
UC Berkeley
UC Berkeley Previously Published Works

Title
Introspective Environment Modeling

Permalink
https://escholarship.org/uc/item/5mx5z2bn

ISBN
978-3-030-32078-2

Author
Seshia, Sanjit A

Publication Date
2019

DOI
10.1007/978-3-030-32079-9_2

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5mx5z2bn
https://escholarship.org
http://www.cdlib.org/

Introspective Environment Modeling

Sanjit A. Seshia

University of California at Berkeley, Berkeley
sseshia@berkeley.edu

Abstract. Autonomous systems often operate in complex environments which
can be extremely difficult to model manually at design time. The set of agents
and objects in the environment can be hard to predict, let alone their behavior.
We present the idea of introspective environment modeling, in which one algo-
rithmically synthesizes, by introspecting on the system, assumptions on the envi-
ronment under which the system can guarantee correct operation and which can
be efficiently monitored at run time. We formalize the problem, illustrate it with
examples, and describe an approach to solving a simplified version of the prob-
lem in the context of temporal logic planning. We conclude with an outlook to
future work.

1 Introduction

Autonomous systems, especially those based on artificial intelligence (AI) and machine
learning (ML), are increasingly being used in a variety of application domains including
healthcare, transportation, finance, industrial automation, etc. This growing societal-
scale impact has brought with it a set of risks and concerns about the dependability and
safety of AI-based systems including about errors in AI software, faults, cyber-attacks,
and failures of human-robot interaction. In a previous article [13], the author defined
“Verified AI” as the goal of designing AI-based systems that have strong, ideally prov-
able, assurances of correctness with respect to mathematically-specified requirements.
That article lays out five major challenges to applying formal methods for achieving
this goal, and proposes principles towards overcoming those challenges. One of those
challenges is that of modeling the environment of an AI-based autonomous system.

The environments in which AI-based autonomous systems operate can be very com-
plex, with considerable uncertainty even about how many and which agents are in the
environment (both human and robotic), let alone about their intentions and behaviors.
As an example, consider the difficulty in modeling urban traffic environments in which
an autonomous car must operate. Indeed, AI/ML is often introduced into these systems
precisely to deal with such complexity and uncertainty! From a formal methods per-
spective, this makes it very hard to create realistic environment models with respect to
which one can perform verification or synthesis.

A particularly vexing problem for environment modeling is to deal with unknown
variables of the environment. In the traditional success stories for formal verification,
such as verifying cache coherence protocols or device drivers, the interface variables
between the system S and its environment E are well-defined. The environment can
only influence the system through this interface. However, for AI-based systems such

as an autonomous vehicle, it may be impossible to precisely define all the variables (fea-
tures) of the environment. Even in restricted scenarios where the environment variables
(agents) are known, there is a striking lack of information, especially at design time,
about their behaviors. Additionally, modeling sensors such as LiDAR (Light Detection
and Ranging) that represent the interface to the environment is in itself a technical chal-
lenge.

In this paper, we present introspective environment modeling (IEM), an idea intro-
duced in [13] to address this challenge. The central idea in this approach is to introspect
on the system in order to model the environment. In other words, analyze the system’s
behavior and its sensing interface to the environment to extract a representation of en-
vironments in which correct operation is guaranteed. A key underlying computational
problem is to algorithmically identify assumptions that the system makes about the
environment that are sufficient to guarantee the satisfaction of the specifications. In
general, we want to generate the weakest set of assumptions on the environment of
the AI-based autonomous system. These assumptions form critical components of an
assurance case for the safety and correctness of the autonomous system, since they pre-
cisely pinpoint weak points of the system. Moreover, the assumptions identified must
be efficiently monitorable at run time: one must be able to monitor at run time whether
they are true or false, and ideally to also be able to predict whether they are likely to
be violated in advance, with sufficient lead time. Additionally, in situations where hu-
man operators may be involved, one would want the assumptions to be translatable into
an explanation that is human understandable, so that the autonomous system can “ex-
plain” to the human why it may not be able to satisfy the specification (this information
can be used offline for debugging/repair or online for control). We illustrate our ideas
with examples drawn from the domain of autonomous driving, and more generally, for
autonomous cyber-physical systems (CPS) and robotics.

Related Work: The topic of environment modeling, also termed as “world modeling”,
has been much studied in the literature in formal methods, AI, and related areas. We do
not attempt to cover the vast literature here, focusing instead on algorithmic methods
and other closely related papers. A common approach in the AI literature is to have a
probabilistic model of the world and maintain a belief distribution over possible worlds
which can be updated at run time. However, the model (or model structure) is typically
created manually and not algorithmically. Some world models can be monitored at run
time and updated online; this has been demonstrated, e.g., in the case of autonomous
vehicles [14]. In the formal methods literature, the inspiration for IEM comes from the
work on automated generation of environment assumptions. Closely related work in-
cludes that of Chatterjee et al. [4] on finding minimal environment assumptions, the
work of Li et al. [10] on the first counterstrategy-guided approach to inductive synthe-
sis of environment assumptions, and the subsequent work by Alur et al. [3]. However,
none of these works focused on generating environment models that could be efficiently
monitored at run time. To our knowledge, our prior work [11] is the first to place this
requirement and show how to mine assumptions that can be efficiently monitored at
run time during the controller synthesis process. All of the above work on assumption
mining is for discrete systems/models. Later Ghosh et al. [9] showed how to algorith-
mically repair specifications, including environment assumptions, for receding horizon

model predictive control for cyber-physical systems, but this work assumes knowledge
of the structure of the environment model. In a more recent paper, Ghosh et al. [8] show
how to close the gap between a high-level mathematical model of a system and its en-
vironment and a simulatable or executable model. Focusing on reach-avoid objectives,
this work also assumes knowledge of the environment model structure, but shows how
to adapt the environment model to account for behavioral discrepancies between the
two models. Damm and Finkbeiner [5] present an approach to representing and analyz-
ing the “perimeter” of the world model, which captures the environment variables that
can be modeled and restricted via environment assumptions. They provide a notion of
an optimal world model with respect to the specification and class of system strategies
based on the idea of dominant strategies; such a notion of optimality could be useful in
IEM as well.

The rest of the paper is organized as follows. In Section 2, we explain the idea
of introspective environment modeling using an illustrative example, and formalize it.
Section 3 shows how traditional controller synthesis from linear temporal logic (LTL)
can be extended to perform IEM. We conclude in Section 4 with a discussion of future
work.

2 Introspective Environment Modeling: The Idea

We now present the basic idea of introspective environment modeling (IEM). We start
in Sec. 2.1 with a discussion of the problem, and then illustrate it with an example in
Sec. 2.2. We conclude in Sec. 2.3 with a formalization of the IEM problem.

2.1 Problem Setup
Consider the standard picture of a closed system as shown in Fig. 1, where a system S
interfaces to an environment E through sensors and actuators. Let xS denote the state
variables of S, xE denote the state variables of E, y denote the inputs to S as output
from its sensors, and z denote the outputs from S as generated by its actuators. The
variables xE represent the state of the agents and objects in the environment.

The challenge that IEM seeks to address is the lack of information about the en-
vironment E and its behavior. More specifically, there are three kinds of uncertainty
about the environment:
1. Uncertainty about Parameters: The variables xE are known and the dynamical

model of E indicating how xE changes is known too, but values of parameters in
the dynamical model of E are not known.

2. Uncertainty about Dynamics: Variables xE are known, but the dynamical model of
E governing their evolution is not known.

3. Uncertainty about Variables: Even the agents in E and the variables xE are not
completely known, let alone the dynamics of E.

There are a variety of techniques available to deal with uncertainty about parameters,
including using system identification or machine learning methods to estimate parame-
ter values or ranges. The second and third type of uncertainty are much harder to handle
and are the primary subject of this paper. We next introduce a simple example to illus-
trate the main ideas.

Environment E

System S

Sensors Actuators

xS

xE

y

z

Unknown / Uncertain

Known / Specified

Fig. 1: System S and Environment E in a closed loop.

2.2 Illustrative Example

Consider the traffic scenario depicted in Fig. 2 on an arterial road with a top speed of 45
mph (about 20 m/s). The blue car is an autonomous vehicle (AV) travelling at 20 m/s
with no vehicles or obstructions initially in the lane in front of it. On the right (slow)
lane is a slow-moving line of (orange) cars. The AV is equipped with a LiDAR sensor
that allows it to detect objects around it to a range of 300m [2], which is sufficient to
cover the entire road scene shown in the figure. The LiDAR sensor allows the AV to
estimate the position and velocity of each of the five cars A-E in the right lane; we
assume for simplicity that the sensor’s estimate is perfect. The challenge is that each
of these five cars might suddenly decide to change to the left lane in which the AV is
travelling, and the AV must avoid a collision. What assumptions on the environment
(cars A-E) guarantee the safety of the AV in this scenario? Under those assumptions,
what actions must the AV take to avoid a collision?

To answer these questions, first, we must formalize the notion of safety. Suppose
that the true safety property is to guarantee that the distance between the AV and any
environment object is always greater than zero. Such a property is expressible in a
standard specification language such as linear temporal logic and its extensions for CPS
such as metric temporal logic and signal temporal logic, as follows:

G
[∧
o∈Obj

dist(xAV ,xo) > 0
]

One challenge with specifying such a property is that not all the environment objects
(the set Obj) are known, and therefore, such a property cannot be guaranteed to hold
at run time. Therefore, we suggest to specify a weaker property that can be monitored
by available sensors. This requires the property to be based on the sensor model and be

LiDAR Braking distance

A B C D E

Fig. 2: Autonomous Vehicle Scenario Illustrating IEM. The blue car at the top is an
autonomous vehicle travelling from left to right, while the orange cars are in a slow-
moving lane from which they may possibly change lane.

time-bounded, i.e., expressed over a finite window of time over which the environment
can be monitored with sufficient accuracy. For the example in Fig. 2, the absence-of-
collision property will need to be revised on two counts: (1) to objects detectable by
available sensors, and (ii) a finite window of time. This revised property can be formu-
lated as follows:

G[0,τ]
[∧
o∈ObjSens(t)

dist(xAV ,xo) > 0
]

where τ is a (typically short) time bound and ObjSens(t) is the set of objects that are
sensed by available sensors at the current time instant t. Using this alternate specifica-
tion is sound only if it implies the original property over the [0, τ] interval. In this case,
since we assume that the LiDAR range covers the entire scene, ObjSens equals Obj.

While designing the controller for the AV, we have no knowledge of the exact num-
ber of environment agents (vehicles) or how they will behave. In the context of this
example, the idea of IEM is as follows: given a strategy for the AV (based on its con-
troller, sensors, etc.), extract an assumption on the environment E that guarantees the
property of interest. As mentioned earlier, the AV is travelling at a velocity of 20 m/s.
A typical braking distance from that speed on modern automobiles is about 24-48 m
depending on road surfaces; we assume it to be 40 m for this example, which gives the
AV 2 seconds to come to a complete stop. Typical lane widths in the United States are
about 3 m [1]. Thus, assuming that the environment car starts in the middle of its lane,
and vehicles are no more than 2 m wide, it would need to move with a lateral velocity
of at least 1 m/s to cause a collision, provided it ends in the portion of the left lane
overlapping with the braking distance.

Let us assume that the AV samples sensors periodically at (small) intervals of time
∆ (of the order of a few milliseconds), and the control strategy executes instantaneously
after the current sensor sample is received. Further, assume that at the current time step,
the AV’s strategy is to drive straight at 20 m/s and brake to stop within 2 seconds when
it detects an object moving into its path. In this case, we set τ = 2 to be the time bound
within which the AV can come to a complete stop. Then, the AV can avoid a collision
provided the following conditions hold on the environment agents: (1) Vehicle A moves

with lateral velocity vA less than 1 m/s, and (2) Vehicle B moves with lateral velocity
vB less than 0.5 m/s. In logic, this is expressed as the following predicate:

G[0,∆] (vA < 1) ∧ (vB < 0.5)

It can avoid a collision with vehicles C, D, and E no matter their lateral velocity as they
are further than the braking distance. Note that these conditions are evaluated at the
current step, and must be re-evaluated at the next step ∆ time units later.

The reader will note that the environment assumption specified above can be effi-
ciently monitored provided the estimation of velocities vA and vB is performed effi-
ciently over a small window of sensor samples. If the assumption is broken, mitigating
actions must be taken, such as moving to a degraded mode of operation with a weaker
specification guaranteed. However, we also note that the process of coming up with
these assumptions involved somewhat tedious manual reasoning, even for a small ex-
ample like the one in this section with perfect LiDAR. Ideally, we need algorithmic
methods to generate the environment assumptions automatically. Further, it would be
best to co-synthesize those assumptions along with a strategy for the system (AV) to
execute. We will discuss these in Sec. 3 after formalizing the IEM problem in Sec. 2.3.

2.3 Formalization

This section formalizes the IEM problem.
Consider Fig. 1. We model the system S as a transition system (XS ,X 0

S ,YS ,ZS , δS , ρS)
where XS is the set of states, X 0

S is the set of initial states, YS is the set of inputs to
S from its sensors, ZS is the set of outputs generated by S via its actuators, δS ⊆
XS×YS×XS is the transition relation, and ρS ⊆ XS×YS×ZS is the output relation.
As before, we will denote a system state by xS ; this will also denote the variables used
to model a system state. We model S as a non-deterministic system rather than as a
stochastic system, but the core problem formulation carries over to other formalisms.
We assume that a non-zero amount of time elapses between transitions and between
outputs; for convenience we will assume this to be ∆ time units as in the preceding
section.

So far the formal model is fairly standard. Next, we consider the environment. As
discussed earlier, the environment states and model are unknown. Let us denote the un-
known set of environment states by XE , and the variables representing an environment
state by xE . We will assume that xE is also unknown.

The sensor model is a crucial component of the overall formal model. If XE is
known, the sensor model can be formalized as a non-deterministic map Σ from XE
to YS , where Σ maps an environment state xE to a vector of sensor values y ∈ YS .
However, if we do not know XE then the sensor model captures the sequences of sensor
values in YS that are feasible. In other words, in this case we define Σ as the set of all
sensor value sequences, a subset of YωS , that can be physically generated by the sensors
in some environment. We say an environment is consistent with Σ if it only produces
sensor value sequences in Σ.

The desired specification, denoted by Φ∗, is a function of xS and xE . For example,
this can be a temporal property indicating that an AV maintains a minimum safety

distance from any objects in the environment. However, since we do not know xE ,
we instead have an alternative specification Φ which is a function of xS , y and z. The
following property must hold between these specifications:

Proposition 1. Given specifications Φ and Φ∗, and a sensor model Σ, for all environ-
ments consistent with Σ, if a system satisfies Φ, it also satisfies Φ∗.

We are now ready to define the introspective environment modeling problem for-
mally.

Problem 1. Given a system S, a sensor model Σ, a specification Φ, generate an envi-
ronment assumption Ψ(xS , y, z) such that S satisfies the specification (Ψ =⇒ Φ) in
environments consistent with Σ.

Two other important aspects of the IEM problem are:

1. The environment assumptions Ψ must be efficiently monitorable at run time. More
specifically, the environment assumption should be evaluated in sub-linear time and
space (in the length of the trace), and ideally in constant time and space.

2. When Ψ does not hold and Φ is violated, the violation of Ψ should occur well in
advance of the violation of Φ so that S can take mitigating actions, such as moving
into a degraded mode of operation where it satisfies a weaker specification.

Note that S is not required to satisfy Φ when the environment assumption Ψ is violated.
However, we want S to be “aware of its assumptions”: the violation of Ψ should be
detected by S and it should take actions that preserve a core (safety) specification.

In the following section, we present an approach to solving the IEM problem for
a simple case where the world is modeled using propositional temporal logic and the
controller for S is synthesized using standard game-theoretic approaches to reactive
synthesis from temporal logic.

3 IEM for Synthesis from Temporal Logic

We now discuss how the IEM problem can be tackled in the context of synthesis of
controllers from temporal logic specifications. The basic idea was presented in our
prior work on synthesis for human-in-the-loop systems such as semi-autonomous ve-
hicles [11]. Concretely, we consider the setting where a specification is given in linear
temporal logic (LTL) in the GR(1) fragment [12], and one seeks to synthesize a con-
troller so as to satisfy that specification in an adversarial environment. In GR(1), the
specification is of the form ϕa =⇒ ϕg , where ϕa and ϕg are conjunctions of specific
LTL formula types capturing safety and fairness properties, where ϕa represents the
assumptions and ϕg represents guarantees. While typically the entire LTL specification
is given as input, for the variant of the problem we consider, the guarantees are given,
but the assumptions about the environment may be absent or only partial.

For this section, we consider S to be a finite-state transducer (FST) whose inputs YS
are valuations to a set of Boolean input propositions and outputs ZS are assignments
to a set of Boolean output propositions. The sensor model Σ defines the sequences of
input propositions that are physically feasible in some environment. The specification

Φ is a GR(1) formula of the form ϕa =⇒ ϕg , where ϕa may be true. We wish to
solve the IEM problem, i.e., to synthesize an environment assumption Ψ that implies
Φ and additionally satisfies the following criteria: (1) it is efficiently monitorable at
run-time; (2) it is prescient, meaning that S gets at least T time units to take mitigating
actions before the property is violated, and (3) it is the weakest environment assumption
satisfying the above properties (for some reasonable definition of “weakest”).

We next present a motivating example to illustrate this variant of the IEM problem.
Then we present the algorithmic approach to synthesize Ψ . Finally, we conclude by
discussing some sample results. The material in this section is substantially borrowed
from the author’s prior work [11].

3.1 Example

Car A

Car C

Car B

2

1

4 6 8 10

3 5 7 9
Blocked

by

Car B

(a) A’s Sensing Range.

Car A

Car C

Car B

2

1

4 6 8 10

3 5 7 9

(b) Failed to Follow.

Fig. 3: Controller Synthesis – Car A Following Car B

Consider the example in Figure 3. CarA is a semi-autonomous vehicle, carB andC
are two other cars on the road. We assume that the road has been divided into discretized
regions that encode all the legal transitions for the vehicles on the map, similar to the
discretization used in LTL synthesis for robotics and CPS, such as the work on receding
horizon temporal logic planning [15]. The objective of car A is to follow car B. Car B
and C are part of the environment. The notion of following can be stated as follows. We
assume that car A is equipped with sensors that allows it to see two squares ahead of
itself if its view is not obstructed, as indicated by the enclosed region by blue dashed
lines in Figure 3a. In this case, car B is blocking the view of car A, and thus car A can
only see regions 3, 4, 5 and 6. Car A is said to be able to follow car B if it can always
move to a position where it can see car B. Furthermore, we assume that at each step
cars A and C can move at most 2 squares forward, but car B can move at most 1 square
ahead, since otherwise car B can out-run or out-maneuver car A.

Given this objective, and additional safety rules such as cars not crashing into one
another, our goal is to automatically synthesize a controller for car A such that:
• car A follows car B whenever possible;
• and in situations where the objective may not be achievable, switches control to the

human driver while allowing sufficient time for the driver to respond and take control.
In general, it is not always possible to come up with a fully automatic controller

that satisfies all requirements. Figure 3b illustrates such a scenario where car C blocks
the view as well as the movement path of car A after two time steps. The brown arrows

indicate the movements of the three cars in the first time step, and the blue arrows
indicate the movements of car B and C in the second time step. Positions of a car X at
time step t is indicated by Xt. In this failure scenario, the autonomous vehicle needs to
notify the human driver since it has lost track of car B.

The IEM problem, for this example, is to identify the environment assumptions that
we need to monitor and when they may fail, notify the driver sufficiently in advance so
that the driver can take mitigating actions. In the next section, we give a brief overview
of how such assumptions can be co-synthesized along with a controller.

3.2 IEM for LTL Synthesis

Our approach to solve Problem 1 is based on extending the standard game-theoretic
approach to LTL synthesis, where one must solve a two-player zero-sum game between
S and E. We begin with the specification Φ and check whether it is realizable (i.e. a
finite-state controller can be synthesized from it). If so, no environment assumptions
are needed, i.e., Ψ = true, and we are done.

The more likely case is that Φ is unrealizable. In this case, we need to synthesize
assumptions so that the resulting specification becomes realizable. For this, we follow
a counterstrategy-guided approach to environment assumption synthesis similar to that
proposed first by Li et al. [10]. A counterstrategy is a winning strategy for the environ-
ment E to force violation of Φ. The approach is based on analyzing a data structure
called the counterstrategy graph that summarizes all possible ways for the environment
to force a violation of the system guarantees. It comprises the following steps:

1. Identify Class of Assumptions: Fix a class of environment assumptions that is ef-
ficiently monitorable. We use a class of LTL formulas of the form

∧
i(G(ai →

¬X bi)), where ai is a Boolean formula describing a set of assignments over vari-
ables in (y, z), and bi is a Boolean formula describing a set of assignments over
variables in y. This is a property over a pair of consecutive states. The template and
the approach can be extended to properties involving over a window of size k for a
constant k.

2. Transform Counterstrategy Graph: Analyze the counterstrategy graph to find nodes
that correspond to violations of safety properties, and cycles that correspond to vio-
lations of liveness properties. Transform the graph into a condensed directed acyclic
graph (DAG) by contracting strongly connected components. Identify error nodes
— nodes in this DAG that correspond to property violations. A cut in this DAG
that separates nodes corresponding to start states from the error nodes corresponds
to an environment assumption – a constraint one can place on the environment to
eliminate the property violations.

3. Extract Environment Assumption from Min-Cuts: Assign weights to the edges in
the graph so as to capture the penalty of reporting an environment assumption (and
transferring control from the controller S to a higher level, supervisory controller
such as a human operator). We consider all cuts in the graph that are at least T edges
(steps) away from any error node in order to report an environment assumption
violation T time steps in advance of a potential property violation. Thus, we find a
min-cut in the counterstrategy graph at least T steps away from an error node. Each

edge in the cut provides one of the conjuncts in the template formula
∧
i(G(ai →

¬X bi)).

Further details of this approach are available in [11]. We demonstrate its working on
the simple example in the following section.

3.3 Results

We now describe the operation of the approach on the car-following example introduced
in Section 3.1. We denote the positions of cars A, B, C by pA, pB , pC respectively;
these variables indicate the rectangular regions where the cars are located at the current
instant. Φ is of the form φS =⇒ φE where each of the φi’s are conjunctions of
properties. We list some of these below:
• Any position can be occupied by at most one car at a time (i.e., no collisions):

G
(
pA = x→ (pB 6= x ∧ pC 6= x)

)
where x denotes a position on the discretized space. The cases for B and C are
similar, but they are part of ψE .
• Car A is required to follow car B:

G
(
(vAB = true ∧ pA = x)→ X(vAB = true)

)
where vAB = true iff car A can see car B.
• Two cars cannot cross each other if they are right next to each other. For example,

when pC = 5, pA = 6 and p′C = 8 (in the next cycle), p′A 6= 7. In LTL,

G
(
((pC = 5) ∧ (pA = 6) ∧ (XpC = 8))→ (X(pA 6= 7))

)
The other specifications can be found in the supplementary material of Ref. [11].

Observe that car C can in fact force a violation of the system guarantees in one step
under two situations – when pC = 5, pB = 8 and pA = 4, or pC = 5, pB = 8 and
pA = 6. Both are situations where car C is blocking the view of car A, causing it to
lose track of car B. The second failure scenario is illustrated in Figure 3b.

Applying our algorithm to this (unrealizable) specification with T = 1, we obtain
the following assumption Ψ .

Ψ = G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X((pB = 8) ∧ (pC = 5))

) ∧
G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X((pB = 6) ∧ (pC = 3))

) ∧
G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X((pB = 6) ∧ (pC = 5))

)
Note how Ψ reports a violation at least T = 1 time steps ahead of a potential

property failure. Also, Ψ corresponds to three possible evolutions of the environment
from the initial state. In general, Ψ can be a conjunction of conditions at different time
steps as E and S progress.

These results indicate the feasibility of an algorithmic approach to generating envi-
ronment assumptions for temporal logic based planning. However, there are also sev-
eral limitations. First, it is hard to scale this explicit graph-based approach to large state

spaces and specifications. Second, it is only applicable to problems where a discretiza-
tion of the state space is meaningful for planning in the real world. Recent work on
repair of specifications for receding horizon control for real-time temporal logics over
continuous signals [9] provides a starting point, although those methods need to be ex-
tended to handle highly adversarial environments. Third, the sensor model is highly
simplified. Nevertheless, a counterstrategy-based approach provides a first step to pro-
ducing environment models in the form of logical specifications (assumptions) that are
usable for controller synthesis, efficiently monitorable at run time, and provide time for
taking mitigating actions when the assumptions are violated.

4 Conclusion

We presented the idea of introspective environment modeling (IEM) as a way of dealing
with the challenge of modeling unknown and uncertain environments of autonomous
systems. The central idea is to introspect on the working of the system in order to
capture a set of environment assumptions that is sufficient to guarantee correct operation
and which is also efficiently monitorable at run time. We formalized the IEM problem
and described an algorithmic approach to solving it for a simplified setting of temporal
logic planning.

Much more remains to be done to solve the IEM problem in practice. First, the al-
gorithmic approach presented in Sec. 3 must be extended from the discrete setting to
cyber-physical systems. The scalability challenge must be addressed, moving from the
explicit graph-theoretic method of Sec. 3 to one that scales to high-dimensional spaces
involving both discrete and continuous variables, likely requiring symbolic methods.
A particularly important problem is to devise realistic sensor models that capture the
noise and errors that arise in real-world sensors; while this is challenging, we believe
this is an easier modeling problem as the number of sensor types is much less than
the number of possible environments. Approaches to extract the weakest environment
assumptions that are also efficiently monitorable at run time must be investigated fur-
ther. It would also be useful to explore formalisms to capture environment assumptions
beyond temporal logic, and the use of IEM for stochastic environment models, rep-
resented, e.g., using probabilistic programming languages [7]. Finally, we believe the
extracted assumptions and the sensor model could be valuable in building an assurance
case for autonomous systems, especially when combined with techniques for run-time
assurance (e.g., [6]).

Acknowledgments

I gratefully acknowledge the contributions of students and other collaborators in the
work that this article draws from. This work was supported in part by NSF grants
1545126 (VeHICaL) and 1646208, the DARPA Assured Autonomy program, the iCy-
Phy center, and Berkeley Deep Drive.

References
1. Typical lane widths. https://en.wikipedia.org/wiki/Lane#Lane_width.

https://en.wikipedia.org/wiki/Lane#Lane_width

2. Velodyne Lidar: Products. https://velodynelidar.com/products.html.
3. Rajeev Alur, Salar Moarref, and Ufuk Topcu. Counter-strategy guided refinement of gr(1)

temporal logic specifications. In Proceedings of the 13th Conference on Formal Methods in
Computer-Aided Design (FMCAD’13), pages 26–33, 2013.

4. Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. Environment as-
sumptions for synthesis. In Proceedings of the 19th International Conference on Concur-
rency Theory (CONCUR’08), pages 147–161. Springer, 2008.

5. Werner Damm and Bernd Finkbeiner. Does it pay to extend the perimeter of a world model?
In International Symposium on Formal Methods, pages 12–26. Springer, 2011.

6. Ankush Desai, Shromona Ghosh, Sanjit A. Seshia, Natarajan Shankar, and Ashish Tiwari. A
runtime assurance framework for programming safe robotics systems. In IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), June 2019.

7. Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L.
Sangiovanni-Vincentelli, and Sanjit A. Seshia. Scenic: A language for scenario specifica-
tion and scene generation. In Proceedings of the 40th annual ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI), June 2019.

8. Shromona Ghosh, Somil Bansal, Alberto Sangiovanni-Vincentelli, Sanjit A. Seshia, and
Claire J. Tomlin. A new simulation metric to determine safe environments and controllers
for systems with unknown dynamics. In Proceedings of the 12th International Conference
on Hybrid Systems: Computation and Control (HSCC), pages 185–196, April 2019.

9. Shromona Ghosh, Dorsa Sadigh, Pierluigi Nuzzo, Vasumathi Raman, Alexandre Donzé, Al-
berto L. Sangiovanni-Vincentelli, S. Shankar Sastry, and Sanjit A. Seshia. Diagnosis and
repair for synthesis from signal temporal logic specifications. In Proceedings of the 9th In-
ternational Conference on Hybrid Systems: Computation and Control (HSCC), April 2016.

10. Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. Mining assumptions for synthesis. In Pro-
ceedings of the Ninth ACM/IEEE International Conference on Formal Methods and Models
for Codesign (MEMOCODE), pages 43–50, July 2011.

11. Wenchao Li, Dorsa Sadigh, S. Shankar Sastry, and Sanjit A. Seshia. Synthesis for human-in-
the-loop control systems. In Proceedings of the 20th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 470–484, April
2014.

12. Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In Proceed-
ings of the 7th Verification, Model Checking, and Abstract Interpretation (VMCAI’06), pages
364–380. Springer, 2006.

13. Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. Towards Verified Artificial Intelli-
gence. ArXiv e-prints, July 2016.

14. Chris Urmson, Chris Baker, John Dolan, Paul Rybski, Bryan Salesky, William Whittaker,
Dave Ferguson, and Michael Darms. Autonomous driving in traffic: Boss and the urban
challenge. AI Magazine, 30(2):17–17, 2009.

15. Tichakorn Wongpiromsarn et al. Receding horizon temporal logic planning. IEEE Transac-
tions on Automatic Control, 57(11):2817–2830, 2012.

https://velodynelidar.com/products.html

	Introspective Environment Modeling

