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ABSTRACT OF THE DISSERTATION

Optical Preprocessing for Low-Latency Machine Vision

by

Baurzhan Muminov

Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, September 2022

Dr. Luat T. Vuong, Chairperson

In recent years there has been an increased interest towards edge computing, i.e.,

computing performed on distributed devices as opposed to centralized high-power hubs.

Examples of edge computing would be the local image processing performed on Unmanned

Autonomous Vehicles (UAV’s) or the specialized machine vision systems on drones. These

edge computing applications require schemes that are efficient with power and memory and

typically must operate real-time. Many state-of-the-art image processing solutions that em-

ploy advanced optimization and deep neural networks (NNs) achieve impressive benchmark

results, but are computationally demanding and thus on many occasions, impractical. The

additional requirement for a range of applications is noise robustness or the ability to work

in (extreme) low-light conditions; reasonable quality image or accurate object classification

may be critical when there is low light flux or when the environment is over-saturated with

other signals.

Here, we approach edge computing with a combination of optical preprocessing

and shallow NN and we show that this hybrid approach greatly reduces the computational
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requirements. For low-SNR imaging, we develop a technique that reconstructs objects and

scenes from their Fourier-plane images. The optical preprocessing is performed via encoded

diffraction with optical vortex singularities. The optical vortex encoder achieves differenti-

ation of the already-compressed Fourier-plane patterns and enables facile inverse inference

of the original object scene. We demonstrate that our method is robust to noise. And for

a simple NN architecture (one or two layers), leads to generalization, i.e., reconstruction

of objects from classes that are greatly different from the ones the NN was trained on.

Our research identifies strong potential for swift hybrid imaging systems with edge com-

puting applications and highlights the valuable function of the vortex encoder for spectral

differentiation.

vii



Contents

List of Figures x

List of Tables xiv

1 Introduction 1
1.1 Simplifying and Speeding up the Solution of Phase Problem via Optical Com-

puting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Image Reconstruction via Universal Neural Networks . . . . . . . . . . . . . 3
1.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Supervised Machine Learning . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Unsupervised Machine Learning . . . . . . . . . . . . . . . . . . . . 7

1.4 Informal Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Fourier Optical Processing for Low Light and Low Latency Machine Vi-
sion 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Vortex Fourier Encoding and Feature Extraction . . . . . . . . . . . 15
2.2.2 Small-Brain Inverse Reconstruction . . . . . . . . . . . . . . . . . . 18
2.2.3 Speed and Robustness to Noise . . . . . . . . . . . . . . . . . . . . . 24

2.3 Experiments and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Lightweight Universal Neural Network for Image Reconstruction 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Project Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 The Hybrid Vision System . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Universal Training Sets (UTS) and Diffractive Encoders . . . . . . . 44
3.2.3 Differences in Convergence and Single-Pixel Response with Different

Training Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Analysis with Singular Value Decomposition Entropy . . . . . . . . 51

viii



3.3.2 Heuristic Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Noise Robust Classification via Multi-Lens Arrays 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 2D Recursive Relations of the Vortex Fourier Transform . . . . . . . 59
4.2.2 Classification with no Hidden Layers . . . . . . . . . . . . . . . . . . 62

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusions 66

ix



List of Figures

1.1 The general scheme used in this thesis. Light is reflected from the object, then
passed through the (diffractive) optical encoder and collected by the camera
(blue arrows). Then the data is processed electronically (green arrows). The
last stage might be either reconstruction or classification. . . . . . . . . . . 4

2.1 (a) The general schematic of the technique: a laser illuminates the object.
Transmitted light is phase-modulated with a multi-vortex lens array. The
back focal plane vortex-Fourier intensity patterns are fed to a neural net
that reconstructs the original image. (b) The vortex-Fourier patterns have
fewer pixels. Here, the combined area of 9 dotted squares is equivalent to the
area of the original object. (c) The vortex-Fourier pattern for centered and
shifted MNIST handwritten digit ’5’ show increasing sensitivity to shifts and
larger areas (lower intensities) with increasing topological charges m. . . . . 12

2.2 (a) 36 images of the training set composed of MNIST handwritten digits
flipped vertically and horizontally. (b) 25 images of the MNIST Kuzushiji
test set. Reconstructed images with (c) no spatial encoding, (d) random
spatial encoding, and (e) vortex spatial encoding with m = 3. When we
train with the same MNIST digits in (a) and (f) test with Arabic letters,
(g) the reconstructed images with vortex Fourier encoding and m = 3 are in
good agreement. With vortex Fourier encoding, the neural network produces
a generalizable inverse map for image reconstruction. . . . . . . . . . . . . . 19

2.3 Normalized test inputs Y to the neural network with noise for two Fashion-
MNIST images. Each block shows decreasing peak signal to noise ratio
(PSNR) in columns from left to right. (a) Object data X and vortex spa-
tial encoding (b) m = 0 or no vortex (c) m = 1 (d) m = 3 and (e) m = 5.
The Fourier transform representations have higher PSNR that decreases with
higher m given the same camera and light flux for X. . . . . . . . . . . . . 22

x



2.4 (a) 25 of the original Fashion-MNIST dataset images. Reconstruction with
(b) m = 0, with no spatial encoding and (c) two vortices of topological
charges m = 1, 3 with nonlinear activation used in the last layer. Without
spatial encoding, the neural network still learns the patterns when there
are categorical variations between training and test sets. The structural
similarity index metric (SSIM) is quantified in Table 1. . . . . . . . . . . . . 24

2.5 (a) Validation test images. Reconstruction results under PSNR-labeled noisy
conditions that show the effect of (b) “linear” and (c) “nonlinear” activations
for the final layer of the small brain or (d) convolutional neural network. A
vortex encoder with m = 1, 3 is used. . . . . . . . . . . . . . . . . . . . . . 25

2.6 (a) Comparison of training rates (MSE vs. epochs) for different encoders in
the reconstruction of MNIST fashion images. Dual-vortex encoding m = 1, 3
(red, small brain) converges faster than random-pattern encoding, which has
a similar rate of convergence for a small brain (blue) and convolutional neural
network (green). The reconstructed images with (b) random-pattern and (c)
vortex encoders with 2dB PSNR. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 (a) Experimental setup. A laser (λ = 532 nm) is directed through the
half-wave plate (λ/2), linear polarizer (LP), and spatial filter. The beam
is collimated and illuminates the reflective spatial light modulator (SLM). A
PC supplies patterns to the SLM. These vortex-object patterns also have a
quadratic phase to focus all 6 patterns on the CCD camera, whose images are
stored on the same PC. (b) The neural net architecture used for reconstruc-
tion. (c) Sample SLM pattern that imprints m = 4− 9 vortices, a quadratic
radial phase, and MNIST handwritten digit from the PC. (d) Example CCD
image for vortices m = 4 − 9. (e) 25 test images, (f) the corresponding 25
phase patterns with m = 4, (g) resulting CCD images with m = 4, and (h)
reconstructed images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 (a) Project objective: design a generalized training set for a neural network,
which can later be used for general image reconstruction without retraining
and operate real-time. (b) Schematic of hybrid vision camera where light
from an object is transmitted through a diffractive encoder (DE). Sensors
capture two transmitted images that are combined as inputs to the trained
neural network, which reconstruct the object from the detector-plane images.
(c) This project employs two pairs of diffractive encoders: one with low SVD-
entropy (lens and topological charge m = 1 and 3) and the other with high
SVD-entropy (uniformly-distributed random pattern). . . . . . . . . . . . . 41

3.2 Reconstructed images from (a, b, c) MNIST handwritten and (d, e, f) fashion
MNIST datasets with random, Fourier and vortex bases, respectively. The
vortex basis provides edge enhancement for object detection. (g) Ground
truth and (h) reconstructed images from the CIFAR-10 dataset using the
vortex training bases and a vortex mask as the encoder. . . . . . . . . . . . 45

3.3 (a,b,c) Sample training images XR, XF , and XV or random, Fourier, and
vortex training sets. (d, e, f) Corresponding training and validation curves. 49

xi



3.4 (a) Single ”hot” pixel response of the random model and (b) single-pixel
response of vortex model, which demonstrates sharp edges and resolves high-
contrast objects. (c) Comparison of reconstruction error for different levels
of noise given high-entropy random UTS and random mask and lower SVD-
entropy vortex UTS and vortex mask. This error corresponds to the scenario
in which shot noise dominates the background noise. . . . . . . . . . . . . . 50

3.5 (a) SVD-entropy of a structured pattern composed of the phase of a vortex
(modulus 0, 2π) and a Gaussian mask with radius of w2. A few-pixel pat-
tern has almost zero entropy, and the SVD-entropy saturates for a vortex
depending on the topological charge. (b) Illustration of these patterns with
w2 = [5e− 3, 5e− 2, 5e− 1, 5] corresponding to SVD-entropy values of [0.94,
1.8, 2.6, and 2.7]. The SVD-entropy strongly relates to the length of the edge
dislocations of an image. (c) Histogram of the SVD-entropy in the vortex
XV , Fourier XF , and random XR generalized training sets implemented in
this project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 (a) Schematic of experimental reconstruction with UTS. There is no spatial
filter or polarizer, images are noisy and at this wavelength, the modulation
dynamic range is only α = π. This was done intentionally to simulate poor
experimental conditions with background light. (b) Sample random UTS
images and (c) sample reconstructed images produced by random patterns,
which are not learned by the simple neural network model experimentally.
On the other hand, (d) simpler images with fewer edges are (e) reconstructed
by the neural network. (f) Sample ground truth images and (g) discernable
reconstructed patterns when the neural network is trained by the vortex
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Illustration of the edge-enhanced vortex-Fourier pattern in the back-focal
plane of the lens. Two input intensity and phase profiles are shown for a
Gaussian F1 and Laguerre Gaussian F2 beam where the topological charge
is m=1. Both beams are focused as a result of the imprinted quadratic
radial phase. A sketch demonstrates the input beam illumination of a square
obstacle f(x, y) with soft edges. The back focal-plane intensity and phase for
Gaussian illumination of f(x, y) is F (u, v), which is related to the back focal-
plane intensity for vortex illumination by the relation, FLG ∝ (d/dv− id/du)F . 61

4.2 The comparison of conventional and vortex-Fourier imaging. The sketch
demonstrates that vortex-Fourier map preserves the structural information
better than the conventional imaging. The m corresponds to the topological
charge of the vortex - the spatial winding speed of the phase of the corre-
sponding beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xii



4.3 (a) Categorical classification accuracy of the MNIST handwritten dataset as
a function of PSNR for machine-learning inputs that combine 1, 3, 5, and
7 vortex patterns without deep learning (DL) or with deep convolutional
neural networks. When the classification is solved conventionally, with the
original MNIST data as inputs to a convolutional neural network (CNN),
the categorical accuracy is higher with our scheme when the PSNR is greater
than 3 dB. A black dotted line denotes PSNR of -3dB where (b) we plot the
corresponding confusion plot for three vortex inputs m = 1, 3, and 5 where
we achieve 0.8 accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xiii



List of Tables

2.1 SSIM and MSE for Fashion-MNIST reconstruction with a small-brain (SB)
and convolutional neural networks (CNN). U-Net CNN architecture is also
implemented. Near-optimized quality is achieved with 2 vortices. . . . . . 23

xiv



Chapter 1

Introduction

1.1 Simplifying and Speeding up the Solution of Phase Prob-

lem via Optical Computing

Our ability to solve inverse problems and reconstruct object features from either

incomplete or mixed-signal components is essential for broad applications ranging from x-

ray imaging to remote sensing. Reconstruction or deconvolution of an object pattern from

sensor data is often challenging from a practical standpoint, since algorithms must address

the famous Phase Problem: the sensor only registers intensity and therefore the phase

information is lost. Iterative approaches have been developed but are time-consuming,

since the process may require multiple restarts with several initial guesses until convergence

is achieved [1]. Iterative solvers of the Phase Problem have developed and given rise to a set

of optimization techniques that are applied today in many other domains [2]. Notably, these
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approaches provide the capacity to image through turbid and scattering media [3, 4, 5], and

obtain depth estimation and all-focus images with coded apertures [6, 7].

Recently, it has become possible to obviate the Phase Problem for image recon-

struction with computational imaging. One expanding research area involves the applica-

tion of neural networks, specifically deep-learning convolutional neural networks (CNNs) [8].

With CNNs, the recording of an interference pattern such as a hologram, or several overlap-

ping snapshots as with ptychography, can be used to reproduce object features [9, 10, 11].

When using the coherent diffraction through phase masks, at least two distinct images are

generally needed to attempt to solve the Phase Problem [12, 13, 14]. To our knowledge,

the first application of CNNs for image reconstruction is presented in [15], where a phase-

encoded image on a spatial light modulator is reconstructed via CNNs using intensity-only

data from the camera. “Non-line-of-sight” CNN imaging is recently demonstrated from

albedo autocorrelation patterns of speckles [16, 17, 18]. In these aforementioned examples,

as well as others that learn patterns without solving the Phase Problem, it is possible to

reconstruct or predict an object type without being able to identify the position of the object

[16].

In addition, deep learning neural networks offer extra functionality in the process of

reconstructing the object. For example, simultaneous autofocusing with phase recovery [19]

or super-resolution in pixel-limited or diffraction-limited systems [20]. With sets of training

and testing diffusers, the phase information encoded through controlled speckle patterns

can be leveraged to predict the outputs from previously unseen diffusers [21]. The non-

exhaustive list of important applications include: profilometry [22], imaging through smoke
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or strongly-scattering media [23, 5], and LIDAR (Laser Imaging, Detection, and Ranging)

that leverages multiple point cloud and time-of-flight information [24]. Additional examples

of “nonlinear reservoir learning” are presented in [25], which employs caustic patterns for

original object reconstruction. The challenges with deep learning methods include large

training sets, long training times, and slower execution speeds. These neural networks also

have higher degrees of computational complexity that render them vulnerable to adversarial

attacks [26].

1.2 Image Reconstruction via Universal Neural Networks

Image reconstruction has wide application in medicine [27, 14], biology [28], X-ray

crystallography [29] and low-light vision, among other technologies. These reconstructions

generally involve solving an inverse problem and retrieving the phase from phase-less in-

tensity measurements. The field has been an active area of research for several decades

[30, 31, 32] and inverse solvers achieve impressive results with additional coded optics or

optical scanning [33, 25, 34, 35, 11, 36, 37, 38, 39, 40, 41, 42, 43, 44]. More recently, deep

neural networks, and specifically convolutional neural networks, enable single feed-forward,

non-iterative reconstruction [15] and are capable of learning from the statistical information

contained in a variety of systems, from speckle [21, 45] to coded diffraction [46] patterns.

Inverse solvers using neural networks are generally faster than iterative, optimization-based,

or optical scanning-based algorithms and, as an example, may require as few as a 100 illu-

mination training patterns with an “unrolled” neural network [47].
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Figure 1.1: The general scheme used in this thesis. Light is reflected from the object, then
passed through the (diffractive) optical encoder and collected by the camera (blue arrows).
Then the data is processed electronically (green arrows). The last stage might be either
reconstruction or classification.

Despite the benefits of neural networks to solve inverse problems, there are also

drawbacks. Some of these issues—especially those associated with phase retrieval—have

been solved. Other issues related to generalizability, robustness, and processing time or

energy remain active areas of research [45]. Since neural networks learn how to weigh

the importance of information patterns based on training data, they exhibit a tendency

to “memorize” patterns to gain intuition about the task [48]. This predisposition towards

prior data is advantageous for building “inductive, artificial intelligence machines” that

extract patterns; however, that predisposition is a detriment to the generalizability of inverse

solutions, (e.g., for building real-time computational cameras). Antun et al. [49] highlight

three specific issues encountered by neural nets in imaging tasks:

1. Small, sometimes undetectable perturbations in the input (both image and sampling

domain) can cause severe artifacts in the image reconstruction,
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2. Small structural changes can be left undetected, and

3. More samples in the training set can lead to a deterioration of the results (due to the

“memory” effect described above). Subsequently, algorithms themselves can stall or

experience instabilities.

Designing simple, robust and computationally inexpensive ways to partially solve

or alleviate these issues would be very useful for the field of inverse problems.

1.3 Machine Learning

In this thesis, we employ Machine Learning-based techniques to design simple

inverse problem solvers which satisfy the requirements mentioned at the end of the previous

section. This section serves as a brief, non-exhaustive description of Machine Learning.

Machine Learning is a field that builds a special class of algorithms which “learn”

(are automatically tuned) via the use of data in the so-called “training” process. The results

are prediction or decision making algorithms that, if used appropriately, can greatly outper-

form classical algorithms, especially where well structured information is not available. The

canonical examples are: Computer Vision (object identification, image segmentation, move-

ment prediction and other tasks [50]), and Speech Recognition (the translation of recorded

voice as digitized acoustic waves into text [51]). Conventional Machine Learning techniques

are split into two classes: 1) Supervised and 2) Unsupervised Machine Learning.
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1.3.1 Supervised Machine Learning

With Supervised Machine Learning (SML) model is developed to produce a de-

terministic map from input data X to output data Y given some set of (X0, Y0) pairs of

training data. Some examples may include prediction of: children’s height given the age,

race, sex, parents’ height and other factors; the number of passengers in an airport given

the day of week, time of the year, etc; the datacenter workload estimate given the noise level

and spectral distribution created by its cooling system; crop yield in certain areas given the

corresponding satellite images [52]. The free parameters (parameters that can be adjusted)

of the corresponding model (map) are determined via minimization of the “loss function”

that measures the discrepancy between the predicted and actual output data.

Overall, while being intuitively clear, SML typically requires large marked datasets.

In some cases the collection of such a dataset might be rather tedious. However, for sce-

narios typically encountered in physics, marked dataset collection becomes straightforward

using the automatic data collection tools. Let’s consider the following examples: 1) pre-

dicting light intensity distribution given the incoming light distribution (for this problem

we collect pairs of data that includes incoming light distribution and final light intensity

distribution); 2) identifying the sequence of operations performed by the CPU given the

electro-acoustic noise from the PC (analogously for this problem we collect the training data

that includes sequence of operations performed by the CPU and electro-acoustic noise from

the PC). For both of these cases we create a model with a number of variable parameters.

The loss function likely would be different as in the first case we might use the “standard”

measure e.g. Mean Squared Error between two light intensity distributions (predicted and
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actual) and in the second it would be some discrete measure similar to Hamming distance

between two sequences of operations (again: predicted and actual).

After the corresponding loss function is minimized, the model is considered “trained”.

Subsequently, the model is used to perform the predictions. However, the model’s predic-

tive performance must be evaluated on the data that is not used for training (validation

dataset). The accuracy of the prediction on the validation dataset provides an estimate of

the generalizability of the model. A model might be not useful if it “overfits” - an overly

flexible model, with an excess number of parameters might memorize the patterns without

the ability to generalize to previously unseen data. This can be tracked as loss function for

training data keeps decreasing while loss function for validation dataset stays the same or

even increases. Another common problem is adaptation to the specific data distribution,

which limits the generalization capability of the resulting model. Ultimately, the task of

choosing the appropriate and simultaneously efficient SML model architecture for solving

problems in the physics domain is non-trivial. It requires understanding of the domain and

there is no explicit procedure for choosing the optimal model architecture.

1.3.2 Unsupervised Machine Learning

Unlike SML, Unsupervised Machine Learning (USML) aims to identify patterns

or structure in the data without any labels. The algorithm seeks commonalities in the

provided sample characteristics/parameters and then clusters the data into distinct groups.

Important examples are:

• Clustering - the process of separating data into different groups (“clusters”) [53],
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• Dimensionality reduction - the process of identifying “principal variables”, to reduce

the number of parameters for the multidimensional data. This is helpful both for

visualization and processing purposes [54, 55],

• Anomaly detection - identifying the outliers in the data, e.g. identifying fraud opera-

tions in online banking [56, 57].

While USML possesses an attractive feature: it does not require marked datasets, it pro-

vides several challenges such as interpretability and, in general sense, “usefulness” for many

physical applications. Overall, the USML is less intuitively clear than SML. In this thesis we

did not explicitly use USML, however, it was employed to analyze the results and provide

graphical representation of the data.

1.4 Informal Problem Statement

Machine Learning has found numerous successful applications in experimental im-

age reconstruction tasks [8]. However it comes at a price: the current state-of-the-art

solutions exploit very complex and computationally demanding neural networks. The one

example of computationally costly algorithms are GAN’s - Generative Adversarial Networks

- algorithms in which two neural networks compete in generating and discriminating their

predictions [58]. Such architectures, while providing impressive results, do not achieve real-

time speeds and might take tens of hours on conventional hardware using hundreds of watts

to reconstruct an image with several hundreds of pixels.

From one side, results as measured by different metrics (Mean Squared Error

(MSE), Structural Similarity Index Metric (SSIM) [59], etc.) are impressive. From the
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other side, architectural solutions are often chosen in order to achieve the highest possible

scores in different metrics. This causes significant latencies (the delay of prediction after

getting the data), especially in the case of edge computing (the computations done on the

device capturing images or the device nearby) and require significant energy or power. Thus,

the question of practicality arises; the problem is even more pronounced if we are concerned

with the low power/low energy devices such as microdrones.

Given the previous paragraphs, one might pose a very interesting problem: can

we simplify the networks to very simple architectures, while preserving a reasonable quality

of reconstruction and classification? (We refer to this as a so-called “small-brain” prob-

lem). The answer is “yes”. We can do that via very simple neural networks in conjunction

with optical preprocessing done via various means. The resulting architectures demon-

strate extremely low power and time requirements, while preserving a reasonable accuracy.

Depending on the architecture, such imaging schemes might have the following advantages:

• Noise-robustness - the ability to operate in the extreme low-light mode (thousands

of photons per picture; in comparison, typical “conventional” images require literally

tens and hundreds of billions of photons to obtain images of reasonable quality).

(This is due to the high-contrast ratio of the Fourier representation of the image).

The preprocessing we perform allows us to achieve high quality reconstruction, which

is troublesome if we were to use the “plain” Fourier imaging (i.e. unmodulated Fourier

spectra),

• Interpretability - the predictions of the model can be “explained”, the model does

not perform as a black box. This property arises from the simplicity of the proposed
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architectures - they can be analyzed via a simple Green function analogous process of

single hot pixel analysis,

• Generalization - trained neural networks are able to reconstruct objects from previ-

ously unseen, significantly different classes of objects. We show that even such simple

architectures possesses this property. To our knowledge this property for simplest

neural networks is shown for the first time,

• Ability to be trained on the synthetic dataset (almost arbitrary set of images related

to the transfer function of the optical system. Obviously, some initial “physical”

samples are required to provide the rule for generation of the synthetic set), which

almost eliminates the tedious task of data collection. In addition these synthetic

datasets might be tuned for specific task, such as edge detection

In the next few chapters, we introduce and investigate the properties of several

shallow neural networks preceded by the optical preprocessor. We demonstrate that our

preprocessor in Fourier space performs feature extraction and thus greatly simplifies the pro-

cess of image reconstruction. Also, the proposed architectures can be trained on synthetic

dataset, thus reducing the amount of required training data. Resulting hybrid architectures,

composed of fixed (optical) and variable (digital) parts, are noise-robust, extremely fast,

and generalize on previously unseen data.
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Chapter 2

Fourier Optical Processing for Low

Light and Low Latency Machine

Vision

2.1 Introduction

In this chapter, we focus on the application of shallow and fully-connected neural

networks and ask, is it possible to achieve additional image-reconstruction functions without

deep-learning and without iterative schemes? Such “small brain” approaches provide the

advantage of a single forward pass, i.e., no iterative phase retrieval procedures [60, 61]. We

demonstrate a simple approach to image reconstruction with optical preprocessing done by

topological structures and lenses not employing the CNNs. Our strategy is similar to other

hybrid and diffractive optical neural network approaches that aim to offload mathematical
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Figure 2.1: (a) The general schematic of the technique: a laser illuminates the object.
Transmitted light is phase-modulated with a multi-vortex lens array. The back focal plane
vortex-Fourier intensity patterns are fed to a neural net that reconstructs the original image.
(b) The vortex-Fourier patterns have fewer pixels. Here, the combined area of 9 dotted
squares is equivalent to the area of the original object. (c) The vortex-Fourier pattern for
centered and shifted MNIST handwritten digit ’5’ show increasing sensitivity to shifts and
larger areas (lower intensities) with increasing topological charges m.

computation to the propagation of light [62, 63, 64, 65, 66, 67, 68, 17], but aims to solve

a specific problem of low-light/noise-robust imaging with extremely low latencies tuned for

the edge processing done on the low-power/low-energy devices. What our scheme shows,

unlike others, is that a simple neural network is capable of solving the inverse mapping with

vortex spatial encoding in the Fourier domain. Moreover, the inverse mapping is performed

efficiently and with less computational complexity with vortices than with random encoded

patterns. This indicates that the optical vortex provides feature extraction in the Fourier

representation, which further reduces the computational load. This article is an expanded

version of work recently presented at [69]. We do not make a claim that this is an optimal

solution, but it’s better than other more ”classical” approaches and achieves the desired

result. Currently there is no formal technique which can be use to retrieve the optimal

prerpocessing for this task.
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Our approach provides new capacity to successfully image under low-light signal

conditions. The results are dramatic since Fourier representations are compressed (i.e., the

illuminated area of the camera sensor is much smaller than the area illuminated by the ob-

ject’s real image) [70] and robust (the resulting computer vision scheme is not susceptible to

the rapid variations in scene illumination) [71]. We note that, from a purely computational

standpoint, Fourier representations have been demonstrated to be efficient at solving clas-

sification problems [72, 73, 74]. Object reconstruction with Fourier representations reduces

memory, power, or energy requirements and may even achieve real-time image processing

[75, 76]. The advantages of Fourier operations further multiply since they may be completed

optically before the digital neural network [65]. Still, in each of the aforementioned cases

that use deep learning, the transferability of learned maps remains an issue—i.e., the trained

neural nets are task-specific and, moreover, equipment-specific. This issue of transferability

is further addressed in our work. We demonstrate that our “small-brain” approach does

not require specificity in the trained data to solve the inverse problem. In fact, overcoming

the Phase Problem with low computational complexity is our milestone result.

To achieve this, we exploit topological maps (modulations) in the form of optical

vortices—more specifically, with Laguerre-Gaussian beams. Such beams with spiral phase

gradients are characterized by a topological charge and associated with phase singularities

at which the electric field is strictly zero [77, 78, 79, 80, 81, 82, 83, 84]. A famous example

that leverages phase singularities for imaging is the “vortex coronograph”, in which a vortex

phase is placed in the Fourier imaging plane. A higher-resolution vortex camera is recently

demonstrated in [85] where the reconstruction contrast ratio is increased as a result of the
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vortex phase. The diffractive vortex optic is a phase encoder at the aperture, analogous

to a grating for splitting and interfering multiple paths in single-shot Fourier ptychography

schemes [86].

In our approach, we achieve non-iterative, single-shot object reconstruction with a

topological vortex-based lens array that contains multiple vortex phases in a lenslet pattern

using the resulting edge-enhanced Fourier-plane representations. We explore the limits of

the simplest neural nets and show that such neural nets are capable of generalizing the

solution to a problem. We show that speed and robustness depend on the spatial phase

encoding. The presence of the vortex provides spatial encoding to break the translation

invariance of the measured Fourier pattern and solve the Phase Problem. We do not opti-

mize the neural network for the highest quality of reconstruction, but rather to show the

method’s potential and its differences from other approaches. Image reconstruction is cen-

tered on dense neural nets or shallow neural nets. Again, we refer to this few-hidden-layer

neural network that does not use deep learning as a ”small-brain” [60].

2.2 Innovation

Figure 2.1 depicts our imaging scheme, where multiple images of the object F (r, φ)

are collected in the Fourier domain: the light transmitted through each lenslet is modu-

lated by different vortex and lens mask patterns Mm(r, φ); the camera detects the scaled,

modulus-squared image of the Fresnel-propagated, vortex-Fourier-transformed intensity

patterns, |F̃m(u, v)|2. Here, m is the vortex topological charge, r and φ are the real do-

main cylindrical coordinates, and u and v are the Fourier-plane Cartesian coordinates.
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The vortex Fourier intensity patterns F̃ are concentrated in a relatively small area but are

typically donut-shaped with a wider donut as m increases 2.1(b)]. The vortex phase in

the object ‘real-domain’ spatially encodes and breaks the translational invariance of the

Fourier-transformed intensity pattern 2.1(c)].

We consider a few small-image datasets as object inputs and compare different

representations in F (r, φ). For each positive, real-valued dataset image X, we map the

phase changes:

F (r, φ) = eiα0X (2.1)

where α0 is the dynamic range of the object phase-shift. This mapping is convenient because

the signal power is invariant with our choice of X. We have also considered opaque objects

where X blocks or absorbs the signal, i.e., F (u, v) ∝ X, which yields similar trends.

There are three primary innovations in our results. We demonstrate: 1) edge

enhancement of spectral features with a vortex lens; 2) rapid inverse reconstruction of the

image without a similar, learned dataset; and 3) robustness to noise, which depends on the

layer activations.

2.2.1 Vortex Fourier Encoding and Feature Extraction

Here, we make two new claims about the special spatial qualities of optical vortices

for image processing, namely:

• edge enhancement of the Fourier pattern, and

• compressed, coded fringes that mix the real and imaginary field components in the

intensity measurements.
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Consider a Fourier-space representation of a simple lenslet pattern composed of multiple-m

vortex phases,

Mm(r, φ) =


e
−iπr2
λf

+imφ
0 ≤ r < a

0 otherwise

(2.2)

where a is the radius of the mask aperture, λ is the wavelength and f is an effective focal

length. This pattern with a centered vortex is appropriate for our dataset’s mostly-centered

image objects X. Our image reconstruction approach does not require that m is an integer.

We show results of reconstructed images using fractional m in Fig. S1 the Supplemental

Content. ADD THE FIGURES FROM SUPPLEMENTAL INFORMATION! At the phase

plate [Eq. 4.2], the transmitted pattern is a sum of Laguerre-Gaussian modes at z = 0 with

different radial indices p,

Mm(r, φ) =
∑
p

WpLGm,p(r, φ), (2.3)

where Wp are modal coefficients related to index p and associated with Laguerre-Gaussian

profiles, which we separate into components,

LGm,p(r, φ) = L|m|p (2r2/w2)R(r)G(r)Vm(r, φ) (2.4)

R(r) = e
−iπr2
λf (2.5)

G(r) =
1

w
e−(

r
w
)2 (2.6)

Vm(r, φ) = Am,pr
|m|eimφ, (2.7)

where L
|m|
p (2r2/w2) are the generalized Laguerre polynomials that depend on m and p, and

Am,p =
√

2|m|+1p!
π(p+|m|)!w

−|m| [87]. We expect that the waist of the beam w is larger than the
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features of the object F . In our simulations, we fix w for all values of m, regardless of

the training set so that the waist represents the aperture cutoff of a fixed Gaussian G(r)

beam regardless of m. In practice, if one consistently normalizes the mean-field radius of

the transmitted vortex beam, then w would change with one’s choice of both m and p.

The modal coefficients are,

Wp =

∫ ∫
MmLG

∗
m,p(r, φ)rdrdφ = Am,p

∫ a

0
2πr|m|+1L|m|p (2r2/w2)G(r)dr. (2.8)

The phase-singular term Vm is a radial magnitude gradient and azimuthal phase gradient,

which can be simplified [88]

Vm(r, φ) = Am,pr
|m|eimφ = Am,p[r cos(φ) + irsign(m) sin(φ)]|m|. (2.9)

Since r cos(φ) and r sin(φ) are the canonical x and y Cartesian coordinates, which are

Fourier-transform pairs with u
fλ and v

fλ [89],

Ṽm(u, v) = F{Vm(r, φ)} = Am,p

(
λf

[
sign(m)

∂

∂v
− i ∂

∂u

])|m|
, (2.10)

where F is the 2D Fourier transform operator. We view Ṽm as a linear differential operator

for the inputs to our neural network, which are the intensity patterns in the back focal
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plane [89],

Y = |F̃m(u, v)|2 + noise (2.11)

=

∣∣∣∣∑
p

Wp

λf
Am,p

(
λf

[
sign(m)

∂

∂v
− i ∂

∂u

])|m|
F{F (r, φ)L|m|p (2r2/w2)G(r)}

∣∣∣∣2 + noise.(2.12)

In other words, the presence of the optical vortex provides unique preprocessing

for the Fourier-plane data. The result is not purely from diffraction alone since the net

diffraction from Vm(r, φ) cancels, or

∇2
⊥Vm(r, φ) = Am,p

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂φ2

]
r|m|eimφ (2.13)

=

[
|m|2

r2
− m2

r2

]
Vm(r, φ) (2.14)

= 0. (2.15)

Notably, the detected intensity patterns [Eq. 2.12] are composed of real and imaginary

differentials of the Fourier transform of F . The vortex-mixed real and imaginary field

components produce asymmetric fringes in the intensity pattern. This asymmetry offered

by the vortex phase is a chiral product of a radial change in magnitude multiplied by an

azimuthal change in phase. This differential scheme provides feature extraction in a manner

similar to that deployed in the HERALDO method for image reconstruction [90].

2.2.2 Small-Brain Inverse Reconstruction

Since a neural network is capable of guessing the reconstruction based on pre-

learned patterns without solving the inverse or Phase Problem, we take a new approach
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Figure 2.2: (a) 36 images of the training set composed of MNIST handwritten digits flipped
vertically and horizontally. (b) 25 images of the MNIST Kuzushiji test set. Reconstructed
images with (c) no spatial encoding, (d) random spatial encoding, and (e) vortex spatial
encoding with m = 3. When we train with the same MNIST digits in (a) and (f) test with
Arabic letters, (g) the reconstructed images with vortex Fourier encoding and m = 3 are in
good agreement. With vortex Fourier encoding, the neural network produces a generalizable
inverse map for image reconstruction.
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towards training and studying the neural network. We test the inverse reconstruction

of the neural network with several categorically-patterned datasets, namely the Fashion-

MNIST [91], Kuzushiji-MNIST [92], Arabic[93], as well as the canonical handwritten MNIST

digit dataset [94]. The “ground truth” outputs X are the dataset’s 28x28-pixel images

and are unit-normalized to provide comparable peak signal to noise (PSNR) with different

image types across datasets. The vortex-based reconstruction achieves a mapping that is

transferable or generalizable in cases when a random encoding scheme does not; if fast and

accurate enough, the vortex imaging scheme may be capable of being applied as a “camera”.

To illustrate the range of potential, we show less accurate results when disjoint train-and-

test datasets are used and more impressive image reconstruction when similar test-and-train

datasets are used.

With our scheme, the inputs Y are the modulus-squared vortex Fourier-transforms

of Gaussian-apertured FG [Eq. 2.12]. We set α0 = π/2 in a phase modulation scheme [Eq.

4.1]. We set fλ = 0.1. If there is more than one vortex-Fourier pattern used for recon-

struction, the procedure is repeated and the vortex images are catenated and/or truncated

for the neural network input Y. A dense, shallow, neural network with 1 hidden layer is

trained with a mean-squared error (MSE) loss function. During training, the neural net-

work is provided a subset of the related X and Y and during testing, the neural network is

provided Y to solve for X. The testing image set that the neural net has not seen before is

referred to as the validation set.

The importance of spatial encoding in reconstruction is shown in Fig. 2.2. We

train the model with numbers from the MNIST hand-written number dataset (flipped and
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inverted) [Fig. 2.2(a)]. However, we test with a separate dataset with patterns that are

different. With Kuzushiji characters [Fig. 2.2(b)], the reconstruction fails when there is no

spatial encoding and also fails with a random spatial encoder [Fig. 2.2(c-d)], but succeeds,

with some loss of resolution, with a vortex Fourier encoder (m = 3) [Fig. 2.2(e)]. With

the Arabic data set [Fig 2.2(f-g)] the reconstructed letters are impressive considering that

we limit our training to the types of handwritten digits that deviate substantially from the

formal Arabic letters. This illustration shows one approach to testing our intuition about

the Phase Problem with neural networks and also demonstrates the unique opportunities

with vortex-Fourier encoding schemes: a combination of compressed, encoded inputs is

critical. Without both compressed and encoded inputs and without previous patterns for

guessing, the neural network cannot produce an inverse map from Y to X.

The reconstruction quality of the images in Figure 2 is not impressive because we

have chosen an arbitrary training set that is unrelated to the test set. With a better training

set, it should be possible to solve the inverse problem generally. We repeat the machine-

learning problem with the Fashion MNIST dataset, where the training and testing sets are

more similar, and where, subsequently, the neural network is able to provide the inverse

mapping of the Y to X without spatial encoding. Fig. 2.4(a) shows the validation set. Even

though the neural network has not seen the validation set before, unlike in the previous

example, it has been trained with similar sets of images that fall into various categories

(shirts, shoes, dresses, etc.,). Figure 2.4(b) shows discernible reconstructions of images

without spatial encoding. In this case, the neural network has learned and reconstructed

patterns. The reconstructed images exhibit ghosting as a result of this uncertainty. Again,
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it is important to emphasize that even though the neural network is able to reconstruct the

MNIST images, it does so with learned similarities with the training set, which is not an

inverse mapping.

With a vortex pattern, the Fourier-image phase is preserved and encoded, and the

reconstructed images are impressively sharp and delineated. This is an important remark

as the ghosting or faded silhouettes are problematic for classification and computer vision

algorithms [95]. In addition to MSE, we employ the Structural Similarity Index Metrics

(SSIM) to quantify the reconstruction quality. The SSIM is limited to a [0,1] segment, which

is a more reasonable metric for human quality perception evaluation [96]. This difference

between SSIM and MSE illustrated Fig. S2 the Supplemental Content.

Figure 2.3: Normalized test inputs Y to the
neural network with noise for two Fashion-
MNIST images. Each block shows decreasing
peak signal to noise ratio (PSNR) in columns
from left to right. (a) Object data X and vor-
tex spatial encoding (b) m = 0 or no vortex
(c) m = 1 (d) m = 3 and (e) m = 5. The
Fourier transform representations have higher
PSNR that decreases with higher m given the
same camera and light flux for X.

Table 1 illustrates the convergence

of the reconstructed images of the Fash-

ion MNIST dataset to the original with

SSIM, MSE, and speed for different num-

bers of vortices. For comparison, Table

1 also shows the SSIM, MSE, and speeds

for a three-layer CNN-trained reconstruc-

tion with single and dual vortex datasets

(the result for seven layer U-Net is shown in

parenthesis [97]). The reconstruction speed

is measured using pre-collected data and we

only consider the for the reconstruction: the
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Table 2.1: SSIM and MSE for Fashion-MNIST reconstruction with a small-brain (SB) and
convolutional neural networks (CNN). U-Net CNN architecture is also implemented. Near-
optimized quality is achieved with 2 vortices.

SB, no vortex SB, 1 vortex SB, 2 vortices SB, 3 vortices CNN, no vortex CNN, 1 vortex CNN, 2 vortices (U-Net)

SSIM 0.45 0.62 0.84 0.88 0.41 0.61 0.84 (0.87)
MSE 0.0280 0.0242 0.0140 0.0122 0.0355 0.0235 0.0145 (0.0124)
Test 8600 FPS 8600 FPS 6400 FPS 5600 FPS 200 FPS 200 FPS 92 (27) FPS
Train 2 min 2 min 5 min 7 min 22 min 35 min 78 (440) min

CPU needed for Fourier transform is not in-

cluded in the speed calculations, since in practice we expect that the vortex Fourier encoding

is completed optically. Table 1 suggests that our proposed architecture achieves the same

quality with much lower computational overhead; on the same CPU, our approach recon-

structs at a rate of more than 6000 images per second (FPS) while a three-layer CNN with

3x3 kernel achieves only 90 FPS. We also provide training s for different models, which

highlight at least an order-of-magnitude advantage of the small brain over the simplest

CNNs.

If we use the detected patterns from 4 and 5 vortices as inputs to the neural net-

work, we encounter increasing accuracy but diminishing returns. For example, 3 vortices

achieve SSIM = 0.88, 4 vortices SSIM = 0.89, 5 vortices SSIM = 0.91. The results for com-

parison using a simple CNN with a 3x3 kernel achieve similar SSIM with the same inputs.

Additionally, we implement a U-Net multiple-layer CNN [97] with 2 vortices. While addi-

tional layers yield increased SSIM, this improvement comes with increased computational

complexity and memory requirements. We limit the scope of this paper to simpler neural

networks for speed and robustness.
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Figure 2.4: (a) 25 of the original Fashion-MNIST dataset images. Reconstruction with (b)
m = 0, with no spatial encoding and (c) two vortices of topological charges m = 1, 3 with
nonlinear activation used in the last layer. Without spatial encoding, the neural network
still learns the patterns when there are categorical variations between training and test sets.
The structural similarity index metric (SSIM) is quantified in Table 1.

2.2.3 Speed and Robustness to Noise

We study the variable speed and robustness of the reconstruction with vortex

Fourier encoding with other random encoding approaches and consider sensor shot and

dark noise in the neural network input [Eq. 2.12] [98],

noise = Pn(|F̃ (u, v)|2) + Pn(σ2d). (2.16)

Both noise terms have Poisson distributions Pn(µ), where µ is the expected value and

variance. The variance of the sensor noise is proportional to the intensity over the pixel

|F̃ (u, v)|2 while the variance of the dark noise σ2d is related to the dark current and read

noise of each pixel. The continuously-valued noise is related to the camera noise with MSE,

MSE =
1

N
Σ(y0 − yi)2. (2.17)
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Figure 2.5: (a) Validation test images. Reconstruction results under PSNR-labeled noisy
conditions that show the effect of (b) “linear” and (c) “nonlinear” activations for the final
layer of the small brain or (d) convolutional neural network. A vortex encoder with m = 1, 3
is used.
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where N is the number of pixels and y0 and yi are the noiseless and noisy pixels of Y.

For our simulations here, we assume that the specifications of the camera do not

interfere with the our reconstruction algorithm. Therefore, regardless of the light intensity,

we assume that the full dynamic range of a 12-bit camera is used. To vary the noise, we

keep σ2d fixed and change |F̃ (u, v)|2 to study the peak SNR (PSNR) [96],

PSNR = 10 log10
Ppk,signal
Pnoise

(2.18)

= 10 log10

(
(2L − 1)2

MSE

)
, (2.19)

= 20 log10
max(|F̃ (u, v)|2)
〈|F̃ (u, v)|2〉+ σ2d

(2.20)

where Ppk,signal is the peak power over the camera detector, Pnoise is the average power

in the noise, and the camera dynamic range is denoted by L (L= 12 for a 12-bit camera).

The additional factor of 2 in Eq. 2.20 arises because the electrical PSNR is proportional to

the camera detector voltage, squared, while the voltage is proportional to the electric field,

squared. We continuously vary the electrical pixel power in images to change the PSNR.

Meanwhile, as mentioned above, we discretize the inputs to the neural network to use the

maximum range of the 12-bit camera.

Figure 2.3 illustrates the tradeoff between resolution and robustness to noise. With

m = 0 when the majority of the power is on-axis and there is no vortex, the signal intensity

is most robust to noise but the neural network cannot solve the Phase Problem. With

higher-m (as well as larger fλ), the Fourier-plane pattern covers a larger area, so that the

spectral features are sampled with better resolution. At the same , when the area is larger,

the effective PSNR decreases, resulting in a Fourier representation less robust to noise.
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Both with and without noise, we compare our results to a random spatial en-

coding pattern, where vortices are replaced with a diffuser, for example [25], and im-

aged in the Fourier plane. As with other spatial encoding schemes, the SSIM in recon-

struction using the random phase patterns approaches the level of performance of vor-

tex schemes in the no-noise scene when similar images are used to train and test the

dataset. However, in order to achieve ”near-vortex” performance, the random encoder

requires more training , which increases from 3 epochs to 8-10 epochs without noise.

Furthermore, the situation changes drastically as we enter the noisy regime: while the

vortex-Fourier encoding preserves image quality in the case of high noise, the random en-

coding scheme fails completely. The gains with accuracy also increase with the vortex

encoding scheme, as shown in Figure 2.6 with 2dB PSNR. Thus, vortex encoding provides

feature extraction for efficient reconstruction of the object Y to X, which enables faster

convergence of the neural network, as well as robust construction in the presence of noise.

Figure 2.6: (a) Comparison of training rates
(MSE vs. epochs) for different encoders in
the reconstruction of MNIST fashion images.
Dual-vortex encoding m = 1, 3 (red, small
brain) converges faster than random-pattern
encoding, which has a similar rate of con-
vergence for a small brain (blue) and convo-
lutional neural network (green). The recon-
structed images with (b) random-pattern and
(c) vortex encoders with 2dB PSNR.

An interesting aspect of the inverse prob-

lem arises in the presence of noise when

the neural network is trained with images

without noise and also tested with images

from the same dataset with noise. (Again,

only two vortices are needed to produce the

near-ideal reconstructed images.) The neu-

ral network learns an inverse mapping that

minimizes MSE in the training set; however,
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different layer activations are vulnerable to

different types of noise. This is illustrated

in Fig. 2.5. A linear activation leads to

more ghosting and amplification of sensor

shot noise, whereas a nonlinear activation is more vulnerable to the dark noise. While the

nonlinear activation produces sharper images in the absence of noise, the linear activation is

more robust and produces better images in the presence of more noise. With high noise, the

nonlinear model’s image quality is mixed. We find that the most robust model uses linear

activations in the hidden layer and nonlinear activations only for the last layer. The linear

activations produce results that are more generalizable and transferable in the presence of

noise. In contrast, while more accurate with low noise, nonlinear activations provide less

of the “inverse” mapping, as seen by a bias in reconstruction for highlighting edges. The

CNN performs better in the case of lower noise levels, but cannot produce any meaningful

features in the high noise regime. The all-linear activation model suffers from significant

Gaussian blur or ghosting compared to the model with linear-nonlinear activation. This

suggests that the nonlinear layer filters the Gaussian blur, which is reliably used at the last

stage.

A comparison of different random patterns as spatial encoders suggests that the

use of completely stochastic patterns are not most suited for image reconstruction and the

structured base sets, such as topological phases and vortices, are more effective for this

task. This said, the work in [25] is often applied to incoherent light illumination for image

processing. There is certainly space for further study of topological structures for light
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scattering that connects different spatial-encoding and compressive imaging approaches

with neural networks.

2.3 Experiments and Analysis

In experiments, we capture Fourier-plane intensity patterns when the object il-

lumination flux is too low to be imaged directly by the camera. In this way, the vortex

imaging and small-brain deconvolution approach serves as a low-light-level camera, suitable

for imaging through noisy environments.

The experimental setup is shown in Fig. 2.7(a). Coherent polarized light from

the laser source (diameter: 1.1mm) is reflected from the two mirrors, passes through the

half-wave plate and a second polarizer, which rotates to vary the power. The laser is a 500-fs

pulsed Nd:YAG Fianium at its second harmonic, λ = 532 nm. A spatial filter eliminates

parasitic modes. The transmitted, linearly-polarized TEM0,0 (Gaussian) beam is collimated

(diameter: 1.5cm) onto the spatial light modulator (SLM)(Hammamatsu LCOS-SLM) at

an incident angle of 30◦. The SLM has 800600 pixels. Original images were upscaled in

order to fill the SLM matrix size, so each spiral phase pattern is 1̃65165 pixels. The neural

network used for 2 vortex inputs is shown in Fig. 2.7(b).

When recording experimental data, the phase patterns are saved in files at the

start. An example phase pattern is shown in Fig. 2.7(c). Each pattern contains 6 lenslet

images with vorticial (m = 4 − 9) and quadratic radial phases (f/λ = 0.1), as well as

the imprint of an MNIST handwritten digit. The quadratic phase is an artificial lens

for focusing and replaces a lens array, so we can collect all 6 images simultaneously. An
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automated computer program sends the phase pattern from the saved file to the SLM, while

a second program records the reflected light and grabs the CCD camera image. The CCD

camera (Thorlabs-DCU223M) is approximately 20 cm from the SLM and has 4.65µm4.65-

µm pixel area, 8-bit dynamic range, and 1024768 pixel resolution. The oblique reflections

of the SLM phase pattern result in vertically-elongated images on the CCD.

We achieve impressive results with this 8-bit CCD camera. Imaging is demon-

strated here with average light fluxes of 30 nJ/cm2 (intensities of 10µW/cm2, exposure s

of 2.8 ms) over 6 vortex masks at the SLM. A “reference” CCD image that is taken with

higher intensity is shown in Fig. 2.7(d). This Fourier-plane image is used to center the

cropped data since with such low illumination fluxes, we use only 5-10% of the dynamic

range of the 8-bit camera and the images are virtually all dark. For comparison, the signal

flux at the SLM would be below the level of the camera read noise, even with minute-long

camera exposure intervals.

With our automated matlab program, we record approximately 5 images per sec-

ond for the training and testing of our algorithm. The primary limitation with speed is the

camera retrieval , which is much longer than the camera shutter . The delay between image

uploads and the presence of SLM phase patterns is 50 ms. To achieve experimental re-

sults analogous to the simulated efforts, the CCD image subsets are cropped and downsized

with ’inter-area’ interpolation to 28x28 pixels for each Y. A square area is cropped. The

validation/test, reconstructed, and low-flux SLM/CCD images (10-µW power and 2.8-ms

exposure) are shown in Figs. 2.7(e-h). All images are normalized to the color-range since

without this colorbar normalization, the vortex Fourier patterns would not be visible. Even
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though there are 6 vortex lenslets in the CCD images, we use only one vortex m = 4 and

achieve an SSIM of 0.688 with all-linear and linear-nonlinear activations. The choice of m

did not significantly change results. We use only 4500 (500) images from the dataset for

training (testing) even though there are 60,000 images in the MNIST dataset. In fact, the

training of the algorithm converges to similar values of accuracy, without overfitting, with

only 2000 training images.

While we could integrate more images from the dataset or more patterns from

different-m vortices to train the small brain, doing so would not improve the accuracy of

the reconstruction algorithm, which at this low-light level is limited by the camera char-

acteristics. Similarly, we do not see significant improvement by varying the activations of

the neural network layers. In other words, the primary limitation is the sensitivity of our

camera. In this low-light level range, we are using only 4-bits of the camera (unlike in simu-

lations where we assumed the full dynamic range of a 12-bit camera). While the robustness

to overfitting in the training algorithm is impressive i.e., we need only 2000 images to train

the algorithm, the training increases by a factor of 4 compared to simulations. Longer

training s may arise when the MSE gradients are shallow and when the dynamic range of

the neural network inputs are limited.

Once trained, we still reconstruct MNIST Fashion images from a vortex Fourier

representation at a rate of several thousand frames per second on a 15W central processing

unit, two orders of magnitude faster than CNNs. Our approach to and understanding of

image reconstruction with the topological Fourier encoding and small-brain neural network

is new. Future work should include the effects of different types of noise, variations between
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Figure 2.7: (a) Experimental setup. A laser (λ = 532 nm) is directed through the half-wave
plate (λ/2), linear polarizer (LP), and spatial filter. The beam is collimated and illuminates
the reflective spatial light modulator (SLM). A PC supplies patterns to the SLM. These
vortex-object patterns also have a quadratic phase to focus all 6 patterns on the CCD
camera, whose images are stored on the same PC. (b) The neural net architecture used for
reconstruction. (c) Sample SLM pattern that imprints m = 4−9 vortices, a quadratic radial
phase, and MNIST handwritten digit from the PC. (d) Example CCD image for vortices
m = 4 − 9. (e) 25 test images, (f) the corresponding 25 phase patterns with m = 4, (g)
resulting CCD images with m = 4, and (h) reconstructed images.

training and test sets, topological phase and compression, and camera characteristics on

the robustness of the neural-network reconstruction.

We emphasize that the main advantages of our “small-brain” approach are high

speeds, robustness to noise, and the demonstrated ability for generalization – which opens

an avenue for a camera scheme, where the vortex phase is at the lens of a camera [85]. In a

camera scheme, a real object and fixed vortex-encoding aperture would replace the SLM. In

such an imaging system, the bottleneck would the camera or processing speed rather than

the SLM, which is a replacement in preliminary studies.

In actuality, a real system with a vortex-coded aperture may also exhibit misalign-

ment. We simulate the misalignment effect by randomly shifting the raw test images by

several pixels, while leaving the training set images intact. The neural net built on raw
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experimental data (75×75 pixels) seems to exploit the fine structure of the Fourier pattern;

on the other hand, the model that uses the downsized images (28×28 pixels) relies on the

continuous patterns. While the neural network trained on the raw, unshifted data suffers

significantly—SSIM drops by a factor of 4 even after single pixel shift—the NN built using

a downsized image is much more robust: for [1,2,3,4,5] pixel jitter during testing, the SSIM

degrades [4, 7, 20, 39, 78] %. This result may indicate some value of downsizing data for

robustness to alignment issues.

Finally, there are some differences between simulations and experiments worth

mentioning, particularly since artifacts may favorably enhance the results gained from ex-

periments. We use an SLM with higher resolution than the 28x28 images used in exper-

iments and additionally, the camera images have higher resolution when cropped and are

subsequently downsized. The higher-resolution SLM and camera images may have 2 con-

sequences: the vortex is imprinted with higher resolution than the object in simulations;

additionally, there is likely scattering from the SLM pixels, which interfere and increase the

information in the downsized images. The downsizing algorithm does not affect the per-

formance as long as the neural network is re-trained with the same downsizing approach,

however it may retain information of the higher-pixel SLM and camera resolution. We

consistently achieve higher reconstruction quality with the SLM than with numerical sim-

ulations. This experimental observation indicates that there is information to be retrieved

through scattering with hybrid machine vision systems.
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2.4 Summary and Conclusion

We present a vortex-Fourier encoding approach to preprocessing data prior to a

neural network. The phase singularity is imprinted on the object prior to the lens Fourier

transform. As a result of the spiral phase, we observe edge-enhanced, compressed, and

phase-preserved representations. While many inverse problems are solved iteratively or

involve CNNs, we obviate the need for CNNs and show that it is possible to solve inverse

problems with Fourier representations of vortex-encoded objects. Spatial encoding with a

topological phase results in efficient feature extraction of the Fourier pattern and accelerates

learning for the inverse reconstruction of the object. Our approach, using shallow, dense

neural networks or “small-brain” machine learning offers a strategy for accurate, robust,

and rapid camera-like imaging in low-light or noisy environments.

The reconstruction quality from the vortex-phase coded-aperture patterns is high

when the test and training sets are similar for on-axis centered objects. When objects are

located off-axis or when the mask phase singularity does not overlap with the light that is

transmitted through the object, the reconstruction quality decreases. Reconstruction qual-

ity is related to the distinct interference fringe patterns that arise when light from the object

passes through opposite sides of the phase singularity. Since vortex phase patterns represent

a superposition of Laguerre Gaussian modes, the task of analyzing multiple, superposed,

topological patterns with off-axis vortices is relatively straightforward. Phase masks with

additional off-axis vortices would capture greater information from off-axis objects.

The specific spatial encoding by a vortex provides mixed edge-enhanced real and

imaginary components. With vortex encoding, we find a sparse neural network is capable
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of being transferable and generalizable. We aim to unbox aspects of the black box of ma-

chine learning by solving the generalized problem of inverse construction with categorically

similar and dissimilar images and different MNIST datasets. We also show that there are

different levels of robustness to different types of noise/deviation from training sets with dif-

ferent layer activations. Nevertheless, our small-brain machine-learning algorithm reduces

the computational overhead with training and also reduces computational complexity in

reconstruction. Given that more complicated neural network architectures can be unpre-

dictable, [26], our approach that provides the 1-to-1 map is appropriate for mission-critical

problems, security-related systems, or autonomous vehicles.

The reconstruction quality from the vortex-phase coded aperture patterns is high

when the test and training sets are similar for on-axis centered objects. When objects are

located off-axis or when the mask phase singularity does not overlap with the light that

is transmitted through the object, the reconstruction quality decreases. Reconstruction

quality is related to the distinct interference fringe patterns that arise when light from the

object passes through opposite sides of the phase singularity. Since vortex phase patterns

represent a superposition of Laguerre Gaussian modes as shown above, the task of analyzing

multiple, superposed, topological patterns with off-axis vortices is relatively straightforward.

Phase masks with additional off-axis vortices would capture greater information from off-

axis objects.

To summarize, the optical preprocessing approach demonstrated here with a topo-

logical phase mask and lens is:
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• Robust to noise. Signals effectively achieve 200-2000X higher PSNRs. We success-

fully capture and deconvolve objects illuminated with 10µW/cm2 average intensities

with millisecond shutter s using 4 bits of an 8-bit CCD camera.

• Single shot. Reconstruction is possible with a single image containing two vortices

or two orthogonal topological phases.

• Low-latency and fast. Our approach has potential for real- processing and video-

camera streaming. With Fashion MNIST images, we process several thousand frames

per second with low-power hardware (10-20W).

• Computationally efficient. While other methods currently take multiple encoded

images or use iterative schemes, we achieve near-to-ideal reconstruction with two

phase-encoded images.

• Extremely low-power computation. The technique uses explicitly simple neu-

ral nets (no deep learning) where preprocessing is completed with parallel optical

propagation.

• Compact with memory. The vortex Fourier transform provides a compressed

representation that can be leveraged to minimize the number of pixels that carry data

forward.

• Flexible with a digital re-adjustable stage. There is a tradeoff between reso-

lution, robustness, and sampling that we control with the choice of vortex charge m

and focal length f .
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If this approach is successful at reconstructing real objects with depth of field, there

are numerous applications that involve imaging in low signal conditions, such as security-

related systems where illumination is minimal, driver-assist systems, microscopy of delicate

photosensitive biological samples, among others. Given the low power requirements and

high frame-rate reconstruction speeds, our scheme is expected to be useful for satellite or

unmanned operations. The vortex-Fourier encoding scheme may be efficient at collecting

radiation in pulsed, spectroscopic, laser applications. While this paper was in review, a sim-

ilar demonstration of “small-brain” image reconstruction from light in multi-mode fiber was

reported [99] and it is interesting to see how the simple feed-forward network outperforms

the U-Net CNNs with spectral (speckle) image inputs. Since many higher-order fiber modes

carry phase singularities, multi-mode fibers may provide another means for vortex encod-

ing. Further research with free-space imaging may exploit topological features for achieving

greater depth of field [100, 101] and extend our knowledge of vortex Fourier encoders to

leverage information in light polarization, dispersion, and spatiotemporal coherence.
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Chapter 3

Lightweight Universal Neural

Network for Image Reconstruction

3.1 Introduction

Image reconstruction has wide application in medicine [27, 14], biology [28], X-ray

crystallography [29] and low-light vision, among other technologies. These reconstructions

generally involve solving an inverse problem and retrieving the phase from phase-less in-

tensity measurements. The field has been an active area of research for several decades

[30, 31, 32] and inverse solvers achieve impressive results with additional coded optics or

optical scanning [33, 25, 34, 35, 11, 36, 37, 38, 39, 40, 41, 42, 43, 44]. More recently, deep

neural networks, and specifically convolutional neural networks, enable single feed-forward,

non-iterative reconstruction [15] and are capable of learning from the statistical information

contained in a variety of systems, from speckle [21, 45] to coded diffraction [46] patterns.
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Inverse solvers using neural networks are generally faster than iterative, optimization-based,

or optical scanning-based algorithms and may require as few as a 100 illumination training

patterns, for example, with an “unrolled” neural network [47].

However, despite the benefits of using neural networks to solve inverse problems,

there are also drawbacks. Some of these issues—especially those associated with phase

retrieval—have been solved. Others—particular those related to generalizability, robust-

ness, and processing time or energy—remain active areas of research [45]. Since neural

networks learn how to weigh the importance of information patterns based on training

data, they exhibit a tendency to “memorize” patterns to gain intuition about the task [48].

This predisposition towards prior data is advantageous for building “inductive, artificial

intelligence machines” that extract patterns; however, that predisposition is a detriment to

the generalizability of inverse solutions, e.g., for building real-time computational cameras.

Antun et al. [49] highlight three specific issues encountered by neural nets in imaging tasks:

1. Small, sometimes undetectable perturbations in the input (both image and sampling

domain) can cause severe artifacts in the image reconstruction,

2. Small structural changes can be left undetected, and

3. More samples in the training set can lead to a deterioration of the results (as a result

of the “memory” effect described above). Subsequently, algorithms themselves can

stall or experience instabilities.

Whereas biomedical applications are aimed at large-image, high-quality image

reconstruction [28], we turn our attention towards building real-time computational cam-

eras for low size, weight, and power (SWaP) image reconstruction, which are needed for
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autonomous-vehicle applications. In our prior effort [69], we demonstrate reconstruction

with a “small brain” dual-layer neural network. Such regression-based approaches [61]

demonstrate fast reconstruction rates, robustness to noise, and show potential for general-

ization with a phase vortex encoder. Here, we focus entirely on the generalizability of a

simple neural network using a single-layer architecture for image reconstruction. We supply

the model with a generalized or Universal Training Set (UTS) (synthetic images, used to

train the neural network) and then test the neural network with images of different, unseen

classes [see Fig. 3.1(a)]. A UTS-trained model overcomes the challenges associated with the

“stereotypes” that generally arise from training by a specific image set. On the other hand,

some disadvantages include the fact that the neural network is too simple to reconstruct

images when nonlinear transformations are required [102]. Nevertheless, our results provide

insight for training generalizable neural networks and computational cameras that operate

at fast speeds. Our proposed method can readily be used for the initialization of alternating

minimization problems or downstream image analysis tasks [103, 104, 105].

It is perhaps surprising that the simple learning model possesses enough capacity

to recover a good approximation of the inverse coded-diffraction problem, and even with

such a simple neural network there are interesting issues to address. In an effort to move

towards producing a generalized training set, we compare the performance of the vortex

encoder with other random encoders. From there, we build intuition for the UTS design

based on the modal decomposition of the training, diffracted imaging patterns, and SVD-

entropy. We also perform experiments, which build heuristics for real-world applications.

We find that the choice of training images and optical encoder is important for achieving
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Figure 3.1: (a) Project objective: design a generalized training set for a neural network,
which can later be used for general image reconstruction without retraining and operate
real-time. (b) Schematic of hybrid vision camera where light from an object is transmit-
ted through a diffractive encoder (DE). Sensors capture two transmitted images that are
combined as inputs to the trained neural network, which reconstruct the object from the
detector-plane images. (c) This project employs two pairs of diffractive encoders: one
with low SVD-entropy (lens and topological charge m = 1 and 3) and the other with high
SVD-entropy (uniformly-distributed random pattern).

generalizability, since not all imaged patterns provide a unique mapping to be learned and

not all learned intensity patterns aid image reconstruction. While we have not quantitatively

analyzed the image reconstruction i.e., compared the set of training images to the span of

the neural network, we observe that reduced SVD-entropy in the training set increases the

learning efficiency, in both simulations and experiments.
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3.2 Project Setup

In this section, we review an approach similar to [69] for our study of generalizable

training. Figure 3.1(b) shows a schematic of the hybrid machine vision system, which

encodes the image prior to the neural network with either a random or vortex phase pattern.

3.2.1 The Hybrid Vision System

The fields from the object at the diffractive encoder plane are F (x, y). The encoder

plane is imprinted with two diffractive element patterns M(x, y), as shown in Fig. 3.1(c).

A sensor or detector captures the intensity pattern of the electric fields F ′(u, v). Let F be

the Fourier Transform operation (x, y)→ (u, v), where we capture an image in the Fourier

plane:

F ′(u, v) = F [M(x, y)F (x, y)] (3.1)

Light from each object produces two images, each with a different diffractive ele-

ment M(x, y). Although the mask pattern may imprint vector (i.e., polarization-dependent)

or spectral (time-dependent) delays, here we assume a homogeneous polarization, a lin-

ear encoder, and monochromatic, continuous-wave light. All optical neural networks have

been previously demonstrated, notably with several diffractive layers in the THz regime

[106], with nonlinear activations via saturable-absorbing nonlinearities [63], and with nano-

interferometric etalons [107] in the visible regime. All-optical methods maximize speed and

minimize energy loss in the neural computation [108]. At the same time, all-optical systems

require nonlinear interactions as proxies for the electronic neural network layer activations.

These nonlinearities occur at small length scales in order to confine light sufficiently, so
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all-optical computing may be more sensitive to environmental conditions and less suitable

for autonomous-vehicle computational cameras.

By contrast, we focus on hybrid imaging in which optical processing conditions

sensor measurements and an electronic neural network performs reconstruction [109, 110,

65]. Our work is also inspired by pytchography approaches in [34, 35, 11]. Two phase masks

are used to capture the intensity measurements of the object on the sensor, which are then

fed to a no-hidden-layer neural network. At this time, we do not predict depth sensing

with imaging, so the masks contain lenses for Fourier-plane detection. Here we reproduce

the object based on the detector intensity patterns and assume that the detector is in the

focal plane associated with a quadratic radial phase of the mask. In recent work, Fresnel

mid-field imaging shows potential for better object-based depth detection [111].

In a manner similar to [69], we generate phase-modulated patterns,

F (x, y)M(x, y) = eiαXG(x, y)M(x, y), (3.2)

where G(x, y) is the Gaussian beam pattern illuminating the object and X is the positively-

valued original image. This Gaussian pattern represents a smooth pupil function or the

illuminating beam. In our study, we fix α = π and find that the reconstruction quality does

not change significantly when α varies from π/4 to 3π/2.

The general inverse problem for mapping the detector measurements to the original

image involves solving the following nonlinear system of equations:

Y = H(X) + N, (3.3)
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or for our specific case,

Y = |F [eiαXG(x, y)M(x, y)]|2 + N, (3.4)

where Y is the positively-valued sensor measurement, H(·) is a nonlinear transform operator

that includes the transfer function of the optics, light scattering, and the sensitivity curve

of the detector, and N is the measurement noise.

The Fourier-plane intensity patterns Y are the inputs to a neural network. The

neural network estimates X (size 28 × 28) given Y (size 28 × 28 × 2). To train the neural

network, we use the TensorFlow library with the mean squared error loss and Adam opti-

mization algorithm. Convergence is achieved with similar results using either “linear” or

“ReLu” activation. Our approach is simple and shows promising opportunities for general-

ized image reconstruction with “small brain” neural networks.

3.2.2 Universal Training Sets (UTS) and Diffractive Encoders

We choose two pairs of diffractive encoders. One pair is composed of vortex masks,

where each mask has an on-axis singularity of either m = 1 or 3:

M(x, y) = e
−(x2+y2)( i

fλ
+ 1
w2 )eimφ (3.5)

where f is the effective focal length of the radial quadratic phase, λ is the wavelength of light,

m is an on-axis topological charge, and w is the width of the Gaussian beam illuminating

the mask. Figures 3.1(b,c) show diffractive elements with m = 1, 3. The second pair is

composed of random masks, where each pixel of the transmitted pattern is encoded with a
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Figure 3.2: Reconstructed images from (a, b, c) MNIST handwritten and (d, e, f) fashion
MNIST datasets with random, Fourier and vortex bases, respectively. The vortex basis
provides edge enhancement for object detection. (g) Ground truth and (h) reconstructed
images from the CIFAR-10 dataset using the vortex training bases and a vortex mask as
the encoder.
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random phase from 0 to 2π. The mask is also illuminated with the same Gaussian beam.

On the side of the training, we work with a range of images composed of 28× 28 patterns

that are random XR, Fourier-based XF , or shapes related to a vortex phase XV .

We approach the generalized training to understand the modal distribution of each

image X. In principle, the training images should span the space of the test images, which

defines the requirements for reconstruction. This would suggest that each coded-diffraction

Fourier-plane image should be decomposed into Fourier modes, since this common basis

provides a unique and straightforward basis for each image. Such Fourier patterns are

linear wave patterns that change with phase and vary with variables j, k, l, n:

XF (sj ,sk,φl,n)(x, y) = 6 (ei(xsj+ysk+φl))Gn (3.6)

where combinations of sj = 2πj/dx, sk = 2πk/dy, and k span the Fourier space intended

to reproduce any arbitrary image and N . Gn represents a scanning Gaussian beam with

varied width and center,

Gn(x, y) = e−[(x−xn)
2+(y−yn)2]/w2

n (3.7)

where xn, yn, wn tune size of the UTS to be comparable to others. The size of the dataset

also changes the phase shift, where φk = 2πk/N and N is the number of the uniquely-valued

wave fringes with wave numbers sj , sk in XF .
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We refer to a “vortex training set” as a UTS composed of shapes similar to the

phases of a vortex beam that have distinct edges and curves:

XV (xj ,yk,φj ,n,l)(x, y) = 6 {eiml tan−1[(y−yk)/(x−xj)]+φk)Gj,k,n. (3.8)

For the vortex XV as well as the random XR UTS, we use uniformly-distributed random

variables to mask the pattern with a Gaussian profile. In other words, combinations of

xj , yj , and φk = 2πk/N span the dataset, or

Gj,k,n(x, y) = e−[(x−xj)
2+(y−yk)2]/w2

n . (3.9)

This Gaussian function Gj,k,n(x, y) represents a scanning light beam that illuminates the

training images. All image patterns are positively-valued and normalized to have a peak

value of 1.

We produce three UTS that span the image space using up to 40,000 patterns.

The goal of our project is to illustrate trends and intuition with these datasets.

Once trained with a large dataset, we observe that the dense neural network with-

out hidden layers can approximate almost any shape-based image (MNIST, fashion MNIST,

CIFAR). An example set of reconstructed images from different classes is shown in Fig. 3.2.

Figure 3.2 shows a representative set of images reconstructed from models trained with

XF ,XV , and XR and a vortex mask. In each case, 20,000 training images are used. Error

with thresholding is as low as 10% with test datasets. While the overall error is similar,

models trained with the vortex-phase datasets, XV , generally have the lowest error and
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strongly highlighted edges. Meanwhile models trained with a Fourier basis XF have the

highest error and models trained with a random basis XR have error in between, with error

distributed over the area of the image. Additional differences are explained in the following

section.

3.2.3 Differences in Convergence and Single-Pixel Response with Differ-

ent Training Sets

With this simple neural network and three different UTS, we observe trends in

convergence and overfitting. These trends consistently depend on the choice of the UTS

patterns regardless of the choice of mask MV or MR. Figures 3.3(a-c) show samples from

20k-image XF ,XV , and XR UTS with the vortex mask MV . Some pairings converge with

minimal overfitting while others do not provide enough information in Y to calculate the

inverse of the nonlinear mapping, H(X) [Fig. 3.3(d-f)].

A Fourier basis is the most well-known spectral basis for decomposing an image.

When training with a Fourier basis, the validation loss stops decreasing after a certain

number of epochs, which signals that the neural network struggles to extract information

about the mapping given this orthogonal set of images. What this tells us is rather unintu-

itive about the span or basis of image reconstruction with neural networks, but potentially

addressed in [112]: the images are less effectively learned by the neural net because there is

minimal overlap between them; the correlations between Fourier modes are less visible to

the neural net.
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Figure 3.3: (a,b,c) Sample training images XR, XF , and XV or random, Fourier, and vortex
training sets. (d, e, f) Corresponding training and validation curves.

The random UTS also unreliably converges when the dataset is smaller than 2k,

and its loss generally shows a “hill”, where the loss plateaus before dropping. Meanwhile,

the vortex-based UTS is less prone to such behavior. This combination of trends tells us that

neither orthogonality nor randomness is ideal for training a neural network. The structured

pattern of our vortex-based UTS XV is a better candidate for generalized training compared

to random XR or Fourier XF patterns. In our discussion, we provide some measures related

to the UTS image analysis and trained model robustness.
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3.3 Discussion

In this section, we discuss the ability to recreate sharp images, which may be seen

by the single-pixel response. The single-pixel response from the random UTS-trained neural

network is sharply corrugated [Fig. 3.4(a)], whereas the structured, single-pixel images from

the vortex-trained model is generally smooth with a sharp “hole” in the center or dark spot

[Fig. 3.4(b)]. We claim that these differences in the impulse response are responsible for the

edge-enhanced reconstruction of shapes in Figs. 3.2(c,f). Figures 3.4(a,b) illustrate example

images reconstructed with just one ”hot” pixel in the camera sensor plane. These patterns

are the building blocks of the reconstruction scheme and these patterns change depending

on how the model is trained. Depending on the training set, the model is tuned to pay

attention to different features of the image, which may depend on the task at hand.

Figure 3.4: (a) Single ”hot” pixel response of the random model and (b) single-pixel response
of vortex model, which demonstrates sharp edges and resolves high-contrast objects. (c)
Comparison of reconstruction error for different levels of noise given high-entropy random
UTS and random mask and lower SVD-entropy vortex UTS and vortex mask. This error
corresponds to the scenario in which shot noise dominates the background noise.

Figure 3.4(c) provides a simple noise analysis that shows the additional advantage

of robustness when the neural network is trained with a low-entropy UTS. We show the
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reconstruction error as a function of noise magnitude. Poisson shot noise and background

noise are added to the Fourier-plane intensity patterns of the test image set. Low SVD-

entropy image training and encoders appear more robust.

3.3.1 Analysis with Singular Value Decomposition Entropy

In order to estimate complexity of the pattern we employ the measure of entropy.

We approximate the 2D entropy of the images using the spectra of singular value decompo-

sition (SVD), which describes the complexity of an image. Unlike Shannon entropy [113],

SVD-entropy illustrates the mixture of spatial modes that are present in an image.

Figure 3.5: (a) SVD-entropy of a structured pattern composed of the phase of a vortex
(modulus 0, 2π) and a Gaussian mask with radius of w2. A few-pixel pattern has almost
zero entropy, and the SVD-entropy saturates for a vortex depending on the topological
charge. (b) Illustration of these patterns with w2 = [5e− 3, 5e− 2, 5e− 1, 5] corresponding
to SVD-entropy values of [0.94, 1.8, 2.6, and 2.7]. The SVD-entropy strongly relates to the
length of the edge dislocations of an image. (c) Histogram of the SVD-entropy in the vortex
XV , Fourier XF , and random XR generalized training sets implemented in this project.
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We use a normalized relation for the SVD-entropy that is invariant with image

intensity scaling:

ESV D = −
K∑
1

σi log2(σi), (3.10)

where the argument σi is the normalized magnitude of the singular values or the modal

coefficients of the image, given as

σi =
σi∑K
1 σi

and
∑
i

σi = 1, (3.11)

where K is the number of singular values and σi are the singular values.

Some trends related to the SVD-entropy are illustrated in Fig. 3.5. If images in

the set have several high singular values σi, the images may be reconstructed using fewer

”elementary” patterns; those with higher entropy require many more patterns to achieve

enough reconstruction accuracy. Low SVD-entropy images are smoother with fewer edges.

On the other hand, images with many discontinuities exhibit a high degree of SVD-entropy.

From our analysis of differently structured patterns, the SVD-entropy scales log-

arithmically with the edge steps or dislocations in an image [Fig. 3.5(a-b)]. In this illus-

tration, we plot the phase of an m = 3 vortex with varied Gaussian-beam filtering. The

measure of 2D SVD-entropy aids our analysis of the UTS. The vortex UTS has a broad

range and lower values of SVD-entropy in contrast to the random UTS [Fig. 3.5(c)].

Pertaining to our efforts towards generalized training or a UTS, we see that a low

SVD-entropy training set like that with structured patterns XV allows us to extract the

structured (low SVD-entropy) information from the data [Fig. 3.2 (c,f,g,h)]. This effectively
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acts as a filter for salient features of the image. This low SVD-entropy training would be

useful for some specific tasks, especially when, e.g., we are less interested in the image’s

background information than in the foreground object.

3.3.2 Heuristic Experiments

Figure 3.6: (a) Schematic of experimental reconstruction with UTS. There is no spatial
filter or polarizer, images are noisy and at this wavelength, the modulation dynamic range
is only α = π. This was done intentionally to simulate poor experimental conditions with
background light. (b) Sample random UTS images and (c) sample reconstructed images
produced by random patterns, which are not learned by the simple neural network model ex-
perimentally. On the other hand, (d) simpler images with fewer edges are (e) reconstructed
by the neural network. (f) Sample ground truth images and (g) discernable reconstructed
patterns when the neural network is trained by the vortex dataset.

To illustrate the potential and the impact of our approach for generalizable train-

ing, we show heuristic experimental results. In simulations, almost any encoded diffraction

pattern with a mask presents a learnable map for a simple neural network. However, in

practice when noise is present, neural networks do not always converge. Our experimen-
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tal data show that under noisy experimental conditions where light is unpolarized and the

sensor data is collected with significant levels of noise, the high SVD-entropy dataset is not

suitable for the task of image reconstruction: background light and distortions render a high

SVD-entropy training image useless since the neural network does not learn the pattern.

By contrast, a neural network trained on low SVD-entropy images is capable of recovering

reasonable approximations of the unseen images, as shown in Fig. 3.6.

Our experimental setup consists of a 633-nm Helium-Neon continuous-wave laser,

microscope objective, HOLOEYE Spatial Light Modulator and focusing lenses, and a CMOS

8-bit camera (1280x1024 pixel resolution). The setup does not include polarizers as part of

the design to provide a large-background and an unmodulated signal to test the limits of

image reconstruction with a simple neural network. As a result, we are unable to recover

images with the zeroth-order transmitted pattern. When we instead collect the sensor data

at the first diffraction maximum, we are successful with image reconstruction but only with

the vortex UTS. For reconstruction purposes, small square patches of the detector pattern

are taken (e.g. 50× 50 pixels).

In our experiments with imperfect spatial beam profiles and background unmodu-

lated noise, the simple neural networks do not converge with random masks (the results are

shown in Fig. 3.6(b-c)). Experimentally, we demonstrate two masks shown in Fig. 3.1(c-

d]), which are successfully learned by the neural network. The low SVD-entropy dataset

composed of shapes with straight edges and curves, i.e., XV [Eq. 3.8] converges but the

high SVD-entropy random XR patterns do not. Again, we find it more difficult to train a

simple neural network with a high SVD-entropy UTS.
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3.4 Conclusion

Corners, edges, and higher-order solutions are a challenge in image reconstruction,

requiring a higher degree of superposed waves [114]. This more complex representation of

images is the definition of SVD-entropy in an image, and suggests that the reconstruction of

such images requires the learning of images composed of high SVD-entropy patterns [115].

We find, however, that this is not always the case when aiming for robust neural network-

based reconstruction. In fact, generalized training with low-entropy patterns recreates these

sharp features well with edge enhancement.

We show that a simple neural network without hidden layers is capable of learn-

ing generalized image reconstruction. With this simple architecture designed to approach

generalized training, it is evident that not all generalized data sets are equal. When we

compare the convergence of differently structured datasets such as handwritten digits and

fashion MNIST, a set of images or encoder based on vortex phase patterns (structured, low

SVD-entropy, a combination of edges and curves) yields image reconstruction with lower

error than a high SVD-entropy random encoder pattern that contains many edges. With a

dataset such as CIFAR, the salient features are preserved in image reconstruction using a

vortex UTS.

We have previously shown that a convolutional neural network can outperform

a single layer neural network but with significantly higher energy cost. The deep neural

network is also less robust to noise [69]. Here, we aim to work with a ”small brain” neural

network rather than a deep neural network architecture. This approach has been specifically

tuned with the aim of low-SWaP computational cameras. We conclude that
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• Single-layer neural networks are capable of approximating the inverse mapping from

phaseless Fourier-plane intensity patterns after basic training.

• Such moderate-accuracy generalizable image reconstruction achieves high speeds (we

achieve 15k fps on a 15W laptop CPU).

• Image reconstruction with simpler neural networks are robust to the vulnerabilities

and instabilities described by [49].

• Even with a simple neural network architecture and a large training basis set, we

encounter differences in convergence. (Experimentally with an imperfect encoder,

neural networks learn low SVD-entropy images more rapidly and reliably than high

SVD-entropy.)

• Low SVD-entropy images are valuable in training neural networks to extract the

salient features of the image.

Additional advantages of a UTS include what is likely a generalized upper bound

for error [28], higher robustness, and high potential for low-SWaP computational cameras.

Because of its low computational complexity, our approach in the future may be inverted

to uncover the inverse mapping in data-driven models to solve inverse problems. A higher

degree of sampling over the sensor images (i.e., zero-padding) may further reduce the recon-

struction image error and even provide additional advantages, i.e., super-resolution phase

retrieval from multiple phase-coded diffraction patterns, [116] and depth detection [117].
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Chapter 4

Noise Robust Classification via

Multi-Lens Arrays

4.1 Introduction

There has recently been significant interest in the applications of mathematical

computation via the propagation of light[118, 62, 63, 64, 65, 66, 67, 68, 17], due to the ever-

growing need for “edge computation” and the limits of computational power in a growing

number of applications. For example, an autonomous vehicle such as a drone completes

image classification using its own CPU instead of sending data to a remote server, and

such a scheme causes minimal latency and practical power requirements. Computational

schemes that involve optics are considered to be more energy efficient and, in some cases,

even “free” in terms of the requisite power consumption. We exploit the fact that the

Fraunhofer intensity pattern in the back-focal plane of a lens is the Fourier transform of the
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electric field [89]. What we highlight here is the interesting combination of both concepts

of edge detection and Fourier optics together, namely, the mathematical momentum-space

operations that are useful for machine learning. We explore the limits of performance of

the simplest neural nets for classification using spatial phase encoding of a phase vortex.

Vortex light beams with spiral phase gradients are associated with phase singular-

ities, whose phase winding is characterized by a topological charge and singularity around

which the electric field is strictly zero [77, 78, 79, 80, 81, 82, 83, 84]. Optical vortices are

synonymous with l 6= 0, higher-order modes in radially-symmetric cylindrical coordinates.

Where the phase is undefined, at the vortex singularity, the electric field is strictly zero.

This dark void at the center of optical vortices is exploited in vortex coronography [80] in

a manner analogous to the on-axis opaque spot used in dark-field imaging. A recent publi-

cation highlights a vortex camera and the the high-resolution that can be achieved with an

optical vortex camera [85].

We recently focus on the optical phase vortex for differentiation in compressed,

spectral representations [69]. The spectral representations with neural networks are well-

known to be efficient with image processing and neural networks [72]. Examples of Fourier-

space, deep-learning, diffractive neural networks that are fully analog are demonstrated in

[119]. Our technique is a hybrid optical-digital approach similar to that proposed in [65].

The scheme leverages the coherent nature of light for swift image signal processing and is

also extremely robust to noise. The dense, shallow, “small-brain” neural networks achieve

optimization with low computational cost. A detector that is placed in the Fourier plane

of the lens will capture the spectral representation of an image, whose primary spectral
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components are concentrated with intensities 200-2000 times higher, which is an effective

increase in peak signal to noise (PSNR).

4.2 Results

4.2.1 2D Recursive Relations of the Vortex Fourier Transform

In [69], we demonstrate that the presence of topologically-distinct lenslets provides

ptychographic encoding that not only aids solutions to the inverse problem with a neural

network, but yields compact representations that are robust to noise. We demonstrate that

images are easily reconstructed by shallow, “small-brain”-neural networks when encoded

with chiral masks and represented in the Fourier domain. The topological phase is produced

by a fixed phase structure on each lens, while each lens produces a distinct Fourier-transform

in the lens focal plane. Here, we elaborate on some details that we encountered related to

classification of the MNIST handwritten digits.

Firstly, we restate our description of the encoding. A few, small-image datasets

are used as object inputs X. These positive, real-valued pixel images are imprinted on an

electric field as a phase change:

F (r, φ) = eiα0X (4.1)

where α0 is the dynamic range of the object phase-shift.
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The lenslet phase is most easily decomposed as a product of a quadratic radial

phase and vortex phase characterized by a topological charge, m,

Mm(r, φ) =


e
−iπr2
λf

+imφ
0 ≤ r < a

0 otherwise

(4.2)

where r is the radial coordinate, φ is the azimuthal coordinate, λ is the wavelength, a is the

radius of the phase pattern, and f is the focal length associated with the radial quadratic

phase. One of the primary results of our previous paper [69] is that the phase mask Mm(r, φ)

provides edge enhancement for the Gaussian-illuminated object,

F ′(u, v) ∝
([

sgn(m)
∂

∂v
− i ∂

∂u

])|m|
F{F (r, φ)e−r

2/w2}, (4.3)

where w is the width of a Gaussian beam. This relation is a 2D recursion formula for vortex

beams. In Fig. 4.2, we illustrate this result in a simpler form with a Laguerre Gaussian

beam p-index = 0 beam. The Fourier-plane intensity from the m = 1 vortex beam F ′2 is

composed of complex-valued spatial derivatives of the output from the Gaussian beam F ′1,

F ′2(u, v) ∝
([

sgn(m)
∂

∂v
− i ∂

∂u

])|m|
F ′1(u, v). (4.4)

A comparison of intensity patterns point to this result. The vortex intensity output pattern

[Fig. 4.2 (g)] contains higher intensities where there are zeros in the Gaussian-beam intensity

output pattern [Fig. 4.2 (e)].
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Figure 4.1: Illustration of the edge-enhanced vortex-Fourier pattern in the back-focal plane
of the lens. Two input intensity and phase profiles are shown for a Gaussian F1 and Laguerre
Gaussian F2 beam where the topological charge is m=1. Both beams are focused as a result
of the imprinted quadratic radial phase. A sketch demonstrates the input beam illumination
of a square obstacle f(x, y) with soft edges. The back focal-plane intensity and phase for
Gaussian illumination of f(x, y) is F (u, v), which is related to the back focal-plane intensity
for vortex illumination by the relation, FLG ∝ (d/dv − id/du)F .

In [69], we attribute significant improvements of speed and accuracy of the im-

age reconstruction to the edge-detection scheme. We are able to reconstruct thousands

of MNIST images per second on an average 2.0 GHz dual-core CPU with AVX2 instruc-

tions. The topologically-distinct phase patterns encode phase information of the Fourier-

transformed images into intensity-only patterns. Subsequent post-processing can extract

the phase information. While we previously describe image reconstruction with vortex

Fourier encoding, we elaborate here on our results with vortex Fourier encoding for MNIST

classification problems. Again, with the Fourier representation, we obviate the need for

deep-learning algorithms.
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Figure 4.2: The comparison of conventional and vortex-Fourier imaging. The sketch demon-
strates that vortex-Fourier map preserves the structural information better than the con-
ventional imaging. The m corresponds to the topological charge of the vortex - the spatial
winding speed of the phase of the corresponding beam.

4.2.2 Classification with no Hidden Layers

The MNIST datasets are generally used as a benchmark for categorical classifi-

cation. With vortex Fourier-transformed images, the most notable improvements are with

speed and classification accuracy in the presence of added noise when the neural-network

inputs are Y = |F ′(u, v)|2 [Eq. 4.4]. Without noise and when both neural networks are

provided with the vortex-encoded Fourier inputs, the small brain is as accurate but learns

faster than CNNs. The reason that small-brain dense neural networks are more robust to

noise is because they are less computationally complex.

We illustrate this classification robustness with vortex spatial encoding using the

MNIST handwritten digit dataset in Fig. 4.3. As before, the inputs Y are the vortex-

Fourier transformed digits, while outputs for classification are the number classes 0− 9. No
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hidden layers are needed for the classification in order to achieve a similar level of accuracy

achieved with convolutional neural networks (CNNs). The accuracies achieved with CNNs

compared to multiple-vortex inputs are shown in Fig. 4.3(a).

A confusion plot for a single vortex (m = 3) and SNR of -3dB PSNR is shown

in Fig. 4.3. The PSNR is calculated at the object, based on [98], which we use in [69].

Different numbers (shapes) attain varying levels of classification output robustness to noise,

which is related to our choice of m. In other words, certain digit geometries are more clearly

mapped by certain m. We expect that vortex transmutation provides a fingerprint for the

neural network classification. Vortex transmutation, the process of vortex charge breakup

and migration, is determined by a combination of the object group symmetry and m [120].

Further studies along these lines may identify the weights of the trained small-brain to aid

understanding of the learned reconstruction mapping.

In Fig. 4.3 (b) we show the confusion matrix for the case of a three vortex inputs

with topological charges m = 1, 3, and 5. Again, classification is performed with a single-

layer. As a matter of fact, the best performance levels are achieved for the number ”1” for

all topological charges. An interesting note is that the performance (validation accuracy)

on the numbers ”6” and ”9” differ significantly. This may be explained by the fact that

these two numbers tend to be written by hand (and thus represented in the dataset) very

differently, despite their ”symmetry” in print.

We find that the depth of the phase modulation of the input on the beam α0

significantly affects the rate of convergence of the classification accuracy [Eq. 4.1]. Using

the topological charge m = 1, and the scheme with α0 = π achieves 0.95 validation accuracy
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Figure 4.3: (a) Categorical classification accuracy of the MNIST handwritten dataset as a
function of PSNR for machine-learning inputs that combine 1, 3, 5, and 7 vortex patterns
without deep learning (DL) or with deep convolutional neural networks. When the classifi-
cation is solved conventionally, with the original MNIST data as inputs to a convolutional
neural network (CNN), the categorical accuracy is higher with our scheme when the PSNR
is greater than 3 dB. A black dotted line denotes PSNR of -3dB where (b) we plot the
corresponding confusion plot for three vortex inputs m = 1, 3, and 5 where we achieve 0.8
accuracy.

after 400 training iterations, while the scheme with α0 = π/2 achieves the same result after

only 240 training iterations. A 0.9 classification accuracy is achieved after the first training

iteration, in both cases.

Moreover, we note that there are striking differences in the useful information

that the neural network relies on, between these two cases, to classify the digits. With a

modulation depth α0 = π is not sensitive to the DC and low-frequency spectral components.

In other words, the DC spectral components can be removed from the neural network inputs

without affecting the classification accuracy. On the other hand, when the phase modulation

depth is α0 = π/2, valuable information is concentrated in the DC range. When this DC

component is removed from the neural network input, the maximal achievable accuracy
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drops to 0.37. This provides valuable insight into the operation of neural nets based on

spectral methods.

4.3 Conclusion

The vortex-Fourier encoding scheme provides a critical advantage of compressive

sensing, where the number of pixels needed for classification or reconstruction is much lower

than that in the case of the conventional imaging. As a result, we are able to achieve classifi-

cation accuracies >0.80 with a neural network that has no hidden layers with PSNRs as low

as -3dB when convolutional neural networks fail. The benefits of the “small-brain” neural

network is lower computational complexity, faster computational speeds, and robustness to

noise.

In this work we demonstrated the use of shallow neural networks with no hidden

layers to classify shapes using extremely weak light intensity sources. The algorithmic ap-

proach demonstrated here may be useful for firefighters to see objects through flames [23],

to image delicate biological objects prone to photobleaching and phototoxicity[121], health-

care [122], for low-energy surveillance systems [123], energy-efficient traffic control [124],

robotics [125], fast velocity object imaging [126] and many other important applications.

65



Chapter 5

Conclusions

In this work we demonstrated that optical preprocessing can be used to reduce the

computational complexity of inverse maps for the Phase Problem. We demonstrate that

low SVD-H vortex phase encoders reduce the latencies of reconstruction to sub-millisecond

range. Models based on these architectures, in comparison to CNN and U-Net architectures,

require three and two orders of magnitude less time for train and test times correspondingly.

Although we did not establish the formal procedure for optimization of the preprocessing

patterns, we achieved important and useful results.

Our reconstruction and classification schemes excel under conditions of extreme

low-light and/or very high levels of noise. They obviously outperform convolutional neural

networks in terms of power, latency of reconstruction and noise-robustness. The potential

applications are edge computations performed on, for example, various drones. Another

role in which our architectures are useful is an “assistant neural network” which performs
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low cost image reconstruction and provides a very reasonable initial guess for the more

sophisticated and computationally demanding neural network.

We also show that even such simple architectures are capable of generalization,

within certain limits. It opens the perspective for majority decisions/reconstructions via

“fly eye” conglomerate of reconstructions done with multi-lens systems, which act similarly

to ensembles of decision or regression trees (random forests and regression forests). Such

systems will be very useful in the high-noise and/or low-light environments, where few failed

reconstructions will be “outvoted” by the majority of the correct ones.

Overall, this thesis advances the understanding of the hybrid optical-electronical

Machine Vision algorithms for the number of important applications.
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