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ABSTRACT OF THE THESIS

Modeling the Structural and Mechanical Properties of Pulmonary Arteries in an Animal
Model of Pulmonary Arterial Hypertension.

by

Erica R. Pursell

Master of Science in Bioengineering

University of California San Diego, 2020

Professor Daniela Valdez-Jasso, Chair

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated

mean pulmonary arterial pressure. Although the cause of the disease onset is unclear, mani-

festations such as remodeling and occlusion of the distal pulmonary arteries lead to pressure

overload of the right ventricle, eventually leading to heart failure. While much research has

focused on the remodeling of smooth muscle and endothelial cells in the pulmonary arteries,

collagen extracellular matrix changes in structure and function are not well defined. In this

thesis, mechanical and microstructural properties of pulmonary arteries were investigated during

the progression of PAH. Results indicated that the axial and circumferential directions to not
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respond the same to mechanical loading, collagen fibers become less tortuous and realign to

a preferred direction, and left and right pulmonary arteries do not remodel identically. Five

models of the pulmonary arterial mechanics were developed to determine the role of structural

features in the vascular mechanical response found with biaxial tubular testing of vessels in

a rat model of PAH. Models included families of fibers, viscoelasticity, and elasticity theory.

While the viscoelasticity-based model was able to identify the changes in the vessel stiffness,

it did not account for the structural changes undergone by the vessel. On the other hand, the

fiber-family models were able to incorporate collagen fiber preferred directions but were either

over-parameterized and or did not account for tortuosity and collagen diameter changes. The

elasticity-based model was found to fit measured data, and identify differences in the modulus

of elasticity found in circumferential and axial directional data. Future iterations of the model

should include measurements such as individual fiber diameter, data from fibers throughout the

vessel, or contributions from other vessel constituents such as elastin fibers.
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1 Background and Significance

1.1 Pulmonary Arterial Hypertension

changes during disease progression directly affect pulmonary arterial tissue-level mechan-

ical function. To test this hypothesis, we made detailed measurements of the pulmonary arterial

collagen extracellular matrix architecture and multi-axial mechanical testing in a rat model of PAH.

To relate the mechanical to structural properties, we then developed microstructure-motivated

constitutive models.

1.2 Cellular Biology

PAH is a subcategory of pulmonary hypertension (PH) which has been known to occur

in cases of medical conditions such as connective tissue disorder, indicating the importance

of studying vascular components such as collagen [31, 59]. Molecular studies have further

characterized changes in the extracellular matrix in PH. Namely, procollagen increases throughout

pulmonary vascular walls with collagen and elastin accumulating in the media [43]. Other studies

have investigated the contribution of cross-linking to the progression of pulmonary hypertension.

For example, beta-aminopropionitrile (BAPN) has been used to prevent future cross-linking which

alleviates PH, but does not reverse the disease [2, 51, 60, 61]. Additionally, several have noted

the importance of adventitial fibroblasts in pulmonary hypertension, as their elevated activity
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increases collagen content, fibronectin, and recruitment of macrophages as part of an inflammatory

response [2, 40, 41, 54]. Adventitial fibroblasts can also differentiate into myofibroblasts, the

principal producers of collagen and other extracellular matrix proteins [49], underlining the

importance of understanding adaptations to the extracellular matrix in PAH.

While advances have been made to treat or prevent PH in rodent animal models, the

same treatments have not been effective in treating human PAH. One example is inhibition

of ASK1 which regulates apoptosis and is suggested to have an anti-fibrotic mechanism that

decreases cardiac fibroblast activity, reducing ECM deposition [3]. Recently, inhibition of the

mechanoactive feedback in PAH via YAP/TAZ-microRNA-13/301 in multiple cell types has

been proven to ameliorate matrix remodeling and PH [2, 51]. However, such a disruption in the

YAP/TAZ cascade has not been investigated in humans and the relationship between structural

changes and vascular mechanical manifestations of PAH are not fully understood.

1.3 Vascular Mechanics

To investigate the structural contributions of collagen to vascular mechanics, groups

have carried out uniaxial tests and histological studies, but few have investigated the anisotropic

properties of the pulmonary vasculature via biaxial tests and even fewer have studied the biaxial

properties of both the left and right pulmonary artery. For example, circumferential mechanical

tests have demonstrated that left pulmonary arteries stiffen with hypoxia-induced PH (HPH)

and recover in wild type mice when returned to normoxia, yet vessels further stiffen in mice

resistant to collagen I degeneration [40, 56]. The recovery of animals in HPH emphasizes the

dynamical response of tissues and the importance of collagen in this model as an acute form of

PH. On the other hand, Huang et al. only determined the incremental Young’s modulus of the

left pulmonary artery in the axial direction but noted that the vessel responds different axially

than circumferentially [26]. However, the left and right pulmonary arteries serve unequal lobes
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of lungs [8, 55], the percent blood flow received by the left pulmonary artery is about half that

of the right pulmonary artery [45, 46], and blood vessels are known to have strong mechanical

interactions between axial and circumferential axes, underlining the importance of studying the

mechanics of both axes in both arteries.

The importance of studying biaxial mechanics of arteries has been demonstrated in other

arteries [28]. Therefore, biaxial studies are important to fully appreciate the remodeling process

during PH. One of the first to present data on biaxial properties of pulmonary arteries, Debes

and Fung, reported that in a planar biaxial system, healthy dog right pulmonary arteries behave

differently axially than circumferentially [5]. However, this method requires flattening of samples

which can induce artificial stresses. Similarly, Drexler et al. reported that under bubble inflation

tests, rat pulmonary arteries are anisotropic and the mechanical response is not equal [6, 7].

Nonetheless, as with Debes and Fung, this method requires flattening of the tissue sample.

Recently, groups including ours have investigated pulmonary arterial mechanics in a

tubular biaxial setting as an attempt to more closely match in vivo conditions. In our study,

changes in pulmonary arterial mechanics differed both axially and circumferentially and between

left and right pulmonary arteries [44]. However, conclusions were reached with a quasi-linear

viscoelasticity model which did not explain how such changes arise. Contradictorily, Ramachan-

dra and Humphrey did not find significant differences in the stiffness of mouse right and left

pulmonary arteries [45]. However, they also noted that the microstructural model used in their

study required more measured structural data to better predict vascular mechanics.

Others have incorporated methods of determining mechanical properties that do not require

flattening samples, but also do not distinguish between axes. Such methods include atomic force

microscopy and pressure-inflation tests of the arterial bed. In their AFM micro-indentation of

vasculature, Liu et al. determined the stiffness of pulmonary arteries. Briefly, in the monocrotaline

and sugen-hypoxia rat models of PAH, vessels stiffen prior to pressure levels reaching values

indicative of PAH [33, 51]. Such results emphasize the importance of vascular mechanics in PAH.

3



However, care should be taken when interpreting results from AFM, since the probe shape can

significantly impact measurements which are highly localized (measurements may be confused

for representing the whole tissue) [48]. Not only has increased vascular stiffness been associated

with increased collagen and fibronectin content, but pulmonary arterial cells cultured on stiffer

matrices demonstrated increased proliferation, decreased apoptosis, exaggerated contraction of

smooth muscle cells, and increased mRNA levels for lysyl oxidase, a cross-linking enzyme [33].

While collagen cross-linking has little effect on vascular stiffening at low load (up to 25 mmHg)

[60], it appears to have a higher impact at higher pressures such as those seen in PH [61]. Such

results emphasize the importance of the ECM in pulmonary arterial mechanics.

While the role of ECM remodeling in PH is increasingly appreciated, few attempts have

been made to determine the relationship between microstructural and arterial stiffness in the

pulmonary vasculature. Monson et al. used a 4-parameter Fung-type exponential constitutive

model to model biaxial mechanics. However, stress-strain curves were difficult to fit since

parameters tended toward unrealistic negative values [38]. In a later study, Tian et al. used

a constitutive model incorporating collagen content, cross-linking, and elastin content. Here,

they found that elastin did not change in PH, but collagen content was well correlated with its

parameter and cross-linking moderately correlated with its parameter [53]. These differences

further demonstrate the importance of collagen content to pulmonary mechanics.

1.4 Collagen Fiber Architecture and Morphology

In addition to collagen content, vascular mechanics have been associated with collagen

organization and structure such as diameter and tortuosity. In their study, Tian et al. found

that while fibers were oriented in all directions, the majority of the fibers were oriented cir-

cumferentially [53]. Assuming all fibers behave similarly, these findings would suggest the

circumferential direction to exhibit greater stiffness. Attempts to verify such a relationship
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between fiber orientation and vascular mechanics have been made in the aorta and carotid artery

[10, 11, 17, 23, 24, 42]. Briefly, these studies present models which lump fibers into two and four

fiber families. Nonetheless, a major limitation to these studies is the over-parameterization of the

problem set. For this reason, Ramachandra and Humphrey have suggested to use measured stress,

material stiffness, and stored energy to compare biaxial results until more structural data are

available to construct a more complete structural model [45]. Additionally, these studies assume

equal weight for contributions from each of the fiber families, which has not been confirmed.

In a later study, Gasser et al. incorporated a Bingham distribution function in their model to

determine the effect of fiber distribution on wall mechanics of abdominal aortic aneurysms (AAA).

While they were able to link fiber orientation and anisotropy of the AAA wall, they neglected

to investigate the dependence of collagen mechanical properties on collagen fiber undulation

[18]. Furthermore, our group observed a change of collagen orientation and structure in the right

pulmonary artery of rats injected with monocrotaline [44]. Therefore, measured microstructural

properties should be included in constitutive models of pulmonary vascular mechanics and could

help to identify the structural changes during PAH that are most important in determining the

altered mechanical properties that result from PAH remodeling.
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1.5 Specific Aims

The overall goal of the work is to use microstructurally-based mathematical models of

the pulmonary arteries, in conjunction with structural measurements of the collagen matrix, to

determine how the extracellular matrix contributes to changes in mechanical function of the

vessels.

Aim 1: Investigate the mechanical and structural properties of the pulmonary arteries in

PAH.

We hypothesize that the structural properties change with the progression of the disease,

affecting the mechanical properties of the pulmonary arteries. To test our hypothesis, we will

carry out biaxial mechanical tests and quantify the architecture and morphology of the collagen

extracellular matrix at different stages of the disease via second harmonic generation (SHG) using

a multiphoton microscope. Data collected from vascular mechanics are fitted with a model that

determines the time-dependence and stiffness of pulmonary arteries.

Aim 2: Develop microstructurally motivated constitutive model of pulmonary arteries dur-

ing the progression of PAH.

We hypothesize that the changes in structural properties of the collagen extracellular

matrix during PAH remodeling will affect the pulmonary vascular tissue biaxial mechanics. To

test this hypothesis, we first seek to identify the differences in mechanical properties of the left

and right pulmonary arteries given their difference in collagen fiber orientations. To incorporate

how the collagen fiber architecture and morphology contribute to the wall properties, we used

structurally-motivated constitutive models of family of fibers and elasticity theory.
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2 Methods

In this Chapter, we describe how the disease is induced and confirmed in animals, how the

tissues are prepared for mechanical testing and structural quantification, the mechanical testing

protocols, data processing, and constitutive model derivation and numerical implementation.

2.1 Animal Model of PAH

The animal models of PAH that most closely replicate plexiform lesions in patients with

PAH are induced through exposure to hypoxia, a combination of sugen and hypoxia (SuHx),

monocrotaline (MCT) and a combination of MCT lung pneumonectomy. In the hypoxia model,

the animals are exposed to hypoxic conditions with oxygen levels of at 10% for 10 days to 3

weeks [7, 29, 40, 41, 43, 56, 60, 61]. However, animals in this model recover after returning

to normoxia [40, 41, 56]. Furthermore, the hypoxia-induced model of PH does not form the

plexiform lesions seen in human cases of PAH [21]. Sugen-hypoxia is a more recent model of

PAH where animals are injected with a vascular endothelial growth factor receptor blocker prior

to entering a hypoxia chamber for three weeks. Animals are then returned to normoxia where

their disease progresses to a severe state.

Here, we used the MCT animal model of PAH in male Sprague Dawley rats. MCT causes

endothelial cell injury, increased pulmonary arterial pressure, and RV hypertrophy that occurs

3-4 weeks after injection [21, 37]. In this model, the drug crotaline is injected subcutaneously in
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animals and is activated in the liver, becoming an endothelial toxin [21, 62].

Monocrotaline is prepared by dissolving crotaline powder (C2401-1G Sigma-Aldrich, St.

Louis, MO) in 1 M and adjusting the to 7.0 with 0.1 M NaOH. This yielded a final solution of

0.025 g/ml to inject rats with a dose of 60 mg/kg. To study the effects of injection, a placebo

solution was prepared by neutralizing the PH of 1 M HCl with 0.1 M NaOH. This solution was

injected at volumes matching that of a 60 mg/kg dose of MCT and used as a control group.

Animals were then studied at 1, 2, 3, and 4 weeks post-injection.

2.2 Tissue Collection Preparation

Prior to tissue harvesting, an open chest surgery was performed to measure in vivo

hemodynamics to confirm the hypertensive state of the animals. Here, right ventricular blood

pressure and volume, and pulmonary pressure are measured as described by Gerringer et al. [20].

Briefly, animals were anesthetized with oxygen and 4% isoflurane, intubated, and placed on a

ventilator (SAR-1000 Ventilator, CWE Inc., Ardmore, PA, USA). A 1.6F dial pressure sensor

catheter (Transonic Scisence, Ontario, Canada) was inserted to the RV and through the pulmonic

valve such that RV and and pulmonary arterial pressure could both be measured.

Following hemodynamic measurements, the animals are exsanguinated and the lungs

flushed with a phosphate buffered saline (PBS) and heparin mixture to prevent clotting and

remove blood. The heart and lungs are then isolated from the rat by carefully disconnecting the

lungs from the surrounding chest walls and diaphragm via blunt dissection. Five vessels are also

severed to remove the heart-lung complex: right/right anterior vena cava, caudal vena vaca, the

ascending aorta, and a vessel that crosses over the descending aorta. Finally, the trachea is severed

and used to grip the heart and lungs while removing from the chest, continuing blunt dissections

to clear any connective tissues. Special care was taken when cutting ligamentum arteriosum

(connection between the pulmonary artery and aorta where the ductus arteriosis was). After
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Figure 2.1: Identifying the bifurcation of the trachea by holding the trachea with forceps and
using blunt dissections to separate the branching segments (Left). After the branching segments
are identified, they are carefully cut so the trachea can be removed (Right).

successful removal, the heart and lungs were placed in a petri dish for isolating the pulmonary

arteries.

To begin separating the two lungs, the bifurcation in the remaining trachea is first identified

with blunt dissections. The two branching bronchi are then cut and the trachea segment discarded

(Figure 2.1). Next, the main pulmonary artery is identified as the vessel adjacent to the aorta and

cut along the interface with the RV. A cannula is then carefully placed through the MPA to trace

the vessels (Figure 2.2). Once the locations of the PAs were determined, the veins (translucent

and slightly yellow in appearance) were cut to complete the separation of lungs and heart (with

the exception of the pulmonary arteries remaining the only connection between the lungs).

Once the cannula was directed into the LPA, the extralobar segment of the vessel is cleared

of any material so that the LPA was plainly visible. The cannula is then redirected to the RPA

and the left lung removed by cutting the LPA at the bifurcation of the MPA. After ensuring that

the cannula entered the largest lobe of the right lung, the other lobes are removed by cutting at

their intersection with the cannulated RPA. For the final and largest lobe, the cannulated artery

is exposed by both cutting about 2 millimeters away from where the cannula should be and by
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Figure 2.2: Here, a cannula is inserted in the main pulmonary artery to be used in guiding the
dissection of the left and right pulmonary arteries.

using blunt dissection until the end of the cannula is reached (Figure 2.3). Here, the vessel is

cut, allowing the cannula to exit the distal portion of the vessel. Curved forceps are then used to

remove any remaining pleura.

Similarly to the last lobe of the right lung, the LPA is isolated from the pleura by first

cannulating the LPA vessel, carefully cutting the lung about 2 millimeters away from where the

cannula should be, blunt dissecting, and pulling pleura away until the cannulated LPA is exposed.

In both lungs, the airways run parallel to the blood vessels. Therefore, closed scissors are often

placed between the two and opened to identify any connecting points which are then severed.

After being isolated, the arteries are split into approximately 6 mm long segments and

cannulated at each end using a blunt needle with an outer diameter closely matching the inner

diameter of the vessel. To ensure the vessel does not slip off of the cannula, minimal amounts of

glue (Permabond 240 High Viscosity, Ellsworth Adhesives, Germantown, WI) are placed at the

edge of the vessel. Suture (Fine Science Tools Braided Silk Suture 5-0, Foster City, CA) lines

are also tied near the ends of the vessel to mark the axial length (Figure 2.4). Finally, vessels

are tested for leaks by closing one end of the vessel and pressurizing with air while the vessel

is submerged in PBS. If any leaks exist at either end or due to holes from branching segments,
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Figure 2.3: Right lung cannulated such that the cannula is directed into the largest lobe (A),
Cannulated MPM and RPA with the smaller lobes of the right lung removed and the last and
largest lobe split along the RPA (B), and the resulting MPA and RPA after dissection is complete
(C).

Figure 2.4: Vessel mounted in the tubular biax system with suture (black lines) denoting the
ends of the vessel

minimal amounts of glue (so as not to impact the mechanical integrity of the vessel) are used to

seal the leaks.

2.3 Mechanical Testing

Once cannulated, the segment was mounted in a Bose BioDynamic chamber (ElectroForce

Mechanical Test Instruments, TA Instruments, New Castle, DE) tubular biaxial system. To mount

the vessel, one end was first secured with the Luer-lock system of the cannula and tubular biax.
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Figure 2.5: Approach used to mimic the in vivo conditions of the pulmonary arteries. Flow
and axial stretch are the inputs chosen to match the pressures measured in the main pulmonary
artery. Measurements taken are vessel outer diameter, pressure, and axial load.

The vessel was then twisted approximately one turn counter-clockwise so that the vessel would

be straight when the second end was secured with it’s Luer-lock system. Temperature-controlled

PBS (approximately 37 ◦C) filled the chamber and was circulated through the vessel during each

of two protocols: axial and circumferential. During the axial protocol, the vessel was exposed

to a constant pressure matching the in vivo mPAP for the respective group while the vessel was

cyclically stretched axially ± 5% of it’s in vivo length at a rate of 10% of the ex vivo length

per second. In the circumferential protocol, vessels were simultaneously subjected to cyclical

pressures matching those measured in vivo and held at their in vivo length (stretched 40% of

the ex-vivo length [30, 40, 60]). In each of the protocols, pressures were reached by adjusting

the pump command (the flow) until pressure values matched those measured in vivo. While

mechanically testing the vessels, the diameter was also tracked via a laser micrometer (Mitutoyo

Corporation, Kawasaki, Japan) for use in stress and stretch calculations. A summary of the input

and output parameters can be found in Figure 2.5 and examples of data collected can be found in

Figures 2.6-2.7.

2.4 Mechanical Data Processing

Assuming thin-walled, incompressible vessels with no shear, circumferential θ and axial z

Piola-Kirchhoff stress Π (Equations 2.4-2.8) and stretch λ (Equations 2.9-2.10) can be expressed

as following the work of Humphrey and Delange [27] and Holzapfel [25], respectively and can

be derived from Figure 2.8.
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Figure 2.6: Data collected during the axial protocol. Here, axial displacement (A) is controlled
and ranges between 35-40%, 40-45%, 45-40%, and 40-35% of the ex vivo length. Simultane-
ously, axial load (B) and vessel diameter (C) are measured. The flow rate is prescribed to reach
a nearly constant intramural pressure (D).
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Figure 2.7: Data collected during the circumferential protocol. Here, axial load is held constant
at 35%, 40%, 45%, 40%, and 35% of the ex vivo length (A). The axial load (B) and vessel
diameter (B) are then measured during cyclical intramural pressure (D).

Figure 2.8: Representation of forces acting in circumferential direction (A) and axial direction
(B) of a close-ended, pressurized vessel. Here, p is the internal pressure, d is the vessel diameter,
l is the length of the vessel segment, t is the thickness of the vessel, and fz is the axial force
acting on the vessel.
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Here, the forces must be balanced in the y-direction such that ∑Fy = 0. In the positive

direction, we double integrate pressure from 0 to π and 0 to l to get the forces ( fp) acting upwards

on the half segment of vessel by the pressure (Equation 2.1).

fp =
∫ l

0

∫
π

0
pr sinθ dθdl

= 2prl
(2.1)

In the negative direction, we have the internal forces of the tissue, which can be represented

by circumferential stress (Πθ) integrated over the area on which the force acts (Equation 2.2)

fθ = 2
∫ l

0

∫ r+t

r
Πθ drdl

= 2ltΠθ

(2.2)

In equilibrium, these forces sum to zero:

∑Fy = 0

= fp + fθ

= 2prl +2ltΠθ

(2.3)

Solving for circumferential stress, Equation 2.3 becomes

Πθ =
pr
t

(2.4)

Similarly, the axial stress for a thin-walled, close-ended vessel can be derived from part

B of Figure 2.8 by summing over forces in the x-direction. The forces acting in the negative
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direction are the force due to axial stretch ( f ) and that due to pressure acting on the closed end of

the cylinder ( fp,a), calculated as in Equation 2.5.

fp,a =
∫ r

0

∫ 2π

0
pr dθdr

= πr2 p
(2.5)

In the positive direction, we have the force f2 due to the internal stress of the tissue:

f2 =
∫ 2π

0
r
∫ r+t

r
Πz drdθ

= 2πrtΠz

(2.6)

In equilibrium, the axial stretch force, force due to pressure, and force due to internal

stress sum to zero:

∑Fx = 0

=− f − fp,a + f2

=− f −πr2 p+2πrtΠz

(2.7)

Solving for the internal axial stress, Equation 2.7 becomes

Πz =

(
f

2πrh
+

pr
2h

)
(2.8)

λθ =
r
r0

(2.9)
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λz =
L
L0

(2.10)

where p is the internal pressure, r is the vessel radius, h is wall thickness, f is the axial force

experienced by the vessel, r0 is the cross-sectional vessel radius corresponding to the pressure

before mechanical testing begins, L is the vessel length, and L0 is the ex-vivo vessel length.

2.5 Constitutive Models

To relate stress and strain, several constitutive models were implemented. The first of

which accounts for the dynamic loading and unloading effects of the vessels. The other models

are structurally-motivated models informed by the organization of collagen fibers.

2.5.1 Quasi-linear Viscoelasticity Theory

To describe the time-varying pressure-diameter changes of the pulmonary vessels under

cyclic conditions, we used the quasi-linear viscoelasticity (QLV) theory developed by Fung [15].

The QLV theory is used to model both the time- and history-dependent behavior of soft tissues

through a convolution of a static elastic deformation response and time-invariant dynamics. The

general formulation [44] is

ε j(t) =
∫ t

−∞

K(t− γ)s(e)j [Fj(γ)]
ds(e)j [Fj(γ)]

dγ
dγ (2.11)

Here, ε is the scalar quantity of vessel strain in the axial ( j = z) and circumferential ( j = θ)

directions, K(t) is a creep function, and s(e) is function for a specified elastic response. To avoid

numerical differentiation of experimental measurements, Equation 2.11 can be written in terms of

an arbitrary time point, to:
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ε j(t) = K(0)s(e)j [Fj(t)]+
∫ t

to
[Fj(γ)]s

(e)
j

dK(t− γ)

dγ
dγ (2.12)

With K(t) = 1−∑
n
i=1Cie

− t
bi .

For circumferential (θ) mechanics, F is the pressure in the vessel, while F is the axial

load experienced by the vessel during axial mechanics and Ci is the amplitude associated with the

relaxation time (bi). The implementation of this QLV model was based on the work by Valdez-

Jasso et al. [57] on human and ovine arteries. Here, vessels are assumed to be homogeneous,

thin-walled, and incompressible. Therefore, pressure is uniformly distributed, and radial and

shear stresses are negligible. Assuming the arteries are also elastic and orthotropic materials, the

general linear elastic relation is

εi j =Ci jklΠkl (2.13)

where i, j,k, l = r,θ,z. Given our assumptions that shear and radial stresses are negligible

(approximately zero), the linear elastic relation (Equation 2.13) reduces to the follow equations:

εθ =
1

Eθ

Πθ−
υθz

Ez
Πz (2.14a)

εz =
1
Ez

Πz−
υθz

Eθ

Πθ (2.14b)

Here, Π is the normal stress tensor, ε is the strain tensor, υ is Poisson’s ratio, and E is the

elastic modulus.

With the initial load state (that before the test) as the reference configuration, circumferen-

tial (θ) and axial (z) strain (ε) can be computed as

εθ =
r− ro

ro
(2.15a)
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εz =
L−Lo

Lo
(2.15b)

where ro is vessel radius (r) and Lo is the vessel length (L) before mechanical testing

began. Furthermore, under the initial load condition as the reference configuration, the axial

strain is zero which reduces Equation 2.14a to

εθ =
1

Eθ

(Πθ−υzθ(υθzΠθ)) =
(1−υzθυθz)

Eθ

Πθ (2.16)

Similarly, the initial load condition as the reference configuration yields zero circumfer-

ential stress (cross-sectional area does not change due to constant pressure), reducing Equation

2.14b to

εz =
1
Ez

(Πz−υθz(υzθΠz)) =
(1−υθzυzθ)

Eθ

Πz (2.17)

Substituting the circumferential stress (Equation 2.4) and strain (Equation 2.16) to Equa-

tion 2.14a, we can then write strain in terms of area:

1−
√

Ao

A
=

ro(1−υzθυθz)

Eθh
p (2.18)

which allows us to write circumferential strain as

εθ =
r− ro

r
= 1−

√
Ao

A
(2.19)

Rearranging Equation 2.19, the cross-sectional area can be predicted as a function of time

(Equation 2.20 and the linear elastic response in the circumferential direction implemented in the

QLV framework becomes the expression in Equation 2.21.
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A(t) =
Ao

(1− εθ(t))2 (2.20)

s(e)
θ
[p(t)] =

r0(1−υzθυθz)

Eθh
p (2.21)

In the axial direction, the elastic response was described as in Equation 2.22 which could be

related to axial lengthening by substituting into Equation 2.12, then substituting the resulting into

Equation 2.15b and solving for length (Equation 2.23).

s(e)z [ f (t)] =
(1−υθzυzθ)

Ez
Πz (2.22)

L(t) = Lo(εz(t)+1) (2.23)

2.5.2 Microstructurally-motivated constitutive models

To account for the collagen structure and organization contributions to tissue response,

we adapted the Fiber Family and the Elastica Models. A one-, two- and a four-fiber family model

were used model the pulmonary vasculature.

Fiber Family Models

To better understand the relationship between collagen orientation and pulmonary me-

chanics, we used various fiber family models. These models depend on the orientation of collagen

fibers within the tissue at an angle of α which is measured with respect to the axial direction. For

these models, the deformation gradient was first determined.

To calculate the deformation gradient tensor, consider two configurations of a material in

a real space R3: the reference and the current (deformed) configuration. Mapping an arbitrary
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line segment in a material from the reference configuration dX to the current configuration dx

requires the deformation gradient tensor, F = dx
dX :

F =


dx1
dX1

dx1
dX2

dx1
dX3

dx2
dX1

dx2
dX 2

dx2
dX3

dx3
dX1

dx3
dX2

dx3
dX3

 (2.24)

This deformation gradient tensor can then be used to determine the right Cauchy-Green defor-

mation tensor (C = FT F) which can then be used to calculate stress. In the absence of shear,

F is a diagonal tensor with the principle stretches as diagonal entries, which are radial (λr),

circumferential (λθ), and axial (λz) stretches in cylindrical polar coordinates. Thus,

C = FT F =


λ2

r 0 0

0 λ2
θ

0

0 0 λ2
z

 (2.25)

The Cauchy-Green deformation tensor has three principle invariants, which are used to

describe isotropic contributions to the strain energy density of a material and are independent of

the coordinate system used. In the cylindrical polar coordinates, the first invariant is defined as

follows:

I1 = tr(C) = λ
2
z +λ

2
θ +λ

2
r (2.26)

In addition, there are pseudo-invariants of the right Cauchy-Green deformation tensor

(C) and M⊗M which can be used to incorporate anisotropic contributions. Such quantities are

regarded as coordinate invariant and describe anisotropic qualities of materials through their

dependence on M, a preferred fiber direction generally defined in the reference configuration

(Equation 2.27).

Because the invariant and pseudo-invariant quantities describe isotropic and anisotropic
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properties of materials, they can then be used in the calculation of stress as done by Holzapfel

et. al. (HGO model) [24]. In their study, Holzapfel et. al. introduced a two-fiber family model

which incorporated contributions from the dominant fiber orientations in each the media and

adventitia of rabbit carotid arteries. However, this model did not account for fibers in the axial

and circumferential directions. Hence, Ferruzzi et. al. introduced a modified version of the HGO

model in which the model was expanded to four fiber families [9]. In both of these models, only

the first Cauchy invariant (Equation 2.26) and the fourth pseudo-invariant (Equation 2.28) are

used with the directional unit vector for each family of fibers defined in Equation 2.27.

Mi =


0

sin(αi)

cos(αi)

 (2.27)

Here, i represents each of four fiber families and αi are angles defined between the fiber

and the axial direction. For the axial and circumferential directions, the angles are assigned

values of α1 = 0◦ and α2 = 90◦, respectively whereas the third and fourth families of fibers are

symmetrically oriented diagonal fibers with angles defined as α3 =−α4 = α. See Figure 2.9 for a

schematic of the fibers. Given this definition of the orientation vectors, the fourth pseudo-invariant

can be expressed as follows:

IV i = Mi ·CMi = λ
2
θsin2

α
i +λ

2
z cos2

α
i (2.28)

The work done in a stress-strain relation for elastic materials only depends on strain

whereas in hyperlastic materials (such as arteries), the work done is stored as potential energy

in a thermodynamically reversible process. Additionally, in an elastic material, the stress-strain

relation is path-independent whereas in hyperelastic materials, the relation is path dependent.

Consequently, the need arises for a strain energy function.

Under hyperelastic theory, stress can be determined by taking the derivative a strain
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α1 = 0°

α2 = 90°

α3

α4 = - α3

Figure 2.9: Schematic of the fiber families. Here, the horizontal line represents the axially
oriented fibers (α1 = 0◦), the vertical line represents the circumferentially oriented fibers
(α2 = 90◦), and the dashed lines represent the symmetrically oriented fibers (α3 =−α4).

energy density (work per unit volume) with respect to the deformation gradient tensor (F). This

strain energy function (W ) depends on the above-mentioned strain invariants and can be written

as W = Wiso(I1)+Waniso(IV ) under the assumption that the strain-energy function describing

the vessel’s mechanics is a linear superposition of the isotropic (Wiso) and anisotropic (Waniso)

contributions. In this representation, the isotropic contribution solely depends on the first Cauchy

invariant (Equation 2.26):

Wiso =
c
2
(I1−3) (2.29)

The anisotropic contribution is based on the Holzapfel, Gasser, Ogden (HGO) model,

which incorporates two families of collagen fibers. This model is dependent on the orientation of

the fiber families, indicated by the fourth pseudo-invariant of the right Cauchy-Green tensor.

Waniso =
4

∑
i=1

ci
1

4ci
2
[eci

2(IV
i−1)2
−1] (2.30)

With i representing the ith family of fibers. Each family of fibers is oriented in the

reference configuration denoted by its respective unit vector (Mi, defined in Equation 2.27).

Summing Equations 2.29 and 2.30 and expanding, the strain energy function becomes:
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W =
c
2
(I1−3)+

c1
1

4c1
2
[ec1

2(IV
1−1)2

−1]

+
c2

1

4c2
2
[ec2

2(IV
2−1)2

−1]

+
c3

1

4c3
2
[ec3

2(IV
3−1)2

−1]

+
c4

1

4c4
2
[ec4

2(IV
4−1)2

−1]

(2.31)

where I1 is the first invariant of the right Cauchy-Green tensor (Equation 2.26) and IV is the fourth

pseudo invariant of the right Cauchy-Green tensor (Equation 2.28). Assuming the pulmonary

arteries are incompressible, the radial stretch can be re-written in terms of circumferential and

axial stretches (Equation 2.32).

λ
2
r =

1
λ2

θ
λ2

z
(2.32)

By enforcing incompressibility, Equation 2.26 then becomes Equation 2.33:

I1 = λ
2
θ +λ

2
z +

1
λ2

θ
λ2

z
(2.33)

Depending on the limitations of experimental designs, various stress calculations are

required. For example, 1st Piola-Kirchhoff stress can be determined by the force on a body in

the deformed configuration over the area of the body in it’s reference configuration. Other forms

of stress are Cauchy stress (force in the deformed state over area in the deformed state) and 2nd

Piola-Kirchhoff stress (force in the reference state over area in the reference state). Because

of experimentally obtained data, it is best to work with the 1st Piola-Kirchhoff stress which

according to hyperelasticity theory, is determined through the following relation [25]:
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P =−pF−T +
∂W (F)

∂F
(2.34)

where p is a Lagrange multiplier that enforces isovolumetric motions. Additionally,

since our strain energy function is written in terms of the right Cauchy Strain tensor, it is more

convenient to take the derivative of the strain energy function with respect to C:

∂W (F)
∂F

=
∂W (C)

∂C
∂C
∂F

= 2F
∂W (C)

∂C
(2.35)

Now, the derivative of the strain energy function (Equation 2.31) can be taken with respect

to the Right Cauchy-Green tensor:

∂W
∂C

=
c
2

I+
4

∑
i=1

ci
1

4ci
2

eci
2(IV

i−1)2
2ci

2(IV
i−1)MiIMi (2.36a)

MiIMi =


0 0 0

0 sin2αi cosαisinαi

0 cosαisinαi cos2αi

 (2.36b)

Combining Equations 2.36a and 2.36b, we get:

∂W
∂C

=
c
2

I+
4

∑
i=1

ci
1

2
eci

2(IV
i−1)2

(IV i−1)


0 0 0

0 sin2αi cosαisinαi

0 cosαisinαi cos2αi

 (2.37)

Plugging Equation 2.37 in to Equation 2.35 and substituting into Equation 2.34, the Cauchy stress

can then be written as:

P =−pF−1 +F[cI+
4

∑
i=1

ci
1eci

2(IV
i−1)2

(IV i−1)MiIMi] (2.38)
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Now, stress is:


Pr 0 0

0 Pθ 0

0 0 Pz

=−p


1
λr

0 0

0 1
λθ

0

0 0 1
λz

+ c


λr 0 0

0 λθ 0

0 0 λz



+
4

∑
i=1

ci
1

2
eci

2(IV
i−1)2

(IV i−1)


0 0 0

0 λθsin2αi λθcosαisinαi

0 λzcosαisinαi λzcos2αi

 (2.39)

Since the pulmonary arteries are assumed to be thin walled, the radial contributions of

stress can be neglected, allowing for the Lagrange multiplier (p) to be solved (Equation 2.41)

using Equation 2.40.

Pr = 0 =−p
1
λr

+ cλr (2.40)

p = cλ
2
r =

c
λ2

θ
λ2

z
(2.41)

Plugging Equation 2.41 into Equation 2.39 results in the following measures of stress (Equations

2.42 and 2.43). Here, part b of Equations 2.42 and 2.43 are the simplified forms of part a. Note

that fiber families 3 and 4 have been lumped together as discussed earlier.

Pz = c
(

λz−
1

λ2
θ
λ3

z

)
+ c1

1(IV
1−1)ec1

2(IV
1−1)2

λzcos20

+ c2
1(IV

2−1)ec2
2(IV

2−1)2
λzcos290

+2c3,4
1 (IV 3,4−1)ec3,4

2 (IV 3,4−1)2
λzcos2

α

(2.42a)
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Pz = c
(

λz−
1

λ2
θ
λ3

z

)
+ c1

1(IV
1−1)ec1

2(IV
1−1)2

λz

+2c3,4
1 (IV 3,4−1)ec3,4

2 (IV 3,4−1)2
λzcos2

α

(2.42b)

Pθ = c
(

λz−
1

λ3
θ
λ2

z

)
+ c1

1(IV
1−1)ec1

2(IV
1−1)2

λθsin20

+ c2
1(IV

2−1)ec2
2(IV

2−1)2
λθsin290

+2c3,4
1 (IV 3,4−1)ec3,4

2 (IV 3,4−1)2
λθsin2

α

(2.43a)

Pθ = c
(

λz−
1

λ3
θ
λ2

z

)
+ c2

1(IV
2−1)ec2

2(IV
2−1)2

λθ

+2c3,4
1 (IV 3,4−1)ec3,4

2 (IV 3,4−1)2
λθsin2

α

(2.43b)

Elastica Model

In previous implementations of the Elastica Model, collagen structural information con-

tribute to uniaxial tissue mechanics [32, 34]. Here, fibers are assumed to be oriented in the same

direction. However, the model can easily be adapted to account for fibers in at multiple directions

within the tissue.

Collagen fibers from cardiac and aortic tissues have previously been modeled as helical

and 2D corrugated spring structures to determine the relationship between collagen morphology

and tissue mechanics [13, 32, 36]. While imaging of collagen fibers of cardiac tissues have

revealed helical structures [13, 35], our MPM images (discussed in results) do not indicate such

structures. Therefore, we chose to model the movement of fibers as 2D corrugated springs,

following the work by Ling and Chow [32]. Under this assumption, fibers are assumed to have a

sinusoidal waveform in which each quarter of a period can be treated as a bent rod (Figure 2.10).

The force to deform this rod can be calculated as in Equation 2.44.
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Figure 2.10: Schematic of a quarter period of fiber, modeled as a rod fixed at one end with the
initial state unloaded and the final state loaded with a force f1.

f1 =
EI

2Lyo

∫
θo

0

cosθdθ√
cosθ− cosθo

∫
θ1

0

dθ√
cosθ− cosθ1

[√
1− cosθo√
1− cosθ1

−

∫ θ1
0

dθ√
cosθ−cosθ1∫

θo
0

dθ√
cosθ−cosθo

]
(2.44)

Here, E is the Young’s modulus of collagen, I is the moment area of a cylindrical rod, L is

the length of a quarter period of the fiber, and yo is the mid-line length of the quarter period.

While L and yo were measured from the MPM images, E can be determined through model

optimization and I can be calculated from the measured diameter (I = πD4

64 ). Finally, θo and θ1

must be determined.

To find θo for a given tortuosity (To), the ratio of fiber length to mid-line length given by

Equation 2.45 was solved using the integral function in MATLAB (version 9.6.0, Mathworks,

Natick, MA) which numerically integrates a function with adaptive quadrature. Here, θo was

initiated at 0.001 radians, and Equation 2.45 [32, 34] was evaluated and compared to the measured

fiber tortuosity. If the difference between the two values was greater than 0.001, theta was

increased by 0.001 radians and the function re-evaluated until either the difference between

measured and calculated tortuosity was less than or equal to 0.001 or θo was greater than or equal

to π

2 radians.
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To =
L
yo

=

∫
θo
0

dθ√
cosθ−cosθo∫

θo
0

cosθdθ√
cosθ−cosθo

(2.45)

Additionally, any given applied force had an accompanying fiber stretch (Equation 2.46) from

which θ1 can be determined via the same numerical integration method used for θo.

λ f =
y1

yo

=
L
yo

∫ θ1
0

cosθdθ√
cosθ−cosθ1∫ θ1

0
dθ√

cosθ−cosθ1

(2.46)

Because the fiber stretch (λ f ) cannot be directly measured, it needs to be computed using

the transformation of the stretch tensor U between the fiber and tissue coordinate systems in

which we assume no rotation occurs due to our experimental setup:

U f ,c,r = BUz,θ,rBT (2.47)

With the stretch tensor in the fiber coordinate system (U f ,c,r), the stretch tensor in the tissue

coordinate system (Uz,θ,r), and the transformation matrix (B) defined as follows [14]:

U f ,c,r =


λ f 0 0

0 λc 0

o 0 λr

 ,Uz,θ,r =


λz 0 0

0 λθ 0

o 0 λr

 , and B =


cosα sinα 0

−sinα cosα 0

0 0 1

 (2.48)
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So 
λ f 0 0

0 λc 0

0 0 λr

=


λzcos2α+λθsin2α (λθ−λz)cosαsinα 0

(λθ−λz)cosαsinα λzsin2α+λθcosα 0

0 0 1

 (2.49)

and therefore,

λ f = λzcos2
α+λθsin2

α (2.50)

Now, to compare our model to measured mechanical data, we need to normalize the fiber

force by dividing by the cross-sectional area of the tissue (A f =
πD2

4 ). The resulting quotient is

the tension in the fiber:

Tf =
f1

Aimage
(2.51)

This can then be transformed to the tissue coordinate system through the following:

Πz,θ,r = BT
Π f ,c,rB (2.52)


Πz 0 0

0 Πθ 0

0 0 Πr

=


cosα −sinα 0

sinα cosα 0

0 0 1




Tf 0 0

0 0 0

0 0 0




cosα sinα 0

−sinα cosα 0

0 0 1

 (2.53)

From here, we get the fiber contribution to stress in the axial (z) and circumferential (θ) directions

of the tissue (Equation 2.54).

Π
f
z = Tf cos2

α (2.54a)
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Π
f
θ
= Tf sin2

α (2.54b)

The sum of all fiber stresses in each direction can then be scaled by a collagen area

fraction (Equation 2.59)

Tf =
f

A f
(2.55a)

A f =
πD2

4
(2.55b)

Π
f
z = Tf cos2

α (2.55c)

Πtiss,i = AFcolΠ
f
i (2.55d)

The only remaining unknown variable is Young’s modulus of elasticity E, which we

assume is equal for all fibers in a given vessel.

2.6 Numerical Implementation

All numerical simulations were carried out in MATLAB. Due to varying sensitivity

to starting points, two different minimization algorithms were implemented to find the global

minima. The first algorithm was a direct-search algorithm based on the Nelder-Mead simplex and

the other was a gradient-based method (nonlinear least-squares solver).

2.6.1 Quasi-linear Viscoelasticity Model

In order to solve the integral in the QLV model (Equation 2.12), a code using the trape-

zoidal rule was implemented. Here, the circumferential model was minimized against the

measured area over time while the axial model was minimized against vessel length over time.

For each of the directions, the elastic function was first optimized to obtain a good guess for
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the inverse of the elastic modulus and either Lo (axial) or Ao (circumferential). The relaxation

function was then added and the entire QLV function was optimized using the objective function

defined in Equation 2.56. To minimize the objective function by adjusting the input parameters

(φax = {E,C1,b1,Lo} and φcirc = {A0,Eθ,C1,b1}), a direct search (Nelder-Mead simplex) method

was implemented via the fminsearch function in MATLAB.

φ̂ = argminφ(J(φ)) (2.56a)

J(φ) =

√√√√∑
n
j=1(X(t j;φ)− x j)2

∑
n
j=1 x2

j
(2.56b)

Here, X is the model prediction, x is the measured data, w is the set of parameters in

a given model, and φ̂ is the set of optimal parameters. To find the minimum of the objective

function, a Nelder-Mead algorithm was implemented with fminsearch function of MATLAB.

Ao and Lo were based on the minimum cross-sectional area (mm2) and vessel length of the

individual data set, respectively. Although these parameters were measured, they entered the

minimization algorithm for numerical stability purposes. The parameters Eθ and Ez were initially

set to 4.8X106 mmHg, and b1 = 0.05 s based on literature [57]. The product of the Poisson’s

ratios was arbitrarily chosen to be 0.25. In each case, parameters were constrained to positive

values by taking the square root of the values before entering the optimization and squaring after

exiting the optimizer. Additionally, C1 was constrained to values between 0 and 1. To enforce

this, γ was optimized and converted to C1 (Equation 2.57).

C1 =C1,max
γ2

1+ γ2 (2.57)
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2.6.2 Microstructurally-Motivated Models

Fiber Family Models

To begin incorporating structural information into the vascular wall mechanics, we used

1-, 2-, and 4-fiber family models. In each case, the process included a two-step optimization

approach due to the imbalance of unknown parameters and known equations. First, the axial and

circumferential data were each fitted to get a better initial guess for minimizing all parameters

combined. While each model included the same isotropic contributions to stress, the anisotropic

contributions varied depending on the number of fiber families considered.

One-fiber Family Model

The one-fiber family model accounts for fibers at a single dominant fiber orientation

which was measured from multiphoton images of collagen taken at the center of the vessel wall.

In total, this model has three parameters (φ = {c,c1
1,c

1
2}) that appear in the calculation of both

axial and circumferential stress.

Two-fiber Family Model

In an attempt to separate axial and circumferential contributions to vessel mechanics, the

two-fiber family model was also implemented. This model includes anisotropic contributions

to stress from fibers oriented both axially and circumferentially and has 5 unknown parameters

(φ = {c,c1,c1
2,c

2
1,c

2
2}). Here, we assume that the contributions from fibers oriented between the

axial and circumferential direction can be projected onto one of the two axes.

Four-fiber Family Model

To determine mechanical properties of the fibers oriented at a dominant angle between

the axial and circumferential directions, we implemented a four-fiber family model. This model
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included fibers oriented axially, circumferentially, and at two angles symmetrically oriented about

the axial direction. Because these fibers are symmetrically oriented, their contributions to axial

and circumferential mechanics are assumed equal, reducing the number of additional parameters

by 2. In total, this model has seven unknown parameters (φ = c,c1
1,c

1
2,c

2
1,c

2
2,c

3,4
1 ,c3,4

2 ). In our

initial modeling efforts, α also entered the parameter optimization. However, the optimal angle

did not vary from the guess (change in α did not affect the fitting of the model) and so α became

fixed at its measured value.

General Optimization of Fiber Family Models

Initially, parameters were allowed to reach negative values to better fit the data. However,

parameters related to stiffness became negative, which did not translate to physical interpretations.

For these reasons, parameters were then constrained to positive values. To constrain the parameters

to positive values, we first took the square root of the parameters before entering the optimizer,

and then squared them before use in calculating the predicted values used in the objective

function. To minimize the objective function, MATLAB’s built-in functions fminsearch and

lsqnonlin were both implemented to test the stability of the direct-search (fminsearch) and

gradient-based (lsqnonlin) minimizers. In each of the axial, circumferential, and simultaneous

axial-circumferential parameter optimization protocols, the objective function (Equation 2.58)

that was minimized was a normalized version of that by Ferruzzi et al. [10].

error =
n

∑
i=1

[(
(Π

pred
z )i− (Πex

z )i

(Πex
z )i

)2

+

(
(Π

pred
θ

)i− (Πex
θ
)i

(Πex
θ
)i

)2
]

(2.58)

Here, i represents individual data points and n is the total number of data points while the super-

scripts pred and ex indicate stresses predicted by the model and calculated from the experimentally

measured values, respectively.
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Elastica Model

To further incorporate changes in the vascular microstructure, we also developed a

modified elastica model in which fibers are assumed to be represented by the unbending of

rods. Here, each collagen fiber was modeled individually and their contributions to the axial

and circumferential directions were summed. Like the QLV model, axial and circumferential

data were optimized individually. For this model, the value of elasticity was optimized to fit the

experimental mechanical data using A nonlinear least-squares solver in MATLAB (lsqnonlin)

with a minimum termination tolerance of 1e-5. The objective function minimized here was the

same as that used for the fiber family models (Equation 2.58).

Summary of Parameter Estimations

Summaries of the parameter estimations used for each model are found in Tables 2.1-2.3.

Table 2.1: Parameter estimation for the QLV model. Here, the direct-search method fminsearch
was used to determine the elastic moduli (Ez,Eθ), the relaxation time (b1), the amplitude of
relaxation time (C1), and either the initial area (Ao) or initial length (Lo) of a vessel.

Model ε j(t) = K(0)s(e)j [Fj(t)]+
∫ t

t0 s(e)j [Fj(γ)]
dK(t−γ)

dγ
dγ

Experimental εθ =
(1−νzθνθz)

Eθ
Πθ εz =

(1−νθzνzθ)
Ez

Πz

Objective Function error =
√

∑
n
j=1(X(t j;w)−x j)2

∑
n
j=1 x2

j

Parameters φcirc = {Ao,Eθ,C1,b1} ; φax = {Lo,Ez,C1,b1}
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Table 2.2: Parameter estimation for the fiber family models. Here, both the direct-search
fminsearch and gradient-based lsqnonlin methods were used to determine the stiffness of
the isotropic contributions (c), stiffness of the anisotropic anisotropic (c1

1,c
2
1,c

3,4
1 ), and non-

dimensional anisotropic material parameters (c1
2,c

2
2,c

3,4
2 ).

Model Πth
i = c

(
λ2

i − 1
λ2

i λ2
j

)
+ ck

1(λ
2
i −1)exp[ck

2(λ
2
i −1)2]λ2

i

+2c3,4
1 (Id

4 −1)exp[c3,4
2 (Id

4,i−1)2]λ2
i sin2

α

Experimental Πex
θ
= rp

h Πex
z =

(
f

2πr̄h +
r̄ p̄
2h

)

Objective Function error = ∑
n
l=1

[(
(Πth

z )l−(Πex
z )l

(Πex
z )l

)2
+

(
(Πth

θ
)l−(Πex

θ
)l

(Πex
θ
)l

)2
]

Parameters φ = {c,c1
1,c

1
2,c

2
1,c

2
2,c

3,4
1 ,c3,4

2 }

Table 2.3: Parameter estimation for the Elastica Model. Here, j represents axial (z) or cir-
cumferential (θ) directions, Eθ is the elastic modulus of collagen fibers calculated using the
circumferential data and Ez is the elastic modulus of collagen calculated using axial data.

Model Πth
j,tiss = AFcol, jΠ

f
j

Experimental Πex
θ
= pr

h Πex
z =

(
f

2πrh +
pr
2h

)
Objective Function errθ = ∑

n
i=1

(
(Πth

θ
)i−(Πex

θ
)i

(Πex
θ
)i

)2

∑
n
i=1

(
(Πth

z )i−(Πex
z )i

(Πex
z )i

)2

Parameters φθ = {Eθ} φz = {Ez}
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2.7 Structural Quantification

Collagen fiber structures were quantified by tracing the collagen fibers imaged using

second harmonic generation (SHG) with an Ultima Multiphoton Microscopy System (Prairie

Technologies, Middleton, WI). Collagen is able to be imaged with SHG without staining because

of it’s non-symmetrical triple helix arrangement. Specifically, SHG takes place when the electric

field from the exciting light deforms a non-symmetrical molecule and creates an oscillating field

at twice the frequency (second harmonic) [23]. In our case, vessels were cannulated and placed

in a custom-made system to place under the microscope were submerged in PBS and stretched

to 40% of their ex-vivo length on a rod with a diameter matching that of the vessel to prevent

the vessel from collapsing (Figure 2.11). To better match their inflated geometry, later vessels

were also stretched on a cannula that closely matched the inner diameter of the vessel, stretched

to 1.4 times the ex-vivo length, secured with small drops of glue at either end, and fixed with

10% formalin for up to 48 hours. Vessels were then transferred to 70% ethanol and transported

to imaging under the multiphoton microscope where they were transferred to a custom-made

device that held the vessels under PBS for imaging. After imaging was completed, vessels were

transferred back to 70% ethanol. In each case, vessels were oriented such that the axial direction

was aligned with the horizontal axis of the image and starting from the adventitia, a z-series of

images across the vessel was was acquired with a 0.5 µm step size, 963 X 963 pixel field of view,

and 2 µs dwell time with a 20X dipping objective at an excitation wavelength of 880 nm.

A custom written MATLAB code consisting of a combination of a gradient-based edge

detection method via the derivative a Gaussian filter (‘canny’ option in MATLAB’s edge function),

filling of closed areas via the ‘holes’ option in MATLAB’s imfill, turning fiber edges to traceable

lines via ‘thin’ option of MATLAB’s bwmorph, and removing noise using the ‘clean’ option of

MATLAB’s bwmorph which removed single white pixels surrounded by black pixels. Finally,

intersecting areas (branch points) were removed and the end points were determined with the
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Figure 2.11: A vessel segment cannulated on each end submerged in PBS under a 20X dipping
objective for MPM imaging.

Table 2.4: Measured tortuosities (To) and angles (α) for the fibers found in Figure 2.12. Note
that fibers 1 and 2 are straight lines with tortuosity values of 1 and the correct angles of 90◦and
0◦, respectively.

Fiber Number To α [◦]
1 1.00 90.00
2 1.00 0.00
3 10.85 -40.86
4 1.40 6.39
5 1.40 53.96

‘branchpoints’ option of bwmorph and find, respectively. The skeletonized fibers and their

respective end points that resulted from this code were then used to determine the length and

end-to end distance of each fiber. When determining the length of fibers, one end of the fiber

was identified and tracing along the fiber, a value of 1 was added for white pixels adjacent to

the current pixel and
√

2 for those located diagonally until the second end point was reached.

This length and the distance between the two end points were then used in the calculation of

tortuosity (Equation 2.45) and the angle from the horizontal to this end-to-end segment was used

to determine the angle (Figure 3.5) of the fibers identified in the images. During the development

of this code, a phantom image was analyzed to ensure fibers were properly traced (Figure 2.12).

The same phantom image was also analyzed by hand using FIJI to validate the measurement of

fiber length, angle, and tortuosity. Phantom values of tortuosity and fiber angle obtained can be

found in Table 2.4.
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Figure 2.12: Phantom image overlaid with the skeletonized version of the fibers produced by
custom code (red). The measured tortuosities (To) and angles (α) of fibers 1-5 are found in Table
2.4

After selecting one image that contained a full field of view of collagen, a secondary

custom MATLAB code was used to create images of the side views of the stack. The new image

was filtered and binarized so that the white pixels (collagen) could easily be summed (Figure

2.13) and represented by the area in the cross-sectional view of the image (A f ibers). The pixels

corresponding to the 5 images nearest the one of interest were also counted (Aimage) so as to

calculate the area fraction of collagen (Equation 2.59) represented by the image of interest. This

value was then used to scale the computed stress up from the sum of those determined from the

fibers in the image chosen up to the collagen imaged across the vessel thickness. Finally, images

of collagen were opened in Fiji where the approximate fiber diameter was measured by hand

using the straight line tool and measuring the calibrated length of the line drawn. The length was

calibrated with the calibration tool by specifying the size of the pixels as output from the MPM

system (0.317 x 0.317 µm).

AFcol =
A f ibers

Aimage
(2.59)
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Figure 2.13: Collagen identified (Green) in the x-z plane of a stack of MPM images through
the vessel thickness of a week 4 MCT LPA.

2.7.1 Data Collected

For each animal, data were collected for each the left and right pulmonary artery. For

each artery, axial and circumferential mechanical data and MPM images were collected. In

the axial mechanics, constant flow was prescribed that corresponded with a constant pressure

matching the measured in vivo mPAP. This constant pressure resulted in an approximately

constant circumferential stretch. While the vessel was constantly pressurized, the axial length was

cyclically changed resulting in varying axial stretch (between 1.4 and 1.45) and therefore stress.

During the circumferential mechanical test, constant axial stretch, cyclical flow causing cyclical

variations in diameter resulting in cyclical circumferential stretch and stress were collected. Along

with mechanical data, multiphoton images of collagen were collected and used for microstructural

measurements. Such microstructural information include tortuosity, fiber angle, and collagen

fraction.
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3 Results

Male Sprague-Dawley rats were injected with monocrotaline to induce PAH. While all of

the earlier week animals survived to their date of experiments, not all late stage disease animals

survived to their surgery date. Of the animals that did survive, vessels were imaged via MPM and

vascular mechanics were tested in a tubular biaxial system and modeled with constitutive models.

Herein, we present the results of these experiments.

3.1 Hemodynamic Data

Of 64 animals that were injected with MCT, 23 were designated as week four (late stage

disease). Of these animals, 52% (22 animals) survived to the date of experiments. No other

animals died prematurely. On the date of experiments, blood pressure measurements in the right

ventricle and pulmonary arteries (Figure 3.1) were first taken to confirm the health state of the

animals. Mean pulmonary arterial pressure for control animals was 20.46±4.25 and 45.79±5.64

mmHg for advanced state PAH animals.

3.2 Mechanical Data

Using values measured in vivo, vessels were mechanically tested at cyclical pressure with

constant axial length (circumferential protocol) and cyclical axial stretch at constant mPAP (axial

protocol). The pressure, diameter, and axial load and length were all first collected as a time series
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Figure 3.1: Left: Blood pressure measurements over time in the main pulmonary artery (blue)
and right ventricle (green). Right: mean pulmonary arterial pressure in control (green) and
hypertensive (blue) animals.

(Figures 2.6-2.7) and later converted to stress-strain loops. These tests were ran twice to confirm

mechanical reproducibility and stability. Examples of reproducible data chosen for analysis can

be found in Figure 3.2 and examples of resulting stress-strain loops are outlined in Figures 3.3-3.4.

In these results, the hysteresis was much larger in the axial protocol than in the circumferential.

Therefore, four cycles in which diameter, pressure, and load were consistent were chosen for

QLV modeling to investigate the stiffness and time-dependent properties of the tissues. Later, one

unloading phase was used to train our microstructural model since the unloading phase reflects

the energy stored in vivo [11].

3.2.1 Structural/Multiphoton Microscopy

Collagen fibers were imaged in a z-series starting from the adventitia and continued

toward the intima until the fibers could no longer be identified via multiphoton microscopy. This

resulted in stacks of images ranging between 180 and 300 images. While the fibers were highly

tortuous and randomly oriented in control arteries, they became engaged and tended to a preferred

direction in the diseased state (Figures 3.5-3.6).
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Figure 3.2: Measured data from the tubular biaxial protocols. In the circumferential protocol
(top row), diameter (A) and pressure (B) are measured to produce diameter-pressure loops
(C). In the axial protocol, axial displacement (D) and load (E) are measured to produce axial
displacement-load loops (F).

3.3 Model Fitting and Model Parameters

3.3.1 Quasi-linear Viscoelasticity

Due to the nature of the mechanical testing (separate axial and circumferential protocols),

the two mechanical axes were analyzed individually with QLV models. The two models used

predicted cross-sectional area (circumferential mechanics) as a function of time and vessel

lengthening as a function of axial load (axial mechanics). Each of these models characterized

mechanical properties via optimization of parameter values initially set to values from literature

[57]. A summary of the optimal values for the axial and circumferential directions can be found

in Tables 3.2 and 3.2, respectively [44].

In the circumferential direction, the modulus of elasticity and the relaxation time sig-

nificantly changed from control to week 4 MCT. Specifically, the modulus of elasticity (Eθ)

significantly increased from the control and week one of MCT to week four of MCT. When the
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Table 3.1: Summary of the optimized parameters from the QLV model of left and right pul-
monary arteries in the circumferential protocol. N is the number of vessels in the group, Âo is
the reference cross-sectional area of the vessel, Eθ is the modulus of elasticity, and C1,θ is the
amplitude associated with the relaxation time (b1,θ). J(φ) is the normalized root-mean square
error and R2 is the coefficient of determination.

N Eθ×103 C1,θ×10−2 b1,θ×10−4 J(φ)×10−4 R2

(mmHg) (sec)
PL LPA 4 1.88±1.62 51.8±1 5.16±0.03 0.64±0.27 0.968±0.012

RPA 5 3.42±3.1 52.1±1.7 5.05±0.05 0.28±0.1 0.969±0.019
MCTW1 LPA 5 2.31±1.24 52.6±1.4 5.1±0.05 0.71±0.25 0.994±0.002

RPA 5 1.42±0.73 52.2±0.08 5.2±0.007 0.75±0.14 0.983±0.006
MCTW4 LPA 5 7.62±2.81 52.4±1.3 5.08±0.05 0.64±0.1 0.976±0.011

RPA 5 22.88±12.68 51.9±1.1 5.1±0.03 0.34±0.2 0.99±0.004

Table 3.2: Summary of the optimized parameters from the QLV model of left and right pul-
monary arteries in the axial protocol. N is the number of vessels in the group, L̂o is the reference
length of the vessel, Ez is the axial modulus of elasticity, and C1,z is the amplitude associated
with the relaxation time (b1,z). J(φ) is the normalized root-mean square error, and R2 is the
coefficient of determination.

N Ez×106 C1,z b1,z J(W )×10−4 R2

(mmHg) (sec)
PL LPA 4 3.28±0.82 0.83±0.34 0.12±0.02 6.72±1.08 0.994±0.002

RPA 6 3.48±2.22 0.89±0.28 0.15±0.06 7.86±1.16 0.993±0.002
MCTW1 LPA 3 1.29±0.60 1.00±0.00 0.18±0.01 11.8±0.99 0.986±0.003

RPA 3 1.31±0.63 1.00±0.00 0.23±0.02 13.8±3.19 0.979±0.011
MCTW4 LPA 6 2.25±0.52 0.98±0.06 0.13±0.03 7.48±1.39 0.993±0.003

RPA 7 3.45±1.54 0.89±0.13 0.13±0.03 6.90±1.03 0.994±0.002
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Figure 3.3: Example mechanics of the left pulmonary artery from normotensive (top panels)
and hypertensive (bottom panels) animals in the axial (left panels) and circumferential (right
panels) directions. Note that axial stress is two orders of magnitude greater than circumferential.
Note that the unit of axial stress is megapascals whereas the unit of circumferential stress is
kilopascals.

relaxation time was transformed through the natural log of the parameter, it became significantly

larger in the RPA of MCT week 1 compared to that of the placebo. Axially, the modulus of

elasticity decreased from the placebo to early stage disease (MCTW1), but increased in the late

stage to values similar to placebo. The opposite trend was seen in the relaxation time of the axial

direction, meaning vessels become softer and increase buffering abilities at early stage disease,

but recover these properties at late stage disease [44]. Additionally, the relaxation time was much

greater in the axial direction than the circumferential but did not change significantly with disease

progression in either left or right pulmonary arteries.
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Figure 3.4: Example mechanics of the right pulmonary artery from normotensive (top panels)
and hypertensive (bottom panels) animals in the axial (left panels) and circumferential (right pan-
els) directions. Note that axial stress is two orders of magnitude greater than the circumferential
direction.

3.3.2 Fiber Family Models

For each of the fiber family models, uniaxial data was first fit by optimizing an initial

guess. The resulting parameters were then re-entered as an initial guess to assess the stability of

the optimal parameter sets. If the resulting parameters from the second optimization did not differ

from the guess, the solution was deemed stable.

While the one-fiber family model was able to predict the axial and circumferential data

individually, it failed to predict the two combined. Here, the difference in magnitude of the two

data sets was too great for the shared parameters to fit simultaneously. Similarly, the two-fiber

family model was able to predict the individual axial and circumferential data. Although it was

also able to predict the two simultaneously, the optimal parameter sets varied greatly between

vessels. Additionally, this model did not provide nor was it informed by changes in collagen

organization.
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Normotensive Hypertensive
Left Pulmonary Artery

Figure 3.5: Example multiphoton images (top) from the LPA of a normotensive (left) and
hypertensive (right) animal with their respective distributions of fiber orientations (middle) and
tortuosities (bottom). Note that the fibers become straighter and more aligned in the hypertensive
state.
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Normotensive Hypertensive
Right Pulmonary Artery

Figure 3.6: Example multiphoton images (top) from the RPA of a normotensive (left) and
hypertensive (right) animal with their respective distributions of fiber orientations (middle) and
tortuosity (bottom).Note that fibers become straighter and more aligned in the hypertensive state.
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Table 3.3: Parameter results from one-fiber family modeling of right pulmonary arteries in
advanced disease. Note that the error was very high for each sample (1-2 orders of magnitude
higher than other models), indicating that the model was not able to fit well the axial and
circumferential data simultaneously.

c c1 c2 error
[MPa] [MPa]

Sample 1 6.9 6.1e4 -10.7 73.1
Sample 2 -2.7 3.11e13 -36.6 61.4
Sample 3 2.47 2.59e20 -56.9 51.0

Table 3.4: Parameter results from two-fiber family modeling of right pulmonary arteries in
advanced disease.

c C1
1 C1

2 C2
1 C2

2 error
[kPa] [kPa] [kPa]

Sample 1 2.5e-7 37.7 6.8 580.1 5.6 0.4
Sample 2 814.7 17.1 7.4 1.4e+3 -20 2.2
Sample 3 6.3e+3 2.6 8.9 -2.24e+3 7.3 1.1
Sample 4 6.8e-6 38.8 6.7 -1.9e+3 -15 0.6

Four-fiber Family Model

Initial efforts to fit this model allowed the parameters to reach negative values. Here, the

model was able to predict many of the data sets. However, the parameters represent material

properties such as stiffness. Therefore, the parameters were then constrained to positive values.

Once constrained, the model no longer predicted half of the data sets. Because the direct-search

method (fminsearch) tends to be more sensitive to changes in initial guesses, we also implemented

a non-linear, gradient-based optimization method (lsqnonlin). Although trials indicated that

lsqnonlin was less sensitive to changes in our initial guess and was able to fit the individual

axial and circumferential data well, it was still unable to fit the model to half of our biaxial data.

For some of the vessels, the model was not able to reach the correct concavity. To address this,

the exponents in the model were allowed to reach negative values since they are not related

to stiffness and are unitless. While allowing negative exponential values resulted in better

circumferential fittings, the simultaneous fittings did not improve over the constrained parameter

fittings. Regardless of the modeling effort, there was not a trend in parameter values (summary of
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Table 3.5: Summary of Optimized parameters from the Four-fiber Family model of right
pulmonary arteries from five control and four late-stage disease animals. While parameter
representing stiffness in the circumferential direction (C2

1) did increase, changes in parameters
were not significant.

C C1
1 C1

2 C2
1 C2

2 C3,4
1 C3,4

2 error
[kPa] [MPa] [kPa] [kPa]

CTL Average 68.6 -1.41e2 4.63 -1.19e5 8.94 3.60e4 7.5 0.93
STDEV 106.8 2.14e2 7.14 2.67e5 23.49 8.01e4 7.16 1.49

MCTW4 Average 191.7 -0.51 -1432.61 -8.60e3 3.24 1.23 10.68 0.27
STDEV 217.8 1.02 2885.98 1.72e4 36.69 2.27 6.20 0.26

optimized parameters in Table 3.5). Therefore, we also attempted a model that incorporated the

microstructural properties of individual fibers.

3.3.3 Elastica Model

To ensure proper building of the Elastica Model, we reproduced results from previously

reported papers (Figure 3.7). Specifically, we reproduced the calculations of θo for varying stretch

values as reported by MacKenna et al. [34] and θ1 by Ling and Chow for any measured fiber

fiber tortuosity [32]. We were then able to transform fiber tension calculated in the model to their

contributions to tissue mechanics, summed over all of the fibers measured, and scaled up to the

full thickness of the tissue.

Because this model only included the optimization of a single parameter, it was much

less sensitive to initial guesses entering the optimizer. To date, the mechanics were optimized

separately as was done with the QLV model.
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Figure 3.7: Here, we were able to successfully predict θo for multiple tortuosity values (right)
and θ1 for multiple values of fiber stretch (right).

Figure 3.8: Examples of elastica model (blue) fittings of axial (left) and circumferential (right)
experimental data (orange). Note that the stress levels are different between axes.
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4 Discussion

4.1 Mechanical and Microstructural Properties

Pulmonary arteries were tested in a tubular biaxial system which demonstrated higher

hysteresis effects in the axial direction than the circumferential direction. Therefore, to better

characterize the mechanical differences in the two directions and between vessels of animals

at different stages of disease, we implemented the QLV model. Our results revealed that the

relaxation time in the axial direction was greater in axial direction than in the circumferential

direction, but did not change with disease progression. Furthermore, the elastic modulus in

the circumferential direction increased further in the right pulmonary artery than left at late

stage disease. Furthermore, fibers became less tortuous and aligned in a preferred direction with

disease progression. However, the fibers were analyzed near the center of the vessel wall and

became aligned in the axial direction which was not the direction of increased stiffness. However,

this may be remedied by analysis of fiber diameter as well as analysis of fibers throughout the

vascular wall since the orientation of fibers in the aorta vary depending on vessel wall layer

[47]. Furthermore, future studies should determine the best method of analysing the statistical

differences in histograms of fiber angles and tortuosities since the distributions may not be

considered normal.
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4.2 Model Findings

While the QLV models were able to provide mechanical and time-dependent information

on the vessels, they were not able to explain the reason behind changes during disease progression.

Therefore, we explored several microstructural models. The first of which was the one-fiber

family model in which constituents of the vessel are assumed to belong to the same orientation

with the tissue. This model, however, had too few parameters to predict the mechanical behavior

of vessels in both the axial and circumferential directions. Therefore, the two-fiber family model

was implemented. In this model, vessel wall constituents were assumed to belong in either the

axial or the circumferential direction. Any other directions would then be broken down to their

projections or contributions to these directions. While this model provided more parameters to

better fit measured mechanics, it was not able to fit the two directions simultaneously and neglects

the importance of fibers that do not belong in the axial or circumferentially oriented categories.

Hence, the four-fiber family model was explored in an attempt to include contributions from the

axial, circumferential, and two symmetrically oriented fiber groups. This model was able to fit

both axial and circumferential data simultaneous. However, finding a unique solution proved

difficult due to the overparameterization of the model.

We also explored the use of the Elastica Model which assumes quarter periods of sinusoidal

collagen to be modeled as bent rods in their unloaded state and attributes tissue mechanics to the

unbending of these rods. However, to date, important fiber morphologies such as individual fiber

diameters have yet to be determined and the implementation of simultaneously modeling axial

and circumferential mechanics.

4.3 Limitations

One limitation to this study was the animal model used. While the monocrotaline is a well

established model of PAH, it also has some drawbacks. For instance, the monocrotaline model is
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associated with high mortality past 3 weeks of injection and earlier impacts on the right ventricle

compared to other models [21]. Therefore, our numbers of week 4 MCT animals were relatively

low. These sudden deaths appear to be related to the toxicity of crotaline which does not solely

affect the lungs [58].

In the current configuration, the Elastica model works under the assumption that all

collagen fibers have the same diameter and stiffness. The stiffness may not, and the diameters

certainly are not equal for all collagen fibers in pulmonary arteries. Furthermore, this model

currently works under the assumption that all fibers have the same periodicity - which is not the

case and should be addressed in future studies. Another limitation to the current Elastica Model

is that it does not account for straight fibers (To = 1). In other words, once a fiber is unbent, the

stress it experiences becomes infinitely great and can cause problems when trying to model tissue

which was stretched beyond what should be possible for the fibers to stretch. In these cases,

it is possible that the fiber rotates to accommodate further stretch in a given direction, though

this would need to be added to the model and explored in mechanical tests under microscopy.

Furthermore, fibers were imaged at unequal stretch (λz = 1.4 and λθ ≈ 1). This may affect the

results of modeling efforts because as tissues are stretched, they become more engaged and realign

in the direction of greater load [4]. While efforts were taken to reverse the unequal stretching of

the tissue when imaging, these efforts were made under the assumption that the stretching of the

tissue is directly translated to the stretching of the fibers and not affected by other constituents of

the vessel such as smooth muscle cells or elastin. The elastica model also struggled to fit axial

data at in vivo stretch values. This is likely due to the shape of the curve - the elastica model does

not account for a large “toe region” in a stress-stretch curve. Therefore, adding other terms to the

model which represent the toe region (such as elastin contributions) or testing tissues at lower

stretch values may improve modeling efforts. Lastly, the elastica model was not able to predict

circumferential stress at tissue stretch levels much greater than or less than one. This could be

due to the fact that the model does not account for compression of fibers and is not defined at
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stretch values greater than the fiber tortuosity.

4.4 Future Studies

4.4.1 Animal Model

While the current study attempts to better understand progression of pulmonary arterial

hypertension, future studies can improve upon the attempts of inducing PAH. For instance, another

model of PAH, called the sugen-hypoxia (SuHx) model is induced via a double-hit with sugen

and hypoxia. Here, animals are injected with a dose of SU5416 and then kept in a hypoxic

environment (10% oxygen) for three weeks and then returned to normoxia to allow PAH to reach

a severe state which mimics more closely symptoms found in human lungs such as plexiform

lesions [1, 39, 52]. This animal model is also less susceptible to sudden death. Additionally, our

methods included the use of male Sprague-Dawley rats due to the reproducibility of male rats as

a result of their hormones fluctuating less than females. However, PAH is a disease that affects

women 2-4 times more often than men than men [12, 16, 31]. Females also tend to tolerate PAH

better as indicated by increased survival rates compared to males [12]. Therefore, future studies

should include the use of female rats.

4.4.2 Image Analysis

More detailed image analysis should also be implemented in future studies. Currently,

we assume that each fiber has the same periodicity. However, initial inspection of MPM images

indicates this is not the case. Therefore, a code that determines the periodicity of each individual

fiber should be developed. One method of determining periodicity is determining how many times

a fiber intersects with its mid-line (straight end-to-end path). Another method to investigate would

be measuring the distance between the peaks of each individual fiber. We also currently assume
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all fibers share the same diameter which was determined by taking the average of sampled fibers

measured in FIJI. However, the resolution of current fiber images allows for the edge detection of

one side of a fiber, but loses the other edge of the fiber. One promising solution is neural network

techniques which recognize objects of interest and enhances them. Should this work, we could

better determine the diameter of the fibers either with a code that calculates the area and length

of fibers and calculates the diameter by assuming the fiber image would straighten out into a

rectangle, or moves perpendicular from one edge and counts the distance it moves until it reaches

the other edge of the fiber.

4.4.3 Arterial Mechanics

Although the difference stress levels between the axial and circumferential direction is

large, we would like to model the two directions simultaneously since the same fibers with one

stiffness are contributing to each. To do this, experiments may need to be conducted at lower

ranges of pressure and stretch so that the axial and circumferential stress levels can more easily

be matched. Furthermore, our study determined that the left and right pulmonary arteries remodel

asymmetrically. To determine a more specific initial remodeling location, future studies may

investigate proximal and distal segments of these vessels.

4.4.4 Modeling Efforts

While the elastica model incorporates several collagen structural properties and weights

fiber contributions to tissue mechanics via image analysis, it is possible that the microscopy

efforts do not reveal all collagen in the tissue or the amount of collagen changing with disease

progression. To account for such changes, a scaling term representing the total collagen content

may be added. Such a value can be determined through a hydroxyproline assay. Additionally, we

recognize that there are other microstructural elements that we are not considering. Therefore,
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future studies may include model components representing elements such as collagen cross-

linking [53] or elastin [29, 63, 64]. For these models, additional parameters associated with

cross-linking and elastin may be added to the list of optimized values. If this adds too many

additional parameters, elastin can be imaged with a multiphoton microscope via autofluorescence

in a similar manner as SHG was used to image collage.

4.4.5 Imaging

Finally, future works may involve the use of autofluorescence to image and validate the

parameters associated with elastin. Future studies can image elastin via two photon excited

fluorescence and collagen via SHG simultaneously with an excitation wavelength of 800-810 nm

and the appropriate bandpass filters for elastin and collagen [4, 50, 63, 64].

57



Bibliography

[1] ABE K., TOBA M., ALZOUBI A., ITO M., FAGAN K.A., COOL C.D., VOELKEL N.F.,
MCMURTRY I.F., AND OKA M. Formation of Plexiform Lesions in Experimental Severe
Pulmonary Arterial Hypertension Circulation, Vol.121 pp. 2747-2754, 2010.

[2] BERTERO T., COTTRILL K.A., YU L., HAEGER C.M., DIEFFENBACH P., ANNIS S.,
HALE A., BHAT B., KAIMAL V., ZHANG Y., GRAHAM B.B., KUMAR R., SAGGAR

R., SAGGAR R., WALLACE W.D., ROSS D.J., BLACK S.M., FRATZ S., FINEMAN J.R.,
VARGAS S.O., HALEY K.J., WAXMAN A.B., CHAU B.N., FREDENBURGH L.E., AND

CHAN S.Y. Matrix Remodeling Promotes Pulmonary Hypertension through Feedback
Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit Cell Reports, Vol.13 pp. 1016-
1032, 2015.

[3] BUDAS G.R., BOEHM M., KOJONAZAROV B., VISWANATHAN G., TIAN X., VEEROJU

S., NOVOYATLEVA T., GRIMMINGER F., HINOJOSA-KIRSCHENBAUM F., GHOFRANI

H.A., WEISSMANN N., SEEGER W., LILES J.T., AND SCHERMULY R.T. ASK1 Inhibition
halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension Am. J.
Respir. Crit. Care Med., Vol.197(3) pp. 373-385, 2017.

[4] CHOW M., TURCOTTE R., LIN C.P., AND ZHANG Y. Arterial Extracellular Matrix: A
Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen
Biophysical Journal, Vol.106 pp. 2684-2692, 2014.

[5] DEBES J. AND FUNG Y.C. Biaxial Mechanics of Excised Canine Pulmonary Arteries Am J.
Physiol., Vol.269(2 Pt 2) pp. H433-H442, 1995.

[6] DREXLER E.S., QUINN T.P., SLIFKA A.J., MCCOWAN C.N., BISCHOFF J.E., WRIGHT

J.E., IVY D.D., AND SHANDAS R. Comparison of Mechanical Behavior Among the
Extrapulmonary Arteries from Rats Journal of Biomechanics, Vol.20 pp.812-819, 2007.

[7] DREXLER E.S., BISCHOFF J.E., SLIFKA A.J., MCCOWAN C.N., QUINN T.P., SHANDAS

R., IVY D.D., AND STENMARK K.R. Stiffening of the Extrapulmonary Arteries From Rats
in Chronic Hypoxic Pulmonary Hypertension Journal of Research of the National Institute
of Standards and Technology, Vol.113 pp. 239-249, 2008.

58



[8] ELLIS R., LEIGH R., SOUTHAM D., O’BYRNE P.M., AND INMAN M.D. Morphometric
Analysis of Mouse Airways after Chronic Allergen Challenge Lab. Investig., Vol.83(9) pp.
1285-1291, 2003.

[9] FERRUZZI J, VORP DA, AND HUMPHREY JD. On Constitutive Descriptors of the Biaxial
Mechanical Behaviour of Human Abdominal Aorta and Aneurysms. J. R. Soc. Interface,
Vol. 8, pp. 435-450, July 2010.

[10] FERRUZZI J., COLLINS M.J., YEH A.T., AND HUMPREY J.D. Mechanical Assessment of
Elastin Integrity in Fibrillin-1-deficient Carotid Arteries: Implications for Marfan syndrome
Cardiovascular Research (European Society of Cardiology), Vol.92 pp. 287-295, 2011.

[11] FERRUZZI J., BERSI M.R., AND HUMPHREY J.D. Biomechanical Phenotyping of Central
Arteries in Health and Disease: Advantages of and Methods for Murine Models Annals of
Biomedical Engineering, Vol.41 pp. 1311-1330, 2013.

[12] FODERARO A. AND VENTETUOLO C.E Pulmonary Arterial Hypertension and the Sex
Hormone Paradox Curr Hypertens Rep, Vol18(84) pp. 1-8, 2016.

[13] FREED A.D. AND DOEHRING T.C. Elastic Model for Crimped Collagen Fibrils J. Biomech.
Engr., Vol.127(4) pp. 587-593, 2005.

[14] FUNG Y.C. A First Course in Continuum Mechanics: Third Edition Prentice Hall, Engle-
wood Cliffs, NJ, 1994.

[15] FUNG Y.C. Biomechanics: CirculationSpringer-Verlag, New York, 1997.

[16] GAINE S.P. AND RUBIN L.J. Primary Pulmonary Hypertension The Lancet Vol.352(9129)
pp. 719-725, 1998

[17] GASSER T.C., OGDEN R.W., AND HOLZAPFEL G.A. Hyperelastic Modelling of Arterial
Layers With Distributed Collagen Fibre Orientations Journal of the Royal Society Interface,
Vol.3 pp. 15-35, 2005.

[18] GASSER T.C., GALLINETTI S., XING X., FORSELL C., SWEDENBORG J., AND ROY J.
Spatial Orientation of Collagen Fibers in the Abdominal Aortic Aneurysm’s Wall and its
Relation to Wall Mechanics Acta Biomaterialia, Vol.352 pp. 719-725, 2012.

[19] GASSER T.C. Aorta Biomechanics of Living Organs, pp 169-191, 2017.

[20] GERRINGER J.W., WAGNER J.C., VELEZ-RENDON D., AND VALDEZ-JASSO D. Lumped-
parameter Models of the Pulmonary Vasculature During the Progression of Pulmonary
Arterial Hypertension Physiol. Rep., Vol.6(3) pp. e13586 1-12, 2018.

[21] GOMEZ-ARROYO J.G., FARKAS L., ALHUSSAINI A.A., FARKAS D., KRASKAUSKAS D.,
VOELKEL N., AND BOGAARD H.J. The Monocrotaline Model of Pulmonary Hypertension
in Perspective Am. J. Physiol. Lung Cell Mol. Physiol., Vol.302 pp. L363-L369, 2012.

59



[22] GORFIEN S.F., HOWARD P.S., MYERS J.C., AND MACARAK E.J. Cyclic Biaxial Strain
of Pulmonary Artery Endothelial Cells Causes an Increase in Cell Layer-associated Fi-
bronectin Am. J. Respir. Cell Mol. Biol., Vol.3 pp. 421-429, 1990.

[23] HILL M.R., DUAN X., GIBSON G.A., WATKINS S., AND ROBERSON A.M. A The-
oretical and Non-destructive Experimental Approach for Direct Inclusion of Measured
Collagen Orientation and Recruitment Into Mechanical Models of the Artery Wall Journal
of Biomechanics, Vol.45 pp. 762-771, 2011.

[24] HOLZAPFEL G.A., GASSER T.C, AND OGDEN R.W. A New Constitutive Framework for
Arterial Wall Mechanics and a Comparative Study of Material Models Journal of Elasticity,
Vol.61 pp. 1-48, 2000.

[25] HOLZAPFEL G.A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering
Wiley, West Sussex, England, 2010.

[26] HUANG W., DELGADO-WEST D., WU J.T., AND FUNG Y.C. Tissue Remodeling of Rat
Pulmonary Artery in Hypoxic Breathing. II. Course of Change of Mechanical Properties
Annals of Biomedical Engineering, Vol.29 pp. 552-562, 2001.

[27] HUMPHREY J.D., DELANGE S.L. An Introduction to Biomechanics: Solids and Fluids,
Analysis and Design Springer, New York, N.Y., 2004.

[28] HUMPHREY J.D., EBERTH J.F., DYE W.W., AND GLEASON R.L. Fundamental Role of
Axial Stress in Compensatory Adaptations by Arteries Journal of Biomechanics, Vol.42 pp.
1-8, 2009.

[29] KAO P.H., LAMMERS S.R., TIAN L., HUNTER K., STENMARK K.R., SHANDAS R.,
AND QI H.J. A Microstructurally Driven Model for Pulmonary Artery Tissue J. Biomech.
Eng., Vol.133(5) pp. 051002, 2011.

[30] KOBS R.W., MUVARAK N.E., EICKHOFF J.C., AND CHESLER N.C. Linked Mechanical
and Biological Aspects of Remodeling in Mouse Pulmonary Arteries with Hypoxia-induced
Hypertension Am J Physiol Heart Circ Physiol, Vol.288 pp. H1209-H1217, 2005.

[31] LAI Y.C., POTOKA K.C., CHAMPION H.C., MORA A.L., AND GLADWIN M.T. Pul-
monary Arterial Hypertension: The Clinical Syndrome Circulation Research, Vol.115 pp.
115-130, 2013.

[32] LING S.C. AND CHOW C.H. The Mechanics of Corrugated Collagen Fibrils in Arteries J.
Biomechanics, Vol.10 pp. 71-77, 1977.

[33] LIU F., HAEGER C.M., DIEFFENBACK P.B., SICARD D., CHROBAK I., CORO-
NATA A.M.F., SUAREZ VELANDIA M.M., VITALI S., COLAS R.A., NORRIS P.C.,
MARINKOVIC A., LIU X., MA J., ROSE C.D., LEE S, COMHAIR S.A.A., ERZURUM

S.C., MCDONALD J.D., SERHAN C.N., WALSH S.R., TSCHUMPERLIN D.J., AND

60



FREDENBURGH L.E. Distal Vessel Stiffening is an Early and Pivotal Mechanobiological
Regulator of Vascular Remodeling and Pulmonary Hypertension JCI Insight, Vol.1(8) pp.
1-20, 2016.

[34] MACKENNA D.A. Contribution of the Extracellular Collagen Matrix to the Mechanics of
Ventricular Myocardium (PhD thesis) University of California, San Diego, 1994.

[35] MACKENNA D.A., OMENS J.H., AND COVELL J.W. Left Ventricular Perimysial Collagen
Fibers Uncoil Rather Than Stretch During Diastolic Filling Basic Research in Cardiology,
Vol.91(2) pp. 111-122, 1996.

[36] MACKENNA D.A., VAPLON S.M., AND MCCULLOCH A.D Microstructural Model of
Perimysial Collagen Fibers for Resting Myocardial Mechanics During Ventricular Filling
Modeling in Physiology, pp. H1576-H1586, 1997.

[37] MAARMAN G., LECOUR S., BUTROUS G., THIENEMANN F., AND SLIWA K. A Compre-
hensive Review: The Evolution of Animal Models in Pulmonary Hypertension Research;
Are We There Yet? Pulm. Circ., Vol.3(4) pp. 739-756, 2013.

[38] MONSON K.L., BARBARO N.M.,AND MANLEY G.T. Biaxial Response of Passive Human
Cerebral Arteries Annals of Biomedical Engineering, Vol.36(12) pp. 2028-2041, 2008.

[39] NICOLLS M.R., MIZUNO S., TARASEVICIENE-STEWART L., FARKAS L., DRAKE J.I.,
AL HUSSEINI A., GOMEZ-ARROYO J.G., VOELKEL N.F., AND BOGAARD H.J. New
Models of Pulmonary Hypertension Based on VEGF Receptor Blockade-induced Endothelial
Cell Apoptosis Pulmonary Circulation, Vol.2(4) pp. 434-442, 2012.

[40] OOI C.Y., WANG Z., TABIMA D., EICKHOFF J.C., AND CHESLER N.C. The Role of
Collagen in Extralobular Pulmonary Artery Stiffening in Response to Hypoxia-induced
Pulmonary Hypertension Am. J. Physiol. Heart Circ. Physiol, Vol.299 pp. H1823-H1831,
2010.

[41] POIANI G.J., TOZZI C.A., YOHN S.E., PIERCE R.A., BELSKY S.A., BERG R.A., YU

S.Y., DEAK S.B., AND RILEY D.J. Collagen and Elastin Metabolism in Hypertensive
Pulmonary Arteries of Rats Circulation Research, Vol.66 pp. 968-978, 1990.

[42] POLZER S., GASSER T.C., MAN V., TICHY M., SKACEL P., AND BURSA J. Structure-
based Constitutive Model Can Accurately Predict Planar Biaxial Properties of Aortic Wall
Tissue Acta Biomaterialia, Vol.14 pp. 133-145, 2014.

[43] PROSSER I.W., STENMARK K.R., SUTHAR M., CROUCH E.C., MECHAM R.P., AND

PARKS W.C. Regional Heterogeneity of Elastin and Collagen Gene Expression in Intralobar
Artereis in Response to Hypoxic Pulmonary Hypertension as Demonstrated by In Situ
Hybridization American Journal of Pathology, Vol.135(6) pp. 1073-1088, 1989.

61



[44] PURSELL E.R., VELEZ-RENDON D., AND VALDEZ-JASSO D. Biaxial Properties of the
Left and Right Pulmonary Arteries in a Monocrotaline Rat Animal Model of Pulmonary
Arterial Hypertension J. Biomech. Engr., Vol.138(11) pp. 111004-111004-11, 2016.

[45] RAMACHANDRA A.B. AND HUMPHREY J.D. Biomechanical Characterization of Murine
Pulmonary Arteries Journal of Biomechanics, Vol.84 pp. 18-26, 2019.

[46] RAZAVI H., ZARAFSHAR S.Y., SAWADA H., TAYLOR C.A., AND FEINSTEIN J.A. Quanti-
tative Characterization of Postnatal Growth Trends in Proximal Pulmonary Arteries in Rats
by Phase-contrast Magnetic Resonance Imaging Am. J. Physiol. Lung Cell Mol. Physiol.
Vol.301 pp. L368-379, 2011.

[47] SCHRIEFL A.J., ZEINDLINGER G., PIERCE D.M., REGITNIG P., AND HOLZAPFEL G.A.
Determination of the Layer-specific Distributed Collagen Fibre Orientations in Human
Thoracic and Abdominal Aortas and Common Iliac arteries J. R. Soc. Interface, Vol.9 pp.
1275-1286, 2011.

[48] SICARD D., FREDENBURGH L.E., AND TSHUMPERLIN D.J. Measured Pulmonary Arterial
Tissue Stiffness is Highly Sensitive to AFM Indenter Dimension Journal of the Mechanical
Behavior of Biomedical Materials, Vol.74 pp. 118-127, 2017.

[49] STENMARK K.R., DAVIE N., FRID M., GERASIMOVSKAYA E., AND DAS M. Role of the
Adventitia in Pulmonary Vascular Remodeling Am. Physiol. Soc., Vol.21 pp. 134-145, 2006.

[50] SUGITA S. AND MATSUMOTO T. Multiphoton Microscopy Observations of 3D Elastin and
Collagen Fiber Microstructure Changes During Pressurization in Aortic Media Biomech.
Model Mechanobiol., Vol.16 pp. 763-773, 2017.

[51] SUN W. AND CHAN S.Y. Pulmonary Arterial Stiffness: an Early and Pervasive Driver of
Pulmonary Arterial Hypertension Frontiers in Medicine, Vol.5(204) pp. 1-8, 2018.

[52] TARASEVICIENE-STEWART L., KASAHARA Y., ALGER L., HIRTH P., MCMAHON G.,
WALTENBERGER J., VOELKEL N.F., AND TUDER R.M. Inhibition of the VEGF Receptor
2 Combined With Chronic Hypoxia Causes Cell Death-dependent Pulmonary Endothelial
Cell Proliferation and Severe Pulmonary Hypertension The FASEB Journal, Vol.15 pp.
427-438, 2001.

[53] TIAN L., WANG Z., LIU Y., EICKHOFF J.C., ELICEIRI K.W., AND CHESLER N.C. Vali-
dation of an Arterial Constitutive Model Accounting for Collagen Content and Crosslinking
Acta Biomaterialia, Vol.31 pp. 276-287, 2015.

[54] TUDER R.M. Pulmonary Vascular Remodeling in Pulmonary Hypertension Cell Tissue
Res., Vol.367 pp. 643-649, 2017.

[55] TORTORA G.J., DERRICKSON B. Principles of Anatomy and Physiology 12 ed, Wiley,
Hoboken, N.J., 2009

62



[56] TOZZI C.A, CHRISTIANSEN D.L., POIANI G.J., AND RILEY D.J. Excess Collagen in
Hypertensive Pulmonary Arteries Decreases Vascular Distensibility Am. J. Respir. Med.,
Vol.149 pp. 1317-1326, 1994.

[57] VALDEZ-JASSO D., BIA D., ZOCALO Y., ARMENTANO R.L., HAIDER M.A., AND

OLUFSEN M.S. Linear and Nonlinear Viscoelastic Modeling of Aorta and Carotid Pressure-
Area Dynamics Under In Vivo and Ex Vivo Conditions Ann. Biomed. Eng., Vol 39(5) pp.
1438-1456, 2011.

[58] VELEZ-RENDON D., ZHANG X., GERRINGER J., AND VALDEZ-JASSO D. Compensated
Right Ventricular Function of the Onset of Pulmonary Hypertension in a Rat Model Depends
on Chamber Remodeling and Contractile AugmentationPulmonary Circulation, Vol.8(4) pp.
1-13, 2018.

[59] VOELKEL N.F., GOMEZ-ARROYO J., ABBATE A., BOGAARD H.J., AND NICOLLS M.R.
Pathobiology of Pulmonary Arterial Hypertension and Right Ventricular Failure European
Respiratory Journal, Vol.40 pp. 1555-1565, 2012.

[60] WANG Z. AND CHESLER N.C. Role of Collagen Content and Cross-linking in Large
Pulmonary Arterial Stiffening After Chronic Hypoxia Biomech Model Mechanobiology,
Vol.11 pp. 279-289, 2012.

[61] WANG Z., LAKES R.S., EICKHOFF J.C, AND CHESLER N.C. Effects of Collagen Deposi-
tion on Passive and Active Mechanical Properties of Large Pulmonary Arteries in Hypoxic
Pulmonary Hypertension Biomech Model Mechanobiology, Vol.12 pp. 1115-1125, 2013.

[62] WHITE R.J., MEOLI D.F., SWARTHOUT R.F., KALLOP D.Y., GALARIA I.I., HARVEY

J.L, MILLER C.M., BLAXALL B.C., HALL C.M., PIERCE R.A., COOL C.D., AND

TAUBMAN M.B. Plexiform-like Lesions and increased Tissue Factor Expression in a Rat
Model of Severe Pulmonary Hypertension AJP-Lung Cell Mol. Physiol., Vol.293 pp. L583-
L590, 2007.

[63] YU X., WANG Y, AND ZHANG Y. Transmural Variation in Elsatin Fiber Orientation
Distribution in the Arterial Wall Journal of the Mechanical Behavior of Biomedical Materials,
Vol.77 pp. 745-753, 2018.

[64] YU X., TURCOTTE R., SETA F., AND ZHANG Y. Micromechanics of Elastic Lamellae-
Unravelling the Role of Structural Inhomogeneity in Multi-Scale Arterial Mechanics J.R.
Soc. Interface, Vol. 15 pp. 1-11, 2018.

63




