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ABSTRACT: We present a combined experimental and theoretical study of monolayer VTe2 

grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Using various in-

situ microscopic and spectroscopic techniques, including scanning tunneling 

microscopy/spectroscopy, synchrotron X-ray and angle-resolved photoemission, and X-ray 

absorption, together with theoretical analysis by density functional theory calculations, we 

demonstrate direct evidence of the metallic 1T phase and 3d1 electronic configuration in 

monolayer VTe2 that also features a (4 ´ 4) charge density wave order at low temperatures. 

In contrast to previous theoretical predictions, our element-specific characterization by X-

ray magnetic circular dichroism rules out a ferromagnetic order intrinsic to the monolayer. 

Our findings provide essential knowledge necessary for understanding this interesting yet 

less explored metallic monolayer in the emerging family of van der Waals magnets. 
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INTRODUCTION  

Two-dimensional transition-metal dichalcogenides (2D-TMDs)1, 2 offer a promising avenue to 

addressing the imminent challenges brought by the continuous downscaling of conventional 

silicon-based electronic components. With over 40 different choices of compounds, the family of 

2D-TMDs provides an extensive range of key electronic properties from metals, semiconductors 

to half-metals, and from magnets to superconductors.3-5 These form the essential building blocks 

for emerging technologies that can leverage the unique assets of atomically thin materials – 

mechanical flexibility, chemical tunability, and coupled electronic degrees of freedom, such as 

charge, spin, orbital, valley, etc.6-9 

Vanadium ditelluride, VTe2, is an interesting yet rarely explored metallic 2D-TMD. Early 

work has reported an anomaly at 390–437 K in both heat capacity and resistivity measurements 

due to phase transition from a hexagonal 1T phase (at high temperature) to a monoclinic 1T’ 

structure (at low-temperature).10, 11 This 1T’ structure denotes the distorted form of the 1T phase, 

with two-thirds of the V atoms in each monolayer displaced forming double zigzag chains with a 

(3 ´ 1) periodicity. This phase transition has been associated with charge density wave (CDW) 

formation, which renormalizes the telluride’s electronic band via an enhanced overlap between the 

Te and V orbitals.12 As a consequence, a d-electron count of V deviates from the initial d1 

configuration in the 1T phase, resulting in the 1T’ phase.13 Interestingly, the fact that VTe2 exhibits 

a stronger interlayer coupling between its chalcogen atoms than its sulfide and selenide 

counterparts makes such phase transition behavior and its other properties more sensitive to layer 

thickness. Prior tight-binding band electronic structure calculations have indeed revealed 

considerable electron transfer between the Te p and V d bands in 1T-VTe2,13, 14 in which the Te 

pz-orbitals plays a crucial role. As such, any disturbance of the Te pz-orbitals or equivalently the 
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Te-Te interlayer coupling would alter the VTe2 properties. A relevant system that mimics such a 

scenario is VTe2 intercalated with alkali-metals (Li and Na),15 in which the 1T’ phase was seen to 

occur at lower temperatures than its pristine form, with the values of structural parameters closer 

to that of the 1T structure.15, 16 The lower phase transition temperature onset for intercalated VTe2 

underlines the profound effect of modified Te-Te interlayer coupling along the c crystal axis. 

Similar observations have been reported for multilayer VTe2 nanosheets grown by chemical vapor 

deposition17 and films by molecular-beam epitaxy (MBE),18 respectively. In both cases, a 1T 

structure with bulk-like lattice constants is reported.  

In this work, we demonstrate the MBE growth of monolayer VTe2 on highly oriented 

pyrolytic graphite (HOPG), enabling direct access to the monolayer regime where the intrinsic Te-

Te interlayer coupling is completely removed. Through a combination of in-situ microscopic and 

spectroscopic techniques, including scanning tunneling microscopy/spectroscopy (STM/STS), 

synchrotron-based photoemission spectroscopy (PES), angle-resolved PES (ARPES), and X-ray 

absorption spectroscopy (XAS), we give evidence of the metallic 1T phase and d1 electronic 

configuration in monolayer VTe2. Unlike the (3 ´ 1) double zigzag chain-like modulation in the 

bulk crystal, a (4 ´ 4) CDW order is observed, suggesting the significant effect of reduced 

dimensionality on the CDW instability in VTe2. Density functional theory (DFT) calculation 

reveals the possible role of the graphitic substrate in this regard. We also use element-specific X-

ray magnetic circular dichroism (XMCD) to address whether an intrinsic ferromagnetic order 

exists in monolayer VTe2, as predicted by several theoretical studies.19-21  

  

RESULTS AND DISCUSSION 
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Film growth, structural and STM/STS measurements. The 1T structure (space group: 

P3𝑚1) of VTe2 is illustrated in Figure 1a, consisting of a plane of hexagonally arranged V atoms 

sandwiched by two atomic Te planes with in-plane and out-of-plane lattice parameters of 3.64 Å 

and 6.51 Å, respectively. These parameters have been confirmed by our STM measurements at 77 

K for MBE-grown monolayer VTe2 on HOPG (also see the atomic force microscopy image in 

Figure S1 that shows the 2D growth of the monolayer). Figure 1b presents a large-scale STM 

image, indicating a step height of 8.5 Å for monolayer VTe2 in Figure 1c, which is consistent with 

the combined thickness of the monolayer with a van der Waals gap on the substrate. The atomic-

resolution STM image in Figure 1d captures a (1 ´ 1) hexagonal unit (marked in orange) with a 

lattice spacing of 3.6 ± 0.1 Å, which coexists with a (4 ́  4) reconstructed pattern (marked in white) 

whose bias-dependence is shown in Figure S2. A Fourier transform of the STM image is shown 

in the inset (top-right corner) of Figure 1d, displaying alignment between the sharp (1 ´ 1) lattice 

peaks and the (4 ´ 4) spots. Our first STM observation of this reconstruction provides real-space 

identification that confirms a recently reported (4 ´ 4) pattern obtained from low-energy electron 

diffraction of monolayer VTe2 on bilayer graphene.22 According to ref. 22, this pattern is emerged 

below 186 K, due to CDW that opens an anisotropic energy-gap with a maximum size of 50 meV 

near the M point of the telluride’s 2D Fermi surface; while, at the G point, this gap is absent.22 Our 

dI/dV spectrum in the inset (bottom-left corner) of Figure 1d displays consistent features with 

such an electronic structure.22 Our spectrum, which represents the local density of states, reveals a 

differential conductance dip centered at the Fermi level, without a clearly resolved gap. The latter 

can be explained by the fact that the STS spectrum is momentum-integrated, with some of the 

momentum regions of monolayer VTe2 gapped (along M-K) and others not (G point). As measured 
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at 77 K, we expect both spectral broadening and temperature-dependence of the CDW gap22 to 

also affect the measured STS.  

Surface chemical properties probed by synchrotron-radiation PES. Figure 2 shows 

the core-level PES (a,b) and valence band (c) of as-grown monolayer VTe2 (purple lines in the 

lower panel), and ambient-air exposed VTe2 (green lines in the upper panel) for comparison. As 

shown in Figure 2a, the V 2p peaks are located at 512.9 and 520.5 eV in binding energy (BE), and 

the Te 3d peaks at 572.0 and 582.3 eV (Figure 2b). The positions of V 2p peaks suggest a valence 

state of +4 but are 0.3-0.5 eV lower than the case for monolayer VSe2 on HOPG,23 which we 

attribute to the lower electron affinity of Te (190.2 kJ/mol) than that of Se (195.0 kJ/mol). Figure 

2c shows the valence band of monolayer VTe2 obtained using a photon energy of 60 eV, indicating 

a metallic Fermi edge contributed mainly by V 3d states. The spectral features 1-6 eV below the 

Fermi edge are related to the Te 4p bands and the graphite substrate. We also extract, from the 

secondary electron cutoff, a work function value of 4.7 eV (Figure 2d), which is ~0.3 eV lower 

than that for monolayer VSe2 prepared on HOPG under similar growth conditions.23    

The different trends of the green lines (upper) from those of purple lines (lower) indicates 

that the intrinsic properties of monolayer VTe2 are sensitive to ambient exposure. Notably, oxide 

formation leads to major changes in the monolayer surface chemical properties, as evidenced by 

the significant O 1s peak, shifting of the V 2p and Te 3d core-levels to higher BE, loss of spectral 

weight of the initial metallic Fermi edge, and reduced work function by ~0.2 eV. These spectral 

changes are in general similar to those observed for air-exposed monolayer VSe2.23  

Electronic band structure and phase identification by ARPES. Figure 3a,b shows the 

ARPES intensity maps of monolayer VTe2 measured at 297 K and 11 K, respectively. Due to the 
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small VTe2 domain sizes (a few hundred nm; see Figure S1) relative to the ARPES detection area 

(~800 µm), these measured bands are averaged over different crystal domains and thus weak. Yet, 

near the Fermi level, one observes in both the maps a weakly dispersive V 3d band and a set of 

degenerate Te 4p bands with a strong downward dispersion. Overlays of the experimental bands 

at 11 K with those calculated by DFT suggest the monolayer’s 1T structure (Figure 3c).22 Such a 

consistency is on the other hand not achieved when compared to the calculated 2H dispersive 

bands (Figure S3). The fact that a single d-band rather than exchange-split bands is observed in 

our case also excludes a ferromagnetic ground state as consistently predicted by theory.19-21 We 

shall return to this discussion with further evidence by XMCD measurements for the monolayer. 

Figure 3d shows the effect of thermal broadening in the normalized energy distribution curves 

(EDCs) around the G point. Upon cooling to 11 K from 300 K, the peak width of the EDC is 

evidently reduced, yet without a leading-edge midpoint shift, indicating absence of a CDW-gap 

opening around the G point, consistent with the previous ARPES study22 and our STS data in 

Figure 1d. 

Vanadium d-orbital electronic configuration and absence of intrinsic ferromagnetic 

order by XAS and XMCD. Figure 4a shows splitting of the 3d degenerate orbitals of V ions in 

VTe2 into two sets of triplet t2g and doublet eg states in the presence of an octahedral crystal field. 

In this d1 odd system (V4+), the unpaired electron preferentially fills the t2g states with relatively 

low orbital energy. We probed this configuration by means of V L2,3-edge XAS in the total electron 

yield (TEY) mode (Figure 4b). The corresponding spectrum shown in the upper panel of Figure 

4c consists of two main absorption peaks at 518 and 524 eV, corresponding to dipole-allowed 

transitions from the spin-orbit split V 2p3/2 and 2p1/2 core-levels to the 3d unoccupied states of 

monolayer VTe2. The fine structures at energies below the main peaks are remnant of the atomic 
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multiplets. Being similar to those measured for bulk VS2
24 and monolayer VSe2,23 these spectral 

features give strong evidence of the 1T phase and d1 electronic configuration of monolayer VTe2.  

We also carried out V L2,3-edge XMCD measurements at a temperature range of 16–300 

K by measuring XAS and reversing the external magnetic field direction (± 1 Tesla). Contrary to 

predictions of ferromagnetic exchange splitting in the V d-bands by DFT calculations,19-21 our 

monolayer possesses negligible XMCD contrast (lower panel of Figure 4c), thus suggesting a lack 

of intrinsic ferromagnetic order. We note that ferromagnetic signals have been reported for CVD-

grown VTe2 nanoplates on SiO2/Si, characterized by vibrating sample magnetometry (VSM).17 As 

a conventional magnetic measurement tool, VSM characterizes the macromagnetism of the whole 

sample, including the contribution from the substrate and probably from extrinsic perturbations. 

For instance, the substrate (Si, HOPG, etc.) usually contributes various magnetic signals.25, 26 To 

subtract such extrinsic contributions is tricky, especially due to the atomically thin nature of the 

2D material, and different methods of subtraction could yield diverse magnetic moments.27, 28 In 

this regard, the XMCD is an advantageous tool, in that it is element-specific, which guarantees the 

observed magnetic contrast to be intrinsic to V. In particular, our XMCD results are supportive of 

our ARPES data in Figure 3, showing no evidence of exchange-split bands, which would 

otherwise exist in intrinsically ferromagnetic materials. We hypothesize that this is related to the 

CDW instability in monolayer VTe2, which not only competes with but suppresses the 

ferromagnetic ground state predicted by DFT, as similarly reported for monolayer VSe2.29, 30 

Discussion of the substrate-effects in suppressing the 1T’ phase. Fermi surface nesting 

and electron-phonon interaction have been invoked previously to account for the different CDW 

orders in monolayer VTe2 and its bulk counterpart.18, 22 Furthermore, our DFT calculations reveal 

possible substrate effects that could weaken the double zigzag chain modulation in the 1T’ phase. 
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Specifically, we have considered four situations here: (1) freestanding 1T monolayer, (2) 1T 

monolayer relaxed on graphene, (3) freestanding 1T’ monolayer, and (4) 1T’ monolayers relaxed 

on graphene. We notice that no matter with the substrate or none, the 1T’ phases (3 & 4; Figure 

5a) are always more energetically stable than the 1T phases (1 & 2), which is however not observed 

experimentally by us. Quantitatively, the relative energy difference between these phases is 0.1 eV 

per super cell for the freestanding case, and ~0.08 eV per super cell for the on-graphene case. The 

small discrepancy of ~0.02 eV in the relative energy difference could be related to charge transfer 

from graphene to monolayer VTe2, as shown in Figure 5b. Back to the abovementioned 

inconsistence between the calculation and our experimental observation, we continue to examine 

the substrate effect in suppressing the 1T’ phase. As illustrated in Figure 5a, the V atoms in the 

1T’ monolayer initially displace along one lattice axis, the b axis in this work, forming the double 

zigzag strips. However, when relaxed on graphene, these regular displacements disappear and 

more random distortions are observed along both the a and b axes, as shown in Figure 5a. These 

considerably reduce both the Te-Te height profile (Figure 5c) and the V-strips separation (Figure 

5d), and in turn the 1T’ structural modulations. We speculate that, when a multilayer graphene is 

used as a substrate, the structural modulations will be further smeared out, which may probably 

explain why the 1T’ phase is not observed in our monolayer on HOPG.  

CONCLUSIONS 

In summary, we present direct microscopic and spectroscopic evidence of metallic 1T phase and 

d1 electronic configuration in monolayer VTe2. Unlike the double zigzag chained structure 

observed in the bulk, we obtain a (4 ´ 4) CDW reconstruction pattern. DFT calculations reveal the 

possible role of the graphitic substrate in suppressing the double zigzag structure. Regarding the 

magnetism of monolayer VTe2, our XMCD data excludes an intrinsic ferromagnetic ordering, in 
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disagreement with previous theoretical predictions. Our findings provide new knowledge of this 

metallic vanadium dichalcogenide monolayer, potentially interesting for the explorations of exotic 

quantum phenomena and device applications related to phase transitions. 

METHODS 

Molecular-beam epitaxy of monolayer VTe2. Monolayer VTe2 films were grown on 

HOPG in a custom-built MBE chamber with a base pressure of better than 1 ´ 10-9 mbar. The 

substrates were prepared by in-situ cleavage followed by annealing at 820 K for at least 120 min. 

High-purity V and Te were evaporated from an electron-beam evaporator and a standard Knudsen 

cell, respectively. The Te/V flux ratio was controlled to be >10. During the growth process, the 

substrate temperature was kept at 650 K. To protect the samples against ambient contaminations 

during ex-situ transport to other ultrahigh vacuum (UHV) measurement systems, a Se/Te bilayer 

was deposited on the samples as a cap. For subsequent characterization by PES, ARPES, and 

XAS/XMCD, the cap was desorbed in UHV at 500 K. It is noteworthy that a Se 3d core-level peak 

was evident by PES after thermal desorption of a pure Se cap (Figure S4), suggesting possible Se 

contamination in the monolayer VTe2 film, as such signal was quite robust and remained even at 

relatively high temperatures.       

Scanning tunneling microscopy and spectroscopy. STM measurements were carried out 

in a custom-built multi-chamber UHV system housing an Omicron low temperature-STM 

interfaced with a Nanonis controller. The base pressure was better than 10-10 mbar. A chemically 

etched tungsten tip was used, and the sample was kept at 77 K during all the measurements. STM 

images were recorded in constant current mode. For dI/dV spectra, the tunneling current was 

obtained using the lock-in technique. Note that the bias voltage is applied on the STM tip; hence, 

negative values correspond to conduction bands and positive values correspond to valence bands. 
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Each curve was obtained by averaging hundreds of individual spectra acquired at random locations 

of a specific STM image. 

Synchrotron-radiation photoemission. PES measurements were performed at 300 K at 

the SINS beamline of the Singapore Synchrotron Light Source (SSLS), which covers the photon 

energy range from 50 to 1200 eV. A Scienta SES-200 spectrometer was used to collect the 

spectroscopic data at normal emission, while the X-ray beam was set with an incident angle of 45° 

relative to the sample surface. A bias voltage of -7.0 eV was applied to the sample during work 

function measurement in order to negate the effect of the analyzer work function. The binding 

energy of the data was calibrated using the 4f core-levels and Fermi edge of a reference Au foil. 

Angle-resolved photoemission. The ARPES measurements were collected with HeI𝛼 (hv 

= 21.218 eV) radiation source (SCIENTA VUV5k). The photoelectrons were analyzed in the plane 

of incidence with a high energy and angular resolution SCIENTA DA30L analyzer. The angular 

detection range spans ±15° with respect to the spectrometer lens axes. Wider angular limits were 

obtained by rotating the sample with respect to the analyzer lens entrance axes. During ARPES 

acquisition the total energy resolution was set to 20 meV, with the angular resolution being better 

than 0.2o. The binding energy scale was referred to the Fermi level (EF) as measured for a clean 

gold substrate. 

X-ray absorption spectroscopy and magnetic circular dichroism. XAS and XMCD 

measurements were carried out at the beamline 6.3.1 of the Advanced Light Source (ALS). The 

spectra were collected with sample temperatures ranging from 16 to 300 K in TEY mode, in which 

the sample drain current was recorded as a function of the photon energy. The angle of incidence 
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of the photon beam was set to 45° relative to the sample surface. XMCD spectra were recorded 

with a fixed circular polarization of the X-rays and opposite magnetic fields up to ±1 T. 

Density-functional theory calculations. The DFT calculations were performed using the 

VASP package, utilizing the projector augmented phase wave (PAW) method,31 and the Perdew 

Burke and Ernzerhof (PBE) exchange-correlation functional.32 To better estimate the interlayer 

dispersion interactions in the interface structure, the dispersion-corrected vdW-optB88 exchange-

correlation functional was applied.33-36 A separation of 20 Å between VTe2 layers was found to be 

sufficient to represent an isolated monolayer. We employed a kinetic energy cutoff of 500 eV and 

a G-centered 21 × 21 × 1 k-point mesh. The lattice parameters and the atomic positions were 

optimized until the forces on the atoms were less than 1 meV/Å. The relaxed lattice parameter is 

3.61 Å, in good agreement with the experimental value. For the interfaces, we use a 3 × 9, 2 × 6, 

and 2 × 2 supercell for graphene, T phase and T’ phase VTe2, respectively, in which the strain is 

less than 2%. The graphene layer is kept fixed during the structure relaxation. 

  



 13 

FIGURES. 

Figure 1. Lattice structure and STM/STS data of monolayer VTe2 on HOPG. (a) Lattice 
structure of 1T-VTe2. (b) Large-scale STM image of the monolayer measured at 77 K (150 ´ 150 
nm2; tip bias = -0.89 V, tunneling current = 68 pA). Marked by yellow arrows are residual cap. 
(c) The line profile shown in (b) with a monolayer step height of ~8.5 Å. (d) Atomic-resolution 
STM image (10 ´ 10 nm2; tip bias = +0.1 V, tunneling current = 150 pA), which reveals an in-
plane lattice parameter of 3.6 ± 0.1 Å, consistent with that in (a) for 1T-VTe2. The additional (4 ´ 
4) superstructure is observed in the STM image as well as in its FFT. The averaged STS curve 
(set-point: tip bias = +0.3 V, tunneling current = 60 pA, 625 Hz, 50 mV) of the monolayer shows 
no sign of a gap feature related to a CDW order.  
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Figure 2. PES data of monolayer VTe2. (a,b) V 2p and Te 3d core-levels of monolayer VTe2. 
The V 2p3/2 and 2p1/2 peaks are seen to position at 512.9 eV and 520.5 eV, respectively, and the 
Te 3d5/2 and 3d3/2 peaks are at 572.0 eV and 582.3 eV, respectively. (c) The valence band of the 
monolayer shows a metallic Fermi edge contributed mainly by the V 3d states. The spectral 
features at 1–5 eV are derived from the Te 4p bands, while the broad peak beyond 6 eV is 
originated from the graphite substrate. (d) Work function extracted from the secondary electron 
cutoff of the monolayer, using a photon energy of 60 eV, is ~4.7 eV. The upper panel (data in 
green) shows the impacts of ambient-air-exposure. A peak shift to higher BE is evidenced for both 
the V 2p and Te 3d core-levels and the initial metallic Fermi edge loses most of its spectral weight. 
These changes are also accompanied by a work function decrease by 0.2 eV.  
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Figure 3. ARPES results of monolayer VTe2. (a,b) Intensity maps measured at 300 K and 11 K, 
respectively, as a function of the surface momentum component k//. (c) Overlay between the 
experimental (11 K) and calculated band dispersions. Note that the dispersions along the G-M 
direction  in the hexagonal Brillouin zone are in solid lines and those along the G-K direction in 
dotted lines. Comparison between these bands confirms the monolayer’s 1T structure. The 
observation of a single d-band also excludes the theoretically predicted ferromagnetic ground state. 
(d) Upon cooling to 11 K from 300 K, the EDC around the G point, normalized by the FD function, 
reveals a smaller spectral width due to reduced thermal broadening. However, no leading-edge 
midpoint shift is observed in the EDCs, indicating no CDW gap opening at the G point. For all 
measurements, zero binding energy represents the Fermi level position. 
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Figure 4. V d1 electronic configuration of 1T-VTe2 and element-specific XAS/XMCD 
characterization of monolayer VTe2. (a) In an octahedral crystal-field, the 3d-orbitals of the V4+ 
ion in 1T-VTe2 are split into two sets of orbitals, eg and t2g, separated by an energy of 10 Dq. (b) 
TEY detection of the XAS/XMCD data illustrated in (c). (c) Upper panel shows the XAS spectra 
of the monolayer measured at 16 K. Spectra highlighted in solid and dotted lines are the XAS 
acquired with opposite external magnetic fields (±1 T), respectively. Distribution of the atomic 
multiplets observed for the monolayer provides strong evidence of the d1 configuration depicted 
in (a). Lower panel in (c) shows the corresponding XMCD signal, which, within experimental 
error, suggests a lack of ferromagnetic coupling in monolayer VTe2.   
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Figure 5. Comparison of the DFT results for 1T’ monolayer VTe2 in free-standing form and 
on graphene. (a) Structural guidance for free-standing T’-VTe2 in side view. (b) Structural 
guidance for T’-VTe2 on graphene with charge difference in isosurface value of 2.5×10-4 e/Bohr3 
in side view. The charge density difference is calculated by subtracting the sum of the charge 
densities of the VTe2 and graphene layers from the total charge density of the whole interface slab. 
The blue and red area represents charge depletion and accumulation, respectively. (c) The height 
difference of Te atoms in the top sublayer of VTe2 for free-standing and on-substrate form. The 
height of the lowest Te is taken as reference and is set as 0. The numbers in the horizontal axis 
correspond to the Te atoms shown in (a). For the case with graphene substrate, the Te atoms have 
different heights along a axis and the average value is used. (d) The distance between the V strips 
along a axis of VTe2 for free-standing and on-substrate form. The numbers in the horizontal axis 
correspond to the V atoms shown in (a). For the case with graphene substrate, the V atoms have 
different coordinate along a axis and the average value is used. 
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