostatic energy there is a magnetoelastic energy term 𝐸𝑀𝐸  

(Eq. 7.12) that depends on the time-varying elastic deformations caused by the 

SAWs. [164] It will be repeated here for convenience 

𝐸𝑀𝐸 = 𝐵1(𝜀𝑥𝑥(𝑟, 𝑡)𝑚𝑥
2 + 𝜀𝑦𝑦(𝑟, 𝑡)𝑚𝑦

2 + 𝜀𝑧𝑧(𝑟, 𝑡)𝑚𝑧
2) + 

2𝐵2 (𝑚𝑥𝑚𝑦𝜀𝑥𝑦(𝑟, 𝑡) + 𝑚𝑥𝑚𝑧𝜀𝑥𝑧(𝑟, 𝑡) + 𝑚𝑦𝑚𝑧𝜀𝑦𝑧(𝑟, 𝑡))    

The LLG equation describes the motion for the magnetization subjected to an 

effective field 𝑯𝒆𝒇𝒇 [163] 

 𝜕𝑡𝒎 = 𝛾𝒎 × 𝑯𝒆𝒇𝒇 + 𝛼𝑒𝑓𝑓𝒎 × 𝜕𝑡𝒎    (7.15) 
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where 𝛾 is the gyromagnetic ratio and 𝛼𝑒𝑓𝑓 is the phenomenological damping 

parameter.  The effective field, 𝑯𝒆𝒇𝒇 − −∇𝑚𝐺𝑡𝑜𝑡, can be derived from the total free 

energy which is comprised of a static component arising from the applied and internal 

anisotropy fields (Eq. 7.14) and of a dynamic component due to the magnetoelastic 

coupling to the SAWs (Eq. 7.12) [163]. 

 𝑯𝒆𝒇𝒇 = −∇𝑚𝐺𝑡𝑜𝑡 = −∇𝑚(𝐺0 + 𝐸𝑀𝐸) = 𝑯𝒆𝒇𝒇
𝟎 + 𝒉𝑴𝑬(𝑡)  (7.16) 

As the SAW propagates it dynamically modifies the free-energy of the magnetic 

system which acts as a driving-term 𝒉𝑴𝑬(𝑡), in the total effective field 𝑯𝒆𝒇𝒇. As the 

intrinsic magnetic mode approaches resonance with 𝒉𝑴𝑬(𝑡),  the magnetization 

precesses. 

In order to analyze the pinning width of this cross-over resonance, we make two 

important assumptions.  Firstly, we assume that there is negligible back-action from 

the magnetization dynamics onto the SAWs [154,164]. This is an important 

assumption which we will not make in chapter 8. Secondly, due to the much larger 

decay time of the SAWs in comparison to the intrinsic magnetization dynamics, we 

can assume a pseudo-steady magnetoelastic driving field 𝒉𝑴𝑬(𝑡), to model the 

magnetic system’s response. We assume the effective magnetic field and the 

magnetization to be sums of static and dynamic components 𝑯𝒆𝒇𝒇 = 𝑯𝒆𝒇𝒇
𝟎 + 𝒉𝑴𝑬(𝑡), 

and 𝒎 = 𝒎𝟎 + 𝒎(𝑡) where the oscillatory part of both 𝒉𝑴𝑬(𝑡),  and 𝒎(𝑡)  is given 

by 𝑒𝑖𝜔𝑡. Redefining the z-axis along the equilibrium magnetization direction, 𝒎𝟎, and 

assuming a small angle precession allows us to linearize the LLG equation (7.15) as  
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shown in chapter 3.4. This results in two coupled equations relating the transverse 

components of the magnetization to the components of the driving field 𝒎(𝑡) =

𝜒𝒉𝑴𝑬(𝑡)  , where 𝜒 = 𝜒′ + 𝑖𝜒"  is the complex susceptibility tensor and the 

imaginary part is a Lorentzian.  If we assume a constant driving frequency 𝜔 =

2𝜋𝑓𝑆𝐴𝑊, then the field-dependent linewidth of this Lorentzian is given by Δ𝐻𝑃 =

4𝜋𝛼𝑒𝑓𝑓𝑓𝑆𝐴𝑊 𝛾⁄ . The derivation is adapted from [165] and further details can be found 

there. Thus, instead of the SAW pinning being detrimental to damping analysis, it 

allows us to extract 𝛼𝑒𝑓𝑓 from the measured Δ𝐻𝑃 as 

𝛼𝑒𝑓𝑓 =
𝛾Δ𝐻𝑃

4𝜋𝑓𝑆𝐴𝑊
     (7.17) 

Details of the procedure for extracting the pinning width can be found in [162,166].  

Here we present the pinning at several well defined SAW frequencies for both nickel 

and cobalt. (Fig. 7.10) This allows us to extract field-dependent effective damping 

values at multiple crossover points to investigate the extrinsic damping mechanisms. 

These Fourier Maps are derived from time sections of t = 1500–2500 ps where the 

precession was exclusively driven by the SAWs. In Ni (Fig. 7.10a), both center and 

edge modes are visible in the magnetic response, crossing 𝑓𝑆𝐴𝑊 at different fields. 

The Co array response (Fig. 7.10b) exhibits similar behavior with multiple SAW 

crossings through one dominant Kittel mode. The lower signal from the Co array 

could explain the absence of two modes in the data, and the smaller pitch in the Co 

array means there are more higher order SAWs in the frequency range of interest 

which sustains the Kittel mode at more resonances than in the Ni array. Both Fourier 
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maps were analyzed as described above using one or two Lorentzian peaks of equal 

width and a single effective damping value for each SAW crossing. Figures 7.10c and 

7.10d show that the model fits all resonances well and allows for extraction of a field-

dependent effective damping for both arrays. Fig. 7.10e displays the extracted 𝛼𝑒𝑓𝑓 

behavior and a comparison to the high-field damping measured in unpatterned films 

(0.033 for nickel and 0.02 for cobalt) using TR-MOKE. The effective damping values 

contain contributions from both the intrinsic damping and extrinsic mechanisms as 

discussed in section 7.2. The values of 𝛼𝑒𝑓𝑓 display the typical decrease with applied 

field. 𝛼𝑒𝑓𝑓 approaches the film damping in the high field limit for the nickel array. 

The high field value of the pinning width for Ni was Δ𝐻𝑃 = 293 Oe and for Co was 

Δ𝐻𝑃 = 462 Oe. 
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Figure 7.10: Magnetic channel Fourier amplitude spectra measured on the (a) Ni and 

(b) Co arrays with comparison to non-magnetic reflectivity channel. Time sections of 

t = 1500–2500 ps were analyzed. The dashed white lines indicate the SAW 

frequencies analyzed.  (c-d) Normalized complex Fourier amplitude of the magnetic 

signal traced at 𝑓𝑆𝐴𝑊, after phase adjustment and scaling with the nonmagnetic signal. 
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The circles and squares represent the real and imaginary parts, respectively. The solid 

and the dashed lines are the fits with the Lorentzian shape. The obtained pinning 

width Δ𝐻𝑃, pinning width error and Gilbert damping parameter estimated with Eq. (6) 

are also displayed. (e) 𝛼𝑒𝑓𝑓 displays effects due to inhomogeneous broadening and 

approaches the value of a film measured at 6 kOe (straight lines). 

 

While these high-field limits correspond to the intrinsic Gilbert damping for nickel, 

the value for cobalt is still higher than the expected α=0.005 [167]. This is due to the 

imperfect elimination of inhomogeneous broadening for both the film and the array 

due to limitations in the maximum applied field available in our experimental setup 

(~6.3 kOe) [168].  

7.4 Conclusion 

In conclusion, we have covered various aspects of magneto-elastic dynamics in 

densely packed arrays. The dynamics in these metamaterials are determined by the 

geometric arrangement of the elements. By exploring this geometric dependence, we 

demonstrated a method for drastically reducing the influence of SAWs on the 

magnetization dynamics by randomizing the array geometry. The constructive 

mechanical interaction between individual elements can be reduced which leads to a 

near-complete elimination of the magneto-elastic interactions within the elements. 

This allows for the determination of intrinsic material parameters such as the Kittel 
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mode and the effective damping in densely packed arrays using conventional TR-

MOKE techniques. 

Additionally, we showed that the SAW pinning could be used as a means to extract 

the effective damping from a nanomagnet array all-optically. The effective damping 

shows the well-known decrease with applied field and approaches the intrinsic 

Gilbert damping in the high-field limit indicating the common causes of extrinsic 

damping contributions at low applied fields. In the next chapter we will look at the 

magneto-elastic coupling dynamics in a single isolated nanomagnet. 
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CHAPTER 8: STRONGLY COUPLED 

MAGNON-PHONON DYNAMICS IN A 

SINGLE NANOMAGNET 
 

“All my life through, the new sights of Nature made me rejoice like a child.” 

- Marie Curie 

 

8.1 Introduction 

Magnonics is an extremely active research area which exploits the wave nature of 

magnons, the quanta of spin waves, in order to advance data storage, communication 

and information processing technology. However, a current drawback in the 

excitation, manipulation and detection of magnons exists due to relatively low 

conversion efficiencies. [169] Coupling to the phononic system is a less explored 

avenue for the manipulation of magnons and has been shown to be a promising means 

of lowering the switching energy of nanoelements.[170,171] With this in mind, a 

more thorough understanding of the coupling between the spin and phonon systems in 

nanostructures is necessary. 

Because of this, the magnon-phonon interaction has recently been the focus of 

increased research, specifically as it is applied to surface acoustic wave ferromagnetic 

resonance (SAW-FMR). [172,173,174,175]  In chapter 7 we saw how optically 

excited SAWs affect the magnetization dynamics of patterned nanomagnet arrays, 
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[12] and how the SAW frequencies in arrays arise from the geometric arrangement of 

the elements.[176] In these systems, the SAW energy is located in the substrate layer 

below the nano-elements and the dynamics are akin to a driven oscillation—the effect 

of the magnetization precession on the elastic vibrations is neglected. [177]   

In this chapter, we report on the first direct observation of coupled magnon-phonon 

dynamics within a single thin nickel nanomagnet. Because the structure is isolated 

there are no SAWs, but there do exist intrinsic vibrations of the element itself. These 

depend on the geometry (size and shape) and material properties of the structure, 

rather than the geometric arrangement of the elements and material properties of the 

substrate as in the case of the nanomagnetic arrays discussed in chapter 7. 

Additionally, the effect of the magnetization precession on the elastic (phononic) 

vibrations can no longer be ignored and the system is modelled as a pair of coupled 

oscillators which are characterized by hybridization (mode splitting) of the modes 

when their energies are degenerate. Using an external magnetic field in the 

appropriate geometries, the magnonic mode is tuned through the phononic resonances 

and the hybridization characteristic of coupled systems is observed. [178,179]  The 

vibrational dynamics of the structure are in the GHz frequency range (5 GHz – 25 

GHz) as are the intrinsic magnetic resonances of the magnet. Access to this higher 

frequency range has been a limiting factor in resolving the mode splitting in previous 

experiments using interdigital transducers. [180] Furthermore, we demonstrate tuning 

of the magnon-phonon interaction into the strong coupling regime via the orientation 

of the applied magnetic field. This is a novel method of observing the coupling 
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between magnon and phonon systems and is the first time the magnon-phonon 

hybridization has been observed in a system of this kind. 

8.2 Coupled Resonances and Avoided Crossings 

If we include the back-action of the magnetic precession on the elastic vibrations then 

the system becomes a pair of coupled oscillators. A hallmark of coupled oscillators is 

the splitting of the normal modes when the energies of the systems are degenerate. 

This is a well-studied effect in physics and goes by many names—hybridization of 

the modes, avoided crossing, level repulsion, mode splitting. To see how the avoided 

crossing depends on the coupling parameter assume we consider two states with 

energies 𝐸1 and 𝐸2. The Hamiltonian of the system is [181] 

ℋ = (
𝐸1 0
0 𝐸2

)    (8.1) 

The eigenvectors are (
1
0

) and (
0
1

) with eigenvalues 𝐸1 and 𝐸2. If we introduce 

coupling between the two states, 𝑊, the Hamiltonian becomes 

ℋ = (
𝐸1 𝑊
𝑊 𝐸2

)    (8.2) 

Diagonalizing this matrix gives new eigenvectors, (
1
1

) and (
1

−1
) and new 

eigenvalues given by 

𝐸± =
(𝐸1+𝐸2)±√(𝐸1−𝐸2)2+4𝑊2

2
    (8.3) 
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When the two systems are degenerate, and coupled (𝐸1 = 𝐸2, and 𝑊 > 0) the 

energies of the normal modes are separated by 2𝑊. There are many examples of 

coupled systems which display this type of behavior. For example, the field of cavity 

quantum electrodynamics is focused on understanding and harnessing coupled 

interactions between light and elementary excitations—light coupled to electrons 

(exciton-polaritons), [182] light coupled to phonons (phonon-polariton) [183], light 

coupled to magnons (magnon-polariton) [184]. Additionally, the field of 

optomechanics explores light coupled to mesoscopic mechanical vibrations. [185] 

Despite the upsurge in research on SAW-FMR, observation and quantification of the 

hybridized magnon-phonon modes remains a challenging task. [186] So far, dynamics 

of the hybridized modes have not been resolved spectroscopically in relevant 

structures. [180] 

8.3 Analytical Derivation 

The theoretical groundwork for the magneto-elastic coupling was laid down in one 

dimension in ref [180]. They calculate how elastic waves with various strain 

components couple to the magnetization and how the coupling is influenced by the 

relative angles between the k-vector of the elastic waves and the magnetization 

vector. By generating SAWs using interdigital transducers (appropriately modeled in 

one dimension), they detect the attenuation of the SAWs after travelling under a Ni 

film. Depending on the magnetization direction of the Ni (controlled with an external 

field), the SAWs experience different levels of attenuation. The experimental results 

match the calculations excellently. Additionally, they derive an equation for the 
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hybridization of the elastic and magnetic modes based off the elastic wave equation. 

However, they do not see the hybridization of the magnetic and phononic modes 

experimentally. Because we have a two dimensional vibrating structure, we extend 

the analysis of ref [180] to two dimensions. Additionally, whereas the results of ref 

[180] were based off measurements of the elastic system, the results in this chapter 

are based off measurements on the magnetic system and so the derivation of the 

coupled dynamics is derived for the magnetic system. First, the equations describing 

the individual phonon and magnon dynamics are introduced.  Then the coupling term 

which is responsible for the hybridized dynamics is considered.  The basis for the 

derivation as well as the symbolic representation has been adopted from ref. [180]  

 

 

Figure 8.1: (a) In the {x,y,z} coordinate system, the x and y directions are defined by 

the edges of the nanomagnet and the z-direction is the surface normal. The external 

field 𝑯 is applied at 𝜃𝐻 = 60° with respect to the surface normal. This cants the 
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magnetization vector 𝑴𝒔 out of the plane to an angle 𝜃𝑀with respect to the surface 

normal and to an in-plane angle, 𝜑𝑀 from the x-axis. The phononic modes 𝒌 are 

characterized by their mode indices and their in-plane angle, 𝜑𝑘. 𝜑𝑚𝑝 is the in-plane 

angle between 𝑴𝒔 and 𝒌.  (b) The magnetization precession can be mapped to the 

{1,2,3} coordinate system defined by the direction of the magnetization vector and 

the plane of the cone due to the precession of 𝑴𝒔. 𝒎𝟑 is along the direction of 𝑴𝒔 at 

equilibrium, 𝒎𝟐 lies in the film plane and 𝒎𝟏 is orthogonal to 𝒎𝟐  and 𝒎𝟑.  

 

8.2.1 2D Elastic Dynamics 

The elastic energy density is given by: 

𝑊 =
1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙    (8.4) 

Where 𝑖, 𝑗 = {𝑥, 𝑦, 𝑧}, 𝐶𝑖𝑗𝑘𝑙 are the components of the stiffness tensor, 𝜀𝑖𝑗 =

(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 2⁄  are the strain components and 𝑢𝑖 is the displacement vector. In order to 

quantify the phononic eigenmodes the elastic wave equation is solved   

𝜌
𝜕2

𝜕𝑡2
𝑢𝑖 = ∑

𝜕𝜎𝑗𝑖

𝜕𝑥𝑗

3
𝑗=1     (8.5) 

Where 

𝜎𝑖𝑘 =
𝜕𝑊

𝜕𝜀𝑖𝑘
      (8.6) 



192 

 

is the Cauchy stress tensor and 𝜌 is the density of the material. Due to the small z 

dimension of the element we can consider the nanomagnet to be two-dimensional in 

the x and y directions (Fig. 8.1). [187]  

We assume a solution of the form 𝑢𝑥,𝑦 = 𝑢𝑥,𝑦
0 𝑒𝑖(𝒌∙𝒓−𝜔𝑡) where 𝑘2 = √𝑘𝑥

2 + 𝑘𝑦
2 , 

𝑘𝑥,𝑦 =
𝑛𝑥,𝑦𝜋

𝑙𝑥,𝑦
 and 𝑙𝑥,𝑦 is the dimension of the nanoelement along the x or y direction. 

[188] Furthermore, since each phononic mode is degenerate for every value of 𝑘𝑥 and 

𝑘𝑦 we set 𝑘𝑥,𝑦 =
𝑘

√2
 which ensures 𝑘2 = 𝑘𝑥

2 + 𝑘𝑦
2
. The in-plane angle of k is 

φ𝑘 = tan−1(𝑛𝑦 𝑛𝑥⁄ ). Because the system is elastically isotropic, the expansion of the 

element due to a heat pulse from the laser is the same in the x and y directions such 

that 𝑢𝑥
0 = 𝑢𝑦

0 . The system of equations can be solved by setting the determinant equal 

to zero. This yields the eigenfrequencies for the phononic system given by 

𝜔𝑝ℎ
2 =

(2𝜆+3𝜇)𝑘2

2𝜌
    (8.7) 

Where the Lame parameters 𝜇 and 𝜆 are given by 𝐶𝑥𝑥𝑥𝑥 = 2𝜇 + 𝜆, 𝐶𝑥𝑥𝑦𝑦 = 𝜆 and 

𝐶𝑥𝑦𝑥𝑦= 𝜇. The Lame parameters can be related to the Young’s Modulus, E and the 

Poisson ratio, 𝜈 through 𝜆 = 𝐸𝜈 (1 + 𝜈)(1 − 2𝜈)⁄  and 𝜇 = 𝐸/(2(1 + 𝜈)).189 

Assuming the density of Ni, 𝜌 = 8900 kg m3⁄  and 𝜈 = 0.31, [190] the experimentally 

measured phononic mode frequencies (Fig. 8.2a) were fit to equation (8.7) (Fig. 8.2b) 

yielding a value for the Young’s Modulus of 209−29
+31 GPa which matches well with 

literature values. [190]  
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Figure 8.2: (a) DFT spectra from TR-MOKE measurement at 3.6 kOe of the non-

magnetic signal. The time trace is shown in the inset. These frequencies do not 

change with applied field. Although the (2,1) mode is hard to see in this scan due to 

its much smaller amplitude compared to the other modes, its presence is verified by 

observing the full colormap of the magnetic signal.  (b) Fit of the phononic modes to 

equation (8.7). 

 

8.2.2 Magnetic Dynamics 

The magnetic dynamics in the absence of damping are given by the well known 

Landau-Lifshitz (LL) equation 

𝜕𝒎

𝜕𝑡
= −𝛾𝒎 × 𝑯𝑒𝑓𝑓    (8.8) 
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Where 𝛾 is the gyromagnetic ratio, 𝒎 =
𝑴

𝑀𝑆
 , 𝑀𝑆 is the saturation magnetization and 

𝑯𝑒𝑓𝑓 is the effective field. We neglect the magnetic permeability, 𝜇0 since 𝜇0 = 1 in 

the cgs system.  As is customary, a new Cartesian frame of reference is introduced 

where the 3-axis is along direction of the magnetization vector, the 2-axis is in the 

film plane, and the 1- axis is orthogonal to the 1 and 2 directions. (Fig 8.1b)  The 

transformation is given by 

(

𝑚𝑥

𝑚𝑦

𝑚𝑧

) = (

cos 𝜃𝑀 cos φ𝑀 − sin φ𝑀 sin 𝜃𝑀 cos φ𝑀

cos 𝜃𝑀 sin φ𝑀 cos φ𝑀 sin 𝜃𝑀 sin φ𝑀

−sin 𝜃𝑀 0 cos 𝜃𝑀

) (

𝑚1

𝑚2

𝑚3

) (8.9) 

The effective field is given by   

𝑯𝒆𝒇𝒇 = −𝛻𝑚𝐺     (8.10) 

Where 𝛻𝑚 = (
𝜕

𝜕𝑚1
,

𝜕𝑦

𝜕𝑚2
,

𝜕𝑦

𝜕𝑚3
) and G is the free energy of the magnetic system. 

Assuming an infinite thin film, the free energy is given by 

𝐺 = −𝑯 ∙ 𝒎 + 2𝜋𝑀𝑆𝑚𝑧
2   (8.11) 

Where 𝑀𝑆 is the saturation magnetization. Assuming the magnetization is pointed 

along the equilibrium direction and allowing for small deviations in the 1 and 2 

directions, we can Taylor expand the partial derivatives keeping only the linear terms. 

This gives the following expression for the effective field 

𝜇0𝑯𝒆𝒇𝒇 = − (
𝐺11𝑚1 + 𝐺12𝑚2

𝐺12𝑚1 + 𝐺22𝑚2

𝐺3

)   (8.12) 
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Where 𝐺𝑖 =
𝜕

𝜕𝑚𝑖
𝐺│𝒎=𝒎0

 and 𝐺𝑖𝑗 =
𝜕

𝜕𝑚𝑖𝜕𝑚𝑗
𝐺│𝒎=𝒎0

. Assuming 𝑚1,2 = 𝑚1,2
0 𝑒𝑖𝜔𝑀𝑡 

and 𝑚3 = 1, the LL equation (Eq. 8.8) is solved which gives the following system of 

equations 

(
𝐺11 − 𝐺3

𝑖𝜔𝑀

𝛾

−
𝑖𝜔𝑀

𝛾
−(𝐺3)

) (
𝑚1

𝑚2
) = (

0
0

)   (8.13) 

Setting the determinant equal to zero gives the well known Kittel formula 

(
𝜔𝑀

𝛾
)

2

= (𝐻 cos(𝜃𝑀 − 𝜃𝐻) − 4𝜋𝑀𝑆 cos2 𝜃𝑀)(𝐻 cos(𝜃𝑀 − 𝜃𝐻) − 4𝜋𝑀𝑆 cos 2𝜃𝑀) 

 (8.14) 

Where the angles 𝜃𝑀 and 𝜃𝐻 are the direction of the magnetization and the applied 

field with respect to the surface normal. (Fig. 8.1) An identical film was grown next 

to the nanostructure to characterize the magnetic parameters. The fitted frequencies 

are shown in figure 8.3 and yielded values of 𝛾 = 1.98−0.01
+0.02 × 107 rad/(Oe∙s) and 

𝑀𝑆 = 203−16
+8  emu/cm3. 
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Figure 8.3: (a) DFT spectra of the magnetic channel from TR-MOKE measurements 

at 1 kOe – 6kOe (left to right) for 𝜃𝐻 = 30°, 45° and 60°   (b) Fits of the magnetic 

resonances to equation (8.14) at 𝜃𝐻 = 30°, 45° and 60° over a range of applied field 

strengths. 

 

8.2.3 Coupled Dynamics 

When magnon-phonon coupling is present, there is an added term to the magnetic 

free energy as well as the elastic energy density.  This term is related to the 

orientation of the magnetization components with respect to the corresponding 

dynamic strains.  The coupling term is given by 

𝐺𝑑 = 𝑏1[𝜀𝑥𝑥(𝑥, 𝑡)𝑚𝑥
2 + 𝜀𝑦𝑦(𝑥, 𝑡)𝑚𝑦

2 + 𝜀𝑧𝑧(𝑥, 𝑡)𝑚𝑧
2] + 2𝑏2[𝜀𝑥𝑦(𝑥, 𝑡)𝑚𝑥𝑚𝑦 +

𝜀𝑥𝑧(𝑥, 𝑡)𝑚𝑥𝑚𝑧 + 𝜀𝑦𝑧𝑚𝑦𝑚𝑧]       (8.15) 
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The effective field of the magnetic system is now given by 𝑯𝒆𝒇𝒇 = −∇𝑚𝐺𝑡𝑜𝑡 where 

𝐺𝑡𝑜𝑡 = 𝐺 + 𝐺𝑑. The magnetization components are assumed to follow the spatial 

profile of the phononic vibrations, so we assume a plane-wave ansatz of the form 

𝑚𝑖 = 𝑚𝑖
0𝑒𝑖(𝒌∙𝒓−𝜔𝑡). The system of equations is now  

(
𝐺11 − 𝐺3

𝑖𝜔

𝛾

−
𝑖𝜔

𝛾
−(𝐺3)

) (
𝑚1

𝑚2
) = (

−𝐺1
𝑑

−𝐺2
𝑑)   (8.16) 

Where 𝐺𝑖
𝑑 is defined in the same way as 𝐺𝑖.  Transforming to the (1,2,3) coordinate 

system and keeping in mind that the system is two dimensional so that all strain 

components which have a z-dependence can be neglected gives the following 

magneto-elastic contribution to the magnetization equations of motion. 

𝐺1
𝑑 = (𝑏1𝑤1𝑖𝑘𝑥 +

1

2
𝑏2𝑤2𝑖𝑘𝑦) 𝑢𝑥 + (𝑏1𝑤3𝑖𝑘𝑦 +

1

2
𝑏2𝑤2𝑖𝑘𝑥) 𝑢𝑦  (8.17) 

𝐺2
𝑑 = (−𝑏1𝑤4𝑖𝑘𝑥 + 𝑏2𝑤5𝑖𝑘𝑦)𝑢𝑥 + (𝑏1𝑤4𝑖𝑘𝑦 + 𝑏2𝑤5𝑖𝑘𝑥)𝑢𝑦  (8.18) 

𝑤1 = sin 2𝜃𝑀 cos2 𝜑𝑚𝑝    (8.19) 

𝑤2 = sin 2𝜃𝑀 sin 2𝜑𝑚𝑝    (8.20) 

𝑤3 = sin 2𝜃𝑀 sin2 𝜑𝑚𝑝    (8.21) 

𝑤4 = sin 𝜃𝑀 sin 2𝜑𝑚𝑝    (8.22) 

𝑤5 = sin 𝜃𝑀 cos 2𝜑𝑚𝑝    (8.23) 
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Where 𝜑𝑚𝑝 is the in-plane angle between the phononic k-vector and the 

magnetization vector. In two dimensions the magnetic system is driven by both 𝑢𝑥 

and 𝑢𝑦 displacements.  𝑏1 couples the corresponding magnetization component with 

normal strains and 𝑏2 with shear strains. Additionally, the coupling depends on the 

magnitude of the phononic k-vector, 𝒌. As can be seen from eq. 8.15 the different 

strains couple to specific magnetization components. This causes an angular 

dependence for the coupling which depends on the mutual orientation of 𝑴𝒔 and 𝒌. 

These dependences are manifested through equations 8.19 - 8.23 which are plotted in 

figure 8.4. As an example of how to interpret these dependences we consider the first 

term in equation 8.17. The magnitude of the coupling due to 𝑢𝑥 displacements 

depends on the magneto-elastic coupling term 𝑏1 as well as on the magnitude of the 

x-component of the phononic k-vector, 𝑘𝑥. Also, there is an angular dependence to 

the coupling given by 𝑤1. The angles are defined relative to 𝑴𝒔 and 𝒌. Each term in 

equations 8.17 and 8.18 has a similar coupling dependence. The different angular 

dependences are shown in figure 8.4. They all contribute to the total coupling. 



199 

 

 

Figure 8.4: Angular dependences of the various trigonometric terms (8.19-8.23) 

governing the coupling given by equations 8.17 and 8.18.  

 

Additionally, 𝑀𝑆𝐺𝑑 is added to the elastic free energy (Eq. 8.4). This magneto-elastic 

energy term modifies the stress tensor (Eq. 8.7) due to the precession of the 

magnetization. Solving equation  (8.5) with the modified stress tensor gives elastic 

equations for the displacement which depend on the magnetization components 

𝑢𝑥 =
𝑖(2𝑀𝑆𝑏1𝑘𝑥𝑤1+4𝑀𝑆𝑏2𝑘𝑦𝑤2)𝑚1−𝑖(2𝑀𝑆𝑏1𝑘𝑥𝑤4−2𝑀𝑆𝑏2𝑘𝑦𝑤5)𝑚2

(𝐶𝑥𝑥𝑥𝑥𝑘𝑥
2+𝐶𝑥𝑥𝑦𝑦𝑘𝑥𝑘𝑦+

𝐶𝑥𝑦𝑥𝑦

2
(𝑘𝑦

2+𝑘𝑥𝑘𝑦)−𝜌𝜔2)
  (8.24) 
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𝑢𝑦 =
𝑖(2𝑀𝑆𝑏1𝑘𝑦𝑤3+4𝑀𝑆𝑏2𝑘𝑥𝑤2)𝑚1+𝑖(2𝑀𝑆𝑏1𝑘𝑦𝑤4+2𝑀𝑆𝑏2𝑘𝑥𝑤5)𝑚2

(
𝐶𝑥𝑦𝑥𝑦

2
(𝑘𝑥𝑘𝑦+𝑘𝑥

2)+𝐶𝑦𝑦𝑦𝑦𝑘𝑦
2+𝐶𝑥𝑥𝑦𝑦𝑘𝑥𝑘𝑦−𝜌𝜔2)

  (8.25) 

Plugging equations (8.24) and (8.25) into equations (8.17) and (8.18) and combining 

like terms in equation (8.16) gives a new system of equations for the precession of the 

magnetization with only the variables 𝑚1 and 𝑚2. Solving this system of equations 

by setting the determinant equal to zero and factoring gives the following 

(𝜔2 − 𝜔𝑝ℎ
2){(𝜔2 − 𝜔𝑀

2)(𝜔2 − 𝜔𝑝ℎ
2) − 𝜔𝐶

4} = 0  (8.26) 

Where  

𝜔𝐶
4 =

𝛾𝑀𝑆

𝜌
(𝜔1𝐶2 + 𝜔2𝐶1)𝑘2    (8.27) 

𝜔1 = 𝛾(𝐺11 − 𝐺3)    (8.28) 

𝜔2 =  𝛾(−𝐺3)     (8.29) 

𝐶1 = 𝑏1
2 (cos2 𝜑𝑘 𝑤1

2 + sin2 𝜑𝑘 𝑤3
2) +

3

4
𝑏1𝑏2 sin 2𝜑𝑘 𝑤2(𝑤1 + 𝑤3) +

1

2
𝑏2

2𝑤2
2

 (8.30) 

𝐶2 = 𝑏1
2𝑤4

2 + 2𝑏2
2𝑤5

2   (8.31) 

 

Equation (8.26) results in three solutions.  One is the phononic resonance and the 

other two are attributed to the hybridized magnon-phonon.  
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Figure 8.5: Example of solution to the magnon-phonon part of equation (8.26).  

When 𝜔𝐶 = 0, the two solutions are attributed to the phononic and magnonic 

resonances.  If 𝜔𝐶 ≠ 0, then the two systems are coupled, and close to the region 

8where the magnon and phonon modes are degenerate the modes split and the two 

solutions have both magnon and phonon character. 

 

8.4 Magnon-Phonon Anti-Crossings 

The magnon-phonon dynamics of the nanomagnet were measured using a two-color 

TR-MOKE setup using a balanced photodiode detection scheme which enables us to 

measure the magnetic system and the non-magnetic (phononic) system at the same 

time [191] When the pump pulse hits the nanomagnet, (Fig 8.6a) the energy is 

absorbed by the electron system which then equilibrates with the phonon systems 
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within a few picoseconds according to the two-temperature model. [192] This excites 

the spin and phonon systems concurrently within the nanomagnet (Fig. 8.6b).  

 

 

Figure 8.6: (a) Scanning electron microscope image of 330nm x 330nm x 30nm Ni 

nanomagnet. (b) When the pump pulse (400nm) irradiates the sample, the deposited 

heat causes the element to thermally expand, which causes the element to vibrate at 

eigenfrequencies determined by the geometry and material properties. Additionally, 

the heat perturbs the magnetization causing the spins to precess around the effective 

field.  Due to magnetostriction, the spin and phonon systems are coupled to one 

another. A probe pulse (800nm) which is delayed in time monitors the dynamics 
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following excitation. (c) Fourier amplitude spectra normalized for each field bin of 

the magnetic and (d) the non-magnetic detection channels. The arrows and dotted 

lines are indicators of the phononic eigenfrequencies.  The positions of these 

frequencies match in the magnetic and non-magnetic spectra.  

 

In Figure 8.6, colormaps from the magnetic (c) and non-magnetic (d) channels are 

displayed.  Each field represents a different TR-MOKE scan that has been 

transformed into the frequency domain using an FFT algorithm. The colors represent 

the frequency components present at that field.  In order to see the frequency 

variation more clearly, the frequency amplitude was normalized for each field bin. 

The magnetic channel displays a dominant frequency which changes as the external 

field changes. (Fig. 8.6c)  Additionally, there are field independent modes which arise 

due to the coupling to the phononic system.  Confirmation of this is seen in the non-

magnetic spectra (Fig. 8.6d), where the frequencies are all H-field independent and 

match the positions of the magnetic channel’s field independent frequencies. These 

spectra look similar to those observed in patterned arrays. [193] However, in the 

single isolated nanomagnet the coupling between the two systems is stronger and 

more direct. It arises within the element itself rather than with surface acoustic waves 

located in the substrate, leading to qualitatively different behavior around the 

crossovers between resonances. (Fig. 8.7) 
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There is a narrow region in the non-magnetic spectrum (Fig. 8.6d) around the (1,1) 

crossover (~3 kOe) that appears to have some field dependence. This could be 

attributed to a few possibilities. First the (1,1) mode has a larger resonance and 

lifetime than the (2,0) mode. This causes the signal to be enhanced in the (1,1) 

crossover and so the magnetic system’s influence on the phonon system may be more 

obvious in the non-magnetic channel due to the higher signals at the (1,1) crossover.  

Alternatively, there may be some leakage from the magnetic signal into the non-

magnetic signal due to the transverse Kerr effect (TKE). As discussed in chapter 4, 

the TKE is sensitive to the component of the magnetization that is perpendicular to 

the plane of incidence and affects the reflectivity (non-magnetic) of the probe beam.  
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Figure 8.7: (a) Different vibrational modes measured in arrays of 200nm Al 

nanomagnets. Type II modes (red outline) depend on the pitch of the arrays and Type 

I are the intrinsic vibrations of the elements themselves and are independent of the 

pitch. Taken from [194]. (b) The crossings in periodic arrays (SEM in inset) 

discussed in chapter 7 are due to type II modes (c) whereas the crossings in an 

isolated nanomagnet (SEM in inset) discussed in this chapter are due to type I modes. 

(d) The coupling for Type II modes is more akin to a forced oscillation since the 

elastic energy is dominated by the SAW vibrations (red arrow). (e) With type I modes 

the coupling is more direct, occurring within the element itself. 

 

Changing the external field modifies the frequency of the magnons so they can be 

brought into resonance with the various phononic modes.  The crossings are 
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displayed in Figure 8.8a and 8.8b for the (1,1) and (2,0) crossings, respectively. The 

Fourier spectra exhibit two clear peaks at each field value at and around the crossing 

field. These two frequencies are attributed to the hybridization of the magnon and 

phonon eigenstates.  In this region, the modes do not have a specific magnon or 

phonon character but rather exist in both states.  

 

 

Figure 8.8: Close-ups of the Fourier amplitude spectra exhibiting anti-crossings for 

the (a) (1,1) and (b) (2,0) modes.  The amplitudes are normalized within each figure. 

Next to each colormap are the Fourier spectra obtained from the TR-MOKE time 

trace for the range of applied fields selected by the dotted gray box in the colormap. 
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The two peaks are indicated by the red arrows. The inset in (a) is the boxed region 

Fourier transformed over a longer time length to display the two modes more clearly. 

(c) Simultaneous fits of equation (8.26) to the frequencies of the (1,1) and (d) (2,0) 

modes. The error in the frequencies is the FFT resolution obtained from the time 

duration of each frequency component in the signal.  (e) Mode splitting energy of the 

(1,1) and (2,0) crossings. 

 

The frequency peaks were selected from the (1,1) and (2,0) modes and fit 

simultaneously using equation (8.26) which shows an excellent match between data 

and fits (Fig. 8.8c-d). The parameters 𝛾, 𝑀𝑆 and E from the elastic and magnetic fits 

were used as initial fitting parameters and allowed to vary within their respective 

errors. Because the nanomagnet is polycrystalline, 𝑏1 and 𝑏2 are equal, and fitting 

only one coupling parameter, 𝑏1, was necessary.  Additionally, in order to take into 

consideration the in-plane magnetization distribution within the nanomagnet, as well 

as the inevitable slight experimental disorientation of the magnetic field, 𝜑𝑚𝑝 was 

also allowed to vary. The fitted value of 𝑏1 was 40 ±  4 × 104 Oe. Using 𝑏1 =

−
3𝜆𝑆𝑐44

𝑀𝑆
, a polycrystalline magnetostriction value of 𝜆𝑆 = −34 ± 4 × 10−6 was 

obtained [195] which is in agreement with the bulk value [196] of −32 × 10−6 and in 

reasonable agreement with the value measured in Ni thin films [197]. Figure 8.8e 

shows the mode splitting corresponding to the coupling strength of the hybridized 

modes. . We find for the (1,1) mode 𝛥𝑓𝑚𝑖𝑛 = 0.76−0.08
+0.08 GHz and for the (2,0) mode 
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𝛥𝑓𝑚𝑖𝑛 = 0.85−0.08
+0.08 GHz.  The error is the standard deviation found using a Monte 

Carlo error propagation scheme by randomly varying the frequencies within the FFT 

resolution and then fitting them to Equation 8.26. The anticrossing is empirical 

evidence of the coupling between the magnon and phonon systems and has not been 

observed in other experiments utilizing acoustic waves as an excitation 

mechanism.[172,180]   

8.4.1 Tuning the Coupling into the Strong Coupling Regime 

As evidenced through 𝐶1 and 𝐶2, the splitting energy depends on the type of strains 

present (normal, 𝑏1; shear, 𝑏2) and is a function of  𝜑𝑚𝑝 and  𝜃𝑀.  Additionally, these 

angular dependences are weighted by the magnetic energy terms 𝜔1 and 𝜔2 which 

depend on 𝑀𝑆 and H and limit the range of experimentally accessible angles. As a 

demonstration of the dependence on the in-plane angle of the magnetization and the 

phononic k-vector, we focus on the (2,0) mode which is characterized by normal 

strains (𝑏2 = 0). When both strains are present (depending on the respective 

amounts), the in-plane dependence disappears due to the orthogonallity of the 𝑏1 and 

𝑏2 in-plane angular functions. 

Taking this into consideration, we calculate the weighted coupling strength, (𝜔1𝐶2 +

𝜔2𝐶1) for our particular experimental configuration and plot it as a function of H and 

𝜑𝑚𝑝 (Fig. 8.9a). The angle of the magnetization, 𝜃𝑀, from the surface normal is a 

function of the applied field configuration. At an applied field angle of 𝜃𝐻 = 60°, 

figure 8.9b shows the angles of the magnetization 𝜃𝑀 for the range of applied fields 
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used in the experiment. This H-𝜑𝑚𝑝 dependence is further modified by the geometric 

and material properties 𝜌, 𝛾 and 𝑀𝑆 which dictate the field at which the two 

resonances cross. In the original configuration (the applied field along the x 

direction), the (2,0) crossing is shown as a star on the H-𝜑𝑚𝑝 plot (Fig. 8.9a). By 

rotating the nanomagnet in-plane, we can change 𝜑𝑚𝑝, which changes the coupling 

strength (moving along the dotted line in figure 8.9a) and is maximum at an angle of 

45°. The calculated and experimentally measured minimum frequency splitting vs. 

𝜑𝑚𝑝 are shown in figure 8.9c.  The data match the calculated results quite well. 

Figure 8.9d shows the configuration and obtained spectra with the magnetization 

oriented parallel to the (2,0) mode, and figure 8.9e shows the case where the 

magnetization is oriented 45° to the (2,0) mode.  For the 45° spectrum, 𝜑𝑚𝑝 was fit to 

equation (8.26) using the previously obtained material parameters as constants. The 

value obtained was 𝜑𝑚𝑝 = 50°, a very close match. More importantly, from the 

spectra in figure 8.9e it is evident that the splitting increases for 𝜑𝑚𝑝 = 45°; the 

bandgap starts to emerge in the spectrum. The frequency splitting increases to 

𝛥𝑓𝑚𝑖𝑛 = 1.41−0.16
+0.16 GHz, a 66% increase from the 𝜑𝑚𝑝 = 0° case. 
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Figure 8.9: (a) Normalized H vs. 𝜑𝑚𝑝 plot of the weighted angular coupling term 

(𝜔1𝐶2 + 𝜔2𝐶1). (b) Due to the experimental geometry, only certain out of plane 

angles of the magnetization 𝜃𝑀 were accessible for the range of applied fields 

employed in the experiment. (c)  The calculated frequency splitting as a function of 

𝜑𝑚𝑝 (dotted line in fig 8.9a) as well as the minimum frequency splitting taken from 

the data.  The y-error was calculated from the FFT resolution. For the x-error a 

resolution of ±10° was assumed for the in-plane positioning of the nanomagnet. (d) 

The experimental configuration and the measured spectra with fits to equation (8.26) 

when the magnetization is oriented along the edge of the square so that it is parallel 

with the (2,0) phononic mode and (e) after rotating the nanoelement so that 𝜑𝑚𝑝 =

45°. The spectrum shows an increase in the splitting of the two modes and the fit 

matches the rotation within ±10°. 
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8.4.2 Loss Rates and Cooperativity 

While the anti-crossing is empirical evidence of the coupling between the two 

systems, it is necessary to quantify the strength of the coupling. The coupling regime 

is determined by comparing the rate at which energy is exchanged between the 

oscillators versus the rate at which the individual oscillators lose energy. Since the 

linewidth of a Lorentzian is related to the loss rate and the splitting of the modes is 

proportional to the coupling rate, this comparison is typically done in the frequency 

domain by comparing the linewidths of the individual resonances to the splitting. 

Whether the loss rate of the individual systems is equal to the full width at half 

maximum or the half width at half maximum of the Lorentzian depends on the 

mathematical model being considered. (Fig. 8.10) In our case the loss rates cannot be 

taken directly from the linewidth of the FFT spectra since they are artificially 

broadened due to the finite duration of the signal in the time domain as discussed in 

chapter 4. [198] 
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Figure 8.10: A decaying exponential in the time domain has a Fourier transform of a 

Lorentzian in the frequency domain. Dependences on the amplitude and full width at 

half max (FWHM) of the Lorentzians depend on the model of the damped 

exponential used. Note that the Fourier transform starts at zero corresponding to a real 

signal. (a) The Lorentzian of an exponential given by a loss rate 𝑎 has the an 

amplitude 1 𝑎⁄  and a FWHM given by 2 times the loss rate, 2(𝑎 2𝜋⁄ ). (b) The 

Lorentzian of an exponential given by a loss rate 𝑎 2⁄  has an amplitude 2 𝑎⁄  and a 

FWHM equal to the loss rate, (𝑎 2𝜋⁄ ). Note that the factor of 2𝜋 is used in the 

frequency domain order to give the values in Hz. 

 

In order to determine the coupling regime of the magnon-phonon resonances, we 

analyze the loss rates of the different systems in the time domain and compare them 

to the coupling rate. We employ a least squares curve fitting algorithm to the 

decaying sinusoids in the TR-MOKE signals [199]  
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𝑆(𝑡) =  ∑ 𝐴𝑖 cos(𝜔𝑖𝑡 + 𝜑𝑖)𝑒−𝜅𝑖𝑡𝑁
𝑖    (8.32) 

Where 𝑆 is the signal, 𝐴𝑖 is the amplitude, 𝜔𝑖 is the angular frequency, 𝜑𝑖 is the 

phase, 𝜅𝑖 is the loss rate and N is the number of oscillations present at the applied 

field. We extract the coupling rate from the splitting of the modes in the frequency 

domain in units of Hz. Since the loss rate 𝜅𝑖, has units rad ∙ s−1 in the frequency 

domain, in order to compare the loss rates extracted from the time domain fits to the 

splitting extracted from the frequency domain we divide 𝜅𝑖 by a factor of 2π to obtain 

a value in Hz. [200] 

The field-dependent loss rate for the magnetic signal can be approximated by 𝜅𝑀 =

𝛼𝑒𝑓 , where 𝑓 is the frequency and 𝛼𝑒 is the effective damping. [199]  𝛼𝑒 =

0.038−0.03
+0.04 , and was extracted at 4.6 kOe, away from the crossing point, so that the 

mode is predominantly magnetic in character. This value is consistent with previous 

measurements we have made on the damping in Ni.[176] The loss rate of the 

phononic system, 𝜅𝑃, is extracted from the non-magnetic signal.  

The loss rates are 𝜅𝑀 = 0.41−0.03
+0.05 GHz for the magnetic system at the (1,1) crossover 

(crossing 1) and 𝜅𝑀 = 0.53−0.04
+0.05 GHz for the magnetic system at the (2,0) crossover 

(crossing 2). 𝜅𝑃 = 0.31−0.07
+0.12 GHz for the (1,1) phononic mode and 𝜅𝑃 = 0.47−0.07

+0.12 

GHz for the (2,0) phononic mode. The coupling rate is given by half of the mode 

splitting, Γ𝑐 = 𝛥𝑓𝑚𝑖𝑛 2⁄ . This allows us to calculate the cooperativity, a dimensionless 

parameter that is used in order to determine the strength of the coupling.  
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∁=
Γ𝑐

2

𝜅𝑀𝜅𝑃
     (8.33) 

When C < 0.1 the system is weakly coupled, when 0.1 < C < 1 the system is in the 

intermediate coupling regime, and when 1 < C the system is strongly coupled. [201] 

For crossing 1, C = 1.14−0.30
+0.48 and for the crossing 2, C = 0.74−0.14

+0.21. Keeping in mind 

the error, this places these two crossings in the intermediate coupling regime. [201]  

For the (2,0) crossing oriented at 45º (crossing 3), the damping was also measured at 

4.6 kOe and is 𝛼𝑒 = 0.047−0.03
+0.03 which corresponds to 𝜅𝑀 = 0.65−0.04

+0.05. At this 

crossing Γ𝑐 > 𝜅𝑀, 𝜅𝑃, which translates into a cooperativity of C = 1.65−0.32
+0.48, placing 

crossing 3 in the strong coupling regime within error (C > 1). The loss rates and 

Cooperativities are displayed for clarity in Table 1. Therefore, by reorienting the 

magnetization vector using an externally applied magnetic field, we were able to 

increase the coupling from the intermediate into the strong coupling regime.  

 

Crossing 𝚪𝒄 (GHz) 𝜿𝑴 (GHz) 𝜿𝑷 (GHz) C 

1: (1,1) 0.38−0.04
+0.04 0.41−0.03

+0.05 0.31−0.07
+0.12 1.14−0.30

+0.48 

2: (2,0), 0° 0.43−0.04
+0.04 0.53−0.04

+0.05 0.47−0.07
+0.12 0.74−0.14

+0.21 

3: (2,0), 45° 0.71−0.08
+0.08 0.65−0.04

+0.05 0.47−0.07
+0.12 1.65−0.32

+0.48 

Table 8.1: Coupling, Loss rates and cooperativities for the different crossings. 
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The various coupling regimes can be qualitatively verified by observation of the 

Fourier spectra at the crossover points. (Fig. 8.11)  For crossing 1 and crossing 2 we 

see the two peaks just starting to become discernable with crossing 1 being slightly 

more visible. The Fourier spectra of crossing 3 at the crossing point shows two 

clearly discernable peaks.  

 

 

Figure 8.11: Cooperativities of the 3 crossings. The first two are within the 

intermediate coupling regime while the 3rd is in the strong coupling regime. The DFT 

spectra at the crossover points are shown next to the colormaps. 
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As an additional analysis in order to corroborate these results, we present a discussion 

of the DFT spectra. We use a peakfitting algorithm to fit a sum of two Lorentzians 

(given by Fig. 8.10a) to the peaks at the crossover points. (Fig. 8.12)  We get an upper 

limit for the loss rate by looking at the larger of the two FWHMs. The loss rate 

extracted in this manner, 𝜅𝐹𝑊𝐻𝑀, is then given by half of the FWHM. Because the 

time widow of the scans is 1,500 ps and we use a Hamming window in the time 

domain in order to mitigate the effect of the sidelobes of the Sinc function (due to 

finite time window) in the frequency domain, we estimate that the fitted FWHM 

should be broadened by ~20%. Adjusting for this broadening, we get, 𝜅𝐹𝑊𝐻𝑀,𝑎𝑑𝑗. The 

results are in Table 2. They show very good agreement with the loss rates of the 

different systems extracted through the time domain analysis above. However, we 

reiterate that inferences concerning the loss rates based on the DFT linewidths are 

complicated. As mentioned in chapter 4, the time window of the signal is responsible 

for increasing the linewidth of the DFT spectra.  

 

Crossing 𝚪𝒄 𝜿𝑴 𝜿𝑷 𝜿𝑭𝑾𝑯𝑴 𝜿𝑭𝑾𝑯𝑴,𝒂𝒅𝒋 

1: (1,1) 0.38−0.04
+0.04 0.41−0.03

+0.05   0.31−0.07
+0.12   0.39−0.02

+0.02 0.32−0.02
+0.02 

2: (2,0), 0° 0.43−0.04
+0.04 0.53−0.04

+0.05   0.47−0.07
+0.12   0.59−0.05

+0.05 0.48−0.05
+0.05 

3: (2,0), 45° 0.71−0.08
+0.08 0.65−0.04

+0.05   0.47−0.07
+0.12  0.63−0.06

+0.06 0.52−0.06
+0.06 

Table 8.2: Coupling and loss rates for the different crossings extracted from the time 

domain fits and from the DFT spectra (all values in GHz). 
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Figure 8.12: Crossover points and peakfit data for (a) the (1,1) crossover, (b) the 

(2,0) crossover at 0° and (c) the (2,0) crossover at 45°. (d) The FWHM of the peaks 

and the mode splitting for the different crossings. 

 

8.5 Conclusion  

Hybridized magnon-phonon dynamics were measured optically for the first time by 

tuning the magnonic resonance to that of the intrinsic phononic vibrations of an 

isolated square nanomagnet.  The hybridized modes were clearly resolved in the 

Fourier transforms of the time-dependent magneto-optic signals at resonance.  A two-

dimensional equation describing the dynamics was derived which fit the data with 

high accuracy.  Additionally, the coupling was shown to depend on the orientation of 

the magnetization vector and the phononic vector as predicted by the theory. By 

tuning the direction of the applied field we were able to enhance the coupling so that 

the system entered into the strong coupling regime.  The ability to uniquely tune the 
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energy splitting of the hybridized mode using various external degrees of freedom is 

attractive from the perspective of reconfigurable magnonic devices. [202,203] 

Additionally, this magnetomechanical system provides a novel means of studying the 

dynamics of coupled quantum systems which may aid in the development of more 

efficient transducers between phononic and magnonic systems. 

 

 

 

  



219 

 

CHAPTER 9: FUTURE OF 

INFORMATION TECHNOLOGY AND 

SUMMARY 
 

“Somewhere, something incredible is waiting to be known”  

—Carl Sagan 

 

The information contained in the thesis is meant to add to the collective effort to 

advance information technology. This has been an ongoing effort since humans began 

organizing into groups, with increasing levels of information technology mirroring 

the increasing complexity of civilizations. Today we are at the forefront of a new 

revolution. Being an information revolution, the changes to information technology 

that will occur in the future will most likely be beyond what we are able to imagine. 

The field of Quantum Information Science seeks to alter the landscape of information 

technology at a theoretically unprecedented scale.  This will require novel storage 

media, novel algorithms and an entirely new way of conceptualizing the concept of a 

bit. Classical bits made up of 0’s and 1’s will be replaced by qubits, superpositions of 

0’s and 1’s which are possible due to the spooky laws of quantum mechanics. This is 

extremely exciting, however the scientific challenges to achieving this new age of 

information technology are monumental and the quantum computing of the future 

may never occur. We are experiencing drastic changes in societies adjusting to a new 

age of global civilization. The effects from the Industrial revolution are beginning to 
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be felt which are raising environmental concerns that current technologies are going 

to be required to address. Therefore, improving existing technologies to respond to 

these immediate concerns is a necessary prerequisite for a quantum age of computing 

to occur.  

Magnetic materials have been a dominant storage medium for the past 100 years. 

Additionally, research on magnetic materials has opened up a wealth of fundamental 

knowledge of condensed matter systems. Femtosecond laser systems have accelerated 

the understanding of carrier dynamics in these systems as well as providing novel 

methods of manipulation of the magnetism. The confluence of femtosecond 

spectroscopy and ultrafast magnetism opens up the opportunity to manipulate 

magnetic materials at extraordinarily fast timescales. This could allow magnetic 

materials to be used for a diverse range of technological applications.  

In chapters 2-4 we discussed the physics underlying magnetism in condensed matter 

systems as well the physics concerning the interaction of these systems with 

ultrashort laser pulses. We then discussed Time-Resolved Magneto-Optical Kerr 

Effect microscopy (TR-MOKE), in which the magnetization dynamics can be probed 

at sub-picosecond timescales. TR-MOKE allowed us to characterize critical magnetic 

parameters. We demonstrated this characterization ability in chapter 5. Additionally, 

we introduced an all-optical technique to manipulate the magnetism in multilayer 

magnetic structures. By selectively enhancing or quenching the magnetic dynamics 

these structures could be characterized in a novel manner. 
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Another method of manipulating the spins can be achieved utilizing magnetoelastic 

effects which arise due to spin-orbit coupling. Magnetoelastic effects may be useful 

in the design of more energy efficient storage devices. Additionally, understanding 

magnetoelastic effects in technologically relevant devices such as nanomagnetic 

arrays and single nanomagnetic bits is critical from a device design perspective. In 

chapter 7 we discussed the coupling of surface acoustic waves (SAW) to the 

magnetization dynamics in nanomagnetic arrays. TR-MOKE provided a convenient 

means of studying the magnetoelastic interactions in these systems due to the ability 

of the pump pulse to initiate dynamics in both the magnetic and elastic systems 

concurrently. We showed how the magnetoelastic effects in the arrays can be 

mitigated geometrically, by randomizing the distribution of the elements, and how the 

magnetoelastic coupling could be used to determine the intrinsic damping of the 

array. 

Chapter 8 took the results of Chapter 7 a step further and focused on the 

magnetoelastic coupling which occurs in an isolated nanomagnet. In this system, the 

elastic vibrations do not come from SAWs in the substrate, but from the intrinsic 

vibrations of the element. The coupling is, therefore, more direct. By focusing on the 

regions where the elastic and magnetic modes have the same frequency, we were able 

to spectroscopically resolve the hybridization of the magnon and phonon modes. This 

was the first time that the anticrossing of the hybridized mode frequencies, a 

characteristic of the magnon-phonon hybridization, was observed in structures of this 

type utilizing this technique. Additionally, we derived a 2-dimensional equation 
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which described the dynamics and enabled us to successfully characterize the 

magnetoelastic coupling constant. Furthermore, the dependence of the coupling 

strength on the mutual orientation of the phononic k-vector and the magnetization 

vector was demonstrated and matched the results excellently. By tuning the angle 

between the phononic k-vector and the magnetization vector we were able to tune the 

magnon-phonon coupling into the strong coupling regime. 
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“In the beginner’s mind there are many possibilities, but in the expert’s there are 

few” 

—Shunryu Suzuki 
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