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ARTICLE

Density fluctuations, homeostasis, and
reproduction effects in bacteria
Shahla Nemati1, Abhyudai Singh 2, Scott D. Dhuey3, Armando McDonald 4, Daniel M. Weinreich5 &

Andreas. E. Vasdekis 1✉

Single-cells grow by increasing their biomass and size. Here, we report that while mass and

size accumulation rates of single Escherichia coli cells are exponential, their density and, thus,

the levels of macromolecular crowding fluctuate during growth. As such, the average rates of

mass and size accumulation of a single cell are generally not the same, but rather cells

differentiate into increasing one rate with respect to the other. This differentiation yields a

density homeostasis mechanism that we support mathematically. Further, we observe that

density fluctuations can affect the reproduction rates of single cells, suggesting a link

between the levels of macromolecular crowding with metabolism and overall population

fitness. We detail our experimental approach and the “invisible” microfluidic arrays that

enabled increased precision and throughput. Infections and natural communities start from a

few cells, thus, emphasizing the significance of density-fluctuations when taking non-genetic

variability into consideration.
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Across all domains of life, cell growth relies on a series of
processes through which cells synthesize new compo-
nents, replicate their genetic material, increase their size,

and eventually divide1–4. As such, growth is a key parameter in
cellular physiology5, evolution6, the production of high-value
chemicals7, as well as human, animal, and plant health8,9. Recent
investigations at the single-cell level have revealed significant
variability in the rates of growth among clonal cells10. This form of
non-genetic variability has been attributed to fluctuations in
enzyme abundance11, generally emanating from the stochastic
nature of gene expression12–17. Variability in the reproduction rates
between isogenic cells has also been observed18–20. In this context,
some cells divide considerably sooner or later than the population
average, thus, yielding population-level fitness effects that occur at
shorter timescales than what mutations can confer18–21.

Commonly, single-cell growth is investigated by recording the
elongation rates (i.e., the cell length, area, or volume per unit time).
These, size-based, investigations have unraveled key size home-
ostasis mechanisms, including the critical accumulation of division
proteins and timing of chromosome duplication22–26. To a similar
end, size-based investigations have informed about the mutation
dynamics of single cells and resulting fitness effects27. In parallel,
single-cell growth has also been examined by recording the
dynamics of mass accumulation28. Essentially, these measurements
capture the underlying metabolic dynamics of nutrient conversion
to building blocks, such as amino acids, lipids, and nucleotides28. In
this context, mass-based investigations have unmasked the expo-
nential nature of mass production29, as well as the presence of
ATP-driven high-frequency mass fluctuations30. Moreover, mass-
based investigations have revealed that the growth rate of mam-
malian cells is not constant across the cell cycle31,32, and the
influence of cellular noise on the trade-offs between the naturally
evolved and engineered metabolic pathways33.

Clearly, growing cells need to coordinate both size and mass
accumulation, with the latter being enthalpically more pertinent
than the former33. Cellular size and mass are linked through dry-
mass density (dry-density henceforth), namely: the number of
molecules per unit volume, or alternatively the level of macro-
molecular crowding in a microorganism34,35. Unlike previous,
population-level readouts36,37, analyses at the single-cell level
reveal non-negligible cell-to-cell variability in dry-density, as
displayed by way of example in Fig. 1a. Here, a 9% coefficient of
variation at mixed growth stages and at birth (by means of syn-
chronization via microfluidic tracking23) was observed. Such cell-
to-cell dry-density variability suggests that cellular (or molecular)
noise effects may be at play12–17.

Concomitantly, dry-density has also been reported to scale in a
species-specific manner34 with a key role in the folding and sta-
bility of key proteins38. These observations suggest that a,
potentially evolvable, density homeostasis mechanism may also
be present. However, and despite the significant discoveries per-
taining to cell size regulation22–25, the regulation and outcomes of
the non-genetic variability of dry-density remain less understood.
Here, some exceptions pertain to recent reports of dry-density
scaling in proportion to the cell’s surface-to-volume (S/V) ratio in
E. coli39, and the spatiotemporal variation of the dry-density of
fission yeast during the cell cycle40. Importantly, it is also not
known how density variability might influence the metabolic and
reproduction rates of single cells41,42, with the latter being
explicitly linked to the overall population fitness18–21,43,44.

Results
Single-cell density measurements. Addressing these knowledge
gaps requires assays that can quantify the dynamics of both the
density and size of single, growing cells at high-throughput rates.

Quantitative-phase imaging is an ideal candidate to probe these
dynamics in a non-invasive manner32,33,45–48; in these schemes,
however, the dynamic nature of a growing microcolony can yield
substantial loss of information. Specifically, interferometric ima-
ging schemes that rely on spatially coherent illumination are
limited in spatial bandwidth, which can in turn constrain the
homogeneity of the reference field (i.e., the halo effect)49. Such
inhomogeneities become detrimental when multiple cells reside
in close proximity (e.g., when growth is confined to 2D50), or cells
are imaged in the vicinity of dielectric discontinuities (e.g.,
microfluidic walls). Light scattering between cells51, or between
cells and dielectric discontinuities52 can also incur information
loss in imaging modalities that rely on spatiotemporally coherent
illumination unless dedicated backpropagation algorithms are
implemented53,54.

To overcome these shortcomings, we constructed a microarray
that enables dynamic tracking of dry-density and size of multiple
single E. coli cells with minimal light scattering between cells and
between cells and dielectric discontinuities (Fig. 1b). To achieve
this, we adopted an 1D immobilization strategy55,56 that
positioned cells at locations that eliminate cell crowding and
cell-to-cell scattering. Second, we employed a polymer matrix that
became ‘invisible’ upon contact with water, thus, eliminating
scattering between cells and the microfabricated features. Both of
these characteristics uniquely enabled the dynamic tracking of
single-cell size, mass, and density for up to 6–7 generations
(Fig. 1b). In this context, nutrients and stimuli were supplied
through vertically integrated membranes or microfluidics (Meth-
ods, Supplementary Fig. 1). Further, inspired by Moore’s Law in
microelectronics, we applied electron-beam lithography to define
multiple 1D constrictions at micron-scale distances between
them57. This lithography step increased the resulting throughput
rates (i.e., the number of observations per unit area) by more than
one order of magnitude relative to conventional 2D growth
approaches (Supplementary Fig. 2).

Growth differentiation. The combination of the “invisible” 1D
microarray with spatial light interferometric imaging (SLIM)
enabled the precise quantification of cellular size (approximated
by its area, see Methods), dry-density (determined from the
measured phase delay through the cell32, Methods), and dry-mass
(through the area product with dry-density46, Methods). This
analysis revealed that while the size and mass of single E. coli cells
increased exponentially (Fig. 1d, inset and Supplementary Fig. 3),
cellular dry-density was not constant during growth (Fig. 1d).
Contrary to previous population-level readouts of cellular
density36,37, we observed that dry-density undergoes non-
monotonic increases or decreases during growth for most cells
(Fig. 1d). We did not observe density fluctuations of similar
magnitude in fixed E. coli cells (Fig. 1d), suggesting that the
observed dynamics in live cells are not due to technical noise. To
a similar end, we observed that density fluctuations persist even at
higher temporal resolution (Methods), characterized by
‘smoother’ variations with time than those of Fig. 1d. It is also
worth mentioning that density fluctuations have also been
observed recently by others in E. coli39 and fission yeast40 with-
out, however, undergoing further analysis. Interestingly, the
overall magnitude of these fluctuations varied between cells, while
some cells exhibited overall positive and others negative average
density fluctuations during growth (Fig. 1d).

We hypothesized that single-cell density fluctuations during
growth could affect the average rates of mass or size accumulation
throughout the cell cycle. To assess this hypothesis, we quantified
the average accumulation rates of size (γsize) and mass (γmass)
during the cell cycle (defined as A tð Þ ¼ Ab � eγsize�t and
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M tð Þ ¼ Mb � eγmass�t , Methods). We observed that these two rates
were generally not the same (i.e., γsize ≠ γmass) per cell, but rather
clonal cells differentiated into two (continuous) subpopulations:
one that exhibits higher rates of size accumulation (γsize > γmass)
and one that reverses this behavior (γsize < γmass, Fig. 2a). As per
our original hypothesis, growth differentiation (γsize ≠ γmass) was
essentially found to be driven by the underlying density
fluctuations during the cell cycle. Specifically, cells with density
fluctuations that were on average positive during the cell cycle
differentiated into higher rates of mass accumulation (i.e.,
γsize < γmass); conversely, on average negative fluctuations max-
imized the rates of size accumulation (i.e., γsize > γmass, Fig. 2b).

In further exploring correlates of growth differentiation, we
found that this form of differentiation can be statistically
predicted (Supplementary Table 1) from the cellular dry-density
at birth (Fig. 2c). Specifically, cells born with lower density than
the population median tend to exhibit higher rates of mass
accumulation (γsize < γmass) and vice-versa. Ultimately, density
variability at birth can be attributed to the innate randomness or
stochasticity, or noise in cellular physiology17. This form of
stochasticity can include the asymmetric partitioning of biomo-
lecules upon division, as recently shown for single gene products
between E. coli sisters58. Here, we observed a similar form of
asymmetry with daughters (at birth) and mothers (at division)
exhibiting statistically significant dry-density differences. Further,
we observed that daughters were born either at higher or at lower

dry-density than their mothers (Fig. 2d and Supplementary
Table 2), with dry-mass differences between daughters to their
mothers exhibiting negative correlations (Fig. 2d, inset).

Density homeostasis. Concomitantly, we observed that density
fluctuations (and the resulting growth differentiation) subsided
under the MIC-level pressure from ampicillin (AMP), a bacter-
icidal antibiotic that inhibits cell wall biosynthesis and division
(Fig. 3a). Specifically, upon exposure to antibiotics, single E. coli
cells exhibited variable responses: ~12% of the population either
died rapidly or stopped growing, while 88% expressed a fila-
mentous, growing but non-dividing phenotype59. The observa-
tion of decreased density fluctuations upon AMP exposure
pertains specifically to non-dividing filamentous cells and sug-
gests a potential relationship between density fluctuations and cell
division.

Intrigued by these findings, we explored whether a density
homeostasis mechanism may be at play. To this end, we first
linked the median density fluctuations during growth (dρ/dt)
with the resulting differentiation behavior and the ratio of birth
and division densities (ρdivision/ρbirth). We observed that cells
exhibiting γsize > γmass reached division with lower dry-density
than their density at birth (ρdivision < ρbirth, Fig. 2b); conversely
cells exhibiting γmass > γsize concluded their cycle with higher dry-
density at division than at birth (ρdivision > ρbirth, Fig. 2b). We

Fig. 1 Quantitative-mass imaging and “invisible” microfluidics reveal cell-to-cell variability in dry-density and density fluctuations during growth.
a Cell-to-cell dry-density plotted as a function of cell size; graph plots single-cell snapshot data at various stages along the growth cycle (n= 35,000
observations). b Microcolony expansion from one cell to four generations via quantitative-mass imaging; the vertical direction, with color coding
representing cell density (normalized at t= 0, where N= 1). c Microcolony density (normalized at t= 0, N= 1) during expansion using 1D and 2D growth
assays; data points and error-bars represent the average and standard deviation of n= 8 independent measurements; time-dependent density differences
in 2D were statistically significant (one-way ANOVA, F(6,49)= 51.8, p « 0.001); no such evidence was found for the 1D assays (one-way ANOVA,
F(7,56)= 0.8 and p= 0.5). d Density, mass, and area growth curves of individual E. coli cells from birth to division; all parameters are normalized at t= 0
and color coding represents the size, mass, and density of the same cell (i.e., the curves do not represent the dynamics of multiple cells pooled together);
the horizontal red line denotes the dynamics of the normalized density (with respect to t= 0) of 10 fixed E. coli cells (DH5α, fixed by overnight incubation
in 2% glutaraldehyde, followed by 3× PBS washing) over time (red line denotes the average and blue-shaded area denotes the 95% confidence intervals).
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Fig. 2 Single bacteria do not necessarily exhibit identical growth rates in mass and size, and are prone to asymmetric partitioning of biomolecules
upon division. a Growth differentiation with some cells maximizing area (γsize) and others biomass (γmass) accumulation; graph represents the cumulative
response of three replicates, with each replicate presented separately in Supplementary Fig. 4; red line corresponds the linear fit of the experimental data
(shaded areas are the 95% confidence intervals) and the yellow line represents a slope of 1. b Median density fluctuations during growth (dρ/dt, y-axis) as
a function of growth differentiation (γA/γM, x-axis); dρ/dt were calculated as the median value of all density fluctuations (namely: dρ= ρi+1− ρi in the
dt= ti+1− ti timeframes—see Methods) during the cell cycle; similarly, the growth rates in cell mass and size were calculated by exponential fits
throughout the cell cycle, as detailed in the Methods section; color coding corresponds to increased (blue) or decreased (red) density prior to division;
graph plots the cumulative response of three replicates, with each replicate presented separately in Supplementary Fig-. 5. c Growth differentiation (γA/γM)
dependence on cellular dry-density at birth (normalized over the median); boxcharts represent the 25–75% of the combined three replicates with each
replicate plotted separately in Supplementary Fig. 6; whiskers display the 20–80% range and asterisks denotes statistical significance (Mann–Whitney test:
U= 203746, p < 0.001, with additional statistical tests reported in Supplementary Table 1). In support of this finding, we also plot the differentiation
dependence on the density at birth in Supplementary Fig. 7a. d Division asymmetry in dry-density, as noted by the density differences (Δρdaughter %)
between each daughter (ρdaughter-i at birth) to its mother (ρmother at division), also displayed in inset. Blue (red) traces correspond to density increases
(decreases) upon division, and asterisks denote statistical significance of nonzero daughter density differences from their mother (One Sample Wilcolxon
Signed Rank Test, W= 554931, Z= 28.11, p « 0.001). This graph represents the cumulative response of all biological triplicates, with each replicate
presented separately in Supplementary Fig. 8, along with the respective statistical tests in Supplementary Table 2. Inset plots the daughter-daughter
correlation of the dry-mass differences (d1 and d2, %) to their mother (color coding represents each replicate).

Fig. 3 Density homeostasis and density fluctuations subsidence upon division inhibition. a Decrease of density fluctuations under the ampicillin (AMP)
pressure; legends denote the standard deviation of fluctuations before (horizontal arrow) and during the ampicillin treatment (vertical arrow); graph
represents the cumulative response of three replicates with each replicate presented separately in Supplementary Fig. 9. b Density homeostasis as
evidenced by the monotonic decrease of γmass− γsize with respect to the newborn cell density; inset displays the decreasing ratio of cell density prior to
division (ρdivision) over the cell density at birth (ρbirth) as a function of dry-density at birth (ρbirth). Both the main and inset graphs plot the combined three
replicates, with each replicate presented separately in Supplementary Fig. 10 and Supplementary Fig. 11, respectively.
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reasoned that this observation is potentially linked to a density
homoeostasis mechanism, where density fluctuations maintain
cellular density closer to the population average.

To support this mechanism, we considered a simple mathe-
matical model of density fluctuations (dρ/dt) during growth.
Based on the notion of exponential size and mass growth (Fig. 1d
and Supplementary Fig. 3), then density dynamics can be
expressed as dρ/dt= (γmass – γsize) × ρ(t) (Methods). If γmass and
γsize do not depend on density then the above model is not
homeostatic (even when γmass= γsize). This is because the slightest
noise in γmass or γsize11 would enforce density fluctuations to grow
unboundedly60,61. In contrast, density homeostasis arises by
making γsize and γarea density-dependent. We experimentally
verified this dependence, as evidenced by the monotonic decrease
of γmass− γsize with respect to the newborn cell density (Fig. 3b).
The slope of this function was negative with a −0.016 slope
[−0.021, −0.012; 95% bootstrap confidence interval (CI),
Methods]. The inset on the same plot displays the also decreasing
function of the density ratio at division over birth (ρdivision/ρbirth)
with a −0.33 slope [−0.42, −0.27; 95% bootstrap CI] with respect
to the newborn density. This decreasing trend also supports
density homeostasis, reflecting the control of cellular density in the
form of negative feedback62.

Single-cell reproduction rates. Various factors are known to
regulate the rates of reproduction or the inverse of the cell cycle
duration (i.e., the reciprocal time between two cytokinesis events,
τ−1), including cell size at birth, rates of elongation, and timing of
chromosome duplication23,24,26. To this end, we found that our
data also support that both the rates of elongation (γsize) (Fig. 4a)
and cell size at birth (Supplementary Fig. 14) correlate with the
rates of reproduction of a single cell. We also notice a non-
negligible cell-to-cell variability at high rates of elongation and
large birth size, as also observed by others63. Indicatively, cells
with an equal to or greater than 0.041 min−1 rates of elongation
(~1.4× above the population average) exhibit 28% coefficient of
variation (CV) in reproduction rates (Supplementary Fig. 12).
Similarly, cells with an equal to or greater than 4.5 μm2 size/area
at birth (~1.4× above the population average) yield a 60% CV in
the rates of reproduction. Such levels of cell-to-cell variability
suggest that other regulatory layers may act in concert with
elongation rates or cell size at birth to modulate the rates of
reproduction.

To explore the presence of such additional layers, we
investigated how the reproduction rates of single cells may be
imparted by the mass at birth (mbirth), mass accumulation rates

(γmass), density fluctuations (dρ/dt), and growth differentiation
(γsize/γmass). In this context, we observed that, similar to cell size
at birth, mass at birth also correlates with the rates of
reproduction, albeit at comparable levels of cell-to-cell variability
as cell birth size (Supplementary Fig. 14). Further, we noted that
increased reproduction rates occurred for higher γmass and γsize
(Fig. 4a). In this context, γsize displayed a moderately stronger
effect (evidenced by the higher slope in the relationship of γsize
with reproduction rates, rather than γmass (Supplementary
Fig. 12); this effect, however, was not found to be statistically
significant due to the overlap of the confidence intervals of these
two rates between biological triplicates. Unexpectedly, we
observed instead that increased levels of growth differentiation
(γsize/γmass) could also predict high rates of reproduction (Fig. 4b).
In this context, increased density fluctuations (either positive or
negative on average during the cell cycle) imposed higher rates of
reproduction even at lower rates of mass (γmass) and size (γsize)
accumulation (Fig. 4b). Similarly, individuals characterized by
low rates of reproduction were substantially less abundant at
increased levels of density fluctuations (Fig. 4b). This observation
indicates that elevated rates of reproduction can be expressed not
only by individuals exhibiting elevated rates of mass and size
accumulation, or large size and mass at birth but also by those
that undergo increased density fluctuations. We note that these
results pertain primarily to the conditions that were explored in
this work, namely: nutrient-rich and steady-state (i.e., time-
invariant) microenvironments.

Discussion
In summary, we report that while individual E. coli cells accu-
mulate size and mass at exponential rates (Fig. 1d and Supple-
mentary Fig. 3), their dry-density fluctuates non-monotonically
during growth. Also observed by others39,40, these density fluc-
tuations enable further insight into the origins of the non-genetic
density variability between cells (Fig. 1a) and suggest that the
average rates of size and mass accumulation during the cell cycle
may differ in one cell. In this context, we observed that depending
on whether density fluctuations are, on average, positive (or
negative) during the cell cycle, clonal subpopulations emerge that
exhibit higher average rates of mass accumulation than size (and
vice-versa). These phenomena subsided under division inhibition
using bactericidal antibiotics, suggesting a potential link between
density fluctuations with cell wall biosynthesis and division.

We linked this form of growth differentiation to a density
homeostasis mechanism, namely the tendency of cells with den-
sity that differs from the population average to accordingly adjust

Fig. 4 Density fluctuations impact replication rates of single bacteria. a 3D representation of growth differentiation (γA− γΜ relationship), with each
single-cell observation color coded by its replication rate level; graph represents the cumulative response of three replicates with each replicate presented
separately in Supplementary Fig. 13. b Single-cell replication rates plotted as a function of density fluctuations; blue and red data points represent single-cell
observations (color coded by their level of differentiation); green and purple points represent the averaged binned data and minimum replication rates
levels at different levels of fluctuations; similarly, graph plots the combined three replicates, with each replicate presented separately in Supplementary
Fig. 15.
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their density. Specifically, cells exhibiting higher rates of mass
production reach division at a higher density state (Fig. 2c).
Conversely, cells born at a density that is higher than the popu-
lation’s, exhibit higher rates of size accumulation, thus, decreasing
their density upon division. Following the first report of this
work64, a density homeostasis mechanism was also evidenced in
fission yeast, with 11 out of 76 total observations born at higher
dry-density exhibiting negative density changes during their
cycle40. To a similar end, density homeostasis or “home-
ocrowding” mechanism that echoes the one reported here was
also put forward earlier by van de Berg and colleagues34. Here,
the authors posited that cells can maintain optimal dry-density
given the established correlates between cell size and protein mass
with nutrient availability65.

We supported this density homeostasis mechanism with an
analytical model. This model suggests the density dependence of
the rates of mass and size accumulation, primarily through pro-
teome allocation towards size increase (see Methods). We also
demonstrate that not only the size but also the mass of single E.
coli cells at the selected growth conditions is consistent with the
adder phenotype22,24,25 (Supplementary Figs. 16 and 17); how-
ever, the observed density fluctuations suggest the likely presence
of an additional control layer. Our results are also consistent with
the recently reported linearity between the ratio of cell surface
area (S) and mass (M) with cell length39 (Supplementary
Fig. 18a); we note, however, that the rapid growth regime
explored here yields a (mitotic) constriction and, thus, an
inflection in the S/V rate towards the end of the cell cycle
(Supplementary Fig. 18b) as also reported elsewhere22.

We also explored density correlates with the rates of reproduc-
tion of single cells. Specifically, we found that individual cells that
exhibit increased reproduction rates can be identified not only by
their size/mass at birth or their rates of size/mass accumulation but
also by the amplitude of their density fluctuations (Fig. 4). In this
context, we observed that individual cells exhibiting high (low)
reproduction rates were substantially more (less) abundant at
increased density fluctuations levels (Fig. 4b). Mechanistically, this
can be thought of as gratuitous overexpression of growth-required
components at birth (e.g., ribosomes)5, for individuals born with
high dry-density (and undergoing overall negative density fluc-
tuations during growth). This notion is in agreement with recent
reports of yeast supergrowth, following inhibition of size expansion
but not of protein synthesis66. Conversely, cells born at low dry-
density (and undergoing positive density fluctuations during
growth) may permit increased translational degrees of freedom for
enzymes and metabolites, and reduced conformational entropic
penalties34. Both of these effects have been previously shown to
accelerate metabolic reactions67,68.

The explicit link between overall population fitness to the
reproduction rates of single cells18,19,21 suggests that the density
fluctuations we observe here may also play a role in the fitness of
a population. More explicitly, the Malthusian fitness of a popu-
lation, defined by its rate of growth (i.e., dN/dt, with N being the
number of individuals in the population)44,69, reduces the rate of
reproduction (τ−1) for N= 170. Reducing Malthusian fitness to
the single-cell level (i.e., N= 1) has been attempted before27,
approximated through the rate of elongation (γsize) of single cells;
however, our results suggest that this approximation may not
encompass all aspects of reproduction timing of single cells.

Finally, we detail our experimental approach that enabled the
dynamic tracking of cellular dry-density with enhanced precision
and throughput rates, which is challenging, if not impossible, with
conventional microfluidic systems. For enhanced precision, we
fused quantitative-mass imaging with 1D microarrays that not
only eliminated cell crowding but also became invisible upon
contact with water. This approach minimized light scattering at

cell-to-cell and cell-to-microfluidics interfaces, thus, preserving
key optical information during microcolony expansion (Fig. 1b).
We also employed advanced microfabrication to improve the
underlying throughput rates by more than one order of magni-
tude in comparison to existing assays. These methodological
approaches can be directly translated to other species to further
explore the role of cellular dry-density and related effects in
growth, division, and reproduction rates in single cells.

Given that all inoculants and infections start from a single or very
few growing cells, we anticipate that the paradigm of density fluc-
tuations, homeostasis, and reproduction rate effects will improve
systems and evolutionary biology investigations that take the seg-
regated notion of non-genetic variability into consideration71.

Methods
Strains. Two strains were used in the reported investigations, namely: Escherichia
coli DH5α (WT) and the ampicillin-resistant E. coli E212K mutant, also derived
from DH5α. This derivative was chosen to include one more strain in our density
fluctuations observations (i.e., in the absence of antibiotic pressure), and specifically
carries the g628a mutation (using Ambler numbering72) on the TEM-1 gene on
pBR322.

Growth conditions. WT and resistant strains were grown using a bath incubator
(C76, New Brunswick Scientific) at 37 °C and 180 rpm. As a growth medium, we
employed the Mueller Hinton broth (Difco 275730, BD). The strains were first
passed from agar plates (stored at 4 °C) to 5 ml medium (round bottom polystyrene
tubes, VWR) until the early stationary phase, then diluted in 20 ml fresh medium
(125 ml glass flasks, Corning) at a 0.01 optical density (OD600, λ= 600 nm, V-1200
spectrometer, VWR), and incubated for 12 h (37 °C, 180 rpm). Overnight cultures
were diluted to an OD600 of 0.01 (in 20 ml fresh medium), regrown to mid-
exponential phase (~3 h), and sampled to perform all reported single-cell experi-
ments. We employed the same procedure to determine the MIC levels of the E212K
mutant, as detailed below. All single-cell experiments were performed in triplicates
by repeating the abovementioned procedure on different days.

Minimum inhibitory concentration (MIC). We measured the MIC levels of the
E212K strain using the microdilution method73. Following growth (see above),
cultures were diluted to 106 cfu/ml (~0.002 OD600) to a volume of 1 ml and
transferred to 1 ml of ampicillin (VWR0339, VWR) solution in Mueller Hinton at
concentrations ranging from 8196 to 0.0156 μg/ml at a 1.4× step size74, including a
0 μg/ml control. The suspensions were incubated (37 °C, 180 rpm) for 20 h to
determine the MIC level, namely the lowest ampicillin concentration yielding zero
OD73. We found this level to be at 176 μg/ml (Supplementary Fig. 19), and applied
this value in all subsequent microfluidic experiments. The measurement was
repeated (three times with mid-exponential phase cultures and four times using
stationary phase cultures) yielding the same result.

Single-cell assays. Single E. coli cells were laterally confined using 1D microarrays
and vertically confined via a top-integrated membrane (Supplementary Fig. 1),
enabling size, density, and mass tracking of single cells for up to 6–7 generations.
The 1D microarrays were fabricated by electron-beam lithography in SU8 (using
our previously reported procedure75 and further detailed in the following section),
subsequently transferred to PDMS, and then to a UV curable polymer that was
index-matched to water (Bio-133, My Polymers). The total thickness of the poly-
mer film after imprinting was ~0.5 mm, thus, accommodating the working distance
of all employed imaging objectives. This thickness was achieved by depositing
~100 μL of the liquid prepolymer on the stamp. Nutrients were provided by a
doped membrane or a microfluidic channel. The latter was applied in the reported
antibiotic experiments to yield dynamic switching between medium and ampicillin
conditions. Below we detail the microfabrication procedure of the 1D microarrays,
including the approach we followed in nutrient supply.

1D microarray fabrication. The 1D microarrays were first realized in the SU8
photoresist (2002, Microchem) on silicon (Si) wafers using electron-beam litho-
graphy (VB300, Vistec). We employed SU8 for its ultra-high sensitivity, enabling
the definition of submicron features over large areas at high speeds75. Following
plasma cleaning (5 min), dehydration (180 °C for 5 min) of the Si wafer, and spin-
coating (5 mins, 5000 rpm) with SU8, the resulting films were soft-baked at 65 °C
(1 min) and at 95 °C (1 min). Following exposure at a 2 μC/cm2 dose, the films
were baked at 65 °C (2 min) and then at 95 °C (2 min), followed by development in
propylene glycol methyl ether acetate (Sigma–Aldrich). The exposed patterns
consisted of 1.2 µm wide and 1 µm deep lines, spaced at 1 µm distances. The total
length and width of the patterns were 6 × 0.5 mm2. Following the development, the
microarrays were transferred from SU8 to PDMS (Sylgard 184, Dow Corning) by
cast-molding lithography at a 10:1 monomer-to-catalyst ratio76,77. Finally, the
PDMS pattern was transferred to a UV curable polymer (Bio-133) to generate
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microarrays with the pattern originally displayed on the Si wafer (i.e., 1.2 μm wide
and 1 μm deep trenches spaced at 1 μm distances). For this step, the PDMS slab
was placed in a glass petri dish, coated with ~100 μL of Bio-133, and degassed for
2 h. Subsequently, the polymer-coated PDMS stamp was covered with a coverslip
and degassed for another 2 h, followed by UV curing (Q4000 Optical Mask Aligner,
Quintel). All steps were performed in a cleanroom environment under yellow light.
The microarrays were used repeatedly after washing in ethanol (~60 sec) and
ultrasonicating in water.

Nutrient/antibiotics supply. In the single-cell growth experiments, nutrients were
delivered via vertically integrated, nutrient-doped, agarose membranes. We
employed a similar strategy for 2D growth in the throughput and information-
retention comparisons presented in Supplementary Fig. 2 and Fig. 1c. For 1D
growth, 0.5 µl of cells were deposited on the microarrays and immediately covered
with the agarose membrane (Supplementary Fig. 1). For 2D growth, cells were first
deposited on the nutrient-containing agarose and, after a 5 min drying time,
covered using a coverslip. The agarose membranes were prepared by dissolving
1.5% agarose (UltraPure, Invitrogen) in Mueller Hinton broth at 80 °C for 1 h.
Approximately 300 µl of liquid agarose was deposited on a coverslip (25 × 50 mm2,
L ×W) and a second coverslip of the same dimensions was immediately mounted
on top. The agarose membrane was let dry for 20 min at room temperature,
yielding a thickness of ~90 μm. Our second method for nutrient/antibiotics
delivery applied in the ampicillin experiments employed microfluidics assembled
using five distinct parts that were held together mechanically78,79 (Supplementary
Fig. 1): (1) a PDMS stamp (dimensions: 35 × 20 × 4mm3, L ×W ×H) prepared by
optical and cast-molding lithography containing the microchannel (dimensions:
11 × 0.5 × 0.1 mm3, L ×W ×H); (2) the 1D microarray to immobilize cells; (3) a
hybrid membrane (detailed below) to confine cells in the vertical direction; (4) two
thin aluminum plates that hold parts (1), (2), (3), and the cell-loaded 1D micro-
arrays together using four symmetrically placed screws; and (5) a syringe pump
(Harvard Apparatus) connected to the microfluidics via Tygon tubing (1548XL,
IDEX) and 21 gauge needle tips, set at 20 µl/min. The hybrid membranes (i.e., part
3) that were combined with the microfluidics, were formed by combining dialysis
membranes with agarose gels. Specifically, single-layer dialysis membranes (10 μm
thickness, cellulose, MWCO: 12–14,000, Fisher) were cut to 20 × 40 mm2 areas.
The membranes were boiled in 2% sodium carbonate for 30 min and then trans-
ferred to a boiling Tris Hydrochloride solution for another 30 min80. Following a
water rinse, the membranes were transferred to Mueller Hinton broth and stored at
4 °C for up to 2 weeks. To prepare the hybrid membranes, a dialysis membrane was
first placed on a coverslip, covered with 200 µl of liquid agarose, and then with
another coverslip. The assembly was left at room temperature for 20 min until the
agarose solidified to a ~60 μm thickness. The hybrid membrane confined cells and
transported nutrients from the vertically integrated microfluidic channel. The latter
was connected with a three-way switch valve (IDEX) and two syringes (one con-
taining the medium broth and the other the ampicillin solution). The medium was
first flown through the device for ~50 min, followed by switching to ampicillin and
propidium iodide (1 μM)81 for up to 3 h. In all experiments, the devices were
transferred to a temperature-controlled (37 °C) incubator integrated with an
inverted microscope.

Imaging. Regarding cell growth, we performed quantitative-mass imaging using a
spatial light interference microscopy (SLIM) system (Cell Vista Pro, Phi Optics)
integrated with an inverted microscope (DMi8, Leica) equipped with an automated
stage. In our SLIM system, the quantitative-phase images are formed by projecting
the back focal of the imaging, phase-contrast, objective onto a liquid crystal spatial
light modulator (SLM). The SLM exhibits ‘ring-shaped’ phase masks that shift the
optical phase of the light wavefront scattered by the sample relative to the
unscattered light, as detailed in the original report of this technique45. In this way,
images representing the relative phase delay of E. coli cells (scattered wavefront)
with respect to the background (unscattered wavefront) are formed. 3D z-stack
images (0.3 μm step size) were acquired using a ×63 (NA 0.7, PH2) or with a ×40
objective (NA 0.6, PH2, at 0.5 μm step size) and a 3.65 μm pixel CCD camera (GS3-
U3-28S4M, Point Grey Research). To correct for halo effects, and in addition to
arranging the microcolonies in 1D as detailed earlier and presented in Fig. 1c and
Supplementary Fig. 2, we also processed the quantitative-phase images to remove
any residual halo using the computational procedure described elsewhere45. This
step increased the background uniformity, thus, enabling a better definition of the
cell contour, a key parameter in cell segmentation82. A comparison of the
quantitative-phase image of a single cell with and without halo correction is dis-
played in Supplementary Fig. 20. Various locations were imaged every ~3 min
(every ~5 min for the ampicillin experiments) using automated routines (Meta-
morph, Molecular Devices). All single-cell growth experiments were performed in
triplicates yielding a total of n= 1520 observations of single dividing cells, with
each replicate consisting of 442 (rep. 1), 573 (rep. 2), and 505 observations (rep. 3).
These observations (and all related subsequent analyses) exclude the very first
mother cell. Specific to the dry-density comparison between mothers and daughters
(Fig. 2d and Supplementary Fig. 8), density differences were calculated by con-
sidering dividing mothers, and both dividing and non-dividing daughters, thus,
enabling the consideration of all diving mothers and yielding 412 (rep. 1), 582 (rep.
2), and 452 (rep. 3) observations. Finally, in the ampicillin (AMP) experiments we

did not consider cells with fewer than 4 temporal observations (both prior to and
during AMP pressure), as well as non-growing cells (e.g., persisters), yielding 60
(rep. 1), 45 (rep. 2), and 35 (rep. 3) observations.

In the reported throughput analysis, throughput denotes the number of
observations per field of view, or alternatively the maximum possible number of
microcolonies in a single image. We compared the 1D and 2D assay throughputs at
×20 (NA 0.4, PH1) and ×40 (NA 0.6, PH2) magnification, respectively using
quantitative-phase imaging and a 6.5 μm pixel size sCMOS camera (ORCA-Flash 4,
Hamamatsu). For 1D, we imaged ~1000 fixed DH5α cells (overnight fixation in
2.5% glutaraldehyde at 4 °C, followed by 3× washing in medium, and diluted at a
varying optical density from 0.01 to 0.175), which we introduced in the 1D
microarrays. We followed a similar approach in 2D, albeit using live cells that we
allowed to grow to microcolonies containing ~20 cells. This was performed in
triplicates, with each replicate containing 40 microcolony observations.

Image analysis. All quantitative-mass images were processed using ImageJ and
Fiji (National Institutes of Health), Metamorph, and MATLAB (Mathworks), as
follows: (1) choice of the best-focus plane (pi) and a maximum projection of pi,
pi-1, and pi+1; (2) filtering by median and gaussian blur (ImageJ), 2D decon-
volution (No Neighbors, Metamorph), and 1D Fast Fourier Transform (FFT,
ImageJ); and (3) thresholding via the Maximum Entropy algorithm (ImageJ).
All resulting binary images were subsequently subjected to watershed, visual
inspection, and—if necessary—manual curation. Following processing, the
binary and original quantitative-phase images were assembled into two separate
time-lapse stacks, divided into microcolonies, and analyzed with a lineage
mapper (ImageJ) to extract lineage trees and track single cells from birth to
division.

We selected the abovementioned image processing pipeline for its robustness
and reduced computational requirements, as we have previously demonstrated for
bacteria and yeast33,82. Further, while density fluctuations have been reported by
others39 and we also observe them in high temporal resolution readings (with
smoother traces, Supplementary Fig. 21), we performed additional steps to ensure
that our observations are not due to cell segmentation or plane selection errors.
Specific to cell segmentation, we ensured the validity of our approach by
performing the following two analyses. First, we compared the abovementioned
with the Otsu and Moments thresholding algorithms. Second, we compared our
approach to a 1D segmentation approach that is independent of conventional
thresholding algorithms and, thus, possible errors in area segmentation. In this
context, we determined the beginning and end of a 1D cell contour (of a constant
6-pixel width) at 20% above the noise floor. All comparisons (Supplementary
Fig. 21) yielded moderate differences in the single-cell density dynamics, which
upon normalization (at t= 0 or the time of birth) exhibited very high agreement in
single-cell density dynamics characterized by greater than 99% Pearson correlation
coefficients (p < 0.001). This finding suggests that the observed density fluctuations
represent a physiological response, largely independent of potential errors during
cell segmentation.

Further, we ensured that we selected the proper plane of focus by inspecting
the quantitative-phase images of all cells at all collected z-planes, as well as the
z-dependence of their phase signal. To this end, we employed a custom MATLAB
code that simultaneously displayed cell images of all planes and selected the plane
(pi) that exhibited the sharpest image83. Following maximum projection between
pi+1 and pi-1, we visually inspected all images to ensure appropriate plane
selection. Furthermore, we estimated the induced density uncertainty after
intentionally selecting the wrong plane of focus. To this end, we intentionally
selected ±1 plane away from focus and computed the resulting single-cell density
error (standard error). In this way, we computed a 0.78% uncertainty in the
density determination of a single cell due to an experimental error in the plane
selection, which is lower than the observed density fluctuations, as displayed in
Supplementary Fig. 21.

Throughput analysis. We employed ImageJ to quantify 1D and 2D throughput
using the previously detailed procedures. To quantify 1D throughput, we used
the resulting statistics of 1000 cells to determine the average cell length and the
distance of each cell to its nearest neighbor. To quantify 2D throughput, we
analyzed images of microcolonies containing up to 16 cells to determine the
largest microcolony dimension using the Feret’s diameter (ImageJ). In this
context, we did not approximate the microcolony as a circle, given that 2D
confined E. coli microcolonies form dynamic nematic patterns of variable
asymmetries and orientations84, as also displayed in Supplementary Fig. 2b. To
compare information loss in 1D and 2D, we analyzed images of 1D and 2D
microcolonies containing 20 single cells. Subsequently, we averaged the dry-
density of all cells in the microcolony and performed related statistical tests, as
reported in Fig. 1c.

Data analysis. The following metrics were extracted from each image: area,
density, and mass per time-point per cell. Growth rates were computed using these
functions of A tð Þ ¼ Ab � eγsize �t and M tð Þ ¼ Mb � eγmass �t in MATLAB throughout the
cell cycle. Density (ρ) fluctuations were determined as the median of dρ/dt, where
dρ represents the ρ(ti+1)− ρ(ti) difference in the dt= ti+1− ti window. To quantify
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the density of single-cells from the measured optical phase delay (ΔΦ), we used the
following expression32:

ρ ¼ λ

2 � π � dn
dc

� < ΔΦ > ð1Þ

with dn
dc ¼ 2 � 10�4 m3

kg representing the protein-specific refractive index increment28,

λ the wavelength of illumination (centered at 550 nm), and <ΔΦ> the experi-
mentally determined phase delay difference between the cell cytosol and the
extracellular medium, integrated across the cytosolic area A. We note that Eq. 1
computes the density of a single cell without prior knowledge of the cell area, and
applies 2D maximum projection of 3D data (planes Pi-1 to Pi+1, where i is the best-
focus plane—see Image Analysis subsection). Finally, to determine cell mass, we
multiplied cell density (Eq. 1) with the cell area. This has been previously
demonstrated in cell mass measurements, where cell thickness cannot be deter-
mined as accurately as its area, given the lower axial than the planar resolution of
most optical imaging systems46.

In regards to the throughput analysis, we quantified 1D throughput by
performing a nearest neighbor analysis (MATLAB, knnsearch, euclidean).
Specifically, we set the minimum distance to the nearest neighbor equal to the
average cell length multiplied by 16 (the expected number of progeny in a
microcolony for the duration of our experiments). In this context, we only
considered individual cells exhibiting horizontal distances (i.e., in an axis parallel to
growth) from the nearest neighbor that were greater than this threshold. We
followed a similar procedure to quantify 2D throughput. Here, we performed a 2D
nearest neighbor analysis (MATLAB, knnsearch, euclidean) after determining the
largest microcolony size through the Feret’s diameter, and using this diameter as a
threshold.

Density homeostasis model. Let mass M of a single cell grow exponentially with
rate γM during the cell cycle:

dM
dt

¼ γmass �M tð Þ ð2Þ
Similarly, area A of a single cell grows exponentially with rate γA:

dA
dt

¼ γsize � A tð Þ ð3Þ
Then, density (defined as the mass over area ratio) evolves as:

dρ
dt

¼ ðγmass � γsizeÞ � ρðtÞ ð4Þ

If γmass and γsize are density-independent then the above model is not homeostatic
even when γmass= γsize, as the slightest noise in these rates makes density
fluctuations grow unboundedly over time60,61. In contrast, density homeostasis
arises by making γmass and γsize density-dependent. Let

eγmass�γsize ð5Þ
be a monotonically decreasing function f of newborn cell density ρi:

eγmass�γsize ¼ f ρi
� � ð6Þ

As such, a newborn with a low density will invest more in mass growth vs. area
growth. Substituting (6) in (4), the density at the end of the cell cycle is:

ρf ¼ f ðρiÞT � ρi ð7Þ
where T is the length of the cell cycle. With this, one can write the following
iterative model for the newborn densities ρi in the nth generation:

ρi;nþ1 ¼ f ðρi;nÞT � ρi;n þ εn ð8Þ
Where εn is the noise-induced at division from random partitioning of area and
mass. The above model has a unique fixed point given by the solution to the
equation:

1 ¼ f ρ
� � ð9Þ

which will be a stable homeostatic set point for ρ in the presence of noise as long as
the specialization function f is a decreasing function of density. Equation 6 can be
rewritten as:

γmass

γsize
¼ γsize þ log ρi

� �
ð10Þ

Equation 10 implies that the γmass/γsize ratio within a cell cycle should also be a
decreasing function of the newborn cell density.

Using some of the ideas put forward by others39, we further explored potential
mechanisms that could underly density homeostasis. One such mechanism
includes:

dA
dt

¼ α �M ð11Þ
This equation denotes that part of the proteome is dedicated to the increase of

cell size, which is congruent with density homeostasis. In this context, Eq. 1 leads to

the following expression for the temporal evolution of density:

dρ
dt

¼ ðγmass � α � ρÞ � ρ ð12Þ
In this case, the density at a steady state is given by:

�ρ ¼ γmass

α
ð13Þ

Solving differential Eq. (2), the ratio of densities at the start and end of the cell
cycle is

ρf
ρi

¼ e�ρTα�ρ
ðe�ρTα � 1Þρi þ �ρ

ð14Þ

where T represents the duration of the cell cycle (or the inverse of reproduction
rates). This ratio is a decreasing function of ρi, as noted in the inset of Fig. 3b,
which suggests density homeostasis.

Given that both mass and area increase exponentially as per

dM
dt

¼ γmass �M tð Þ; ð15Þ

and

dA
dt

¼ γsize � A tð Þ ð16Þ
Then the model described by Eq. (11) corresponds to γsize being an increasing

function of density. Indeed, this is the behavior we observe in our experimental
data, as evidenced in Supplementary Fig. 7.

An alternative model of the density of homeostasis, also put forward by
others39, is:

dA
dt

¼ α � dM
dt

ð17Þ
This expression corresponds to the ratio γsize/γmass being proportional to the

density at birth. While we do see a modest increase in γsize/γmass as a function of
density at birth, we observe a stronger increase with γsize as a function of density
(Supplementary Fig. 7). These differences suggest that the model presented in
Eq. 11 is more likely to be the dominant driver of density homeostasis.

Adder, sizer, and timer model. To compare cell size at division (Ad) with the
adder, sizer, and timer models from the size at birth (Ab), we employed the fol-
lowing expression24:

Ad ¼ 2 � α � Δþ 2 � 1� αð Þ � Ab ð18Þ
We adapted Eq. (11) to similarly represent cell biomass at division (Md) as:

Md ¼ 2 � α � Δþ 2 � 1� αð Þ�Mb ð19Þ
In both equations, α varies as: α=½ for adder, α= 1 for sizer, and α= 0 for

timer. Δ is the median area (Ab) and mass (Mb) at birth. The results of these
three models are plotted in Supplementary Fig. 16 (for size) and Supplementary
Fig. 17 (for mass) and compared to the experimental raw data (scatter plot),
a linear regression (based on the experimental data), and the binned
experimental data.

Statistics. The robust coefficient of variation was derived in MATLAB using
the mad(X,1) function to first calculate median absolute deviations that we
divide with the population’s median. ANOVA tests were performed in
MATLAB using the anova1 function. The 95% confidence intervals of all
linear regressions were computed in MATLAB by bootstrapping using the
bootci function (n= 1000 samples). Binning was performed in MATLAB
using the Sturges method and the histcounts function. Mann–Whitney,
Kolmogorov–Smirnov, two-sample t-tests, and all plotted linear regressions
were performed in Origin Pro.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Key data generated or analyzed during this study are included in this article (and
its Supplementary Information), as well as Supplementary Data 1; all data are available
from the corresponding author upon reasonable request.

Code availability
The custom Matlab code developed for the best-focus plane from 3D quantitative-phase
imaging stacks can be accessed online through Zenodo83.
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