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PAPER

The need for higher-order averaging in the stability analysis of
hovering, flapping-wing flight
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1 University of California, Irvine, CA,USA
2 Virginia Polytechnic Institute and StateUniversity, Blacksburg, VA,USA

E-mail: hetaha@uci.edu
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Abstract
Because of the relatively highflapping frequency associatedwith hovering insects andflappingwing
micro-air vehicles (FWMAVs), dynamic stability analysis typically involves direct averaging of the
time-periodic dynamics over aflapping cycle. However, direct application of the averaging theorem
may lead to false conclusions about the dynamics and stability of hovering insects and FWMAVs.
Higher-order averaging techniquesmay be needed to understand the dynamics offlappingwing flight
and to analyze its stability.We use second-order averaging to analyze the hovering dynamics offive
insects in response to high-amplitude, high-frequency, periodic wingmotion.Wediscuss the applic-
ability of direct averaging versus second-order averaging for these insects.

1. Introduction

Flapping flight dynamics has long been a topic of
interest to researchers, particularly following the
studies of Taylor and Thomas [1] among others. Even
simple models of flapping flight dynamics involve
multi-body, nonlinear, non-autonomous (time-vary-
ing) dynamics. One common assumption used in
flapping flight dynamic models is that the effect of the
wing inertial forces on the body dynamics may be
neglected [2–10]. The validity of this assumption is a
subject of continuing debate; see the recent review of
Taha et al [11] or Sun [12]. Nevertheless, researchers
usually adopt this assumption because (i) the mass of
the wing is very small with respect to that of the body
and (ii) ignoring the multi-body effects yields
equations of motion similar to those governing the
flight dynamics of conventional aircraft. However,
there remains a major distinction between the
dynamics of flapping flight and that of a conventional
aircraft. Because of the time-varying aerodynamic
loads due to the wing oscillatory motion, the flapping
flight dynamicmodel is time-varying.

By neglecting wing inertial effects, the flight
dynamics of a flapping-wing micro-air-vehicle
(FWMAV) can be represented by a nonlinear, time-
periodic (NLTP) system. Stability analysis for such
systems is usually performed using one of the two

approaches schematically presented in figure 1. In the
first approach, one uses averaging to obtain a non-
linear, time-invariant (NLTI) system model. For high
enough flapping frequency, the averaging theorem
guarantees that exponential stability of a fixed point
for theNLTImodel implies exponential stability of the
corresponding periodic orbit of the NLTP system. To
determine exponential stability of the fixed point, one
may simply linearize the NLTI system to obtain a lin-
ear, time-invariant (LTI) model and examine the
eigenvalues of the statematrix for the LTI system. This
first approach has been adopted in a variety of early
studies, with varying degrees of formality and rigor [2–
4, 6–9, 13–15].

A less common approach, adopted by Dietl and
Garcia [5] and Bierling and Patil [16], and later by
Weihua and Cesnik [17], involves solving numerically
for the periodic solution that corresponds to hovering
motion in the original NLTP system. Linearizing
about this periodic orbit yields a linear, time-periodic
(LTP) systemwhose stability can be analyzed using the
Floquet theorem. Specifically, one solves for the fun-
damental response of the LTP system over a single per-
iod to obtain the monodromy matrix; that is, the state
transitionmatrix evaluated at the fundamental period.
Stability analysis involves checking the eigenvalues of
thismonodromymatrix.
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Hovering usually involves relatively high flapping
frequencies, compared to forward flight; flapping fre-
quencies of hovering insects typically fall within the
range of 20–1000 Hz [18]. The dynamics of hovering
insects exhibits two time scales: a fast time scale for the
variation of the aerodynamic loads and a slow time
scale for the aggregate motion of the body. For exam-
ple, while a flying insectʼs general motion is percep-
tible to a humanʼs eye, the flappingmotion of its wings
may not be. If the ratio of the two time scales is large
enough, then averaging may be intuitively justifiable
and, hence, provides a tractable approach for the stabi-
lity analysis. A notable advantage of the averaging
approach is that one need not obtain a solution for the
hovering flight condition in advance; one can instead
solve for fixed points of the time-averaged systemwith
the expectation that these fixed points correspond to
periodic orbits in the original system. One great
advantage of the second approach involving Floquet
analysis is that it does not require a large separation of
time scales for the flapping and aggregate motions.
However, this approach does require finding the peri-
odic orbit in advance. Moreover, application of the
Floquet theorem requires obtaining the fundamental
matrix solution for an LTP system which can be a
practical challenge, even if it is formally straight for-
ward. Finding the periodic motion and solving for the
fundamental matrix solution must typically be done
numerically. In summary, although the Floquet theo-
rem approach does not have limitations on the struc-
ture and the nature of the time-periodic system under
study, its inevitable numerical implementation pre-
cludes scrutinizing the dynamical behavior of the sys-
tem on an analytical level. On the other hand,
although the averaging approach allows for analytical
treatment of the problem, its limitation to large

separation between the systemʼs time-scales makes its
application to the dynamics of hovering insects/
FWMAVs with relatively low flapping frequencies
(e.g., hawkmoth) questionable.

In an earlier work [19], we used the method of
multiple scales (MMS) [20, 21] to determine a second-
order approximate solution to the hovering dynamic
equations of insects and FWMAVs and demonstrated
the shortcomings of direct averaging. In this work, we
consider an extension of the averaging approach that
relaxes the requirement for a large separation of time
scales with the objective to analytically study the flight
dynamics and stability of hovering insects and
FWMAVs. This extension was presented by Sarychev
[22] and Vela [23], applying the concepts of exponen-
tial representation of flows and the chronological cal-
culus proposed by Agrachev and Gamkrelidze [24].
Sarychev [22] and Vela [23] provided a generalization
of the averaging theorem to cases where the system is
not weakly forced or the ratio of time scales is not very
large. They provided algorithmic procedures for aver-
aging a systemʼs dynamicmodel to an arbitrarily high-
order. Thus, if first-order (direct) averaging is not suf-
ficiently accurate, because the system is subjected to
high-amplitude, periodic forcing or because the two
time scales are not widely separated, one may use sec-
ond-order, or third-order averaging, etc. In this work,
we provide some examples that illustrate the limita-
tions of direct averaging. Then, we use second-order
averaging to analyze the flight dynamics of several
hovering insects and, hence, assess the region of
applicability of direct averaging.

2. Flight dynamicmodel

For the relatively large insects of concern to this study
and the common FWMAVs, the wing mass is negli-
gible with respect to the body mass (less than 5%), the
effect of the wing inertial forces are neglected. As such,
the body dynamics is described by the same set of
equations as a conventional, rigid aircraft. We focus
on longitudinal flight dynamics and use the standard
body-fixed reference frame [25] to formulate the flight
dynamic equations. Given a reference point, such as
the center of mass, to serve as the origin, we let xb
denote the longitudinal axis; that is, the axis which is
alignedwith the fuselage in a conventional aircraft.We
let yb denote the lateral axis, pointing in the direction
of the starboard wingtip, and we let zb complete the
orthogonal triad. We define a vector of longitudinal
state variables θ=x u w q[ , , , ]T , where u and w are
the components of the bodyʼs inertial velocity along
the xb and zb directions, respectively. The angle θ is the
pitch angle about the yb-axis and q is the pitch rate.
Figure 2 shows a schematic diagram for a FWMAV
whose wing sweeps forward and backward in a
horizontal plane and pitches about a chord line to vary
the wingʼs angle of attack during the stroke. The

Figure 1.Two approaches to analyze the stability of nonlinear,
time-periodic systems.
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wingʼs axis system xW-yW-zW is obtained from the
bodyʼs axis system xb-yb-zb by translating a distance xh
along the xb-axis, rotating by an angle φ− about the zb-
axis and then by an angle η about the yW-axis.

2.1. Kinematics andmorphology
Otherwise stated, a triangular waveform for the back
and forth flapping angle φ(t) and a piecewise constant
variation for the pitching angle η(t), whichmaintains a
constant angle of attack αm throughout the entire
stroke, are used in this work; that is,
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The choice of this kinematics is based on the result that
this combination of φ(t) and η(t) yields hovering with
minimum aerodynamic power [26]. The wing plan-
form and the morphological parameters of the hawk-
moth as well as the other insects under study are given
in appendix A.

2.2. Aerodynamic–dynamic interaction
Written explicitly, the longitudinal equations are
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where g is the gravitational acceleration, m and Iy
represent the body mass and the pitch inertia,
respectively. The generalized forces X and Z are the

aerodynamic forces in the xb- and zb-directions,
respectively, andM is the aerodynamicmoment about
the yb-axis. Recognizing that the aerodynamic forces
and moment will depend explicitly on time for a
FWMAV, equation (2) can be written in the more
general form

= +x f x g x t˙ ( ) ( , ). (3)a

The flight dynamic model used in this paper was
developed in an earlier work [27]. Here, we neglect
higher-order dependence of the non-autonomous
aerodynamic vector field ga on the state vector x and
retain only the linear terms to obtain
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Assuming a horizontal stroke plane, parameterized by
the ‘back-and-forth’ flapping angle φ, and a piecewise
constant variation in the wing pitch angle η, one
obtains [27]
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where xh is the distance from the vehicle center ofmass
to the root of the wing hinge line (i.e., the intersection
of the hinge line with the xb-axis) and Δx̂ is the
chordwise distance from the center of pressure to this
same hinge location, normalized by the chord length.
Also, ρ is the air density, αCL is the three-dimensional
lift curve slope of the wing, c(r) is the spanwise chord
distribution, R is the wing radius,
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0
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1

4
. The

time-varying stability derivatives are written directly
in terms of the systemparameters as [27]
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Figure 2. Schematic diagram for a hovering FWMAVwhose
wing sweeps in a horizontal stroke planewhereφ is the back-
and-forth flapping angle and η is thewing pitching angle.

3

Bioinspir. Biomim. 10 (2015) 016002 HETaha et al



φ η

φ φ η

φ φ

=

= −

=

− −

Z X

Z
K

m

Z
K

m
K

m
x Z

2 ,

2 ˙ cos ,

2 ˙ sin cos

˙ cos ,

u w

w

q

h w

11 2

21 2

rot12

Δ
φ φ η= + −( )M

K x

I

m

I
X x Z4 ˙ cos sin 2 ,u

y y
q h u

12 2

Δ
φ φ η

φ φ η

=

+ −

M
K x

I

K

I

mx

I
Zw

2 ˙ cos cos

2 ˙ sin cos ,

w
y

y

h

y

12

21 2

Δ φ φ η φ

φ φ Δ φ η

φ φ η φ

φ
μ

φ

= − +

+

+ −

× + −

−

( )

(

)

( )

M
x

I
K x K

I
K x

K
I

K x K
K f

I
mx

I
Z

2
˙ cos cos sin

1
˙ cos cos cos

sin
2

˙ cos sin

sin cos

,

q
y

h

y

y

h
v

y

h

y
q

12 22

rot

rot
2

21 31
1 2

13

22

where πρ Δ= −K x I( ˆ) mnrot
1

2mn
and ρ= πK Iv 16 04. The

hinge line is set at 30%c (Δ =x̂ 0.05) and the value of

αCL is calculated based on the wing aspect ratio using
the extended lifting theory according to Taha et al
[28, 29]. The above flight dynamic model has been
developed in [27] and the resulting eigenvalues of the
averaged, linearized dynamics have been validated
against numerical simulations of Navier–Stokes
equations by Sun et al [15] and the experimental data
of Cheng and Deng [30]. These details are omitted for
conciseness of this work.

3. Issueswith previous approaches

In [19], we showed that direct application of the
averaging theorem (i.e., first-order averaging) does
not capture the true stability characteristics of the
hovering hawkmoth. We supported this claim by
performing direct integration of the system under
study and by applying the Floquet theorem approach.
We summarize these results here for the completeness
of this paper. In this section, we also show that careless
choices of the numerical integrator and its time-step
for the implementation of the Floquet theorem
approach may also lead to false conclusions about the
systemʼs stability.

3.1.Direct averaging approach
A finite-dimensional, non-autonomous dynamical
system is represented by

ϵ=x Y x t˙ ( , ). (5)

IfY is T-periodic in t, the averaged dynamical system
corresponding to equation (5) is written as

ϵ= ( )x Y x˙ , (6)

where ∫ τ τ=Y x Y x( ) ( , )d
T

T1

0
. According to the

averaging theorem (see Khalil [31] for example), if ϵ is
small enough, then exponential stability of a fixed
point of the averaged system implies exponential
stability of the corresponding periodic orbit of the
original time-periodic system.

Following [2, 27, 32], we scale the time variable in
equation (3) as τ = ω

ω
t

n
, where ω is the flapping fre-

quency and ωn is the natural frequency of the body
motion. As such, for a large enough ω

ωn
, the dynamics

in the new time variable is of the form (5) with ϵ ≡ ω
ω

n

(i.e., amenable to the averaging theorem). It should be
noted that, for hovering insects of the lowest flapping
frequency (hawkmoth), the ratio ω

ωn
is as high as 30,

which has usually been used as a justification of direct
averaging. Then, the averaged dynamics of
equation (3) is written as [27]

= +( ) ( )x f x g x˙ , (7)a

where x is the averaged state vector and g x( )a is the
average of the vector field g x t( , )a over the flapping

period; that is, ∫ τ τ=g x g x( ) ( , )da T

T

a
1

0
.

A main advantage of the averaging approach is its
extremely easy trim procedure in comparison to the
Floquet theorem approach. Suppose the flapping
motion is characterized by a vector of parameters P
(e.g., flapping frequency, stroke amplitude and feath-
ering angle) and denote this parametric dependence as
follows: g x Pt( , ; )a and g x P( ; )a . If balance/trim at
hover is required, the trim problem is stated as follows:
determine the flapping parameters P that are neces-
sary to ensure + =f g P0 0 0( ) ( ; )a . This is achieved
by solving a set of algebraic equations. In contrast, the
trim problem using the Floquet theorem approach is
stated as follows: determine the flapping parameters P

and the periodic orbit x t* ( ) such that

= +( ) ( )x f x g x Pt t t t˙ *( ) *( ) *( ), ;a

with =x 0* . Obviously, it is a much harder problem
and often cannot be solved analytically. It requires a
double iteration loop, where the inner loop is used to
capture a periodic orbit corresponding to some set of
flapping parameters, and the outer loop is used to
iterate on P to obtain a periodic orbit with zero mean
(for hovering).

Adopting the averaging approach to achieve bal-
ance/trim at hover yields thewell-known conditions

= − = = =X Z L mg M0, , 0,0 0 0 0

where L0 is the cycle-averaged lift force due to
flapping. This trim approach leads to the known
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intuitive conclusion that symmetric back and
forth flapping automatically ensures zero cycle-aver-
aged forward thrust force. In addition, aligning the
hinge line to coincide with the vehicleʼs center of mass
(xh = 0) ensures pitch trim ( =M 00 .) Then, the
hovering vehicle has to flap enough to support its
weight. This dictates a certain combination of flapping
amplitude Φ, frequency =f

T

1 , and mean angle of

attack αm. Having ensured trim at hover (such that
the origin is a fixed point for the averaged system),
the stability of this equilibriummay be investigated. By
the statement of the averaging theorem, exponential
stability of this fixed point yields exponential stability
of the hovering periodic orbit for the original time-
varying system. A necessary and sufficient condition
for local exponential stability of the origin of
equation (7) is that the Jacobian of its vector field
evaluated at the origin beHurwitz.

For the hawkmoth case, the resulting eigenvalues
of the averaged, linearized systemmatrix are

± − −0.19 5.74i, 11.89, 3.30

which indicates an unstable system. This approach has
been adopted in [3, 4, 13–15, 27, 30, 33, 34] to assess
the stability of flapping dynamics. Similar to the
obtained results, almost all of the previous studies
concluded instability for hovering flight. Deceptively,
simulating the original system (4) supports this
conclusion, as shown in figure 3. The states of the
system do not oscillate about zero means, but rather
deviate from the hovering equilibrium. However, this
deviation from the equilibrium is not really due to the
predicted instability; a deeper look into the dynamics

is required. To show that, we consider the following
example.

To obtain equation (4) from equation (2), the
aerodynamic vector field ga is written as

= +g x g G xt t t( , ) ( ) [ ( )] ,a 0

where g0 represents the aerodynamic loads due to the
flapping motion of the wing and the matrix G
represents the time-varying stability derivatives (i.e.,
the aerodynamic loads due to body motion). The
periodic terms g0 andG can bewritten as

= + = +g g g G G Gt t t t( ) ( ), ( ) ( ),0 0 1 1

where g0 andG are the cycle-averaged components of
g0 and G , respectively, while g1 and G1 are the
corresponding zero-mean components, which vanish
under the direct application of the averaging theorem.
Because g1 and G1 are of zero-mean, stability analysis
using direct averaging yields the same result irrespec-
tive of their inclusion. Consider the following system,
in which we omit g1 but retain G1 to assess the role of
the time-varying nature of the stability derivatives:

χ χ χ= + + +⎡⎣ ⎤⎦f g G G t˙ ( ) ( ) . (8)0 1

The system (8) has a fixed point at the origin at all
times because the above trim procedure (based on
direct averaging) yields + =f g0 0( ) 0 . Moreover, the
averaged, linearized version of this system has the
exact same eigenvalues as the original system pre-
sented in equation (4); that is, direct application of the
averaging theorem concludes instability for the system
(8) as well. However, many simulations such as the

Figure 3. Simulation of the nonlinear flight dynamics (4) of the hovering hawkmoth.
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one shown in figure 4 indicate that the system (8) is
stable.

Figure 4 shows that direct application of the aver-
aging theorem is not sufficient to analyze the stability
of the system (8). It should be noted that the time-
invariant systems obtained through direct averaging of
(8) and the original hovering flight dynamics (4) are
the same. Hence, the instability deduced from the
simulation shown in figure 3 is not attributed to the
averaging analysis. In addition, figure 4 shows that the
high-frequency periodic signals of the hovering
dynamics (represented by G1) may provide stabilizing
actions, as indicated in an earlier work [19]. In fact,
this is a well-known characteristic of high-frequency,
high-amplitude, periodic forcing, known as vibra-
tional stabilization (see Bullo [35] and Sarychev [22],
for example), or stabilization via parametric excitation
(seeNayfeh andMook [36]).

3.2. Floquet theoremapproach
To further support the simulation results of the system
(8) shown in figure 4, we apply the Floquet theorem.
Unlike the system (4), the system (8) has a fixed point
representing the equilibrium not a periodic orbit. So,
the step of finding the periodic orbit is skipped.
Linearizing the system (8) about the origin, we obtain

χ χ= + +⎡⎣ ⎤⎦f G Gt D t t0˙ ( ) ( ) ( ) ( ) (9)1

which is a LTP system that is amenable to the Floquet
theorem. Even in this relatively simple case, the
Floquet theorem must be applied numerically. The

system (9) is simulated using four independent initial
conditions at t= 0 until t=T. These initial state vectors
are stacked column-wise to form a square matrix IC[ ].
Similarly, the corresponding solutions at the period T
are collected in a matrix Ξ[ ]. The monodromy matrix
is then given by

Ξ= −M IC[ ] [ ] [ ].1

The eigenvalues of M are called the Floquet multi-
pliers. If all of the Floquetmultipliers lie inside the unit
circle, then the origin is an exponentially stable fixed
point for the system (9) (see Nayfeh and Mook [36]
and Nayfeh and Balachandran [37] for example),
which implies exponential stability of the origin of the
system (8) by Lyaponuv indirect method [31]. Using a
traditional, fixed step (100 points per cycle), fourth-
order Runge–Kutta integrator, the following Floquet
multipliers are obtained:

±0.96 0.11i, 0.6881, 0.8889.

All of these eigenvalues lie inside theunit circle indicating
stability of the system (8), supporting the simulation
results, and refuting thedirect averaging results.

It is interesting to note that careless choices of the
integrator and its time step in the implementation of
the Floquet theorem approach may lead to false con-
clusions about the systemʼs stability. Using

=IC II[ ] 0.1[ ], where II[ ] represents the identity
matrix, and Matlab ode45 solver (adaptive step), the
following Floquetmultipliers are obtained

Figure 4. Simulation of the nonlinear flight dynamics, omitting the periodic external forcing, equation (8).
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±0.78 0.074i, 1.0497, 0.8887

which indicate an unstable system in spite of the
stability of the system shown in figure 4 and concluded
from the more careful Floquet analysis described
earlier. In addition to the numerical errors that may
arise due to careless choices of the solver and/or
the integration time-step, implementing the Floquet
theorem for a general NLTP, such as the one presented
in equation (3), may induce errors due to the
numerical determination of the periodic orbit and the
linearization around this obtained periodic orbit.
Viewing the Floquet approach as an exact (complete)
averaging, it is interesting to present a deeper
look on the commutativity of linearization and
averaging in appendix B. Finally, the reader is referred
to the work of Wu et al [38], which the authors
deem one of the most complete work on insect
flight dynamics employing the Floquet theorem
approach.

4. The proposed approach: higher-order
averaging

While direct averaging may be valid for weakly forced
systems or very high-frequency forcing, the general-
ized averaging theory (GAT) can be applied success-
fully to high-amplitude, high-frequency, periodic
forcing, because it provides an arbitrarily higher-order
approximation to the flow along the time-periodic
vector field. In addition, unlike the Floquet theorem
approach, the GAT provides a compact way of
analyzing NLTP systems. Thus, it can be used analyti-
cally and, hence, avoids any numerical errors. Further-
more, the analytical tractability of the GAT leads to a
better understanding of the system dynamics, as
shownbelow.

Agrachev and Gamkrelidze laid the foundation for
the GAT in their seminal work [24]. A solution to the
non-autonomous differential equation (5) with

=x x(0) 0 can be written using the Volterra series
expansion as

∫ ∫

∫

∑

τ τ

= + …

× …

τ

τ
=

∞

− 

x x

x

t( )

( )d d , (10)

m

t

m

0

1
0 0

0
0 1

m

1

1

where

= ◦ ◦…◦τ τ τ ( )Y Y Y .m1 2

Here, τ=τY x Y x( ) ( , ) and ◦ denotes the composition

of maps; that is, ◦ =τ τ τ τ( )Y Y x Y Y x( ) ( ( ))
1 2 1 2

. Agrachev

and Gamkrelidze provided the conditions of conver-
gence of the series presented in equation (10).
Similar to the exponential representation of solutions
to autonomous differential equations, Agrachev
and Gamkrelidze denoted the flow of the

non-autonomous vector field τY as ∫ ττ
→ ( )Yexp d

t

0
and

called it the chronological exponential. They also
defined the logarithm of this exponentialmap as

∫ τ= τ
→ ⎜ ⎟⎛

⎝
⎞
⎠V Yln exp d .t

t

0

That is, the flow along the autonomous vector fieldVt

for a unit time is equivalent to the flow along the non-
autonomous vector field τY for a time t. AlthoughVt is
an autonomous vector field, it is parametrized by time;
that is, if the final time t is changed, the vector field will
change. Agrachev and Gamkrelidze have shown that

= ∑ =
∞V Vt m t

m
1

( ) , where

∫ ∫ ∫ τ τ= … … …
τ τ

τ τ
−  ( )V Y Y, , d dt

m
t

m m
( )

0 0 0
1

m

m

1 1

1

and m are commutator polynomials. The first three
polynomials are written as

ζ ζ ζ ζ ζ ζ= =  ⎡⎣ ⎤⎦( ) ( ), ,
1

2
, ,1 1 1 2 1 2 2 1

ζ ζ ζ ζ ζ ζ ζ ζ ζ= + ⎡⎣ ⎡⎣ ⎤⎦⎤⎦ ⎡⎣⎡⎣ ⎤⎦ ⎤⎦( )( ), ,
1

6
, , , , ,3 1 2 3 3 2 1 3 2 1

where[·, ·] is the commutator which, for vector fields,
is the Lie bracket. Thus, Agrachev and Gamkrelidze
provided an algorithmic approach to analytically
determine the logarithm of time-periodic vector
fields.

Sarychev [22] and Vela [23] utilized the above
concepts to develop a generalization for the classical
averaging theorem. Sarychev [22] introduced the
notion of complete averaging to denote the following
averaged vector field corresponding to the time-peri-
odic system (5):

∫ τ= =τ
→ ⎛

⎝⎜
⎞
⎠⎟Y Y V

T T

1
ln exp d

1
. (11)

T

T
0

Thus, one can write the averaged system correspond-
ing to theNLTP system in (5) as

Λ Λϵ ϵ ϵ= = + + ⋯( ) ( )x Y x x˙ , (12)1
2

2

where

∫Λ =( )x Y x
T

t t
1

( , )d ,
T

1
0

∫ ∫Λ τ τ=
⎡
⎣⎢

⎤
⎦⎥( )x Y x Y x

T
t

1

2
( , )d , ( , ) .

T t

2
0 0

The power of the GAT lies in the fact that the Λʼs
can be computed analytically in terms of Lie brackets
between the vector fields describing the time-periodic
dynamics. Sarychev [22] and Vela [23] related
this generalization of the averaging theorem to the
nonlinear extension of the Floquet theorem
and showed that the averaged vector field Y is the
logarithm of the the Monodromy map in the non-
linear case: the nonlinear vector-valued function that
maps an initial state to the solution at the fundamental
period.
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4.1.Hovering dynamics omitting the periodic
external forcing: fixed point equilibrium
In this subsection, we show that second-order aver-
aging is able to more accurately capture the stability
characteristics of the example considered in the last
section (hovering dynamics with fixed point), which is
presented in equation (8). Setting + =f g0 0( ) 0

ensures that the origin is a fixed point for the system
(8) and all of its averaged dynamics (first, second,…).
Having assured balance, it is sufficient to study the
eigenvalues of the linearized, second-order averaged
dynamics Λ Λ+D 0( )( )1 2 which (for the hawkmoth
case) are

− ± − −0.66 3.72i, 10.40, 3.09.

These eigenvalues indicate that the system is stable.
Figure 5 shows the resulting eigenvalues that deter-
mine the stability of the system (8) using first-order
averaging, second-order averaging, MMS [19], Flo-
quet theoremwith the traditional Runge–Kutta solver,
and Floquet theorem with Matlab ode45 solver. To
have the same eigenvalue representation, the pre-
sented eigenvalues using the Floquet theorem
approach are the Floquet multipliers transformed
from the -plane to the -plane via the common
transformation =z eTs [39].

Figure 5 shows that the stability characteristics
using second-order averaging and the MMS better
matches the results of a carefully implemented Floquet
analysis in comparison to direct averaging and the Flo-
quet theorem approach using theMatlab ode45 solver.
One interesting note from figure 5 is that all of the
approaches resulted in the same eigenvalue at −3.09
for the vertical motion. It should be noted that the ver-
tical motion is decoupled from the forward and

pitching motions near hover [15, 27]. Thus, the direct
averaging can provide a good estimate for the eigenva-
lue corresponding to the verticalmotion

λ
Φ

α= = −Z
K

mT
8 cosw w m

11 2

for constant angle of attack αm with any φ(t)-
waveform.

Figure 6 shows the simulations of the full nonlinear
dynamics, with fixed point, in equation (8) along with
the first and second-order averaged dynamics for the
hawkmoth near hovering equilibrium.Thew-motion is
matched in the three simulations (note thatw is decou-
pled from the other three degrees of freedom and its
eigenvalue is well predicted by first-order averaging).
However, the simulation of the first-order averaged
dynamics (7) for the other three degrees of freedom
( θ− −u q ) diverges from both of the second-order
averaged dynamics and full system simulations. The
simulation of the first-order averaged dynamics show
growing oscillations as may be expected, while the
simulations of the NLTP system (8) as well as its sec-
ond-order averaged dynamics show stable solutions.

4.2. Induced stabilizingmechanism
One of the interesting outcomes from the GAT is the
ability to specifically determine the stabilizing
mechanism induced by the high-frequency, high-
amplitude, periodic terms. To show that, we consider
the linearized, first-order averaged system-matrix for
the hawkmoth case

Λ =
− −

−
−

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥( )D 0( )

3.59 0 0 9.81
0 3.30 0 0

39.95 0 7.92 0
0 0 1 0

.1

Figure 5.Eigenvalues determining the stability of the time-periodic system (8) for the hawkmoth case using first-order averaging,
second-order averaging,method ofmultiple scales (MMS) [19], Floquet theoremwith the traditional Runge–Kutta solver, and
Floquet theoremusing theMatlab ode45 solver.
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Using the adopted trim procedure (symmetric flap-
ping and zero xh), the system lacks any pitch-stiffness
[27]. There is no aerodynamic pitching moment M
due to the body pitching angle θ in most of the flying
vehicles. Moreover, the adopted trim procedure leads
to zero M due to w (or α); the essential stability
derivative for the static stability of conventional air-
craft [25]. However, due to the high-amplitude, high-
frequency, periodic forcing, the system gains a con-
siderable pitch-stiffness that is shown in the (3, 4)
element of the linearized, second-order averaged
system-matrix

Λ Λ+

=
− −

−
− −

−

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )D 0( )

3.58 0 0 9.81
0 3.09 0 0

29.98 0 8.13 28.45
2.90 0 0.96 0

.

1 2

The periodic terms lead to a small reduction in the
damping in the forward and vertical directions. It also
leads to a reduction in the value of the speed stability
(M due to u) which is a favorable effect [27]. On the
other hand, the pitch damping becomes larger. Of
particular interest is the generation of a considerable
pitch stiffness (negative M due to θ). Thus, the GAT
allows specifying the stabilizing mechanism due to the
high-amplitude, periodic forcing. It is also interesting
to note that the kinematic equation θ = q˙ is changed

to θ = − +u q˙ 2.90 0.96 . This is because the time-
periodic terms do not satisfy the condition

∫ ∫ τ τ =v t( )d d 0
T t

0 0
, where v is the zero-mean signal,

see Bullo [35].

4.3. Full hovering dynamics: periodic orbit
equilibrium
So far, we have investigated the flight dynamics of
hovering insects and FWMAVs ignoring the zero-
mean forcing term g t( )1 ; the zero-mean part of the
aerodynamic loads due to the flapping motion of the
wing. Doing so yields a system with a fixed point,
equation (8), that has been shown to be stabilized for
the hawkmoth case due to the high-amplitude,
periodic terms. The full dynamics (4) can be regarded
as the system (8) subjected to a bounded, zero-mean,
periodic forcing g t( )1 . A matter which, knowing that
the system (8) is stable, may deceptively indicate
stability of the periodic orbit produced by the external
forcing g t( )1 . In this subsection, we determine the
effect of g t( )1 on the systemdynamics.

Incorporating g t( )1 , the system cannot have a
fixed point for all times and its equilibrium will rather
be described by a periodic orbit. Knowing that, if the
vehicle is balanced based on the average

+ =f g0 0( ) 0 (e.g., the cycle-averaged lift force is
equal to the weight), then the origin is ensured to be a
fixed point for the first-order averaged dynamics but
not necessarily for the higher-order averaged dynam-
ics. That is, the forcing term g t( )1 may interact with
the time-varying dynamics (represented in the

Figure 6. Simulation of theNLTP system (8) for the hawkmoth case in comparison to simulations of thefirst and second-order
averaged dynamics.

9

Bioinspir. Biomim. 10 (2015) 016002 HETaha et al



parametric excitation G t( )1 ), resulting in a constant
drift in the higher-order averaged dynamics. This
constant drift, in turn, changes the equilibrium state
of the system. This phenomenon is referred to as
direct/parametric interaction by Nayfeh and Mook
[36]. This is an important note because if the system
dynamics (4) is simulated using the flapping para-
meters that achieve balance/trim based on the aver-
age, the system will certainly deviate from the
hovering condition. This behavior has nothing to do
with the stability characteristics of hovering. It is just
because the hovering flight condition is not truly
balanced. This may explain why most of the previous
studies concluded hovering instability; direct aver-
aging falsely indicates instability and simulation
deceptively shows deviation from hovering.

Using second-order averaging, the flapping para-
metersP are required to satisfy

Λ Λ+ =( ) ( )x P x P 0; ; (13)1 eqm 2 eqm

to achieve trim/balance. If hovering equilibrium is
desired, then, =u 0, =w 0, and =q 0, whileθ can be

any admissible value. That is, θ=x [0, 0, 0, ]Teqm eqm .

4.3.1. Symmetric flapping
Similar to the observed change in the kinematic
equation θ = q˙ in the previous example, incorporat-
ing g t( )1 results in a constant drift in the correspond-
ing second-order averaged equation. The fourth
component of Λ2 is given by

Λ
Δ Φ Φ α

=x
K x

TI
( ) 8

sin sin
.m

y
2,4 eqm

22

Thus, the only choice to eliminate this constant drift in
the symmetric flapping case is to have Δ =x 0; that is,
the hinge line has to be aligned with the line passing
through the wingʼs center of pressure. The drift in the

pitchingmoment equation then becomes

Λ Δ θ

α Φ Φ
Φ

= = −

×
−

( )x x g

K

I

; 0 sin

sin 2 (sin 2 2 cos 2 )

4
m

y

2,3 eqm eqm

21

which is eliminated by choosing θ = 0eqm . Now, we are
left with two trim equations to be satisfied

Λ

Λ

Λ

Δ Φ α

Δ Φ α

Δ Φ α

= =

=

+ = =

( )
( )

( )

x

x

x

0

0

0

; 0, , 0,

; 0, ,

; 0, , 0. (14)

m

m

m

2,1

1,2

2,2

These are two nonlinear algebraic equations in the
flapping amplitude Φ and the angle of attack αm. For
the hawkmoth case, one feasible solution to this set of
equations is

Φ α= ° = °83.05 , 18.35 .m

Many researchers, including the authors, have
used the intuitive, ubiquitous balancing methodology
based on direct averaging, either for aerodynamic
optimization (minimum power or maximum thrust
with cycle-averaged lift equal to the weight) [40–44] or
flight dynamics and control analyzes [3, 4, 6–
9, 15, 27, 30]. However, the above result shows that
such a methodology is not sufficient to ensure trim/
balance. That is, symmetric flapping does not ensure
balance in the forward direction; a cycle-averaged lift
equal to the weight does not ensure balance in the ver-
tical direction; and aligning the hinge line with the
vehicleʼs center of gravity is not enough to achieve
pitch trim. In particular, figure 7 shows the first-order
and second-order averaging results for the variation of
the generated upward acceleration with the angle of
attackαm using the triangular waveform and the docu-
mented Φ = 60.5° for the hawkmoth. Figure 7 shows

Figure 7. First-order and second-order averaging results for the variation of the generated upward accelerationwith the angle of attack
αm using the triangular waveform and the documentedΦ=60.5° for the hawkmoth. Zero acceleration is required for trim.
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that direct averaging overestimates the generated lift
force. That is, the oscillatorymotion of the body due to
the periodic forcing leads to a decrease in the gener-
ated lift force, which is consistent with the result ofWu
et al [38]. This is because the oscillatory motion of the
body induces a negative component to the velocity of
the wing relative to the still air. As such, the FWMAV/
insect has to flap so as to produce cycle-averaged lift
(due to flapping) that ismore than its weight. It should
be noted that the total cycle-averaged lift (due to flap-
ping and due to body motion), however, equals the
weight at balance. Because of their potential impor-
tance, we provide in equations (15), (16) a general
representation for the trim equations (14) to be used
in the future aerodynamic and dynamic analyzes.

∫ ∫

∫
∫

∫

∫

∫

Λ τ τ

τ τ

τ τ

τ τ

τ τ

τ τ

=

−

+ −

× +

× −

×

⎜

⎟

⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎞
⎠

⎤
⎦⎥

(

T m
X t X

X t X

X t Z Z t

X
I

X t

M M t

X t

0( )
1

2

1
( ) ( )d

( ) ( )d

( ) ( )d ( )

( )d
1

( )

( )d ( )

( )d d , (15)

T

u

t

t

u

w

t

t

w
y

q

t

t

q

2,1
0 0

0

0
0

0
0 0

0

0
0 0

0

∫

∫

∫
∫
∫

∫ ∫

∫

Λ Λ

τ τ

τ τ

τ τ

τ τ

τ τ τ τ

+ =

× −

× +

× −

× +

× −

+ +
  

⎜

⎟

⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎞
⎠

⎤
⎦⎥

(

T m

Z t X X t

Z Z t

Z Z t

Z
I

Z t

M M t Z t

g
mT

Z t t

0 0( ) ( )
1

2

1

( ) ( )d ( )

( )d ( )

( )d ( )

( )d
1

( )

( )d ( ) ( )d d

1
( )d . (16)

T

u

t

t

u w

t

t

w
y

q

t t

q

T

1,2 2,2
0

0
0 0

0

0
0 0

0

0
0 0

0

0
0

1st order contribution

To appreciate the amplitude of the periodic forcing
that hovering insects and FWMAVs experience, we note
that the term M t( )

I

1
0

y
has an amplitude of about

2700 rad s−2 in the hawkmoth case. It should also be
noted that the constant drift (shift of the equilibrium)
becomes more considerable for light vehicles flapping at
low frequencies; that is, it is inversely proportional with
themass,moment of inertia, andflapping frequency.

Although the functional form of the matrix repre-
senting the linearized, second-order averaged dynam-
ics Λ Λ+D 0[ ( )( )]1 2 is exactly the same as that of the
previous example (nonlinear flight dynamics,

omitting periodic forcing), evaluating it at the new
flapping parameters that achieve trim (Φ = 83.05°,
α = °18.35 ,m and Δx = 0) yields an unstable fixed
point with the following eigenvalues for the hawk-
moth case:

− − −3.64, 5.16, 28.02, 6.49.

In addition, these flapping parameters result in
another fixed point at

= − − °− −⎡⎣ ⎤⎦x 1.45 m s , 3.03 m s , 0.00, 180
T1 1

which corresponds to a vertical descent with a rate of
3.03 m s−1 and a backward motion at a speed of
1.45 m s−1 at a pitching angle of −180°. The eigenva-
lues of the matrix representing the linearization of the
second-order averaged dynamics about this fixed
point are

− ± − −2.81 3.03i, 23.93, 6.48

which indicates stability of the vertical descent equili-
brium. This analysis shows that any perturbation from
the hovering equilibrium will lead to pitching down
while descending and moving backward until the
insect FWMAV reaches a stable upside-down des-
cending equilibriumwhile moving backward. Figure 8
shows simulation of the system (4) using the new trim
parameters supporting the above analysis.

4.3.2. Asymmetric flapping
Using symmetric flapping, we could not achieve
balance at the documented Φ for the hawkmoth
(Φ = 60.5° [45]). To obtain stability results that are
more representative for the hovering hawkmoth, we
use asymmetric flapping of the form

φ
ϕ Φ

ϕ Φ

η
α

π α

=
+ − ⩽ <

− − ⩽ <

=
⩽ <

− ⩽ <

⎜ ⎟

⎜ ⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎧
⎨
⎪⎪

⎩
⎪⎪

t
T

t
T

t
T

T
t

T T
t T

t
t

T

T
t T

( )

4

4
, 0

2

4 3

4
,

2

and

( )
, 0

2
,

,
2

,
(17)

d

u

0

0

whereϕ0 is an offset angle to create asymmetry for the
triangular waveform of φ(t) and αd and αu are the
angles of attack during the downstroke and upstroke,
respectively. In addition, we use the documented xh of
the hovering hawkmoth ( =x R0.22h [15]). Then, we
seek the flapping parametersαd,αu,ϕ0, and Δx and the
operating θeqm to ensure trim of the second-order
averaged dynamics at hover; that is, to satisfy
equation (13). Using least squares analysis, we obtain

α α ϕ= ° = ° = − °44.93 , 44.93 , 38.1569 ,d u 0

Δ θ= = °x 0.42, 2.48 .eqm

Linearizing the second-order averaged dynamics
about the ensured fixed point, the eigenvalues of the
systemmatrix are
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− ± −2.73, 4.80 4.57i, 2.77

which indicates instability of the hovering hawkmoth.
In summary, the hovering equilibrium is indeed

unstable, but for reasons that are more subtle than the
earlier analysis has suggested. Moreover, the adopted
methodology reveals some interesting facts about the
dynamics of flapping flight. Specifically, the high-
amplitude, periodic forcing may lead to stabilizing
actions as shown in the case of the dynamics with fixed
point (omitting the periodic external forcing). It may
also lead to a change in the equilibrium state, which
dictates that the FWMAV/insect has to flap more to
keep balance.

5.On the applicability of direct averaging

In this section, we consider the hovering dynamics of
four other insects; namely, the cranefly, bumblebee,
dragonfly, and hoverfly. These insects, along with the
hawkmoth, cover a wide range of operating condi-
tions. Their morphological parameters are given in
appendix A. The objective is to determine an estimate
for the region of applicability of direct averaging in
analyzing the flight dynamics of hovering insects and
FWMAVs. This is performed by comparing the
stability characteristics using direct averaging and the
second-order averaging for all of the insects. We use
the ratio of the flapping frequency to the natural
frequency of body dynamics as the basis of compar-
ison. It should be noted that such comparison will not

be appropriate if it is performed using the full flight
dynamics (with periodic orbit), because second-order
averaging requires different flapping parameters to
achieve balance than those required by direct aver-
aging, as shown in section 4.3. Thus, to perform the
comparison having the same equilibrium (using the
same set of trim flapping parameters), the flight
dynamics with fixed point is considered; i.e.,
equation (8).

Table 1 shows the ratios of flapping frequency to
the body natural frequency for the five insects, and the
eigenvalues revealing the stability of the system (8)
using first-order and second-order averaging. It is

noteworthy to mention that the ratio π
ω

f2

n
is not mono-

tonically increasing with f as the increase in the flap-
ping frequency f may be associated with a larger
increase in the body-motion natural frequency ωn, as
shown in the hoverfly case in comparison to the dra-
gonfly. We note that the body mass of the hoverfly is
considerably smaller than that of the dragonfly as
shown in table A1.

Table 1 shows that the high-frequency, high-ampli-
tude, periodic forcing does not considerably impact the
stability characteristics of hovering insects and

FWMAVs for large π
ω

f2

n
ratios (above 100). That is, direct

averaging is capable of capturing the true stability char-
acteristics over this range. This result is consistent with
that obtained by theMMS [19]. It should be noted that
all of the insects exhibit creation of stabilizing pitching
stiffness due to the high-frequency, high-amplitude,

Figure 8. Simulation of the full nonlinearflight dynamics with periodic orbit for the hawkmoth case.
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periodic forcing. However, table 1 shows that there are
cases where this stabilizing effect is not strong enough

(the cases of >π
ω

100
f2

n
), cases where the net result is a

destabilizing effect rather (cranefly), and cases where
the induced pitch stiffness is enough to stabilize the sys-
temdynamics. Unlike all of the other insects, the hover-
ing dynamics of the cranefly exihibits a considerable
increase in the speed stability (Mu), which is a harmful
effect as shown in [27]. As such, although the cranefly
hovering dynamics exhibits the largest induced pitch
stiffness, the net effect of the high-frequency, high-
amplitude, periodic forcing is destabilizing.

6. Conclusion

The longitudinal flight dynamics of FWMAVs and
insects is considered. The results show that direct
averaging is not sufficient to assess the hovering
stability of the relatively low flapping frequency
systems. Typically, direct averaging is applicable for
flapping-to-natural frequency ratios above 100. On
the other hand, the complication of the Floquet
theorem approach dictates numerical implementation
of the theorem and precludes any analytical treatment
of the problem. In addition, careless choices of the
integrator and its time-step may lead to false conclu-
sions about the stability of such systems. The results
also show that higher-order averaging is suitable to
analyze the flight dynamics of hovering insects and
FWMAVs as it overcomes the issues with the other
approaches (direct averaging and Floquet theorem).
Adopting this methodology, we show that the high-
frequency, high-amplitude, periodic forcing asso-
ciated with flapping cannot be neglected as it induces

stabilizing pitch stiffness for the studied five insects. It
may also lead to a change in the equilibrium state. This
refutes the previous common intuition about balan-
cing a hovering vehicle. That is, symmetric flapping
does not ensure zero cycle-averaged forward thrust
force, a cycle-averaged lift equal to the weight does not
ensure balance in the vertical direction, and aligning
the hinge line with the vehicleʼs center of gravity is
not enough to achieve self pitch trim. In contrast,
the FWMAV/insect has to provide an average lift due
to flapping that is more than its weight to keep
balance.
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AppendixA.Morphological parameters

Table A1 shows the morphological parameters of the
five studied insects as given in [15] and [45].

Themoments of the wing chord distribution r̂1 and
r̂2 are defined as

∫= =I r c r r SR r2 ( ) d 2 ˆ .k

R
k k

k
k

1
0

As for the wing planform, the method of moments
used by Ellington [45] is adopted to obtain a chord-
distribution for the insect that matches the documen-
tedfirst twomoments r̂1 and r̂2, that is,

β
= −

α γ− −
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠c r

c r

R

r

R
( ) 1 ,

1 1

Table 1.The eigenvalues revealing the stability of the system (8) usingfirst-order and second-averaging for thefive insects alongwith the
ratio of theflapping frequency to the natural frequencyωn of theflight dynamics. θCM is the pitch stiffness coefficient that is induced by the
high-frequency, high-amplitude, periodic terms.

Insect π
ω

f2

n
λ1st λ2nd θCM

Hawkmoth 28.78 − − ±[ 11.89, 3.30, 0.19 5.74i] − − − ±[ 10.40, 3.09, 0.66 3.72i]
−0.0302

Cranefly 50.62 − − − ±[ 47.71, 17.31, 1.13 5.53i] − − −[ 45.76, 16.26, 13.16, 7.90]
−0.0661

Bumblebee 144.46 − − ±[ 11.63, 4.39, 1.58 6.55i] − − ±[ 11.26, 4.37, 1.38 6.17i]
−0.0033

Dragonfly 145.50 − − ±[ 13.11, 7.03, 1.34 6.65i] − − ±[ 12.56, 6.98, 1.04 5.99i]
−0.0038

Hoverfly 113.98 − − ±[ 14.01, 7.27, 2.13 8.56i] − − ±[ 13.37, 7.24, 1.79 7.92i]
−0.0083

TableA1.Themorphological parameters for thefive studied insects.

Insect f (Hz) Φ° S (mm )2 R(mm) c (mm) r̂1 r̂2 m (mg) I (mg. cm )y
2

Hawkmoth 26.3 60.5 947.8 51.9 18.3 0.440 0.525 1648 2080

Cranefly 45.5 61.5 30.2 12.7 2.38 0.554 0.601 11.4 0.95

Bumblebee 155 58.0 54.9 13.2 4.02 0.490 0.550 175 21.3

Dragonfly 157 54.5 36.9 11.4 3.19 0.481 0.543 68.4 7.0

Hoverfly 160 45.0 20.5 9.3 2.20 0.516 0.570 27.3 1.84
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where

α

γ

=
−

−
−

= −
−

−
−
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1
2

1

1 1

2
2

1
2

∫β = −α γ− −( )r r rand ˆ 1 ˆ dˆ.
0

1
1 1

Appendix B.On the commutativity of
linearization and averaging

Consider theNLTP system

ϵ=x f x t˙ ( , ), (B.1)

where ϵ ≪ 1 and the vector field f is continuously
differentiable in its first argument andT-periodic in its
second argument. The first-order averaged approxi-
mation of the system (B.1) is

ϵ= ( )x f x¯̇ ¯ ¯ , (B.2)

where

∫=( ) ( )f x f x
T

t t¯ ¯
1

¯, d . (B.3)
T

0

The system (B.2) is a NLTI system. Suppose that (B.2)
possesses a fixed point p0. Linearizing equation (B.2)
about this equilibrium results in the LTI system

δ δϵ=x F x¯̇ ¯ ¯, (B.4)

where

=
∂

∂ =

F
f x

x
¯

¯ ( )
(B.5)

x p0

is a constant matrix. According to the averaging
theorem [46], if p0 is a hyperbolic equilibrium point of
(B.2), then there exists ϵ > 00 such that for all

ϵ ϵ< ⩽0 0, the system (B.1) possesses a unique
hyperbolic periodic orbit ϵ= + Op pt( ) ( )0 of the
same stability type as p0.

Linearizing the system (B.1) about its periodic
orbit p t( ) results in a LTP system

δ δϵ=z G zt˙ ( ) , (B.6)

where

=
∂

∂ =
G

f z

z
t

t
( )

( , )
.

z p t( )

Thefirst-order averaged formof equation (B.6) is

δ δϵ=z G z¯̇ ¯ ¯, (B.7)

where

∫=G G
T

t t¯ 1
( )d . (B.8)

T

0

In summary, one may average the NLTP system
(B.1) and then linearize about the fixed point p0 to
obtain the LTI system (B.4). Or one may linearize the
NLTP system (B.1) around the periodic orbit p t( ) and
then average to obtain the LTI system (B.7). However,
the systems (B.4) and (B.7) that result from these two
approximation sequences are not identical, as depic-
ted infigure B1 .

To appreciate the disparity between the systems
(B.4) and (B.7), we consider the error that accrues
during first-order averaging and linearization. Using
the Taylor series expansion of f x t( , ) around p0, and
assuming that ∥ − ∥x pt( ) 0 is sufficiently small, one
finds that

∫

∫

∫

ϵ

ϵ

ϵ

ϵ

ϵ

=
∂

∂
+

=
∂

∂
+

= ∂
∂

+

=
∂

∂
+

= +

=

=

=

=

O

O

O

O

O

⎛
⎝⎜

⎞

⎠
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⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

G
f x

x

f x

x

x
f x

f x

x

F

T

t
t

T

t
t

T
t t

¯ 1 ( , )
( ) d

1 ( , )
d ( )

1
( , )d ( )

¯ ( )
( )

¯ ( ). (B.9)

x p

x p

x

x p

T

T

T

p

0

0

0

0

0

0

0

Thus, if δx t¯ ( ) and δz t¯ ( ) are solutions of (B.4) and
(B.7) starting from initial conditions δx̄0 and δz̄0,
respectively with δ δ ϵ∥ − ∥ = Ox z¯ ¯ ( )0 0 , then
δ δ ϵ∥ − ∥ = Ox zt t¯ ( ) ¯ ( ) ( )on a time scale

ϵ
1 .Moreover

if the hyperbolic equilibrium point p0 of (B.2), and
therefore the hyperbolic periodic orbit p t( ) of (B.1), is
stable, then the LTI systems (B.4) and (B.7) are stable
and δ δ ϵ∥ − ∥ = Ox zt t¯ ( ) ¯ ( ) ( ) for ∈ ∞t [0, ). For
proof of a similar case, see [46].

Finally, the reader may not find the relation
between the above non-commutativity property and
the work performed in this paper clear enough. This is
because the solution considered here, equilibrium
solution of the system (8), is not a periodic orbit but a
fixed point for aNLTP system. In such a case, the com-
mutativity between linearization and averaging holds.
Therefore, we provide this appendix here to warn the
reader about the invalidity of such a a commutativity,
in general.

Figure B1.Averaging and linearization.
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