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Cortical circuit dynamics 
underlying motor skill learning: 
from rodents to humans
Emily Kogan †, Ju Lu *† and Yi Zuo *

Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa 
Cruz, CA, United States

Motor learning is crucial for the survival of many animals. Acquiring a new 
motor skill involves complex alterations in both local neural circuits in many 
brain regions and long-range connections between them. Such changes can 
be  observed anatomically and functionally. The primary motor cortex (M1) 
integrates information from diverse brain regions and plays a pivotal role in the 
acquisition and refinement of new motor skills. In this review, we discuss how 
motor learning affects the M1 at synaptic, cellular, and circuit levels. Wherever 
applicable, we attempt to relate and compare findings in humans, non-human 
primates, and rodents. Understanding the underlying principles shared by different 
species will deepen our understanding of the neurobiological and computational 
basis of motor learning.
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motor learning, cross-species, primary motor cortex, neuron, inhibitory interneuron, 
synapse, dendritic spine

1. Introduction

Muscle-based motor systems are evolutionarily very ancient, present in all metazoans except 
sponges (Seipel and Schmid, 2005; Wang et al., 2022). In an ever-changing, unpredictable 
environment, it is advantageous to have a variety of motor functions and to be able to generate 
motor outputs adaptively. Mammals arguably possess the richest motor repertoire, and have the 
capability to change or improve motor performances through practice, a process generally 
referred to as motor learning (Shmuelof and Krakauer, 2011). Mammalian motor behaviors 
engage a complex network of brain regions, including the neocortex, the basal ganglia, the motor 
thalamus, the cerebellum, and brainstem and midbrain areas such as the ventral tegmental area 
(VTA), the substantia nigra pars compacta (SNc), the periaqueductal gray area (PAG), the 
vestibular nuclei, and the pedunculopontine nucleus (PPN) (Suryanarayana et  al., 2022). 
Particularly, placental mammals possess at least one separate cortical motor area (Krubitzer, 
2007). The primary motor cortex (M1) serves as a control hub of this network, sending 
commands that enable the flexible recruitment of lower motor neurons in the spinal cord, which 
underlies the ability to learn and to perform novel tasks (Shmuelof and Krakauer, 2011). Its 
functions are subserved by the local circuit as well as the long-range connections with other 
brain regions. M1 has a laminar structure, containing many of the same neuronal elements of 
the canonical microcircuit as in other neocortical areas (Douglas and Martin, 2004). 
Traditionally, it is believed that M1 is cytoarchitectonically distinct by the lack of layer (L) 4 
(Geyer et al., 2000), which mainly consists of granular cells and is the principal target of thalamic 
inputs in sensory cortices. Some recent studies (Garcia-Cabezas and Barbas, 2014; Yamawaki 
et al., 2014; Bopp et al., 2017), however, suggest the existence of a bona fide L4 in M1 of mice 
and rhesus monkeys, which echoes Ramón y Cajal’s description of a L4 in the human motor 
cortex (Ramón y Cajal, 1899).
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M1 receives inputs from several thalamic nuclei (thalamocortical 
or TC inputs) and other cortical areas (corticocortical or CC inputs). 
TC inputs exhibit a sub-region- and layer-specific distribution. The 
ventral medial nucleus (VM) and the anterior medial nucleus (AM) 
of the thalamus project to L1, the ventral anterior/ventral lateral 
nucleus (VA/VL) projects to L1 and L2/3, and the posterior nucleus 
(PO) innervates L2/3 and L5 (Hooks et al., 2013; Kuramoto et al., 
2015; Tanaka et al., 2018; Hasegawa et al., 2020; Munoz-Castaneda 
et al., 2021). CC inputs also exhibit sub-region- and layer-specificity. 
For example, L5 neurons in the mouse rostral forelimb area (RFA) of 
the motor cortex receive inputs from L2/3 and L5A, but not L5B, 
neurons in the caudal forelimb area (CFA); conversely, CFA L5 
neurons receive inputs from RFA L5B neurons (Hira et al., 2013). In 
the rat brain, it has been reported (Ueta et al., 2014) that projections 
from the secondary motor cortex (M2) to M1 mostly arise from 
pyramidal neurons (PyrNs) in lower L2/3 and L5A. Among them, M2 
L5A neurons predominantly send their axons to L1 of M1, whereas 
M2 L2/3 neurons also innervate L2/3 of M1. Furthermore, in the 
mouse vibrissal M1 (vM1), axons from the vibrissal primary 
somatosensory cortex (vS1) preferentially innervate L2/3 and L5A 
neurons, providing only weak inputs to L5B and L6 neurons (Mao 
et al., 2011). A later study by the same group (Hooks et al., 2015) 
showed with dual-channel optogenetic stimulation that individual 
L2/3 neurons in the mouse vM1 receive inputs from both vS1 and the 
posteromedial nucleus of the thalamus (POm). Taken together, such 
anatomical specificity suggests that neurons in different layers of M1 
integrate different information streams for motor functions.

M1 sends outputs to many brain regions. Among the main 
projection neurons in M1, pyramidal tract (PT) neurons send axons 
down the white matter tract in the brainstem and innervate a variety 
of regions within and outside the telencephalon, including the spinal 
cord, pons, striatum, brainstem, and thalamus; intratelencephalic (IT) 
neurons, in contrast, project exclusively within the telencephalon to 
the cortex and striatum (Baker et al., 2018). A special sub-class of PT 
neurons are the corticomotoneuronal (CM) cells, which directly 
synapse onto spinal cord alpha motor neurons controlling hand and 
finger muscles. They are unique to dexterous primates, which they 
work synergistically with evolutionarily more ancient descending 
pathways to generate highly dexterous movements (Lemon, 2008; 
Yoshida and Isa, 2018; Strick et al., 2021). In rodents CM connections 
are present only transiently and are eliminated shortly after birth (Gu 
et al., 2017; Murabe et al., 2018). Besides projecting to different targets, 
one recent study also suggests that corticostriatal projections from M1 
IT neurons exhibit a higher degree of topographic stereotypy than 
those from PT neurons (Hooks et  al., 2018). A schematic of the 
organization of major M1 inputs and outputs is given in Figure 1. For 
a more comprehensive description of M1 input and output patterns, 
see (Hooks et al., 2013; Baker et  al., 2018; BRAIN Initiative Cell 
Census Network (BICCN), 2021; Munoz-Castaneda et al., 2021); for 
details of cortical local circuitry, see (Harris and Shepherd, 2015).

2. M1 is necessary for motor learning 
and dexterity but not for simple 
movements

Previous studies across species have demonstrated that M1 plays 
an essential role in motor learning. An early human study (Schlaug 

et al., 1994) used positron emission tomography (PET), which uses 
radioactive tracers to measure physiological processes such as 
metabolism and blood flow (Raichle, 1983), to identify cerebral 
structures activated in a task in which participants carried out a 
complex sequence of finger tapping. It showed that the contralateral 
sensorimotor area had the highest activation, with other cortical and 
subcortical areas variably implicated. Another study trained human 
subjects to move fingers in specific orders paired with specific rhythms 
and found through functional magnetic resonance imaging (fMRI) 
that contralateral M1 encodes the learned finger movement sequences 
and rhythms as an integrated unit (Kornysheva and Diedrichsen, 
2014). Later, it was discovered that bilateral transcranial direct current 
stimulation (tDCS) to the motor cortex substantially improved the 
human subject’s learning in a unimanual sequence movement task 
compared to unilateral or sham stimulation (Waters et  al., 2017). 
Upregulation of M1 excitability by transcranial magnetic stimulation 
(TMS) (Hallett, 2000) also improved learning in a non-dominant 
hand digit sequence task (Narayana et al., 2014) and during a serial 
reaction time task (SRTT, commonly used to investigate motor 
learning in humans) (Nitsche et  al., 2003). On the other hand, 
inactivating M1 interferes with motor learning. For example, 
Muellbacher et al. trained humans to perform fast finger movement 
and measured movement acceleration and muscle force generation. 
They found that low-frequency, repetitive TMS to M1 acutely 
disrupted the retention of learned behavior, without affecting basal 
motor behaviors or subsequent motor learning, suggesting that M1 is 
specifically engaged in the early phase of motor skill consolidation 
(Muellbacher et al., 2002). Another study found that inhibitory TMS 
through continuous theta burst stimulation to M1 impaired motor 
learning in SRTT. This effect is believed to result from a decreased 
functional connectivity between M1 and other brain regions relevant 
to the task (Steel et al., 2016).

In rodent models, researchers have tried to identify brain regions 
active during motor learning by immunostaining Fos, the protein 
product of the immediate-early gene cFOS, as a proxy for neuronal 
activation. An early study (Kleim et  al., 1996) found that Fos 
expression was significantly higher in M1 L2/3 of rats trained on an 
acrobatic task (traversing a series of 10 obstacles including a rotating 
cylinder, a suspended chain, wooden blocks, dowel rods of varying 
diameters, etc.), which requires a wide variety of fine motor skills, 
compared to control animals. Furthermore, Fos signal was greater in 
brains collected during skill acquisition than in those collected during 
task performance, suggesting that M1 is the most active during the 
early phase of learning, consistent with findings in human experiments 
(Muellbacher et  al., 2002). Notably, training on complex motor 
behaviors (running on a wheel with an irregular rung pattern) 
activates M1 stronger than simple motor training (running on an 
accelerating rotating rod or “rotarod”), as shown by Fos 
immunostaining (Nagai et al., 2017).

Interestingly, while accumulating evidence suggests that M1 is 
crucial for motor learning and dexterity, it seems more or less 
dispensable for simpler, “innate” movements. Early studies have 
shown that lesioning the motor cortex (Castro, 1972; Whishaw, 2000) 
impairs dexterous movements in rats. Unilateral partial or complete 
pyramidal sections, which disrupt the corticospinal tract (CST, the 
major neural pathway connecting M1 to the spinal cord), likewise 
impair skilled reaching in rats (Whishaw et al., 1993; Piecharka et al., 
2005). Similarly, interrupting the CST in monkeys by bilateral 
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lesioning at the upper medullary level impairs dexterity (Lawrence 
and Kuypers, 1968). However, simpler movements such as running in 
a maze or cage are generally not impaired by cortical lesions 
encompassing M1 (Franz and Lashley, 1917; Maier, 1935). A study on 
rhesus monkeys also showed that after complete removal of 
sensorimotor areas including M1, walking and jumping recovered 
over time but dexterity did not (Passingham et al., 1983). To avoid the 
confounding effect of M1 lesion on dexterity during motor learning, 
Kawai et al. created a motor sequence task, in which the rat learns to 
press a lever twice in a prescribed temporal sequence to obtain a water 
reward (Kawai et al., 2015). As dexterity is not explicitly required, this 
task dissociates the learning and execution of motor sequences from 
the generation of dexterous movements. Strikingly, although 
pre-training M1 lesions prevented rats from acquiring the motor 
sequence, post-training M1 lesions did not affect the execution of the 
acquired motor sequence. Consistent with this, M1 inactivation 
through optogenetic activation of inhibitory interneurons impairs the 
mouse’s motor performance in early and mid, but not late, stages of 
learning a joystick-press task (Hwang et al., 2019). Moreover, a recent 
study (Serradj et al., 2023) showed that learning a “precise” motor task 
(isometric pull with a specific force) remodeled the activity pattern of 
relevant M1 corticospinal neurons in mice, whereas learning an 
“imprecise” task (pull without the need for precise force adjustment) 
did not. Bilateral pyramidotomy or optogenetic silencing of 
corticospinal neurons disrupted the performance in the precise task 
but largely spared the imprecise task. Taken together, these studies 

highlight M1’s role in learning new, complex motor skills rather than 
performing routine motor tasks.

3. Motor learning induces gross 
anatomical changes in M1

Both human and animal studies have revealed that motor learning 
induces macroscopic anatomical changes in M1. Several works have 
compared the brains of musicians (professional and amateur keyboard 
players) and non-musicians, as playing a musical instrument requires 
one to learn complex fine movement patterns and to rehearse them 
over time. Using voxel-based morphometry (Ashburner and Friston, 
2000), an automated technique to identify brain anatomy differences 
by statistical analysis of high-resolution structural MRI data, Gaser 
and Schlaug found a significant positive correlation between musician 
status and the volume of gray matter in several brain regions including 
M1, with professional musicians having the largest volume (Gaser and 
Schlaug, 2003). Analogously, world-class gymnasts have a larger 
volume of gray matter in the precentral gyrus (M1) than non-gymnast 
controls, and among gymnasts, larger gray matter volume correlates 
with higher average scores in routines they competed (Fukuo et al., 
2020). In concert pianists, diffusion tensor imaging (DTI) discovered 
a significant correlation between the practice time and the fractional 
anisotropy (FA) (Bengtsson et al., 2005). FA is a widely-used measure 
that reflects axonal fiber density, diameter, and myelination in the 

FIGURE 1

A schematic of M1 input–output organization. Left: the laminar distribution of inputs from major sources to M1, shown as relative input strength. Right: 
targets of major types of M1 output neurons. ET, extratelencephalic neurons (traditionally termed pyramidal tract or PT neurons); IT, intratelencephalic 
neurons; CT, corticothalamic neurons. Adapted from Baker et al. (2018, licensed under CC-BY 4.0), Hooks et al. (2013, licensed under CC-BY-NC-SA 
3.0), and BRAIN Initiative Cell Census Network (BICCN) (2021, licensed under CC-BY 4.0).
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white matter (Le Bihan, 2003). Interestingly, practice time during 
different age periods–childhood, adolescence, or adulthood–correlates 
with FA in different sets of brain regions. In particular, childhood 
practice time correlates with FA in the posterior limbs of the internal 
capsule, which contain CST fibers that are critically important for 
independent finger movements in humans and other primates 
(Bengtsson et al., 2005). Furthermore, learning a new motor skill can 
modify the motor cortex on a shorter time scale. Human subjects 
practicing left hand finger-thumb opposition movement for 4 weeks 
showed an increase in cortical thickness in the right post-central 
gyrus, consistent with the motor representation of trained fingers (Sale 
et  al., 2017). Diffusion MRI tractography has further revealed a 
significantly increased FA in the right CST, with no change in the left 
CST, in subjects undergoing such training (Reid et al., 2017). A recent 
study comparing DTI results with myelin water imaging (MWI) 
suggests that increased myelination plays a central role in motor 
learning-induced white matter plasticity (Kirby et al., 2022). Similar 
macroscopic reorganizations in response to motor learning have also 
been observed in the rodent M1. An early study reports that consistent 
use of one forelimb in a reaching task increases the thickness of the 
contralateral M1 in rats (Diaz et al., 1994). The increase in motor 
cortical thickness has also been observed in rats subjected to motor 
learning on an obstacle course, but not in those voluntarily running 
on a wheel or in inactive controls (Anderson et al., 2002). Recently, it 
was found that learning a dexterous reaching task induces dynamic 
retraction and formation of myelin sheaths around learning-activated 
axons in mouse M1 (Bacmeister et al., 2022). Together, these studies 
suggest that both gray and white matter undergo structural alterations 
in motor learning.

Interestingly, humans learning a three-ball juggling task for 
3 months show a transient gray matter expansion, which decreases 
over the following 3 months of non-practice (Draganski et al., 2004). 
Another study on right-handed subjects practicing left-hand writing 
found that the gray matter volume increased over the first 4 weeks, but 
then returned to the baseline level either completely or partially 
(Wenger et  al., 2017b). These results have led to the expansion-
renormalization model of plastic changes in the human brain 
accompanying skill acquisition (Wenger et al., 2017a). The model 
postulates an initial increase of gray matter structure, such as synaptic 
growth, followed by a selective elimination of “unwanted” surplus 
structures, which renormalizes the total volume. It resolves a paradox 
already recognized by Ramón y Cajal: “[How] can the volume of the 
brain be maintained if there is a multiplication and a new formation 
of small terminal branches of dendrites and axonal collaterals?” 
(Ramón y Cajal, 1894). It also broadly agrees with the observation of 
learning-associated structural dynamics of synapses in rodents in vivo 
(see below).

4. Neuronal representation of learned 
behavior emerges and evolves with 
learning

Many studies have attempted to determine how motor commands 
are encoded at the level of individual neurons or neuronal populations. 
Evidence abounds that single neurons in primate M1 may encode a 
variety of kinematic parameters related to movement, such as position 
(Georgopoulos et  al., 1984; Paninski et  al., 2004), direction of 

movement (Georgopoulos et  al., 1982), amplitude (Messier and 
Kalaska, 2000), and acceleration (Ashe and Georgopoulos, 1994). 
Indeed, a large variable set of finger movements may be decoded from 
the activity patterns of a relatively small number of neurons in monkey 
M1 (Ben Hamed et al., 2007). However, as the activity of single M1 
neurons may correlate with a wide range of movement parameters and 
change across behaviors, it leads some researchers to speculate that the 
apparent “tuning” of individual M1 neuron’s activity to specific 
movement variables is but coincidental; that it would be more natural 
to view M1 as a dynamical system that generates and controls 
movements, in which the activity of individual neurons evolves as part 
of the system-wide dynamics (Scott, 2008; Churchland et al., 2012). 
As succinctly put in a Perspective article, “the ultimate role of M1 is to 
generate movement, not to represent it” (Gallego et al., 2017). An 
emerging idea is that the parameters to generate movements are 
encoded in the activity pattern of populations of neurons, which may 
lie on a low-dimensional manifold (Shenoy et al., 2013; Gallego et al., 
2017; Vyas et al., 2020). According to this idea, motor learning would 
involve a gradual shift in the population activity patterns that leads to 
the optimization of the motor output.

Previous studies have shown that motor learning leads to 
functional reorganization of M1, i.e., changes in the topography of 
motor representations. An fMRI study (Karni et al., 1995) on human 
subjects learning a motor sequence (finger opposition movement) 
showed that the activated region in M1 grew as learning proceeded, 
and after weeks of practice, the active area remained large compared 
to areas activated upon learning a new task. In squirrel monkeys, 
learning two tasks–small object retrieval, which requires digit 
movement, and eyebolt-turning, which requires supination and 
pronation of the hand–differentially alters the topographic map in M1, 
as determined by intracortical microstimulation (Nudo et al., 1996). 
This is corroborated by the finding that skilled reaching (pellet 
retrieval) elicits an increase in the area of wrist and digit representation 
in rat M1, whereas unskilled reaching (bar pressing) does not (Kleim 
et al., 1998). The expansion of distal forelimb representation occurs 
only after 10 days of training, following significant synaptogenesis 
(Kleim et al., 2004). On the other hand, as learning progresses, M1 
displays the same or even reduced global activation level. A human 
fMRI study (Wiestler and Diedrichsen, 2013) found that highly 
distinguishable activation patterns emerged in M1 for trained finger 
movement sequences without an increase in average activity.

To determine how M1 population activity pattern evolves during 
motor learning with single neuron resolution, Peters et al. performed 
in vivo two-photon (2P) calcium imaging of L2/3 neurons in the 
mouse M1 during a lever-press task over 2 weeks (Peters et al., 2014). 
They found that, during the initial phase of learning, the population 
of active excitatory neurons expanded and exhibited a variety of 
activity patterns even when executing similar movements; as learning 
proceeded, this was refined to a smaller population with more 
reproducible activity patterns. A later study by the same group 
(Hwang et  al., 2019) confirmed that M1 L2/3 population activity 
became more consistent across trials from early- to mid-stage of 
learning a joystick-press task, as kinematic stereotypy rapidly 
increased. However, over prolonged training (2 months), M1 
population activity became again variable despite expert-level 
performance, which is consistent with the disengagement of M1 from 
controlling well-established movements. Recently, Hwang et  al. 
further tested this idea by training mice on two tasks requiring distinct 
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sets of muscles (forward vs. downward joystick press) over long term. 
They found that of the two tasks, the one in which the mouse achieved 
higher trial-to-trial consistency activated fewer M1 L2/3 neurons, 
producing weaker and less consistent population activity, and was less 
affected by optogenetic inactivation of M1 (Hwang et  al., 2021). 
Apparently, M1 relinquishes the control over movements that have 
achieved perfection through practice.

5. Reorganization of M1 excitatory 
synaptic circuit in motor learning

It is widely accepted that the activity pattern of neurons is 
fundamentally determined by their synaptic connectivity. A corollary 
of this idea is that changes in synaptic connections underlie the 
evolution of neural activity patterns throughout the learning process. 
Indeed, Ramón y Cajal suggested this possibility as early as in 1894. 
In the Croonian Lecture delivered before the Royal Society of London, 
he  perspicaciously remarked that, in a use-dependent manner, 
“associations already established among certain groups of cells would 
be notably reinforced by means of the multiplication of the small 
terminal branches of the dendritic appendages and axonal collaterals; 
but, in addition, completely new intercellular connections could 
be established thanks to the new formation of [axonal] collaterals and 
dendrites” (Ramón y Cajal, 1894). Essentially, he  envisages that 
structural plasticity in the synaptic circuit serves as the anatomical 
substrate of learning.

In the context of motor learning, evidence supporting this idea in 
M1 emerged almost a century later. In 1996, Greenough et al. used 
serial electron microscopy (EM) to examine M1 L2/3 neurons in rats 
trained on acrobatics, and found that their synapse density increased 
from skill acquisition to the maintenance phase of learning (Kleim 
et al., 1996). Consistent with this, in rats trained on a pellet reaching 
task, synapse number per M1 neuron significantly increased at day 7 
and day 10 of learning compared to the pre-learning level (Kleim 
et al., 2004). While such fixed-tissue studies have yielded invaluable 
information about learning-associated synaptic changes, they cannot 
follow the dynamic process. The advent of two-photon microscopy 
(Denk et al., 1990) and transgenic mice with cortical neurons sparsely 
labeled by fluorescent proteins (Feng et al., 2000) enable researchers 
to interrogate the structural dynamics of synapse changes in the living 
brain. Focusing on dendritic spines – tiny protrusions that host the 
postsynaptic sites of most excitatory synapses in the mammalian 
cortex – on apical dendrites of L5 PyrNs in sensory cortices, several 
pioneering works (Grutzendler et al., 2002; Trachtenberg et al., 2002; 
Zuo et al., 2005; Holtmaat et al., 2006) discovered a rich dynamics of 
spine formation and elimination under baseline conditions and in 
response to sensory manipulations. Leveraging the same imaging 
technique, Xu et al. found a rapid emergence of new spines on M1 L5 
PyrNs in mice trained on a pellet reaching task; continued training 
preferentially stabilized such learning-induced spines, which persisted 
long after the cessation of training (Xu et  al., 2009). A similar 
phenomenon was reported in mice receiving rotarod training (Yang 
et al., 2009).

Moreover, spine formation and stabilization are correlated with 
the acquisition (Xu et al., 2009) and retention (Yang et al., 2009) of 
learned motor skills. Subsequent studies further demonstrated the 
positive correlation between spine dynamics and motor learning by 

molecular or genetic tools. For example, intrathecal application of 
antibodies against Nogo-A (a membrane protein best known as an 
inhibitor of axonal outgrowth and regeneration in the central nervous 
system) increases spine formation and improves learning of single-
pellet reaching (Zemmar et al., 2014). Mice over-expressing KCC2 (a 
neuronal K+-Cl− co-transporter) in forebrain excitatory neurons show 
increased spine formation rate during rotarod training, which is 
correlated with faster learning and better performance outcome 
(Nakamura et al., 2019). Similarly, paired immunoglobulin receptor B 
knockout (PirB−/−) mice have increased spine formation rate as well 
as lower spine elimination rate, and learn skilled reaching faster. 
Notably, acute blockage of PirB signaling by infusion of a recombinant 
soluble PirB decoy receptor in wild-type mice recapitulates the spine 
dynamics phenotype and learning improvement observed in PirB−/− 
mice, suggesting that the effect is not due to a developmental alteration 
in the neural circuit (Albarran et  al., 2021). To move beyond 
correlation and establish the causal relationship between the structural 
potentiation of spines (formation and enlargement) and motor 
learning, Hayashi-Takagi et al. devised a novel “optoprobe” called 
AS-PaRac1, which is targeted to potentiated spines and can induce 
spine shrinkage when activated by light. They expressed AS-PaRac1 in 
M1 and trained the mice to run on the rotarod. Light activation of 
AS-PaRac1 after learning caused the potentiated spines to shrink and 
impaired the animal’s performance on the rotarod. The effect is task-
specific, as AS-PaRac1 activation of spines potentiated during beam 
walking or spontaneously during other movements did not interfere 
with rotarod performance. Thus, this study provides the first direct 
evidence that structural changes in M1 synaptic connections are 
necessary for motor learning (Hayashi-Takagi et al., 2015).

Furthermore, new spines associated with motor learning do not 
form randomly along the dendrite, but exhibit distinct spatial patterns. 
On L5 PyrNs, new spines form in clusters in response to motor 
learning, and the emergence of the second spine in the cluster is 
associated with the enlargement of the first spine (Fu et al., 2012). 
Recently, an elegant study (Hedrick et al., 2022) used in vivo glutamate 
imaging to reveal the potentiation of clustered spines exhibiting task-
related activity during motor learning. Correlative EM reconstruction 
suggests that these functional clusters are hotspots for filopodia 
outgrowth to establish new connections with axons. The survival of 
the new spines depends on their co-activity with task-related spines 
in the vicinity, consistent with an earlier report that in the developing 
visual cortex, synapses “out of sync” with their neighbors are weakened 
over time (Winnubst et al., 2015). Theoretical studies have suggested 
that such clusters of synapses sharing similar activity patterns would 
enable the neuron to fully exploit the information processing capacity 
offered by dendritic nonlinearities (Kastellakis et al., 2023).

While the majority of in vivo imaging studies have focused on 
dendritic spines on M1 PyrNs, some researchers have endeavored to 
examine their inputs. Hasegawa et al. imaged the structural dynamics 
of axonal boutons in mouse M1 L1 during rotarod learning. They 
found an increased rate of bouton formation on axons from M2 from 
training day 2 to 4, and a decreased rate of bouton elimination on 
axons from the motor thalamus from training day 4 to 7 (Hasegawa 
et  al., 2020). Combining in vivo 2P imaging with post hoc 
immunohistochemical validation, Sohn et  al. found that motor 
learning-induced new spines receiving CC inputs tend to be transient, 
whereas those receiving TC inputs tend to enlarge and persist (Sohn 
et  al., 2022). Together these works suggest that the transient CC 
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connections facilitate motor learning, while the persistent TC 
connections store the established motor memory.

6. Contribution of inhibitory circuits to 
motor learning

The importance of inhibitory circuits in motor learning has been 
recognized for a long time. As astutely observed by Sir Charles 
S. Sherrington, “to refrain from an act is no less an act than to 
commit one, because inhibition is coequally with excitation a 
nervous activity” (Sherrington, 1933). In the mammalian brain, 
gamma-amino butyric acid (GABA) is the primary inhibitory 
neurotransmitter. To probe the role of inhibitory neurotransmission 
in motor learning, human studies have used Magnetic Resonance 
Spectroscopy (MRS) to measure local GABA level. One such study 
showed that anodal tDCS delivered to M1 induces a significant 
reduction in local GABA concentration, which is correlated with 
better performance in learning a force adaptation task (Kim et al., 
2014). Other studies have probed inhibitory circuits by paired-pulse 
TMS (Kujirai et al., 1993; Ljubisavljevic, 2006). When a subthreshold 
conditioning stimulus delivered to M1 is followed by a 
suprathreshold test stimulus with a 1–6 ms inter-stimulus interval, 
the electromyography (EMG) response evoked by the test stimulus 
is inhibited. This phenomenon is known as short interval 
intracortical inhibition (SICI) and is considered a measure of 
GABAA receptor-mediated inhibition (Ziemann et al., 1996a,b; Di 
Lazzaro et al., 2000, 2006, 2007). Several studies have reported a 
decrease in SICI associated with motor learning (Liepert et al., 1998; 
Perez et al., 2004; Smyth et al., 2010; Dupont-Hadwen et al., 2019), 
indicating a transient reduction in GABAergic inhibition putatively 
mediated through the GABAA receptor. Taken together, these studies 
suggest that modulation of the inhibitory tone in M1 is crucial for 
human motor learning.

Rodent models enable researchers to dissect the contribution of 
inhibitory circuits to motor learning with cellular specificity. There are 
three major classes of inhibitory interneurons (INs) in the cerebral 
cortex: those expressing parvalbumin (PV+), somatostatin (SST+), 
and the serotonin receptor 5HT3aR. Among the 5HT3aR group, the 
most abundant are those expressing vasoactive intestinal peptide 
(VIP+) (Lim et al., 2018). Distinct subtypes of INs selectively synapse 
onto different domains of excitatory neurons as well as each other. For 
example, PV+ INs provide inhibition to the peri-somatic region of 
PyrNs, whereas SST+ INs inhibit distal dendrites of PyrNs (Fishell and 
Kepecs, 2020). A recent study combining rabies virus-based 
monosynaptic tracing and channelrhodopsin-assisted circuit mapping 
further shows that different types of M1 INs also exhibit distinct 
laminar profiles of inputs (Okoro et al., 2022). Using transgenic mouse 
lines that express Cre recombinase in specific subtypes of INs, Chen 
et  al. found a subtype-specific plasticity of M1 inhibitory circuits 
during motor learning: axonal boutons of SST+ INs undergo 
elimination upon motor training initiation, while the number of 
axonal boutons of PV+ INs gradually increases through training 
(Chen et al., 2015).

The importance of SST+ INs in learning-associated synaptic 
reorganization is highlighted in other studies. While acute ablation or 
chemogenetic silencing of SST+ INs disrupts the branch-specificity of 

dendritic Ca2+ spikes and the associated synaptic potentiation on L5 
PyrNs (Cichon and Gan, 2015), activating SST+ INs during motor 
training prevents learning-induced sequential activities of M1 L2/3 
PyrNs and behavioral improvement (Adler et al., 2019). Notably, two 
recent studies suggest a transient reduction in SST+ IN activity level 
during the early phase of motor learning (Ren et al., 2022; Yang et al., 
2022). This is reminiscent of an earlier study (Donato et al., 2013) that 
with environmental enrichment, a larger fraction of PV+ INs in the 
adult hippocampus show low PV expression; this state is related to 
enhanced structural synaptic plasticity, memory consolidation and 
retrieval. Together with human research, these studies suggest that a 
reduction in the inhibitory tone is prerequisite to the acquisition of a 
new motor skill.

7. Conclusion

Motor learning is a ubiquitous capability of mammals. While 
motor learning induces a plethora of concerted changes from the 
molecular to the systems level not only in M1 but also in other 
movement-related areas such as the anterior lateral motor cortex 
(ALM), M2, the striatum, and the cerebellum, structural and 
functional plasticity of the synaptic circuit is emerging as the 
leitmotif. At the same time, different species exhibit specific 
anatomical and physiological features dictated by their unique 
ethology and evolutionary history. Elucidating such variations on 
the common theme will greatly deepen our understanding of the 
neurobiological and computational basis of motor learning. To 
promote such cross-species studies, it is highly desirable to devise 
behavioral paradigms that are applicable to different species. 
Comparative studies on the transcriptomics, epigenetics, neuronal 
morphology, electrophysiology, and connectomics (Beaulieu-
Laroche et al., 2018, 2021; Bakken et al., 2021; BRAIN Initiative Cell 
Census Network (BICCN), 2021; Loomba et  al., 2022) will help 
distinguish conserved core features from species-specific 
innovations. Finally, there is a conspicuous gap in the accessible 
spatiotemporal scales in human vs. animal experiments. Many 
invasive techniques for probing and modifying the neural circuit at 
the molecular and cellular levels are not applicable to human studies 
for ethical reasons. Thus, it is important to develop novel 
non-invasive methods to study the human brain with synaptic and 
cellular resolution in vivo. Conversely, research on rodents and 
non-human primates very often focuses on one small subset of cells 
in one brain region at a time; optical and electrophysiological 
methods that retain the high resolution but cover larger volumes will 
be highly informative. Achieving these goals will require dialogues 
between neuroscientists working on humans and animal models, as 
well as interdisciplinary collaborations with experts in other 
branches of physical, biological, and applied sciences.
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