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Communication: Wigner functions in action-angle variables,
Bohr-Sommerfeld quantization, the Heisenberg correspondence
principle, and a symmetrical quasi-classical approach to the full
electronic density matrix

William H. Millera) and Stephen J. Cottonb)

Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California,
and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 23 June 2016; accepted 11 August 2016; published online 23 August 2016)

It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained
from a Wigner function depends on how the calculation is carried out: if one computes the standard
Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms
of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms
of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and
semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum
states defined by integer values of the action variable) as well as the Heisenberg correspondence
principle for matrix elements of an operator between such states—and has also been shown to be more
accurate when applied to electronically non-adiabatic applications as implemented within the recently
developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the
Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can
be used to obtain off-diagonal elements of the electronic density matrix by processing in a different
way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal
elements. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4961551]

The traditional Wigner function1 W (p, x) corresponding
to a quantum mechanical (QM) operator Â is a function of the
Cartesian phase space variables (p, x) (discussed here for a 1D
system, in units for which ~ = 1) given by

W (p, x) =


d∆x e−i p∆x⟨x + ∆x2 | Â |x − ∆x2 ⟩. (1)

Here we consider the density (matrix) operator

ÂN,N ′ = |N⟩ ⟨N ′| (2)

for a set of discrete states {|N⟩}, N = 0, 1, . . . , so that Eq. (1)
gives the corresponding Wigner functions as

WN,N ′(p, x) =


d∆x e−i p ∆x⟨x + ∆x2 | N⟩ ⟨N ′ | x − ∆x2 ⟩. (3)

For example, for the two lowest states of a harmonic
oscillator—which are of specific interest when using the
Meyer-Miller2 (MM) approach for representing electronic
states—the Wigner function for the 2 × 2 density matrix is
easily found (by using the ground and first excited state
harmonic oscillator wavefunctions) to be

W0,0(p, x) =


d∆x e−i p∆x⟨x + ∆x2 | 0⟩ ⟨0 | x − ∆x2 ⟩
= 2 e−(p

2+x2), (4a)

W1,1(p, x) = 4(p2 + x2 − 1
2 ) e−(p

2+x2), (4b)

a)Author to whom correspondence should be addressed. Electronic mail:
millerwh@berkeley.edu

b)Electronic mail: StephenJCotton47@gmail.com

W0,1(p, x) = W ∗
1,0(p, x) = 2

√
2 (x + ip) e−(p

2+x2), (4c)

where dimensionless variables have been used for which
~ = ω = m = 1.

In classical and semiclassical theory it is often useful
to use action-angle (“a-a”) variables (n,q), which are an
example of a “generalized” coordinate (q) and “generalized”
momentum (n), rather than the Cartesian variables (p, x).
Though it is not possible to define action and angle
operators in a rigorous way quantum mechanically, they
are canonically conjugate variables in classical mechanics
(i.e., their time evolution is given by Hamilton’s equations
when the Hamiltonian is expressed in terms of them)
and in semiclassical theory (=“classical-limit quantum
mechanics”) one can treat them in a fully consistent fashion.3

For a harmonic oscillator, (n,q) and (p, x) are related
by

p(n,q) = −√2n sin(q),
x(n,q) = √

2n cos(q), (5)

and if one uses Eq. (5) to express the density matrix Wigner
functions of Eq. (4) in terms of (n,q), one obtains

W0,0(n,q) = 2 e−2n, (6a)
W1,1(n,q) = 4 (2n − 1

2 ) e−2n, (6b)

W1,0(n,q) = W ∗
0,1(n,q) = 4

√
n e−2n eiq. (6c)

There is, however, another way to obtain the Wigner
functions for the density matrix in a-a variables, one that is
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in fact more consistent with semiclassical theory (and also
performs much better in many applications), and that is to use
Eq. (3) directly in a-a variables,

WN,N ′(n,q)=


d∆q e−i n ∆q

q + ∆q2

���� N
 

N ′
���� q −

∆q
2


,

(7)

where the bra-ket ⟨q | N⟩ (i.e., the “wavefunction” in angle
space for the “state” |N⟩) is given by3

⟨q | N⟩ = eiNq

√
2π

. (8)

It is then a simple calculation, using Eq. (8) in Eq. (7), to obtain
the following result for the density matrix in a-a variables:

WN,N ′(n,q) = ei(N−N
′)q δ(n − N+N ′

2 ), (9a)

where N and N ′ are integers—the semiclassical (Bohr-
Sommerfeld) definition of a quantum state—[they are actually
half-integers (because of zero point energy), but one usually
takes this into account by replacing n by n + 1

2 throughout, but
this has not been done here to keep the presentation as simple
as possible]. For diagonal elements of the density matrix
(N ′ = N), for which the operator |N⟩ ⟨N | is the projection
operator onto the state with quantum number N , one thus has
the simple result

WN,N(n,q) = δ(n − N), (9b)

which is essentially a statement of Bohr-Sommerfeld
quantization: for state |N⟩, the phase space distribution in
a-a variables is that the classical action n is the quantum
integer N (or half-integer), and the angle variable q is random
(i.e., the distribution is independent of q).

The result given in Eq. (9) is thus quite different from that
given for a harmonic oscillator in Eq. (6), e.g., the distribution
of the action variable n for the ground state (N = N ′ = 0) in
Eq. (6a) is extremely broad, unphysically so,4 while Eq. (9b)
requires n to be the integer N for that state, i.e., Bohr-
Sommerfeld (semiclassical) quantization. (Note also that the
diagonal element for the excited state in Eq. (6b) is not always
positive.) For the off-diagonal elements (N , N ′), one sees
that n is required by Eq. (9a) to be the average of N and
N ′, and in this case the density matrix also depends on the
angle variable (i.e., has phase information); note that the angle
dependence given by Eq. (9a) is actually the same as that in
Eq. (6c).

Our current interest in these Wigner functions in
a-a variables is for their use in the symmetrical quasi-
classical/Meyer-Miller (SQC/MM) approach5,6 for treating
electronically non-adiabatic processes. The MM approach
characterizes each electronic state as a harmonic oscillator
with quantum number N = 1 or 0 (for an occupied or
unoccupied state, respectively). For the case of 2 electronic
states, the relevant electronic space of single excitations thus
consists of two direct products of 1D harmonic oscillator
states: |1⟩ ⊗ |0⟩ (for electronic state 1) and |0⟩ ⊗ |1⟩ (for
electronic state 2); the Wigner functions for the 2 × 2

electronic density matrix {ρi j} are therefore the product
of two of the 1D Wigner functions of Eq. (9),

W1,1(n1,q1) ·W0,0(n2,q2) ≡ ρ11(n,q)
= δ(n1 − 1) · δ(n2), (10a)

W0,0(n1,q1) ·W1,1(n2,q2) ≡ ρ22(n,q)
= δ(n1) · δ(n2 − 1), (10b)

W1,0(n1,q1) ·W0,1(n2,q2) ≡ ρ21(n,q) = ρ∗12(n,q)
=ei (q1−q2) δ(n1 − 1

2 ) · δ(n2 − 1
2 ).

(10c)

As discussed in prior work,6–10 the SQC model
corresponds to replacing each of the delta functions in
Eq. (10) by “pre-limit” delta functions, i.e., the quasi-classical
“window” functions centered about the appropriate values of
the action variables. This not only makes the calculations
much simpler but the smoothing effect this entails also brings
the classical results into much better agreement with quantum
results than the delta functions themselves.

Fig. 1 shows the 2-dimensional window functions
centered about the values (1,0) and (0,1) for the two diagonal
elements, and also that centered about

� 1
2 ,

1
2

�
(red window) for

the off-diagonal element. Since the Wigner functions for the
elements of the density matrix must be orthogonal (i.e., the
phase space integral of the product of any two elements must
vanish), the window functions of the two diagonal elements
cannot overlap since they are everywhere non-negative (unlike
the Wigner functions in Cartesian variables). However the
window function for the off-diagonal element can overlap
those of the diagonal elements (as in Fig. 1) because it has a
phase factor that enforces the orthogonality.

There is of course no unique pre-limit delta function,
and this is where the modelistic aspect of the SQC model
enters: one uses intuition and experience to choose these
window functions to be able to treat as wide a range of

FIG. 1. SQC windowing functions for the diagonal and off-diagonal elements
of the density matrix applied to a system of 2 electronic states.
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situations as possible. The very simple square histogram
window functions in Fig. 1, with our preferred zero point
energy (ZPE) γ-parameter of 0.366 which sets their widths,
have been seen to provide very good agreement with accurate
quantum results for a number of model systems, but there
will undoubtedly be cases for which other choices may be
better. (The window function for the off-diagonal element of
the density matrix (centered at

� 1
2 ,

1
2

�
) is taken to have the

same width as those for the diagonal elements.)
Eq. (9) thus provides a practical prescription for

computing the full electronic density matrix within the
SQC/MM framework: one initializes trajectories as usual—
by choosing actions (n1,n2) within a window about the initial
quantum state, i.e., a blue window in Fig. 1, with random
angle variables—and then collects the trajectories in the
various window functions as they evolve according to the MM
Hamiltonian (including the phase-factor for the off-diagonal
elements of the electronic density matrix). That is, the entire
electronic density matrix is obtainable from this one ensemble
of trajectories.

A preliminary result calculated with this approach is
provided in Fig. 2 for one of the site-exciton Hamiltonians
of Ishizaki and Fleming,11 which are often used to model
light-harvesting complexes. The figure shows the full
2 × 2 SQC/MM-calculated time-dependent electronic density
matrix plotted versus benchmark results calculated using the
hierarchical equations of motion (HEOM) methodology of
Ishizaki and Fleming (which should essentially be equivalent
to exact QM results for this spin-boson type model). One sees
that the SQC/MM-calculated matrix elements agree extremely
well with the exact HEOM results (using our “standard”
histogram window functions with γ = 0.366 as described
above12).

From these proof-of-concept calculations, we conclude
that by augmenting the standard SQC/MM approach with
the more general result of Eq. (9), we have a practical (and
theoretically sound) prescription for obtaining the complete
electronic density matrix within the general framework of a
classical MD simulation.

As a final note, it is interesting and illuminating to point
out the relation of the above Wigner functions in a-a variables,
Eq. (9), to the Heisenberg Correspondence Principle (HCP),13

which approximates the matrix elements of any operator
Â as

⟨N ′| Â |N⟩ = 1
2π


dq ei (N−N

′) q A
(
N+N ′

2 ,q
)
, (11)

where A(n,q) is the classical function in a-a variables that
corresponds to operator Â. (For example, if operator Â is the
Cartesian coordinate operator x̂, with x(n,q) given by Eq. (5),
then Eq. (11) gives the exact QM matrix elements of x̂ for the
two lowest states of a harmonic oscillator.) However, another
way to express the matrix element ⟨N ′| Â |N⟩ is

⟨N ′| Â |N⟩ = tr
�
Â|N⟩ ⟨N ′|� , (12)

i.e., as the trace of Â with the off-diagonal density operator.
Evaluating this trace as a phase space average over a-a
variables with the Wigner functions in a-a variables (Eq. (9))

FIG. 2. SQC/MM computed density matrix {ρi j(t)} versus HEOM re-
sults for 2-state site-exciton model (difference in site energies ϵ1−ϵ2
= 100 cm−1, non-adiabatic coupling ∆= 100 cm−1, bath characteristic fre-
quencyωc = 53.08 cm−1, reorganization energy λ = 20 cm−1, andT = 300 K;
see Fig. 4 of Ref. 11).

gives

⟨N ′| Â |N⟩
=

1
2π


dn


dq ei (N−N

′) q δ
(
n − N+N ′

2

)
A(n,q) (13)

which is easily seen to give the HCP of Eq. (11).
Using Wigner functions obtained directly in terms of

action-angle variables, Eq. (9), thus incorporates two vener-
able semiclassical concepts (for systems which possess a-a
variables): (1) the Bohr-Sommerfeld quantization condition
(i.e., defining quantum states by integer values of the action
variable) and (2) the Heisenberg correspondence principle
for obtaining approximate matrix elements of any operator
between such states.
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