
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title

Efficient and Generalizable Motion Planning using Transformers

Permalink

https://escholarship.org/uc/item/5mm6h4tb

Author

Johnson, Jacob John

Publication Date

2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5mm6h4tb
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Efficient and Generalizable Motion Planning using Transformers

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Intelligent Systems, Robotics and Control)

by

Jacob J. Johnson

Committee in charge:

Professor Michael C. Yip, Chair
Professor Nikolay Atanasov
Professor Sicun Gao
Professor Nuno Vasconcelos
Professor Xiaolong Wang

2023



Copyright

Jacob J. Johnson, 2023

All rights reserved.



The Dissertation of Jacob J. Johnson is approved, and it is acceptable

in quality and form for publication on microfilm and electronically.

University of California San Diego

2023

iii



DEDICATION

I want to dedicate this thesis to my family, without whom this journey wouldn’t have

been possible. To my acha and amma - Mr. Johnson Varughese and Dr. Shaly John for

their loving support and prayers throughout this journey, to my brother and his wife, Dr.

Benjamin Johnson and Mrs. Rebecca Maruthelil, for their guidance and encouragement,

and to my wife, Mrs. Merin Sabu, for her love and patience.

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Learning-based Planners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Dynamic Motion Planning Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Environment Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.7 Kinematic Model of a Car-Like Robot and Dubins curve . . . . . . . . . 14
2.1.8 Trajectory Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3 Planning Using Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Motion Planning Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Feature Extractor: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Position Encoding: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Transformer Encoder: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Classifier: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.5 Orientation Prediction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.6 Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Point Robot Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Dubins Car Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 MPT Navigation2 Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 4 Generalizing Transformers for Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Vector Quantized Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Transformer Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Vector Quantized-Motion Planning Transformers . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 Stage 1: Vector Quantizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Stage 2: Auto-Regressive (AR) Prediction . . . . . . . . . . . . . . . . . . . . . 53
4.3.3 Generating Distributions for Sampling . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.4 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2 Unseen In-Distribution Environments . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.3 Out-of-Distribution Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 5 Planning with Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Task-Space Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Constraint VQ-MPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Generating samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 Improving sampling efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.3 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5.2 Place Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.3 Multi-Sequence Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5.4 Real-world environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 6 Planning under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vi



6.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 CCGP-Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.2 Motion and Observation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.3 Gaussian Process Distance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.4 Chance Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.5 CONNECT Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.6 Simplicial Homology Global Optimization . . . . . . . . . . . . . . . . . . . . . 88

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.1 Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.2 Dubins Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix A Additional Proofs for Chance Constraint Planning . . . . . . . . . . . . . . . . 103

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii



LIST OF FIGURES

Figure 1.1. Given a planning problem (left), we propose learning-based approaches
to reduce the search space for sampling-based planners. We identify
regions where a valid path might exist (center). Given the proposed
region, a sampling-based planner finds a collision-free path (right). . 3

Figure 2.1. The trajectory the robot followed for a given start and goal position
using, Dynamic MPNet, and Dynamic Windows Approach as local
planners respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.2. The area of the costmap passed to MPNet for planning. The local
costmap used for planning is always egocentric to the robot. The blue
region indicates the obstacles inflated by the robot footprint. . . . . . . 9

Figure 2.3. The graph describes the flow of inputs and outputs for the Dynamic
Motion Planning Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.4. For a given start (green arrow) and goal (orange arrow) position, the
plan generated by the Dynamic MPNet (red path) for a given sub-goal
(red arrow). The black trajectory is the global plan. The colored
region represents the local costmap used by the Dynamic MPNet. . . 14

Figure 2.5. The Dynamic MPNet generating trajectories for an untrained map for
two different start and end goal on a synthetic map. The planner can
generate trajectories that comply with the kinematic constraints of
the robot, thus achieving higher accuracy compared to DWA. . . . . . . 17

Figure 2.6. The RC robot used for this work. On board LIDAR (Hokuyo UTM-
30LX-EW) and IMU (RealSense D435i) sensors were used for localiza-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.7. Total time and total distance taken by Dynamic MPNet and DWA
planners on the same set of planning problems for an (a) unknown
map (b) real world map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.8. The trajectory the robot followed for a given start (green arrow)
and goal (red arrow) position for DWA (black) and Dynamic MPNet
(red). The path Dynamic MPNet takes is much closer to the obstacle
compared to DWA and hence shorter. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.1. Overview of MPT Module for planning in R2. . . . . . . . . . . . . . . . . . . . . 25

Figure 3.2. Planned path for the Maze environment using Motion Planning Trans-
formers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

viii



Figure 3.3. Planning statistics for the Point Robot Model for the Motion Planning
Transformers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.4. (From left) Path planned by RRT*, IRRT*, MPT-RRT*, and MPT-
IRRT* for the same start (green) and goal (red) positions for the
Random Forest environment. MPT-aided planners can significantly
reduce the number of vertices (orange) required to search for a path. 34

Figure 3.5. Three different trajectories planned successfully using MPT on the
Random Forest environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.6. Path planned by RRT*, IRRT*, MPT-RRT*, and MPT-IRRT* for
the same start and goal positions for the Maze environment. . . . . . . . 36

Figure 3.7. Three different trajectories planned successfully using MPT on the
Maze environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.8. Plots of MPT aided planning for out-of-distribution environments. . . 38

Figure 3.9. The distribution of metrics for maps of different sizes. . . . . . . . . . . . . . 39

Figure 3.10. Plots of two paths for the modified maze environment using the NEXT-
KS planner. The yellow circles indicate the sampled points by the
planner. The planner can solve simple problems (Left), while for
long-horizon problems, it gets stuck in local minimums (Right). . . . . 40

Figure 3.11. MPT can also be trained to aid SMP planners for non-holonomic robots.
Planned paths on Random Forest environment using MPT-RRT*.
MPT identifies regions in SE(2) through which a non-holonomic path
exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.12. Execution of trajectory from an MPT aided planner using the Nav2
stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.13. The robot car used for the real world experiment. We used the F1Tenth
platform for our robot system [96] and Navigation 2[93] planning stack
for planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.14. Vertices used by RRT* (left) and MPT-RRT* (right) for the same
start (green) and goal (red) positions in the SE(2) space. By guiding
the sampling around anchor points (gray), the planner can achieve a
shorter path with far fewer samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4.1. VQ-MPT can efficiently split high-dimensional planning spaces into
discrete sets of distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



Figure 4.2. An outline of the model architecture of VQ-MPT. . . . . . . . . . . . . . . . . 49

Figure 4.3. A trajectory planned using VQ-MPT for the 2D robot and the corre-
sponding GMM used for sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.4. Plots of planning time and percentage of paths successfully planned
on in-distribution environments for the 2D, 7D, and 14D robots. . . . 58

Figure 4.5. Sample paths planned by the VQ-MPT planner for different robot
systems 2D, 7D, and 14D robots on in-distribution environments. . . 60

Figure 4.6. Snapshots of a trajectory planning using VQ-MPT for physical panda
robot arm for a given start and goal pose on a shelf environment. . . . 60

Figure 4.7. Plots of planning time and percentage of paths successfully planned
for the 7D and 14D robots on environments different from ones used
for training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.1. An outline of the model architecture of CVQ-MPT. . . . . . . . . . . . . . . . 70

Figure 5.2. The histogram of the objective function, G(q), before and after opti-
mizing for two different dictionary values predicted by VQ-MPT for
the place task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.3. An example of the trajectory planned using CVQ-MPT for the place
task for a given start (green) and goal (red) configurations. The
constraint is to hold the can upright during the motion. . . . . . . . . . . . 73

Figure 5.4. Snapshots of the trajectory planned using CVQ-MPT for the Panda
Arm completing the multi-sequence task (from left to right). CVQ-
MPT can plan trajectories for various types of planning constraints in
complex environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.5. Sequences of the trajectory planned using CVQ-MPT for the Panda
Arm on the physical robot and the corresponding point cloud used to
represent the environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 6.1. CCGP-MP is a motion planning algorithm for robotic systems under
motion and sensor uncertainty which uses a Gaussian Process to model
the variations in distance-to-collision. The model verifies user-defined
chance constraints for trajectory segments in sampling-based planners. 82

Figure 6.2. Left: An example of a trajectory in X. It is parameterized using s
where s = 0 and s = 1 represent the start and end position. Right: The
corresponding mean and standard deviation of distance-to-collision
(d∗), given by (6.2), for points along the trajectory (s). . . . . . . . . . . . . 86

x



Figure 6.3. Comparing the success rate and path length of the planned paths for
the Linear model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 6.4. The top row shows the plans generated for different start and goal
pairs for the Linear model, while the bottom row does the same for
the Dubins Car model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 6.5. Two examples of path roll-outs for RRT* and CCGP-MP* for a noisy
Dubins Car model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 6.6. The trajectories generated by RRT* and CCGP-MP* (5%) for a start
and goal pair in a real-world environment and the histogram compares
the minimum distance-to-collision distribution. . . . . . . . . . . . . . . . . . . . 96

Figure 7.1. In this thesis, we have defined a set of words using vector quantization
(Left) and constructed trajectories using this sequence of words (Cen-
ter). Future works could look at how these sentences can be stitched
together to complete complex TAMP problems (Right). . . . . . . . . . . . 102

xi



LIST OF TABLES

Table 2.1. Planning Time of Dynamic MPNet vs. Sampling Resolution . . . . . . . . 17

Table 2.2. Percentage of Planning Problems Successfully Completed . . . . . . . . . . 18

Table 2.3. Average Vehicle Speed of Dynamic MPnet v.s. DWA . . . . . . . . . . . . . . 19

Table 3.1. Network architecture of the Feature Extractor . . . . . . . . . . . . . . . . . . . . 30

Table 3.2. Comparing planning accuracy, and median time and vertices for the
Point Robot Model on unseen environments of the same size as the
training data for Random Forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 3.3. Comparing planning accuracy, and median time and vertices for the
Point Robot Model on unseen environments of the same size as the
training data for Maze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 3.4. Comparing planning accuracy and median time and vertices for Point
Robot on maps of the different sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 3.5. Comparing planning accuracy, and median time and vertices for the
Point Robot Model on real world map. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 3.6. Comparing planning accuracy, and median time and vertices for Dubins
Car Model for the Random Forest Environment. . . . . . . . . . . . . . . . . . . 44

Table 4.1. Model and environment parameters for each robot . . . . . . . . . . . . . . . . 55

Table 4.2. Comparing accuracy and mean planning time and vertices in In-
Distribution environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.3. Comparing accuracy and mean planning time and vertices in Out-of-
Distribution Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 5.1. Place Task and Physical Robot Experiments: accuracy, planning time,
vertices, & path length (l) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 5.2. Multi-sequence task: planning, executing times . . . . . . . . . . . . . . . . . . . 78

Table 6.1. Study of number of obstacles on planning performance . . . . . . . . . . . . . 97

xii



ACKNOWLEDGEMENTS

I want to express my heartfelt gratitude to my advisor, Dr. Michael Yip, for his

support and mentorship, which have guided me throughout my doctoral program. Dr.

Yip’s belief in my potential and the opportunity he provided for me to pursue my Ph.D.

have been pivotal milestones in my academic journey. His guidance has shaped my

research and instilled in me a profound appreciation for the broader impact of the

problems I am addressing, emphasizing the importance of focusing on real-world

applications and societal relevance.

I also would like to sincerely thank Dr. Ahmed Qureshi for introducing me to the

fascinating realm of motion planning. His expertise and guidance have been invaluable

throughout my journey in this field, as he shared his profound technical knowledge and

provided constructive feedback at various critical junctures of this work. Beyond his role

as a mentor, Dr. Qureshi has proven to be an exceptional friend, always ready to offer

support and encouragement, making my doctoral endeavor all the more rewarding.

I thank my committee members Dr. Nikolay Atanasov, Dr. Xiaolong Wang, and Dr.

Nuno Vasconcelos, for their support and feedback during the different stages of my

thesis— a special thanks to Dr. Sicun Gao for his feedback on the VQ-MPT work.

This journey wouldn’t have been possible without the support and mentorship of

different people at UCSD. I want to thank Dr. Carlos Nieto-Granda and Dr. Ruffin

White for their guidance and expertise with various robotics software tools and

Christopher D’Ambrosia for helping me to become a better writer. I want to thank the

present and past members of ARCLab, especially - Dr. Fei Lu, Dr. Shan Lin, Nikhil

Shinde, Yuheng Zhi, Jingpei Lu, Elizabeth Peiros, Xiao Liang, Shreya Saha, Dr. Dimitri

Schreiber, Dr. Florian Richter, Dr. Nikhil Das, Uday Kalra, Ankit Bhatia, and Linjun Li

for supporting me throughout my program. Lastly, I want to thank Dr. Henrik

Christensen for his unwavering support and for organizing insightful seminars at UCSD,

which have contributed significantly to my academic and professional growth.

xiii



Chapter 2, in part, is a reprint of material from J. J. Johnson, L. Li, F. Liu, A. H.

Qureshi and M. C. Yip, ”Dynamically Constrained Motion Planning Networks for

Non-Holonomic Robots,” 2020 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 6937-6943, doi: 10.1109/IROS45743.2020.9341283. The

dissertation author is the primary author of this paper.

Chapter 3, in part, is a reprint of material from J. J. Johnson, U. S. Kalra, A.

Bhatia, L. Li, A. H. Qureshi, and M. C. Yip ”Motion Planning Transformers: A Motion

Planning Framework for Mobile Robots,” on arXiv preprint arXiv:2106.02791. The

dissertation author is the primary author of this paper.

Chapter 4, in part, is a reprint of material from J. J. Johnson, A. H. Qureshi, and

M. C. Yip, ”Learning Sampling Dictionaries for Efficient and Generalizable Robot Motion

Planning with Transformers,” in IEEE Robotics and Automation Letters, doi:

10.1109/LRA.2023.3322087. The dissertation author is the primary author of this paper.

Chapter 5, in part, is a reprint of material from J. J. Johnson, A. H. Qureshi, and

M. C. Yip, ”Zero-Shot Constrained Motion Planning Transformers Using Learned

Sampling Dictionaries,” on arXiv preprint arXiv:2309.15272. The dissertation author is

the primary author of this paper.

Chapter 6, in part, is a reprint of material from J. J. Johnson and M. C. Yip,

”Chance-Constrained Motion Planning using Modeled Distance- to-Collision Functions,”

2021 IEEE 17th International Conference on Automation Science and Engineering

(CASE) pp. 1582-1589, doi: 10.1109/CASE49439.2021.9551655. The dissertation author

is the primary author of this paper.

xiv



VITA

2017 Bachelor of Technology in Electronics and Electrical Engineering with a minor
in Computer Science, Indian Institute of Technology - Guwahati.

2019 Masters of Science in Electrical Engineering (Intelligent Systems, Robotics
and Control), University of California San Diego

2023 Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics
and Control), University of California San Diego

PUBLICATIONS

J.J. Johnson, A.H. Qureshi, and M.C. Yip, ”Zero-Shot Constrained Motion Planning
Transformers Using Learned Sampling Dictionaries,” in arXiv preprint arXiv:2309.15272,
2023.

J.J. Johnson, A.H. Qureshi, and M.C. Yip, ”Learning Sampling Dictionaries for
Efficient and Generalizable Robot Motion Planning with Transformers,” in IEEE
Robotics and Automation Letters, doi: 10.1109/LRA.2023.3322087.

N.U. Shinde, J.J. Johnson, S. Herbert, and M.C. Yip, ”Object-centric Representations
for Interactive Online Learning with Non-Parametric Methods.” In 2023 IEEE 19th
International Conference on Automation Science and Engineering (CASE), pp. 1-6. IEEE,
2023.
J.J. Johnson, U.S. Kalra, A.Bhatia, L. Li, A.H. Qureshi, and M.C. Yip, ”Motion
Planning Transformers: A Motion Planning Framework for Mobile Robots,” in arXiv
preprint arXiv:2106.02791, 2022.

J.J. Johnson and M.C. Yip, ”Chance-Constrained Motion Planning using Modeled
Distance-to-Collision Functions,” 2021 IEEE 17th International Conference on
Automation Science and Engineering (CASE), Lyon, France, 2021, pp. 1582-1589, doi:
10.1109/CASE49439.2021.9551655.

J.J. Johnson, L. Li, F. Liu, A.H. Qureshi, and M.C. Yip, ”Dynamically Constrained
Motion Planning Networks for Non-Holonomic Robots,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6937-6943. IEEE, 2020.

A.H. Qureshi, J.J. Johnson,, Y. Qin, B. Boots, and M.C. Yip, ”Composing ensembles of
policies with deep reinforcement learning, in International Conference on Learning
Representations (ICLR), 2020.

xv



ABSTRACT OF THE DISSERTATION

Efficient and Generalizable Motion Planning using Transformers

by

Jacob J. Johnson

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics and Control)

University of California San Diego, 2023

Professor Michael C. Yip, Chair

Robots have played a crucial role in industries for decades, streamlining

manufacturing processes and performing tasks with precision. However, with the

availability of more affordable components and the rapid advancement of AI techniques,

there is a growing interest in integrating robots into everyday settings. The challenge lies

in the decades-old algorithms used in industrial robots often assume highly structured and

controlled environments. These algorithms struggle to adapt to unstructured

environments commonly found in everyday life, where obstacles and uncertainties abound.

As a result, there is a need for newer, more adaptable algorithms to make robots a

practical and safe part of our daily lives.

xvi



Motion planning, an age-old challenge in robotics, revolves around the task of

determining a safe and efficient path for a robot to navigate an environment while evading

obstacles. This problem is central in various robotics applications, from developing

autonomous vehicles and healthcare robots to household robotic assistants. While existing

methods have proven effective in generating trajectories and paths for pre-defined,

structured environments, they face significant challenges when dealing with robots

boasting higher degrees of freedom and adapting to changing environments. In these

cases, the generated trajectories often necessitate further refinement before a robot can

successfully execute them. In response to these limitations, there has been a recent surge

of interest in using learning-based methods, which can address the shortcomings of

traditional planners and enhance the generalizability and efficiency of robot motion

planning algorithms.

This thesis introduces efficient planning algorithms that exhibit remarkable

adaptability to various environments. Leveraging techniques from large language models,

specifically the versatile Transformer architecture, we demonstrate how our planning

algorithms can rapidly generate efficient trajectories while generalizing across diverse

environmental contexts. Notably, we showcase the capacity of our learned models to

tackle complex motion planning challenges, such as constraint planning, without the need

for additional training data. By introducing a novel constraint function to encode the

variabilities inherent in planning environments, we also lay the foundation for capturing

and addressing different sources of uncertainties in the planning process. Looking ahead,

we anticipate that our approaches will not only be readily accessible but also broadly

beneficial, facilitating the seamless transfer of learned motion planners into a myriad of

robotic-environment interaction scenarios and ushering in new possibilities for innovation

and practical application in robotics.

xvii



Chapter 1

Introduction

Robots have long been harnessed to perform burdensome tasks, ranging from

industrial welding [100] and warehouse management to ambitious endeavors like space

construction. With the continuous advancement and increased affordability of robotics

hardware, these systems are now more commonplace. They are being deployed to tackle

complex challenges, including rescue operations [99], household robotic manipulation

[123, 103, 52], and surgical automation. However, the algorithms developed for robotics in

the past, primarily tailored for structured environments, often prove ineffective when

confronted with the complexities of unstructured real-world settings. In light of these

limitations, this thesis centers on introducing innovative motion planning algorithms that

prioritize efficiency and generalizability, paving the way for more effective and adaptable

robotic solutions in the modern world.

Motion planning is the task of finding a trajectory for a robot through an

environment while avoiding collisions. The algorithm can also find a trajectory with

additional constraints, such as the shortest or safest path. In the past few decades, a

profusion of work has focused on the motion planning problem for an assortment of tasks

such as autonomous vehicles [117, 61, 82], constrained robotic manipulation [123, 103],

and surgical robot automation [84]. Motion planners can be broadly classified into three

types - Sampling-based Motion Planners (SMP) - involves constructing trees or graphs in

1



the planning space by randomly sampling points [80, 68], Search-based Motion Planners -

discretizes the space into grids and uses a heuristic function to find a path [49] or

Optimization-based - formulates the planning problem into an optimization problem to

find a trajectory [112, 34]. The most effective type that can adapt to a wide range of

planning problems is SMP. Although these methods provide theoretical guarantees and

effectively find a path, they do not scale well to problems with larger planning spaces and

diverse environments. This is a frequent problem for robots in large warehouses and

household robots.

Learning-based methods have emerged as a promising solution to the challenges of

SMPs [42, 76, 105, 142, 128]. These methods leverage prior planned paths and sensor

data to enhance planning efficiency. Employing a combination of network models such as

convolutional neural networks, Graph Networks, and multi-layer perceptrons, these

methods can accurately predict optimal sample points for constructing planning trees

within the SMP framework, resulting in significantly reduced planning times and the

ability to generalize to robots with higher degrees of freedom [106, 62, 76]. Nevertheless,

the drawback lies in their reliance on environment-specific datasets for training. Even

when attempting to extend their capabilities to larger and more complex environments,

they demand copious amounts of trajectory data. This underscores the ongoing quest for

automation, emphasizing the necessity for planning algorithms that can scale effectively

while efficiently managing planning problem complexity and computation time.

Reducing the search space has proven to be a valuable approach for more efficient

motion planning (See Fig. 1.1. This principle is effectively applied in works such as

Informed-RRT* [44] and Batch Informed-RRT* [45], where hyper ellipsoids are employed

to limit the exploration area. However, as we venture into higher-dimensional spaces,

these parametric functions become increasingly inefficient. We propose a novel approach

that leverages techniques from language models, specifically Transformer models, to

identify and define sampling regions. There is a strong correlation between motion

2



Figure 1.1. Given a planning problem (left), we propose learning-based approaches to
reduce the search space for sampling-based planners. We identify regions where a valid
path might exist (center). Given the proposed region, a sampling-based planner finds a
collision-free path (right).

planning and natural language processing tasks; both require a good understanding of

global dependencies. A sentence’s syntactic and semantic structure is only inferred by

reading the entire sentence. The ability of transformers to learn these long-horizon

dependencies has made them the powerhouse of natural language processing [135].

Similarly, the orientation of far-away obstacles influences the construction of a local

plan. Building on the success of Transformer models, we use these models for making

these long-horizon correlations for path-planning problems. This innovative utilization of

language models can revolutionize motion planning, making it more adaptable and

effective in complex, high-dimensional spaces. In this dissertation, we build towards such

planners:

1. In Chapter 2, we introduce simple ideas for improving traditional learning-based

planning methods such as Motion Planning Networks (MPNet) [105]. We propose

modifications to the training and planning networks that make it possible for

real-time planning while improving the data efficiency of training and trained

models’ generalizability.

2. In Chapter 3, we introduce Motion Planning Transformers (MPT), a

3



transformer-based approach, which applies Vision Transformers [32] to SE(2)

planning problems. The model learns to restrict search spaces for simple 2D and

non-holonomic robotic systems by learning to discern regions with a valid path from

prior data.

3. In Chapter 4, we introduce Vector Quantized-Motion Planning Transformers

(VQ-MPT) that overcome the key generalization and scaling drawbacks of MPT.

VQ-MPT consists of two stages. Stage 1 is a Vector Quantized-Variational

AutoEncoder model that learns to represent the planning space using a finite

number of sampling distributions, and stage 2 is an Auto-Regressive model that

constructs a sampling region for SMPs by selecting from the learned sampling

distribution sets. By splitting large planning spaces into discrete sets and selectively

choosing the sampling regions, our planner pairs well with out-of-the-box SMPs,

generating near-optimal paths faster than without VQ-MPT’s aid.

4. In Chapter 5, we show how our VQ-MPT can address complex challenges like

constraint planning using previously trained models. We also update the prediction

sampling regions closer to the constraint manifold using optimization techniques.

5. Finally, in Chapter 6, we lay the foundation to capture the variations in the

distance-to-collision measurements caused by the uncertainty in state estimation

techniques using a Gaussian Process (GP) model. The GP model generates paths

that reduce collisions and meet optimality criteria under motion and state

uncertainties.

1.1 Problem Definition

Consider the planning space defined by X ∈ Rn. We define a subspace Xfree ⊂ X ,

such that all states in Xfree do not collide with any obstacle in the environment and are

4



considered valid configuration. The objective of the motion planner is to generate a

sequence of states: Q = {q1, q2, . . . , qns} for a given start state (q1) and a goal region

(Xgoal) such that qi ∈ Xfree,∀i ∈ {1, 2, . . . , ns}, the edge connecting qi and qi+1 is also in

Xfree, i.e., (1− α)qi + αqi+1 ∈ Xfree,∀α ∈ [0, 1], and qns ∈ Xgoal. The sequence of states is

often referred to as a trajectory or path. Additional objectives such as minimizing path

length given by the expression:

l = min
n−1∑
i=1

∥qi+1 − qi∥ (1.1)

can also be added to the planning problem.

1.2 Acknowledgement

Chapter 1, in part, is a reprint of the following material:

• J. J. Johnson, U. S. Kalra, A. Bhatia, L. Li, A. H. Qureshi, and M. C. Yip ”Motion

Planning Transformers: A Motion Planning Framework for Mobile Robots,” on

arXiv preprint arXiv:2106.02791.

• J. J. Johnson, A. H. Qureshi, and M. C. Yip, ”Learning Sampling Dictionaries for

Efficient and Generalizable Robot Motion Planning with Transformers,” in IEEE

Robotics and Automation Letters, doi: 10.1109/LRA.2023.3322087.

• J. J. Johnson, A. H. Qureshi, and M. C. Yip, ”Zero-Shot Constrained Motion

Planning Transformers Using Learned Sampling Dictionaries,” on arXiv preprint

arXiv:2309.15272.

The dissertation author is the primary author of these papers.

5



Chapter 2

Learning-based Planners

In the robotics community, learning-based methods to solve planning problems have

been proposed to offer speed improvements and typically revolve around using

convolution neural networks (CNN) and multi-layer perceptrons (MLP) to predict where

samples should be generated to construct trees [106, 62]. Other works employ different

forms of latent representation, such as gird cells [3] and Sparse Graphical Memory (SGM)

[38] to generate a plan.

Recently, reinforcement learning-based methods that use neural networks have gained

traction in solving motion planning problems [144, 41, 23] for non-holonomic systems.

These methods often require careful fine-tuning of reward functions and significant

computing resources to search for proper hyperparameters. Another class of motion

planning algorithms, called neural motion planners, have emerged that learns to imitate

an oracle planner and exhibits the virtues of an ideal planner during online execution

[105, 105, 107]. Motion Planning Networks (MPNet) [105] is one of the first and most

prominent neural motion planning methods, showing orders of magnitude performance

computational speed compared to previous offline methods while producing near-optimal

solutions. However, MPNet, along with its extensions [65], only considers

collision-avoidance constraints and finds a viable path in the robot’s configuration spaces,

i.e., without considering the system’s kinematic limitations. Furthermore, these methods

6



also require significant training data to achieve generalizability and, in their current

formulation, have yet to be scaled to real-time planning scenarios involving navigating

large environments. Thus, none of these methods single-handedly has the features of an

ideal planner, i.e., find near-optimal/optimal paths with high, almost real-time,

computational speed and exhibit completeness guarantees.

This chapter presents Dynamic Motion Planning Networks (Dynamic MPNet), which

extends MPNet to plan under a broad class of non-holonomic constraints in real time.

Dynamic MPNet is a deep neural network-based iterative planning algorithm. It takes the

sub-goals between given start and goal states from a global C-space planner. It finds a

kinematically feasible path between them with high computational speed and

completeness guarantees. Real-time planning is made possible by planning during the

execution of the previous plan, similar to anytime planning systems. We evaluate our

framework on Dubin’s car dynamical model in challenging navigation tasks where

state-of-the-art classical methods fail, including simulation and real-robot experiments.

2.1 Dynamic Motion Planning Networks

Dynamic MPNet uses supervised learning to train neural networks that generate

near-optimal paths through an environment given a start and goal position. The networks

are trained with expert trajectories in randomized, diverse environments so that unseen

environments can be planned in with near-expert level cost and with substantially less

sampling than classical sample-based planners.

Dynamic MPNet consists of 3 core modules, a transformer that centers the local

costmap with respect to the robot, an encoder network that takes the ego-centered

obstacle map and converts it into a latent vector, and a planner network that takes the

latent encoding, the current or predicted pose, and goal pose and returns the next feasible

step. In the following section, we will go over the environment encoding, network training

7



Figure 2.1. The trajectory the robot followed for a given start (green arrow) and goal (red
arrow) position using, Dynamic MPNet (red), and Dynamic Windows Approach (black)
as local planners respectively. Since the DWA planner has no kinematic constraints, it is
difficult for the planner to generate paths with U-turns, while since the path generated
from Dynamic MPNet encodes kinematic constraints, it is able to generate a successful
path towards the goal.

and planning pipeline in more detail.

2.1.1 Environment Encoding

Most non-holonomic systems reside in environments that can vary significantly in

size. Encoding an environment where the map could be arbitrarily large in size is

infeasible. This is where a hierarchical approach to the navigation is useful. Using the

global plan as a guide, kinematically feasible paths are generated for a local region using

Dynamic MPNet. Fig. 2.2 is an example for the local costmap passed into the network

planner. This costmap is always egocentric to the robot (see Fig. 2.2). Doing this reduces

the dimensionality of the input space, as the output of the network is only a function of

the current robot orientation, relative goal position, and costmap. It could also be viewed

8



Figure 2.2. The area of the costmap passed to MPNet for planning. The local costmap
used for planning is always egocentric to the robot. The blue region indicates the obstacles
inflated by the robot footprint.

Figure 2.3. The graph describes the flow of inputs and outputs for the planner. xt,
xt+1 and xg represents the current, next and target positions respectively. xg is the

sub-goal position from the global plan. Ct and, Ĉt is the costmap before and after padding
respectively. The T block centers the padded costmap, Ĉt, with respect to the robot
position xt. E block consists of convolution networks that encode the costmap into latent
space vectors. The latent space representation of the costmap, the current robot and goal
position are passed to the Planner node to generate the new target point.

9



as a normalization step, to disentangle the dependence of training trajectory and world

map with the sampled point. It thus helps the model to generalize to the environment

better with fewer training samples.

2.1.2 Training

The planner is trained with dynamically feasible trajectories such that, during

prediction, it will tend to predict dynamically feasible intermediate poses. Given an

expert trajectory {s0, s1, . . . , sT} that satisfies the dynamical constraints of the robot for

the planning problem, the network uses the current position (st), goal position (sT ) and

obstacle representation (ĉt) to predict the next state (ŝt+1). These four elements form a

training tuple (st, sT , ĉt, st+1). The encoding and planning networks are trained by

reducing the mean-squared error between the predicted state ŝt+1 and the actual state

from the expert planner st+1 in an end-to-end fashion using gradient descent. The loss

function for N such trajectories is given by:

L(θ) =
1

N T

N∑
j=1

T−1∑
t=1

||sj,t − ŝj,t||2 (2.1)

where θ represents the combined parameters of both the encoder and planner network.

2.1.3 Planning

The network starts planning using the current position, sub-goal position from the

global plan, and the local costmap to generate a sequence of kinematically feasible states.

For each step, if the predicted state is kinematically feasible and is collision-free, it is used

as the current position for the next prediction. Fig. 2.3 shows the complete pipeline.

Then, for each sampled step during the planning, an egocentric costmap encoding at this

immediate (non-initial) location is required to generate the next step. This costmap is

achieved by translating the initial costmap. It is necessary to pad the obstacle map such

that no loss in obstacle information occurs after transforming the map to an egocentric

10



pose of an intermediate step of a motion plan. Given a grid of size l × l, we pad it to

make a new grid of size 2l × 2l. This way, for the planner, the world’s perception remains

the same, since all the padded spaces are still obstacles.

Algorithm 1 outlines the Dynamic MPNet planner, and Algorithm 2 outlines the

modified path generation heuristic. The functionality of the different function calls are

defined as follows:

Padding

The Pad function takes a costmap cobs ∈ Rl×l, and returns a padded costmap

ĉtemp ∈ R2l×2l. Padded values are assumed to be obstacle regions to prevent the planner to

find paths that would navigate this non-physical space. See Fig. 2.3 for an example.

Steering

The function Steer (x1, x2) checks if we can generate a sequence of kinematically

feasible states without collision from x1 to x2 within a fixed time. It returns a feasible

path if it exists otherwise, an empty list. For non-holonomic systems, a differential

equation solver or parameterized curves along with a collision checker can be used to

implement this function.

Network

The function Net represents both the encoder and planner neural network combined.

It generates the next possible point on the path, given the current and goal position of

the robot and the modified costmap. The flow of inputs is described in Fig. 2.3.

Add

The function Add (τ, x1) appends the path τ with the node x1.

11



Transform

Given a point xi and a padded costmap ĉ, the function Transform (ĉ, xi) translates

the costmap in such a way that the costmap is egocentric to the position xi.

Replanning

Only if, for a given start and goal location, the neural planner is not able to provide

a feasible path under a suitable amount of time, the function will run classical

sampling-based methods until a path is found, specifically to ensure probabilistic

completeness.

Algorithm 1: τ ←DynamicMPNet (xstart, xgoal, cobs)

1 ĉ← Pad(cobs);
2 τ ← NeuralPlanner(xstart, xgoal, ĉ);
3 if Empty(τ) then
4 τ ←Replanner(xstart, xgoal);
5 end
6 return τ

Algorithm 2: τ ←NeuralPlanner (xfrom, xto, ĉ)

1 τ ← {xfrom};
2 for i = 0 to N do
3 xtemp ← Net(xfrom, xgoal, ĉ);
4 τtemp ← Steer(xfrom, xtemp);
5 if NotEmpty(τtemp) then
6 τ ←Add(τ, τtemp);
7 τgoal ←Steer(xtemp, xgoal);
8 if NotEmpty(τgoal) then
9 τ ←Add(τ, τtemp);

10 return τ

11 end
12 xfrom ← xtemp;
13 ĉ←Transform(ĉ, xfrom);

14 end

15 end
16 return ∅

12



2.1.4 Experiments

In this section, we describe the data collection, model architecture and experiment

setup used in this paper. The neural networks model was defined and trained using the

PyTorch[97] python library, and the trained model was loaded into C++ using the torch

C++ API. To test the viability of our framework, we integrated the Dynamic MPNet

planner to the navigation stack 1 provided by the ROS community and compared it with

standard local planners used by the community. We used the default global planner from

the ROS navigation stack and the mit-racecar 2 model was used as the robot for the

simulations.3

2.1.5 Data Collection

For training the model, we collected expert trajectories using the RRT*[78] algorithm

using the Open Source Motion Planning Library[124]. For the grid map (Fig. 2.4)

environment, we trained the model on 10,000 RRT* trajectories by randomly sampling a

start and goal location for a fixed time, while for the real-world environment, we

generated 12,000 trajectories. To further augment our data set, we chose smaller sections

of a path and added it to the training data. Thus if we have n points on a path, then we

can choose any 2 points and create O(n
2

4
) trajectories. The data collection was

accelerated by encapsulating the sampling code in a docker container and launching

multiple containers concurrently with different seed values.

2.1.6 Model Architecture

A convolutional neural network model was used for environment encoding. Prior

works in robotics have also used CNN’s to process the cost map for planning [4] and path

prediction [5]. The input to the encoder was an l × l dimension cost map. The CNN

1https://github.com/ros-planning/navigation
2https://github.com/mit-racecar/racecar simulator
3https://youtu.be/1b3i1SSiUms

13

https://github.com/ros-planning/navigation
https://github.com/mit-racecar/racecar_simulator
https://youtu.be/1b3i1SSiUms


Figure 2.4. For a given start (green arrow) and goal (orange arrow) position, the plan
generated by the Dynamic MPNet (red path) for a given sub-goal (red arrow). The black
trajectory is the global plan. The colored region represents the local costmap used by the
Dynamic MPNet.

consisted of 3 convolutional layers, with kernel size [5, 5], [3, 3], and [3, 3], and output

channels of 8,16 and 32, respectively. A maxpool and Parametric Rectified Linear

Unit[130] (PReLU) layer follow the first two convolutional layers. The output of the final

convolutional layer is passed through a PReLU layer to generate the output of the

encoder.

The planner was a fully connected neural network with six layers. A PReLU[130] and

a Dropout[122] layer follow the first four hidden layers. Dropout is used not only during

training to prevent overfitting[122] but also during prediction to introduce stochasticity

that tends to make motion planning networks more robust[105]. A PReLU follows the

penultimate hidden layer and the output of the final hidden layer is passed through a

tanh nonlinearity. Both networks were trained in an end-to-end fashion.

2.1.7 Kinematic Model of a Car-Like Robot and Dubins curve

In this paper we consider non-holonomic kinematics following the Dubins vehicle

model[36] though in practice the constraint can be of another variety. The Dubins model

is given by:

ṡ(t) =


ẋ(t)

ẏ(t)

θ̇(t)

 =


vs cos(ϕ)

vs sin(ϕ)

vs
d

tanϕ

 (2.2)

14



where vs is the speed of the car, ϕ is the steering angle and d the distance between the

rear and front axle. We use Dubins curves as a steering function for Dynamic MPNet.

Given the state variables for a Dubins vehicle, the shortest path is a unique path among

6-basis trajectories[36]. Each of these trajectories is represented by a sequence of left,

right and straight turns. To steer between given two states, the shortest among the

6-trajectories are used.

2.1.8 Trajectory Tracking

Given a sparsely sampled path produced by Dynamic MPNet, a trajectory tracking

problem is then presented during runtime to move the vehicle between the sampled points.

This is necessary to ensure that due to unmodelled effects and under noise and

disturbances that the vehicle follows, to the best of its capability, the solution to a

dynamically feasible path provided by Dynamic MPNet.

We formulate the trajectory tracking problem as a constrained discrete optimization

problem with a finite horizon. In order to follow the trajectory generated from MPNet,

we sample the path nodes adaptively to proper sparsity with similar distances and apply a

Nonlinear Model Predictive Control (NMPC, [48]) with the following objective function:

minimize
N∑
t=0

ws ∥s(t)− ŝ(t)∥+ wu ∥ϕ(t)∥) + wa ∥∆ϕ(t)∥

subject to ∆s(t) =


vs cos(ϕ)

vs sin(ϕ)

vs
d

tanϕ

∆t

(2.3)

where ∆t and ∆s are time step and state difference respectively, ws is state loss weight,

wu, wa are weights for control loss, ŝ are sampled path nodes from Dynamic MPNet, vs is

preset as constant velocity and N is the prediction horizon. In each control cycle, the

control output is computed by solving the problem with Interior Point Optimizer (Ipopt,

15



[10, 138]) implemented with algorithmic differentiation library CppAD [7] and the first

action is taken from solution.

The prediction horizon was determined using path curvature and maximum velocity

and was in sync with the control frequency to reach the targeted state. The wa term

contributes to decreasing the vibration due to maneuvering, which guarantees the

smoothness of the trajectory.

2.2 Results

We evaluate the learned model in simulation on seen and unseen environments, and a

real-world indoor environment using a Dubins car robot.The Dubins car is set up similar

to the MIT Racecar. The local planners available for car-like robots in the

ROS-navigation stack is the Dynamic-Window Approach (DWA) planner[43] and

Timed-Elastic-Band (TEB)[118]. Although the TEB is the only ROS local planner for

car-like robots, the optimization problem was not able to generate paths for Dubins car.

As a result we compared our algorithm with DWA. We also implemented an Anytime

RRT* local planner by generating the path from RRT* rather than from the Neural

Planner. We compare the robot’s accuracy and average speed over a batch of planning

problems. Each planning problem was verified to have a solution using an offline RRT*

planner. For each test case, the problem is considered solved if the robot center is able to

achieve the target position within a radius of 0.2m (about half the length of the robot)

and target orientation within 15◦. The same threshold is used for all local planners. Each

planner runs at 5Hz, giving it 200 ms to find and optimize a feasible plan. In the

following sections we report our results from our experiments.

To evaluate the sampling speed of Dynamic MPNet on the trained simulated

environment in terms of execution time and path length, we measured the time taken to

sample n points using Dynamic MPNet is given in Table 2.1. These times indicate that

16



Figure 2.5. The Dynamic MPNet generating trajectories for an untrained map for two
different start and end goal on a synthetic map. The planner can generate trajectories
that comply with the kinematic constraints of the robot, thus achieving higher accuracy
compared to DWA.

the Dynamic MPNet planner is able to generate a path within 20Hz if set to high

resolution of 50 points per local path generated. Thus Dynamic MPNet is able to

generate kinematically reachable points in real-time.

Table 2.1. Planning Time of Dynamic MPNet vs. Sampling Resolution

Number of samples 5 10 25 50
Compute Time (ms) 11.33 15.29 22.07 44.67

The Dynamic MPNet was trained on a synthetic grid world environment. One of the

paths generated by the trained planner is shown in Fig. 2.4. To evaluate the

generalizability of the planner, we created a synthetic map that is different from the

training map, but shares a lot of common obstacle features such as 90◦ turns from the

original map. Paths generated on this environment is shown in Fig. 2.5. Table 2.2

compares the percentage of planning problems solved with standard planners. Dynamic

MPNet is able to plan 34% more planning problems compared to DWA on the unseen

17



Table 2.2. Percentage of Planning Problems Successfully Completed

Environment DWA Anytime RRT* Dynamic MPNet
Unseen map 47% 74% 80%

Real world map 44% 58% 76%

Figure 2.6. The RC robot used for this work. On board LIDAR (Hokuyo UTM-30LX-
EW) and IMU (RealSense D435i) sensors were used for localization.

map. Hence we were able to achieve generalizabilty with much fewer training paths.

In addition to the simulation experiments, real-world experiments with an RC

Dubins Car (see Fig. 2.6) in one of our mapped office buildings were used. Fig. 2.8

compares one of the trajectories planned by DWA and Dynamic MPNet for the same

start and goal point. The red path given by Dynamic MPNet is 9.43m long while the

DWA path is 10.85m long. Since Dynamic MPNet is trained on RRT* paths, the local

paths generated would be near optimal. In Fig. 2.7 we compare the distance of each

trajectory and time take to complete the planning problems solved by both DWA and

Dynamic MPNet for the unknown and real world maps. A linear regression model was fit

to both the models to estimate the average speed of the robot. Table 2.3 summarizes the

results. Dynamic MPNet is able to solve planning problems faster compared to DWA.

In Fig. 2.1 we can observe one of the biggest drawbacks of the DWA planner which is

that it does not take the kinematics constraint of the robot into consideration for

generating a plan. Since the Dynamic MPNet generates kinodynamically feasible paths, it

18



Table 2.3. Average Vehicle Speed of Dynamic MPnet v.s. DWA

Environment DWA Speed (m/s) Dynamic MPNet Speed (m/s)
Unseen map 0.211 ± 0.016 0.340 ± 0.006

Real world map 0.263 ± 0.014 0.336 ± 0.003

Figure 2.7. Total time and total distance taken by Dynamic MPNet and DWA planners
on the same set of planning problems for an (a) unknown map (b) real world map. A
linear regression model was fit to each dataset to evaluate the average speed of the car for
the local planners. The shaded region represents standard error in the estimates. Dynamic
MPnet not only moves faster and more consistently than DWA, it solves problems that
require longer planning distances as well.

19



Figure 2.8. The trajectory the robot followed for a given start (green arrow) and goal
(red arrow) position for DWA (black) and Dynamic MPNet (red). The path Dynamic
MPNet takes is much closer to the obstacle compared to DWA and hence shorter.

is able to plan for the given goal position and orientation. As a result, MPNet is able to

solve a larger percentage of planning problems compared to standard planners for both

simulated and real world maps.

2.3 Discussion

In this chapter, we looked at some of the recent learning-based planners. We

introduced Dynamic Motion Planning Networks, a neural motion planner to generate

paths for non-holonomic robots successfully, and reduced data for training the model

using ego-centric maps. We achieved this by introducing a new framework to facilitate

real-time planning for non-holonomic robots. Compared to traditional sampling-based

methods, Dynamic MPNet can achieve faster average speeds with higher accuracy.

While Dynamic MPNet exhibits the advantage of requiring significantly fewer data

samples for training, its limitations become apparent when faced with the complexity of

real-world environments. This shortcoming is partially due to its dependence on a global

20



planner to provide a rough trajectory for the local planner to follow. To address these

issues and pave the way for a more versatile and efficient planner, we explored techniques

from natural language processing. In the following chapters, we integrate such methods

into the planning framework.

2.4 Acknowledgement

Chapter 2, in part, is a reprint of material from J. J. Johnson, L. Li, F. Liu, A. H.

Qureshi and M. C. Yip, ”Dynamically Constrained Motion Planning Networks for

Non-Holonomic Robots,” 2020 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 6937-6943, doi: 10.1109/IROS45743.2020.9341283. The

dissertation author is the primary author of this paper.

21



Chapter 3

Planning Using Transformers

Transformers have become the powerhouse of natural language processing and

recently found use in computer vision tasks. Their effective use of attention can be used

in other contexts as well, and in this chapter, we introduce a transformer-based approach

for efficiently solving complex motion planning problems. There is a strong correlation

between motion planning and language translation tasks; both require a good

understanding of global dependencies. A sentence’s syntactic and semantic structure is

only inferred by reading the entire sentence. Similarly, the orientation of far-away

obstacles influences the construction of a local plan. The ability of transformers to learn

these long-horizon dependencies has made them the powerhouse of natural language

processing [134]. Building on this success, we use transformer models for making these

long-horizon correlations for planning problems.

In this chapter, we introduce Motion Planning Transformer (MPT), a

transformer-based model to reduce search space for planning algorithms. Traditional

neural network-based motion planning uses convolutional networks to encode the planning

space, but these methods are limited to fixed map sizes, which is often not realistic in the

real world. Our approach first identifies regions on the map using transformers to provide

attention to map areas likely to include the best path and then applies traditional

planners to generate the final collision-free path. We validate our method on various

22



randomly generated environments with different map sizes, demonstrating a reduction in

planning complexity and achieving comparable accuracy to traditional planners.

3.1 Related Works

The most relevant work to our transformers-based region proposal network for

motion planning is perhaps the guided sampling-based motion planning methods. They

analytically or through learned heuristics determine a subset in robot space that probably

contains a path solution. For instance, [109, 127] employ Artificial Potential Fields (APF)

within sampling-based methods such as RRT* [66] and Bidirectional RRT* [108] to guide

a subset of random samples towards promising regions that possibly contain an optimal

path solution. In contrast, Informed-RRT* (IRRT*) [44] depends on an initial path from

an RRT* algorithm to compute an ellipsoidal region probably containing an optimal path

solution. However, in most planning problems, finding an initial path solution is itself

challenging. Similarly, Batch Informed Trees (BIT*) [45] begins from an elliptical region

formed by a straight line path, ignoring all obstacles and incrementally expanding it until

an initial path solution is found. Once an initial path is determined, it is further

optimized by adapting the precomputed ellipsoid and generating new samples within that

space. Despite all advancements, these methods only consider geometric planning, i.e.,

path planning under collision-avoidance constraints. They are yet to be evaluated in

practical problems with complex constraints, such as kinodynamic or non-holonomic

constraints for autonomous car navigation tasks.

Many have also used learning-based methods to reduce search spaces. [137] used the

REINFORCE algorithm to guide the underlying SMP planner on a discretized workspace,

others use a learned value function to guide the graph search [24, 20], while [76] learned a

generative model to sample points along bottleneck regions. Similarly, Value Iteration

Networks (VIN) [128] also discretizes the space and learns a value map to guide path

23



planning. Universal Planning Networks (UPN) [121] extends VIN to continuous control

spaces. [18] proposed one of the few works that use transformers to learn a value function.

Other works employ latent representation of state spaces to generate a plan [3, 38, 55].

These methods are often difficult to train and interpret, and many of them are yet to be

evaluated in real-world navigation tasks.

Although there exist random sampling-based approaches such as RRT* [66, 2] and

SST [85] that explore the robot state space and satisfy advance constraints, they suffer

from the curse of dimensionality and take a considerable computational time in cluttered

spaces. Neural Motion Planning [105, 54] has recently emerged as a promising tool for

solving a wide range of planning problems under various task constraints, ranging from

non-holonomic [62, 83] to advanced manifold kinematic constraints [102], with high

computational speed. These methods learn sampling distributions from expert

demonstrations and, on execution, generate samples for an underlying planner, forming a

subset that potentially contains a path solution. However, these approaches assume a

fixed-size input environment map and often require redefining network architectures and

retraining for different map sizes. However, recent developments in deep learning,

primarily through Transformers [32, 90], have provided us with ways to relax such

assumptions. Our proposed approach leverages these developments and introduces a

region proposal framework that can work with variable map sizes and enhances

underlying motion planners to solve complex problems in cluttered environments.

3.2 Motion Planning Transformers

Given a start (xs) and goal (xg) state, the objective is to propose a sequence of states

xi ∈ X for i ∈ {0, 1, . . . n} such that x0 = xs, xn ∈ Xgoal and the trajectories joining these

states should be both kinematically feasible and collision free. Here, X represents the

robot state space and Xg ≜ {x : ∥x− xg∥ ≤ ϵ, x ∈ X} for a user defined threshold (ϵ).

24



Figure 3.1. Overview of MPT Module for planning in R2. (Start from the top left
and move clockwise) The input map and the start (green) and goal (red) encoded map
are concatenated and passed as inputs to the model. The Fully Convolution Network
(FCN) passes a sliding window of size p× p over the input and encodes each patch into
latent vectors of dimension d. After reshaping, fixed positional encodings are added to the
latent vectors to inject spatial location. The transformer module uses the modified latent
representation to identify patches through which a path might exist. This information is
encoded into a latent vector of size d, which a classifier uses to provide the probability
that a path might pass through the patch. The patches with a probability greater than
0.5 are used to create the mask for the map. The light green shading highlights the flow
of information for a single patch from the input to the output of the model.

The set of motion planning problems we will focus on in this paper is 2D navigation hence

X ∈ {R2, SE(2)}. MPT proposes promising regions in X where the underlying planners

can search for path solutions. In the following sections, we describe our method in detail.

The MPT module is a region proposal network that uses a transformer network to

identify regions of interest. An overview of the model is shown in Fig. 3.1. The input to

the model is a representation of the planning scene and an encoding of the start and goal

points. The planning scene is represented using an occupancy matrix, mc ∈ RH×W , where

an element with 1 indicates an occupied space and 0 denotes free space. In some

navigation problems, these representations are also called costmap and have additional

cost terms associated with safety and robot constraints. The start-goal encoding of the

planning problem is formed by highlighting patches of size p× p on a tensor of size

25



H ×W with values -1 and 1 for the start and goal points respectively. For SE(2) space,

we add two additional matrices to represent the robot orientation which is represented

using sine and cosine values, respectively. These matrices are concatenated to form a

tensor m and passed to the feature extractor.

3.2.1 Feature Extractor:

The feature extractor is a Fully Convolution Network (FCN) that encodes the

environment and the given planning problem into a latent space. As shown in prior works

[32, 114], the feature extractor reduces the dimensionality of the input space by using a

series of convolution, ReLU, and MaxPool layers. The FCN passes a sliding window of

size p× p× i over m to generate an output of size Hl ×Wl × d, where Hl and Wl is

determined by the size of the costmap and the FCN, and d is the latent dimension of the

transformer encoder. i is 2 for the R2 space and 4 for the SE(2) space. The patch size p

defines the size of local structures that the model encodes into the latent vector and the

smallest area the model can mask. Larger patch sizes will have a lower resolution of

masking; thus, the resulting planner would perform similarly to traditional planners.

The output of the FCN is reshaped row-wise to size (Hl ·Wl)× d and fed to the

position encoder. Hence each latent vector at index (iF , jF ) is mapped to the row

iF ∗Wl + jF where iF ∈ {0, 1, . . . , Hl − 1} and jF ∈ {0, 1, . . . ,Wl − 1}. Each row vector of

this matrix corresponds to a p× p patch that the sliding window moves over and is

referenced by an anchor point similar to Faster R-CNN [114]. We choose the 2D

coordinate corresponding to the center pixel of the patch as the anchor point.

3.2.2 Position Encoding:

Transformer and convolutional models are agnostic to the spatial location of their

inputs [32]. A common solution is to add learned or fixed vectors to encode the position

of each input [46]. We used fixed vectors to encode the position and used the following for

26



testing,

PE(j, 2i) = sin

(
j

100002i/d

)
(3.1)

PE(j, 2i + 1) = cos

(
j

10000(2i+1)/d

)
(3.2)

j ∈ {0, 1, . . . , Hl − 1, . . . iF ∗Wl + jF , . . . , Hl ∗Wl − 1} , and i ∈ {0, 1, 2 . . . , d− 1} similar

to [135]. The maximum value j could take was set at H2
max − 1. For maps larger than the

training data, we observed that models trained using the position encoding in Eqn. 3.1

and 3.2 created a bias that prevented MPT from selecting regions of the state space

outside the training map size. One way to resolve this overfitting is to train on maps of

various sizes to ensure that the network observes different position encoding. However,

the data collection is often computationally expensive, especially for larger maps. Instead,

to overcome this bias, we leverage the fact that a proposed plan is invariant to linear

translation of the state space and train our model by randomly shifting the position

encoder. Hence for training we randomly sample (iR, jR) ∼ U [0, Hmax − 1]2 where

U [0, Hmax − 1] is a uniform distribution over discrete set of integers from 0 to Hmax − 1

and use the following position encoder for each map:

PE(j, 2i) = sin

(
j + k

100002i/d

)
PE(j, 2i + 1) = cos

(
j + k

10000(2i+1)/d

)

where if j = iF ∗Wl + jF then k = Hmax ∗ (iR + iF ) + jR. This effectively translates the

map to different position encoding values during training and ensures that the size of the

training map does not bias the model. The modified latent vector is then passed to the

transformer encoder.

27



3.2.3 Transformer Encoder:

The transformer module is responsible for learning the connections between the

different local regions on the map for a given planning problem. It infers these

connections by passing the latent vectors through a series of multi-headed self-attention

(MSA) and multi-layer perceptron (MLP) blocks. Between every MSA and MLP block,

we apply Dropout, Layer Norm, and residual connections similar to [135] and [32]. We

also add gradient checkpoints [22] after the MSA blocks to be more memory efficient.

Hence by attending to all patches, the network encodes the importance of each patch to

the given planning problem in its output.

3.2.4 Classifier:

Using the encoded importance, the classifier predicts if each anchor point is of

interest to the current planning problem. This is efficiently implemented using a 1× 1

convolution layer, similar to Faster R-CNN [114]. A mask is generated by setting p× p

patch, centered around selected anchor points, to 1 on a matrix of size H ×W .

3.2.5 Orientation Prediction:

For the SE(2) space, each positive anchor point is assigned an orientation generated

by this layer. Like the classifier, this is implemented efficiently using a 1× 1 convolution

layer.

3.2.6 Path Planning

Any traditional or learning-based planner can find the path by searching the masked

region. For the point robot, we sample uniformly across a square grid centered around

each anchor point, while for the Dubins car, we sample uniformly across an ellipse whose

major axis is oriented along the predicted orientation. In this work, we use variations of

the Rapidly Exploring Random Trees (RRT) algorithm that guarantee optimality

28



Figure 3.2. Planned path for the Maze environment. Left: The ground truth path for a
given start (green) and goal (red) point from the validation data. Center: The prediction
probability from the MPT. Right: Masked map and planned trajectory for the given start
(green) and goal (red) point using MPT-RRT*.

[66, 85, 44] to find the path using the sampled nodes.

Occasionally, MPT-guided planners fail to generate a solution due to

misclassifications. We alternate between searching the map’s masked (exploitation) and

unmasked (exploration) regions to overcome these errors. We show that this technique

can preserve the benefits of MPT-guided planners while achieving higher efficiency in

planning.

3.3 Experiments

We evaluated the planning capabilities of MPT aided SMPs and compared them with

both traditional and learning-based planners. The following section will review our

environment and robot setup, model training, and results.

3.3.1 Setup

Model Architecture: This section details the network architecture used for MPT

in our experiments. The Transformer architecture is similar to the ones proposed in [135].

We used 6 layers of encoder block, each consisting of 3 heads. The dimension of the keys

and queries was set at 512, and the dimension of the value was set at 256. The

29



architecture of our feature extractor is given in Table 3.1. For the convolution layer, the

dimensions in the brackets represent [Input Channel Size, Output Channel Size, Kernel

Size, Stride], and for the Maxpool layer, it represents the Kernel Size.

Table 3.1. Network architecture of the Feature Extractor

Layer Dimension

2D Convolution [2, 6, 5, 0]
2D Maxpool [2]
ReLU
2D Convolution [6, 16, 5, 0]
2D Maxpool [2]
ReLU
Convolution [16, 512, 5, 5]

The UNet architecture we use is similar to the one used by [115]. The network

consists of 4 blocks of down convolution and 4 blocks of up convolution. Each down

convolution block consists of a 3× 3 convolution, followed by batch norm, ReLU, and a

2× 2 of max pool layer. The up convolution block consists of a bilinear upsampling block,

followed by a 3× 3 convolutions, batch norm, and ReLU. The final layer is a 1× 1 to

classify each latent vector. For more details on the exact channel size used for each

convolution.

Environments: To test the planning capabilities of our method, we evaluated the

model on randomly generated maps from two different classes of environments. The first

environment is called the Random Forest, where circular and square objects are randomly

placed on the map. It simulates real world scenes with narrow passages and crowded

spaces. The second environment is called the Maze environment. Each map from this

environment is a perfect maze, generated using a randomized depth-first search. A

characteristic of a perfect maze is that any start and goal pairs on this map are reachable

by a collision-free path. The maze environment mimics long-horizon planning problems

because even if the start and goal are geometrically close, the planner would have to take

30



Figure 3.3. Planning statistics for the Point Robot Model. Left: The planning time for
traditional and learning-based planners. Right: Number of vertices in the planning tree
for traditional and learning-based planners. MPT aided planners consistently reduce the
planning time and the vertices in the planning tree, resulting in a lower variance of these
statistics for these planners.

a circuitous path to reach the goal. For all environments, we use an occupancy map of

5cm per pixel to check if the robot is in collision.

Robot Models We test our algorithm on two robotic systems encapsulating a large

set of mobile systems. The first is a simple Point Robot Model that can move in any

direction in its state-space X = R2. Solutions for this model can be easily extended to

many indoor and outdoor robots. For such robots, taking the Minkowski sum of the

obstacles and the robot’s footprint reduces it to a point robot [91]. The other robot we

tested is a Dubins Car Model with state-space X = SE(2).

3.3.2 Training

The MPT model is trained in an end-to-end fashion under supervision similar to [47].

Each mini-batch is formed from a single planning problem containing positive and

negative anchor points. We define positive anchor points as those within 0.7m distance to

the trajectory, while all other anchor points are considered negative samples. For training,

negative anchor points are randomly chosen to have a ratio of 1:1 of positive and negative

samples. For the Dubins Car Model, each positive anchor point had an orientation

associated with it. This orientation was the average of all the trajectory orientations

within 0.7m of the path.

31



We trained the network by minimizing the cross-entropy loss for the anchor points

and maximizing the cosine similarity measure for the orientation using the Adam

optimizer [71] with β1 = 0.9, β2 = 0.98, and ϵ = 1e−9. We varied the learning rate as

proposed in [135] with warm-up steps 3200. Each model was trained for 100 epochs with

a batch size of 128. The models were trained on one machine with 4 NVIDIA 2080GTX

graphics cards. The MPT model for the Point Robot took 21 hours, and the Dubins Car

took 12 hours to train.

Datasets: We trained an MPT model for the Point Robot on 1750 randomly

generated maps from each environment mentioned in Section 3.3.1. For each map, 25

paths were generated using the RRT* planner that terminated after 90 seconds. Similarly,

we trained an MPT model for the Dubins Car on 900 randomly generated maps from the

Random Forest environment. We collected 25 paths from each map using the RRT*

planner using Dubins curve [35] as the node connector. All the maps used were of size

480× 480.

3.3.3 Point Robot Model

For the Point Robot Model, we compared MPT-aided planners with traditional and

learning-based planners. We also looked at the capabilities of other image segmentation

approaches such as UNet [115] to highlight the area where a potential path might exist.

We choose UNet because, like MPT, it can generalize to maps of different sizes. We call

the aided planners Y-X, where Y is the underlying method used to generate the mask and

X is the SMP planner. MPT-RRT*-EE represents the MPT aided RRT* planner with the

exploration and exploitation strategy (hybrid planning).

The first set of experiments examined the network’s ability to generalize to unseen

maps of the same dimension as the training data. We compared the planners on 2500

random start and goal pairs for maps from the Maze and Random Forest environment.

For each planner, we report the 1. Accuracy - the percentage of planning problems the

32



Table 3.2. Comparing planning accuracy, and median time and vertices for the Point
Robot Model on unseen environments of the same size as the training data for Random
Forest.

Algorithm Accuracy Time (sec) Vertices

RRT* 100% 5.448 3228
IRRT* 100% 0.425 267
BIT* 100% 0.477 819
UNet-RRT* 30.27% 0.167 168
UNet-RRT*-EE 100% 2.58 1913
MPNet 92.35% 0.296 63
MPT-RRT* (ours) 99.40% 0.194 233
MPT-IRRT* (ours) 99.40% 0.087 136
MPT-RRT*-EE (ours) 100% 0.211 247

Table 3.3. Comparing planning accuracy, and median time and vertices for the Point
Robot Model on unseen environments of the same size as the training data for Maze.

Algorithm Accuracy Time (sec) Vertices

RRT* 100% 5.364 2042
IRRT* 100% 3.139 1394
BIT* 100% 2.870 2002
UNet-RRT* 21.4% 0.346 277
UNet-RRT*-EE 100% 4.133 2139
MPNet 71.76% 1.727 1409
NEXT-KS 28.27% 3.021 387
MPT-RRT* (ours) 99.16% 0.870 626
MPT-IRRT* (ours) 99.16% 0.784 566
MPT-RRT*-EE (ours) 100% 0.869 585

33



Figure 3.4. (From left) Path planned by RRT*, IRRT*, MPT-RRT*, and MPT-IRRT*
for the same start (green) and goal (red) positions for the Random Forest environment.
MPT-aided planners can significantly reduce the number of vertices (orange) required to
search for a path.

planner solves, 2. Time (sec) - the amount of time it takes to generate the mask (if

applicable) and plan a path shorter or of equal length to a path from the RRT* planner

searching for 90 seconds, and 3. Vertices - the number of collision-free states sampled by

the planner to construct the planning tree. The summary statistics of the experiment are

reported in Table 3.2 and 3.3. We see that MPT aided planners reduce the planning time

and vertex count of the planning tree substantially. In Fig. 3.2, we show an example of a

planned path from the maze environment.

To better understand the advantages of MPT, we visualize the distribution of the

planning time and vertices in Fig. 3.3 for the Random Forest and Maze environment

using Letter-value plots. These plots help to observe the tail of the distribution of the

metrics. Naive RRT* has a heavier tail distribution than MPT-RRT* because, for start

and goal pairs further away from each other, the planner needs to generate a denser graph

to search a larger space, requiring more time and vertices. On the other hand, MPT-aided

planners focus their search near regions highlighted by the model, and as a result, they

plan faster with fewer vertices. We see a thin tail distribution for MPT-RRT* and

MPT-IRRT* planners for the random forest environment. This is because the planner

only terminates when the cost of the path is below a certain threshold. Even if a solution

is found, MPT planners continue to search to reduce the path length, resulting in longer

34



Figure 3.5. Three different trajectories planned successfully using MPT on the Random
Forest environment. Left Column: The ground truth path in the validation dataset.
Middle Column: The probability estimate made by the MPT. Right Column: The planned
path using RRT* on the region proposed by the MPT.

planning times and vertex count for a few trajectories. The number of such problems

accounts for less than 0.75% of the planning problems.

We also observe that IRRT* and BIT* achieve similar planning time and planning

tree vertices compared to the aided planners. This is because these planners, like MPT,

reduce the planning search space once an initial solution is found by bounding the initial

path with an Ellipse. Such heuristics do not work for long-horizon problems like the Maze

35



Figure 3.6. (From left) Path planned by RRT*, IRRT*, MPT-RRT*, and MPT-IRRT*
for the same start (green) and goal (red) positions for the Maze environment. MPT aided
planners can significantly reduce the number of vertices (orange) required to search for a
path. The IRRT* planner must search the entire space for these maps.

environment, and MPT aided planners outperform traditional methods.

The MPT planners also outperform other learning-based approaches. Planners that

used UNet to propose patches performed poorly. We believe this is because the

convolution layers can only learn the connections between local patches, and deeper

networks would be required to learn global connections. As a result, it fails to highlight

the area of interest for the given planning problem. We also tested the recently proposed

Exploration-Exploitation Tree with kernel smoothing (NEXT-KS) [20] on the Maze

environment. The same validation set from Table 3.3 was used, but the map size was

reduced from 480×480 pixels to 16×16 pixels. The drop in performance can be attributed

to the value function proposing samples that are locally optimum. We do not compare the

planners performance in the forest environment because reducing the map size reduces the

distance resolution from 0.05meter/pixel to 0.75meter/pixel, which if applied to the Forest

environment, would oversimplify collision free regions. MPNet, on the other hand,

performs considerably better than UNet-RRT* for both environments but not as well as

MPT planners. We attribute the weak generalization to the lack of training data. In [105],

the authors used nearly 400k trajectories to train their model, whereas we only provided

around 88k trajectories for all our models.

Due to classification errors, MPT fails on around 1% of maps. Nevertheless, by

36



Figure 3.7. Three different trajectories planned successfully using MPT on the Maze
environment. Left Column: The ground truth path in the validation dataset. Middle
Column: The probability estimate made by the MPT. Right Column: The planned path
using RRT* on the region proposed by the MPT.

randomly exploring the map for a few samples outside the segmented region,

MPT-RRT*-EE can find valid trajectories without additional costs. UNet-RRT*-EE, on

the other hand, has similar statistics to RRT*, implying that the planner relies on RRT*

alone to generate a path. The distribution of planning time and vertices for

MPT-RRT*-EE are much tighter than traditional planners and even MPT planners

without exploration.

37



Figure 3.8. Plots of MPT aided planning for out-of-distribution environments. A, B,
C: Plot of paths for Random Forest environments of different sizes. The architecture of
the MPT Model allows flexibility in planning for environments of different sizes. D: Path
generated by MPT-RRT* on a random start and goal pair on the map of building 079 at
the University of Freiburg.

The following experiment we conducted evaluated MPT’s ability to generalize to map

sizes that were not part of the training data. We tested the model on four different map

sizes, 360×240, 480×240, 560×560, and 780×780 of the Random Forest environment on

1000 randomly generated maps while maintaining the density of obstacles. We used the

same MPT model without re-training or fine-tuning and compared the metrics with

traditional planning techniques. We did not compare against learning-based planners

because these planners either performed poorly in our previous experiment or were not

generalizable to maps of different sizes without modifications. The planning statistics are

summarized in Table 3.4, and three successfully planned paths using MPT are shown in

Fig. 3.8 (A, B, C). Training the model by randomly shifting position encoding was

instrumental in improving the accuracy of the planner for maps of larger sizes. Results for

the model trained with fixed position encoding (F.E.) from [135] are given in Table 3.4.

38



Figure 3.9. The distribution of metrics for maps of different sizes. Top: The distribution of
planning time for different algorithms for maps of different sizes. Bottom: The distribution
of the number of vertices in the planning tree for different algorithms for maps of different
sizes. MPT aided planners can achieve faster planning times and lower variance in the
metrics across maps of different sizes, which were not part of the training data.

We observe that the MPT model trained with randomized position encoding achieves

nearly 61% more accuracy on larger maps while improving 1-4% on smaller maps.

We notice that the MPT aided planners, similar to our previous experiments, achieve

lower planning time and vertices count than traditional planners without additional

39



Figure 3.10. Plots of two paths for the modified maze environment using the NEXT-KS
planner. The yellow circles indicate the sampled points by the planner. The planner
can solve simple problems (Left), while for long-horizon problems, it gets stuck in local
minimums (Right).

Figure 3.11. MPT can also be trained to aid SMP planners for non-holonomic robots.
Planned paths on Random Forest environment using MPT-RRT*. MPT identifies regions
in SE(2) through which a non-holonomic path exists.

training or fine-tuning for larger maps. IRRT* and BIT* achieve similar performance to

MPT-aided planners for smaller-sized maps but as the map sizes grow, the time taken by

IRRT* grows because of the more prominent search space. While for larger maps, MPT

aided planners can find a solution faster and outperform IRRT* and BIT*.

We also tested the MPT model on a map of building 079, University of Freiburg from

40



Table 3.4. Comparing planning accuracy and median time and vertices for Point Robot
on maps of the different sizes.

Map Size
(# Obstacles)

360×240 480×240 560×560 780×780
Planner (35) (50) (100) (200)

RRT*
Accuracy 100 % 100% 100% 100%

Time (sec) 5.926 6.308 6.725 8.095
Vertices 3660 3480 3854 4292

IRRT*
Accuracy 100% 100% 100% 100%

Time (sec) 0.286 0.394 0.283 0.476
Vertices 257 291 203 255

BIT*
Accuracy 100% 100% 100% 100%

Time (sec) 0.625 0.590 0.397 0.542
Vertices 1069 1061 810 974

MPT-RRT* Accuracy 97.4% 96.3% 75.6% 37.9%
(F.E.) Time (sec) 0.265 0.268 0.253 0.274

Vertices 377 348 262 284

MPT-IRRT* Accuracy 97.4% 96.3% 75.6% 37.9%
(F.E.) Time (sec) 0.062 0.072 0.082 0.095

Vertices 118 130 101 142

MPT-RRT*
Accuracy 99.20% 98.5% 99.7% 99.5%

Time (sec) 0.248 0.265 0.181 0.297
Vertices 354 319 218 241

MPT-IRRT*
Accuracy 99.2% 98.5% 99.7% 99.5%

Time (sec) 0.054 0.073 0.083 0.152
Vertices 106 131 112 161

MPT-RRT*-EE
Accuracy 100% 100% 100% 100%

Time (sec) 0.297 0.302 0.217 0.285
Vertices 382 362 237 238

publicly available 2D lidar scan data. We used the MPT model from our previous

experiments without any additional training or fine-tuning. The results are summarized in

Table 3.5. We plot one of these trajectories in Fig. 3.8 (D). The ability of MPT to

generalize to real world maps without any additional training or fine tuning is exciting

because it can be trained on simulated environments and transferred to real world

41



Figure 3.12. Execution of trajectory from an MPT aided planner using the Nav2 stack.
For a given goal position (green arrow), the MPT model proposes a region from the current
position of the robot (blue arrow) to the goal, and the Hybrid A* planner generates a
global path (red). The MPT model can aid the underlying planner in real time.

applications with minimal effort.

3.3.4 Dubins Car Model

To evaluate the performance of MPT for the Dubins car model, we compared our

method with RRT* and SST planners. For the geometric planning, we used Dubins

curves [35] as edge connectors, while SST nodes were constructed by propagating wheel

velocity and steering angle. The parameters for SST were set as reported in [86]. The

metrics we report are the same as the point robot. The results are summarized in Table

3.6. We see that MPT-aided planners are able to reduce planning time and sampled

points by half, while the hybrid planning strategy is able to achieve 100% accuracy

without adding additional vertices.

Fig. 3.11 shows two paths planned using MPT for the Dubins car. We can observe

that the MPT model can predict regions through which a kinematically feasible path can

pass. By narrowing the search space, the planner can generate optimal paths with fewer

samples than the unaided RRT* planner. A comparison for points generated between

42



Figure 3.13. The robot car used for the real world experiment. We used the F1Tenth
platform for our robot system [96] and Navigation 2[93] planning stack for planning.

Figure 3.14. Vertices used by RRT* (left) and MPT-RRT* (right) for the same start
(green) and goal (red) positions in the SE(2) space. By guiding the sampling around
anchor points (gray), the planner can achieve a shorter path with far fewer samples.

RRT* and MPT-RRT* is shown in Fig. 3.14. On the other hand, the SST planner takes

more time and vertices to generate a valid path because more samples are required to

traverse through the narrow sections of the map.

43



Table 3.5. Comparing planning accuracy, and median time and vertices for the Point
Robot Model on real world map.

Planner Accuracy Time (sec) Vertices

RRT* 20/20 2.507 1630
MPT-RRT* 17/20 0.538 455
MPT-RRT*-EE 20/20 0.946 804

Table 3.6. Comparing planning accuracy, and median time and vertices for Dubins Car
Model for the Random Forest Environment.

Planner Accuracy Time (sec) Vertices

RRT* 100% 0.357 95
SST 100% 4.880 710
MPT-RRT* 95.15% 0.176 59
MPT-RRT*-EE 100% 0.197 60

3.4 MPT Navigation2 Plugin

We also provide the MPT model as a global planner plugin to the Navigation2 [93]

(Nav2) navigation stack. The model is integrated in such a way that, any of the already

existing planners in Nav2 could be used to generate a plan in the accentuated area

proposed by the MPT model. We tested the plugin on an RC Dubins car in an indoor

mapped environment. The model used by the plugin was the one trained using just the

synthetic data for the point robot. The planning frequency was set at 10Hz, and the

Hybrid A* planner with Dubins motion model was used to generate the final global plan.

A simple DWB local planner was used to follow the planned global path. An example of a

complete execution of a planning problem is shown in Fig. 3.12.

This experiment also highlights the sim-2-real generalization of the MPT model.

Previous learning models would have to gather task-specific data [81, 54] or actively learn

from failed trajectories[105] in order to adapt to new environments. The ability of MPT

to generalize will also benefit the entire robotics community by making it easier to use

previously trained models.

44



3.5 Discussions

Graph-based search methods such as A* can also be used to solve the given planning

problem using the costmap, but in order to do real time planning, these methods often

require sub-sampling of the costmap to provide solutions in real time. Further hand-tuned

heuristics are required to restrict the planning space for kinematically constrained systems

[31] otherwise they get stuck in local minima [80]. We have shown through our

experiments that the MPT aided planners require no such sub-sampling, and can learn to

restrict search spaces by leveraging data. Since MPT is agnostic to the underlying

planner, graph-based searches can also be used to search the highlighted space.

Prior learning based methods that predicts a value such as VIN [128], are shown to

be difficult to train for larger maps [95] because of the depth of layers that is required to

propagate the reward. Unlike the other transformer based planner [18], as we have shown

randomizing the positional encoding is critical to be able to generalize the planner to maps

of different sizes. The map sizes that are used in our method is nearly 10 times larger

than the ones shown use in [18]. Moreover, MPT combines best of both worlds by learning

from data the space where a plan exists and using an optimal planner get the exact path.

In the next chapters, we extend MPT to higher-dimensional robots such as robotic

arms or drones. For manipulation systems in 3D since the task and joint space do not

overlap, the extension of the method is more challenging.

3.6 Acknowledgement

Chapter 3, in part, is a reprint of material from J. J. Johnson, U. S. Kalra, A. Bhatia,

L. Li, A. H. Qureshi, and M. C. Yip ”Motion Planning Transformers: A Motion Planning

Framework for Mobile Robots,” on arXiv preprint arXiv:2106.02791. The dissertation

author is the primary author of this paper.

45



Chapter 4

Generalizing Transformers for Plan-
ning

In chapter 3 we introduced Motion Planning Transformers, which only solves for 2D

mobile robots because, inherently, their network models follow those used in image

understanding in 2D discrete spaces. Since these models have to discretize the entire

planning space, extending this method to higher dimensional, continuous planning spaces

would exponentially increase training and memory costs. Furthermore, these planners

require the space in which the path is constructed (planning space) to overlap with the

space in which the environment is represented (task space). For example, for a

14-degree-of-freedom bi-manual robot arm setup, the environment is represented using

point clouds which is R3, while the planning space is R14.

In this chapter, we introduce Vector Quantized-Motion Planning Transformers

(VQ-MPT), a scalable transformer-based model that accelerates SMP by narrowing the

sampling space. VQ-MPT uses a Vector Quantized (VQ) model to discretize the planning

space. VQ models are generative models with an encoder-decoder architecture similar to

Variational AutoEncoder (VAE) models but with the latent dimension represented as a

collection of learnable vectors referred to as dictionaries. A transformer model selects a

subset of these learned vectors to generate the search region for the given planning

problem. We describe in this paper how the VQ approach can be used in the context of

46



Figure 4.1. VQ-MPT can efficiently split high-dimensional planning spaces into discrete
sets of distributions. Each distribution is represented using a latent variable called code
or dictionary value. Given a planning problem, the model selects a subset of codes
and samples from the associated distributions to construct the trajectory. By sampling
efficiently, VQ-MPT reduces planning times by 2-6× compared to previous planners.

motion planning, leading to the following major advantages:

1. Reduces planning times by 2-6× compared to traditional planning algorithms such

as BIT∗ and by 3-6× compared to learned planners such as MPNet.

2. Scales to 14-dimensional planning spaces without compromising planning

performance.

3. Learns efficient quantization of high dimensional planning space without increasing

the dictionary size.

4. Generalizes to unseen in-distribution and out-of-distribution environments more

successfully than learned planners such as MPNet.

47



4.1 Related Works

For efficient sampling, prior works have reduced the search spaces through

hand-crafted heuristics or parametric functions, decreasing planning time. The current

state-of-the-art motion planners leverage goal-directed heuristics; Informed-RRT∗ (IRRT∗)

[44] and Batch Informed Trees (BIT∗) [45] search for a path in an ellipsoidal region

between the start and goal location. In [109, 127], Artificial Potential Fields (APF) guide

random samples toward regions with an optimal solution. Sampling-based A∗ [80] extends

the A∗ search algorithm to sampling-based planning and uses heuristics to sample from

selected vertices. But for higher dimensional spaces, sampling with these heuristics still

leaves many samples unused for constructing a trajectory.

On the other hand, learning-based methods leverage data from prior planned data to

accelerate planning in similar environments [81, 17, 55, 76]. Motion Planning Networks

(MPNet) [105] was the first neural planner to generate the full motion planning solution

through a recurrent sampling of its networks, given the current and goal position of the

robot as well as the environment representation. MPNet considerably reduces planning

time for higher dimensions, but these models do not generalize to larger environment

representations [60]. Other neural planners [20, 142] have also explored using neural

networks for planning.

Transformer models are an ideal candidate for solving the planning problem because

of their ability to make long-horizon connections [134]. Advances in large language

models, such as BERT [30], and GPT [14], have inspired similar efforts in solving

planning tasks using transformer models [21, 58]. These models make better control

decisions in robotic quadrupedal walking tasks by attending to proprioceptive and visual

sensor data [141]. Although these works support the possibility of using transformer

models for decision-making, it is difficult to interpret the policy’s future control actions

and provide any form of guarantee for the underlying planner.

48



Stage 1 : Learning sampling dictionary Stage 2 : Predicting Distributions

Feature
Extractor

Quantize

Key-Value
Self-Attention

MLP Encoder
Transformer Cross-Attention

MLP

Self-Attention

MLP

Cross-Attention
Transformer

AR Transformer

Input Trajectory

Dictionary

Point Cloud

Output Distributions

Query

Figure 4.2. An outline of the model architecture of VQ-MPT. Stage 1 (Left) is a Vector
Quantizer that learns a set of latent dictionary values that can be mapped to a distribution
in the planning space. By encoding the planning space to discrete distributions, we can
plan for high-dimensional robot systems. Stage 2 (Right) is the Auto-Regressive (AR)
model that sequentially predicts the sampling regions for a given environment and a
start and goal configuration. The cross-attention model transduces the start and goal
embeddings given the environment embedding generated using a feature extractor. The
output from the AR Transformer is mapped to a distribution in the planning space using
the decoder model from Stage 1.

4.2 Background

4.2.1 Vector Quantized Models

The VQ-VAE model has been shown to compress high-dimensional spaces such as

images and audio without posterior collapse observed in VAE models [133]. We utilize a

VQ-VAE in a similar manner to compress the robot planning space X . The VQ model

encodes input q ∈ Rn using a function f to a latent space Z, and is quantized to a set of

learned vectors ZQ = {ẑ1, ẑ2, . . . , ẑN}. The vectors in ZQ are often called codes or

dictionary values in literature. The function g decodes the closest vector in ZQ to f(q)

back to the input space. The parameters of f and g and the set of vectors in ZQ are

49



estimated using self-supervised learning by minimizing the following error,

L = Lrecon + ∥sg[f(q)]− ẑ∥+ β∥f(q)− sg[ẑ]∥, (4.1)

where ẑ is the quantized vector and sg[ ] stands for the stop gradient operator [133],

which has zero partial derivatives, i.e. ∇sg(x) = 0, preventing the operand from being

updated during training. Lrecon is the main AE reconstruction loss (we will derive this

later). The second term is used to update the latent vectors in ZQ while keeping the

encoder output constant, and the last term is called the commitment loss and updates the

encoder function while keeping the latent vectors constant. This prevents the output of

the encoder from drifting away from the current set of latent vectors. Yu et al. [143]

proposed two further improvements in representing the codes to help improve the training

stability, code usage, and reconstruction quality of VQ-VAE models for images.

Factorized Codes

The output from the encoder function is linearly projected to a lower dimensional

space. For example, if the encoder output is a 1024-d vector, it is projected to an 8-d

vector. The authors in [143] show that using a lower dimensional space improves code

usage and reconstruction quality.

Normalized Codes

Each factorized codes, ẑi, are l2 normalized. Hence all the dictionary values are

mapped onto a hypersphere. This improves the training stability and reconstruction

quality of the model.

4.2.2 Transformer Models

Transformer models are transduction models that consist of self-attention [87] and

fully connected layers. They have been shown to efficiently model sequence data for

50



language and image tasks [134, 33], hence an ideal encoder model. The self-attention layer

is a Scaled Dot-product Attention [134] that takes three matrices - query (Q ∈ Rns×dq),

value (V ∈ Rns×dv), and key (K ∈ Rns×dq) vectors to generate the attention output

Atten(Q,K, V ) = softmax
(
γ−1QKT

)
V, (4.2)

where ns is the sequence length, dq is the dimension of the query space, dv is the

dimension of key and value space, and γ =
√
dv is a scaling factor. Rather than doing a

single attention function, these models linearly project the query, key, and value vectors

multiple times using different learned weights and is called the multi-headed attention

model. This enables the model to attend to different features present in the data. The

final output is a linear combination of individual attention values evaluated on each

projected set. The pooled output is passed through deep residual multilayer perceptron

(MLP) networks. In [140], the authors introduce Prenorm-Transformer where the inputs

to the attention and MLP layers are normalized as this makes training the model more

stable.

4.3 Vector Quantized-Motion Planning Transform-

ers

The VQ pipelines in image generation [113, 143] consist of a quantization stage and a

prediction stage. We adapt this pipeline for sequence generation and represent the

planning space as a collection of distributions (Fig. 4.2). Below, we describe the two

stages and objectives used for training.

4.3.1 Stage 1: Vector Quantizer

The first stage learns to represent the planning space using a set of distributions. It

does not take any sensor data such as costmap or pointcloud. We use a VQ model similar

51



to VQ-VAE [133] with a transformer network as the encoder and propose a maximum

likelihood-based reconstruction loss to learn the set of distributions. The encoder network

takes in a trajectory, Q = {q1, q2, . . . , qns}, and outputs a set of latent vectors,

Z = {z1, z2, . . . , zns}. The decoder model, an MLP model, maps the quantized encoder

output to a sequence of parameterized distributions, {P (· ; θ1), P (· ; θ2), . . . , P (· ; θns)},

in the planning space. We define our reconstruction loss as follows:

Lrecon = −
ns∑
j=1

log(P (qj ; θj))− λ

ns∑
j=1

Eq∼X [− log(P (q; θj))] (4.3)

where λ is a scaling constant. The first term maximizes the likelihood of observing the

input trajectory, while the second term maximizes the differential entropy. The entropy

term prevents the distribution from overfitting to each batch of data because a small

batch size does not cover the entire planning space. In the following paragraphs, we

provide further details of our models.

The encoder model transforms each state in the trajectory into an efficient

representation by learning patterns in the sequence. Each input state, qj, to the encoder

is linearly projected to a latent space Rd, and fixed position embedding [134] is added to

the projected output. The resulting vector is passed through multiple blocks of

Prenorm-Transformer described in Section 4.2.2 to obtain the set Z. Each latent vector

zj ∈ Z is quantized to a vector from the set ZQ = {ẑ1, ẑ2, . . . , ẑN} using the function zq(·)

defined by:

zq(z) = ẑi where i = arg min
k∈{1,...,N}

∥z − ẑk∥ (4.4)

where ẑi is the quantized vector corresponding to qi. We prepend and append the

transduced set with static encodings zs and zg to indicate the start and end of the

sequence, respectively. Hence the robot trajectory Q is transduced to

Ẑ = {zs, zq(z1), zq(z2), . . . zq(zns), zg}.

52



The decoder model maps each quantized vector, zq(zi), to the parameterized

distribution P (· ; θi). We choose the output distribution as Gaussian, but any parametric

distribution, such as Gaussian Mixture Models, Exponential distributions, or Uniform

distributions, can be chosen. The decoder model outputs the mean and the covariance

matrix of the Gaussian distribution (N (µ,Σ)); hence it is a function of the dictionary

value zq(zj),∀j ∈ {1, . . . , ns}, and is represented by µ(zq(zj)) and Σ(zq(zj)) respectively.

We will refer to these variables as µj and Σj for simplicity.

To ensure that the covariance matrix always remains positive definite during training,

we decompose Σj using Cholesky decomposition as in previous works [51, 88]:

Σj = LjDjL
T
j (4.5)

where Lj is a lower triangle matrix with ones along the diagonal, and Dj is a diagonal

matrix with positive values. The output from the penultimate MLP layer is passed

through separate linear layers to obtain µj and Lj, while for Dj, it is passed through a

linear and soft-plus layer [37] to ensure values are positive. Using the soft-plus layer

improves the stability of training the model.

4.3.2 Stage 2: Auto-Regressive (AR) Prediction

The second stage generates sampling regions by predicting indexes from the

dictionary set ZQ for a given planning problem and sensor data. It comprises two models -

a cross-attention model to embed start and goal pairs and the environment embedding

into latent vectors (M), and a Transformer-based Auto-Regressive (AR) model to predict

the dictionaries indexes, H = {h1, h2, . . . hnh
}. Both models are trained end-to-end by

reducing the cross entropy loss using trajectories from an RRT∗ planner:

LCE = E[−
nh∑
j=1

N+1∑
i=1

δi(hj) log(π(hj = i|ẑh1 , · · · , ẑhj−1
,M))] (4.6)

53



where δi(·) is the Kronecker delta function, π(·) is the output of the AR model, and ẑhi

corresponds to the latent dictionary vector associated with the ground truth index hi, and

the expectation is over multiple trajectories. We provide more details of the models in the

following section.

The environment representation (i.e., costmap or point cloud data) is passed through

a feature extractor to construct the environment encodings E = {e1, e2, . . . , ene} where

ei ∈ Rd. The feature extractor reduces the dimensionality of the environment

representation and captures local environment structures as latent variables using

convolutional layers for costmaps and set-abstraction layers for point clouds. The start

and goal states (qs and qg) are projected to the start and goal embedding (Es ∈ Rd and

Eg ∈ Rd) using a MLP network. The cross-attention model is a Prenorm-Transformer

model that uses the environment embedding, E , and the start and goal embedding,

{Es, Eg} to generate latent vectors M . The cross-attention model learns a feature

embedding that fuses the given start and goal pair with the given planning environment.

It uses the vector in E as key-value pairs, and Es and Eg as query vectors to generate M .

We use an AR Transformer model, π(·), to predict the dictionary indexes H. A

Transformer-based AR model was chosen because of their ability to make long-horizon

connections. For each index hj, the model outputs a probability distribution over

ZQ ∪ {zg} given dictionary values of previous predictions {ẑh1 , ẑh2 , . . . , ẑhj−1
} and the

planning context M :

π(hj = i|ẑh1 , . . . , ẑhj−1
,M) = pi where

N+1∑
i=1

pi = 1 (4.7)

Using the learned decoder from Stage 1, we can convert each of the predicted dictionary

values, ẑhj
, into a Gaussian distribution (N (µhj

,Σhj
)) in the planning space.

54



Table 4.1. Model and environment parameters for each robot

Robot Environment d Dictionary dk dv
Representation Keys

2D Costmap 512 1024 512 256
7D Point Cloud 512 2048 512 256
14D Point Cloud 512 2048 512 256

4.3.3 Generating Distributions for Sampling

With stage 1, we have efficiently split the planning space into a discrete set of

distributions represented using a set of latent vectors, and with stage 2, we have provided

a means to select a subset of distributions from the dictionary. Given a new planning

problem, we use the trained Stage 2 models to generate a sequence of dictionary indexes

H = {h1, . . . hnh
}. Since each index can take N values, we pick the sequence H that

maximizes the following probability:

P (h1, . . . , hnh
|M) =

nh∏
i=1

π(hi|h1, . . . , hi−1,M) (4.8)

where hnh
is the goal index and π is the probability from Eqn. 4.7. We apply a

beam-search algorithm to optimize for Eqn. 4.8 as done before in language model tasks

[30].

The decoder model from Stage 1 is used to generate a set of distributions, P , from

the dictionary values, {ẑh1 , ẑh2 , . . . , ẑhnh−1}, corresponding to the predicted indexes

{h1, h2, . . . , hnh−1}. We define this set as a Gaussian Mixture Model (GMM) with

uniform mixing coefficients:

P(q) =

nh−1∑
i=1

1

nh − 1
N (µ(ẑhi

),Σ(ẑhi
)) (4.9)

An example of this distribution is in Fig. 4.3 for a 2D robot.

55



Figure 4.3. A trajectory (black) planned using VQ-MPT for the 2D robot and the
corresponding GMM used for sampling. Each ellipse represents the distribution encoded
by the dictionary values. The shaded region represents the 2 standard deviation confidence
interval region. The dictionary values can encode the planning space using a finite number
of vectors.

56



Table 4.2. Comparing accuracy and mean planning time and vertices in In-Distribution
environments

Robots
Planner 2D 7D 14D

RRT*
Accuracy 94.8% 52.80% 11.80%

Time (sec) 1.588 49.35 1.80
Vertices 1195 683 9

RRT*(50%)
Accuracy · 95.20 % 32.00%

Time (sec) · 10.51 15.03
Vertices · 149 94

IRRT*
Accuracy 97.40% 89.00% 21.80%

Time (sec) 0.244 54 52.84
Vertices 195 63 45

IRRT*(50%)
Accuracy · 94.80 % 40.40%

Time (sec) · 15.03 29.16
Vertices · 71 77

BIT*
Accuracy 96.00% 72.20% 30.80%

Time (sec) 0.297 7.58 9.56
Vertices 457 826 384

BIT*(50%)
Accuracy · 97.40 % 43.40%

Time (sec) · 5.26 39.09
Vertices · 640 2021

MPNet
Accuracy 92.35% 94.20% 92.20%

Time (sec) 0.296 5.18 17.46
Vertices 63 147 117

VQ-MPT
Accuracy 97.60% 97.40% 99.20%

Time (sec) 0.147 0.929 2.62
Vertices 306 45 18

57



Figure 4.4. Plots of planning time and percentage of paths successfully planned on
in-distribution environments for the 2D (Left), 7D (Center), and 14D (Right) robots.
VQ-MPT can solve problems faster than other SMP planners by reducing the planning
space and scales to higher dimensional problems.

Algorithm 3: VQMPTPlanner(qs, qg, P , K, b)

1 τ ← {qs};
2 for k ← 0 to K do
3 qrand ← SAMPLE(P);
4 qnear ←NEAREST(qrand, τ);
5 if CONNECT(qrand, qnear) then
6 τ ← τ ∪ {qrand};
7 if rand()> b then
8 qgn ←NEAREST(qg, τ);
9 if CONNECT(qgn, qg) then

10 τ ← τ ∪ {qg};
11 break;

12 SIMPLIFY(τ);
13 return τ

4.3.4 Planning

To generate a trajectory, any SMP can be used to generate the trajectory by

sampling from the distribution given in Eqn. 4.9. We use Algorithm 3, to generate a path

using samples from the distribution in Eqn. 4.9. The VQMPTPlanner function takes the

start and goal state (qs and qg), the number of samples to generate (K), and a threshold

value (b) to sample the goal state and returns a valid trajectory. This function is a

modified RRT algorithm, where instead of CONNECT extending the current node by a

small range, it checks if a valid path exists between the current and sampled node.

58



4.4 Experiments

We evaluated our framework on three environments - a 2D point robot, a 7D Franka

Panda Arm, and a 14D Bimanual Setup. Our experiments compare the use of VQ-MPT

coupled with RRT (Algorithm 3) with traditional and learning-based planners on a

diverse set of planning problems. All planners were implemented using the Open Motion

Planning Library (OMPL) [124].

4.4.1 Setup

We trained a separate VQ-MPT model for each robot system and chose feature

extractors based on environment representations. For costmaps, we used the Fully

Convolutional Network (FCN) as in [60], while for point cloud data, we used two layers of

set-abstraction proposed in PointNet++ [101]. We chose these architectures because they

are agnostic to the environment size and can generate latent embeddings for larger-sized

costmaps or point clouds. The same transformer model architecture was used for the

Stage 1 encoder, the cross-attention network, and the AR model. Each transformer model

consisted of 3 attention layers with 3 attention heads each. Table 4.1 details the latent

vector dimensions and the dictionary size used for each robot. A larger key size was used

for the 7D and 14D robots because of the larger planning space. We observed that

increasing the dictionary size further did not reduce the reconstruction loss.

All models were trained using data collected from simulation. We collected two sets

of trajectories.

Trajectories without obstacles

This set consisted of trajectories in an environment without obstacles and was used

to train Stage 1 of the model. These trajectories were free from any form of self-collision

and covered the whole planning space of the planner. For each robot, we collected 2000

trajectories of this type.

59



Figure 4.5. Sample paths planned by the VQ-MPT planner for different robot systems
(Left) 2D robot, (Center) 7D robot, and (Right) 14D robot on in-distribution environments.
The red and green color represents the start and goal states of the robot, respectively.
Given an environment with crowded obstacles, VQ-MPT can sample efficiently from
learned distributions to find a trajectory.

Figure 4.6. Snapshots of a trajectory planning using VQ-MPT for physical panda
robot arm for a given start and goal pose on a shelf environment. On the top-right of
each image, we show the point cloud data captured using Azure Kinect cameras. We
used markerless camera-to-robot pose estimation to localize the captured point cloud in
the robot’s reference frame. VQ-MPT can generalize to real-world sensor data without
additional training or fine-tuning.

Trajectories with obstacles

This set consisted of valid trajectories collected from environments where obstacles

were placed randomly in the scene. It was used to train Stage 2 of the model. For each

robot, we collected 10 trajectories for 2000 randomly generated environments.

We trained Stages 1 and 2 using the Adam optimizer [71] with β1 = 0.9, β = 0.98

and ϵ = 10−9 and a scheduled learning rate from [134].

4.4.2 Unseen In-Distribution Environments

We compared our framework against traditional and learning-based SMP algorithms

for each robot system on a trajectory from 500 different environments. To quantify

60



Table 4.3. Comparing accuracy and mean planning time and vertices in Out-of-
Distribution Environments

Robots
Planner 7D 14D 7D (Real)

RRT*
Accuracy 8.60% 6.00% ·

Time (sec) 107.75 4.92 ·
Vertices 1338 39 ·

RRT*(50%)
Accuracy 66.60% 18.60% ·

Time (sec) 22.75 7.61 ·
Vertices 279 67 ·

IRRT*
Accuracy 44.60% 10.60% 100%

Time (sec) 55.12 20.72 30.68
Vertices 215 20 607

IRRT*(50%)
Accuracy 59.20% 17.80% ·

Time (sec) 23.94 10.57 ·
Vertices 72 34 ·

BIT*
Accuracy 37.80% 12.20% 100%

Time (sec) 75.32 30.07 26.42
Vertices 5147 1673 2852

BIT*(50%)
Accuracy 88.60% 30.00% ·

Time (sec) 11.86 40.58 ·
Vertices 896 2889 ·

RRT
Accuracy 84.20 % 75.00% 100%

Time (sec) 8.88 19.75 1.69
Vertices 477 179 21

MPNet
Accuracy 53.20% 80.40% 30%

Time (sec) 10.14 23.91 2.23
Vertices 310 104 7

VQ-MPT
Accuracy 92.20% 98.60% 100%

Time (sec) 3.24 6.21 1.17
Vertices 306 70 34

61



Figure 4.7. Plots of planning time and percentage of paths successfully planned for the
7D (Left) and 14D (Right) robots on environments different from ones used for training.
VQ-MPT can reduce the planning space in unseen environments, enabling efficient planning
in challenging environments.

planning performance, we measured three metrics: planning time - the time it takes for

the planner to generate a valid trajectory; vertices - the number of collision-free vertices

required to find the trajectory and accuracy - the percentage of planning problems solved

before a given cutoff time. We chose to measure vertices because checking the validity of a

vertex imposes a significant cost on most SMPs [27]. Since optimal planners do not have

termination conditions, for fair comparisons, we stopped planning when the constructed

trajectory, {q1, q2, . . . , qn}, satisfied the following condition:

n−1∑
i=0

∥qi+1 − qi∥2 ≤ (1 + ϵ)
m−1∑
j=0

∥q∗j+1 − q∗j∥2 (4.10)

where Q∗ = {q∗1, . . . , q∗n} is the path planned by VQ-MPT and ϵ ≥ 0 is a user-defined

threshold. If VQ-MPT could not generate a path for the trajectory, we used a path from

RRT∗ running for 300 seconds (s) to generate Q∗. For optimal planners like RRT∗, IRRT∗,

and BIT∗, we used ϵ = 0.1 and ϵ = 0.5. In our tables, planners that used ϵ = 0.5 are

reported by ‘X (50%)’, where X is the planner. The planning time reported for VQ-MPT

also includes the time taken for model inference. All results are summarized in Table 4.2

and the percentage of planning problems solved vs planning time is shown in Figure 4.4.

62



We first tested our framework on a simple 2D robot. An example of the path

planned by the VQ-MPT framework is shown in Fig. 4.5 (Left). The cutoff time set was

20 seconds. VQ-MPT showed efficient sampling of points in the planning space and found

trajectories faster than traditional planners.

VQ-MPT can also use 3D environment representations such as point clouds to

generate sampling regions. We evaluated the framework on a 7D panda robot arm with a

point cloud environment representation. The dictionary encodings can capture diverse

sets of valid configurations in 7D space (Fig. 4.2). An example of the trajectory planned

by the VQ-MPT framework is shown in Fig. 4.5 (Center). The cutoff time set was 100 s.

VQ-MPT planner generates a trajectory nearly 5× faster with fewer vertices than the

next best accurate planner. MPNet performs poorly compared to VQ-MPT. The rigid

feature encoding of MPNet potentially prevents it from generalizing to larger point cloud

data environments. VQ-MPT, in contrast, learns to identify suitable regions to sample in

the joint space using point cloud data of different sizes.

We also tested the framework in a bi-manual panda arm setup with 14D. An example

of a VQ-MPT trajectory is shown in Fig. 4.5 (Right). Stage 1 captures the planning

space with the same 2048 dictionary values used in the 7D panda experiment. The cutoff

time was 250 s. While BIT* performed relatively well compared to traditional planners

for the 2D and 7D problems, performance and accuracy decreased due to the

high-dimensional planning space. Since Stage 1 of the VQ-MPT framework encodes

self-collision-free regions, it’s easier for the planner to generate feasible trajectories in

Stage 2, resulting in faster trajectory generation with fewer vertices.

4.4.3 Out-of-Distribution Environments

Our next set of experiments evaluated VQ-MPT’s performance for the 7D and 14D

robots in environments very different from the training environments. We test our

framework on different planning scenes resembling real-world scenarios (Fig. 4.1). We test

63



the model for each robot on 500 and 10 start and goal locations for simulation and

real-world environments, respectively. The cutoff time for each planner was set at 100 s.

The results of the experiments are summarized in Table 4.3, and the plot of the

percentage of paths solved across planning time is given in Fig. 4.7. Higher dimensional

7D and 14D spaces are challenging. The environment is even more challenging because of

the goal location inside the shelf since it reduces the number of feasible trajectories in the

same way a narrow passage eliminates feasible trajectories in mobile robots [13]. Even

non-optimal planners like RRT solve only 75-91% of trajectories. Existing optimal SMP

planners cannot achieve the same accuracy as VQ-MPT even after relaxing path length

constraints.

To evaluate the performance of VQ-MPT on physical sensor data, we tested a

trained model in a real-world environment (Fig. 4.6). The environment was represented

using point cloud data from Azure Kinect sensors, and collision checking was done using

the octomap collision checker from Moveit 1. Camera to robot base transform was

estimated using markerless pose estimation technique [92]. Our results show that the

model can plan trajectories faster than RRT with the same accuracy. We observed that

VQ-MPT trajectories are also shorter than RRT trajectories, which can be clearly seen in

some of the attached videos. This experiment shows that VQ-MPT models can also

generalize well to physical sensor data without further training or fine-tuning. Such

generalization will benefit the larger robotics community since other researchers can use

trained models in diverse settings without collecting new data or fine-tuning the model.

4.5 Discussion

VQ-MPT can plan near-optimal paths in a fraction of the time required by

traditional planners, scales to higher dimension planning space, and achieves better

generalizability than previous learning-based planners. Our approach will be beneficial for

1https://moveit.ros.org/

64



planning multi-arm robot systems like the ABB Yumi and Intuitive’s da Vinci®Surgical

System. It is also helpful for applications where generating nodes and edges for SMPs is

computationally expensive, such as for constrained motion planning [64]. In the next

chapter, we will explore the application of VQ-MPT to constraint planning.

4.6 Acknowledgement

Chapter 4, in part, is a reprint of material from J. J. Johnson, A. H. Qureshi, and M.

C. Yip, ”Learning Sampling Dictionaries for Efficient and Generalizable Robot Motion

Planning with Transformers,” in IEEE Robotics and Automation Letters, doi:

10.1109/LRA.2023.3322087. The dissertation author is the primary author of this paper.

65



Chapter 5

Planning with Constraints

Constraint motion planning (CMP) is a fundamental challenge in robotics that

involves finding a collision-free path between a start and goal configuration while

satisfying certain constraints. Constraints may include kinematic constraints on the

robot’s joints [62, 64], dynamic constraints like torque limits [99], and task constraints like

maintaining end-effector orientation [52]. Trajectories that adhere to these constraints are

relevant in fields such as home robotics - to move containers without spilling their content,

medical robotics - constrain end-effector torques to interact with humans safely [99], and

industrial robotics - articulate objects such as levers and pulleys [100].

The most common algorithms for finding such trajectories are sampling-based motion

planners (SMP) [79]. These algorithms build a discrete search graph of collision-free robot

states by random sampling in the planning space to connect the start and goal states.

They have been particularly successful at finding solutions for robotic systems with high

degrees of freedom, such as manipulators [45]. Previous works have extended SMPs to

plan trajectories that satisfy given constraints [56]. However, SMPs can be highly

inefficient, especially for higher dimensional spaces. With the added complexity of

satisfying constraints, the valid search region shrinks, exacerbating inefficiency.

In Chapter 4 we introduced, Vector Quantized-Motion Planning Transformers

(VQ-MPT), which has shown promising results in improving the sampling efficiency of

66



SMP planners by narrowing down the search region. VQ-MPT has shown promising

generalization capabilities in that trained models can reduce planning times for

environments outside the training data. This chapter introduces Constraint VQ-MPT

(CVQ-MPT), a fast and efficient neural planner for kinematic and task-specific

constraints. Unlike previous learning-based approaches, our model requires no additional

task-related data for training or finetuning the model and uses a pre-trained VQ-MPT

model for planning.

5.1 Related Works

Numerous methods have been proposed to solve the CMP. Broadly, they can be

categorized into optimization-based and sampling-based approaches.

Optimization-based approaches formulate the entire planning problem, including

constraints, as an optimization problem. In [34], the authors apply Covariant Hamiltonian

Optimization for Motion Planning (CHOMP) [112], a method that uses covariant

gradients to solve the unconstraint planning problem to construct unconstraint

trajectories and project them onto the constraint manifold. TrajOpt [120] improves

optimization-based planning by utilizing Sequential Convex Programming (SCP) and

incorporates constraint functions as penalties within the optimization problem to solve

CMP. Bonalli et al. [12] extend SCP methods by lifting the manifold constraints to

Euclidean spaces. Howell et al. [50] use Augmented Lagrangian- Iterative Linear

Quadratic Regulators (AL-iLQR) to build a rough solution and a projection-based

method to refine the coarse solution to solve the constraint problem. However, these

techniques require hand-tuning penalty functions for different tasks, often resulting in

local minima solutions.

On the other hand, sampling-based approaches build discrete search graphs by

random sampling in the planning space to connect the start and goal states. SMP

67



planners such as Rapidly Exploring Random Trees (RRT) [80] and its variants [108] have

shown to be particularly effective in solving planning problems for robotic systems with

higher degrees of freedom, such as manipulators and also easily adapt to a wide range of

tasks [73]. Sampling-based methods can solve constraint planning by generating random

samples on the constraint manifold mainly through projection-based and

continuation-based methods.

The projection-based approach uses a projection operator to map sampled points

onto the constraint manifold. The projection operators usually involve first-order

gradients to iteratively move the sampled point toward the constraint manifold using the

Jacobian of the constraint function. [9, 40] use projection-based methods for solving CMP.

On the other hand, continuation-based approaches approximate constraint manifolds at

local regions and use this approximation to sample points and construct local trajectories.

Methods such as AtlasRRT [57] and Tangent-Bundle RRT (TB-RRT) [125, 70]

simultaneously approximate the constraint manifold using tangent spaces at adhering

points and uses a BiRRT to construct a tree between the start and goal points on this

approximated manifold. However, the underlying optimization routines and constructing

atlas’s can make planning computationally expensive.

To improve the efficiency and speed of sampling-based planners, recent methods have

utilized learning-based techniques to solve the planning task [53, 105]. Constraint Motion

Planning Networks (CoMPNet) [110, 104] was the first of these methods that used a fully

connected neural network to generate configurations near constraint surfaces. By

selectively sampling points, these methods reduced planning times considerably. Similarly,

in [69], a deep neural network models the constraint manifold using prior trajectory data

and can compute trajectories quickly. Liu et al. [89] propose using reinforcement learning

to find a policy that always satisfies the constraints, which allows the agent to explore the

space efficiently and removes the need for a projection operator. Although these methods

improve the efficiency and speed of constraint planning, they lack generalizability to new

68



environments and require access to task-specific demonstrations. In this work, we address

previous CMP drawbacks without collecting any task-specific data.

5.2 Problem definition

Consider an n dimensional planning space defined by C ∈ Rn. The space is split into

two subspaces Cfree ⊂ C and C − Cfree such that all states in Cfree do not collide with any

obstacle in the environment and are considered valid configurations. The objective of the

motion planner is to generate a continuous path (or trajectory), σ, such that it connects

the given start state (qs) and a goal region (Cgoal), and all states in σ are in Cfree. For

CMP, all the points in σ must also satisfy a constraint function F : C → Rk, where k is

the number of constraints. For a state q ∈ Cfree to satisfy the constraint, F (q) = 0, where

0 is a vector of zeros. This work focuses on the constraint function defined on joint

configurations, C, and not on the robot kinematics or dynamics.

5.3 Background

5.3.1 Task-Space Regions

Introduce TSRs, their benefits, and uses. A task space for manipulators is the space

spanned by possible end-effector poses. For example, the task space for the Franka Panda

arm is the SE(3) space. For many applications, such as moving a cup without spilling its

content, opening doors for shelves, and gasping objects from a table, constraints can be

defined with respect to the task space. Task-Space Regions (TSR) [9] is a common

method to define such constraints. TSR represents constraints as relative pose between

the robot end-effector and a target pose. The poses are represented using a homogenous

69



Feature
Extractor

Key-Value

Cross-Attention

MLP

Self-Attention

MLP
Cross-Attention

Transformer

AR Transformer
Point Cloud

Query

Updating distributions

 Predicting Distributions using VQ-MPT

Sampled Configurations

Decoder Sample
Configuration

Forward
Kinematics TSR Loss 

Forward Propagation

Back Propagation

Figure 5.1. An outline of the model architecture of CVQ-MPT. Given a point cloud, and
start (qs) and goal (qg) configurations, a pre-trained transformer model is used to generate
a set of distributions parameterized using {ẑh1 , . . . ẑj+1}. The predicted distributions are
updated using gradient-based optimization, minimizing the loss term L, moving it closer
to the constraint function, F (q). This allows for sampling configurations closer to the
constraint manifold.

transformation matrix

T r
w =

Rr
w pr

w

0 1

 Rr
w ∈ R3×3, pr

w ∈ R3 (5.1)

where T r
w represents the pose of frame r relative to frame w. Using the forward

kinematics function, fk(q) : C → SE(3), the relative pose of the robot end-effector, e, and

a target-pose, t, in the robot’s base frame, r, is given by:

T p
e = T p

r T
e
p = T p

r (fk(q))−1 (5.2)

70



This relative transformation can be converted to a vector in R6 where the first three

elements are pp
e and the last three are the axis-angle representation, ωp

e, of the rotation

matrix Rp
e. Thus, the constraint function F is defined using these bounds. For example,

the constraint function for moving a cup without spilling is given by:

F (q) =

[
Pc

e 0 0 ωz

]T
∀q ∈ σ (5.3)

where the relative position of the cup with respect to the end-effector is fixed, and the

only orientation allowed to be changed is the yaw. Additionally, in [9], the authors define

TSR-chains for linking multiple TSRs and goal region TSR for defining goal region

constraints.

5.4 Constraint VQ-MPT

To improve the efficiency of CMP, we sample from the distributions generated by

VQ-MPT and project them onto the constraint manifold. This work uses a pre-trained

VQ-MPT model trained on unconstrained shortest trajectory data collected in simulation.

The following section details our sampler for constraint planning, optimization for

updating predicted distributions, and planner for solving CMP.

5.4.1 Generating samples

Given a start (qs) and goal (qg) state, we use the trained Stage 2 model of VQ-MPT

to generate a sequence of dictionary indexes H = {h1, . . . hnh
}, where hnh

is the goal

index. A beam-search algorithm similar to those used in language model tasks [30] is used

to optimize the following:

P (h1, . . . , hnh
|M) =

nh∏
i=1

π(hi|h1, . . . , hi−1,M) (5.4)

71



Figure 5.2. The histogram of the objective function, G(q), before and after optimizing for
two different dictionary values predicted by VQ-MPT for the place task. We can update
the manifolds to generate samples closer to the constraint manifold and not push away
distributions that are already closer.

to generate the most probable sequence, H. Here π is the probability from Eqn. 4.7. We

use a Gaussian Mixture Model (GMM) with uniform mixing coefficients reconstructed

from predicted sequence H for sampling points. Individual Gaussian distribution is

reconstructed from H using the decoder model from Eqn. 5.5.

g(ẑhj
) = N (µhj

,Σhj
) (5.5)

P(q) =

nh−1∑
i=1

1

nh − 1
g(ẑhi

) (5.6)

To ensure that the sampled points from P(q) satisfy the given constraints F (q), we

project them on the constraint manifold using the first-order gradient projection operator

given in Algorithm 4.

72



Figure 5.3. An example of the trajectory planned using CVQ-MPT for the place task
for a given start (green) and goal (red) configurations. The constraint is to hold the can
upright during the motion.

5.4.2 Improving sampling efficiency

The samples generated from Eqn. 4.9 are not guaranteed to lie on the constraint

manifold and might require multiple optimization iterations to project them onto it. We

propose a novel optimization-based update of the latent vectors in H such that the new

distribution lies closer to the constraint, reducing projection times and consequently

planning performance (Fig. 5.1). If q∗ adheres to the constraint surface, it must also

satisfy the following:

q∗ = min
q

F (q)TF (q)f (5.7)

Thus, we can use the function G(q) = F (q)TF (q) to evaluate constraint adherence and

use the same to update our latent vectors, ẑhi
. Since G : C → R+ is always positive, using

Markov Inequality, we can upper-bound the probability of G lying outside a threshold δ

73



Algorithm 4: Project(q)

1 x← F (q);
2 while ∥x∥ > ϵ do
3 J ← ∇qF (q) ;

4 ∆q ← −JT (JJT )x;
5 q ← q +∆q;
6 x← F (q);

7 return q

Algorithm 5: UpdateDistribution(z)

1 repeat
2 zcur ← z ;
3 µ,Σ← g(z);
4 L ← 0;
5 for i← 1 to N do
6 ϵ ∼ N (0, I) ;
7 q ← µ+ ϵΣ0.5 ;

8 L ← L+ (F (q)TF (q)/N);

9 ∆z ← ∇zL ;
10 z ← zcur − η∆z ;

11 until ∥∆z∥ < δ;
12 return z

for the distribution g(ẑhi
).

P (G(q) > δ) ≤
Eg(ẑhi )

[G(q)]

δ
(5.8)

By minimizing the upper bound in Eqn. 5.8, we can implicitly reduce the samples that

are further away from the constraint manifold, improving the sampling efficiency of the

planner. We can use Monte Carlo estimates of G(·) by sampling points on the

distribution g(ẑhi
) to evaluate the upper bound in Eqn. 5.8.

L = Eg(ẑh)[G(q)] ≈ 1

n

n∑
k=1

G(qk) qk ∼ g(ẑh) (5.9)

To optimize Eqn. 5.9, we want to differentiate the objective function with respect to

latent variable ẑh. We use the reparameterization trick [72] to express the random

74



Algorithm 6: CVQMPTBiPlanner(qs, qg, P , K, b)

1 τs ← {qs}, τg ← {qg};
2 for k ← 0 to K do
3 qrand ← Sample(P);
4 qsnear ← NearestNode(qrand, Ts) ;
5 qsreach ← ConstrainedExtent(qrand, q

s
near, Ts) ;

6 qgnear ← NearestNode(qrand, Tg) ;
7 qgreach ← ConstrainedExtent(qrand, q

g
near, Tg) ;

8 if Connect(qsreach, q
g
reach) then

9 τ ←ExtractPath(τs, τg);
10 return Simplify(τ);

11 else
12 Swap(τs, τg);

13 return Φ

variable qk as a function of µh, Σh, and a normal distribution ϵ.

qk = µh + LDϵ ϵ ∼ N (0, I), Σh = LD2LT (5.10)

where L and D are a lower triangular and diagonal matrix, respectively. To generate

points on g(ẑh), we can sample points on N (0, I) and transform it using Eqn. 5.10. By

substituting Eqn. 5.10 in Eqn. 5.9, the gradient of L becomes a function of deterministic

parameters.

∇ẑhL ≈
1

n

n∑
k=1

∇qF (qk)
δ(µhj

+ LDϵk)

δẑh
(5.11)

Using the derivates from Eqn. 5.11, any optimization methods, such as Gradient Descent

(GD), can be used to minimize the upper bound. Algorithm 5 provides a general outline

for updating the latent variable. Fig. 5.2 shows the histogram of the objective function

before and after optimization.

5.4.3 Planning

Any SMP can generate the trajectory using the sampling strategy from Section 5.4.1

and 5.4.2. We provide Algorithm 6, a bidirectional planning algorithm, to generate a path

75



Figure 5.4. Snapshots of the trajectory planned using CVQ-MPT for the Panda Arm
completing the multi-sequence task (from left to right). CVQ-MPT can plan trajectories
for various types of planning constraints in complex environments.

using samples from the distribution in Eqn. 4.9. The CVQMPTBiPlanner function takes

the start and goal state (qs and qg), the GMM model (P), the number of samples to

generate (K), and a threshold value (b) to sample the goal state and returns a valid

trajectory. The function NearestNode finds the closest node on the tree to the sampled

node, while the function ConstrainedExtend extends the tree from the nearest node

toward the sampled configuration until a collision or constraint violation occurs. For start

and goal regions defined by TSR, which occur during grasping or object-placement tasks,

we sample a pose from a TSR and use an Inverse Kinematics (IK) solver [6] to generate a

valid collision-free configuration. This configuration is used to identify the sampling

region using the VQ-MPT planner. Since the VQ-MPT planner can generate paths

rapidly, multiple configurations can be evaluated successively to find a valid path.

In [9, 74], the authors have proved the probabilistic completeness of projection-based

planners. They show that any RRT-based algorithm with a non-zero probability of

sampling in an n-dimensional ball centered at a node of the existing tree together with

the projection operator in Algorithm 4 is probabilistically complete. Since we use a set of

Gaussian Distributions to sample, which spans the entire planning space, our planner also

satisfies these conditions, making it probabilistically complete as well.

5.5 Experiments

This section covers our experiment setup and compares CVQ-MPT with three other

planners - CBiRRT [9], Atlas-RRT [57], and TB-RRT [125] for a 7D Franka Panda arm

76



1 2

3 4

Figure 5.5. Sequences of the trajectory planned using CVQ-MPT for the Panda Arm on
the physical robot and the corresponding point cloud used to represent the environment
(1→2→3→4). CVQ-MPT can plan trajectories using physical sensor data and achieve the
same level of performance observed in simulated environments.

on simulated and physical scenes. We also compared the performance of a pre-trained

MPNet [105], which used the projection operator for steering.

5.5.1 Setup

We used pre-trained VQ-MPT and MPNet models from our prior work [63] for a 7D

Franka Panda robot arm. The model was trained on simulated data using unconstrained

trajectories. No constraint trajectories were used to finetune these models. All planners

used in this work were implemented using the Open Motion Planning Library (OMPL)

[124] on a system with an AMD Ryzen Threadripper 1950X CPU with an Nvidia RTX

3090 GPU.

77



Table 5.1. Place Task and Physical Robot Experiments: accuracy, planning time, vertices,
& path length (l)

Environments CBiRRT Atlas-RRT TB-RRT MPNet (w/ proj) CVQ-MPT Opt-CVQ-MPT

Place Task

Accuracy 93.7% 100% 89.76% 33.85% 97.63% 98.42%
Time (s) 22.95 21.80 25.31 20.61 11.25 11.03
Vertices 40 37 32 35.98 26 24

l 8.715 5.85 7.28 8.934 5.080 5.507

Physical robot

Accuracy 10/10 10/10 10/10 4/10 10/10 10/10
Time (s) 8.37 11.01 13.98 7.35 9.89 8.37
Vertices 38 28 34 5 56 41

l 12.643 10.613 12.659 18.747 7.530 7.313

Table 5.2. Multi-sequence task: planning, executing times

CBiRRT Atlas-RRT TB-RRT CVQ-MPT Opt-CVQ-MPT

Planning (s) 19.71 23.46 19.24 13.10 10.98
Execution (s) 22.11 20.48 22.49 20.86 18.66

Total Time (s) 41.82 43.94 41.73 33.96 29.64

5.5.2 Place Task

First, we compared our planner’s performance against traditional and learning-based

SMP algorithms in solving a placement task (Fig 5.3). A can is randomly placed on the

kitchen counter, and the objective is to plan a path to place it on the shelf without tilting

it. To quantify planning performance, we measured four metrics: planning time - the time

it takes for the planner to generate a valid trajectory; vertices - the number of

collision-free vertices required to find the trajectory, accuracy - the percentage of planning

problems solved before a given cutoff time, and path length - the sum of all the Euclidean

distance between adjacent joint states. The number of vertices will help us to determine

the efficiency of different constraint planning techniques since projecting points on the

constraint manifold can be computationally expensive [73]. We tested 120 different

planning problems; Table 5.1 summarizes the results.

CVQ-MPT and Opt-CVQ-MPT achieve similar or better accuracy than previous

constraint planners while planning shorter trajectories. CVQ-MPT produces shorter

paths because the underlying VQ-MPT model was trained to identify sampling regions in

78



C where the shortest unconstrained path exists. Thus, our planner projects the

unconstrained shortest path on the constraint manifold. We can also observe that by

reducing the search space, CVQ-MPT can plan constraint trajectories almost 2× faster

than previous planners. The MPNet model on the other hand achieves poor accuracy

since the model is not generalizable to unseen environments [63].

5.5.3 Multi-Sequence Task

Our next experiment compared the planning and execution of CVQ-MPT for a

sequence of tasks with varying constraints. The task involves opening the kitchen cabinet,

grasping a can from the shelf, and placing it on the kitchen counter (Fig. 5.4). We

compared 10 different tasks, where the robot’s start position and the can’s final goal

position were random. Due to the poor performance of MPNet on the place task, we did

not compare against it for this experiment. The average total planning and executing

time results for the tasks are reported in Table 5.2. CVQ-MPT reduces total planning

time by 45%, while planning a shorter path can reduce task execution times by 18%. This

also shows how our planner can adapt to diverse types of task constraints.

5.5.4 Real-world environment

To evaluate the performance of our planner on physical sensor data, we tested it in a

real-world environment (Fig. 5.5). The environment was represented using point cloud

data from Azure Kinect sensors, and collision checking was done using the Octomap

collision checker from Moveit [25]. Camera to robot base transform was estimated using

marker-less pose estimation technique [92]. We tested on 10 random start and goal

configurations, and the results are summarized in Table 5.1. We observe that CVQ-MPT

and Opt-CV-MPT outperform traditional planners, similar to the Place Task experiment.

This experiment shows that CVQ-MPT models can also generalize well to physical sensor

data without further training or fine-tuning. Such generalization will benefit the larger

79



robotics community since other researchers can use trained models in diverse settings

without collecting new data or fine-tuning the model.

5.6 Discussion

In this chapter, we introduced CVQ-MPT, a zero-shot planning framework for

solving constraint motion planning problems. By reducing the search space for

sampling-based planners, we improve constraint planning efficiency and speed,

simultaneously generating shorter trajectories than previous planners. We further refine

our search space by optimizing the predicted distributions to be closer to the constraint

manifold, further improving planning performance. As we have shown, CVQ-MPT also

improves task execution times and success rate which will enable future robotic systems

to handle more complex tasks with intricate planning sequences. Future works can

explore the application of CVQ-MPT to such task and motion planning problems.

5.7 Acknowledgement

Chapter 5, in part, is a reprint of material from J. J. Johnson, A. H. Qureshi, and M.

C. Yip, ”Zero-Shot Constrained Motion Planning Transformers Using Learned Sampling

Dictionaries,” on arXiv preprint arXiv:2309.15272. The dissertation author is the primary

author of this paper.

80



Chapter 6

Planning under Uncertainty

In our previous chapters, we focused on the motion planning problem for an

assortment of tasks such as car navigation around obstacles [117, 61, 82] and constrained

robotic manipulation [123, 103]. This work has focused on demonstrating examples where

environments are highly structured, and uncertainties in sensing are overlooked. In reality,

robots in the real world will face different sources of uncertainties: 1. errors in system

model and sensor measurements, 2. ambiguity in the position of obstacles in the space,

and 3. varying physical properties of the environment itself. Motion planning algorithms

that consider the collision probability, i.e., chance constraints [94], perform better than

previous methods in such unstructured environments [11, 26].

Previous works on planning under uncertainty using chance constraints have not

guaranteed that states along a given trajectory are collision-free but rather verify that

discrete states satisfy the chance constraints. Furthermore, they bound the obstacles and

the robot to make the optimization tractable, making the probabilistic estimates overly

conservative, leading to winding trajectories. Finally, estimating collision probabilities

utilizing Monte Carlo methods is computationally expensive since the shortest distance

from the robot to the obstacle, i.e., distance-to-collision, has to be evaluated for a large

number of samples.

Ultimately, our goal is to find optimal trajectories that continuously meet chance

81



Figure 6.1. CCGP-MP is a motion planning algorithm for robotic systems under motion
and sensor uncertainty which uses a Gaussian Process to model the variations in distance-
to-collision. The model verifies user-defined chance constraints for trajectory segments in
sampling-based planners.

constraints along an entire trajectory. To this end, we propose the Chance Constrained

Gaussian Process-Motion Planning algorithm (CCGP-MP) that addresses those issues.

We use a Gaussian Process (GP) to model the distribution of distance-to-collision

measures for noisy robotic systems. In turn, we integrate this model with traditional

sampling-based planners to generate trajectories that satisfy a given chance constraint.

Our formulation ensures both the sampled states in a path satisfy the chance-constraint

as well as all the points that lie along the edges connecting the sampled states.

6.1 Related Works

Many existing planning methods are based on using collision probability for planning

under uncertainty [131, 11, 26, 146, 59, 119], while other solutions rely on Markov

Decision Process (MDP) [16] or Partially Observable MDPs (POMDPs) [132]. MDP and

POMDP often need discretization of the state space, and solving an MDP can quickly

82



become computationally intractable for continuous planning domains. In the following

section, we will review a few of the works on estimating collision probability for planning

and recent techniques used for distance estimation.

In [11], the authors find a path by formulating the planning problem as an

optimization problem where the planned states have to satisfy user-defined

chance-constraints while minimizing a cost. Further development of this algorithm [26]

ensured that inter-node trajectories satisfied the chance-constraint but only for obstacles

represented as linear functions. In [146], the authors propose tighter bounds over

ellipsoidal obstacles. For these methods, the number of constraints to solve increases

linearly with the number of obstacles, and for higher dimensions, the number of

constraints grows exponentially. Using a GP model to capture the distance-to-collision

function, we avoid the need to convexify the environment and robot, and irrespective of

the environment’s complexity, a single equation represents the chance constraints.

Another class of methods estimates the probability of collision along a path by

obtaining the robot states’ distribution and choosing one with the least likelihood of a

collision. Linear-Quadratic Gaussian Motion Planning (LQG-MP) [131] method derives a

distribution for the states along a path associated with using a Linear-Quadratic Gaussian

(LQG) controller to stabilize the robot. Although this method can obtain a trajectory

that reduces the probability of collision, as suggested in [15], there is no guarantee that

LQG-MP may find a path because of the finite number of paths generated by RRT.

In [98], the authors propose linear constraints on the distribution of states to obtain a

tighter collision probability. [126] extends the LQG-MP for higher DOF robots, but like

LQG-MP, the method does not have a user-defined chance constraint parameter. All

these methods guarantee safety for discrete states but are intractable to verify safety for

all points on a trajectory.

In [59, 119], the authors use Monte-Carlo simulations to get a more accurate

distribution of states and a more precise collision probability estimate. In [59], the

83



authors use importance sampling to be more data-efficient in their simulation and reduces

the variance of estimates using control variate. [119] extends this work to non-linear

systems for verification of trajectory in an online planning setting. Although these

methods estimate collision probability along a path precisely, they rely on meta planning

algorithms to generate an initial path and, as such, cannot incorporate additional

optimality criteria into the planning problem. CCGP-MP integrates with optimal

planners such as RRT* to solve planning problems with optimality criteria.

Many methods are proposed that use geometric sensors and modeling techniques to

estimate the distance-to-collision [19, 145], and for a brief review, readers can refer to [29],

but none considers the measurement models in unstructured environments. Das and

Yip [29] proposed one of the first techniques that included uncertainties to the distance

measure model. The authors added Gaussian noise to the distance measure but did not

consider the effect of state estimation uncertainty while modeling the distribution.

6.2 CCGP-Motion Planning

In this section, we define our problem and the assumption we make and introduce

the building blocks of CCGP-MP.

6.2.1 Problem Definition

Let the state, control, and observation space be defined as X ⊆ Rnx ,U ⊆ Rnu , and

Z ⊆ Rnz respectively. For a given start position (xstart ∈ X ) and goal region (Xgoal ⊂ X ),

the objective is to find a trajectory that satisfies a user-defined collision constraint. A

trajectory Π, defined as a sequence of states {x0, x1, . . . , xN}, is considered a solution if

x0 = xstart, xn ∈ Xgoal, and all the points that connect state xi and xi+1 also satisfy the

given collision chance constraint. We assume that for planning the states are sampled in a

subspace X ⊂ X , where the system’s velocities are zero. The problem can be further

expanded by enforcing optimality criteria to the sequence of states, such as reducing path

84



length. In the subsequent sections, we detail our solution for this problem.

6.2.2 Motion and Observation Model

Throughout this paper, we will suppose that we have a nonlinear dynamics and

observation model give by:

xt+1 = f(xt, ut) + v(mt) mt ∼ N (0,M) (6.1a)

zt+1 = h(xt) + nt nt ∼ N (0, N) (6.1b)

where xt, xt+1 ∈ X , ut ∈ U , zt ∈ Z, mt and nt are the process noise sampled from a

Gaussian distribution with variance M ∈ Rnx×nx and N ∈ Rnz×nz respectively, and vt

additive noise to the motion model at time t. Standard filter techniques are used to keep

track of the state estimate x̂t of the true state xt. In [1], the authors show that under

certain conditions, for a system given by (6.1), an LQG controller can drive the system to

any point x ∈ X starting from any Gaussian distribution. The authors also show that the

estimated distribution of states converges to a unique deterministic stationary covariance.

We use such a controller for trajectory tracking.

6.2.3 Gaussian Process Distance Model

The shortest distance to a collision is modeled probabilistically over the entire

state-space using a GP. Given a model of the environment, a GP is constructed from

sampled data by randomly moving the robot model around in the environment model and

searching for the distance-to-collision using a geometric method for each estimated state.

In a similar fashion to [29], the distance-to-collision is evaluated using the

Gilbert–Johnson–Keerthi (GJK) method, though any available geometric method can be

used in practice.

Given a prior number of samples N , the set of states X = {x1, x2, . . . , xN}, and the

85



Figure 6.2. Left: An example of a trajectory in X. It is parameterized using s where
s = 0 and s = 1 represent the start and end position. Right: The corresponding mean
and standard deviation of distance-to-collision (d∗), given by (6.2), for points along the
trajectory (s).

corresponding distance-to-collision from the estimated states, d = {d1, d2, . . . , dN}, are

used to model the GP. Note that the subscript does not represent a sequence in time,

rather a random mix of samples from various trajectories. This data captures the

variation in distance-to-collision measure due to uncertainty in the motion and

observation model (See Fig. 6.2 for an example of a trajectory in X and corresponding

distance-to-collision distribution). Given data points X and associated distance measure

d, for a state x∗ the distribution of distance-to-collision, d∗, is given by:

d∗ | X,d,x∗ ∼ N (E[d∗]),V[d∗]) (6.2)

E[d∗] ≜ K(x∗, X)[K(X,X) + σ2I]−1d (6.3)

V[d∗] = K(x∗,x∗) (6.4)

−K(x∗, X)[K(X,X) + σ2I]−1K(X,x∗)

where K is a stationary kernel function and σ2 represents the variance of the observed

86



distance measure. For the sake of brevity, we represent the vector K(x∗, X) as k(x∗), the

matrix K(X,X) as K, and the scalar K(x∗,x∗) as k∗. The kernel function K belongs to

the class of covariance functions [111, Chapter 4] and is chosen based on the application.

A Radial Basis Function (RBF) kernel is popular in most applications, though [28]

demonstrates that a forward kinematics kernel provides sparser and more accurate models

for robot manipulators.

6.2.4 Chance Constraints

The collision probability constraint for the state, x∗ ∈ X , of the robot can be

represented using the distance measure d∗, where

P(x∗ is in collision) ≤ δ =⇒ P(d∗ < 0) ≤ δ (6.5)

This probabilistic constraint can be converted to a deterministic constraint as given

in [11], where

P(d∗ < 0) ≤ δ ⇐⇒ E[d∗]√
2V[d∗]

≥ c (6.6)

c = erf−1(1− 2δ) (6.7)

and where erf(z) is the Gaussian error function. The ratio of mean to standard deviation

in (6.6) is defined as function g given by:

g(x∗) ≜
k(x∗)T [K + σ2I]−1d

(2(k∗ − k(x∗)T [K + σ2I]−1k(x∗)))
1
2

(6.8)

6.2.5 CONNECT Function

In sampling-based planners, which include popular approaches such as the many

variations of Rapidly Exploring Random Trees (RRTs) and Probabilistic Roadmaps

87



(PRMs), there exists a function that verifies if an edge can connect two nodes by checking

if the points on the edge satisfy a set of constraints. In our work, we are calling these

functions CONNECT functions. In traditional planners, the CONNECT function checks for

collision by subsampling the edge and evaluating if each point is collision-free. For

probabilistic planners, the CONNECT function needs to ensure that all the points on the

edge satisfy the chance constraints. To verify if an edge from state x1 to state x2 meets

the given constraints, the condition defined in (6.5) must hold for all points on the edge.

We can verify this by checking if the global minimum of (6.8) satisfies the constraint from

(6.6) for the path segment:

ĉ ≥ c, ĉ = inf
x∗∈s(x1,x2)

g(x∗) (6.9)

and s(x1,x2) represents the trajectory between x1 and x2.

6.2.6 Simplicial Homology Global Optimization

To find the global minima of the function g(x∗) we use the Simplicial Homology

Global Optimization (SHGO) algorithm as proposed in [39]. SHGO is a global

optimization technique that exploits the objective function’s topography to identify

sub-domains where the global minimum may lie.

The method samples the objective function by a predetermined number of samples

and constructs a simplicial complex H. The simplicial complex H can be conceived as a

directed graph, where the vertices represent the value of the objective function at the

sampled points and the directed edges point towards the vertex with a higher objective

value. In [28], a vertex vi is defined as a local minimizer if all the edges connected to vi

are directed away. A minimizer set, M, is formed with all such local minimizers. st(vi)

defines a new space called the star of a vertex vi as the set of points Q such that every

simplex containing Q contains vi. The global minimum is found by searching through

88



each sub-domain, st(vi), for all vi ∈M. The authors prove that the cardinality of M

remains unchanged with increasing samples, i.e., the number of regions to search for the

global minimum does not change with increasing samples. The following theorem

guarantees a stationary point in each of these sub-domains:

Theorem 1. Given a minimizer vi ∈M ⊆ H on the surface of a continuous, Lipschitz

smooth objective function f with a compact bounded domain in Rn and range R, there

exist at least one stationary point of f within the domain defined by st(vi) [39].

Thus if the objective function is Lipschitz smooth and an adequate number of

samples is given, SHGO is able to converge to the global minimum.

In our situation, to use SHGO to identify the global minimum, we show that (6.8) is

Lipschitz smooth. (6.8) can be re-written as a composition of two functions,

g(x∗) = q ◦ k(x∗). For simplicity, we assume k∗ to be 1. First, we show that the function

q is Lipschitz continuous.

Lemma 1. For k ∈ [0, 1]n, K ⪰ 0 and σ > 0, the function q(k) given by

q(k) =
kT (σ2I + K)−1d

(2(1− kT (σ2I + K)−1k))1/2
(6.10)

satisfies the Lipschitz condition:

∥q(k1)− q(k2)∥ ≤ Lq∥k1 − k2∥ (6.11)

Lq=
∥(σ2I + K)−1d∥√

2

(
1

1− λmaxn

)3/2

(6.12)

where λmax is the largest eigenvalue of (Iσ2 + K)−1, and k1,k2 ∈ [0, 1]n.

89



Proof. For k1,k2 ∈ [0, 1]n, we can write ∥q(k1)− q(k2)∥ as:

∥q(k1)− q(k2)∥ =

∥∥∥∥ k1
T (σ2I + K)−1d

(2(1− k1
T (σ2I + K)−1k1))1/2

(6.13)

− k2
T (σ2I + K)−1d

(2(1− k2
T (σ2I + K)−1k2))1/2

∥∥∥∥
Let M = (σ2I + K)−1. Since K is a Gram matrix of a covariance function, the matrix M

is positive definite and symmetric [111, Chapter 4]. Hence we can simplify (6.13) as:

(6.13) ≤
∥∥∥∥ k1

(1− k1
TMk1)1/2

− k2

(1− k2
TMk2)1/2

∥∥∥∥ ∥Md∥√
2

(from Cauchy-Schwarz inequality)

≤

∥∥∥∥∥k1

(
1 +

∞∑
m=1

(k1
TMk1)m

m!

m−1∏
i=0

(
1

2
+ i

))

−k2

(
1 +

∞∑
m=1

(k2
TMk2)m

m!

m−1∏
i=0

(
1

2
+ i

))∥∥∥∥∥ ∥Md∥√
2

(from (A.1) in Appendix)

≤

∥∥∥∥∥k1 − k2 +
∞∑

m=1

(k1
TMk1)mk1 − (k2

TMk2)mk2

m!

m−1∏
i=0

(
1

2
+ i

)∥∥∥∥∥ ∥Md∥√
2

≤

(
∥k1 − k2∥+

∞∑
m=1

∥∥k1∥2mM k1 − ∥k2∥2mM k2∥
m!

m−1∏
i=0

(
1

2
+ i

))
∥Md∥√

2

(from triangle inequality)

≤ ∥k1 − k2∥
∥Md∥√

2(
1 +

∞∑
m=1

(1 + 2m)(λmaxn)m

m!

m−1∏
i=0

(
1

2
+ i

))

90



(from Lemma 4 in Appendix)

≤ ∥k1 − k2∥
∥Md∥√

2(
1 +

∞∑
m=1

(λmaxn)m

m!

m−1∏
i=0

(
1

2
+ i

)

+2
∞∑

m=1

m(λmaxn)m

m!

m−1∏
i=0

(
1

2
+ i

))

≤ ∥k1 − k2∥
∥Md∥√

2

(
1

(1− λmaxn)1/2
+

2
λmaxn

2(1− λmaxn)3/2

)
(from (A.2) and (A.3) in Appendix)

≤ ∥k1 − k2∥
∥Md∥√

2

(
1

1− λmaxn

)3/2

Using Lemma 1, we can show that (6.8) is Lipschitz continuous for a Lipschitz

continuous kernel function k.

Theorem 2. For a Lipschitz continuous kernel k, (6.8) satisfies the Lipschitz condition.

∥q ◦ k(x1)− q ◦ k(x2)∥ ≤ LqLk∥x1 − x2∥ (6.14)

where Lk is the Lipschitz constant for the kernel function.

Thus for planning, the CONNECT function within sampling-based planners finds the

global minimum of (6.8) using SHGO and verifies that the user-defined chance constraints

are satisfied for the given segment.

91



Figure 6.3. We compare the success rate and path length of the planned paths for the
Linear model. Left: The quartile plot compares the success rate for a planning problem
without any optimality criteria. Center: The quartile plot compares the success rate for a
planning problem with added optimality criteria for reducing path length. Right: The
quartile plot compares the length for the same set of start and goal pairs for different δ
values. The plans generated by CCGP-MP and CCGP-MP* are robust to motion and
sensor noise, and CCGP-MP* generates shorter paths than LQG-MP.

6.3 Experiments

To evaluate the CCGP-MP technique’s performance, we tested it on two noisy robot

models - a Linear and a Dubins Car model. We explored the planner’s performance for

200 random start and goal pairs for different δ values on randomly generated environments

of blocks and circles. Next, to investigate the effects of the increased number of obstacles

in the environment on the planning time and accuracy, we evaluated CCGP-MP for the

Linear system on 6 randomly generated environments for 10 random start and goal pairs.

In addition to these simulated test environments, we assessed the Dubins Car model in a

realistic indoor environment taken from the Gibson Environment suite [139].

In our experiments, we report the δ values used as percentages, since from our

definition in (6.5), it represents the upper bound of the probability measure of a state in a

collision. For each robot, 2000 state-distance pairs sampled randomly in the environment,

and a RBF kernel are used to define the GP model. To measure the distance to a collision

for sampled states, GJK was used over the map. Each planned path’s performance was

92



Figure 6.4. The top row shows the plans generated for different start and goal pairs for
the Linear model, while the bottom row does the same for the Dubins Car model. The
goals are marked using a black circle for the Linear model and a black arrow for the Dubins
Car model. CCGP-MP* deviates from the RRT* planner to satisfy chance constraints.

evaluated for 100 trials using a Linear Quadratic Regulator (LQR) based trajectory

following controller. A trial was concluded to be successful if the robot could reach the

goal region without colliding with any obstacles. We used the Open Motion Planning

Library (OMPL) [124] to implement the RRT and RRT* planners. We integrated the

93



Figure 6.5. Left and Center: Two examples of path roll-outs for RRT* and CCGP-MP*
for a noisy Dubins Car model. The robot collides with the obstacle while executing the
path from RRT* (green), while the trajectory generated by CCGP-MP* operates without
collision. Right: The quartile plot comparing the success rate of planned paths for random
start and goal pairs for a noisy Dubins Car model.

CONNECT function for both RRT and RRT* planners and called the resulting planners

CCGP-MP and CCGP-MP*, respectively. All experiments were written in the Python

Programming Language and executed on an AMD Ryzen 2950x CPU with 32GB of RAM.

In this section, we provide details of our experiment setup and report our results.

6.3.1 Linear Model

The first system we tested was a simple 2D model (see Fig. 6.4 top row). As the

robot is symmetric about its base, we plan in the R2 space. The discrete-time dynamics

model of the system is given by:

f(x,u) = x + u + m, m ∼ N(0, 0.1I) (6.15a)

z = f(x,u) + n n ∼ N(0, 0.01I) (6.15b)

The LQG controller used a Kalman Filter for state estimation and an infinite horizon

LQR for generating the control signal.

94



6.3.2 Dubins Model

We also tested CCGP-MP on a Dubins Car model whose dynamics is described by:

f(x, u) = x +


v
u
(− sin(θ) + sin(θ + τu))τ

v
u
(cos(θ)− cos(θ + τu))τ

uτ

 (6.16a)

where τ is the time step, and v is the linear velocity of the car. The state x =

[
x y θ

]
and control u = ω where (x, y) represents the position, θ the orientation, and ω the robot’s

angular velocity. The noisy motion model is implemented as described in [129] with linear

and angular velocity noise sampled from from N (0, 0.1), and rotation noise sampled from

N (0, 5◦) . The boundary value problem of connecting the sampled state was solved using

Dubins curves. An Extended Kalman Filter was used to estimate the robot state, and

similar to [1], and a time-varying LQG controller was used to track the trajectory.

6.3.3 Experiment Results

We compared CCGP-MP against the RRT planner and the Linear Quadratic

Gaussian-Motion Planning (LQG-MP) algorithm for the Linear system in a simulated

environment. Fig. 6.3 (center) compares the planner’s performance with an added

optimality criteria of finding the path with the shortest length, and Fig. 6.3 (right)

reports the corresponding path length. From Fig. 6.3 (left) and (center), it is evident that

considering uncertainties while planning has a significant impact on the success rate of the

trajectories. The variance of the success rate for CCGP-MP reduces with decreased δ.

The CCGP-MP and CCGP-MP* planner have an equivalent or lower standard deviation

of success-rate than LQG-MP for lower thresholds. The better performance for the CCGP

methods is because they ensure all intermediate points on a path satisfy the

chance-constraint while LQG-MP does not have such guarantees.

95



Figure 6.6. Left: The trajectories generated by RRT* (red) and CCGP-MP* (5%)
(blue) for a start (orange sphere) and goal (green sphere) pair in a real-world environment.
Right: The histogram comparing the minimum distance-to-collision distribution for 500
trajectories for the adjacent path. As formulated, less than 5% of the paths collide with
an obstacle for CCGP-MP*.

Fig. 6.3 (right) reports the length of paths generated by the different planners for the

same set of start and goal pairs. The paths generated by CCGP-MP* are shorter

compared to the paths generated by LQG-MP. CCGP-MP* is able to generate optimal

paths because the underlying planner of CCGP-MP* uses the RRT* algorithm, which is

an asymptotically optimal planner [67] that makes no assumptions on the CONNECT

function. Fig. 6.4, plots the different plans generated by RRT*, LQG-MP, and

CCGP-MP* for a random start and goal point. From the image, we may infer that

CCGP-MP* deviates from the RRT* plan where the chance constraints are not met,

which results in better accuracy for these paths. In comparison, the paths from RRT*,

although shorter, would result in multiple failures during execution because of the noisy

robot motion. The paths from LQG-MP, on the other hand, although safer, are not

optimal.

For the Dubins Car model, we compared CCGP-MP* with RRT*. We did not

consider the LQG-MP algorithm for this experiment since it does not explicitly solve the

shortest path problem. As expected, CCGP-MP* has a much lower standard deviation of

96



the success rate than RRT* (See Fig. 6.5 (right)). Fig. 6.5 reveals the reason for this

improvement. The path planned by CCGP-MP* avoids the obstacles, even with the noisy

robot model, while for the RRT* plan, the robot hits the obstacle. In Fig. 6.4, we

compare the paths generated by CCGP-MP* and RRT*, and like the Linear model, the

CCGP-MP* deviates from the RRT* plan when chance-constraints are not met.

The results of the study on environment density on planning time and accuracy are

summarized in Table 6.1. The start and goal pairs were sampled from independent

normal distributions with fixed means and 0.5 standard deviations. This distribution was

fixed for all the environments. Apart from planning time, we also recorded the time taken

by SHGO to find the global minimum for 50 random path segments. The GP model used

for each environment had an equal number of support points, resulting in almost similar

edge evaluation times. The overall planning time increases with the number of obstacles

in space since the planner has to search more to find a feasible solution. We also observed

that path accuracy was inversely proportional to the number of objects. The drop in

accuracy could be attributed to the fact that more path segments are closer to the set

threshold with a denser environment, thus decreasing the overall accuracy of the path.

Table 6.1. Study of number of obstacles on planning performance

Number of Edge Evaluation Planning Time Median Accuracy
Obstacles Time (sec) Time (min) (%)

10 0.397 ± 0.058 2.38 ± 1.27 81.0
14 0.394 ± 0.043 1.87 ± 1.13 74.5
18 0.393 ± 0.061 2.39 ± 1.18 72.0
22 0.385 ± 0.058 3.28 ± 2.07 43.0
26 0.401 ± 0.061 4.70 ± 2.34 59.5
30 0.406 ± 0.052 4.36 ± 2.59 67.0

In addition to the simulated environment, we tested our planner on an indoor

environment from the Gibson suite [139]. Fig. 6.6 (left) shows the trajectory generated by

the RRT* and CCGP-MP* (5%) for a single start and goal pair. Fig. 6.6 (right) shows

97



the minimum distance to collision for each trajectory evaluated across 500 runs. For RRT,

16.4% of the trajectories have the distance-to-collision less than zero, while for CCGP-MP,

only 2.4% of the trajectories have distance-to-collision less than zero. The value for

CCGP-MP* also satisfies the delta threshold set for the planner, which is 0.05.

6.4 Discussion

In this chapter, we introduced the Chance Constrained Gaussian Process Motion

Planning, a chance-constrained motion planning approach that uses modeled

distance-to-collision functions to plan in unstructured environments. Through the

modeled distribution function, the planner guarantees that all states along the trajectory

satisfy the given chance constraints. Simulation results on two robot systems showed that

CCGP-MP and CCGP-MP* were able to generate paths that improved the planned

path’s success rate.

One of the few limitations of our work lies in approximating distance-to-collision

distribution as a Gaussian distribution. This simplification may not apply to some robotic

systems. Another limitation centers around the scaling up of planning space. For larger

maps, we require more support points to model our GP. For a large number of

points(>10000), the kernel matrix requires a considerable amount of memory [111,

Chapter 8], and the linear equations that need solving for inference becomes

computationally intensive. One way to overcome these limitations is to use sparse GP

models. One could even construct local GP models for larger maps similar to [136].

6.5 Acknowledgement

Chapter 6, in part, is a reprint of material from J. J. Johnson and M. C. Yip,

”Chance-Constrained Motion Planning using Modeled Distance- to-Collision Functions,”

2021 IEEE 17th International Conference on Automation Science and Engineering

98



(CASE) pp. 1582-1589, doi:10.1109/CASE49439.2021.9551655. The dissertation author is

the primary author of this paper.

99



Chapter 7

Conclusion

In this thesis, we have demonstrated the remarkable potential of transformers in

revolutionizing motion planning. Unlike traditional methods that often require

customizing models for specific environments, our novel approach, as presented in this

thesis, offers unrivaled adaptability. We have shown that our methods can seamlessly

extend to a wide array of diverse environments without the need for time-consuming

fine-tuning or retraining. This exceptional generalizability simplifies the implementation

process and opens up new horizons in tackling intricate challenges, such as constraint

planning. By leveraging the power of transformers, we have significantly enhanced the

versatility and efficiency of motion planning, paving the way for more effective and

adaptable solutions to complex real-world problems.

Using VQ-MPT, we demonstrated the adaptability of the transformer model,

showcasing its capabilities to plan for robots with both 7D and 14D configurations

effectively. However, the extension to even larger planning spaces, such as a 36D

humanoid robot, presents new challenges, particularly in determining the optimal number

of dictionary values for effective quantization. Furthermore, we encountered limitations in

cluttered scenes where the VQ-MPT model struggles to represent the environment

succinctly. To address these issues, future research endeavors could delve into a more

theoretical approach for defining the number of dictionary vectors and explore the

100



application of sparse transformers [116, 8] to encode complex and cluttered environments,

thus enhancing the versatility and robustness of our planning system.

Our planners are designed with the assumption of perfect environmental information.

However, due to sensor and environment uncertainties, a planned path may still encounter

collisions due to discrepancies between the anticipated obstacle positions and the robot’s

actual path. Although CCGP-MP deals with such uncertainties for SE(2) robots, for

robots with higher planning spaces, the model requires a more significant number of

support points. With support points exceeding 10,000, the kernel matrix consumes a

significant amount of memory, as highlighted in [111, Chapter 8], and solving the linear

equations for inference becomes computationally expensive. To mitigate these challenges,

one promising approach is the utilization of sparse GP models. It’s even possible to

construct local GP models for larger maps, akin to the methodology proposed in [136].

In motion planning, our approach can be applied in several exciting avenues for

future exploration and innovation. One promising direction involves extending the

transformer models to motion planning of systems with dynamics, offering the potential

to enhance the efficiency and adaptability of such systems. Using the quantized model, we

can reduce the search space by learning reachable sets and identifying self-collision-free

states. This development holds the promise of significantly expediting the planning

process. The transformer-based approach could also be harnessed for more intricate

systems, such as multi-robot arm configurations like the ABB Yumi and Intuitive’s da

Vinci®Surgical System, offering a versatile approach to solving complex, real-world

challenges in robotics and automation.

An intriguing avenue for applying this approach is in the domain of task and motion

planning (TAMP). Within TAMP, a critical element in any task is the construction of

individual trajectories. If we consider robot configurations as ”words” and trajectories as

”sentences,” we can liken solving TAMP problems to generating coherent paragraphs (Fig.

7.1. This thesis lays the foundation for learning such models. Consequently, there is

101



Figure 7.1. In this thesis, we have defined a set of words using vector quantization (Left)
and constructed trajectories using this sequence of words (Center). Future works could
look at how these sentences can be stitched together to complete complex TAMP problems
(Right).

substantial room for further exploration and development to investigate how this

approach can be effectively harnessed for TAMP problem-solving. Moreover, with the

ongoing advancements in semantic models that exhibit a superior understanding of

complex scenes [75, 77], integrating such models with our planner holds the potential to

enhance the capabilities of TAMP systems further.

102



Appendix A

Additional Proofs for Chance Con-
straint Planning

For x ∈ [0, 1], the Taylor series expansion of 1

(1−ax)
1
2

about 0 is given by:

1

(1− ax)
1
2

= 1 +
∞∑

m=1

(ax)m

m!

m−1∏
j=0

(
1

2
+ j) (A.1)

Using simple calculus, we can show that:

1 +
∞∑

m=1

am

m!

m−1∏
j=0

(
1

2
+ j) =

1

(1− a)
1
2

(A.2)

∞∑
m=1

mam

m!

m−1∏
j=0

(
1

2
+ j) =

a

2(1− a)
3
2

(A.3)

Lemma 2. For x1,x2 ∈ [0, 1]n and a positive definite symmetric matrix M we have ,

|x1
TMx1 − x2

TMx2| ≤ 2λmax

√
n∥x1 − x2∥ (A.4)

where λmax is the maximum eigenvalue of M .

103



Proof. Since M is symmetric, we can expand (A.4) as

|x1
TMx1 − x2

TMx2| = |(x1 − x2)TM(x1 + x2)|

≤ λmax∥x1 − x2∥∥x1 + x2∥

≤ 2λmax∥x1 − x2∥
√
n

Lemma 3. For x1,x2 ∈ [0, 1]n , a symmetric positive definite matrix M and m ∈ N we

have,

|(x1
TMx1)m − (x2

TMx2)m| ≤ 2√
n
m(nλmax)m∥x1 − x2∥ (A.5)

where λmax is the maximum eigen value of M .

Proof. The polynomial equation xm − ym can be expressed as follows:

xm − ym = (x− y)(xm−1 + xm−2y + . . . + ym−1) (A.6)

Let xi
TMxi = ∥xi∥2M for i ∈ {0, 1} we can express (A.5) in the same fashion as above,

|∥x1∥2
m

M − ∥x2∥2
m

M | = |(∥x1∥2M − ∥x2∥2M)(∥x1∥2
(m−1)

M (A.7)

+∥x1∥2
(m−2)

M ∥x2∥2M + . . . + ∥x2∥2
(m−1)

M )∥

Since xi ∈ [0, 1]n we can write ∥xi∥2M ≤ λmaxn for i ∈ {0, 1}, where λmax is the largest

eigen value of M . Using this bound we can simplify (A.7) as follows:

(A.7) ≤ |∥x1∥2M − ∥x2∥2M |m(λmaxn)m−1

≤ 2
√
nλmax∥x1 − x2∥m(λmaxn)m−1

(from Lemma 2)

104



≤ 2√
n
m(λmaxn)m∥x1 − x2∥

Lemma 4. For x1,x2 ∈ [0, 1]n, a symmetric positive definite matrix M and m ∈ N we

have:

∥(x1
TMx1)mx1−(x2

TMx2)mx2∥ ≤ (A.8)

(1 + 2m)(λmaxn)m∥x1 − x2∥

where λmax is the largest eigenvalue of M .

Proof. We can simplify (A.8) using Lemma 3.

∥ ∥x1∥2mM x1 − ∥x2∥2mM x2 ∥ =

∥ ∥x1∥2mM (x1 − x2) + (∥x1∥2mM − ∥x2∥2mM )x2 ∥

≤ ∥ ∥x1∥2mM (x1 − x2) ∥+ ∥ (∥x1∥2mM − ∥x2∥2mM )x2 ∥

≤ (λmaxn)m∥x1 − x2∥+
√
n

2√
n
m(λmaxn)m∥x1 − x2∥

(from Lemma 3)

≤ (1 + 2m)(λmaxn)m∥x1 − x2∥

105



Bibliography

[1] Ali Agha-mohammadi, Suman Chakravorty, and Nancy M Amato. Firm:
Sampling-based feedback motion-planning under motion uncertainty and imperfect
measurements. Int. J. of Robot. Res., 33(2):268–304, 2014.

[2] Oktay Arslan, Karl Berntorp, and Panagiotis Tsiotras. Sampling-based algorithms
for optimal motion planning using closed-loop prediction. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 4991–4996,
2017.

[3] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap,
Piotr Mirowski, Alexander Pritzel, Martin Chadwick, Thomas Degris, Joseph
Modayil, Greg Wayne, Hubert Soyer, Fabio Viola, Brian Zhang, Ross Goroshin, Neil
Rabinowitz, Razvan Pascanu, Charlie Beattie, Stig Petersen, and Dharshan
Kumaran. Vector-based navigation using grid-like representations in artificial
agents. Nature, 557, 05 2018.

[4] Holger Banzhaf, Paul Sanzenbacher, Ulrich Baumann, and J. Marius Zöllner.
Learning to predict ego-vehicle poses for sampling-based nonholonomic motion
planning. CoRR, abs/1812.01127, 2018.

[5] Ulrich Baumann, Claudius Guiser, Serge Herman, and Johann Marius Zöllner.
Predicting ego-vehicle paths from environmental observations with a deep neural
network. 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 1–9, 2018.

[6] Patrick Beeson and Barrett Ames. Trac-ik: An open-source library for improved
solving of generic inverse kinematics. In 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), pages 928–935, 2015.

[7] Bradley M. Bell and James V. Burke. Algorithmic differentiation of implicit
functions and optimal values. In Christian H. Bischof, H. Martin Bücker, Paul
Hovland, Uwe Naumann, and Jean Utke, editors, Advances in Automatic
Differentiation, pages 67–77, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[8] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
transformer, 2020.

106



[9] Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner. Task space regions: A
framework for pose-constrained manipulation planning. The International Journal
of Robotics Research, 30(12):1435–1460, 2011.

[10] John T. Betts, Samuel K. Eldersveld, Paul D. Frank, and John G. Lewis. An
interior-point algorithm for large scale optimization. In Lorenz T. Biegler, Matthias
Heinkenschloss, Omar Ghattas, and Bart van Bloemen Waanders, editors,
Large-Scale PDE-Constrained Optimization, pages 184–198, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

[11] L. Blackmore, M. Ono, and B. C. Williams. Chance-constrained optimal path
planning with obstacles. IEEE Trans. on Robot., 27(6):1080–1094, 2011.

[12] Riccardo Bonalli, Abhishek Cauligi, Andrew Bylard, Thomas Lew, and Marco
Pavone. Trajectory optimization on manifolds: A theoretically-guaranteed
embedded sequential convex programming approach. In Antonio Bicchi, Hadas
Kress-Gazit, and Seth Hutchinson, editors, Robotics: Science and Systems XV,
University of Freiburg, Freiburg im Breisgau, Germany, June 22-26, 2019, 2019.

[13] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle avoidance for
mobile robots. IEEE Trans. on Robotics and Auto., 1991.

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, 2020.

[15] A. Bry and N. Roy. Rapidly-exploring random belief trees for motion planning
under uncertainty. In 2011 IEEE Int. Conf. Robot. and Automation, pages 723–730,
2011.

[16] W. Burgard, O. Brock, and C. Stachniss. The Stochastic Motion Roadmap: A
Sampling Framework for Planning with Markov Motion Uncertainty, pages 233–240.
The MIT Press, 2008.

[17] Constantinos Chamzas, Zachary Kingston, Carlos Quintero-Peña, Anshumali
Shrivastava, and Lydia E. Kavraki. Learning sampling distributions using local 3d
workspace decompositions for motion planning in high dimensions. In IEEE Int.
Conf. on Robot. and Autom., 2021.

[18] Devendra Singh Chaplot, Deepak Pathak, and Jitendra Malik. Differentiable spatial
planning using transformers. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of

107



Proceedings of Machine Learning Research, pages 1484–1495. PMLR, 18–24 Jul
2021.

[19] J. Chase Kew, Brian Ichter, Maryam Bandari, Tsang-Wei Edward Lee, and
Aleksandra Faust. Neural collision clearance estimator for batched motion planning.
In Algorithmic Found. of Robot. XIV, pages 73–89, 2021.

[20] Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, and Le Song. Learning to
plan in high dimensions via neural exploration-exploitation trees. In Int. Conf. on
Learning Representations, ICLR, 2020.

[21] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer:
Reinforcement learning via sequence modeling. In Advances in Neural Information
Processing Systems, 2021.

[22] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets
with sublinear memory cost, 2016.

[23] Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis.
Learning navigation behaviors end to end. CoRR, abs/1809.10124, 2018.

[24] Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora, Ashish Kapoor, Gireeja
Ranade, Sebastian Scherer, and Debadeepta Dey. Data-driven planning via
imitation learning. The International Journal of Robotics Research,
37(13-14):1632–1672, 2018.

[25] D.M. Coleman, Ioan Alexandru Sucan, Sachin Chitta, and Nikolaus Correll.
Reducing the barrier to entry of complex robotic software: a moveit! case study.
ArXiv, abs/1404.3785, 2014.

[26] M. d. S. Arantes, C. F. M. Toledo, B. C. Williams, and M. Ono. Collision-free
encoding for chance-constrained nonconvex path planning. IEEE Trans. on Robot.,
35(2):433–448, 2019.

[27] Nikhil Das and Michael Yip. Learning-based proxy collision detection for robot
motion planning applications. IEEE Trans. on Robotics, 2020.

[28] Nikhil Das and Michael C. Yip. Forward kinematics kernel for improved proxy
collision checking. IEEE Robot. and Automat. Lett., 5(2):2349–2356, 2020.

[29] Nikhil Das and Michael C. Yip. Stochastic modeling of distance to collision for
robot manipulators. IEEE Robot. and Automat. Lett., 6(1):207–214, 2021.

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2019.

108



[31] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Path
planning for autonomous vehicles in unknown semi-structured environments. The
International Journal of Robotics Research, 29(5):485–501, 2010.

[32] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference on
Learning Representations, 2021.

[33] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In Int. Conf. on Learning
Representations, 2021.

[34] Anca D. Dragan, Nathan D. Ratliff, and Siddhartha S. Srinivasa. Manipulation
planning with goal sets using constrained trajectory optimization. In 2011 IEEE
International Conference on Robotics and Automation, pages 4582–4588, 2011.

[35] L. E. Dubins. On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal
of Mathematics, 1957.

[36] Lester E. Dubins. On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents.
American Journal of Mathematics, 79:497, 1957.

[37] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia.
Incorporating second-order functional knowledge for better option pricing. In
Advances in Neural Information Processing Systems, 2000.

[38] Scott Emmons, Ajay Jain, Misha Laskin, Thanard Kurutach, Pieter Abbeel, and
Deepak Pathak. Sparse graphical memory for robust planning. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 5251–5262. Curran Associates,
Inc., 2020.

[39] Stefan C. Endres, Carl Sandrock, and Walter W. Focke. A simplicial homology
algorithm for lipschitz optimisation. J. of Global Optim., 72(2):181–217, Oct 2018.

[40] Peter Englert, Isabel Rayas Ferná ndez, Ragesh Ramachandran, and Gaurav
Sukhatme. Sampling-based motion planning on sequenced manifolds. In Robotics:
Science and Systems XVII. Robotics: Science and Systems Foundation, jul 2021.

[41] Aleksandra Faust, Kenneth Oslund, Oscar Ramirez, Anthony Francis, Lydia Tapia,
Marek Fiser, and James Davidson. Prm-rl: Long-range robotic navigation tasks by

109



combining reinforcement learning and sampling-based planning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 5113–5120.
IEEE, 2018.

[42] Adam Fishman, Adithyavairavan Murali, Clemens Eppner, Bryan Peele, Byron
Boots, and Dieter Fox. Motion policy networks. In 6th Annual Conference on Robot
Learning, 2022.

[43] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach
to collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

[44] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. Informed
RRT*: Optimal sampling-based path planning focused via direct sampling of an
admissible ellipsoidal heuristic. In Int. Conf. on Intelligent Robots and Systems,
2014.

[45] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. Batch
informed trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs. In 2015 IEEE Int. Conf. Robot.
Autom., 2015.

[46] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
Convolutional sequence to sequence learning. In Proceedings of the 34th
International Conference on Machine Learning - Volume 70, ICML’17, page
1243–1252. JMLR.org, 2017.

[47] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision, pages 1440–1448, 2015.

[48] Lars Grüne and Jürgen Pannek. Nonlinear Model Predictive Control, pages 43–66.
Springer London, London, 2011.

[49] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[50] Taylor A. Howell, Brian E. Jackson, and Zachary Manchester. Altro: A fast solver
for constrained trajectory optimization. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 7674–7679, 2019.

[51] Humphrey Hu and George Kantor. Parametric covariance prediction for
heteroscedastic noise. In Int. Conf. on Intelligent Robots and Systems (IROS), 2015.

[52] Jiaming Hu, Akanimoh Adeleye, and Henrik I. Christensen. Place-and-pick-based
re-grasping using unstable placement. In Robotics Research, 2023.

110



[53] Chia-Man Hung, Shaohong Zhong, Walter Goodwin, Oiwi Parker Jones, Martin
Engelcke, Ioannis Havoutis, and Ingmar Posner. Reaching through latent space:
From joint statistics to path planning in manipulation. IEEE Robotics and
Automation Letters, 7(2):5334–5341, 2022.

[54] Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions
for robot motion planning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 7087–7094. IEEE, 2018.

[55] Brian Ichter and Marco Pavone. Robot motion planning in learned latent spaces.
IEEE Robotics and Auto. Letters, 2019.

[56] L. Jaillet and J.M. Porta. Efficient asymptotically-optimal path planning on
manifolds. Robotics and Autonomous Systems, 2013.

[57] Léonard Jaillet and Josep M. Porta. Path planning under kinematic constraints by
rapidly exploring manifolds. IEEE Transactions on Robotics, 29(1):105–117, 2013.

[58] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one
big sequence modeling problem. In Advances in Neural Information Processing
Systems, 2021.

[59] Lucas Janson, Edward Schmerling, and Marco Pavone. Monte carlo motion
planning for robot trajectory optimization under uncertainty. In Robot. Res.:
Volume 2, pages 343–361, 2018.

[60] Jacob J. Johnson, Uday S. Kalra, Ankit Bhatia, Linjun Li, Ahmed H. Qureshi, and
Michael C. Yip. Motion planning transformers: A motion planning framework for
mobile robots, 2021.

[61] Jacob J. Johnson, Linjun Li, Fei Liu, Ahmed H. Qureshi, and Michael C. Yip.
Dynamically constrained motion planning networks for non-holonomic robots. In
2020 IEEE/RSJ Int. Conf. Intell. Robots and Systems, pages 6937–6943, 2020.

[62] Jacob J. Johnson, Linjun Li, Fei Liu, Ahmed H. Qureshi, and Michael C. Yip.
Dynamically constrained motion planning networks for non-holonomic robots. In
Int. Conf. on Intelligent Robots and Systems (IROS), 2020.

[63] Jacob J Johnson, Ahmed H Qureshi, and Michael Yip. Learning sampling
dictionaries for efficient and generalizable robot motion planning with transformers,
2023.

[64] Jacob J. Johnson and Michael C. Yip. Chance-constrained motion planning using
modeled distance- to-collision functions. In Int. Conf. on Auto. Science and
Engineering (CASE), 2021.

[65] Tom Jurgenson and Aviv Tamar. Harnessing reinforcement learning for neural
motion planning. arXiv preprint arXiv:1906.00214, 2019.

111



[66] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The international journal of robotics research, 30(7):846–894, 2011.

[67] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. Int. J. Robotic Res., 30:846–894, 06 2011.

[68] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans.
on Robotics and Auto., 1996.

[69] Piotr Kicki, Puze Liu, Davide Tateo, Haitham Bou-Ammar, Krzysztof Walas, Piotr
Skrzypczyński, and Jan Peters. Fast kinodynamic planning on the constraint
manifold with deep neural networks, 2023.

[70] Beobkyoon Kim, Terry Taewoong Um, Chansu Suh, and F. C. Park. Tangent
bundle rrt: A randomized algorithm for constrained motion planning. Robotica,
34(1):202–225, 2016.

[71] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Int. Conf. on Learning Representations, 2015.

[72] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

[73] Zachary Kingston, Mark Moll, and Lydia E. Kavraki. Sampling-based methods for
motion planning with constraints. Annual Review of Control, Robotics, and
Autonomous Systems, 1(1):159–185, 2018.

[74] Zachary Kingston, Mark Moll, and Lydia E Kavraki. Exploring implicit spaces for
constrained sampling-based planning. The International Journal of Robotics
Research, 38(10-11):1151–1178, 2019.

[75] Lingdong Kong, You-Chen Liu, Runnan Chen, Yuexin Ma, Xinge Zhu, Yikang Li,
Yuenan Hou, Y. Qiao, and Ziwei Liu. Rethinking range view representation for lidar
segmentation. ArXiv, abs/2303.05367, 2023.

[76] Rahul Kumar, Aditya Mandalika, Sanjiban Choudhury, and Siddhartha Srinivasa.
Lego: Leveraging experience in roadmap generation for sampling-based planning. In
Int. Conf. on Intelligent Robots and Systems, 2019.

[77] Xin Lai, Yukang Chen, Fanbin Lu, Jianhui Liu, and Jiaya Jia. Spherical
transformer for lidar-based 3d recognition, 2023.

[78] Steven M. LaValle. Rapidly-exploring random trees : a new tool for path planning.
The annual research report, 1998.

[79] Steven M. LaValle. Planning Algorithms. Cambridge University Press, USA, 2006.

[80] Steven M. LaValle and Jr. James J. Kuffner. Randomized kinodynamic planning.
The International Journal of Robotics Research, 2001.

112



[81] Peter Lehner and Alin Albu-Schäffer. The repetition roadmap for repetitive
constrained motion planning. IEEE Robot. and Autom. Letters, 2018.

[82] Linjun Li, Yinglong Miao, Ahmed H. Qureshi, and Michael C. Yip. MPC-MPNet:
Model-predictive motion planning networks for fast, near-optimal planning under
kinodynamic constraints, 2021. arXiv:2101.06798.

[83] Linjun Li, Yinglong Miao, Ahmed H Qureshi, and Michael C Yip. Mpc-mpnet:
Model-predictive motion planning networks for fast, near-optimal planning under
kinodynamic constraints. IEEE Robotics and Automation Letters, 6(3):4496–4503,
2021.

[84] Y. Li, F. Richter, J. Lu, E. K. Funk, R. K. Orosco, J. Zhu, and M. C. Yip. SuPer:
A surgical perception framework for endoscopic tissue manipulation with surgical
robotics. IEEE Robot. and Automat. Lett., 5(2):2294–2301, 2020.

[85] Yanbo Li, Zakary Littlefield, and Kostas E. Bekris. Asymptotically optimal
sampling-based kinodynamic planning. The International Journal of Robotics
Research, 35(5):528–564, 2016.

[86] Yanbo Li, Zakary Littlefield, and Kostas E Bekris. Asymptotically optimal
sampling-based kinodynamic planning. The International Journal of Robotics
Research, 35(5):528–564, 2016.

[87] Zhouhan Lin, Minwei Feng, Ćıcero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. In Int.
Conf. on Learning Representations, 2017.

[88] Katherine Liu, Kyel Ok, William Vega-Brown, and Nicholas Roy. Deep inference for
covariance estimation: Learning gaussian noise models for state estimation. In 2018
IEEE Int. Conf. on Robotics and Auto. (ICRA), pages 1436–1443, 2018.

[89] Puze Liu, Davide Tateo, Haitham Bou Ammar, and Jan Peters. Robot
reinforcement learning on the constraint manifold. In Aleksandra Faust, David Hsu,
and Gerhard Neumann, editors, Proceedings of the 5th Conference on Robot
Learning, volume 164 of Proceedings of Machine Learning Research, pages
1357–1366. PMLR, 08–11 Nov 2022.

[90] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows, 2021.

[91] Lozano-Perez. Spatial planning: A configuration space approach. IEEE
Transactions on Computers, C-32(2):108–120, 1983.

[92] Jingpei Lu, Florian Richter, and Michael C. Yip. Markerless camera-to-robot pose
estimation via self-supervised sim-to-real transfer, 2023.

113



[93] Steve Macenski, Francisco Mart́ın, Ruffin White, and Jonatan Ginés Clavero. The
marathon 2: A navigation system. In IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2020.

[94] Masahiro Ono and B. C. Williams. Iterative risk allocation: A new approach to
robust model predictive control with a joint chance constraint. In 2008 47th IEEE
Conf. Decis. and Control, pages 3427–3432, 2008.

[95] Nantas Nardelli, Gabriel Synnaeve, Zeming Lin, Pushmeet Kohli, Philip HS Torr,
and Nicolas Usunier. Value propagation networks. arXiv preprint arXiv:1805.11199,
2018.

[96] Matthew O’Kelly, Hongrui Zheng, Dhruv Karthik, and Rahul Mangharam. F1tenth:
An open-source evaluation environment for continuous control and reinforcement
learning. In Proceedings of the NeurIPS 2019 Competition and Demonstration
Track. PMLR, 2020.

[97] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems, pages 8024–8035, 2019.

[98] S. Patil, J. van den Berg, and R. Alterovitz. Estimating probability of collision for
safe motion planning under gaussian motion and sensing uncertainty. In 2012 IEEE
Int. Conf. Robot. and Automation, pages 3238–3244, 2012.

[99] Elizabeth Peiros, Zih-Yun Chiu, Yuheng Zhi, Nikhil Shinde, and Michael C. Yip.
Finding biomechanically safe trajectories for robot manipulation of the human body
in a search and rescue scenario. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2023.

[100] Adam Pettinger, Farshid Alambeigi, and Mitch Pryor. A versatile affordance
modeling framework using screw primitives to increase autonomy during
manipulation contact tasks. IEEE Robotics and Automation Letters,
7(3):7224–7231, 2022.

[101] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in Neural
Information Processing Systems, 2017.

[102] A. H. Qureshi, J. Dong, A. Choe, and M. C. Yip. Neural manipulation planning on
constraint manifolds. IEEE Robotics and Automation Letters, 5(4):6089–6096, 2020.

[103] Ahmed H. Qureshi, Jiangeng Dong, Asfiya Baig, and Michael C. Yip. Constrained
motion planning networks X, 2020. arXiv:2010.08707.

114



[104] Ahmed H. Qureshi, Jiangeng Dong, Austin Choe, and Michael C. Yip. Neural
manipulation planning on constraint manifolds. IEEE Robotics and Automation
Letters, 5(4):6089–6096, 2020.

[105] Ahmed H Qureshi, Yinglong Miao, Anthony Simeonov, and Michael C Yip. Motion
planning networks: Bridging the gap between learning-based and classical motion
planners. IEEE Trans. on Robotics, 2020.

[106] Ahmed H. Qureshi, Anthony Simeonov, Mayur J. Bency, and Michael C. Yip.
Motion planning networks. In 2019 International Conference on Robotics and
Automation (ICRA), pages 2118–2124, 2019.

[107] Ahmed H Qureshi and Michael C Yip. Deeply informed neural sampling for robot
motion planning. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 6582–6588. IEEE, 2018.

[108] Ahmed Hussain Qureshi and Yasar Ayaz. Intelligent bidirectional rapidly-exploring
random trees for optimal motion planning in complex cluttered environments.
Robotics and Autonomous Systems, 68:1–11, 2015.

[109] Ahmed Hussain Qureshi and Yasar Ayaz. Potential functions based sampling
heuristic for optimal path planning. Autonomous Robots, 2016.

[110] Ahmed Hussain Qureshi, Jiangeng Dong, Asfiya Baig, and Michael C. Yip.
Constrained motion planning networks x. IEEE Trans. on Robotics, 2022.

[111] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning). The MIT Press,
2005.

[112] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srinivasa. Chomp:
Gradient optimization techniques for efficient motion planning. In 2009 IEEE
International Conference on Robotics and Automation, pages 489–494, 2009.

[113] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity
images with vq-vae-2. In Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2019.

[114] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[115] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation, 2015.

115



[116] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient
content-based sparse attention with routing transformers. Transactions of the
Association for Computational Linguistics, 9:53–68, 02 2021.

[117] C. Rösmann, F. Hoffmann, and T. Bertram. Kinodynamic trajectory optimization
and control for car-like robots. In 2017 IEEE/RSJ Int. Conf. Intell. Robots and
Systems, pages 5681–5686, 2017.

[118] Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. Kinodynamic
trajectory optimization and control for car-like robots. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
5681–5686, 2017.

[119] Edward Schmerling and Marco Pavone. Evaluating trajectory collision probability
through adaptive importance sampling for safe motion planning, 2017.
arXiv:1609.05399.

[120] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry
Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning
with sequential convex optimization and convex collision checking. Int. J. Rob. Res.,
33(9):1251–1270, aug 2014.

[121] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
Universal planning networks: Learning generalizable representations for visuomotor
control. In Int. Conference on Machine Learning, 2018.

[122] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res., 15(1):1929–1958, January 2014.

[123] M. Stilman. Task constrained motion planning in robot joint space. In 2007
IEEE/RSJ Int. Conf. Intell. Robots and Systems, pages 3074–3081, 2007.

[124] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Auto. Magazine, 2012.

[125] Chansu Suh, Terry Taewoong Um, Beobkyoon Kim, Hakjong Noh, Munsang Kim,
and Frank C. Park. Tangent space rrt: A randomized planning algorithm on
constraint manifolds. In 2011 IEEE International Conference on Robotics and
Automation, pages 4968–4973, 2011.

[126] Wen Sun, Luis G. Torres, Jur van den Berg, and Ron Alterovitz. Safe motion
planning for imprecise robotic manipulators by minimizing probability of collision.
In Robot. Res., volume 114 of STAR., pages 685–701, 2013.

[127] Zaid Tahir, Ahmed H Qureshi, Yasar Ayaz, and Raheel Nawaz. Potentially guided
bidirectionalized rrt* for fast optimal path planning in cluttered environments.
Robotics and Autonomous Systems, 2018.

116



[128] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value
iteration networks. In Advances in Neural Information Processing Systems, pages
2154–2162, 2016.

[129] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robot. (Intell.
Robot. and Autonomous Agents). The MIT Press, 2005.

[130] Ludovic Trottier, Philippe Giguère, and Brahim Chaib-draa. Parametric exponential
linear unit for deep convolutional neural networks. CoRR, abs/1605.09332, 2016.

[131] Jur van den Berg, Pieter Abbeel, and Ken Goldberg. LQG-MP: Optimized path
planning for robots with motion uncertainty and imperfect state information. Int. J.
of Robot. Res., 30(7):895–913, 2011.

[132] Jur van den Berg, Sachin Patil, and Ron Alterovitz. Motion planning under
uncertainty using iterative local optimization in belief space. The Int. J. of Robot.
Res., 31(11):1263–1278, 2012.

[133] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete
representation learning. In Advances in Neural Information Processing Systems,
2017.

[134] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez,  L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems, 2017.

[135] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[136] B. Wilcox and M. C. Yip. SOLAR-GP: Sparse online locally adaptive regression
using gaussian processes for bayesian robot model learning and control. IEEE Robot.
and Automat. Lett., 5(2):2832–2839, 2020.

[137] Ronald J Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[138] Andreas Wächter and Lorenz T. Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear programming.
Mathematical Programming, 106(1):25–57, March 2006.

[139] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and Silvio
Savarese. Gibson env: real-world perception for embodied agents. In IEEE Conf.
Comput. Vision and Patt. Recognit. (CVPR), 2018. IEEE, 2018.

117



[140] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,
Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization
in the transformer architecture. In Int. Conf. on Machine Learning, 2020.

[141] Ruihan Yang, Minghao Zhang, Nicklas Hansen, Huazhe Xu, and Xiaolong Wang.
Learning vision-guided quadrupedal locomotion end-to-end with cross-modal
transformers. In Int. Conf. on Learning Representations, 2022.

[142] Chenning Yu and Sicun Gao. Reducing collision checking for sampling-based
motion planning using graph neural networks. In Advances in Neural Information
Processing Systems, 2021.

[143] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander
Ku, Yuanzhong Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image
modeling with improved VQGAN. In Int. Conf. on Learning Representations, 2022.

[144] Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Burgard.
Deep reinforcement learning with successor features for navigation across similar
environments. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2371–2378. IEEE, 2017.

[145] Yuheng Zhi, Nikhil Das, and Michael Yip. Diffco: Auto-differentiable proxy collision
detection with multi-class labels for safety-aware trajectory optimization.
arXiv:2102.07413, 2021.

[146] H. Zhu and J. Alonso-Mora. Chance-constrained collision avoidance for mavs in
dynamic environments. IEEE Robot. and Automat. Lett., 4(2):776–783, 2019.

118


	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Problem Definition
	Acknowledgement

	Learning-based Planners
	Dynamic Motion Planning Networks
	Environment Encoding
	Training
	Planning
	Experiments
	Data Collection
	Model Architecture
	Kinematic Model of a Car-Like Robot and Dubins curve
	Trajectory Tracking

	Results
	Discussion
	Acknowledgement

	Planning Using Transformers
	Related Works
	Motion Planning Transformers
	Feature Extractor:
	Position Encoding:
	Transformer Encoder:
	Classifier:
	Orientation Prediction:
	Path Planning

	Experiments
	Setup
	Training
	Point Robot Model
	Dubins Car Model

	MPT Navigation2 Plugin
	Discussions
	Acknowledgement

	Generalizing Transformers for Planning
	Related Works
	Background
	Vector Quantized Models
	Transformer Models

	Vector Quantized-Motion Planning Transformers
	Stage 1: Vector Quantizer
	Stage 2: Auto-Regressive (AR) Prediction
	Generating Distributions for Sampling
	Planning

	Experiments
	Setup
	Unseen In-Distribution Environments
	Out-of-Distribution Environments

	Discussion
	Acknowledgement

	Planning with Constraints
	Related Works
	Problem definition
	Background
	Task-Space Regions

	Constraint VQ-MPT
	Generating samples
	Improving sampling efficiency
	Planning

	Experiments
	Setup
	Place Task
	Multi-Sequence Task
	Real-world environment

	Discussion
	Acknowledgement

	Planning under Uncertainty
	Related Works
	CCGP-Motion Planning
	Problem Definition
	Motion and Observation Model
	Gaussian Process Distance Model
	Chance Constraints
	CONNECT Function
	Simplicial Homology Global Optimization

	Experiments
	Linear Model
	Dubins Model
	Experiment Results

	Discussion
	Acknowledgement

	Conclusion
	Additional Proofs for Chance Constraint Planning
	Bibliography



