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Article

Identifying Strong Neoantigen MHC-I/II Binding Candidates for
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Abstract: The discovery of tumor-derived neoantigens which elicit an immune response
through major histocompatibility complex (MHC-I/II) binding has led to significant ad-
vancements in immunotherapy. While many neoantigens have been discovered through
the identification of non-synonymous mutations, the rate of these is low in some cancers,
including head and neck squamous cell carcinoma. Therefore, the identification of neoanti-
gens through additional means, such as aberrant splicing, is necessary. To achieve this,
we developed the splice isoform neoantigen evaluator (SINE) pipeline. Our tool docu-
ments peptides present on spliced or inserted genomic regions of interest using Patient
Harmonic-mean Best Rank scores, calculating the MHC-I/II binding affinity across the
complete human leukocyte antigen landscape. Here, we found 125 potentially immuno-
genic events and 9 principal binders in a cohort of head and neck cancer patients where the
corresponding wild-type peptides display no MHC-I/II affinity. Further, in a melanoma
cohort of patients treated with anti-PD1 therapy, the expression of immunogenic splicing
events identified by SINE predicted response, potentially indicating the existence of im-
mune editing in these tumors. Overall, we demonstrate SINE’s ability to identify clinically
relevant immunogenic neojunctions, thus acting as a useful tool for researchers seeking to
understand the neoantigen landscape from aberrant splicing in cancer.

Keywords: alternative splicing; head and neck cancer; melanoma; neoantigen; targeted
immunotherapy response; software

1. Introduction
In recent years, the immune checkpoint blockade, especially the development of pro-

gramed cell death receptor (PD-1) inhibitors, has emerged as a revolution in cancer therapy.
Often, tumor cells can express higher levels of programmed cell death receptor–ligand 1
(PD-L1), which then binds to PD-1 on T-Cells, suppressing immune system activity [1]. The
development of checkpoint inhibitor drugs such as nivolumab and pembrolizumab have al-
lowed for the blockade of these checkpoints, opening the door for immune-mediated tumor
killing [2]. However, many patients remain unresponsive to these treatments. The causes
are postulated to be due to a variety of potential factors such as a lack of tumor antigen
recognition, defective effector T cell function, and/or microenvironment differences [3,4].

Because of these limitations, the discovery of novel tumor-derived neoantigens can
provide insight for both predicting responders and the development of novel targets to
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enhance treatment efficacy. Neoantigens are proteins that are uniquely produced by tumor
cells with the ability to be presented by the immune system through the major histocompat-
ibility complex (MHC-I/II) and elicit an immune response. In the past, neoantigens have
been traditionally identified from non-synonymous genomic mutations [5,6]. However, this
likely provides a limited view of the true neoantigen landscape as neoantigens have now
been reported in other genetic alterations, including gene fusions, indels, intron retention
events, and splicing alterations [7–11]. Understanding neoantigens derived from these
alternate sources is especially relevant in low-tumor-mutational-burden tumors, such as
head and neck squamous cell carcinoma or ovarian cancer [12–14].

In cancer, one relatively understudied method for neoantigen detection that demon-
strates promise is aberrant splicing [11,14–16]. The differential arrangement, inclusion, or
exclusion of exons leads to a significant alteration of peptide sequences and an increase
in protein diversity that can represent a new source for neoantigens [17]. Comprehensive
studies on data from The Cancer Genome Atlas (TCGA) have shown that aberrant novel splic-
ing events with no expression in normal tissue occur frequently across several cancer types [11].
Additionally, in cases such as head and neck cancer, alternative splicing has been demonstrated
to produce functionally active variants of AKT3, DOCK5, and GSN [18–20]. This is particularly
important as head and neck cancer patients often display a low tumor mutational burden
but a high splice burden, thus demonstrating the importance of looking not just at somatic
mutation derived neoantigens, but splice-derived variants as well [11,12].

To help researchers discover splice-derived neoantigens, a few open-source software
tools have been developed, including ASNEO (v.n/a), NeoSplice (v.0.0.3), and SNAF
(v.0.7.0) [21–23]. ASNEO takes in junctions with a high percent spliced in rate and inserts
them into the hg19 reference isoforms to generate novel isoforms that undergo one-frame
translation. NeoSplice uses a kmer search with the Burrows–Wheeler transform and CIGAR
string parsing methodologies to generate neoantigen predictions from paired tumor and
normal samples. SNAF utilizes a combination of deep learning and Bayesian probabilistic
modeling to predict immunogenicity and rank the neoantigen’s tumor specificity. However,
ASNEO’s required use of the human genome build 19 (hg19) leads to a diminished ability to
detect novel events, and the matching tumor and normal sample requirement by NeoSplice
can limit the analysis of real-world samples. Additionally, when evaluating MHC-I binding
affinity, these programs only consider individual human leukocyte antigen (HLA) alleles
and not their combination. Previously, we have shown that the combination of a patient’s
MHC-I genotypes directly influences the probability for the tumor to acquire and present a
recurrent mutation [24]. For these reasons, we developed SINE (splice isoform neoantigen
evaluator) to provide an up-to-date, generalizable neoantigen discovery pipeline that
accounts for the overall MHC-I and MHC-II binding probability using the Patient Harmonic-
mean Best Rank (PHBR) scoring method. This method uses an aggregation of best rank
binding affinity scores across all of a patient’s MHC alleles, allowing for a more accurate
representation of the patient’s peptide presentation ability. SINE is also able to identify and
calculate the binding affinity of paired wild-type (WT) junction peptides in normal samples
to help with neoantigen validation.

Previously, we developed the algorithm OutSplice to detect novel cancer-specific
alternative splicing events. Herein, we utilized OutSplice to identify tumor-specific splic-
ing events in a previously published oropharyngeal squamous cell carcinoma (OPSCC)
dataset, and apply SINE to identify and characterize putative immunogenic splice-derived
neoantigens [25]. These events were compared to outputs from other existing splicing
neoantigen detection software (ASNEO and SNAF). In addition, we applied SINE to a
cohort of melanoma patients treated with anti-PD1 therapy to show that splice-derived
neoantigens identified by SINE undergo immune editing specifically in responders [26]. To
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help evaluate SINE’s capabilities, we also applied our tool on a subset of skin cutaneous
melanoma (SKCM) patient data from The Cancer Genome Atlas (TCGA) and compared
the results to splice-derived neoantigens with a previously performed mass-spectrometry
(MS) validation [23]. These data demonstrate the ability of SINE to identify clinically
significant immunogenic splice-derived neoantigens that can delineate patients responding
to anti-PD1 therapy.

2. Results
2.1. OPSCC Cohort

SINE was run on an OPSCC dataset of 47 tumors using junction events with out-
lier expression relative to 25 normal controls. In total, after running SINE, we found
125 events to contain peptide sequences with relevant MHC-I binding ability (PHBR < 2)
(Table S1). Additionally, we discovered 19 events that contain peptide sequences with a
strong <0.5 PHBR) average binding affinity score. However, from the total list, we found
that: 60 of these events did not occur in a majority of the samples, 30 displayed significant
outlier underexpression in the tumor, 26 had a WT alternative with stronger MHC-I binding,
and 53 events had no WT alternative at all. Therefore, to create a list of the top potential
neoantigen candidates, we filtered these 125 aberrant events based on the following criteria:
has significant outlier overexpression based on OutSplice analysis, has an alternative WT
splicing event with a larger PHBR score, and occurs in >50% of the tumor samples.

From this, we identified 12 overexpressed events in tumor tissue across 11 genes
to have MHC-I binding and a binding score lower than the WT on average (Table 1).
Furthermore, two events overexpressed in the tumor tissues on the MKNK2 and FGFR1OP
genes displayed very strong affinity for MHC-I and a corresponding WT event without
MHC-I binding affinity. We also found that in six of the events, while the average PHBR
score only indicated weak MHC-I binding (PHBR > 0.5 but <2), the peptides spanning
the WT alternative junction still displayed no ability to bind to the patient’s HLA types.
All of these events occurred in the majority of the tumor tissue samples, with a median
occurrence of 98% for the immunogenic events with no MHC-I binding WT alternative.
Using OutSplice’s outlier functions, these events were highly prevalent as outliers, showing
significant upregulation in expression compared to normal tissue. The median outlier
prevalence was 53.2%, with the lowest prevalence being 31.9%. PHBR scores for the
OPSCC cohort were also calculated for MHC-II binding. Here, while 5 strong binders and
53 overall relevant binders were detected, only 1 event on the CENPW gene met our above
stringent criteria (Table S1). This resulted in nine overall slicing events without a WT
binding alternative that met our criteria for principal MHC-I/II binders.
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Table 1. Summarized SINE results for the OPSCC dataset. PHBR columns represent the average for
all samples containing a potential peptide at that event (ASE) and its corresponding wild type (WT).
Best peptide/HLA combination represents the junction-spanning peptide with the strongest binding
and which HLA type it binds to. Relevant binding is defined as splicing events in the gene where
the average PHBR score was <2. %Samples indicates the percentage of tumors that both express
an event and display a junction-spanning peptide of appropriate MHC-I binding length. %Tumors
w/Outlier Overexpression (OE) represents the percent of tumors that specifically displayed outlier
overexpression of the event. Events in bold represent the ASEs with MHC-I binding and a WT event
that shows no binding efficacy.

ASE
PHBR

WT
PHBR

Best Peptide/HLA
Combination

%Samples
(x/47 × 100)

Gene
Symbol

%Tumors w/Outlier OE
(x/47 × 100)

chr19: 2037829–2040134 0.38 3.12 QRWDSHFLL B27:05 100% MKNK2b 61.7%
chr9: 136792030–136792251 0.43 0.44 VVAGSVVSY A26:08 100% TMEM141 57.4%
chr6: 167010893–167013508 0.45 4.21 TTPSKIPRY A26:08 97.9% FGFR1OP 78.7%
chr6: 167003811–167004264 0.55 3.87 VFQPETSTL C14:02 100% FGFR1OP 83%

chr9: 4727924–4740937 0.61 1.34 ASLFPETQQY B15:01 66% AK3 40.4%

chr16: 29996617–29996808 0.7 4.09 SFLLDRLLQY
A29:02 100% INO80E 44.7%

chr14: 105491522–105491622 0.74 1.12 RPEATSAL B07:02 91.5% C14orf80 59.6%
chr3: 158649157–158650005 0.79 1.34 YFDGDFGHF C04:01 61.7% GFM1 31.9%
chr17: 28399713–28400610 1.15 4.13 AVLIGMLEK A11:01 91.5% SLC46A1 48.9%
chr2: 130359492–130359608 1.21 2.44 WEFGVKVIL B40:01 89.4% PTPN18 51.1%

chr9: 34665680–34665978 1.33 3.09 SQPPLQETF B15:01 59.6% LOC730098 55.3%
chr7: 44208198–44211023 1.35 3.54 LHNTMESLL B38:01 97.9% YKT6 48.9%

2.2. SINE Comparison to ASNEO and SNAF

We performed a parallel analysis of the OPSCC cohort using SNAF and ASNEO. Out
of the 73,941 splice events detected by AltAnalyze, the SNAF tool identified 2607 alternative
splicing events where at least 1 of the 47 samples displayed peptide immunogenicity based
on their NetMHCpan score and DeepImmuno percentile [27]. In contrast, SINE narrowed
down a custom list of 344 junctions with outlier expression to a list of 194 immunogenic
events where at least 1 sample displayed immunogenicity at the PHBR level. From these
events, we found three splicing events on the STAG3, STEAP1B, and MRC2 genes that
overlap both detection tools’ standards for immunogenicity warranting further wet lab
testing (Table 2). The ASNEO tool identified 279 splicing events where at least 1 sample
displayed peptide immunogenicity based on their self-described immunogenicity score.
When using ASNEO, we were unable to find any consensus neoantigen predictions between
it and SINE or SNAF.

Table 2. Shared splicing event detections between SINE and SNAF.

Reported SINE
Peptide(s)

Reported SNAF
Peptide(s) Gene Symbol SINE ASE PHBR

Score

chr7: 100199367–
100199541 LLLEKDQNL

LLLEKDQNL,
SLLLEKDQNL,
NLGDVQESTL

STAG3 1.41

chr7:
22485060–22492565

REFHYIQRL,
FHYIQRLL

REFHYIQRL,
EFHYIQRLL,

WREFHYIQRL
STEAP1B 0.72

chr17:
62680062–62680170

GPRGVTRPPF,
VTRPPFSY,

TRPPFSYHNF

PAPVLLPQF,
SERGHPAPV,

SERGHPAPVL,
ERGHPAPVL,
RGHPAPVLL

MRC2 0.39
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2.3. Immunotherapy-Treated Melanoma Dataset

Both OutSplice and SINE were run on a melanoma patient cohort of 9 responders and
33 nonresponders whose tumors were sampled before and after the first dose of nivolumab
during anti-PD1 treatment [26]. OutSplice documented three types of splicing events:
events with expression outside of known exons (Insertions), events without expression
(Deletions), and events where a known exon is ignored in favor of a neighboring exon
(Skipping). While no real change was seen in the responders regarding the number of
deletions and skipping events after treatment, OutSplice found that responding patients
showed a significant change in insertion events, which were underexpressed compared to
normal tissue (Figure 1A). Further analysis demonstrated that these splicing events corre-
lated with inserted sequences that were eliminated in responders as a result of treatment
(Figure 1C). This underexpression after treatment, therefore, represented a loss of aberrant
junction expression in responders. Of these events, we then narrowed down 31 of them
of which the lost expression was shared across a majority of responders after exposure to
immunotherapy. We found that nonresponders tended to maintain the expression of these
events instead (Figure 1B). The Fisher exact testing then revealed that expression is lost
significantly more often in the responders for these 31 events as a whole (p = 2.2 × 10−10),
with 16 of the events being significant individually (p-adjusted < 0.05).

After SINE analysis, 65% of the 31 events that were lost in a majority of the responders
showed a PHBR score of less than 2 for MHC-I, indicating them as binders. From these
events we also identified 4 where MHC-I binding existed in the responders, but no binding
ability was seen in the nonresponders. Additionally, one strong binder found in the
responders only displayed weak binding in the nonresponders (Table 3). MHC-II binding
affinity was also calculated for this dataset; however, only four events showed overall
binding, with two having stronger affinity in the responders relative to the nonresponders
(Table S2).

XCell analysis revealed that nonresponders tended to have lower CD4+ T-Cells (Me-
dian Infiltration = 2% vs. 13%, p = 0.02, p-adjusted = 0.25) and CD8+ central memory T
cells (median infiltration = 2% vs. 13%, p = 0.04, p-adjusted = 0.32) at baseline (Table S3).
Tumor purity analyses then further revealed that responders displayed significantly lower
tumor purity scores after treatment compared to the nonresponders (Median Purity = 33%
vs. 67%, p = 6.7 × 10−3, p-adjusted = 8.9 × 10−3). No significant difference in tumor purity
was seen between the two groups before treatment (median responder vs. nonresponder
purity = 56% vs. 75%, p = 0.11, p-adjusted = 0.14).

Table 3. SINE results per gene for the regions of interest in the melanoma dataset. The responders’
column indicates the average PHBR score across anti-PD1 responders that lost the expression of
the splice event after initial treatment. Responders’ Best peptide/HLA combination represents the
junction-spanning peptide with the strongest binding and which HLA type it binds to. The nonre-
sponders column indicates the average PHBR score across anti-PD1 nonresponders that maintained
the expression of the splice event after initial treatment. Events labeled * contained a pre-mature stop
codon, preventing the formation of a relevant peptide for PHBR analysis. Events in bold indicate
those with strong/weak MHC-I binding affinity in the responders, but only weak/non-binding
affinity in the nonresponders.

Responders’ PHBR Responders’ Best
Peptide/HLA Combination

Nonresponders’
PHBR Gene Symbol

chr1: 84563245–84563256 0.04 YYNYKVRLF HLA-C07:51 0.04 CTBS
chr4: 4237071–4237077 0.05 HPILRSAAL HLA-B35:03 0.06 TMEM128

chr7: 75881487–75881490 0.3 LPSEVVYRL HLA-B35:01 0.4 RHBDD2
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Table 3. Cont.

Responders’ PHBR Responders’ Best
Peptide/HLA Combination

Nonresponders’
PHBR Gene Symbol

chr5: 74700753–74700851 0.44 SLQPPPLRFK HLA-A03:01 1.57 HEXB
chr20: 6006807–6006834 0.47 IKYENPWTI HLA-C06:02 0.49 CRLS1

chr2: 37317807–37317899 0.56 RTWIGEIPY HLA-A32:01 1.99 PRKD3
chr2: 11450008–11450011 0.58 VPAPREVGL HLA-B07:02 2.18 E2F6

chr1: 112669896–112669918 1 NEYQGTQAY HLA-B44:03 0.77 CAPZA1
chr22: 50204986–50205024 1.03 RQILGDPTY HLA-B15:01 9.15 SELENOO
chr7: 72901070–72901128 1.09 NPPTTVSQI HLA-B51:01 0.69 POM121

chr1: 236207133–236207172 1.17 STEEKLGEY HLA-A01:01 0.96 GPR137B
chr22: 31176262–31176358 1.17 SPVSDSQLL HLA-B35:03 0.75 RNF185
chr9: 33338507–33338509 1.24 SLKSEADATF HLA-B15:01 1.72 NFX1

chr2: 144229849–144229871 1.3 LFYRGSLYL HLA-A23:01 9.09 GTDC1
chr11: 86318936–86318960 1.35 GLKSETGSY HLA-B15:01 0.89 HIKESHI
chr22: 43074660–43074673 1.67 QSLPMLPRL HLA-B57:01 NA TTLL1 *
chr2: 39254521–39254545 1.68 IESIVIELF HLA-B44:02 0.79 MAP4K3

chr10: 91997080–91997108 1.73 KRWMKIKSV HLA-C06:02 1.14 BTAF1
chr7: 6257736–6257769 1.82 AAVPEDLSL HLA-C03:04 1.19 CYTH3

chr8: 97696204–97696221 1.85 SIFSGIAAW HLA-A32:01 3.12 MTDH
chr5: 17143578–17143591 2.27 EEANTCSFW HLA-B44:02 2.53 BASP1
chr13:95816081–95816104 2.34 KIQALQEAW HLA-A32:01 2.6 UGGT2
chr6: 35352929–35353001 2.58 NTKRRDSL HLA-B08:01 6.43 PPARD

chr20: 62843780–62843793 3.2 RFRETESGLEF
HLA-A24:02 5.25 TCFL5

chr3: 47940517–47940534 3.39 GSDTTGESKSL
HLA-C08:02 3.41 MAP4

chr6: 96897659–96897665 3.7 REQISRECL HLA-B40:01 2.24 NDUFAF4
chr7: 104740892–104740916 4.95 SRDQLGNMV HLA-B39:01 1.72 LHFPL3
chr1: 185091565–185091578 5.31 QEAITDGLEI HLA-B40:01 9.98 RNF2

chr7: 150408642–150408664 23.61 ELKETWRGHF
HLA-B08:01 35.71 LOC728743

chr20: 348046–348063 30.87 RGSGELEGR HLA-A31:01 24.59 NRSN2

2.4. TCGA-SKCM Cohort

SINE was run using 361 junction events found across 5 TCGA-SKCM samples. Here,
we found 11 peptides with immunogenic PHBR scores (<2) that were an exact match to the
MS-validated peptides detailed in Li et al. (Table 5) [23]. Overall, based on SINE’s detection
methods, 87 neojunctions were flagged as potentially immunogenic based on a PHBR
score < 2 (Table S4).

Table 4. SINE-detected neoantigens in the TCGA-SKCM dataset. The Exact Peptide Match column
indicates the SINE-detected peptide previously documented as a neoantigen with MS evidence.
Sample IDs indicate the case ID number from the Genomic Data Commons that SINE was able to
find the peptide in. All peptides presented here were detected with an average PHBR < 2 across the
samples listed in Sample ID.

Exact Peptide Match Sample ID Gene Symbol

chr5: 90488129–90490593 ERQETGVLL TCGA_BF_AAP1 POLR3G

chr1: 161710492–161710760 HAAASFETL TCGA_BF_AAP1
TCGA_D9_A4Z2 FCRLA

chr12: 55956189–55956949 STESITATL TCGA_BF_AAP1 PMEL

chr1: 179131481–179142933 ALPDLTEAL TCGA_FR_A2OS ABL2
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Table 4. Cont.

Exact Peptide Match Sample ID Gene Symbol

chr20: 31797515–31798386 VAVQEPFQL

TCGA_BF_AAP1
TCGA_BF_A3DM
TCGA_FR_A2OS
TCGA_EB_A5VU

TPX2

chr18: 66509195–66511568 IIDNQEPVF TCGA_D9_A4Z2 CDH19

chr15: 32811111–32857015 FQKGHPFPM

TCGA_BF_AAP1
TCGA_BF_A3DM
TCGA_FR_A2OS
TCGA_D9_A4Z2

FMN1

chr5: 33954504–33963931 FQTRRAMTL TCGA_BF_AAP1
TCGA_EB_A5VU SLC45A2

chr17: 79950575–79950756 RETDFKMKV TCGA_FR_A2OS TBC1D16

chrX: 54750106–54753651 IEDPKAGQF TCGA_D9_A4Z2
TCGA_EB_A5VU ITIH6

chrX: 9743655–9746044 VTAGRQGIY
TCGA_FR_A2OS
TCGA_D9_A4Z2
TCGA_EB_A5VU

GPR143

Table 5. SINE-detected neoantigens in the TCGA-SKCM dataset. The Exact Peptide Match column
indicates the SINE-detected peptide previously documented as a neoantigen with MS evidence.
Sample IDs indicate the case ID number from the Genomic Data Commons that SINE was able to
find the peptide in. All peptides presented here were detected with an average PHBR < 2 across the
samples listed in Sample ID.

Exact Peptide Match Sample ID Gene Symbol

chr5: 90488129–90490593 ERQETGVLL TCGA_BF_AAP1 POLR3G

chr1: 161710492–161710760 HAAASFETL TCGA_BF_AAP1
TCGA_D9_A4Z2 FCRLA

chr12: 55956189–55956949 STESITATL TCGA_BF_AAP1 PMEL

chr1: 179131481–179142933 ALPDLTEAL TCGA_FR_A2OS ABL2

chr20: 31797515–31798386 VAVQEPFQL

TCGA_BF_AAP1
TCGA_BF_A3DM
TCGA_FR_A2OS
TCGA_EB_A5VU

TPX2

chr18: 66509195–66511568 IIDNQEPVF TCGA_D9_A4Z2 CDH19

chr15: 32811111–32857015 FQKGHPFPM

TCGA_BF_AAP1
TCGA_BF_A3DM
TCGA_FR_A2OS
TCGA_D9_A4Z2

FMN1

chr5: 33954504–33963931 FQTRRAMTL TCGA_BF_AAP1
TCGA_EB_A5VU SLC45A2

chr17: 79950575–79950756 RETDFKMKV TCGA_FR_A2OS TBC1D16

chrX: 54750106–54753651 IEDPKAGQF TCGA_D9_A4Z2
TCGA_EB_A5VU ITIH6

chrX: 9743655–9746044 VTAGRQGIY
TCGA_FR_A2OS
TCGA_D9_A4Z2
TCGA_EB_A5VU

GPR143
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Figure 1. Lost expression following treatment. (A) Number of lost expression events detected by 
OutSplice analysis on pre-treatment (PT) and on-treatment (OT) melanoma biopsies for anti-PD1 
responders (n = 9) and nonresponders (n = 33). The samples were biopsied 1–7 days before the first 
dose, and then on cycle 1, day 29 of treatment, as per Riaz et al. [26] (A) No significant change was 
seen in the nonresponder biopsies. Responder patients’ on-treatment biopsies were shown to have 
a significantly higher number of underexpressed insertion events compared to their pre-treatment 

Figure 1. Lost expression following treatment. (A) Number of lost expression events detected by
OutSplice analysis on pre-treatment (PT) and on-treatment (OT) melanoma biopsies for anti-PD1
responders (n = 9) and nonresponders (n = 33). The samples were biopsied 1–7 days before the first
dose, and then on cycle 1, day 29 of treatment, as per Riaz et al. [26] (A) No significant change was
seen in the nonresponder biopsies. Responder patients’ on-treatment biopsies were shown to have
a significantly higher number of underexpressed insertion events compared to their pre-treatment
counterparts. (B) Heatmap of the 31 events undergoing lost expression in the melanoma dataset.
Colors represent how junction expression changes following treatment with anti-PD1 immunotherapy.
Bolded events indicate those with a significant relationship between response and if expression was
lost (p < 0.05) under the Fisher exact test. (C) Example of a lost expression event on the HIKESHI
gene in a responder’s tumor appearing after anti-PD1 treatment. Black lines indicate introns and blue
regions indicate the known exons. The red box represents an inserted sequence that is expressed
outside of an annotated exon in both the normal and responder’s pre-treatment samples of which the
expression is lost after anti-PD1 treatment.
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3. Discussion
To demonstrate SINE’s ability to identify junction neoantigens in patient tumors,

we applied our tool on 344 significant splicing alterations in tumor tissue compared to
normal across 261 genes from a previously published dataset of 47 OPSCC tumors and
25 controls [25,28]. Altogether, we ended up detecting 125 potentially immunogenic events;
19 of which were very strong MHC-I binders. From this, we found two strong and six weak
MHC-I binding peptides formed as a result of alternative splicing with a corresponding
non-binding WT alternative, and a median occurrence value of 98%. Additionally, all
of these splicing events displayed outlier overexpression relative to normal tissue in at
least 30% of tumors, with seven of the events being overexpressed in at least 50%. Given
the heterogeneity that is normally seen when comparing tumors, the identification of
common highly expressed splicing event targets such as these could be beneficial for the
development of generalized enhancing adjuncts to immunotherapy treatment [29].

However, not all of these events displayed an alternative WT junction-spanning
peptide for comparison, which does not obviate their role as potential neoantigens. This
lack of identifying a corresponding WT alternative can be attributed to a few potential
reasons: the lack of an alternative junction event, the lack of alternative event expression, or
the presence of a stop codon preventing junction-spanning peptides to be produced. While
the first two reasons indicate that there is no available alternative being expressed, the
splice event in question still undergoes differential expression in tumor tissue. Regarding
the third reason, the inability of the WT to produce any meaningful peptide due to stop
codons may indicate an overall frame shift occurring in the patient tumor that changes the
culminating peptide. For these reasons, while not all of these events had a corresponding
alternative WT junction, these events still warrant further evaluation as the expression of
these events in the tumor relative to normal tissue may still be indicative of a biomarker for
immunogenicity analysis [11].

Many of these genes flagged by SINE as potential neoantigen producers have not only
been shown to have splice derived oncogenic isoforms in a variety of cancers, but also were
notable as potential oncogenic or immunogenic targets. Mogilevsky et al. demonstrated
how the overexpression of the MKNK2b isoform acts as a pro-oncogenic factor in glioblas-
tomas, and were able to inhibit tumor growth through splicing manipulation towards the
MKNK2a isoform instead [30]. Interestingly, MKNK2b was also found to be overexpressed
in our tumor data, so its ability to act as a potential immunogenic target may provide a dual
target for tumor control. Likewise, while developing a prognostic model to help predict the
overall survival of cholangiocarcinoma patients, Lin et al. discovered a tumor up-regulated
exon skipping event on the SLC46A gene, noting its relevance as a therapeutic target for
anti-PD1 treatment [31].

While not splice-derived, other known oncogenes that have been noted as novel
biomarkers that have been tagged by SINE include FGFR1OP, INO80, PTPN18, and
YKT6 [32–35]. Of these, PTPN18 overexpression is particularly noteworthy as this gene has
been shown to promote glioblastomas by decreasing CD8+ T cell infiltration to enhance
immune suppression, making the identification of immunotherapy targets for this gene
crucial for halting tumor growth [34]. Specifically, regarding head and neck cancer, elevated
levels of the YKT6 gene were associated with aggressive oral squamous cell carcinoma,
matching what we see in our oropharyngeal cohort. Here, they noted how this gene’s
upregulation gives rise to tumor immune evasion and the degradation of MHC-I, whereas
decreased expression results in increased CD8+ T cells, making this gene a biomarker
candidate [35]. The identification of a high-binding-affinity peptide on this gene using
SINE suggests a potential target for immune-based therapies in aggressive cancers.
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While SNAF was able to find more candidate targets in our OPSCC dataset, SINE
may prove more useful and faster for those who have already narrowed down a list
of potential alternative splicing targets. Additionally, SINE is capable of analyzing the
potential neoantigen k-mers of a length of 8–11 amino acids, whereas SNAF is restricted
to those of a of length 9–10. By considering the entire optimal binding length of MHC-I,
the user will have more confidence in the actual absence of neoantigens along the splice
region [36]. SNAF will also focus on reporting any potentially immunogenic peptides
based on a three-frame in silico translation, whereas SINE will report the best potential
immunogenic peptides based on the best alignment per sample, which may be useful to
those seeking to take any potential sample-specific frame shift mutations into account.
Further differences between the two software also include the definition of WT. SNAF’s
method of filtering immunogenic events based on the number of junction spanning reads
in the tumor compared to the normal is critical. However, it is also important to consider
the potential alternative peptides that can be formed from highly expressed junction events
in the normal tissue that share a start or end of the alternatively spliced event. In doing
so, we can determine if the alternative spliced form in the tumor is actually novel and
more likely capable of undergoing elimination by the immune system given the lack of an
alternative binding possibility.

Regarding ASNEO, one potential explanation for the lack of overlapping results
could be due to ASNEO’s requirement for the old hg19 build. This could also be due to
differences in ASNEO’s classification methodology. ASNEO is capable of including other
metrics for scoring neoantigen potential such as the peptide cleavage probability, and the T
cell recognition score, which can act as a different, but effective means for evaluating MHC-I
binding effectiveness [21]. However, unlike SINE, ASNEO is unable to work with mouse
genomes, a feature that would be of benefit to many researchers given the cost/difficulty
some may have obtaining human patient data.

Combined analysis with OutSplice and SINE were able to identify significant dif-
ferences in splice junction expression in melanoma patients responding to anti-PD-1 im-
munotherapy compared to those that did not respond based on paired biopsies. Notably,
these algorithms were able to identify a markedly decreased expression of immunogenic
splicing events in response to treatment, a phenomenon that was highly specific and predic-
tive for responders (Figure 1). This indicates that inside of the responding patient’s tumor,
junction event expression is the same relative to a normal sample only before immunother-
apy but is then lost upon receiving their first dose. Whereas in the nonresponders, the
overall junction expression is either maintained or actually gained while on treatment.

To better understand these stark differences in junction expression between responders
and nonresponders, we ran SINE on each of these events with lost expression in the re-
sponders and compared them to the nonresponders. We hypothesized that immunoediting
could play a role in eliminating expression of these aberrant splice junctions, particularly
any potentially immunogenic peptide along the splice junction or any additional novel
insertion (Figure 1C). For each event, we then compared the average PHBR of responders
losing expression during treatment against all nonresponders who maintained expression.
In this study, we found 5 MHC-I binders with a stronger binding affinity in the respon-
ders compared to the nonresponders, as well as a significantly smaller tumor purity score
following treatment. This indicates a trend toward responders having a higher immune
infiltrate and provides some support that a boosted immune system will strengthen the
body’s ability to eliminate the peptides produced from these regions.

This display of MHC-I/II binding peptides but lack of immune response in the non-
responding patients could also be due to the tumor microenvironment generating dys-
functional T cells in the nonresponders, reducing the effectiveness of the overall treatment.
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Another reason for nonresponse despite antigen presentation to MHC-I could be due to the
differences in immune infiltration that existed prior to treatment. XCell analysis revealed
smaller traces of both CD4+ T cells and CD8+ central memory T cells in the nonresponders’
tumors. These “cold tumors” will therefore be unable to trigger any immune response in
these patients [37]. Due to the low numbers of responders, the power of this statistical
analysis was likely limited, resulting in insignificant adjusted p-values. However, the
uncorrected values do reveal this trend in immune infiltration.

It should also be noted that for SINE to detect some of the peptides in these regions,
read duplication was required to allow for a successful assembly by Trinity, which may
have resulted in an increase in the false positive rate of our experiment. Further, the number
of paired pre-treatment to on-treatment tumor samples was limited to nine responding
patients, so higher percentages may simply be due to a diminished sample size rather than
a true effect. Future experiments will need to be carried out with melanoma responders
and nonresponders at a greater sequencing depth in a sufficient number of samples along
these regions. However, despite the lack of a clear difference in PHBR scores for all of
our selected events, researchers should find SINE’s capability to use both generalized
and splice-derived regions of interest beneficial for calculating the differences between
responders and nonresponders.

To help evaluate SINE’s efficacy, we further tested our pipeline against a subset of
the TCGA-SKCM ground-truth dataset. After running SINE against 361 neojunctions of
which the existence was validated with MS evidence, we found that SINE was able to
successfully recognize 87 of these events as immunogenic. Additionally, from these events,
SINE picked up the exact neoantigen/peptide match in 11 events. These data demonstrate
our tool’s ability at identifying the existence of true clinically relevant neojunctions. The
major reasoning for why all neojunctions were not picked up by SINE as immunogenic and
why the peptides were not found in all samples is most attributed to the frame selection
step where only the best aligned reading frame per sample is utilized. This is carried
out in an attempt to get the most accurate truly formed isoform per sample as opposed
to considering all frames as only one frame will actually produce peptide. So, while a
particular patient may display reads mapping across a splice event, it may not actually
produce a relevant neoantigen that another patient displays due to the possibility of a
frame shift. This makes the identification of the true isoform on a per patient level a critical
component in the detection of neoantigens.

Through the use of SINE, we were able to document several top scoring strong and
weak MHC-I/II-binding peptides that span aberrant splice junctions in head and neck
cancer patient tumors. Additionally, we show how SINE can be used to document the
differences in immunogenicity between anti-PD1 responders and nonresponders in a
melanoma dataset. In accordance with these results, SINE was able to demonstrate the
potential for these peptides to act as neoantigen targets through the use of PHBR analyses
and the evaluation of the corresponding non-MHC-I/II binding WT junction spanning
peptides. However, a future wet-lab validation using T-cell assays such as ELISpot will
need to be carried out to confirm the existence of these peptides as true neoantigens. By
being able to consider the binding affinity of all HLA alleles while also having compatibility
with both mouse and human genomes, we believe researchers will find SINE a useful tool
for the identification of potential neoantigens in their own independent datasets.

4. Materials and Methods
4.1. Data Preparation

The 47 primary OPSCC tumor samples and 25 oropharynx mucosal normal tissue sam-
ples were collected, prepared, and sequenced as previously detailed (OPSCC dataset) [28].
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Paired-end sequencing and read trimming resulted in 80 million 100 × 100 base-pairs per
sample. The resulting FASTQ data were then aligned using STAR (v.2.7.1a) with 2 Pass
Mapping to the Human Genome Build 38 (hg38) [38]. Data were then also aligned to
hg19 for downstream use with ASNEO. OutSplice was then run as previously described,
resulting in 261 genes with 344 significant splicing events [25]. The 344 detected junction
events for each of these genes were then used as the input into the SINE pipeline.

The 84 melanoma samples used in this study consisted of 9 anti-PD1 responding
patients’ and 33 nonresponding patients’ pre-nivolumab and post-nivolumab treatment
biopsies originally sequenced in a study performed by Riaz et al. (Melanoma dataset) [26].
106 normal melanocytes were used to detect junction event removal in the tumor sample
junctions with outlier underexpression and were collected and sequenced as previously
described [39]. Adapter trimming was performed using BBMap [40]. Using OutSplice,
splice events that existed prior to treatment, but were lost following initial treatment
in a majority of responding patients were then provided to SINE’s pipeline with the 42
pre-treatment biopsies.

For evaluating SINE, the 5 primary solid tumor samples with the greatest number
of neojunctions having MS evidence in the TCGA-SKCM dataset as evaluated by Li et al.
were selected [23]. These samples’ 361 validated neojunctions were then provided to SINE.
HLA-typing for all patients in all datasets was performed using HLA-HD (v.1.4.0) [41].

4.2. Computational Resources

SINE, ASNEO, and SNAF were run on the National Resource for Network Biology
(NRNB) and the Triton Shared Computing Cluster (TSCC) hosted by the San Diego Su-
percomputer Center (SDSC) [42]. Parallel computing was used with the Simple Linux
Utility for Resource Management (SLURM) system to process multiple samples and junc-
tion events at once. SINE was run with a maximum allocation of 4 CPUs and maximum
memory requirement of <1 GB per sample. ASNEO was run with a maximum allocation of
4 CPUs and a maximum memory requirement of 8.93 GB per sample. SNAF was run with
a maximum allocation of 4 CPUs and a maximum memory requirement of <1 GB.

4.3. SINE Pipeline

Figure 2 illustrates the workflow SINE follows for neoantigen detection. First, SINE
uses STAR’s SJ.out.tab output and a directory of normal samples to identify the most
commonly expressed junctions with a shared start or end coordinate/site for each provided
alternative splicing event of interest (ASE). These junctions are then classified as wild-type
(WT) junctions of which the binding score the ASE are compared to. Samtools (v.1.15.1)
is then executed on the Binary Alignment Map (BAM) files for each tumor and normal
sample to extract reads that span the junction of interest and their mates [43]. Trinity
(v.2.11.0) then performs a de novo read assembly to identify all of the present isoforms in
each sample [44]. After translating all the reading frames and retaining the contigs with
the best alignment to the WT protein, k-mers of MHC I’s required binding size (8–11) that
span the junction of interest coordinate positions are created. When selecting the contigs
with the best alignment, the following parameters were used in the Biopython (v.1.81) local
pairwise alignment module: 2 points for identical characters, −5 points for non-identical
characters, −1 point when opening a gap, and −0.5 points when extending a gap.
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Figure 2. SINE workflow with an example splice event. Gray boxes indicate the required external
input during each step. Right-facing arrows point toward a visualization of a SINE run on the
detected event “chr19: 2037829–2040134”.

For each splice event, every k-mer was run through NetMHCpan (v.4.1a) to calculate
the binding affinity rank scores for every human leukocyte antigen allele (max: 6) in each
patient [45]. Using a newly modified version of PyPresent, a PHBR score was calculated to
predict the binding effectiveness of the junction spanning k-mers/peptides and records
the potential neopeptide based on the strongest possible combination for each patient [24].
Events with a PHBR threshold < 0.5 and <2 were, respectively, designated as strong and
weak MHC-I binders. Events > 2 were considered to be non-binders. To consider HLA
type diversity across all patients expressing a particular ASE, an average PHBR score was
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also calculated for each detected event. WT PHBR scores were then calculated as the
average score across each of the tumor sample’s HLA types. The most principal events with
potential neoantigens were then selected from the results based on the following criteria:
relevant binding score (<2 PHBR), identification of an alternative WT junction, those with
outlier overexpression, and presence in a majority of tumor samples. This methodology was
then repeated for MHC-II, with exceptions for a different binding size (15) and thresholds
for relevant binding affinity (Strong Binders: <1 PHBR, Relevant Binders < 5 PHBR).

Alternatively, SINE can also use a region-of-interest workflow to detect immunogenic
regions that not only span the junction of interest, but also those that lie upstream or
downstream through the provision of generic coordinates. This feature was added to
interrogate novel peptide sequences resulting from splicing events, including insertions
or intron retention that would provide additional peptide diversity, instead of an exon-
exon junction. When running SINE with this methodology, the same workflow was
followed, except the WT junction identification step is skipped and instead of junction-
spanning reads, reads that span any part of the provided region and their mates were
extracted and assembled. SINE is open-source and is available on our GitHub (https:
//github.com/GuoLabUCSD/SINE, accessed on 21 October 2024).

4.4. Immunotherapy-Treated Melanoma Dataset

To understand the change in splice-derived neoantigens in response to immunotherapy,
we ran OutSplice and SINE’s region of interest workflow to determine the presence of
immunogenic regions. Splice junction expression was therefore evaluated before and
after immunotherapy treatment in both responders and nonresponders. Following the
OutSplice run on the Melanoma dataset, junction events in a majority of the responders
that displayed outlier underexpression relative to normal tissue only after initial treatment
(i.e., lost expression) were selected for use with SINE. Based on these junctions, the actual
chromosomal regions were then manually selected based on the consensus region in
responding patients’ pre-treatment samples where expression was lost following treatment.
To help aid the Trinity assembly of isoforms, the number of reads spanning the region was
duplicated 10-fold using SINE’s read boost function due to low read counts in this dataset.
To compare responders and nonresponders, Pre-treatment samples with sequences that
lead to a pre-mature stop codon on the event and a peptide shorter than the preferred
MHC-I/II binding length (8–11, or 15), or samples where Trinity was unable to assemble
an isoform, were excluded from the averages. PHBR averages were calculated using a
subset of the responders where expression on the splice region was specifically lost and
a subset of the nonresponders where expression was specifically maintained following
initial treatment. Tidyestimate (v.1.1.1) was used for all tumor purity calculations [46,47].
XCell (v.1.0) was run to determine the cell types responsible for any differences in immune
infiltration between responder and nonresponder tumors [48].

4.5. ASNEO Pipeline

Hg19-aligned data files were provided along with the corresponding reference genome
FASTA file to the ASNEO python script (v.n/a) for analysis. Default settings were used for
all samples, with the exception that the patient-specific HLA allele types were provided.

4.6. SNAF Pipeline

Similar to SINE, the BAM files used in the SNAF (v.0.7.0) pipeline were obtained
through STAR alignment. Alternative splicing event quantification was performed using
AltAnalyze with default settings as per the usage guide [23,49]. Our 25-oropharynx mucosal
normal tissue samples were included as an additional control database to pair along with
the SNAF default GTEx database of ~2500 normal samples spanning 54 different tissue

https://github.com/GuoLabUCSD/SINE
https://github.com/GuoLabUCSD/SINE
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types. Default settings were then used for all samples, with exception for the patient
specific allele types and the number of CPU cores.

4.7. Statistical Analysis

Statistical analyses were conducted using SciPy (v.1.11.3), Python (v.3.10.13), and R
(v.4.3.1) [50]. Shapiro–Wilk normality tests were performed on the responders and non-
responders pre-treatment and on-treatment groups. Normality testing revealed that all
groups, except for the nonresponder’s on-treatment group, followed a normal distribu-
tion. Therefore, the statistical differences between the groups were then assessed using
the nonparametric Wilcoxon signed-rank test for the nonresponders, but a parametric
paired samples t-test for the responders. Statistical differences between responders and
nonresponders were assessed using Fisher’s exact test to compare the number of samples
with expression loss on the detected splice events. Tumor infiltration analyses comparing
responders to nonresponders, and pre-treatment to on-treatment were carried out using
Wilcoxon rank sum tests and Wilcoxon signed-rank tests respectively. p-value adjustments
for the tumor infiltration tests and for the Fisher exact analyses were performed using the
Benjamini–Hochberg method. All tests were performed using an alpha level of 0.05.
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