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Albuquerque, New Mexico 87131, United States

§Department of Mathematics, Texas A&M University, College Station, Texas 77843, United States

||Department of Pharmaceutical Chemistry, University of California in San Francisco, San 
Francisco, California 94107, United States

Abstract

Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, 

accurate, and general method for generating macrocycle conformations would enable structure-

based design of macrocycle drugs or host–guest complexes. Computational sampling also provides 

insight into transiently populated states, complementing crystallographic and NMR data. Here, we 

report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic 

geometry and inverse kinematics together with local energy minimization. BRIKARD is 

demonstrated on 67 diverse macrocycles with structural data, encompassing various ring 

topologies. We find this approach enumerates diverse structures with macrocyclic RMSD < 1.0 Å 

to the experimental conformation for 85% of our data set in contrast to success rates of 67–75% 

with other approaches, while for the subset of 21 more challenging compounds in the data set, 

these rates are 57% and 10–29%, respectively. Because the algorithm can be efficiently run in 

parallel on many processors, exhaustive conformational sampling of complex cycles can be 

obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD 

samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of 
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wallclock time, much faster than 3.1–10.3 hours necessary with current programs. By rigorously 

testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the 

frontiers of macrocycle sampling to encompass multiring compounds, including those with more 

than 50 ring atoms and up to seven interlaced flexible rings.

Graphical Abstract

1. INTRODUCTION

Macrocycles straddle the space between small molecules and macromolecules, possessing 

complex and frequently flexible three-dimensional structures but relatively modest 

molecular weight (typically <1200). In the context of drug discovery, macrocycles can 

modulate challenging targets such as protein–protein interactions while obtaining passive 

membrane permeability and oral bioavailability similar to small molecule drugs. Other 

macrocycles are cavitands, capable of carrying guest molecules of a certain size and 

regulating their exchange, which is of considerable interest for controlling chemical reaction 

rates and stabilizing reactive intermediates. In principle, novel macrocycles could be 

designed using conformational sampling, but the inherent challenges of generating near-

native structures for large, constrained cycles have rendered successful application of this 

approach difficult.

Conformational sampling algorithms developed for small molecules perform poorly for 

large and complex macrocycles, in part due to an inability to efficiently sample 

conformations consistent with ring closure.1 In principle, protein loop sampling algorithms 

can be adapted to macrocycle sampling because they solve a similar ring closure problem.2 

In practice, such approaches are limited, because they rely on knowledge of energetics and 

conformational preferences of standard amino acids and thus are not easily generalized to 

treat chemically diverse macrocycles. The difficulty in sampling macrocycles is often 

compounded by intricate molecular topology: beyond the primary macrocyclic ring, which 

frequently includes large (>20) numbers of rotatable bonds, additional linkages often 

connect distant atoms along the ring, and they are often braided by smaller rings, sharing 

atoms with the main chain; see Figure 1. The connectivity topology is particularly 

labyrinthine for the cavitands, as they involve many interconnected yet flexible rings. 

Exploring the allowed conformations of long chains with multiple connectivity constraints 

presents considerable computational challenges, in particular, how can we thoroughly 

sample the potential energy surface without falling into kinetic traps?
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Some success has been seen recently with low-mode-based methods, where high-

temperature Molecular Dynamics (MD) or Monte Carlo searches of torsional space are 

combined with perturbations along the low-energy eigenvectors of local energy minima. 

These methods include LowModeMD,3 MD/LLMOD implemented as MacroModel’s 

macrocycle baseline search (MMBS) by Watts et al.,4 and the optimized sampling protocols 

from Chen and Foloppe:5 CF-LowModeMD and CF-MMBS. Despite some success, these 

low-mode approaches are hampered by computational costs ranging from several hours to 

days of wallclock time and a tendency for kinetic trapping to occur, particularly for complex 

ring scaffolds.

Structural computations of multiring systems with possible interdependence among the rings 

has been addressed by geometrical techniques from Distance Geometry (DG).6,7 The DG 

techniques are capable of completely covering conformation space, but the computational 

cost grows steeply with the number of Degrees of Freedom (DoF),8 especially for large, 

flexible cycles. This was demonstrated by Labute, who found that DG-based methods did 

not cover the potential energy surface of complex cycles as accurately as LowModeMD.3

Inverse Kinematics (IK) is another class of geometric methods that differs from DG in that 

IK focuses on torsional rather than distance DoF. IK methods have been previously applied 

to structures with multiple rings through iterative minimization of a multiring-closure 

objective.9 However, no fully algebraic approach has been attempted to date. A 

distinguishing feature of fully algebraic IK methods is that, by explicitly and rigorously 

accounting for the constraints imposed by ring closure, they provide for substantially lower 

dimensional descriptions than general DG methods, resulting in superior efficiency and 

speed. As a simple example, conformational sampling for cyclooctane can be reduced to a 

two-dimensional search.10,11

In the present study, we reveal an IK algorithm for sampling multiconstraint macrocycle 

systems. Combining techniques from kinematics and computational algebraic geometry,12,13 

such as the theory of resultants in multivariate polynomial systems, our algorithm, 

BRIKARD (‘Builder for Recursive Inverse Kinematic Assembly and Ring Design’, which 

we named after Raoul Bricard, an originator of the modern theory of mathematical 

linkages14), can generate macrocycle conformations satisfying a wide range of structural 

constraints: amide bonds, cysteine bridges, five- and six-atom rings fused to the macrocycle, 

cages, lassos, etc. Energy minimization may be employed to capture intramolecular 

interactions.

The IK/algebraic approach we follow is enumerative: a recursive breadth-first construction 

produces all sterically feasible ring combinations that are consistent with a given set of 

values of the sampled torsions. Thus, BRIKARD explores conformational space in parallel. 

For every sampled torsion, points on all alternative branches of shape space are generated, in 

sharp contrast to the current trajectory-based searches that explore a single conformation at a 

time, and may not be able to find all alternatives even after extensive simulation. Our 

method is tested against MMBS, CF-MMBS, and CF-LowModeMD, achieving lower 

average Root-Mean-Square Deviation (RMSD), 2 orders of magnitude increase in speed 
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using our standard protocol, and success even in cases for which the currently available 

sampling methods fail.

2. RESULTS

2.1. Diversity of Macrocycle Space

The main objective of this study was to develop a general-purpose method that is capable of 

quickly sampling near-native conformations of macrocycles. We examined all 30 

macrocycles in Chen and Foloppe5 as well as the most challenging compounds identified in 

other studies1,3,4 (Table S1). We augmented this collection with another 25 compounds 

which together represent a broader spectrum of interesting macrocycles used as chemical 

probes, catalysts, or pharmaceutical leads. To determine the extent to which our set covered 

a wide range of cyclic scaffolds, we examined common descriptors of molecular topology 

(Table S2). The cyclomatic number is defined in graph theory as the number of edges that 

must be removed from a cyclic system to break all cycles and therefore can be used to 

deduce the number of rings on rings in a macrocycle. The average cyclomatic number of all 

macrocycles in our set is 4.8, versus 3.7 in the Chen set and 3.3 in the Watts set. The average 

number of bonds in a ring system was 43.2 in our set, compared with 30.4 for the Chen set 

and 33.0 for the Watts set. As with a cyclomatic number, a larger number of bonds in the 

ring indicates a more complex ring. According to both of these common metrics, the 

increased diversity and complexity of our data set is significant (p-value ≤0.01) by an 

independent t-test. Putting these metrics in the context of common macrocycles, epothilone 

B (EPB) is a small ring system, with a cyclomatic number of 3 and 23 bonds in the ring 

system. Cyclosporine (CSK) is a large, single-ring system with a cyclomatic number of 1 

and 33 bonds in the ring system, while the molecular cage cryptophane (CRP) is a highly 

fused system, with a cyclomatic number of 10 and 85 bonds in the ring systems. In 

combination, these descriptors illustrate the broad diversity of our collection of macrocycles. 

The SI includes a full list of each macrocycle used in this study, together with sampling 

results for each method (Tables S1–S5).

An accurate sampling approach should be capable of identifying conformations within 1.0 Å 

RMSD to the ring atoms of an experimental structure, ideally within 0.5 Å for smaller 

macrocycles. This level of accuracy enables the use of these conformations in structure-

based design programs where near-native structures are necessary for modeling biophysical 

properties. In this study, we assessed the performance of BRIKARD with the currently 

available programs for macrocycle sampling across our data set. This comparison was done 

in multiple ways: 1) evaluation of the performance of each program run on a single 

processor, starting from a single input conformation, 2) evaluation of the performance of 

each program run using its published protocol compared with BRIKARD run as we feel the 

algorithm should be, and 3) evaluation of the performance of each program run in the same 

manner as BRIKARD, with multiple short sampling searches in parallel (see the SI: 

Parallelization Comparison). Keeping the number of sampling iterations the same across all 

algorithms, we found that BRIKARD more frequently sampled regions of the 

conformational space that were close to the crystal structure relative to CF-LowModeMD 

and the MMBS approaches.
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BRIKARD is fast and accurate in a single-processor mode starting from a single seed 

compared to results for MMBS and CF-LowModeMD run in an identical manner. This 

comparison was done for 26 macrocycles randomly selected from our total collection of 

compounds under study in this paper (Figure 2). For this subset of macrocycles, BRIKARD 

locates 46% within the strict success metric of 0.5 Å ring RMSD. BRIKARD without 

minimization locates 21%, MMBS locates 19%, CF-MMBS locates 35%, and CF-

LowModeMD locates 23%. The efficiency of BRIKARD alone is clear when run on a single 

processor, requiring a fraction of the time the other programs require to explore the potential 

energy surface of each compound. Minimization as a serial process after running BRIKARD 

shifts the time scale into the region occupied by MMBS, CF-MMBS, and CF-LowModeMD. 

However, BRIK-ARD does not need to run as a single process, which is one of its great 

advantages. The IK approach allows a complete redesign of the geometry by wide sampling 

of all torsions subject to exactly enforceable closure constraints. As a result, each iteration is 

truly independent from the ones before and after, while the nontorsional information for a 

structure is inherited from the input conformation. Subsequent structures may be minimized, 

and the input, or seed, conformation may be arbitrarily changed. We decided to use two seed 

conformations to increase the information diversity from our initial structures. Our 

discussion throughout the remainder of this study will focus on the results obtained running 

all programs according to their optimum/published procedures.

For this study, each conformation generated by BRIKARD was minimized using PLOP.15,16 

This energy minimization improved sampling performance, with increased computational 

cost. Analyzing the performance of BRIKARD sampling alone, we found substantial 

performance gains and decent reproduction of the experimental state. At a threshold of 1.0 Å 

ring RMSD to the experimental conformation, raw BRIKARD samples near-native 

conformations as well as the other programs, even without minimization of the structural 

ensemble (Table 1). However, energy minimization was crucial for achieving the threshold 

of 0.5 Å ring RMSD (Figure 3).

Among the 67 compounds used for this study, we identified 21 “hard” cases, based on at 

least one of the methods failing to achieve sampling below 1.5 Å ring RMSD to the 

experimental structure. For these compounds, BRIKARD succeeded on 18/21 using energy 

minimization, while without minimization that number was 16/21. For the other methods, 

success rates for CF-LowModeMD were 5/21, for MMBS 6/21 and for CF-MMBS 8/21. 

The hard compounds with the best RMSD for each method are listed in Table 2, while 

Figure 3(a) plots the best RMSD for each compound vs wallclock time. The remaining 

compounds which we characterize as “easy” show reasonable success rates for all methods 

(Table S5); however, as can be seen in Figure 3(b), BRIKARD with energy minimization 

does show a small accuracy gain together with a substantial computational speedup. Figure 

S1 shows a cumulative plot of RMSD vs wallclock time for the entire data set.

Beyond an improvement in accuracy, a major feature of BRIKARD lies in its highly efficient 

random sampling and high scalability. To assess the relationship between the number of 

sampling iterations requested and RMSD to the experimental structure, we examined subsets 

of the conformational ensemble found for each compound. Subsets containing 1, 5, 10, 25, 

50, 75, 100, 250, or 500 conformers were selected randomly from the total conformational 

Coutsias et al. Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2017 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ensemble; this process was repeated 1000 times for each subset size. The linearity between 

the lowest RMSD and subset size was used to judge sampling efficiency, defined as the 

number of iterations required to observe the lowest RMSD conformer. As anticipated, we 

found the sampling efficiency for the more complex macrocycles to be more affected by 

number of sampling iterations, whereas smaller macrocycles reached the asymptote of 

effective sampling rapidly, requiring fewer iterations to reach maximally efficacious 

sampling (Figure 4). In contrast to BRIKARD which can immediately find a novel 

conformation within a single iteration, LowMode-based sampling methods require many 

iterations to fully sample the native ensemble and therefore cannot be efficiently parallelized 

to the same extent. When asked for a limited number of sampling iterations, instead of 

jumping into a new state, LowMode methods will only sample conformations among the 

local minima close to the starting point requested on a single processor (see the SI, Section 

2).

Since BRIKARD sampling is memoryless, sampling of a single compound can be 

distributed over multiple processors with calculation time decreasing linearly as the number 

of processors used increases. In this study, a total of 40 individual processors were used, 

each performing 250 sampling iterations. We wanted to further explore this idea of sampling 

efficiency by comparing BRIKARD with LowMode methods when they are actually 

implemented to run in parallel. MOE uses multithreading to distribute LowModeMD 

searches over available processors, although it is still a single sampling trajectory being 

explored. The MMBS approach was not published with a parallel implementation, so for the 

purposes of comparison we examined MMBS and BRIKARD results when both are run 

using two seed conformations to start and 40 processors total. These results from running 

both BRIKARD and MMBS in the same fashion indicate that although these programs could 

be run in parallel in principle, it is generally not advantageous to run low mode methods in 

this manner. A detailed comparison is available in the SI, Section 2.

When each method is employed according to its optimal protocol, BRIKARD is 27 times 

faster than CF-LowModeMD, 59 times faster than MMBS, and 89 times faster than CF-

MMBS for an equivalent number of steps, based on the median of the maximum time for 

parallel BRIKARD. If only a single processor was used, the median cumulative time for 

BRIKARD would still be 1.4 times faster than CF-LowModeMD, 3.1 times faster than 

MMBS, and 4.7 times faster than CF-MMBS. Importantly, CF-LowModeMD is run as a 

multithreaded process by default, thus it behaves as a partially parallel program. Timing 

information from CF-LowModeMD run on a single thread indicates the process uses 

between 3 and 4 threads. As a consequence, the actual CPU-hour cost for a single CF-

LowModeMD run is between 1.4–4 times greater than that indicated by the wallclock time.

Many macrocycles can adopt different conformations depending on their environment 

(solvent, temperature, whether they are bound to another molecule), and thus it is important 

to identify all low-energy conformations. In addition to the high accuracy and speed of 

BRIKARD, our method also generates ensembles of substantial diversity. A measure used to 

characterize performance of a macrocycle sampling method is eccentricity (ecc), which is 

found from the ratio of the minimum and average of the principal moments of inertia (PMI)
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where ecc describes a shape ranging from completely linear (ecc = 1) to spherical (ecc = 0). 

Previous studies4 found the average ecc of more challenging macrocycles to be significantly 

different from their experimental ecc. We found the conformer shapes predicted by 

BRIKARD match the known structure substantially better than the other algorithms, with 

the average eccs from BRIKARD having an r2 = 0.49 to experiment. The single outlier was 

BIX, which has a linear-like eccentricity (0.86) in the crystallographic “imploded” state, but 

an average eccentricity of 0.25 from all BIX conformations sampled with BRIKARD and of 

0.35 within the low-energy set. Without BIX, the overall correlation between experimental 

and average calculated ecc improves to r2 = 0.63. By contrast, the other methods sampled 

conformer shapes further from the experimental state, with correlations of r2 = 0.24 (r2 = 

0.29 without BIX) for MMBS and r2 = 0.35 (r2 = 0.45 without BIX) for CF-LowModeMD. 

The correlation between the average eccentricity by compound for each method relative to 

the crystallographic eccentricity is given in SI Figure S2.

2.2. Kinematic Sampling Retrieves the Complete NMR Ensemble

In addition to examining results over the entire data set, we were interested in understanding 

performance in the context of a few particularly challenging cases. First, we asked whether 

BRIKARD could sample native conformations of IP01 and IP02, nonapeptides cyclized via 

a side chain-side chain disulfide linkage. The disulfide linkage hinders application of 

peptide-based loop-sampling approaches, while the 28 ring atoms contribute to significant 

conformational diversity. cyclo(CLLRMRSIC), or IP01, was identified as a micromolar 

ICAM-1 inhibitor and later optimized to improve binding affinity, yielding cyclo-

(CLLRMKSAC), IP02.17,18 Interestingly, the less potent nonapeptide, IP01, was found by 

NMR and MD to interconvert between four major conformations, while IP02 stably 

occupied a single conformation. This experimental observation suggested the higher affinity 

of IP02 may result from its conformational rigidity leading to a smaller entropic loss.19 

Thus, we examined BRIKARD’s utility for uncovering differences in the conformational 

ensembles of closely related macrocycles.

For IP01, BRIKARD generated low-energy conformations within 0.83–0.97 Å of all four 

major conformations identified by NMR17 in 0.14 wallclock hours. The torsional angles of 

residue 4 (ARG) are distinct for each NMR state, so we use them to visualize the extent of 

conformational sampling in Figure 5. The four major conformations of IP01 are well-

represented within the conformational ensemble generated by BRIKARD; however, two of 

the four (states C and D) dominate the low-energy ensemble (Figure 5a–b). Among these 

two lower-energy conformations, one conformer is similar (state C, ring RMSD = 1.33 Å) to 

the NMR conformation identified for the more potent analogue IP02. Sampling of IP02 

revealed a narrower range of conformational variability compared with IP01 and low-energy 

conformations 0.93 Å from the NMR state. During the conformational search, BRIKARD 

explored all known NMR states for both peptides, in addition to alternate conformations.
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In contrast, sampling of IP01 and IP02 with MMBS and CF-MMBS required substantial 

time, 22–26.62 wallclock hours each, and every conformation generated was >3 Å in RMSD 

to all NMR conformers. Only CF-LowModeMD generated conformations with accuracy 

approaching that of BRIKARD, albeit with substantially greater computational time, 

requiring 7.67 wallclock hours to sample conformations with lowest RMSDs of 0.73–1.18 Å 

to the NMR structures of IP01 and 1.21 Å to IP02. This outcome is reflected in the torsions 

for residue 4 (Figure 5c–f), wherein CF-LowModeMD samples the native torsions for IP01 

but not IP02, and MMBS fails to sample them for either cyclic peptide.

2.3. Sampling with BRIKARD Is Unaffected by High Energy Barriers to Conformational 
Change

A central goal in developing BRIKARD was to establish a robust sampling method for 

studying fused ring systems, which are very difficult for other current methods due to their 

high topological complexity combined with significant steric constraints. Synthetic cage 

molecules, developed to selectively sense and sequester various ions, represent perhaps the 

most challenging systems to sample. Cryptophane is a canonical example of a cage 

macrocycle, where two symmetrical sets of interlocked cyclotriveratrylene rings are 

connected by three ether chains. The CSD crystal structure RAYFED depicts a more 

complex analogue of cryptophane E, with six disordered ether chains connecting the two 

ring systems and an antimony anion in the cage center.

BRIKARD required a maximum of 1.15 wallclock hours per run to identify 65 unique 

conformations within 10 kcal/mol of the lowest energy and sampled within 0.67 Å of the 

crystal structure of the cryptophane E analog. None of the other sampling methods tested 

generated conformations similar to the crystal structure, identifying only conformations with 

>4.4 Å RMSD. In the case of MMBS and CF-MMBS, the generated conformations were all 

highly similar to the initial conformation, indicating an inability to escape local energy 

minima.

In addition to conformations similar to the crystallographic structure, BRIKARD also 

identified two other major low-energy conformational states, which we speculate could 

represent preferred conformations in the unbound state (Figure 6). Upon examining crystal 

structures available for similar compounds, we found several other cryptophane systems that 

adopted conformations similar to the alternate states found by BRIKARD (CSD reference 

codes OJIVUZ, OJITUX, and BIMXUR). Conformational sampling of cryptophane (±)-

anti-1 with BRIKARD reproduced the crystallographic observations of an “imploded” 

cryptophane state by Mough et al.20 while also sampling the expanded state, despite the 

reported ~24 kcal/mol barrier to this conformational switch. Through the study of these 

molecular cages, we found that BRIKARD is capable of identifying the experimentally 

relevant conformations consistent with all ring constraints, without becoming trapped in 

spurious local minima or requiring substantial calculation time.

2.4. Pushing the Limits of Computationally Tractable Macrocycles

Our ultimate goal in developing the kinematic sampling approach for macrocycles was to 

address pharmaceutically relevant compounds well beyond the limits of the current best-in-
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class approaches. As macrocycle size increases beyond 20–25 rotatable bonds (eq 1), the 

sheer scale of the search problem overwhelms these methods.4 Stochastic searches become 

trapped in deep local energy minima and fail to produce reliable structures that approximate 

the experimental structure. QN7 is a bicyclic 17-residue peptide, able to bind urokinase-type 

plasminogen activator at high nanomolar affinity by mimicking the binding interactions of a 

small protein.21 QN7 sits at the limits of what we believe a macrocycle sampling algorithm 

must be able to handle in order to be a reliable tool for predicting biophysically relevant 

macrocycle conformations. The only available structure of QN7 is a PDB structure at 1.90 Å 

resolution, with good density for the macrocycle residues in contact with the protein 

interface, but missing density for four of the solvent-exposed residues.

BRIKARD samples within 1.66 Å of the experimental structure in 0.43 wallclock hours. 

Restricting the RMSD calculation to the macrocycle residues in contact with the protein 

interface improves the fit to 1.40 Å, indicating that BRIKARD yields a reasonable starting 

conformation for structure-based design applications. In comparison, the closest RMSDs to 

the crystallographic structure for CF-LowModeMD, MMBS, and CF-MMBS were 3.83, 

3.36, and 6.12 Å respectively, with corresponding computation times of 0.43, 49.1, and 68.8 

wallclock hours. At the time of this study, QN7 was among the largest cyclic peptides 

available in the literature with a reasonable crystal structure. These results for QN7 indicate 

that cyclic systems comprised of approximately 50 ring atoms sit at the current boundary for 

BRIKARD and are beyond the scope of other macrocycle sampling tools.

3. METHODS

3.1. Data Set

A set of 67 diverse compounds covering a wide spectrum of macrocyclic scaffolds, 

including polyketides, nonribosomal peptides, and cavitands, was compiled to develop and 

evaluate BRIKARD. Initial coordinates of the experimental structure for each compound 

were downloaded from the Cambridge Structural Database (CSD),22 if available. Otherwise, 

structural data was downloaded from the PDB.23 To enable an assessment of conformational 

plasticity under the influence of a binding partner, two compounds were included that are 

present in both the CSD and the PDB: soraphen (S1A) and tacrolimus (BKF). In situations 

where multiple entries were available for a single compound, the best resolution crystal was 

selected for inclusion in our set. In a few instances, NMR data exists for cyclic peptide 

macrocycles that offered a compelling opportunity to judge BRIKARD’s ability to sample 

all conformations within the experimental ensemble.17,18 Several compounds from previous 

work on macrocycle sampling1 do not have an experimental structure, but the lowest-energy 

conformation sampled by their method was published. These minimum-energy 

conformations are used as the sole structural information for AP2, HP3, and MP4. The full 

set of compounds included in this study are listed in the Supporting Information.

3.2. Conformational Sampling

MMBS was performed using the optimal protocol published by Watts et al. CF-MMBS was 

performed using the optimal settings for macrocycles according to Chen and Foloppe using 

the MD/LLMOD method. CF-LowModeMD sampling was performed using the improved 
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protocol identified by Chen and Foloppe, where the electrostatics treatment was changed 

from distance dielectric to generalized Born and the energy cutoff was increased from 7 to 

15 kcal/mol.

In contrast to these protocols, which are based on diversity resulting from MD trajectories, 

BRIKARD’s approach to sampling is purely geometrical. All rotatable bonds are sampled. 

Rotatable bonds belonging to open side chains are sampled randomly, except for side chains 

of standard amino acids that are sampled using the Dunbrack backbone dependent rotamer 

library.24 Rotatable bonds on rings are sampled in a manner consistent with the ring closure 

constraints.

The number of rotatable bonds (RTB) sampled by BRIKARD is given by

(1)

where Nfree is the number of free torsions not in rings, excluding torsions whose only effect 

is to rotate methyl hydrogens, ℛ is the set of flexible (nonaromatic) six or higher membered 

rings, Ni is the number of bonds on ring i, and  are rigid bonds and  are 

rotatable bonds shared with (an)other ring(s). To avoid multiple counts, shared bonds are 

removed from the first sum and added back in the second, counted separately once. ℱ is the 

set of ring fusion segments. R5 is the number of nonplanar five-membered rings. As 

discussed in the SI, Section 6, five-membered rings have a one-parameter set of shapes, and 

the driver torsion has a limited range, e.g., proline χ5 angle ranges between ~±30°; the shape 

space is topologically a circle with two alternative shapes (maximum and minimum pucker) 

for each permissible value of χ5. The method for five-membered rings in Ho et al.25 is 

implemented here in a robust, fully polynomial formulation. For six-membered rings, the 

TLC algorithm (see the SI, Section 7.1) is used, and at most four (rigid) states are possible 

(RTB = 0 with no driver torsions). Rings involving N ≥ 6 rotatable bonds possess up to N–6 

continuous DoF. When N – 6 of the rotatable torsions are set to some value, up to 16 distinct 

sets of values for the remaining 6 torsions that close the ring are possible. Consequently, 6 

among the torsions around a ring system need to be set aside for loop closure and may not 

be counted as independently rotatable. Not all combinations of the drivers may give a 

solution, but determining the regions of existence (workspace of the molecular linkage 

system) a priori is a hard, open problem.

In sampling protein backbones and side chains, abundant information on structural 

propensities, such as Ramachandran preferences for the backbone26 and side chain 

rotamers,24 is available to limit the sampling space.27–30 Such general information is not 

often available for macrocycles in which case a wide-range scan of all available DoF is used.

Each solution may be subjected to local energy minimization using the multiscale truncated 

Newton algorithm in PLOP15,16 with the OPLS2005 force field (also used by both Chen et 

al.5 and Watts et al.4) and a generalized Born implicit water model. After minimization, the 
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diversity of the ensemble may be substantially reduced, with a few dominant clusters 

emerging for the smaller rings.

3.3. Data Set Comparisons

The set of molecules used in this study is listed in Table S1, together with the codes that we 

use to identify each compound in all subsequent tables and in the text. Table S2 lists 

molecular descriptors of size and flexibility, including cyclomatic number, number of 

rotatable bonds (the number of degrees of freedom sampled by BRIKARD as given by eq 1), 

molecular weight, and eccentricity. Crystallographic additives and binding partners were 

removed, leaving only the compound of interest. Dihedral angles were perturbed, and the 

resulting conformations were minimized in MacroModel to obtain starting conformations at 

least 2.5 Å from the crystallographic state. This approach was followed to retain atomic 

naming conventions and simplify root-mean-square calculations; however, input structures 

can also be generated from a SMILES string. As explained in detail in the Supporting 

Information, two low-energy conformations, Seed A and Seed B, from this initial ensemble 

were selected as inputs for BRIKARD. We found that using multiple starting states provided 

an advantage over use of a single input conformation. Analysis of the sampling results 

indicated that neither seed offered a privileged initial state for any compound.

Twenty independent BRIKARD runs were performed in parallel for each input 

conformation, each requiring 250 sampling steps and starting from a different random seed. 

This resulted in a total of 10,000 sampling iterations, the same number requested in MMBS 

and CF-LowModeMD, distributed across 40 independent processors. This number of 

processors was settled upon as a good balance of parallelism and subsampling efficiency. 

OPLS2005 force field parameters were assigned for each subunit involved in the macrocycle 

using the hetgrp_ffgen utility in Schrödinger. This is the same force field used by MMBS 

and CF-MMBS, which facilitates fair comparison of the minimized conformations. Seed B 

was used as the initial seed for all MOE/MMBS runs. In the Supporting Information, we 

show results from running MMBS using the same protocol performed with BRIKARD 

(Seeds A and B each used to initialize 20 independent, 250-iteration runs). The output 

conformations were minimized by the Protein Local Optimization Program (PLOP)15,16 

using the default Generalized Born solvation model, with each set of 250 structures from a 

single BRIKARD run minimized within a single PLOP run. Total wallclock time required 

for each run is detailed in Table S3. The global energy minimum was identified among the 

10,000 minimized conformations and used to determine the energy cutoff for retaining 

conformations within 10 or 15 kcal/mol. These cutoffs were chosen because MMBS uses a 

10 kcal/mol filter for reducing the total number of conformations generated, and CF-MMBS 

and CF-LowModeMD use a 15 kcal/mol filter. Table S4 provides the total number of 

conformations generated by each method for every compound and includes the number of 

conformations within the 10 or 15 kcal/mol filter window for BRIKARD. To contrast 

effective sampling around near-native states by these different techniques, full details of 

IP01 and IP02 ARG 4 torsion angle populations are given for CF-LowModeMD, MMBS, 

and BRIKARD overall and filtered to the low energy structures (10 or 15 kcal/mol from the 

minimum) in Figure S2.
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One metric by which performance of BRIKARD was evaluated was the RMSD of the 

sampled backbone conformation relative to experimental data. The RMSD to the 

experimental structure of all atoms along the major ring of the macrocycle was calculated 

using Chimera31 and BRIK-ARD’s frmsd code.32 Only the ring atoms are used to compare 

to the experimental structure since the side chains, especially the polyketide tails, may adopt 

multiple low-energy conformations in solution. Unique conformations were judged by 

clustering with a heavy-atom RMSD threshold of 0.25 Å. For symmetric compounds 

composed of identical subunits (such as the cryptophane analogs), correct RMSD calculation 

required considering all possible alternative alignments. These ring RMSD results are 

provided in Table S5. The success of each method in sampling structures close to the native 

structure is illustrated in Figure 7. The cumulative fraction shows the percentage of native-

like structures identified across the entire compound set as a function of the criteria for 

success. Using a ring RMSD cutoff of 0.5 Å, BRIKARD samples a native-like conformation 

for 58.2% of the data set, while at a loose cutoff of 2.0 Å, BRIKARD samples a native-like 

conformation for 100% of the data set.

The diversity of the conformational ensemble generated by each method was assessed by 

calculating the radius of gyration and the eccentricity. This enabled comparison to the 

performance of the current best-in-class methods: CF-Low-ModeMD,3 MD/LLMOD, 

implemented as MacroModel’s macrocycle baseline search (MMBS) by Watts et al.,4 and 

CF-MMBS by Chen and Foloppe.5 For every sampled conformer, we calculated the ring and 

heavy-atom RMSD to the experimentally derived structures obtained from the PDB, CSD, 

and/or NMR.

4. METHOD OVERVIEW

BRIKARD models a polycyclic molecular system as interlaced chains of linked rotors or 

linkages. Such systems are assumed to have fixed lengths and angles but generally flexible 

torsional DoF. Given a closed molecular chain (a ring) or a chain with fixed ends (a loop), 

the problem of IK is to find all values of the torsions consistent with the closure constraints, 

referred to as the problems of Ring or Loop Closure (RC or LC, respectively). These two 

problems are essentially the same, and we shall use the terms interchangeably. In the 

kinematics literature,12 the problem is referred to as a 6R-6 bar linkage, with closure 

expressed as a set of polynomials that involve a set of six torsions, or pivots, used to close 

the ring. The remaining torsions are free torsions or drivers. This formulation enables 

algebraic expansion of all possible states wherein the ring successfully meets closure 

conditions.

Previous applications of IK to molecular modeling focused mainly on the LC problem, 

relying on two fixed frames in space, e.g., two protein residues separated by at least two 

other residues along the backbone, and the goal is to find the conformational ensemble of the 

protein chain that traverses between those two fixed frames. Go and Scheraga’s33 approach, 

one of the earliest applications of IK to molecular modeling, results in transcendental ring 

closure equations which are solved by an iterative method that may miss certain solutions 

unless exceeding care is taken. Subsequently, algebraic formulations were developed, 

paralleling work in robotics. Algebraic formulations of ring closure result in systems of 
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polynomials which allow determination of all the roots reliably, using standard polynomial 

real root locator algorithms.34–38 However, algebraic IK formulations for cyclic molecules 

have been limited to simple rings.38 An application of IK to systems with multiple 

constraints by Thorpe and Lei9 relied on iterative solution of the multiconstraint system, 

again offering no guarantee that all solutions to a given system may be found.

Alternative LC schemes rely on generating initial conformers which are then used as seed 

points for exploring their neighborhood in shape space by perturbing various DoF and then 

relaxing strains. This approach is shared by purely geometrical methods (DG,6,7 CCD,39 and 

other iterative closures2,29,40). MD methods similarly proceed from a starting structure that 

must be generated via some minimization process, again not guaranteeing completeness. 

The search then proceeds by following a continuous trajectory that is generated via 

mechanical or geometrical perturbation, the latter followed by an annealing step. Such 

motion might fail to leave certain neighborhoods—a phenomenon called kinetic trapping for 

MD—so that even if one of the neighborhoods in torsion space corresponding to one 

particular shape may be explored thoroughly, adjacent ones could be completely missed.

Several technical difficulties need to be overcome in order to extend IK to loop/ring closure 

with fused rings. The order in which various rings are solved (Figure 8) is crucial; torsions 

belonging to a solved ring must be frozen and properly converted at points of fusion to 

torsions along the backbones of adjacent rings that are solved in succession.

Figure 8 shows the key elements of this hierarchical closure approach for a typical example 

of a macrocycle, 13-desmethyl spirolide C (SQX).41 SQX has a total of 11 nontrivial 

rotatable bonds and consists of a braided set of small rings on a larger ring system, which is 

a common theme in many natural product macrocycles. The main backbone is traced in 

boldface bonds, {1–7} index kinematic loops defining the order of solution, broken lines 

indicate “gaps” or bonds that must be specified for a “de novo” construction. Arrows 

indicate nonrigid torsions: red are drivers or free torsions while black are slaved torsions or 

pivots. Note that for each ring there are alternative sets of pivot values for a given value of 

the drivers.

In the remainder of this section we outline the key ingredients of the method: Section 4.1 

reviews the main ideas in ring closure, while Section 4.2 discusses the issues arising from 

the presence of interlocked rings. Finally, Section 4.3 discusses topological issues related to 

exploring the shape space of multicyclic systems.

4.1. The IK Problem and Ring Closure

We present a general mathematical framework for the problem in Inverse Kinematics known 

as a 6R-6 bar linkage. The problem has been studied extensively in the mechanical 

engineering/robotics as well as the biochemical literature. However, there remain subtle 

issues related to the geometry of families of lines.42 Here we introduce notation, and 

recapitulate key ideas and useful formulas, that have not previously appeared in this context.

Consider a kinematic chain of N ≥ 6 rotor links, bi, i = 1,…,N. The chain may be closed or 

attached to rigid ends. We fix the lengths bi and pairwise angles θi of the links. Then, the 
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torsions ti may be chosen to construct realizations of the chain that are consistent with the 

closure constraints.

Introduce a concerted change of all the torsions between the end points of a loop t → t + dt 
that maintains the invariance of the chain past its ends (i.e., with respect to which the ends of 

the chain maintain geometrically correct attachments to rigid molecular frames or to each 

other in the case of a ring). Then, at any point of the chain R past the fixed ends, we should 

have that

Since this is true for arbitrary R past the end of the flexible part of the linkage (in fact it is 

sufficient to consider the three consecutive nodes defining the end rigid frame, which 

coincides with the start frame for a ring), both expressions in parentheses must vanish 

independently, from which we find

(2)

and Γi and Ri are the unit vectors along the ith rotator axis and its position from some 

arbitrary reference origin. Basic analysis (the Implicit Function Theorem) guarantees that six 

of the variables may be expressed as differentiable functions of the remaining ones provided 

the 6 × N matrix P has full rank. Let their indices be ik, k = 1,…,6; the corresponding 

variables are called the pivots. The remaining variables, called the drivers, may be indexed 

by jk, k = 1,…,N–6. Introduce pk : = tik, k = 1,…,6 for the pivots and qk : = tjk, k = 1,…, N–6 

for the drivers. Then

(3)

giving the differential of the pivot variables as a function of the differential of the free 

variables and involving the inverse of the Jacobian. Where that inverse exists, we say that the 

IK problem is well posed. Where the determinant of the Jacobian vanishes, we have 

kinematic singularities. Such singularities are not necessarily intrinsic and could be simply a 

result of the particular choice of pivots and drivers. The columns of the Jacobian J are the 

Plücker coordinates12 of the pivot axes. A similar, coordinate-free expression for the 6-

membered ring Jacobian appeared in Viquerat et al.43
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The relations implied by eq 3, giving the pivots in terms of the drivers, are the explicit 

closure conditions, and they are polynomials in the sines and cosines of the pivots. Let uk = 

tan(pk/2), k = 1,…,6, be the half-tangents of the pivots. The qi are sampled and set to a fixed 

value. Then, the 6R-6 bar problem may in principle be formulated as a polynomial system

where a is the parameter vector of bond lengths and bond angles. Multiple solutions for the 

pivots are possible for a given set of drivers: choosing values for the qi results in at most 16 

real solution sets uj,k, j = 1,…,6, k = 1,…, K ≤ 16.35,44

4.1.1. Ring Closure Algorithms—Two different algorithms are employed by BRIKARD 

for selecting pivots and solving for pivot torsions, TLC and R6B6. The first, TLC (Triaxial 
Loop Closure),35 requires that the pivots be arranged in 3 coterminal pairs. This 

arrangement, natural for amino acid chains in which pairs of ϕ – ψ torsions are typically 

free to assume values from the Ramachandran regions, allows for a simple, elegant, and 

robust formulation of the problem but cannot be directly applied in certain cases where 3 

pairs of coterminal pivots may not be available. In such cases, we use the general 

formulation of the IK problem without a pivot restriction. We have developed a new 

algorithm, R6B6 (for 6 rotors/6 bar), that allows arbitrary pivots. Among the innovations in 

R6B6 are its ability to robustly eliminate variables without needing to try different 

elimination combinations38 and to arrive at optimally sized polynomial problems of degree 

16, as in the original formulation by Lee and Liang,50 rather than degree 24 as in subsequent 

implementations that have avoided the original method’s defects at the expense of solving a 

larger system.45

In general, TLC is faster than R6B6 by approximately a factor of 2, so it is used whenever 

applicable, while we employ R6B6 in cases where three pairs of rotors are not available. The 

two methods are outlined in the SI.

4.2. Ring Fusion

Along an open backbone, closures may proceed independently for braids of nonoverlapping 

rings, and the set of possible solutions is constructed purely combinatorially. By contrast, if 

rings are “fused”, sharing certain DoF among two or more neighbors, then their shapes 

become interdependent. BRIKARD’s data structure for modeling a polygonal line with 

multiple interconnecting branches requires a decomposition into a hierarchy of cycles, each 

with at least 6 additional rotatable bonds so loop closure may be carried out at each step.

Assume there are r rings; then the solution of the lth (with l ≤ r) ring involves solving the 

system
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Here, some nonpivot torsions  may be shared with lower-indexed rings that have already 

been solved.

When a ring of known structure (i.e., known torsions) is adjoined to a chain, then certain 

simple relations exist between the ring torsions and the torsions along the chain, assuming 

given three-dimensional structure at each branchpoint. As both the ring and the chain are 

oriented (with compatible orientation along shared bonds), we have to distinguish between 

convergent and divergent branches (Figure 9). We consider first merging a ring with the 

backbone. The case of two rings attached to the backbone and sharing off-backbone DoF is 

handled without any special processing by the chain reconstruction algorithm. We have the 

following:

1. Converging branches (Figure 9(a), 10(c))

Referring to Figure 9(a), γ1 is the improper dihedral formed by the planes Ri,1, 

Ri, Ri+1 and Ri−1, Ri, Ri+1 with l < m being ring indices.

2. Diverging branches (Figure 9(b), 10(c))

Referring to Figure 9(b), γ2 is the improper dihedral formed by the planes 

Rj−1,Rj,Rj,1 and Rj−1,Rj,Rj+1, again with l < m indexing the fused rings.

3. Converging-Diverging branches: single shared bond (Figure 10(b))

Here, it must be understood that no torsion that is shared by several rings may be sampled or 

used as a pivot except for closing the lowest-indexed ring of which it is a part, and, together 

with all other torsions in that ring, it must be fixed to that value for all calculations involving 

all subsequent rings that contain it. Hierarchical rules are observed so that a torsion set 

during a previous step is fixed for all subsequently solved rings in which it enters. For 

solitary rings with no atoms shared with the backbone (Figure 10(a)), no special 

reconciliation is necessary.

4.3. Exploring Multiring System Topology

Fixing the driver torsions in a ring system and solving for the pivots, a set of alternative 

conformations may be found. Therefore, a neighborhood in the space of driver torsions may 

form the basis for a set of coordinate charts for a collection of diverse conformation 

neighborhoods. There may or may not exist direct kinematic pathways connecting these 

states, as these alternative torsion-based coordinate atlases comprised by the union of the set 

of drivers with all alternative sets of pivots may indeed converge along singularities of the 
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Jacobian or not at all. This is for example the case for canonical cycloheptane, whose shape 

space is composed of two disjoint cycles; however, without a priori knowledge of the 

topological properties of the conformation space, there is no practical way to ensure 

exhaustive coverage. Indeed, given “witness sets”13 of points spanning all connected 

components of the shape space, it is possible to design efficient search algorithms to quickly 

scan each component.46 However, guaranteeing the completeness of such sets is in general 

nontrivial.11

BRIKARD employs an algebraic approach to generate and explore all sterically feasible 

alternatives simultaneously. Figure 11 demonstrates this for the CSD cavitand BIMXUR. In 

Figure 11(a), the graph depiction shows the four interdependent flexible rings; there are 6 

rotatable bonds in chain C that could be set to arbitrary values, although the solvability space 

is a priori unknown (workspace of the IK problem). The 9-membered rings 1 and 2 are 

capable of 4 shapes each, although only a few of the combinations correspond to realizable 

overall shapes. Once the backbone (heavy arrows) is selected, a data structure is constructed 

in which all rings are defined in terms of their branching off points and solved for 

hierarchically. Once a ring is solved for, its torsions and all other torsions rigidly connected 

to those are fixed through subsequent calculations.

Figure 11(b) shows a superposition of 53 shapes. These were generated by keeping rings 1 

and 2 as well as chain C fixed to their crystal shapes. Under these restrictions, there were 8 

possible solutions for chain A and 8 for chain B; in the latter case, one of the shapes was 

sterically excluded. The crystal structure (shown in Figure 11(c)) corresponds to the 

combination (a1, b1). Of the 56 distinct combinations, 3 are sterically infeasible. 

BRIKARD’s purely algebraic approach finds all solutions reliably, using standard 

polynomial real root locator algorithms.

A strength of the fully algebraic approach is the ability to enumerate all alternate 

conformations resulting from a set of driver dihedrals. Consequently, beyond making it 

possible to design Monte Carlo schemes that obey detailed balance,37,47–49 algebraic 

algorithms also make it possible to design successively finer searches around regions of 

interest with the confidence that all topological components may be found. However, the 

topological complexity is not a simple product of lower dimensional spaces unless the rings 

are truly independent, at least as far as choosing the values for the sampled torsions are 

concerned. When the various rings truly share DoF, we must take into account that each 

point of the conformational space of a ring of lower order has a “fiber” attached to it on 

which live the shape-spaces of rings of higher order. These attached spaces have structures 

that depend nontrivially on the base space. It is well-known that the spaces of molecular 

rings have complex topologies10 with possibly disconnected topological components.8,11,13 

So for the same set of values of the sampled torsions, there exists a combinatorially large set 

of alternative shapes. In addition, steric conflicts upon 3D reconstruction impose restrictions, 

thus introducing forbidden regions.

BRIKARD employs a simple topological structure: a continuous chain, the “backbone” must 

trace the graph so it has at least one bond in common with each ring. This simple “interlaced 

braid” data structure was adequate for sampling all the topologies encountered in this study. 
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However, it is easy to extend this structure to allow either a branched backbone or rings with 

stems to the backbone, etc. The key challenge in modeling a multicyclic system with 

BRIKARD is the preprocessing step: generate a spanning tree and order the rings so each 

has at least six torsional DoF that have not been set by any previous ring closure. This is not 

always possible, and there are structures with enough DoF and flexibility that do not strictly 

fit this criterion (e.g., BPH is sampled by allowing flexibility in amide bonds). Additionally, 

such examples may be found among highly constrained, small multicyclics. We feel that 

such rigid structures may be modeled quite adequately by currently available techniques, 

which however tend to fail for systems of larger, flexible cycles where the kinematic 

methods in BRIKARD are ideally applicable.

5. DISCUSSION

Our method is the first approach to sampling multicyclic structures that harnesses the power 

of inverse kinematics to correctly build structural topologies. BRIKARD’s novelty rests in 

the analytical closure of the macrocycle, enabling extremely rapid scanning of the complete 

potential energy landscape, even in cases of highly complex ring scaffolds.

One of the key strengths of such a fully algebraic approach is that it generates and explores 

all sterically feasible alternatives simultaneously for a given set of sampled torsions, which 

prevents entrapment of the entire search due to kinetic energy barriers. Purely geometric 

methods can miss certain solutions due to their iterative method of solving transcendental 

loop closure equations.

We found that BRIKARD substantially outperformed the existing best methods for sampling 

macrocycles; searches required minutes rather than hours or days, the conformations 

returned were not biased by the starting conformation, and near-native conformations were 

sampled for topologically complex, fused ring systems. Our results show that BRIKARD 

can successfully reproduce the known structures of macrocycles solved by NMR, small-

molecule crystallography, as well as in complex with a protein structure. Furthermore, we 

have described the range of topological complexity in which reliable near-native 

conformations can be produced. Importantly, the experimental and low-energy states do not 

always correspond, nor do the unbound and bound experimental states. That is, it is not 

necessarily only the lowest-energy conformations that matter to the exploration of 

biochemically interesting events like target recognition, host–guest complexation, and 

permeability. BRIKARD samples these relevant conformations without incurring high 

computational cost.

Interest in use of macrocycles in drug discovery, catalysis, and other industries continues to 

grow, but until now there has not been a general method for performing rapid screening of 

macrocyclic libraries. Application of our search algorithm will provide distinct 

conformations that can be used as a basis for structure-based projects, such as macrocycle 

docking and optimization of physiochemical properties.

Further improvements are on the horizon, such as more sophisticated sampling strategies for 

the torsional DoF, which are now sampled uniformly for nonamino acids. It is well-known 
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that the sampling efficiency for single-loop systems may be critically enhanced by 

employing a Jacobian,49 and we believe that homotopy-based topological clustering 

methods may also be used to offer additional order-of-magnitude speedups. Combined with 

the state-of-the-art algorithm for energy minimization we employ, we show that it is now 

possible to quickly predict the near-native ensemble for diverse, biologically relevant 

macrocycles, enabling realistic modeling of physiochemical properties and molecular 

recognition events.
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Refer to Web version on PubMed Central for supplementary material.
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NOMENCLATURE

DG distance geometry

DoF degrees of freedom

IK inverse kinematics

MD molecular dynamics

RMSD root mean square deviation
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Figure 1. 
A subset of the macrocycles contained in our study set, depicting the vast diversity in 

degrees of freedom and ring topology. Starting at the upper left and proceeding clockwise, 

these macrocycles are identified in the supplementary tables by the abbreviations WZY, 

CD4, NOS, and MST, respectively.
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Figure 2. 
RMSD of ring atoms to crystallographic coordinates vs run time according to different 

sampling methods. Each method was run on a single processor to enable comparison with 

default sampling protocols. CF-LowModeMD was run with multithreading enabled, which 

is the program default. Without this option, runs take 1.4–4 times more wallclock time.
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Figure 3. 
RMSD of ring atoms to crystallographic coordinates vs run time for (a) hard examples in the 

data set and (b) easy examples in the data set according to different sampling methods. See 

the text for the meanings of “hard” and “easy” in this context.
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Figure 4. 
Illustrative examples of subsampling efficiency for BRIKARD (purple), MMBS (green), and 

CF-LowModeMD (yellow) given a) simple macrocycle AFB and b) large cyclic peptide 

IP01.
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Figure 5. 
Arginine 4 torsional angle sampling across the potential energy surfaces of IP01 and IP02 by 

a–b) BRIKARD restricted to the conformations within 15 kcal/mol of the lowest energy 

identified, c–d) CF-LowModeMD, and e–f) MMBS.
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Figure 6. 
a) Expanded (cargo-carrying) and b) deflated/imploded (apo) major states of cryptophane E 

analogue (CD4) present in the crystallographic ensemble.
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Figure 7. 
Frequency of success for each method in sampling the near-native conformation of each 

structure. The desired RMSD of 0.5 Å to the experimental structure is delineated by a gray 

dashed line.
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Figure 8. 
Depiction of how the ring topology drives ring closure using 13-desmethyl spirolide C 

(SQX) as an example.
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Figure 9. 
Torsions at branch points (a), (b).
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Figure 10. 
Ring attachment (a) on a side chain, (b) on backbone, one common bond, and (c) on 

backbone, several common bonds.

Coutsias et al. Page 31

J Chem Theory Comput. Author manuscript; available in PMC 2017 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
BIMXUR (a) Graph depiction. Red arrows: sampled torsions. Black arrows: torsions set by 

ring closure. Rings numbered in the order by which they are solved. (b) Ensemble of 

alternative shapes keeping chain C and rings 1 and 2 fixed. (c) Crystal structure, 

corresponding to (a1, b1) in ensemble.
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