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ABSTRACT OF THE DISSERATION 

 

 

Defect and grain boundary engineering for enhanced performances and lifetimes of  

hybrid perovskite solar cells 

 

by 

 

Nicholas De Marco 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Los Angeles, 2019 

Professor Yang Yang, Chair 

 

As the world energy consumption increases, the necessity for clean energy proves vital 

and urgent as catastrophic effects of global climate change are imminent. The sun delivers more 

energy to Earth in just over an hour than we have consumed over the course of last year, making 

solar technology a most promising candidate for a sustainable future. Currently, state-of-the-art 

silicon-based solar technologies dominate the market owed to their maturity in processing 

knowledge, performance reliability, and lifetime. Despite lower costs in recent years, the 

levelized cost of electricity of silicon-based solar PV technologies is still much greater than 

conventional fossil fuel sources, providing large incentive to find more cost-effective alternative 

solar PV technologies. Solution-processed solar technologies are appealing as a low-cost 

alternative, among which, hybrid perovskites have recently risen as a high performance solution-
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processed PV technology achieving laboratory scale efficiencies >23%, which are rapidly 

approaching those of conventional Si-based PV (~26%). However, owed to the solution-

processed nature of perovskites, there are many associated defects and grain boundary regions 

that can adversely affect performances and lifetimes. In this dissertation, I will focus on 

addressing defect and grain boundary engineering, taking advantage of the wet chemical 

environment of perovskite thin film processing to manipulate crystallization dynamics and 

modulate defect and grain boundary properties. 

In Chapter 4, the guanidinium molecule was first discovered for use in hybrid 

perovskites. It was found that inclusion of guanidinium can provide extraordinary enhancements 

in photoluminescent properties of the thin film and enhanced open-circuit voltage of the devices. 

Based on further experimental analyses and results, we believe that the guanidinium ion serves to 

suppress formation of defects via lattice strain relaxation and also may serve as a passivant at 

grain boundaries, giving rise to these impressive improvements. This work opened the door to 

future works throughout my Ph.D. to control crystallization and defect properties. 

To further investigate the nature of controlling crystal growth and associated defect 

natures, a Lewis acid-base adduct approach was developed and is discussed in Chapter 5. The 

strength of interactios between the Lewis acid perovskite precursors and Lewis base additives 

were shown to greatly influence nucleation and growth dynamics. The Lewis base urea was 

found to provide great enhancement in crystal growth, producing larger sized grains and 

enhanced photoluminescent properties, alongside a greater performance and stability of the 

device. 
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Lastly, in Chapter 6, the intrinsic stability of the perovskite thin film is addressed by 

utilizing the compositional and dimensional tenability of hybrid perovskite materials, utilizing a 

hybrid 3- and 2-dimensionality of the perovskite structure to lead to even further enhanced 

performances and long-term lifetimes. It was found that the 2-D perovskite forms around grains 

(at grain boundaries) to facilitate the production of high quality 3-D grains and serve as 

passivating layers to grain boundaries. These works provide important future directions for 

hybrid perovskite PV research to realize commercial technologies with competitive efficiencies, 

long lifetimes, and low costs. Conclusions and future outlooks of these works are discussed in 

Chapter 7. 
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Chapter 1. Introduction 

 

 

1.1 The Sun, Energy, and need for Solar Power Generation 

Energy is the fuel for life – the ebbs and flows of which are an essential part of all living 

organisms on Earth.  The ability to access and harvest energy is the pillar of human survival and 

well-being. At present, our energy reliance continues to increase in a world of ever-expanding 

population and technological advancement.1 In 2018, our world total energy consumption was 

111,125 TeraWatt-Hours (TWh) compared to 100,914 TWh in 2010 and 54,335 TWh in 1973.2 

Historically, fossil fuels have dominated as mainstream energy sources (oil, coal, and natural 

gas) due to their abundance on Earth and technological simplicity for conversion into useful 

forms of energy (i.e. combustion). However, burning of these fossil fuels results in carbon 

dioxide as an unavoidable byproduct, which has led to drastic increases in carbon emissions from 

15,460 Mt of CO2 in 1973 to 32,316 Mt in 2016, and are set to reach a record-high 37,100 Mt in 

2018.2,3 This steady continuous increase of harmful carbon emissions has inevitably raised 

serious global environmental concerns linked to more severe climate changes seen worldwide.4 

In addition, fossil fuels are non-renewable sources of energy, which means that their supply is 

limited and will eventually be exhausted. The necessity for clean and renewable sources of 

energy proves vital and urgent as catastrophic effects of global warming are imminent, which 

can be seen through global efforts such as the Paris Agreement that aims to maintain the global 
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average temperature as close to 1.5 ºC above pre-industrial levels as possible.5 This feat does not 

come without major hurdles – both in technological developments and developing grid systems 

capable of handling renewable sources. 

As of 2017, renewable energy sources accounted for approximately 11% of the total 

energy consumption in the United States, amounting to approximately 11 quadrillion Btu (of 

97.7 qBtu in total).1 Among the available renewable energy sources, wind contributed to 21%, 

biofuels 21%, hydroelectric 25%, solar 6%, and geothermal 2%. The sun is a powerful source of 

energy on Earth, responsible for not only direct solar harvesting capabilities but also for all other 

forms of energy on Earth, aside from nuclear and geothermal, such as wind and ocean currents. 

The sun delivers approximately 174 PW of irradiation to the Earth, 89 PW of which is absorbed 

by the Earth’s surfaces (lands and oceans), while the rest (~49%) is reflected or re-radiated by 

the Earth’s atmosphere, clouds, and surfaces.6 This equates to 782,260,000 TWh per year, and 

upon comparison to a 2018 world total energy consumption of 111,125 TWh, we see that the sun 

can provide the total energy needed for the entire year within just 1.25 hours!7 If we assume a 

solar panel efficiency of just 10%, that means we would need only 0.168% of Earth’s surface 

covered in order to harvest an annual total of 15 TW global power. This equates to 858,792 km2, 

which is approximately the size of Venezuela at 882,052 km2 (calculations provided in Appendix 

A.1). However, we must consider the fact that we do not receive the maximum intensity of 

sunlight every hour of the day. If we estimate a global average of 5 hours of peak sunlight per 

day available to harvest, this would instead mean that it would take approximately 6 hours to 

receive all the energy needed for the entire year and 0.403% of the Earth’s surface required to be 

covered by solar PV panels. If we now assume a 20% efficient panel, which is achievable with 

current solar PV available, this is equal to 2,061,100 km2, roughly equal to the size of Saudi 
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Arabia. This is still significantly small fraction of the entire Earth. In fact, the amount of solar 

energy reaching Earth’s surface is so vast that in one year it is about twice as much as will ever 

be obtained from non-renewable energy sources (i.e. coal, oil, natural gas, mined uranium) on 

Earth.6 Therefore, solar is a most promising (and obvious) candidate to realize a clean and 

sustainable source of energy for the future of humanity.8  

When speaking of solar energy, it is important to realize that there are several different 

types of solar-harvesting technologies, which includes photovoltaic, thermal, and concentrated 

solar. Solar photovoltaic (PV) is most appealing for implementation into electrical grid systems 

as this technology allows for the direct conversion of sunlight into electricity. Solar PV has 

blossomed over recent years, nearly doubling its total installed capacity in the U.S. from 2015-

2016 and becoming the number one source of new electric generating capacity at 39% annually.9  

Moreover, the total installed capacity is anticipated to triple over the next 5 years. While the 

economics of the solar PV market have largely improved to allow for such large increases in 

installed capacity, there still is great incentive from a materials and applications standpoint to 

develop alternatives to current industry-leading silicon-based solar technologies. 

 

1.2 A Brief History of Solar Photovoltaics 

A timeline of the important milestones in solar PV history are provided in Figure 1-1.  

Solar PV dates all the way back to the 1800’s and during the Industrial Revolution, when in 1839 

French scientist Edmond Becquerel first discovered the fundamental process for what would be a 

critical component for the function of future solar PV technologies – the photovoltaic effect.10 

His experiment revealed that illuminating an electrode (Platinum, Pt) in an electrolyte (AgCl, 
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AgBr) could generate a photovoltage – the pillar of the solar cell function. The next important 

discovery towards solar PV was made between 1873-1876 by Willoughby Smith, an English 

electrical engineer, who observed an induced photoconductivity of selenium upon exposure to 

irradiation.11 This discovery proved that solar energy can be easily harvested without the need 

for larger and more complicated equipment and parts, as were needed for other energy-producing 

technologies (e.g. coal plants). Finally, in 1883, the first solar cell was created by New York 

inventor Charles Fritts.12 His cell consisted of coating a thin layer of gold onto selenium, 

achieving an energy conversion efficiency of 1-2%. Though it had been discovered, it was not 

until 1887 that the photoelectric effect was observed by Heinrich Hertz.13 His experiment 

showed that upon exposure to ultraviolet light, the voltage at which sparking takes place between 

two metal electrodes with a voltage between them will vary, proving that the ultraviolet light 

could eject electrons from the metal surface. In 1918, Jan Czochralski of Poland developed a 

method to produce single crystal silicon,14 called the Czochralski process, which still used to this 

day. However, it was not until 1953-1956 that the efficiency of solar PV became more practical 

when silicon was discovered at Bell Laboratories as a more efficient material than selenium for 

solar energy harvesting. This led to the creation of the first silicon-based solar cell that was 6% 

efficient.15 This allowed enough power to be generated from a solar cell such that it could finally 

be used to power real devices and equipment, which paved the road for the future 

commercialization of silicon photovoltaics. Further development of silicon-based cells resulted 

in efficiencies up to 14% by Hoffman Electronics during 1960. This led to the production of 

modules for larger terrestrial and space-satellite applications.12 While decent efficiencies and 

practical use of these solar PV cells was possible, they were still very expensive ($100-$150/W). 

In 1970 Exxon Corporation designed a cell to significantly cut costs down to $20/W, which 
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allowed solar PV to be utilized in a wider range of terrestrial applications such as navigation 

warning lights, lighthouses, railroad crossings, etc.12  

 

Figure 1-1: A brief timeline of history of solar PV development. (Adapted from references 10-15) 

Owed to the great potential of solar PV as a major energy source, much more effort was 

put in to further developing the technology, both through government and industry support, with 

a notable opening of the National Renewable Energy Laboratory (NREL) research institute in 

1977 dedicated to developing technologies to harvest solar energy. Over the next 50 years, 

different waves of solar PV technologies emerged as its technological promise was realized, 

which can be classified into the three major generations that will be discussed in the next section. 
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1.3 Generations of Solar PV 

The three generations of solar PV technology are: wafer-based (bulk), thin film, and low-

cost high-efficiency (Figure 1-2).  

 

Figure 1-2: The Generations of Solar PV Technology. 

The first generation pertains to what has been discussed thus far – the oldest and most 

conventional solar PV technology that uses silicon-based monocrystalline wafers made via the 

Czochralski method. Silicon is the industry standard owed to its higher efficiencies (up to 26%) 

than other materials, and comprises about 30% of the market. Polycrystalline silicon is also used 

as a first generation material, but achieves lower efficiencies than its monocrystalline counterpart 

(up to 21%),16 owed to its fabrication processes where molten silicon is poured into a cast instead 
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of coming from a single crystal. The second generation of solar PV is known as thin film as the 

active layers are only a few microns thick, compared to the tens to hundreds of microns seen for 

bulk (first generation) silicon. This has the advantage of not only lowering material costs and 

supply, but opens the possibility of further applications due to the potential for flexible and 

lightweight packaging. The major types of second generation solar PV are: Amorphous Silicon 

(a-Si), Cadmium Telluride (CdTe), Copper Indium Selenide (CIS) and Copper Indium Gallium 

diSelenide (CIGS). a-Si is much less efficient (12%) than mono or poly, but has the advantage of 

a much thinner film and more simple and less expensive fabrication methods. Thin film cells 

typically have a top window layer that absorbs the higher energy photons, leaving the lower 

energy photons to be absorbed by the active material. This improves efficiency, where CdTe can 

reach 21.4%, CIGS 21.6%, and a-Si 11.8% as of 2016.16 Second generation thin film solar PV 

also uses materials with direct band gaps, as opposed to the indirect band gaps of first generation 

silicon. This will be discussed in greater detail in Chapter II.  The drawback with these materials, 

however, is that they either use rare earth elements, or toxic elements (with the exception of a-

Si), which alongside higher manufacturing costs and fewer infrastructure, limits their widespread 

use. This leads us to the third generation of solar PV which focuses on developing low-cost, 

high-efficiency thin film solar cells. These types of cells are inherently different than the prior 

generations in that they do not rely heavily on a p-n junction for their function (described in 

further detail in Chapter II). Furthermore, third generation solar PV utilizes new materials and 

structures, such as nanomaterials, nano-structures and features, quantum effects, printable solar-

absorbing inks, organic dyes, conductive plastics (polymers), etc. The first type of third 

generation solar PV is called the dye-sensitized solar cell (DSSC), often referred to as the Grätzel 

cell, which is named after its inventor Michael Grätzel. This type of solar PV device uses a 
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photo-absorbing dye that is coated onto a porous titania (TiO2) layer (with high surface area such 

that the maximum amount of photo-absorbing dye can be loaded onto it) and a liquid electrolyte 

that serves as a ‘shuttle’ for charge carriers across the device via a redox reaction (Figure 1-3). 

DSSCs have the advantages of low-cost, environmental friendliness, semi-transparency, tunable 

color (based on the type of dye used), and ease of fabrication with efficiencies up to ~12%.17,18 

However, the most interesting advantage of DSSCs are that their efficiency enhances under 

lower (diffuse) light intensity and higher temperatures.18 DSSCs are thus more ideal for unique 

applications such as building-integrated where they don’t see the sun’s full intensity. However, 

like any technology, DSSC do not come without drawbacks, some of which are that the use of 

liquid electrolytes can lead to short lifetimes due to evaporation of the organic solvent, difficulty 

in sealing the device that result in leakage pathways for solvents, electrode corrosion, and limited 

solubility of the inorganic salts.16 The DSSC will be important as it relates to the initial operation 

of the hybrid perovskite solar cell. 

 

Figure 1-3: Working Principle of a Dye-Sensitized Solar Cell (DSSC). Light is absorbed by the 

dye (purple), followed by extraction through the electron-transporting TiO2 scaffold to the TCO 
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electrode. The electron returns through the other electrode after giving off excess energy to do 

work, where it undergoes a redox reaction with the iodine solution. The I-/I3- redox reaction 

serves as a shuttle for the electrons to return to the dye and maintain charge neutrality.19  

The next type of important third generation solar PV technology is organic PV cells, 

where organic refers to the fact that the active layer is made from entirely organic materials, such 

as polymers and small molecules. Typical structures of these active layers are bi-layered or bulk 

heterojunction, where the active layer is comprised of donor and acceptor materials for charge 

separation and transport. Organic solar cells are very inexpensive, but not very efficient (current 

records are over 12%), which limits their use and their direction is still not clear. However, they 

can be manufactured using roll-to-roll printing processing, and are expected to approach $0.5/W 

in the near future (2020) which could rival that of conventional first and second generation solar 

PV technologies.16 Some other types of third generation technologies include quantum 

dot/wire//well solar cells and other nanotechnologies, which are still in the fundamental research 

phase.  

A relative newcomer to the solar PV field are a new class of materials called hybrid 

organic-inorganic perovskites. This family of materials shows tremendous promise in the solar 

PV field to achieve high efficiencies (current record over 23%), low material costs, and high 

throughput roll-to-roll processing capabilities. In addition, there are many interesting scientific 

phenomena that occur for this family of materials and associated devices not seen in other solar 

PV technologies, which provides much intrigue from a materials research perspective. It is this 

alluring family of materials that I chose to conduct my Ph.D. research on, and that will be the 

topic for the remainder of this thesis. 
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1.4 Motivation for Hybrid Perovskite Solar PV 

Traditional first generation silicon-based terrestrial solar technologies, which remain firmly 

as the industry standard solar PV technology, are becoming less compatible with the changing 

nature of our society’s energy requirements based on four significant limitations: (i) largely 

plateaued efficiencies over the last 15 years  (~26% lab-scale power conversion efficiency 

(PCE)), (ii) high processing costs resulting from the large energy requirements to extract pure 

silicon from the strongly covalently bonded silicon dioxide (~1500-2000 °C via arc furnace), (iii) 

production of toxic pollutants and greenhouse gases during processing of silicon from silicon 

dioxide (SiO2), and (iv) high weight and rigidity that result in high installation costs and limit 

applications to rooftops and traditional solar farms.20 These factors provide large incentives to 

develop new technological breakthroughs in photovoltaic materials and devices that can reduce 

costs and increase performances of solar PV, ultimately alleviating current constrictions on 

implementing solar into our country’s energy portfolio. 

Recently, the organic-inorganic hybrid perovskite thin film solar cell has emerged a 

promising candidate to replace crystalline silicon as a terrestrial photovoltaic standard due to its 

high efficiencies, which have soared to reach over 23% in just 8 years17 with low solution-based 

processing costs. The exceptional and unprecedented optoelectronic properties of perovskites 

have resulted in a calculated maximum theoretical power conversion efficiency (PCE) limit of 

~31%,21 which is close to the theoretical efficiency limit (33%) for a single junction solar cell22 

and is well beyond the current plateaued efficiency of silicon-based cells (~26%). Arguably 

some of the most intriguing features of hybrid perovskites from a manufacturing and applications 

standpoint are their flexible and light-weight thin film nature with the potential to reach high 
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specific powers (the ratio of power to device weight, ~1.59 kW/kg), transparency tunability, and 

facile high-throughput solution-processing capabilities, which have opened the door to a myriad 

of unique solar applications from building-integrated photovoltaics to unmanned aerial vehicles, 

portable micro-grid capabilities, and more. From a materials science standpoint, this family of 

materials exhibits a myriad of properties ideal for PV applications, such as a high dual electron 

and hole mobility, large absorption coefficients, a favorable band gap, a strong defect tolerance 

and shallow point defects, benign grain boundary recombination effects, and a reduced surface 

recombination.23 It is for these reasons that hybrid perovskites are among the most highly 

researched field in recent years and have great potential to alleviate the restrictions of silicon-

based photovoltaic technologies to pave the way towards a feasible solar-driven sustainable 

future. 
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Chapter 2. Fundamentals of Semiconductors and Solar Cells 

(This chapter is based on fundamentals concepts from Solymar & Walsh, Electronic Properties 

of Materials; and Nelson, Jenny, The Physics of Solar Cells) 

 

 

2.1 Semiconductors 

Semiconductors are the stronghold of modern electronic circuits and devices. While metals 

are highly electronically conductive and certainly play an important role in electronic devices, 

semiconductors are equally if not more important because they allow for control over the flow of 

electrons through a material. This characteristic is essential for the function of electronic devices, 

which require frequent switching (on/off) between components to communicate in binary 

language and controlling current flow to occur in one direction (e.g. a diode). Semiconductor 

materials also allow for detection of various sources of energy (e.g. sensors, detectors), 

generation of light (LEDs, LASERS), and capturing of light (photovoltaics). One feature of that 

has allowed for the great successes of semiconductors in these applications is the capability to 

control the density of electrons within the semiconducting material, known as doping, which will 

be discussed further in this section. While a discussion on semiconductors could extend far into 

many other fields such as microelectronics, here we will focus on semiconductor fundamentals 

as they pertain to photovoltaics. 
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2.1.1 The band gap 

A semiconductor is a material that has a conductivity somewhere between a metal, such as 

silver, gold, copper, or aluminum, and an insulator, such as glass. Semiconductors can be broken 

down categories based on the elements of which they are comprised. First, there are elemental 

semiconductors made up of Group IV elements, such as silicon and germanium, hence the name 

elemental as they can be made solely from one element. However, these can form compound 

semiconductors as well, which are still comprised of two Group IV elements, such as SiGe. 

Next, there are III-V semiconductors, such as GaAs, InP, GaP, GaN, that are made up of 

elements from Group III and Group V of the periodic table. Similarly, there are II-VI 

semiconductors, such as ZnO, CdTe, ZnTe, and so on.  

There are two models I wish to provide that each give different, yet important, perspectives. 

The first is more intuitive, stemming from the well-known molecular orbital theory (MOT). 

MOT is a method for describing the electronic structures of molecules, and can be extended to 

that of bulk materials for our discussion, known as the band model. The basis behind this model 

is that the characteristic orbitals for the bulk material are obtained as linear combinations of the 

individual atomic orbitals. Let us first look at the case for metals. Using lithium (Li) as an 

example, we can first see what happens in the case of two Li atoms coming together to form Li2. 

Figure 2-1a depicts the energy level diagram for this scenario consisting of Li 1s and 2s orbitals, 

where the 1s orbital is completely-filled and the 2s orbital half-filled. When these two single 

atoms are brought together to form diatomic lithium, we get an energy level splitting of both the 

1s and 2s orbitals per the Pauli Exclusion Principle that creates a lower energy bonding (𝞂) and 

higher energy anti-bonding (𝞂*) level to prevent two equivalent energy states from occurring. 

This creates a slight energy ‘gap’ between the two levels. As we increase the length of the chain, 
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taking Li4 as a hypothetical example, the degree of splitting of the 2s states increases, where the 

number of states always equals the number of atoms. This occurs when the lithium chains are 

increased in length and also placed on top of one another, until eventually we obtain a bulk Li 

crystal. In this case there are a great number of Li atoms (one gram of Li has approximately 1023 

atoms) and we form what are called energy bands (e.g. 2s band). These bands are bounded by an 

upper and lower limit that separate them from the prior and subsequent bands (1s, 2p bands) by a 

significant energy gap. The electronic states are filled sequentially with the lowest states filled 

first (per the Aufbau principle) such that for Li the electronic states of the 2s band are exactly 

half-filled. Half-filled bands are characteristic of metals, and is what give them their conductive 

properties. In this case, charge carriers (electrons or holes) can move up these energy levels with 

relative ease as the energy gap between their spacing is relatively small (on the order of ~10–20 

eV). We call the filled portion of the band the valence band (VB), and the empty band the 

conduction band (CB). For this reason, we commonly describe metals as having a ‘sea of free 

electrons’ that can flow with relative ease (conductive). Furthermore, different metal atoms with 

the same valence, i.e. from the same group of the periodic table, can often replace each other 

with relative ease because the width of each energy band, which relates to the overlap of electron 

𝞇 functions, is a function of the crystal structure and determines the number of nearest 

neighbors. Therefore, metals can form heterogeneous solid solutions, or alloys. On the other 

hand, not all metals have the same mechanism as Li as it depends on the electronic structure. 

Taking Mg for example, it has its 3s band filled, which at first would seem non-conductive since 

the band is already filled (no conduction states in the 3s band). However, Mg obtains its 

electrical conductivity through a partial overlap of the filled 3p and empty 3s bands, therefore 

allowing electrons to be excited into the empty 3p band states for conduction. 
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Figure 2-1: Evolution of band structures. (a) for a metal: Li. Orbital splitting occurs upon bonding of two 

Li atoms. Further splitting of these bonding and non-bonding orbitals leads to a continuum of closely-

spaced energy bands that are half-filled - characteristic of metals. (b) for a semiconductor: Si. 

Hybridization of 3s and 3p orbitals occurs for Si that split into bonding and anti-bonding states. After 

many atoms come together into a bulk solid form, significant energy gaps form between the bonding and 

non-bonding bands, forming what is known as a band gap. 
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For insulators and semiconductors, the situation changes. For instance, in diamond, the 

bonding molecular orbitals that constitute the VB forms at a much lower energy, and the 

antibonding molecular orbitals that make up the CB form at a much higher energy. In addition, 

because each atom contributes four orbitals and four electrons, the bonding orbitals are 

completely filled and the only empty orbitals are those in the higher energy antibonding band. 

Thus, there remains a rather large energy band gap between the VB and CB (5.47 eV) that 

electrons cannot cross over.  

Turning to semiconductors, we can look at the case for Si (Figure 2-1b). In a single Si 

atom, the 3p band is incompletely filled. At first, it may seem as though when combining two Si 

atoms, they would bond perfectly and completely fill the shell. Then, how does the conduction 

band arise? To answer this, we must first ask another question. How can Si (like C) form four 

bonds, when it only has two valence electrons? The answer lies in molecular orbital theory, 

called hybridization. Though the 3s state is initially completely-filled, the 3p state has one level 

completely empty and two half-filled. Thus, it is more favorable to form ‘hybridized’ orbitals of 

partial s and p components, so that each orbital is degenerate (the same) and there is symmetry of 

the energy distribution. Upon bonding, hybridization of its orbitals occurs and forms four sp3 

orbitals, which are then half-filled, allowing for the formation of four bonds, similarly to that of 

diamond, which is partly why silicon takes on the diamond crystal structure. These hybridized 

orbitals are then split into bonding and non-bonding states with an energy gap between them, as 

in the case for diamond, however the degree of splitting is less than the case of diamond. An 

energy band gap is still formed, however, at a much lower value (1.1 eV). This energy is low 

enough that even at room temperature there is a probability of electrons being thermally excited 

into the conduction band. Diamond has a larger band gap than Si simply because its occupied 
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electron levels are lower (1s, 2s, 2p versus up to 3p for Si). Thus, in Si the electrons in the outer-

most shell are held less tightly than those in diamond, constituting a larger σ-σ* split, and 

consequently a larger band gap. Furthermore, using a technique called doping, we can introduce 

extra charge carriers into the material to create mid-gap states and make the semiconductor more 

conductive. This will be explained in the later section pertaining to doping effects in 

semiconductors (Section 2.1.3). Figure 2-2 shows the comparison of band diagrams for a metal, 

semiconductor, and insulator, and Table 2-1 lists bandgap values for common materials.  

 

Figure 2-2: Characteristic band diagrams for metals, semiconductors, and insulators. 

 

Table 2-1: List of common materials and associated band gaps.1 

Material Abbreviation Band Gap [eV] Type 

Silicon Dioxide SiO2 9 Insulator 

Aluminum nitride AlN 6 Insulator 
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Diamond C 5.5 Insulator 

Silicon Nitride Si3N4 5 Insulator 

Gallium Nitride GaN 3.4 Semiconductor 

Gallium Phosphide GaP 2.26 Semiconductor 

Gallium Arsenide GaAs 1.43 Semiconductor 

Silicon Si 1.1 Semiconductor 

Germanium Ge 0.67 Semiconductor 

Lead (II) Sulfide PbS 0.37 Semiconductor 

 

In addition to the MOT-based band model, we can take a physics perspective to derive and plot 

the entire band structure. Naturally, this model starts from solving the infamous Schrödinger 

equation to obtain the allowable electron energy states, 1s, 2s, 2p, 3s, 3p, etc, of which are 

energies as a function of the wave vector (k), E(k). Bloch's theorem states that the wavefunction 

solution of the Schrödinger equation when the potential is periodic (this gives us Schrödinger’s 

in terms of k-space), can be written as: 

(2.1)          𝜓(𝑥) = 𝑒*+, ∙ 𝑢(𝑥) 

where u(x) is a periodic function that satisfies u(x+a)=u(x). Essentially, this is the solution to 

Schrödinger’s infinite potential barrier, but instead with a finite potential barrier and a periodicity 

term. To solve the periodic potential, we use a model called the Kronig-Penny (KP) model to 

solve for the allowed and forbidden k values in a periodic potential, from which an E-k plot can 

be constructed. This E-k plot, is essentially our band structure and tells us where the energy 

bands lie and what the forbidden energy levels are, i.e. band gaps. E-k diagrams vary based on 

crystallographic direction and are typically constructed for the most significant directions within 
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a given material/crystal structure. The E-k diagram varies from 0 to π/a, where a is the atomic 

spacing of the crystal structure along a given direction. Since these functions are waves, and 

therefore periodic in nature, the boundary of an allowed band corresponds to cos(ka)=±1, that is, 

k=n𝜋/𝑎 ; n=1, 2, 3, etc, which is the physical origin the band gap. This means that the energy 

distribution repeats in intervals of k=𝜋/𝑎, and the areas within these boundaries can be described 

as Brillouin Zones, where the first Brillouin Zone boundary is that of k=𝜋/𝑎, corresponding to 

when maximum or minimum energy is reached on the periodic E-k wave (slope equal to zero). 

In fact, what allows us to use the Bloch wavefunction to completely describe all relevant k 

values is that it defines all k within our First Brillouin Zone, where those k outside of the FBZ 

can be represented as integer multiples of those k values within the FBZ. Figure 2-3a represents 

an E-k diagram constructed by solving the KP model, from which band gaps and energy bands 

are clear for each k=𝜋/𝑎	interval. Figure 2-3b depicts the energy band diagrams for metals, 

insulators, and semiconductors. The shading indicates the filling of electron states within the 

bands. Darker signifies a more filled band, whereas lighter that the states within the band are 

empty. To provide perspective the positions of the energy bands are all relative to a common 

energy level, called the Fermi level (EF), which is a very important parameter, and will be 

discussed further in the next section. 
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Figure 2-3: (a) E-k diagram solutions to KP model indicating Brillouin zone boundaries, allowed and 

unallowed E and k values (bands and band gaps). (b) Representative energy band diagram comparisons 

for metals, insulators, and semiconductors. The y-axis represents energy and the shading indicates the 

filling of electron states within the band, where darker indicates more filling and lighter less. Band 

positions are relative to a common Fermi level to provide perspective.2,3 

  

2.1.2 The Fermi Level 

 The Fermi level is a measure of equilibrium. It is equivalent to the chemical potential of 

charge carriers (i.e. electrons) within a material. A strong understanding of the Fermi level, i.e. 

how it relates to electronic band structure, current and voltage, is essential to understanding solid 

state physics and devices, especially solar PV. Formally, the Fermi level is defined as an actual 

or hypothetical energy of an electron such that at thermal equilibrium it would have 50% 

probability of being occupied at any given time. For a metal, the Fermi level lies within the 

CB/VB, since there is an overlap of the two bands. However, for insulators and semiconductors, 

the Fermi level lies between the CB and VB, where at thermodynamic equilibrium (0K) it is 
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precisely at the center, meaning that no electron has an energy greater than this level. No states 

above the Fermi level are filled. As the temperature increases, EF shifts upwards and offsets from 

the exact center, however, the amount is very small such that its shift is hardly distinguishable. 

This follows the Fermi-Dirac distribution function, which provides the probability that an energy 

level at energy, E, in thermal equilibrium with a large system, is occupied by an electron, given 

by the relationship: 

(2.2)          𝑓(𝐸) = 6

6789:	;<=<>?@A
B
 

The system is characterized by its temperature, T, and its Fermi energy, EF. As temperature 

increases, the probability of occupation increases gradually, as shown in Figure 2.4.  

 

Figure 2-4: The Fermi-Dirac distribution function. As temperature increases, the slope gradually 

decreases, thereby increasing the probability of occupancy. 
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Since the Fermi level is derived from the condition that at T>0, there is some finite probability 

per the Fermi-Dirac (FD) distribution that some of the electrons are excited into the CB. 

Consideration of charge neutrality requires that the number of electrons equal the number of 

holes to within the semiconductor, i.e. Ne=Nh. Using the derived expressions for Ne and Nh 

yields: 

(2.3)        𝐸C =
DE7DF
G

+ I
J
𝑘𝑇𝑙𝑜𝑔 PQ

∗

PS∗
 

where Ec and Ev are the conduction and valence band energy levels, and 𝑚U
∗ and 𝑚V

∗ are the 

electron and hole effective masses (described in further detail shortly). Thus, we can see that if 

T=0K, EF lies within the middle of the gap. Therefore, it effectively represents the chemical 

potential of the semiconductor, where the middle is equilibrium, and as electrons are excited to 

the conduction band it shifts in accordance. Electrons can be excited into the CB in several ways, 

such as thermally, by absorbing light, or essentially by any means so long as it has enough 

energy to overcome the bandgap. When electrons are excited into the CB, they leave behind a 

vacant site, which we refer to as a hole. These holes can move down in energy through the VB in 

a similar manner as electrons move up through the CB, because a moving hole is essentially an 

electron moving upwards to fill a vacant position, and in the end we still get the movement of 

charge carriers. Consequentially, we commonly use the term charge carriers to describe the use 

of either electrons or holes as the majority carrier.  

The effective mass, commonly denoted by 𝑚∗, is essentially the mass that a charge carrier ‘sees’ 

due to its interaction with the periodic electric potential of the crystal lattice as it moves within, 

as opposed to the mass an electron sees within vacuum (with no external forces acting upon it as 

it moves).  In other words, it is a way to represent that an electron can propagate faster than 
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normal in a periodic potential. The effective mass is related to the E-k diagram according to the 

following relationship: 

(2.4)        𝑚∗ = ℏX

YX<(?)
YX?

 

where the term in the denominator is the second derivative of the E-k diagram, i.e. the curvature. 

Thus, a higher curvature leads to a lower effective mass, which means the electron sees a lower 

mass than normal and can propagate more easily within the periodic potential. This is an 

important concept because it relates to the dispersion of band diagram, which describes how an 

electron responds to a force, e.g. the force on the electron from the periodic potential resulting 

from the band structure. Dispersion is given by the relation: 

(2.5)        𝐸 = ℏX+X

GP∗  

A higher dispersion means that E varies more greatly for each k value increase, i.e. the difference 

between the lowest and highest energy levels within the band (range of k values). Referring to 

Figure 2-3a, the higher bands would have higher dispersion, such as bands in the k-value ranges 

from 0 to k=𝜋/𝑎	vs k=2𝜋/𝑎	to k=3𝜋/𝑎. Dispersion in an important concept relating the density 

of states and absorption properties in photovoltaic absorbers, which will be discussed in the 

coming sections. 

 

2.1.3 Doping of semiconductors 

The conductivity of semiconductors can be influenced by shifting the EF within the 

bandgap. This can be accomplished via a technique known as doping, where impurities with a 
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slightly different number of valence electrons are intentionally incorporated into the bulk crystal 

in a known quantity. This alters the bond energy between the host and impurity atoms, thereby 

allowing for charge carriers (either electrons or holes) to more readily free from their bonds and 

become a free electron, in other words, contribute towards conduction either in the CB or VB for 

electrons or holes, respectively. There are two types of doping: n-type and p-type doping. N-type 

represents introducing extra electrons and p-type signifies extra holes as the majority charge 

carrier type. Each impurity atom can donate one extra charge carrier (either an electron or hole). 

This is accomplished by introducing an impurity atom from the immediate neighbor group on the 

periodic table. For instance, Si can be doped n-type with phosphorous (group V) and p-type with 

boron (group III). N-type doping shifts the EF closer to the CB, known as a donor impurity, while 

p-type doping shifts the EF down towards the VB, known as an acceptor impurity. Figure 2-5 

displays the schematic for n- and p-type doping of Si and the corresponding band diagrams. 

Notice the EF shift on the band diagram lies between the newly introduced impurity states and the 

closest band (CB/VB). This is because the introduced carriers are not bound and therefore higher 

in energy as they freely move throughout the material. Typical doping densities of 

semiconductors are on the order of 1013-1018 atoms/m3 and 1022 atoms/m3 for a heavily doped 

semiconductor, and since there is 1 carrier per atom, atoms/m3 is equivalent to electrons or holes/ 

m3.  
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Figure 2-5: (a) n-type (left) and p-type (right) doping of a semiconductor. An impurity atom with either 

one extra or one less electron substitutes a host atom to introduce an extra charge carrier (electron or hole) 

into the system. (b) Corresponding band diagrams for n-type (left) and p-type (right) of typical high 

density doping of semiconductors. Figure depicts the acceptor and donor levels with associated Fermi 

level changes, and electron and hole charge carrier introduction via doping. 

However, here it is important to note that before we can calculate the actual density of 

charge carriers within out material, we must find the number of states available at each energy 

per volume within the band. This leads us to the density of states (DOS), which is defined as the 

the number of states per unit energy per unit volume, given by: 

(2.6)        𝑔(𝐸)𝑑𝐸 = 𝑔(𝑘)𝑑𝑘 = ;+
]
B
G
𝑑𝑘 
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And since E and k are related by equation 2.5, the number of solutions to Schrodinger’s equation 

are given by: 

(2.7)        𝑘, =
^]
_

 

where n = 1, 2, 3, etc are the allowable quantized levels. If this is expanded to include three 

dimensions along the y- and z-axis, this corresponds to a cube in k-space with size n/L. 

Accordingly, we obtain the relationship: 

(2.8)        𝑔(𝐸) = 6
G]
;GP

∗

ℏX
B
I/G

𝐸6/G       or       𝑔(𝐸) = `]√G
Ub

(𝑚∗)I/G𝐸6/G 

Multiplying the DOS by the probability of a state being occupied by an electron (Fermi-

Dirac function), we obtain the number of electrons at each energy level: 

(2.9)        𝑛(𝐸) = 𝑔(𝐸)𝑓(𝐸) = 6
G]
;GP

∗

ℏX
B
I/G

∫ De/X

6789:	;<=<>?@A
B

f
gf 𝑑𝐸 

This is typically calculated as the number of states per energy per unit volume, since the number 

of energy states within a material is very large. The DOS is a very important concept because it 

responsible for determining several important properties of semiconductors, as will be discussed. 

 

2.1.4 Conductivity, mobility and carrier concentration 

To further understand the effects and implications of doping, we should take a step back and 

look deeper into several important parameters that are of interest for metals and semiconductors, 

namely, conductivity, mobility, and carrier concentration. Conductivity is the degree to which a 
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material conducts electricity, or how well it transports electrons, which for metals is given by the 

general equation: 

(2.10)        𝜎 = 𝜇V(𝑁V𝑒)	

where 𝑁V is the charge carrier concentration, 𝑒 is the fundamental charge of an electron, and 𝜇V 

is the mobility of the electron. We have just discussed doping as the mechanism behind 

controlling carrier concentrations within semiconductors, and for metals the carrier (electron) 

concentrations are typically very high around 1028 free electrons/m3. There is no doping 

mechanism available for metals because (i) they do not have a band gap so doping would be 

ineffective and (ii) it is not needed because metals already have a high number of free electrons. 

For semiconductors, with both types of charge carriers, the equation for conductivity becomes: 

(2.11)        𝜎 = 𝑒(𝑛𝜇V + 𝑝𝜇U)	

where e and n designate that for electrons, and h, p represent values for holes. For n- and p-type 

semiconductors, this equation reduces to that of solely the dopant majority charge carrier type: 

(2.12)        𝑛 − 𝑡𝑦𝑝𝑒:			𝜎V = 𝑒(𝑛𝜇V)	

(2.13)        𝑝 − 𝑡𝑦𝑝𝑒:			𝜎U = 𝑒(𝑝𝜇U)	

The mobility, 𝜇, characterizes how fast a charge carrier (electron or hole) can propagate through 

a medium, such as a metal or semiconductor in response to an electric field, which is represented 

by its drift velocity, 𝑣r: 

(2.14)        𝑣r = 𝜇𝐸 
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where E is the electric field potential. The mobility of the electron is given by: 

(2.15)        𝜇 = ; s
P∗ 𝜏B 

where 𝜏 is the average time between collisions, 𝑚∗ is the effective mass of the carrier (either 

electron or hole), and 𝑞 is the elementary charge.  

Ultimately from these sets of equations, we can see that conductivity depends on three 

major parameters: carrier concentration, average time between collisions, and effective mass. 

Thus, there is a tradeoff between increasing carrier concentration by doping, and reducing the 

average time between collisions as impurity scattering centers are added through doping that 

increases the mobility. The effective mass will also be dependent on the type of material being 

used, as it depends on the nature of the periodic potential and thus the band structure of the 

material. That being said, conductivity and mobility are more relevant when discussing 

semiconductors, as these properties are directly measurable and more practical. Conductivities 

are measured in (Ωm)-1, where typical values for metals are on the order of >107 (Ωm)-1, 

semiconductors 10-4-106 (Ωm)-1, and insulators 10-10-10-20 (Ωm)-1. Mobility is measured in 

cm2/Vs, where metals are typically in the range of 10-3-10-4 cm2/Vs, and for semiconductors, the 

mobility falls into the range of 103-104 cm2/Vs for electrons and 102-103 cm2/Vs for holes. Table 

2-2 summarizes the conductivity, mobility, and carrier concentrations for metals, semiconductors 

and insulators. 
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Table 2-2: Common approximate values of conductivity, mobility, and carrier density for metals, 

semiconductors, and insulators. 

Material Type Conductivity [(Ωm)-1] Mobility [cm2/Vs] Carrier Density [m-3] 

Metal >107 10-3-10-4 10-28 

Semiconductor 10-4-106 103-104 (n) 
102-103 (p) 

1013-1018 

Insulator 10-10-10-20 ~104 (i) N/A 

 

At equilibrium, the number of carriers in the CB and VB is called the equilibrium carrier 

concentration, and the product of the minority and majority carriers is a constant following the of 

the Law of Mass Action: 

(2.16)        𝑛v𝑝v = 𝑛*G 

where 𝑛v and 𝑝v are the electron and hole equilibrium carrier concentrations, and 𝑛* is the 

intrinsic carrier concentration. This implies that upon doping, the minority carrier concentration 

must decrease if the majority carrier concentration is to increase upon further doping. The 

majority and minority carrier concentrations are: 

(2.17)        for	n − type:							𝑛v = 𝑁�, 𝑝v =
^�X

��
 

(2.18)        for	p − type:							𝑝v = 𝑁�, 𝑛v =
^�X

��
 

For instance, in an n-type material some of the added electrons upon doping will occupy some of 

the holes present intrinsically within the VB, and thus not contribute as a majority carrier, 

lowering the number of holes present at equilibrium. 
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2.1.5 Carrier transport 

There are two important carrier transport processes that occur within semiconducting 

materials: diffusion and drift. In the absence of any external driving force or stimuli, carriers will 

move at a constant velocity along a random direction until their path is impeded, and will then 

continue along a new direction after being redirected by a collision. Diffusion occurs when there 

is a concentration gradient within the semiconductor, for instance, when doping to introduce an 

excess of free carriers. Diffusion is a thermodynamically-driven process that essentially seeks a 

homogenous distribution of carriers within the material, i.e. carriers will diffuse from regions of 

high concentration to lower concentration to seek equilibrium. Drift, on the other hand, is the 

migration of charge carriers in a net direction in response to an applied electric field, i.e. an 

electrical bias. The carriers will accelerate in the direction or in the opposite direction, if the 

carrier is a hole or electron, respectively, of the applied electric field, where the net carrier 

movement is dictated by the mobility within the material. Drift is equivalent to the equation for 

drift velocity that we saw in the prior section. These two parameters will become important when 

discussing p-n junctions in the next section as well as for solar cell operation. 

 

2.1.6 Recombination in semiconductors 

Before proceeding to a discussion on how semiconductor devices are formed, namely, the 

p-n junction, we must first define and understand several important parameters: the charge 

carrier diffusion length and charge carrier lifetime. The diffusion length is the average distance a 

carrier can travel before recombining with the opposite carrier species (electron or hole), given 

by: 
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(2.19)        𝐿� = √𝐷𝜏 

where 𝜏 is the charge carrier lifetime and 𝐷 is the diffusivity given by the Einstein relation as: 

(2.20)        𝐷 = �+�
s

 

where 𝜇 is the carrier mobility, 𝑘 is Boltzmann’s constant, 𝑇 is temperature and 𝑞 is the 

elementary charge. Thus, we can see that the diffusivity is related to the mobility, which is in 

turn related to carrier scattering. The charge carrier lifetime is an important parameter that 

describes the average time it takes a minority carrier to recombine with a majority carrier. The 

total bulk carrier lifetime is the sum of the lifetimes determined by three major recombination 

mechanisms: band-to-band, Shockley-Read-Hall (SRH), and Auger (Figure 2-6), given by the 

equation: 

(2.21)        6
����?

= 6
����

+ 6
����S�

+ 6
����

 

 

Figure 2-6: Schematic showing the three major recombination mechanisms: band-to-band (or radiative) 

recombination, Shockley-Read-Hall (or trap-assisted recombination), and Auger 
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Band-to-band recombination, also known as radiative recombination, occurs when an excited 

electron falls back down to the VB as it loses its energy when recombining with a hole to give 

off radiative energy (a photon). Auger recombination occurs when that excess energy produced 

when an electron drops back down to recombine with a hole is given to a third carrier, or another 

electron, that is then excited. This type of recombination is independent of any impurity density 

and unavoidable, but inversely proportional to carrier density, and thus is typically more 

pronounced at higher carrier densities. SRH, on the other hand, is the most important 

recombination mechanism for semiconductors because it is related to defect states within the 

material. It is a defect-mediated, monomolecular, or trap-assisted non-radiative recombination 

mechanism, given by the overall equation: 

(2.22)        𝑈��� =
�^g^�X

�7^7G^�∙����	;
<�=<�
?A B

∙ 𝑁�𝑣�U𝜎� 

where 𝑁� is the trap density (or impurity/defect concentration), 𝑣�U is the thermal velocity, 𝑝 and 

𝑛 are the hole and electron concentrations, 𝐸� and 𝐸* are the trap and intrinsic energy levels, 𝜎� is 

the trap capture cross-section. The minority carrier lifetime in a heavily doped material is related 

to the rate of trapping of carriers at recombination centers (trap states), and thus is also a function 

of the doping concentration because additional trap states are created at high doping levels. A 

more convenient form of this equation defines the lifetime for electrons and holes captured by 

the trap: 

(2.23)        𝑈��� =
�^g^�X

��,���(�7��)7� ,���(^7^�)
 

where the lifetimes for electrons and holes under low-injection conditions are given by: 
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(2.24)        𝜏^,��� =
6

¡�¢���
												𝜏�,��� =

6
¡ ¢ ��

 

and 𝑛� and 𝑝� are the values of the electron and hole densities when the Fermi level is equal to 

the trap level, i.e. the occupancy of trap states: 

(2. 25)								𝑛� = 𝑛*𝑒(D�gD�) +�⁄ 					𝑎𝑛𝑑							𝑝� = 𝑛*𝑒(D�gD�) +�⁄  

From this model, we can see that to reduce SRH recombination requires defect levels far from 

mid-gap, low capture cross-sections, and most notably, the density of trap states. Operating in 

high injection conditions is beneficial because carrier concentrations are much greater than the 

background defect density, and thus the greater influx of free carriers leads to a lower percentage 

of lost carriers to SRH recombination.  

For heavily-doped semiconductors, the SRH recombination rate simplifies to: 

(2.26)        𝑈^,��� =
(^g^@)
��,���

							𝑎𝑛𝑑					𝑈�,��� =
(�g�@)
� ,���

 

However, this is only valid when these parameters for n and p do not differ by orders of 

magnitude, and SRH recombination is strongest when n and p are of similar magnitude. The 

largest contribution from traps is from those states located closest to the center of the band gap, 

where n≈p, known as deep lying trap states. These deep-lying states are detrimental to 

semiconductor performance, and typical of most semiconducting materials, however, as we will 

see they are not as prominent in hybrid perovskite materials. 

For certain materials that have dielectric behaviors, the relative static permittivity, or 

dielectric constant 𝜀§, because it can provide charge-screening effects of the capture cross-
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section 𝜎�. A capture event will occur when the potential energy for a charged defect is greater 

than the thermal energy at a specific radius, given by: 

(2.27)        𝜎� =
s

6¨](©�©@+�)X
 

where q is the elementary charge and 𝜀§ is the permittivity in vacuum. We can see an inverse-

square dependence of capture cross-section on dielectric constant of the material, and therefore 

higher dielectric constants can realize high amounts of dielectric screening.4 

Another important type of recombination is surface recombination, which is similar to 

trap-assisted with the only difference being that it depends on the number of surface states (two-

dimensional) rather than trap states within the bulk: 

(2.28)        𝑈��� =
�^g^�X

�7^7G^�∙����	;
<�=<ª�
?A B

∙ 𝑁�,«𝑣�U𝜎 

In real semiconductor materials, defects are much more likely to occur at surfaces and at 

interfaces than within the bulk. Localized states at surfaces and interfaces include crystal defects 

owed to broken bonds or terminated surfaces, and extrinsic impurities which are deposited onto 

the surface from the surrounding environment, or which are concentrated at surfaces during 

growth. Surface and interface defects are critical for electronic devices and solar cells. 

 

2.1.7 The p-n junction 

A p-n junction is of paramount importance for the function of the majority of electronic 

devices. P-n junctions are formed by joining p- and n-type semiconducting materials. Owed to 
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the extra electrons in the n-type region and the extra holes in the p-type region, upon joining of 

the two materials the electrons will diffuse to the p-type side while holes will diffuse to the n-

type side to attempt to homogenize. If there were no charges involved, this process would 

continue until it did reach homogenization. However, when electrons or holes move across the 

junction to the other material, they leave behind a positive or negative ion core, which is fixed 

within the crystal lattice unable to move because the crystal must be electrically neutral, that is, 

the net charge density must be zero. This creates an internal electric field due to the opposing 

positive and negative ion core regions, which we call the depletion region, since it is depleted of 

carriers (Figure 2-7). 

 

Figure 2-7: A p-n junction occurs when a p- and n-type material are placed into contact. The electrons 

diffuse to the p-type side, and the holes to the n-type side in an attempt to equilibrate. This leaves behind 

positive and negative ion cores, the create a ‘depletion region’ and a corresponding built-in bias the 

prevents further carriers from crossing the junction. 
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Consequentially, a built-in potential is formed across the junction, which is determined by the 

differences in work functions of the n- and p-type materials, and ultimately relates to doping and 

free carrier densities: 

(2.29)        𝑉­* =
+�
s
𝑙𝑛 ;����

^�X
B 

The depletion width is can be found using the following equation: 

(2.30)        𝑤rV�¯ = 𝑤� + 𝑤^ = °G©ª
s
; 6
��
+ 6

��
B𝑉­* 

where 𝜀« is the permittivity of the semiconductor, 𝑞 is the elementary charge, 𝑁± and 𝑁r are the 

doping density of acceptors and donors, respectively, and 𝑉­* is the built-in voltage. 𝑤� and 𝑤^ 

are the individual depleted widths of the p- and n-type regions, given by: 

(2.31)        𝑤� =
6
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(2.32)        𝑤^ =
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Thus, we can see that it is not possible to have both a wide depletion region (which assists in 

collection of carriers) and high doping levels (which aids with increasing voltage).  

Once an equilibrium is reached, the depletion region reaches relatively constant width. 

However, this equilibrium is dynamic, meaning that there are still a small number of carriers that 

diffuse across the junction despite the being impeded by the built-in electric field. This is directly 

related to the equation for the law of mass action that we discussed in the previous section, where 
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electron-hole pairs are constantly created and annihilated and there is an equilibrium when the 

rate of annihilation equals that of generation. This is because, statistically speaking, there is some 

probability that carriers obtain sufficient velocity to overcome the energy barrier imposed by the 

depletion region. Once a carrier crosses the junction, it becomes a minority carrier and will 

continue to travel a distance equal to its diffusion length. In the next section, we will look at how 

p-n junctions operate within devices and, in particular, solar cells. 
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2.2 The Physics of Solar Cells 

A solar photovoltaic cell is a device that directly converts optical energy into electrical 

energy in a one-step process via the photovoltaic effect. Light interacts with a PV cell to produce 

both a current and a voltage to generate electrical power. Photons can interact with what we call 

an absorber material, or a photoactive material, where it can give its energy to excite an electron 

within that material. This depends on the energy of the photon, i.e its frequency (or color), and 

whether or not it is sufficient enough to excite electrons across the band gap into the conduction 

band. The direct conversion of light energy to electrical energy is an ideal means of harvesting 

solar power. The basic steps for the operation of a solar cell are: 

1. absorption of light, generation of carriers 

2. separation and collection of carriers to generate an electrical current 

3. generation of a large voltage across the solar cell 

4. extraction of carriers and power dissipation to load 

This section will discuss the essential parameters, requirements, and structures of a solar PV cell. 

 

2.2.1 The Photovoltaic Effect 

When light is absorbed by a material, photon energies are given to an electron to excite it 

into a higher energy state within the material. Due to this separation of charge, an electrical 

potential, or voltage, is created. Consequentially, this is known as the photovoltaic effect. In a 

typical material, the excited electrons decay back down to their original ground energy state very 

rapidly giving off that energy as either radiation or heat. In a photovoltaic device, on the other 
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hand, there is a built-in asymmetry that sweeps the excited electrons away before they are able to 

recombine. This creates a potential difference, or electro-motive force, within the device due to 

the separation of charges, which forces the electrons through an external circuit where it can do 

electrical work. The photovoltaic effect is based on the principles of the photoelectric effect, 

however, the distinction is that the photoelectric effect ejects an electron upon exposure to light 

(typically UV light), whereas the photovoltaic effect produces a photo-induced voltage (typically 

visible light). 

 

2.2.2 Absorption and Generation 

To understand absorption processes within PV cells, it is important that we understand 

the properties of light and the nature of the radiation coming from the Sun. The Sun produces 

light with a wide range of different energies, and therefore has its own solar emission spectrum 

(Figure 2-8). There are two important things to take into consideration: (i) the wavelengths of 

light being emitted by the sun, and (ii) the intensity of each wavelength of light being emitted. 

The wavelength of a photon is inversely proportional to its energy according to the famous 

equation: 

(2.33)        𝐸 = 𝑚𝑐G   or   𝐸 = U¸
¹

 

Thus, we can see that energy is inversely related to wavelength. This is important because it 

means that the lower wavelengths of light carry more energy than the higher wavelengths. 

However, typically this does not matter so long as the energy of the photon is greater than the 

band gap as any energy greater than the band gap the photon carries will typically be lost very 
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rapidly as heat during thermalization, except for a device concept called ‘hot carrier’ devices that 

in principle are able to harness this excess energy.  

 

Figure 2-8: The Sun's solar irradiance spectrum.5  

The second important point is the intensity at each wavelength (the spectrum). The higher the 

intensity, the more carriers can be generated. As we have learned, the intensity of the sun’s rays 

are attenuated by the Earth’s atmosphere. We can measure a parameter called the air mass (AM), 

which is the ratio of the optical path length to the Sun over the optical path length if the Sun is 

directly overhead, to define the optical path length through the Earth’s atmosphere. While the 

irradiances vary based on location, season, and time of the day, a standardized AM value called 

AM 1.5 G (G stands for ‘global’), which is equivalent to 1000 W/m2. It is the standardized value 

for the characterization of solar cells, and is commonly referred to as the 1 sun condition because 
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it is equivalent to the condition when the sun is directly overhead (shortest path length) on a clear 

day (no path interruption).  

 Like the sun’s emission spectrum, a semiconductor material will have its own unique 

absorption spectrum. When light shines onto a photovoltaic cell, the it may either be reflected, 

pass through, or absorbed. The condition for absorption is that the energy of the incoming photon 

must be greater than or equal to the band gap of the semiconductor (𝐸¹  ≥ 𝐸º) for the electron to 

cross the band gap into the CB. If the energy is less than the band gap (𝐸¹  ≤ 𝐸º), it will transmit 

through the material and not be absorbed, i.e. the material is transparent to that wavelength of 

light.  

The absorption coefficient is a parameter used to determine how far a photon will travel 

within a material before it is absorbed. A material with poor absorption will have a low 

absorption coefficient value, while that with good absorption will have a high value. The 

absorption coefficient is a material-dependent property that is also a function of the wavelength 

of incident light. It is related to the band structure of the material, since its energy dependence 

necessarily requires a relationship to the density of VB and CB states, and can be modelled based 

on Fermi’s Golden Rule, which states the transition probability per unit time from an initial filled 

state to a final empty state, differing in energy by a value E. The derivation yields: 

(2.34)        𝛼(ℎ𝜔) = G]
ℏ
¾〈𝑣¾𝐻Á¾𝑐〉¾G ∫ G

`]b
𝛿(𝐸¸(𝑘Ä⃑ ) − 𝐸¡(𝑘Ä⃑ ) − ℎ𝜔)𝑑I𝑘 

where 〈𝑣¾𝐻Á¾𝑐〉 is the transition matrix from states in the VB to the CB and the second term is the 

joint density of states (JDOS) which is a function of energy (ℎ𝜔). Therefore, the absorption 

coefficient is determined fundamentally by the transition matrix and the JDOS.  
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A simplified expression where the transition matrix and other constants are lumped into a 

constant, leaving the absorption coefficient in terms of the band gap energy, is given by. 

(2.35)        𝛼(ℎ𝑣) = 𝐴Çℎ𝑣 − 𝐸ºÈ
^ 

where ℎ𝑣 is energy of the incident photon, 𝐸º is the band gap of the material, and 𝐴 is a constant 

that is a function of several parameters, most notably including the effective masses of electrons 

and holes, the refractive index of the material, its permittivity, and a matrix element of the 

momentum operator. 𝑛, on the other hand, depends on the type of transition across the band gap. 

There are two very important types of band gaps, namely, direct or indirect band gaps. The 

difference is best understood by examining the E-k diagram (Figure 2-9). 

 

Figure 2-9: Electronic transitions in (a) a direct band gap and (b) an indirect band gap. An indirect band 

gap lies has a shift in k value for the CB of its band structure relative to that of its VB, which requires a 

phonon (momentum) to make the transition. 
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A direct band gap has its VB maximum (VBM) and CB minimum (CBM) at an equivalent k 

value. This means that for an electron to make a transition on an E-k plot requires a purely 

vertical transition, i.e. only E, which equal to that of the band gap between the VBM and CBM 

(Ephoton=Eg). On the other hand, a direct band gap has its VBM and CBM offset by some value of 

k, which means that an electronic transition requires not only an energy input but that relating to 

k. According to De Broglie relations in terms of k, we obtain a relationship for momentum as: 

(2.36)        𝒑 = ℏ𝒌 

Since a photon does not have mass, this transition is not possible without the aid of a phonon, 

which is an important concept in quantum-mechanics. A phonon is a quantum of vibrational 

energy or quasiparticle within a crystal lattice oscillating at a single frequency. And because a 

phonon contains mass, it carries momentum, which allows it to make the k transition to the CB. 

This is an important implication because phonons must be generated within the crystal lattice 

with proper momentum in order for this transition to occur. As a result, the transition probability 

and rate are reduced in indirect band gap materials, which is disadvantageous for a PV absorber 

material. An example of an indirect band gap material is silicon, which is why monocrystalline 

silicon PV cells require large thicknesses because a poor absorption results from the necessity to 

create phonons to accompany the electronic transition. As a result, n=1/2 for direct band gaps 

and n=2 for indirect band gaps, yielding: 

(2. 37)								𝛼r*§(ℎ𝑣) = 𝐴Çℎ𝑣 − 𝐸ºÈ
6/G 

(2. 38)								𝛼*^r*§(ℎ𝑣) = 𝐴Çℎ𝑣 − 𝐸ºÈ
G 
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Direct band gaps correspond to sharp absorption onsets at wavelengths equivalent to the band 

gap energy, meaning absorption takes place immediately at a specific wavelength once the 

energy threshold is overcome, whereas indirect band gaps are associated with gradual absorption 

onsets due to the additional necessity of phonon generation. If one was to plot 𝛼(ℎ𝑣)6/^ vs ℎ𝑣 

and obtained a straight line, the intercept at 𝛼(ℎ𝑣)6/^ = 0 would give the value of 𝐸º, 

corresponding to the n values for direct and indirect. Figure 2-10 displays absorption coefficient 

versus wavelength plots for several common semiconductor materials. We notice that both Si 

and Ge (the elemental semiconductors) have indirect band gaps per their gradual onsets of 

absorption. A quick estimate to the band gap can be made by observing the intersect of the 

tangent to the onset of absorption with the x-axis, then using the relationship of energy and 

wavelength one can calculate the band gap energy.  
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Figure 2-10: Absorption coefficient versus wavelength for several common semiconducting materials 

used in as absorbers in PV cells. A steep onset corresponds to a direct band gap, whereas a gradual onset 

indicates an indirect band gap.6 

The absorption coefficient is also related to the extinction coefficient, 𝜅«, which is the imaginary 

part of the equation for the dielectric constant, represents the amount of attenuation of an 

electromagnetic wave as it propagates through a medium (material). In this case, the absorption 

coefficient can be related by the following equation: 

(2.39)        𝛼 = J]Ïª
¹
			[𝑛𝑚g6] 

where 𝜅« is also wavelength dependent. Thus, the dependence of absorption coefficient on 

wavelength seen from this expression indicates that different wavelengths of light can penetrate 
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to different depths within the material. The absorption depth is the inverse of the absorption 

coefficient, 𝛼g6, with units of nm, which gives the distance into the material at which the light 

intensity drops by a factor of 1/e. Since the wavelength is related to energy, the higher energy 

photons, such as blue light, have a larger absorption coefficient and are thus absorbed at much 

shallower levels than a lower energy light, (e.g. red light), which is absorbed less strongly and 

thus penetrates deeper into the material. In fact, all of the red light is not absorbed in silicon up to 

100 µm depths.  

 The amount of light absorbed in the material (neglecting reflection), or the absorption 

coefficient if the amount of light absorbed is measured, can be determined via the following 

equation: 

(2.40)        𝐼 = 𝐼Ó𝑒gÔ, 

where 𝛼 is the absorption coefficient, x is the distance into the material (thickness), and 𝐼Ó is the 

intensity at the top surface (initial intensity). If we assume that the loss in light intensity is 

directly related to the generation of an electron-hole pair, then the generation can be calculated 

by determining the change in light intensity across the material, which is the derivative of the 

previous equation, yielding: 

(2.41)        𝐺 = 𝛼𝑁Ó𝑒gÔ, 

where 𝑁Ó	is the photon flux at the surface. This equation further illustrates that generation is 

highest at the surface and decreases exponentially throughout the material (which is also 

dependent on wavelength since 𝛼(ℎ𝑣)). 
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As a last piece to this section, I would like to briefly discuss the relationship between 

reflection and refraction. Light can also be reflected off the surface of the device, thus preventing 

even the possibility of absorption occurring. Reflection is dependent on the index of refraction of 

the material and its ‘smoothness,’ or surface roughness. The refractive index of a material 

describes how fast light propagates through a material, and is given by: 

(2.42)        𝑛 = ¸
¡
 

where 𝑛 is the refractive index, 𝑐 is the speed of light, and 𝑣 is the phase velocity of light in the 

medium. At the atomic scale, an electromagnetic wave’s phase velocity is attenuated within a 

material due to its interaction with the electric potential field within the material. As the 

electromagnetic wave cause the electric fields within the material to oscillate, the charges within 

the material begin to oscillate at the same frequency and radiate their own electromagnetic wave, 

but usually with a phase delay with respect to the incident electromagnetic wave. The overall 

wave travelling within the material medium is the sum (superposition) of all contributing waves, 

i.e. the original wave (which is typically modified via the interaction with the charges within the 

material) and charge-radiated waves. This wave tends to have a shorter wavelength (but same 

frequency) as the original wave, thus resulting in a slower phase velocity within the medium. 

Relating to the index of refraction, the probability of reflection, if the incident light is normal to 

the surface of the material, is equivalent to: 

(2.43)        𝑅 = ;^@g^ª
^@7^ª

B
G
 

where 𝑛Ó is the refractive index of the first medium (air if light is directly hitting the surface of 

the semiconductor material) and 𝑛« is the refractive index of the material medium. If the incident 
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light is not normal to the surface, the equation then depends on the polarization of light (s- or p-

polarization) as well as the angle, and becomes: 

(2.44)        𝑅 = ;×@g×ª
×@7×ª

B
G
 

and  

(2.45)        𝜂« = 𝑛« sec(𝜃«) for p-polarized light 

(2. 46)								𝜂« = 𝑛« cos(𝜃«) for p-polarized light 

where 𝜃« is the angle made by the transmitted ray (of incident ray angle 𝜃Ó). Snell’s Law relates 

𝜃Ó and 𝜃« through: 

(2.47)        𝜂Ó sin(𝜃Ó) = 	𝜂« sin(𝜃«) 

From Snell’s law, we can derive the critical angle, 𝜃¸, for which light will be reflected by the 

surface to the original medium, rather than refracted within the new medium: 

(2.48)        𝜃¸ = sing6 ;^@
^ª
B 

Any reflected light is energy that cannot be absorbed by the PV cell, therefore, it is important to 

understand these fundamental relationships and properties of light within various mediums. 

Moreover, the development of antireflection coatings has been realized by manipulating these 

properties, and by texturizing surfaces to change incident angles and direct light into the bulk 

semiconductor medium. 
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2.2.3 Solar PV cell operation 

The p-n junction is the basis of operation for a PV cell. We have already seen what 

happens when a p-n junction is formed – a depletion region is created and a dynamic equilibrium 

is established. The solar cell structure consists of a p-n junction and metal electrodes on either 

side that are connected to an external circuit to extract the photo-generated charge carriers 

(Figure 2-11). Now, we will analyze what happens when we apply a bias to the junction, then 

add on the effect of shining light onto the material, which the basis for operation of a PV cell.  

 

Figure 2-11: Components and basic operation of a PV cell. Sunlight creates an electron-hole pair that 

then separate into individual free carriers and diffuse to their selective contacts where they can be 

extracted outside of the cell to do work at the external load.7 

Starting from the beginning of p-n junction formation, we can see how the band 

alignments change as the p- and n-type materials come into contact (Figure 2-12a). It is 

important to analyze not only the physical schematic of the p-n junction, but also the band 

structure, which is provided just below. Prior to contact, the CB and VB levels are at identical 
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levels because the host material is the same (e.g. Si), where the only difference is the Fermi level 

position that corresponds to the doping type (n- or p-). As these two materials are brought into 

contact (Figure 2-12b), their Fermi levels shift to align as a dynamic equilibrium is established 

and depletion region formed, identical to what we discussed in the previous section. Now, let’s 

look at what happens when we apply a bias. Figure 2-12c depicts applying a reverse bias to the 

junction, which enhances the electric field, thereby shifting the dynamic equilibrium by forcing 

more of the n-type carriers to the p-type side and vice-versa until a larger depletion region is 

formed. This creates a larger energy barrier for diffusion to occur, and the diffusion current is 

reduced, which is represented on the band diagram. The Fermi levels of the individual n- and p-

type regions, which we call the quasi-Fermi levels, split such that EF,p shifts upwards and EF,n 

downwards with respect to each other (and the original aligned position). The drift current is 

unchanged with respect to bias because it is not dependent on crossing the depletion region as is 

diffusion. Now, if we flip the bias, we create what is called a forward bias condition (Figure 2-

12d). In this situation, the applied bias counteracts the built-in electric field to reduce the net 

overall field within the device, thereby shrinking the depletion region. The Fermi levels this time 

shift in opposite directions (due to reversal of the applied voltage), thus lowering the energy 

barrier for diffusion of carriers across the depletion region. 
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Figure 2-12: Biasing of a p-n junction (both p- and n-type are the same host materials).  

(a) before contact, the individual Fermi levels are shown. (b) as the two come into contact, a dynamic 

equilibrium is established and band bending occurs to match the Fermi levels of the p- and n-type 

materials. (c) upon applying a reverse bias, the depletion region enhances, lowering the diffusion current 

across it. (d) with a positive bias applied, the depletion region shrinks, thus allowing for a higher diffusion 

current across it. 

 

 Let us know look at what happens when we shine light onto the p-n junction (Figure 2-

13). When a photon impinges upon a PV cell, if conditions for absorption are satisfied, an 

electron will absorb the photon energy and transition to an excited state from the VB to CB, and 

creating a corresponding hole. These excitations occur all throughout the material, following the 

same principles we discussed about the absorption depth. However, once an electron-hole pair is 

created, the two carriers must be separated. This occurs with a much higher probability within or 

near the junction, since the junction is void of carriers and has an electrical potential gradient that 
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can help to sweep the newly generated carriers out and to their respective sides of the junction 

(Figure 2-13b,c). This will cause a quasi-Fermi level separation owed to shift away from 

equilibrium, i.e. a change in chemical potential (∆𝜇) due to a change in carrier concentration.  

There are two extreme conditions that are very important metrics for PV cells. The first is 

the short-circuit condition, where the p-n junction is illuminated and the terminals of the external 

circuit connected (Figure 2-13b). In this case, the extra generated carriers are allowed to flow 

continuously around the circuit and recombine with their counterpart, resulting in an increase in 

drift current, which we call the short-circuit current density, Jsc, given by:  

(2.49)        𝐽«¸ = 𝑞 ∫ 𝑏«(𝐸) ∙ 𝑄𝐸(𝐸)𝑑𝐸
¹ã�ä
¹ã��

 

where 𝑏«	is the incident spectral photon flux density from within the range of wavelengths that the 

material absorbs, and 𝑄𝐸 is the solar cell’s quantum efficiency, or the probability of converting 

one photon to one excited electron through the external circuit. The QE depends on the material’s 

absorption coefficient, as well as the efficiency of charge separation and collection, given by the 

photocurrent density delivered to the circuit divided by the photon flux that strikes the cell: 

(2.50)        𝐼𝑃𝐶𝐸 = çªE(¹)
V∙­ª(¹)

= çªE(¹)[�	¸P=X]
¹	[^P]∙è��(¹)[é	¸P=X]

 

Because the carriers can flow freely through the external circuit, there is no voltage buildup and 

therefore the depletion region, as well as the diffusion current, are unchanged. The diffusion 

current is commonly referred to as the dark current, Jdark, because it is the ‘leakage’ current through 

the depletion region present without illumination.  

(2.51)        𝐽r±§+ = 𝐽Ó ê𝑒
;ëì?AB − 1î 
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where k is the Boltzmann’s constant, and T is temperature in degrees Kelvin and 𝐽Ó is the dark 

saturation current (a constant) that depends on the material properties. 𝐽Ó, the saturation current, 

is a very important parameter to differentiate one diode from another. It is a measure of 

recombination within the device, i.e. a diode with a larger recombination has a higher 𝐽Ó, which 

increases with T and decreases as material quality increases. The saturation current results from 

the diffusion of minority carriers into the depletion region and is independent of bias voltage, but 

dependent on temperature since it is driven by thermal excitation of e-h pairs (per Fermi-dirac): 

(2.52)        𝐽Ó = 𝑞 ê°
� 
� 

^�X

��
+ °��

��

^�X

��
î     or      𝐽Ó = ´ s� 

_ ��
+ s�S

_S��
¶ 𝑛*G 

where 𝐷� and 𝐷^ are the diffusivity, 𝜏� and 𝜏^ the carrier lifetimes, and 𝐿� and 𝐿V the diffusion 

lengths of holes and electrons, respectively. 𝐽Ó	is identical to the reverse saturation current, 𝐼Ó, 

but per unit area (𝐼Ó = 𝐽Ó𝐴). Under normal operational conditions, the total current flowing 

through the solar cell is thus the difference between Jsc and Jdark: 

(2.53)        𝐽(𝑉) = 𝐽«¸ − 𝐽r±§+(𝑉) = 𝐽«¸ − 𝐽Ó ê𝑒
;ëì?AB − 1î 

The next condition is called the open-circuit condition (Figure 2-13c), which is when the 

two terminals are not connected and no current is allowed to flow. In this scenario, the photo-

generated carriers cause a further buildup of charge and thus a voltage is produced. This voltage 

counteracts that of the depletion region, thus shrinking the depletion region width and allowing 

for an increase in Jdark. The corresponding energy diagram has a reduced energy barrier for the 

Jdark. This is equivalent to when 𝐽«¸ = 𝐽r±§+, which yields: 

(2.54)        𝑉v¸ = 	
+�
s
	𝑙𝑛 ïçªE

ç@
+ 1ð 
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This shows that the Voc increases logarithmically with light intensity, and we can see that a 

photo-voltage is produced under forward bias conditions (V>0). Referring to the equation for J0, 

it is also clear that a larger doping level is needed for a higher Voc, but not too high, which will 

increase carrier recombination and reduce carrier mobility. 

 

Figure 2-13: p-n junction under illumination. (a) no illumination, (b) illumination, short-circuit 

conditions, (c) illumination, open-circuit conditions. 

The most important metric of a PV cell is its performance, or efficiency, which represents 

how well it harvests light and transports charge carriers outside of the cell to do electrical work. 

The power conversion efficiency (PCE) of a solar cell is given as: 

(2.55)        𝑃𝐶𝐸	(𝜂) = 	 èã�ä
è��

= ñ�8	òó9ôòõò	ö�÷ñóø8	óùú	�õûû8ùñ	óññóôùóü÷8	ý�û	ñ�8	�8÷÷
:�þ8û	ôù�ôú8ùñ	ñ�	ñ�8	�8÷÷	(6	�õù)

= 	 ³ÿE∙	çªE	∙	CC
6ÓÓÓ	!/PX 
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The Voc and Jsc are the open-circuit voltage and short-circuit current density that we defined in 

the previous section. It is worth reiterating that the current density (J) is simply the current per 

area (typically cm2), and thus I can be obtained by dividing J by the active area of the cell under 

analysis. The Fill-Factor (FF) is another important parameter defined as: 

(2.56)        𝐹𝐹 = ³ã�ä∙	çã�ä
³ÿE∙	çªE

 

These parameters can be best represented by a current-voltage (I-V) curve (Figure 2-14a).  

 

Figure 2-14: (a) an I-V (J-V) curve of a PV cell. (b) I-V curve shifts due to increase in series and shunt 

resistances. 

The maximum power point can be represented by the shaded area, which is the product of 

the current and voltage that produce the maximum power within the device. Here it is worth 

noting that ‘max’ for I and V does not indicate the maximum voltage and current obtainable, but 

the current and voltage that produce the maximum power within the device. The FF is a direct 

representation of the maximum obtainable power, and is often referred to as the ‘squareness’ of 

the I-V curve as it represents how close the curve is to fitting the square provided by the Jsc x 

Voc. In Figure 2-14b, we can look at the effects of series and shunt resistances. The series 
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resistance is related to the contact resistances at interfaces between adjacent (charge transporting) 

layers and how effectively current moves throughout the p- and n-type regions. Therefore, its 

main effect is to reduce the FF and is represented on the I-V curve as a reduction in slope near 

the Voc location, as shown in Figure 2-14b. If excessively high, the series resistance can also 

impact the Jsc. The shunt resistance is related to the leakage current, which is typically a result of 

poor device manufacturing or defects rather than poor solar cell design. A low shunt resistance 

allows for current to take alternative paths via defects or other means, thus reducing the open-

circuit voltage of the solar cell. It can be estimated by the slope of the I-V curve near the Jsc, as 

shown in Figure 2-14b, and is most prominent at low light intensity levels where there are less 

photo-generated charge carriers present. 

A PV cell can also be represented as an equivalent circuit, as shown below in Figure 2-15. 

Here we can see all the factors discussed such as the photo-generated current, represented as Isc, 

D as the diode, Rs and Rsh, and Ish as the shunt current. 

 

Figure 2-15: Equivalent circuit of a PV cell. 
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The p-n junction is standard for understanding how a PV cell works, however, there are 

several other types of junctions that are able to realize photovoltaic effects, such as a p-i-n 

junction, p-n heterojunction, electrochemical junction (such as for a DSSC), and a bulk 

heterojunction (such as for OPV), to name a few. Here we will discuss only the p-i-n junction as 

it is the type of structure used for hybrid perovskite solar cells. A p-i-n junction is the same as a 

p-n junction except there is an intrinsic, or undoped, (i) material sandwiched between the p- and 

n-type materials. In this case, the built-in electric field extends over a wider region, i.e., the 

intrinsic region. Intuitively, this is ideal when the minority carrier diffusion lengths are short 

because carriers have a greater chance to be photo-generated in the larger i region and can travel 

further within this region than the doped regions. However, this comes at a cost of lower 

conductivity (due to lower carrier concentration) that may introduce series resistance, and a 

higher probability of recombination at forward bias conditions. A discussion on the p-i-n 

structure will be provided in reference to perovskite solar cells in the subsequent section. 

 

2.2.4 The Shockley-Quiesser Limit 

Essential to developing PV technologies is to gain an understanding of the fundamental 

limitations on cell efficiency. This was first accomplished by Shockley and Quiesser in 1961 

where the maximum efficiency of a single p-n junction solar cell was calculated, which was 

coined the Shockley-Quiesser (SQ) Limit.8 The fundamental limit is determined based on the 

principle of detailed balance, which represents the principle of unavoidable losses occurring 

within a PV cell. While a PV cell absorbs solar radiation, it also unavoidably exchanges thermal 

radiation with its surroundings. Both the cell and surrounding environment radiate based on their 
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temperature, and the rate of emission of photons by the cell must be matched by the rate of 

photon absorption such that in steady state the concentration of electrons within the material 

remains constant. This is called the principle of detailed balance, and imposes a fundamental 

limit on the maximum obtainable efficiency. The SQ limit is determined by calculating the 

amount of extractable electrical energy per photon of incoming light. It considers limitations 

imposed by blackbody radiation requirements (as already discussed), recombination 

requirements, spectrum losses due to the band gap of the material limiting the portion of the 

spectrum that photons can be absorbed, and impedance matching to maximize the extractable 

power (which is related to the FF). The assumptions for the SQ limit are (i) only radiative 

recombination occurs. (ii) there is no concentrated light, (iii) for photons with greater energy 

than the band gap, the difference generates heat, (iv) only one electron-hole pair is generated per 

incoming photon, and (v) there is a single p-n junction per cell. These are requirements to 

maintain detailed balance and maximize PV cell efficiency. The limit is determined to be 33.7% 

PCE for a 1.34 eV band gap material. A plot of the efficiency limit versus band gap can be seen 

in Figure 2-16, with common PV absorber materials plotted for perspective. 
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Figure 2-16: The Shockley-Quiesser Efficiency Limit for a single junction PV cell versus band gap of the 

material. Common PV absorber materials are plotted accordingly.9 

 

However, there are other considerations not included in the SQ limit, such as mobility limitations 

where mobilities can vary for electrons and holes and also between different materials, thus 

limiting the extractable current. Moreover, non-radiative (SRH) recombination is not considered 

in the SQ limit and can greatly impact the overall efficiency of the PV cell.  

There are also ways to overcome these limitations, such as creating multi-junction devices with 

multiple absorber materials, concentrating light onto the solar cell, hot carrier capturing, 

multiple-exciton formation, etc. These topics are not within the context of this thesis and are thus 

left for the reader to explore.   
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Chapter 3. Fundamentals of Hybrid Perovskites 

 

Optoelectronic materials are typically categorized as either organic or inorganic, according to 

their chemical compositions, which yields strikingly different property trends. In general, organic 

materials are simpler to process, cheaper, and can utilize a wide variety of organic molecular 

components.  Inorganic materials typically possess higher mobility and are more stable, both 

thermally and mechanically, as a result of their tight ionic and covalent bonding.  The hybrid 

nature of the organic-inorganic perovskite combines the advantages of both the organic and 

inorganic natures to exhibit exceptional and unprecedented properties, alongside some new and 

intriguing challenges. In this section, we will discuss the fundamental knowledge of hybrid 

perovskites to-date, including the unique structure-property relationships seen for this class of 

materials. 

 

3.1 The Perovskite Family of Materials 

Perovskites are a large family of compounds that share the chemical formula ABX3. ‘A’ and 

‘B’ denote cations, where A is much larger than B, and ‘X’ an anion. Historically, oxide-based 

perovskites (X=O) have been most actively studied as they possess a unique multifunctional 

nature. Studies of the perovskite crystal chemistry date back to 1920, conducted by Goldschmidt, 

that revealed the significance of relative radii sizes to polyhedral packing that ultimately led to 

the ever-important tolerance factor, which will be discussed later in this section. Eventually, it 

was revealed that with proper tuning of composition a wide variety of electronic properties 
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including capacitive, ferroelectric, piezoelectric, superconductive, metallic, catalytic, and 

magnetic could be achieved.1 While ferroelectric properties have recently shown beneficial 

effects in photovoltaics, the wide band gaps of oxide perovskites limit their use in solar 

applications as they utilize a mere 8-20% of the solar spectrum. Lead halide perovskites, as the 

name implies, employ an inorganic halide (I−, Cl−, Br−) to replace the oxygen anion (O2-) of 

oxide-based perovskites, an organic or inorganic monovalent A+ cation and a divalent B2+ metal 

cation (which is typically lead, Pb). In this section we will discuss the unique structural and 

compositional flexibility of hybrid perovskite materials. 

 

3.1.1 Crystal Structure, Composition, and Dimensionality 

Hybrid organic-inorganic halide perovskites have a crystal structure adopting the formula 

ABX3, where A, B, and X are most commonly a monovalent organic (or inorganic) cation, 

divalent metal cation, and halide anion, respectively. The unit cell for perovskite is shown in 

Figure 3-1a,1 however, a common alternate representation of the crystal is as infinitely repeating 

corner-sharing BX64- octahedra, as shown in Figure 3-1b. The first hybrid perovskite material 

discovered to have solar harvesting capabilities was methylammonium (CH3NH3+) lead triiodide 

(MAPbI3). Shortly after, formamidinium (HC(NH2)2+) lead triiodide (FAPbI3) was discovered as 

another promising PV material. One of the unique aspects of hybrid perovskites is that so long as 

charge neutrality is conserved, and the relative sizes of its constituents are appropriate, this 

structure can form a wide range of compositions, thus allowing for a large degree of 

compositional tunability. In this regard, size effects are an important consideration as they 

determine the dimensionality of the crystal structure. As the A-site cation increases in size, it can 
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cause distortion of the crystal lattice known as octahedral tilting (Figure 3-1c). Furthermore, if 

the A-site cation is too large, 3-D symmetry is lost and 2-D layered structures are formed since 

the cation is too large to fit within the A-site cavity of a 3-dimensional crystal structure. 

Fortunately, a metric to predict the tolerated sizes of relative constituents was developed, coined 

the Goldschmidt tolerance factor, that can be equated using the following relationship between 

atomic/molecular ionic radii:  

(3.1)        𝑡 = 	 (��,S##7�$)
(�%7�$)

 

where RB, RX are the ionic radii of B and X, respectively. RA,eff is the effective ionic radius of the 

organic molecule, a modification of the tolerance factor specific to hybrid perovskites owed to 

the difficulties in accurately estimating the radius of a molecule.2 Cubic structures provide the 

highest degree of bonding, and occur for 0.85< t<1. If the components do not correlate to fit 

within this tolerance range, distortions may arise resulting in lower degrees of bonding that can 

affect the optoelectronic properties and stability of the resultant structure. In fact, recently the 

tolerance factor has been shown to be a good indicator of intrinsic thermodynamic stability of the 

perovskite structure,2 which will be discussed further in Section 3.6.  
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Figure 3-1: (a) Perovskite unit cell. (b) equivalent structure showing BX6
4- octahedral surrounding an A-

site cation. (c) tilting of the octahedra due to a tolerance factor off-unity.1 

 

The second unique attribute of hybrid perovskites is their dimensional flexibility. So far we have 

discussed the requirements for the formation of 3-dimensional (3-D) perovskite crystals. 

However, if the size of one of the constituents is too large, and the tolerance factor exceeds unity, 

the symmetry can be broken and a layered two-dimensional structure forms (Figure 3-1d). This 

has very important implications in terms of the formation energy, resulting optoelectronic 

properties, and long-term stability of the crystal, which will be discussed in the coming sections. 

 

3.2 Unique Electronic Structure and Origin Photo-physical Properties 

The remarkable performances of hybrid perovskite solar cells can be attributed to their 

outstanding characteristic properties such as very long carrier diffusion lengths and lifetimes (1 

µm, 1µs), extremely high optical absorption coefficients (105 cm-1), balanced electron and hole 
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mobilities (25-100 cm2/Vs), low trap densities (1015 – 1016 cm-3), small exciton binding energies 

(14 – 25 meV), and very small Urbach energies (12.6 meV).3,1 These properties are tied to the 

unique electronic structure of the hybrid perovskites, that is, the nature of the Pb 6s2 lone-pair 

that gives rise to an antibonding/bonding VBM/CBM and the heavy Pb atom that provides strong 

spin-orbit coupling (SOC) effects.3  In this section, we will discuss the nature of the electronic 

band structure of hybrid perovskites and associated attributes in greater detail. 

 

3.2.1 The Electronic Structure of Hybrid Perovskites 

The hybrid perovskite crystal is dictated by the B-X bond, where the electronic energy 

levels consist of an antibonding (𝜎∗) and non-bonding (𝜎Ó) hybrid state between the B(p)-X(p) 

and B(s)-X(p) orbitals that determine the valence band maximum (VBM) and conduction band 

minimum (CBM), respectively.1 Figure 3-2a displays the band gap formation for PbI6 octahedra, 

as in MAPbI3.4,5,1 Due to the ionic nature of hybrid perovskites, the covalent antibonding 

coupling between Pb p and I p is not strong. Consequentially, the CBM ought to not be much 

higher than the atomic Pb p state, and is thus not large. The VBM is formed via a strong s-p 

antibonding coupling from the Pb-6s lone pair and I-5p states that forms a Pb(6s)-I(5p)* 

antibonding band at the edge of the VB, a non-bonding I(5p) band, and a bonding Pb(6s)-I(5p) 

band deeper within the VB. This results in a pushing up of the VBM to a higher level residing 

across the bandgap rather than below, as in conventional compound semiconductors. We can see 

the Pb(6p)-I(5p) bonding states lie beneath the Pb(6s)-I(5p)* states, which is opposite to that of 

conventional compound semiconductors, which typically have bonding states that make up the 

VBM. This can be observed in Figure 3-2b,c, which shows the difference in bonding nature 
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between PVSK and conventional semiconductors, such as GaAs. The Pb having an s lone pair is 

necessary for this band structure to form with such antibonding VBM nature, and is thus only 

seen for those compound semiconductors with s lone pairs. This significant s-p hybridization 

owed to the Pb lone pair creates a very large dispersion of the VBM, which again is unique 

compared to conventional semiconductors where the VBM is composed of bonding states that 

are less dispersive. This is important in terms of band structure characteristics that give rise to 

important properties such as high optical absorption, large carrier diffusion lengths, and a defect-

tolerant nature, which will be discussed in greater detail in the following sections. 

 

Figure 3-2: (a) Energy levels and band formation for MAPbI3. (b-c) comparison of a the band structure 

formation for a (b) defect-tolerant material such as PVSK and (c) a defect-intolerant material such as 

common semiconductors as GaAs.6 (d-f) A comparison of individual bands within CB and VB for (d) Si, 

(e) GaAs, and (f) PVSK.7 The band transition (direct, indirect) and dispersion of the bands is an important 

consideration for DOS and corresponds to absorption coefficients of the material. 
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3.2.2 The origin of high absorption coefficients in hybrid perovskites 

To understand the mechanisms behind the high optical absorption seen in hybrid 

perovskites, we can examine its band structure. The absorption coefficient is proportional to the 

transition matrix (as discussed in Section 2.2.2) and the joint density of states (JDOS), discussed 

in Section 2.1.2, which is directly related to the band dispersion. As we recall from Section 2.1.2, 

the dispersion is the relation of E and k on the E-k diagram, where a higher dispersion indicates a 

higher change in E for every change in k (i.e. higher curvature or band width). The JDOS, 

however, is inversely proportional to the slope of the E-k diagram, i.e. the flatter the band the 

greater the number of states at that energy level. However, a flatter band also means a higher 

effective mass, which is undesired (Section 2.1.2). Therefore, we can see that there is typically a 

tradeoff between DOS and effective mass. 

Referring to Figure 3-2d-f, we can see that the Si p band is more dispersive than the Ga, 

As s bands, and would therefore be more preferred if not for the fact that Si transition is indirect. 

The dispersion of the band is directly related to orbital overlap, where more orbital overlap yields 

more dispersion. This becomes clear as k is related to atomic spacing, a, in reciprocal space, and 

is thus a measure of energy dispersion (‘spreadness’) as k varies. A higher dispersion is also 

known as band width because it implies a greater spread of energies within a given band (and 

thus a steeper slope). This means that the effective mass is lower, which is reasonable because 

the greater overlap of orbitals allows for the electron to more easily hop from one atomic site to 

another, and hence the electron has a smaller inertia (or mass). This must not be confused with 

the energy required to liberate an electron from a bond, where the stronger a bond the more 

energy required for the electron to become a free electron, which is related to the band gap 

energy. With effective mass, we are considering that the electron is already free and propagating 
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through the lattice, and the effective mass it the mass that it sees from interaction with the 

periodic potential as it propagates. Therefore, s bands will typically have greater dispersion than 

p bands owed to the greater bond overlap. The ideal case to increase absorption would be to have 

the p bands of Si (less dispersive) and the direct band gap nature of GaAs. As discussed 

previously, p-p transitions can only be possible for compound semiconductors with cations that 

have lone pair electrons in their s orbital, e.g. Ge2+, Sn2+, Pb2+, Sb3+, and Bi3+.7 However, most of 

these other compounds have indirect band gaps. This can explain the high absorption coefficients 

seen in hybrid perovskites, since they have both a direct band gap and p-p transitions due to the 

unique hybridization of its band structure. Yin et al. confirmed that the DOS of PVSK is higher 

than that of GaAs, corresponding to approximately an order of magnitude higher absorption 

coefficients for PVSK.7 Other common PV absorber materials, such as CIGS, CZTS, CdTe have 

CB character similar to that of GaAs, and are therefore expected to have lower absorption 

coefficients than PVSK. For instance, the CBM of Copper Indium Gallium Selenide (CIGS) is 

formed via the antibonding between the In-5s band and Se-4p orbitals, which again is an s-p 

transition similar to GaAs. Figure 3-3 shows the absorption coefficients for MAPbI3 and 

common PV semiconductors such as Si, GaAs. 
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Figure 3-3: Absorption coefficient versus wavelength for MAPbI3 and other common PV materials.8  

 

Upon absorption of a photon, an electron-hole (e-h) pair is created, which is called an exciton. 

This exciton has an associated binding energy, called the exciton binding energy. In organic 

materials, this binding energy is large such that additional energy is needed to separate the 

electron and hole from one another. In hybrid perovskites, however, this energy is approximately 

between 20-50 meV, which is on the order of room temperature thermal energy (26 meV). Thus, 

essentially no extra energy is required to separate the e-h pair and the carriers can become a free 

charge and the exciton binding energy is not a large determining factor in efficiency.  

 

3.2.3   The origin of long carrier diffusion lengths in hybrid perovskites 

 We have already seen that charge carrier diffusion length is a function of non-radiative 

recombination, scattering mechanisms, and effective mass. The effective mass is related to the 

curvature of the E-k diagram at the edges of the CBM and VBM, where those with larger 

dispersion and thus curvature indicate lower effective masses. We have seen that the CBMs of 
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GaAs and similar semiconductors are comprised of the cation-anion s-p orbitals and the VBMs 

of the p orbital of the anion. In PVSK, the lower region of the CB is composed of unoccupied 

Pb-6p orbitals, while the upper part of the VB is formed by the halogen p (I-5p) and Pb-6s states. 

This is inverted compared to the typical band structure of GaAs and related semiconductors 

(referred to as p-s semiconductors). Because the Pb-6s is very close in energy to the I-5p there is 

a strong antibonding coupling between the two bands, which leads to a large dispersion 

constituting the upper VB. This large dispersion results in small hole effective masses, which are 

comparable to the electron effective mass. Furthermore, Pb and I are heavy atoms, such that the 

6p shells in Pb stabilize the Pb-6s orbital rendering it less likely to react or share its electrons (6s 

inert pair effect). As such, relativistic effects, that is, spin-orbit coupling (SOC), must be 

included in quantitative analysis of electronic band structure. Including SOC in calculations led 

to increased splitting of the Pb-6p CBM, and thus increased band dispersions and lower effective 

masses. Calculated values for effective masses of electrons and holes including SOC are in the 

range of 0.19−0.23𝑚Ó and for electrons and 0.25−0.29𝑚Ó for holes, where is the mass of an 

electron in vacuum.3 This is comparable to inorganic semiconductors such as Si (𝑚V
∗ =

0.019𝑚Ó, 𝑚U,¯*ºU�
∗ = 0.16𝑚Ó, 𝑚U,UV±¡'

∗ = 0.53𝑚Ó) and GaAs (𝑚V
∗ = 0.066𝑚Ó, 𝑚U,¯*ºU�

∗ =

0.05𝑚Ó, 𝑚U,UV±¡'
∗ = 0.08𝑚Ó).1 

 

3.2.4   Defects in hybrid perovskites 

Defects, such as point, grain boundary, and surface defects, inevitably exist in solution-

processed polycrystalline thin films. A solar absorber material must obtain sufficient shallow-

level defects to generate free carriers within the device (dopants) but not deep-lying defects that 
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can lead to unwanted SRH recombination rates. Here I will first discuss defect formation in 

hybrid perovskites, followed by their implications on semiconductor properties and performance. 

While optical absorption is certainly an important property of a solar absorber material, 

equally important are the charge carrier lifetime and mobility of the semiconductor, as has been 

established for conventional high performing PV materials such as Si, GaAs, CIGS, CdTe, etc. 

And while effective mass can provide some insight into the carrier mobility, we must also 

consider scattering and trapping, which is directly related to the defect nature of the material. 

These are the other two properties to consider in determining the mobility of carriers within the 

semiconductor, and are thus essential. In general, we can define a defect-tolerant semiconductor 

as one with the tendency to maintain its properties despite the presence of crystallographic 

defects.9 Essentially, this is a material in which few defects form, and those that do form (either 

extrinsic or intrinsic) have very minimal impact on the carrier lifetime and mobility (i.e. are not 

detrimental). In this light, one of the reasons hybrid perovskites have achieved such high 

efficiencies is owed to their relatively high defect tolerance, in which they form shallow defect 

levels.  

This shallow defect nature seen in MAPbI3 leads to lower rates of SRH recombination 

because the energy barrier between the defect level and the adjacent band with the opposing 

charge carrier (e.g. the energy gap between a defect level near the CB and the VBM level) is 

only slightly lower than the band gap itself, thus preserving a similar recombination rate to the 

original material. In addition, de-trapping would be easier since the energy gap between the 

defect level and, for example, CBM is very small. This is in contradiction with the formation 

mechanism of conventional semiconductors (e.g. GaAs) where the bonding-antibonding orbital 

pair is formed across the band gap, and thus the VBM consists of bonding orbitals (Figure 3-
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2b,c). Deep-lying defect levels lead to detrimentally high rates of SRH recombination. This 

comes at the expense of reduced open circuit voltage (Voc), because the defects will act as 

recombination sites where electrons and holes recombine non-radiatively, thus preventing a 

higher voltage forming from the buildup of charge within the device because charge carriers are 

constantly being lost to recombination within these deep states. However, it is worth nothing 

here that extrinsic defects could still create deep-lying states within the gap depending on the 

relative positions of their atomic orbitals compared to the bands of the host material.  

The formation of the shallow energy levels seen in hybrid perovskites is directly related 

to the presence of the filled Pb-6s orbitals that form a dispersive VB via antibonding 

hybridization of the Pb-6s and I-5p orbitals. This electronic structure permits the formation of 

intrinsic defects within the band or close to the band edge, rather than deep within the band gap. 

Any broken (dangling) bonds created by forming a vacancy will likely appear as resonances 

within the band, leaving the band gap free of defect states. For instance, when an iodine vacancy 

(an anion vacancy defect) formed in MAPbI3, the defect state is comprised of Pb dangling bonds 

surrounding the iodine vacancy. The resulting defect state will thus lie between the CBM and Pb 

p orbital level, and because the difference between these two levels is small (as discussed earlier 

in this section), the iodine vacancy should be close to the CBM, i.e. a shallow donor state. 

Furthermore, SOC effects from the heavy Pb atom further reduce the energetic distance between 

defects and the band edge, by pulling the CBM down, resulting in an increased band dispersion. 

Similarly, for a missing Pb cation, iodine dangling bonds will surround the vacancy and the 

resulting energy level will lie between the higher-lying VBM and lower-lying I p atomic orbital 

levels, and is therefore a shallow acceptor.  
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Point Defects: 

The prominent point defects that have been found to most readily form within perovskite 

materials, i.e. with the lowest formation energies, also lie shallow within the band gap. These 

point defect include (i) interstitials, such as iodine (Ii); (ii) vacancies, such as MA vacancies 

(VMA), VPb; (iii) anti-sites from either cation-cation or anion-anion wrong bonding, such as MA-

on-Pb anti-sites (MAPb), and MAI, while those with deep transition levels, such as VI, IMA, IPb, 

Pbi, PbI, and PbMA, have high formation energies (Figure 3-4).3,1 Formation energies will be 

discussed in greater detail in Section 3.3.  

Bonding type point defects can only be applied to the VB owed to the band structure of 

MAPbI3 (bonding orbital lies within the VB), which would be cation vacancies (VPb , VMA). 

Anion type vacancies (VI) would form dangling bonds that fall within the CB only if the 

dispersion and band width allows the CB to lie lower than the Pb 6p atomic orbitals, where they 

would otherwise lie at a shallow level within the band gap.10 Thus, vacancy-type defects resonate 

within the bands due to (i) the antibonding orbital that pushes the VBM energy upwards, and (ii) 

relativistic effects from Pb that pull the CB downwards in energy. This concept can also be 

extended for other defect types, such as grain boundary or schottky defects. 
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Figure 3-4: Defects in hybrid perovskites. (a) a perfect lattice; (b) a vacancy; (c) an interstitial; (d) an 

anti-site (wrong bond); (e) a Frenkel defect (interstitial-vacancy pair from same ion); (f) a Schottky defect 

(cation-anion vacancy pair); (g) a substitutional impurity; (h) an interstitial impurity; (i) an edge 

dislocation; (j) a grain boundary defect; (k) a precipitate.11 

 

Schottky defects: 

Schottky defects, that is, defect pairs in ionic materials, are also present in the ionic 

hybrid perovskite crystal (Figure 3-4f). Schottky defects in hybrid perovskites, such as MAI and 

PbI2 vacancies, have been shown to not be deep lying states. However, an accompanying reduced 

carrier concentration was observed, and it was therefore postulated that schottky defects can self-

regulate the carrier concentration via ionic compensation of charged point defects.  
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Surface defects: 

 Different defects can also arise depending on the nature of the surface termination. The 

PbIx terminations on representative (110), (001), (100), and (101) surfaces were studied via 

computational methods, where it was found that either vacant or PbI2-rich surface terminations 

do not create states within the band gap, thereby preserving the integrity of the MAPbI3 bulk 

electronic structure.3 The ability to maintain robust surface properties is another reason why 

hybrid perovskites exhibit long carrier lifetimes. 

 

Grain boundaries: 

 Grain boundary defects (GBs) (Figure 3-4j) are a critical component in conventional 

semiconductor devices, such as CIGS, CZTS, GaAs, CdTe, Si where their associated defects can 

often form deep states within the band gap that can significantly affect PV properties. In hybrid 

perovskites, however, this is not the case. Considering the solution-processed nature and lack of 

stoichiometric composition at the surfaces of grains and at intra-grain regions, it is believed that 

most defects are located at GBs and surfaces of hybrid perovskites. Initially, GBs were shown to 

be electronically benign via computational studies, which showed that GB defects do not create 

deep-level states (via DOS analyses), but instead shallow levels similarly to point defects.3 Since 

the atoms at GBs have similar chemical environments as bulk point defects, such as interstitials 

and vacancies, with dangling or wrong bonds, this is reasonable. However, many recent 

experimental studies have shown that GBs are not as benign as initially thought. GBs have been 

shown to be sources of high defect densities and loss of photovoltaic quality, as have been 

confirmed via experimental studies.12 The defect densities of thin films and single crystal 
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perovskites were measured for comparison, showing a higher defect density of 1016-1017 cm-3, 

which is much higher than that of single crystals (109-1010 cm-3). Coupled with visual micro-

scale resolution evidence of photoluminescence (PL) quenching at grain boundaries, which 

implies a higher number of defects and faster non-radiative recombination, there is a strong 

consensus in the field that GBs and their associated defects are key to improving PV quality of 

perovskite films and devices. However, there is still some debate as to the exact role of GBs as 

there have been observed carrier lifetimes that are comparable even for vastly different grain 

sizes (reduced GB density). Moreover, band bending can result at GBs owed to charged ionic 

defects that cause depletion or accumulation and thus cause band bending upwards or 

downwards, which may either assist or impede the separation and movement of charge carriers. 

For instance, a small upward bending (potential barrier) has been seen at the electron-

transporting layer (ETL)-PVSK interface due to the accumulation of positively charged defects, 

whereas for the hole-transporting layer (HTL)-PVSK interface a downward bending (potential 

barrier for holes) has been seen. Therefore, GB defects are highly sensitive to growth conditions, 

material composition, and substrate/surrounding material influences.  

 In addition to intrinsic defects, there can be extrinsic defects, i.e. via impurities, that can 

cause deep levels within the band gap. For instance, it has been shown that with time and higher 

temperature (>70C) the Au electrode can diffuse into the PVSK layer, where it has shown to 

cause severe loss of PV properties such as Voc, FF, and Jsc. Impurities can also cause the 

formation of precipitates within the bulk or at grain boundaries (Figure 3-4k) that can affect 

optoelectronic properties. This can be due to dopants or alloying species, as well as diffusion 

from within other layers within the device (as in the example of Au). 
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Defect scattering and screening: 

 Scattering of carriers by defects is an important part of charge carrier mobility and SRH 

recombination. As we have discussed in Section 2.1.6, a high dielectric constant can reduce the 

capture cross-section of a defect state that can effectively screen the carriers from that defect site. 

A high dielectric constant reduces the potential barrier of a charged defect, thereby lowering its 

propensity to scatter electrons or holes. Since mobility is directly related to charge carrier 

scattering, this will cause an increase in the mobility of the material. In terms of scattering, it is 

thus ideal to have a high dielectric constant, alongside a low effective mass and trap density. The 

dielectric constants in hybrid perovskites are about 3 times larger than other thin film materials, 

such as CdTe, CZTS, etc. GB scattering can also be reduced for higher dielectric constants when 

the GB defect levels are shallow. Furthermore, the mobility may be influenced by phonon 

scattering. The phonon-limited mobility is related to the bulk modulus: 

(3.2)        𝜇�Uv^v^ = 𝐴 ∙ 𝐵(𝑚∗)gG.) 

where the phonon-limited mobility is related to the bulk modulus (B) and effective mass, and A 

is a constant. Since MAPbI3 is a relatively soft material with a bulk modulus equal to 

approximately 22.6 GPa (for the cubic phase),10 its phonon-limited mobility is lower than stiffer 

materials. This has been suggested to explain why the mobilities are not comparable to 

conventional high performance semiconductors (Si, GaAs), though still much greater than other 

third generation materials such as organics or dyes.    
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Doping in PVSK: 

Doping in hybrid perovskites is generally thought to be unavoidable and small due to the 

nature of solution-based processing techniques employed. Self-doping has been reported, where 

the doping concentration can be varied based on the ratio of precursors methylammonium iodide 

(MAI) and lead iodide (PbI2).13 This is related to defect formation energies based on iodine-rich 

or Pb-rich conditions, which will be discussed in Section 3.3. Heavily n-doped perovskites can 

be Pb-rich or stoichiometric conditions, where a 1:1 ratio of PbI2:MAI achieved a electron carrier 

concentration of 𝑛V = 2.8𝑥106*𝑐𝑚gI. Similarly, p-type perovskite can be achieved under 

iodine-rich conditions, where a ratio of 0.3 PbI2:MAI achieved a hole carrier density of 𝑛U =

4.0𝑥106¨𝑐𝑚gI. The acceptor defects are Ii, VMA, VPb, MAPb, IMA, and IPb, while the donor defects 

are VI, MAi, Pbi, PbMA, MAI, PbI. 

 

Defect formation energies: 

In accordance with the laws of thermodynamics, a defect will more readily form as its 

formation energy becomes more negative. The formation energy is dependent on the chemical 

potential, which is a function of concentration gradient, chemical activity, and the electronic 

activity (position of the Fermi level). As such, the thermodynamics of perovskite growth are 

critical in controlling the nature of crystallization and associated defect formation, which include 

concentration of precursor species, temperatures, solvents, doping, passivation and reaction rates, 

etc.  
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The most stable defect can vary based on the chemical potential (Fermi level), where 

even the most stable defect at one Fermi level value can transition to a deeper state for a different 

Fermi level, thus potentially becoming a significant source of SRH recombination. This is 

represented in Figure 3-4. 

 

Figure 3-5: The change in formation energy versus Fermi level in (a) an iodine-rich (Pb-poor) conditions, 

and (b) I-poor (Pb-rich) conditions.11 

 

The formation energy of a defect is given by: 

(3.3)        ∆𝐻 = (𝐸� − 𝐸Ó) − ∑ 𝑛*(𝜇* + 𝜇*­,¯+) + 𝑞(𝐸³-. + 𝐸C)*  

where ED and E0 are the total energies of defect and host, 𝑛* is the difference in number of atoms 

between defect-containing and defect-free (bulk) regions, and 𝜇* is the relative chemical 

potential referenced to that of the bulk, 𝜇*­,¯+, and EVBM and EF are the energies of the VBM and 

Fermi level, respectively.14 The second term signifies the change in energy respective to the 



 

 83 

exchange of atoms from their relative positions. The last term represents the change in energy 

due to the exchange of electrons.  

The defect concentration under thermal equilibrium is given by: 

(3.4)        𝑁� = 𝑁Ó	exp;−∆𝐻 𝑘𝑇0 B 

where 𝑁Ó	 is the number of sites available for a vacancy to form, and ∆𝐻 is the formation energy 

of a defect (activation energy). 

The defects with the lowest calculated formation energies include Ii, VMA, VPb, MAPb, 

MAI, which have been shown to lie shallow and not contribute significantly to SRH 

recombination, according to density functional theory (DFT) calculations. Meanwhile, deeper 

lying defects such as VI, IMA, IPb, Pbi, PbI, and PbMA have shown to have higher formation 

energies (Figure 3-5).3,1 However, DFT calculations have also shown that there exist some 

growth conditions in which the formation energies of these deep-lying defects can transition to 

can transition to become low enough to contribute significantly to SRH recombination. For 

instance, VI was originally thought to be a shallow defect, but later shown to transition to a more 

detrimental state based on the Fermi level of the device. Likewise, it was postulated that the 

formation energy of Pbi can make a transition to a lower value under iodine-rich conditions with 

a defect energy level that lies deep within the band gap. It is also predicted that the bonding of 

surrounding atoms with these defects can also form deep-lying energy levels. To prevent these 

defects from forming the equilibrium carrier concentrations should be controlled such that the 

Fermi level is only approximately 0.3 eV away from the band edges to prevent SRH 

recombination rates to become dominant. 7,11,15 
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3.2.5   Effect of alloying on optoelectronic properties 

The A-site cation has been shown to have its energy levels lie deep within the CBM and 

VBM, and thus its contribution towards the electronic properties of perovskites is negligible.1 

However, the size of the A-site cation can influence the optoelectronic properties of the crystal 

by causing distortion (tilting) of the BX6 octahedral symmetry (Figure 3-1c),1 thus affecting the 

B-X bonding interactions.  As a result, the band gap can be changed by altering the size and 

structure of the A-site cation. While this variation of the band gap comes as an indirect effect, a 

more direct method is to substitute the X-site halide, where the bandgap can be tuned to absorb 

within the ultraviolet to infrared regions of the spectrum through simply variation of these 

components. For instance, by incrementally substituting the X halide from I- to Br-, a blue shift 

(shift to higher energy) is observed due to a lower ionization potential (binding energy) resulting 

from a VB transition from 5p à 4p.16 In fact, this trend has a linear relationship following that of 

Vegard’s Law. A-site cations of similar size (MA, FA) and corresponding crystal structure 

variations (cubic, tetragonal) can have similar effects in tilting the BX6 octahedra which affects 

the Pb-I bond lengths and thus the wave function overlap, which alters the band gap. This unique 

feature allows for facile means of tuning the color and transparency of the film via simple 

component substitution. However, this feature also presents other implications in film 

optoelectronic quality and stability, which can lead to the major problems with hybrid perovskite 

films, as will be discussed in Section 3.6 and 3.7. Furthermore, the electronic band structure of 

hybrid perovskites has an associated pressure-dependence, for which a redshift in the energy gap 

occurs as a result of an increase in pressure. This is due to the antibonding and non-bonding 

natures of the VBM and CBM, respectively, which are pressure-sensitive. This is quite peculiar 

as it is in contradiction with most semiconductor materials. 
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3.3  Perovskite Solar Cells  

3.3.1 A brief history of Perovskite PV  

The hybrid perovskite made its debut in photovoltaics in 2006 when Miyasaka and 

colleagues employed CH3NH3PbBr3 as a sensitizer on mesoporous TiO2 in a liquid electrolyte-

based DSSC, realizing an efficiency of 2.2%.17 In 2009, a power conversion efficiency (PCE) of 

3.8% was achieved by replacing Br with I.18 In 2011, Park and co-workers achieved an 

efficiency of 6.5% by employing perovskite nanoparticles (∼2.5nm in diameter) on TiO2 to serve 

as sensitizers for improved absorption over conventional dyes.19 However, these devices were 

highly susceptible to dissolution within the polar electrolyte solution. Consequentially, in 2012 a 

solid electrolyte 2,2′ ,7,7′ -tetrakis(N,N-di-p- methoxyphenylamine)-9,9′ -spirobifluorene (Spiro-

MeOTAD) was employed as a hole transport material (HTM), achieving an initial efficiency of 

9.7% and improved stability compared to the liquid-based design.20 Later, Snaith et al. reported 

replacement of the n-type TiO2 electron transport material (ETM) with an inert Al2O3 scaffold, 

demonstrating an efficiency of 10.9%.21 These reports revealed the ambipolar nature of 

perovskites, which enlightened and encouraged the intensive employment of the planar 

heterojunction architecture in these devices. Later, bromine inclusion was reported to feature an 

adjustable band gap for perovskites. This sparked an enormous development in the hybrid lead 

halide perovskite CH3NH3PbX3 (X = I, Cl, Br), obtaining a record PCE reaching up 23% in just 

five years using low cost production methods. This family of materials exhibits a myriad of 

properties ideal for PV such as high dual electron and hole mobility, large absorption coefficients 

resulting from s—p antibonding coupling, a favorable band gap, a strong defect tolerance and 

shallow point defects, benign grain boundary recombination effects and reduced surface 
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recombination. Consequently, hybrid perovskites have been implemented into various photonic 

devices and found great promise for applications beyond photovoltaics. The versatility of hybrid 

perovskites also presents a facile and affordable route, as 15% efficiencies can be obtained with 

relative ease through diverse architectures and processing techniques.  

 

3.3.2 Device architecture and operating principles  

The operation of hybrid perovskite PV cells is complex, but the consensus is that they 

operate as a p-i-n or n-i-p junction solar cell, where the perovskite absorber layer is the intrinsic 

layer (i) and the p-doped and n-doped layers are called selective contacts, as they are used to 

selectively transport one type of charge carrier. The electron transport layer (ETL) transports 

electrons (n-type) and the hole-transport layer (HTL) transports holes (p-type).  

In addition to their unique optoelectronic properties and organic—inorganic hybrid 

nature, the versatility of perovskites in device architecture and processing techniques has been a 

main contributor to its extremely rapid development. MAPbI3 was initially used in dye sensitized 

solar cells (DSSC) to replace conventional dyes. These device configurations feature 

semiconducting mesoporous TiO2 scaffolds, which have been intensively studied for DSSCs. 

Further investigations have found perovskites absorbers to exhibit ambipolar transport 

properties, that is, the transport of both electrons and holes, which indicates that a mesoporous 

scaffold is not necessary. As such, planar heterojunction perovskite solar cells were constructed 

to achieve competitive efficiencies with a simpler architecture and processing requirements. The 

major device architectures for perovskite solar cells are shown in Figure 3-5a-c. 
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Figure 3-6: The device architectures for perovskite PV cells. (a) mesoporous, (b) n-i-p, (c) p-i-n.22 

The transparent conductive oxide (TCO) is deposited onto a glass substrate, which is 

typically indium tin oxide (ITO) or fluorine-doped tin oxide (FTO). Adopted from the DSSCs, 

the mesoporous device architecture employs a slightly porous scaffold layer (mesoporous), 

typically titania (TiO2), that the perovskite film is then fabricated onto. This allows for a greater 

surface area of contact between the perovskite film and titania layer that can aid in charge 

transport. Planar device architectures do not have this mesoporous layer, but rather planar (non-

porous) layers either in an electron transporting (n-i-p) or hole-transporting (p-i-n) layer first, 

followed by subsequent layer deposition according to the figure. The selection of materials is 

different for these architectures due to processing constraints. n-i-p structures most commonly 

employ TiO2 or SnO2 as electron-selective contacts, and the small molecule Spiro-OMeTAD as 

the hole-selective contact. Conversely, for p-i-n structures, poly(3,4-ethylenedioxythiophene) 

polystyrene sulfonate (PEDOT:PSS) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are 

typically employed as hole- and electron-selective contacts, respectively, however other 

materials have been used such as inorganic nickel oxide (NiOx), and other various organic 

polymers and small molecules. 
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While conditions arising during continuous operation of perovskite PV cells can be quite 

complex, the operating principle is rather simple. Figure 3-7 depicts the energy band alignment 

of the perovskite and selective contact materials and associated band bending under (b) contact 

and (c) illumination. The band alignment is often used to as a guideline for material selection, 

where lining up the CBM/VBM for hole or electron extraction is selected such that the difference 

between these energy level is minimized. The Fermi level is another important consideration, but 

due to the solution-processed nature of these materials it is difficult to control precisely. TiO2 is 

n-type doped, where the Fermi level has been shown to lie approximately ~0.1 eV below the 

CBM. The position of the Fermi level depends on concentration, annealing temperature, and 

atmosphere that can affect the formation of donor states, which are typically oxygen vacancies or 

Ti interstitials (self-doping. For Spiro-OMeTAD (p-type), the Fermi level has been shown to be 

approximately 0.8 eV from the VBM, which is typically accomplished by doping with a Li-TFSI 

salt. Perovskite, on the other hand, can be n-type or p-type depending on the stoichiometry of 

precursors during processing, as described in Section 3.2.4. In Figure 3-7 it is represented as 

intrinsic strictly for representing the band diagram. 

Under equilibrium conditions, the Fermi levels align as shown in Figure 3-7b. Band 

bending occurs at the interfaces between perovskite and the selective contacts as small depletion 

regions are created. The nature of these interfaces, associated band bending characteristics, and 

effects on charge extraction are dependent on the respective carrier concentrations, the 

processing conditions, resulting quality of films, and associated interfacial defect states (as well 

as impurities). The nature of these interfaces is complex and only recently being understood in 

greater detail. Upon illumination (Figure 3-7c), the perovskite material absorbs a photon to 

generate an electron hole pair. Since the binding energy between this exciton pair is relatively 
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weak, a free electron and hole are created within the intrinsic perovskite layer, represented as an 

electron excitation from the VBM to CBM. Since the electron wants to move downwards in 

energy to a more stable state it moves downhill into the TiO2 material and is blocked by the 

opposing energy barrier on the Spiro side. Likewise, the hole wants to move upwards in energy 

and therefore moves easily uphill to the Spiro side, and is blocked by the TiO2 energy barrier on 

the other side. Thus, it is important to not only select materials with good alignment to extract 

the appropriate carrier, but that can also sufficiently block the other carrier (i.e. wider bandgap 

materials are preferred as selective contacts).  

 

 

Figure 3-7: (a) Energy band alignment in a hybrid perovskite PV cell, (b) band bending occurring at 

junctions of interfaces due to unintentional doping of the PVSK layer, (c) quasi fermi level splitting under 

illumination. 
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Based on this understanding of perovskite PV cell operation, some criteria for high 

performance perovskite PV devices can be established: 

a. Ideal band gap close to SQ limit 

b. Minimized SRH recombination 

c. Long diffusion length 

d. High absorption coefficient 

e. High mobility 

f. High charge carrier lifetimes 

g. Low trap density 

h. Efficient charge carrier extraction 

i. Smooth, continuous films (i.e. no pinholes) 

j. High radiative recombination 

 

3.3.3 Photoluminescence characteristics  

The principle of detailed balance requires that photons must be continuously exchanged 

between a semiconductor and its surroundings for charge carrier generation and recombination 

processes. Therefore, radiative recombination is a necessary process in semiconductors. 

Photoluminescence (PL) is the light emission (or re-radiation) that occurs after absorbing a 

photon and is an important characteristic of solar absorbing semiconductor materials. It is related 

to the electronic structure and charge carrier dynamics within the semiconductor film and is 

typically used to identify and quantify the amounts of radiative and SRH recombination within 
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the material. As we will see in this section, is also directly connected to the open-circuit voltage 

(Voc) and PL quantum efficiency (PLQE) of the material.   

When a charge carrier approaches spatially localized defect state within the band gap, it 

is likely it will become trapped in that state. The carrier can then either remain trapped or de-trap 

(be emitted) back to the respective band (VB/CB) if the activation energy is small enough. On 

the other hand, if the activation energy is large, then it is more likely that the carrier will remain 

trapped and annihilate with an oppositely charged carrier before it can be de-trapped. This 

process can be non-radiative and also emit phonons. The recombination rate is determined by 

SRH statistics and given by the following time-dependent carrier population (or rate) equation: 

(3.5)        r^
r�
= −𝑘I𝑛I−𝑘G𝑛G−𝑘6𝑛 

where 𝑛	is the photogenerated carrier density, and 𝑘6, 𝑘G, and 𝑘I are the rate constants for 

monomolecular, bimolecular, and trimolecular recombination, respectively.11 Monomolecular 

signifies recombination that involves one carrier at a time, such as indirectly via a recombination 

center (trapping). Bimolecular recombination is that which involves two free carriers 

simultaneously, such as band-to-band recombination (radiative). Trimolecular, or three-body, 

recombination involves three free-body carriers simultaneously, such as Auger type 

recombination where one electron in the CB recombines with a hole in the VB, giving off that 

relaxation energy to another electron in the CB. The excitation density can be used to probe these 

specific modes of recombination. At low excitation densities, monomolecular rates of 

recombination will dominate as the trap states begin to fill and carriers interact with the 

background carriers within the material. As the photogenerated carrier density increases, these 

monomolecular (trap) states fill which allows bimolecular recombination rates (radiative) to 
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begin to contribute more towards the overall recombination rate. At very high densities, the 

occurrence of Auger (trimolecular) recombination becomes more probable. These rate constants 

can be probed experimentally using time-resolved PL decay techniques, and thus, the PL yield 

and decay rates are important indicators for recombination mechanisms within perovskite films. 

 Under illumination in the steady-state, electrons are excited from the VB to CB, causing a 

splitting of the electron and hole quasi Fermi levels, the difference of which is determined by the 

charge density for which the generation rate is equivalent to the recombination rate, in 

accordance with the principle of detailed balance, and sets the value for the Voc in the device. 

When SRH recombination is more dominant, the carriers will have a shorter lifetime than that of 

radiative recombination, and the steady-state carrier density will decrease. This inevitably 

reduces the splitting of the quasi Fermi levels, and hence Voc. The Voc is related to the external 

luminescence quantum efficiency (PLQE) by the following relationship: 

(3.6)        𝑞𝑉12 = 𝑞𝑉12,§±r − 𝑘𝑇|𝜂V,�| 

where 𝜂V,� is the PLQE and 𝑉12,§±r is the ideal Voc with pure band-to-band emission. The ideal 

voltage to expect is the quasi Fermi level separation, or chemical potential, related to the 

Boltzmann factor as: 

(3.7)        𝑒𝑥𝑝 ;4§VV	V^V§º'
+�

B = ;V,¸*�±�*v^	�v�,¯±�*v^	*^	�UV	¯*ºU�
V,¸*�±�*v^	�v�,¯±�*v^	*^	�UV	r±§+

B 

Thus, in quasi-equilibrium we have: 

(3.8)        𝑞𝑉12 = 𝑘𝑇 ; V,�V§^±¯	¯,P*^V«¸V^�	VP*««*v^
­±^rg�vg­±^r	VP*««*v^	*^	�UV	r±§+

B 
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Therefore, we can see that the external luminescence intensity (PL intensity) is essentially a 

‘volt-meter’ into the PV cell, where a higher fraction of radiative recombination indicates a 

higher obtainable voltage and higher performing PV cell. This is because at open-circuit 

condition the carriers have nowhere to go and ideally all of the carriers would recombine 

radiatively. Thus, the ideal PV cell should also be a good LED. A lower 𝜂V,� indicates that there 

is more SRH recombination present, and thus a lower quasi Fermi level splitting and Voc. 

 

3.4 Thermodynamics of Film formation 

The resulting optoelectronic properties of hybrid perovskite materials are highly tied to 

their growth mechanisms. The nucleation and growth of high quality polycrystalline films is of 

paramount importance and can make significant differences in resulting PV cell performance 

(i.e. 10-12% PCE to >20% PCE). In this section, we will discuss the mechanisms of nucleation 

and growth as well as well as the impacts from the solution chemistry. But first, an introduction 

to the processing techniques of perovskites will be provided. 

From a processing standpoint, hybrid perovskites are unique in that they can be processed 

from solution. Spin-coating is the most commonly employed technique owed to its simplicity in 

creating reproducible thin films on small sized substrates. The overall chemical reaction between 

MAI and PbI2 is spontaneous, forming MAPbI3 according to: 

(3.9)        𝑃𝑏𝐼G + 𝐶𝐻I𝑁𝐻I𝐼 → 𝐶𝐻I𝑁𝐻I𝑃𝑏𝐼I 

Typically, a one- or two-step spin casting method is employed (Figure 3-8). For conventional 

one-step techniques, common perovskite precursor salts (MAI, FAI, PbI2) are dissolved into a 
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solvent (DMF, DMSO), cast and spun onto the substrate to create a thin film, and subsequently 

heated to crystallize the film. 

 

Figure 3-8: Perovskite film processing via (a) one-step and (b) two-step techniques. 

 

Typically, an anti-solvent is applied during one-step techniques to improve quality and 

reproducibility of the resulting perovskite film morphology. The anti-solvent is applied at an 

optimized timing after the initial perovskite precursor solution begins spinning, but before it 

dries (Figure 3-8a). The optimal timing is different for each combination of precursor 

components and solvents. For perovskites, an anti-solvent is one that is non-polar. Depending on 

the anti-solvent used, this can induce different degrees and rates of crystallization. Strong anti-

solvents, such as chlorobenzene, will induce rapid crystallization upon application to the 
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spinning perovskite film by helping to flush out the solvent. A rapid and distinct color change is 

to a darker translucent color observed upon application, indicating partial formation of the photo-

active perovskite crystalline structure. Heating will complete the formation of the black 

perovskite phase. On the other hand, a more mild anti-solvent, such as diethyl ether, will less 

effectively flush out the solvent and can result in the formation of an intermediate complex of the 

perovskite precursor-solvent components, where there is still some solvent remaining that has 

not been removed or evaporated. This intermediate complex has a transluscent color similar to 

that of the precursor solution, but can vary based on the components within the solution and the 

conversion time of the intermediate phase to the perovskite crystal structure. Subsequent heating 

at an appropriate temperature will liberate these solvent molecules and induce rapid 

crystallization of the perovskite structure. Further details on the impacts of solution chemistry 

will be discussed in Section 3.4.2. 

Owed to the fact that high performing perovskite films can be fabricated under different 

fabrication conditions and different precursor stoichiometries, a phase diagram has been recently 

constructed to provide insight into the ranges of compositions for which MAPbI3 can form 

(Figure 3-9).23 The figure presents two phase diagrams, where Figure 3-9a represents a phase 

diagram that is representative of phase formation during processing (and processing conditions), 

but is not necessarily a good representation of the material at equilibrium, whereas Figure 3-9b 

depicts the phase diagram under equilibrium conditions. The main difference comes from the 

regions greater than 140˚C for a MAI concentration of approximately 60% and higher. Figure 3-

9a accounts for the fact that MAI readily liberates during processing at higher temperatures, and 

thus the 𝛼 perovskite phase is not stable, whereas Figure 3-9b was constructed under equilibrium 

conditions (constant MAI partial pressure). Thus, the former is more useful from a fabrication 
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standpoint. The phase diagram shows that a 𝛼′ phase can be formed that can still maintain the 3-

D dimensionality with a higher degree of stacking faults, which has a wider range of tolerance 

for MAI incorporation than the pure 𝛼 phase. 

 

Figure 3-9: Phase diagrams for (a) non-equilibrium (processing) conditions, and (b) equilibrium 

conditions.23 

Aside from controlling phase formation, the nucleation and growth kinetics are important 

in the resulting crystal quality. In the next section, we will discuss the factors that affect such 

processes. 
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3.4.1 Nucleation & Growth 

According to classical nucleation theory, nucleation is a competing process between the 

reduction in free energy associated with formation of a bulk structure (bonding) and the increase 

in free energy associated with the formation of surfaces (broken, dangling bonds). As such, there 

exists a critical radius for which nucleation can occur such that the overall free energy is negative 

and the nucleus is stable (i.e. won’t re-dissolve into its original components). Here, I will first 

discuss the case of homogeneous nucleation, meaning nucleation solely from the formation of 

clusters within a liquid (i.e. no surfaces for heterogeneous nucleation to occur). This is 

represented by the overall equation: 

(3.10)        ∆𝐺 = −J
I
𝜋𝑟I∆𝐺¡ + 4𝜋𝑟G𝛾«¯ 

where ∆𝐺 is the total Gibbs free energy, r is the radius, ∆𝐺¡ is the volumetric Gibbs free energy 

term and 𝛾«¯ is the surface free energy term.24 The first term represents the decrease in free 

energy associated with the formation of a stable bulk crystal structure (coordinated bonding), 

whereas the second term represents the opposing increase in free energy from surfaces being 

created (uncoordinated bonds). The volumetric Gibbs free energy term is given by: 

(3.11)        ∆𝐺¡ =
+�
¡
𝑙𝑛(𝑆)			𝑜𝑟			∆𝐺¡ =

+�
¡
𝑙𝑛 ; 2

2@(�)
B 

where S is the supersaturation and is equivalent to C/C0(T), 𝐶 is the concentration of precursors 

and 𝐶Ó(𝑇) is the concentration of precursors at equilibrium, and v is the molar volume.25,26 In 

classical nucleation theory for metals, this bulk free energy term is dependent on the latent heat 

of formation and undercooling, which is similar to the thermal energy (kT/v) and supersaturation 
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ln[C/C0(T)] terms here. The corresponding free energy diagram versus radius is shown in Figure 

3-9.  

 

Figure 3-10: The Gibbs free energy curve for nucleation of a solid consisting of the volumetric and 

interfacial energy terms. 

 

Initially the interfacial (surface) energy term with r2 dependence will outweigh the volumetric 

term with r3 dependence, but as the radius increases in this competing energetic process there 

will exist a critical radius value that is corresponds to a maximum on the free energy diagram. 

Once this critical radius is achieved, or this energy barrier is overcome, the free energy rapidly 

drops becoming more and more stable. This critical energy value, dependent on the radius of the 

nucleus (cluster of atoms), can be found by first taking the derivative of the total free energy 

equation with respect to the radius and setting equal to zero to find the radius corresponding to 

the maximum of the free energy curve in Figure 3-9. This critical radius value can then be 
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plugged back into the total free energy question to give the critical free energy (or activation 

energy, energy barrier) as: 

(3.12)        𝑟∗ = G:
∆;F

 

(3.13)        ∆𝐺∗ = 6¨]:b

I∆;FX
 

where 𝑟∗ is the critical radius and ∆𝐺∗ is the critical free energy. Thus, we can see that the 

activation energy depends on the critical radius size, which is a function of the surface and bulk 

free energy terms, where the bulk term is dependent on supersaturation. In classical diffusion of 

metals, this is related to undercooling, however our system is more complex as we are dealing 

with an ordered ionic crystal structure, and thus nucleation is not only dependent on 

undercooling, but ordering and diffusion as well as bonding strength and directionality. 

The formation of nuclei is a dynamic process, where clusters of atoms/molecules 

constantly associate into clusters and disassociate back into solution until the critical cluster size 

(or critical radius) is achieved. An instantaneous picture would show many clusters of atoms that 

are temporarily in the same crystalline array as in the bulk solid. On average, the number of 

spherical clusters is given by: 

(3.14)        𝑛§ = 𝑛Ó	𝑒𝑥𝑝 ;−
∆;�
+�
B 

where 𝑛Ó is the total number of atoms in the system, and ∆𝐺§ is the free energy associated with 

the cluster. The nucleation rate is given by: 

(3.15)        r�
r�
= 𝑓Ó𝐶Ó	𝑒𝑥𝑝 ;−

∆;∗

+�
B 
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where k is Boltzmann constant, T is temperature and 𝐶Ó is the number of solute atoms per unit 

volume. 𝑓Ó is a complex function that depends on the activation energy for diffusion in the 

liquid, the surface area of the critical nuclei, and the vibrational frequency of the atoms. Hence, 

we can see that the kinetics of nucleation (nucleation rate) is also governed by the activation 

energy ∆𝐺∗. 

 While this picture helps one understand the parameters dictating homogeneous 

nucleation, heterogeneous nucleation is the more likely the case for solution-processed 

perovskites where nucleation occurs at the substrate-liquid interface. The equation for 

heterogeneous is identical to that of homogeneous nucleation but with an additional term called 

the shape factor that accounts for the change in shape of the nucleus against a surface. The shape 

factor considers the interfacial surface tensions against the substrate surface. This effectively 

reduces the surface area of the nucleus needed, and can be qualified based on the wettability of 

the solvent/solute solution on the given substrate that dictates the contact angle between the 

nucleus and interface surface. Thus, the free energy for heterogeneous nucleation becomes: 

(3.16)        ∆𝐺UV� = <−J
I
𝜋𝑟I∆𝐺¡ + 4𝜋𝑟G𝛾«¯= 𝑆(𝜃) 

where the shape factor is defined as:  

(3.17)        𝑆(𝜃) = (2 + 𝑐𝑜𝑠𝜃)(1 − 𝑐𝑜𝑠𝜃)G/4 

and 𝜃 is the ‘wetting’ angle on the substrate. The critical free energy and nucleation rate are thus: 

(3.18)        ∆𝐺UV�∗ =
6¨]:b

I∆;FX
∙ 𝑆(𝜃) 
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and 

(3.19)        r�
r�
= 𝑓6𝐶6	𝑒𝑥𝑝 ;−

∆;QS�∗

+�
B 

where 𝐶6	 in this case is the number of atoms in contact with heterogeneous nucleation sites per 

unit volume of solution. Thus, we can see that the activation barrier against heterogeneous 

nucleation is smaller than that of homogeneous by a factor of 𝑆(𝜃), and the similarly the 

nucleation rate decreases exponentially by a factor of 𝑆(𝜃). Control over the nucleation 

energetics, kinetics, and density is critical in hybrid perovskites because it allows for the 

opportunity to control the resulting film properties. Next, we will look at how we can tune the 

solution chemistry in this regard. 

  

3.4.2 Solution Chemistry 

The obvious question upon obtaining an understanding of nucleation and growth 

processes is ‘how can we control the bulk and surface free energy terms?’ Supersaturation is the 

key component in modulating the activation energy for nucleation and is related to the solubility 

of precursors within a given solvent, or the chemical interactions between precursors and 

solvents. The solvent choice, precursor composition, and anti-solvent choice will change the 

energetics within the solution such that certain interactions are more favorable than others, which 

dictate the mechanisms by which the nucleation and growth may proceed. This can be 

understood by considering the enthalpy (or heat) of mixing for a binary (two-atom) system: 

(3.20)        ∆𝐻P*, = 𝑃�- ;𝜀�- −
©��7©%%

G
B 
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where PAB is the number of A-B bonds, and 𝜀�-, 𝜀��, and 𝜀-- are the bond energies of the A-B, 

A-A, and B-B bonds, respectively. Upon analyzing this equation, we can see that there exist 

three cases determined by the sign of the portion within brackets. If it is equal to zero, then the 

solution is considered an ideal solution, where there is no heat of formation as the A and B atoms 

do not prefer to interact with one species over the other, thereby not giving off or taking in any 

energy (heat). If it is positive, then there is a positive heat of mixing and atoms/molecules of one 

type will want to be around atoms/molecules of the same type. This is because a lower value of 

𝜀�� and 𝜀-- means these bonds are more stable, and 𝜀�- is higher in energy and thus more 

unstable, thereby causing a preferred formation of A-A and B-B bonds (phase separation, 

exothermic). If it is negative, then the converse occurs where atoms/molecules will want to be 

surrounded by those of a different type (alloying). Generally speaking, this concept can be 

extended for a ternary system during crystallization from solution, which would include more 

mixing terms for the three-component interaction. However, the case becomes more complicated 

for hybrid perovskites as we must consider the relative sizes of the atomic/molecular constituents 

(geometrical mismatch), the bond strength between atoms/molecules, and the electronegativity of 

each constituent.2 

Since hybrid perovskites are ionic solids, the coulombic forces between the ionic and 

highly polar molecular species are what bind the crystal together. Thus, like the solid form, the 

strength of the precursor-solvent interactions in solution is in principle related the 

electronegativity and/or polarity of the individual atoms or molecules. Upon forming the 

solution, the ion-dipole interactions of the ions of the crystal and solvent molecules must be 

stronger than the coulombic forces holding the lattice (crystal) together of the precursor solids. 

Thus, a stable liquid solution is formed full of the dissociated ionic species free flowing within 
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the solvent liquid. The solubility depends on the strength of this ion-dipole interaction. On the 

other hand, during subsequent nucleation and growth processes temperature is used to drive the 

crystallization reaction by selectively evaporating the lower boiling point solvent while the solid 

components remain on the substrate to subsequently crystallize into the perovskite structure. The 

activation energy for this will again depend on the ion-dipole interaction strength of the 

perovskite precursors and solvent molecules. This fundamental understanding can be used to 

intentionally manipulate the solute-solvent chemistry by introducing different perovskite 

precursor and solvent species to change the solubility (supersaturation levels) and hence control 

the nucleation and growth dynamics, which is the underlying principle for modifying growth of 

hybrid perovskites in this work. 

 

3.6  Challenges with perovskite PV 

While the hybrid perovskite material is full of appeal and impressing results, there are 

several important challenges to be resolved in order to realize a commercial PV technology, 

namely, the poor long-term stability of the material and devices, anomalous hysteresis effects, 

and the performances that still fall short of the industry-leading PV technologies. We will see in 

the following sections that these challenges are all related to the film quality, and namely, 

defects, which are connected to grain boundaries and surfaces, and film formation.  
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3.6.1 Intrinsic instability 

The stability of hybrid perovskites can be broken down into two categories: intrinsic and 

extrinsic instability, where the former relates to the thermodynamics of intrinsic crystal phase 

stability under ambient and/or processing conditions, and the latter is due to extrinsic stimuli that 

induce degradation of the material.  

The intrinsic instability of hybrid perovskites is related to the thermodynamics of the 

crystal structure and phase(s) present in the system. The most stable structure will be that with 

the lowest free energy, in accordance with the expression we know for Gibbs free energy, ∆𝐺 =

∆𝐻 − 𝑇∆𝑆, where ∆𝐻 is the enthalpy term, and 𝑇∆𝑆 the entropy term. A more negative ∆𝐺 

indicates a more stable system. Thus, it is important to look at the enthalpy, or formation energy, 

to understand how intrinsically stable the structure is. Taking the conventional MAPbX3 family 

as an example, the overall reaction for its decomposition is given by: 

(3.21)        𝑃𝑏𝐼G(𝑠) + 𝐶𝐻I𝑁𝐻I𝑋	(𝑠) → 𝐶𝐻I𝑁𝐻I𝑃𝑏𝑋I(𝑠) 

Experimental calorimetric measurements have shown the formation energies for MAPbI3, 

MAPbBr3, and MAPbCl3, to be 34.5 ± 1.01 kJ/mol (strongly positive), 6.69 ± 1.41 kJ/mol 

(weakly positive), and -9.03 ± 0.68 kJ/mol (weakly negative), respectively.2 There are three 

major factors that have been identified to influence these enthalpy (heat) of formation 

observations:  

(i) tolerance factor (geometrical mismatch) 

(ii) electronegativity 
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(iii) Pb-X bond strength 

The tolerance factor is an important consideration because it is related to the strain within the 

lattice owed to bond length mismatch. The trend of tolerance factor to enthalpy of formation are 

inversely related, where the enthalpy of formation becomes more exothermic (more negative) 

with increasing tolerance factor. Similarly, both the electronegativity and Pb-X bond strength 

increase from I- to Br- to Cl- alongside a decrease in the enthalpy of formation, which indicates 

that the stability increases in this sequence. These results show that MAPbI3 is intrinsically 

metastable, and could dissociate into its separate binary components (the reverse of its formation 

equation) even in the absence of external stimuli. Here it is important to note that even if entropic 

effects are considered, it is unlikely that they would be high enough to render ∆𝐺 net negative for 

MAPbI3 at room temperature. Thus, the decomposition of MAPbI3 is inevitable from a 

thermodynamics perspective, and its rate of decomposition will therefore be governed by kinetic 

effects. These three factors, and particularly the tolerance factor, are important guidelines for 

improving the intrinsic stability of perovskite materials, where alloying with different 

components (A-site, X-site, and even B-site) cations show promise in terms these criteria as well 

as based on experimental results.  

 

3.6.2 Extrinsic instability 

Equally important as the intrinsic stability of perovskite materials are their robustness 

against external factors that can cause their degradation. The major external stimuli that cause 

degradation of hybrid perovskites can be classified as chemical: (i) moisture, (ii) oxygen, (iii) 

light (UV), (iv) electrical bias, (vi) chemical reactions from surrounding materials and 
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processing, and (vi) temperature. Here I will discuss these factors in greater detail, based on a 

thorough review by Niu et al.27 

 

Moisture and oxygen: 

 Moisture is the most severe cause for degradation of hybrid perovskites, as they tend to 

hydrolyze in the presence of water. Taking MAPbI3 as an example, the degradation process is:  

(3.22)        𝐶𝐻I𝑁𝐻I𝑃𝑏𝐼I(𝑠)
�X1@A 	𝑃𝑏𝐼G(𝑠) + 𝐶𝐻I𝑁𝐻I𝐼	(𝑎𝑞) 

(3.23)        𝐶𝐻I𝑁𝐻I𝐼	(𝑎𝑞)↔ 𝐶𝐻I𝑁𝐻G	(𝑎𝑞) + 	𝐻𝐼	(𝑎𝑞) 

(3.24)        4𝐻𝐼	(𝑎𝑞) +	𝑂G(𝑔)↔ 2𝐼G(𝑔) + 2𝐻G𝑂	(𝑙) 

(3.25)        2𝐻𝐼	(𝑎𝑞) 	↔ 𝐻G(𝑔) + 𝐼G(𝑔) 

First, water interacts with the MAPbI3 solid to form lead iodide solid and aqueous 

methylammonium iodide. Subsequently, the methylammonium iodide forms aqueous 

methylamine and hydriodic acid. The hydriodic acid can then proceed via either of the last two 

reactions, reacting with oxygen to form iodine and water or evaporating to form hydrogen and 

iodine gases. Therefore, the net effect of MAPbI3 decomposition in the presence of water is the 

liberation of the methylammonium A-site cation, leaving behind solid lead iodide (PbI2) that is 

typically a yellow color. For this reason, it is common to observe degradation as the 

transformation from the black perovskite phase to yellow non-perovskite phase. This is typical 

for most types of hybrid perovskites, such as FAPbI3, however each A-site cation will yield a 

different stability based on the criteria outlined in the intrinsic stability section as well as its 
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affinity towards water. We can also see that the combination of water and oxygen can accelerate 

degradation due to the reaction of oxygen with hydriodic acid. There have also been other 

proposed mechanisms for moisture-induced degradation that include a perovskite –moisture 

intermediate complex due to deprotonation of ammonium. Thus, it is believed that an aprotic 

cation would greatly alleviate moisture-related stability issues. 

 

U-V light: 

 The chemical instability of perovskites under UV-light mainly comes from the common 

ETM TiO2, which is a photo-catalyst typically used for oxidizing water, thereby creating 

hydroxyl radicals, and other organic materials. In DSSCs TiO2 is used to extract electrons from 

iodide within the electrolyte solution. In MAPbI3, it has been shown to transform to PbI2 under 

12 hours of UV exposure, where it has been proposed that electrons are extracted from the iodine 

in perovskites to form I2, where subsequently the methylammonium can form volatile 

methylamine gas and I2 volatile HI. This effect has been remedied by inserting a thin UV-

blocking layer between the perovskite and TiO2 layers, thus confirming this hypothesis.  

 

Processing and surrounding material reactions: 

 The influences of processing materials and conditions as well as reactions that can occur 

between perovskite and the adjacent layers within the material can cause its degradation. For 

instance, solvent compatibility is important when processing films on top of perovskites, where 

the solvent ideally should not be polar so as not to re-dissolve the perovskite components. The 
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components of the surrounding layer material can also degrade the perovskite film. For instance, 

the common additive for Spiro-OMeTAD to dope it p-type is a lithium salt (Li-TFSI), that has 

been shown to degrade the perovskite film over time as it can diffuse to the interface and react 

with the perovskite material. Unfortunately, Li-TFSI is a necessary doping component for Spiro-

OMeTAD in the presence of oxygen and no better dopant has yet been identified that does not 

lead to such degradation while maintaining high performances. Moreover, components such as 

ammonium, acetonitrile, have shown to accelerate degradation. Therefore, processing conditions, 

solvent, and material selection should be optimized to prevent degradation from occurring. 

 

Electrical bias and hysteresis: 

 Electrical bias can also induce degradation of MAPbI3 related to anomalous hysteresis 

effects seen in hybrid perovskite materials. Hysteresis effects are present in I-V scans of 

perovskite materials, where the I-V characteristics and resulting efficiencies are dependent on the 

direction of voltage sweep (i.e. positive to negative or negative to positive).28 It is believed that 

ion migration (predominantly iodine species) and defect charging/discharging or capacitance 

(interfacial) effects are responsible for this observed behavior. It has been shown through in-situ 

TEM measurements that the application of an external bias can induce degradation of MAPbI3, 

where the electrical bias causes ion migration of iodine to the positively biased interface, 

followed by volatization of the iodine and organic species at the interface that leads to nucleation 

of PbI2 and associated voids within the material.28 This effect has been shown to occur under 

vacuum even in the absence of moisture and other atmospheric effects, but may be accelerated 

by the low pressure within the vacuum chamber.  
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Grain boundaries: 

It has been shown that grain boundaries are locations of increased ion migration due to 

the termination of the lattice that allows for facile means of ionic movement,29 and thus an 

increase in GB density can lead to increased ion migration and bias-induced degradation. Grain 

boundaries have also shown to be locations susceptible to moisture infiltration and attack, that 

lead to higher rates of degradation.30 The GB layer is thought to consist of an amorphous region 

in which diffusion of moisture is much more rapid than within the crystalline region, mainly 

attributed to the hygroscopic methylammonium ions at the surfaces. Hence, these effects indicate 

that the processing techniques and resulting film morphology and quality are of the utmost 

importance in hybrid perovskite materials.  

 

Dimensionality impacts on stability: 

Now that we have discussed the compositional variations of perovskite within the 3-D 

tolerance range, we can also discuss dimensional effects on intrinsic stability. It has been shown 

that the stability of perovskites is linked to its dimensionality, where the lower formation energy 

(more negative) occurs for lower dimensionality (denoted n), and thus will form more 

spontaneously and be more stable. Figure 3-11 shows the relationship between n, formation 

energy, and stability, where a lower n corresponds to a more negative formation energy 

(enthalpy) and higher stability compared to higher n values, where n=∞ is a purely 3-

dimensional structure. The exact mechanism of the more negative formation energy is not 

exactly understood, but is related to the bonding nature of the head of the longer molecular chain 

with the exposed 3-D octahedral surface and the low surface energy created by the longer tail (no 
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dangling bonds, relatively unreactive and stable). However, this has implications in terms of 

performance that we will see in the following section. 

 

Figure 3-11: The relationship between dimensionality, formation energy, and stability for 2-D to 3-D 

perovskites. n represents the number of repeat crystalline units capped by longer organic molecules.31 

 

In terms of nucleation, we often see that the rate decreases through use of larger molecules for 2-

D perovskites. Referring to equation 3.13 for the critical free energy (or activation energy) of 

nucleation, we can observe its dependence on the molar volume, v. Since the molar volume is 

larger for 2-D perovskites, i.e. a higher volume per mole of substance due to longer length of the 

molecules, this would drive the volumetric free energy component (equation 3.11) down since 

the molar volume term is in the denominator. Thus, the total free energy (equation 3.10) and 

critical free energy/activation energy (equation 3.13) terms would be higher since the volumetric 

free energy term is lower, which can help explain why we see an increase in activation energy 

and decrease in nucleation rate (equation 3.15) through use of longer molecules that form 2-D 

perovskites. In addition, there are other factors that can influence this process, such as the 
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kinetics of diffusion processes for the larger organic molecules that could create a diffusion-

limited case of nucleation, where the rate of nucleation is limited by the ability of the organic 

species to move and diffuse to the necessary location. Similarly, the surface energy term could 

change based on the nature of the organic molecule used and its interaction with the precursor 

components. The nature of the grain boundaries and their associated stability is also related to the 

defect nature at GBs, where different quantities and types of defects will affect the energetics and 

rates of degradation. Thus, we can see that the processes of nucleation and growth are intimately 

connected with the resulting GB defect nature and overall perovskite material stability. 

 

3.6.3 Performance 

 Despite the appeal that high efficiencies can be reached for a solution-processed PV 

material, this solution-processed nature is also a bottleneck to reaching the performance levels of 

industry-dominating PV technologies, such as Si (~26%), GaAs (28.9%), CdTe (22.1%), etc 

(Figure 3-12).  
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Figure 3-12: NREL best research-cell efficiencies chart. Perovskite has achieved an impressive 23.3% 

record PCE, yet, still falls short of industry standard technologies.32 

 

This bottleneck is directly related to the issues mentioned for stability: GBs, defects, and 

ion migration. Like stability, these are all tied directly to the nucleation and growth processes, 

and thus performance and stability are connected and it becomes possible to solve them 

simultaneously. Performance has clearly been shown to be directly tied to the technique used to 

fabricate the films, the precursor materials and solvent used, as well as additives and other 

external factors such as temperature and environment. In terms of GBs and their influences, this 

is still under some debate. Many computational studies have shown GBs to be benign as their 

associated defects lie at shallow levels (if at all) within the band gap. Some have even claimed 

that GBs may be beneficial in extracting charge due to the potential difference across them, 

where charges are more readily swept across the GBs than within grains, thus leading to 
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enhanced mobility.33   However, several studies have depicted that the variation in PL intensity at 

the micro-to-nano scale and at GB regions and for different grains, indicating that GBs are not as 

benign as originally thought and that the efficiency depends on the crystal facet and its 

associated defects (Figure 3-13).34,35,36 In addition, charge carrier diffusion lengths have proven 

longer for single crystals (>150 µm) than in thin films (>1 µm), which further suggests that GBs 

contribute to non-radiative losses within perovskite PV cells.37,38  Based on these experimental 

findings, it is believed that the nature of defects at GB regions and different crystal facets can 

negatively impact the local micro-to-nano scale performance as compared to single crystals. 

Thus, it becomes apparent that both stability, performance, and hysteresis issues are likely all 

attributed to GBs and their associated defect natures. The focus of my work presented in this 

thesis is dedicated to identifying and solving the issues of grain boundaries and defects through 

modifying film formation processes, composition, and dimensionality.  

 

Figure 3-13: (a-b) Microscale PL mapping depicting grain and grain boundary differences in PL 

quenching for (a) a stoichiometric PVSK film and (b) a non-stoichiometric PVSK film. (c-d) SEM image 
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overlaid with PL emission. (c) SEM image of PVSK film, (d) PL image of same region of PVSK film, (e) 

overlay of PL on SEM image showing crystal facet and grain boundary dependencies on PL yield.34,36 
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Chapter 4. Guanidinium – the emergence of defect engineering 

(This chapter is based on the published work: De Marco et. al. Nano Lett. 2016, 16, 1009−1016) 

 

A major advantage of hybrid perovskite materials is the compositional flexibility within its 

crystal structure. So long as the charges of the ionic species are appropriate such that charge 

neutrality is conserved and the sizes of the components are appropriate to maintain 3D 

symmetry, in principle any ionic component may be used. The Goldschmidt Tolerance Factor is 

a valuable parameter that can predict deviation from cubic 3D symmetry in terms of size 

mismatch between constituents, which has important implications for the intrinsic stability of the 

crystal as well for defect formation energies. In this work, we pioneered the use of the 

guanidinium (GA) cation within the perovskite thin film to achieve extraordinarily enhanced 

charge carrier lifetimes by two orders of magnitude alongside increased open circuit voltages, 

which led to power conversion efficiency (PCE) improvements from 16% to over 17%. A 

reduction in defect emission energy over 30% was calculated via admittance spectroscopy, and 

confocal fluorescence intensity mapping provided further evidence of successful passivation of 

recombination/trap centers at grain boundaries. These improvements were attributed to a partial 

relaxation of lattice strain (octahedral tilting) that shifts the tolerance factor closer to unity, 

thereby increasing intrinsic crystal stability and reducing defect density. We speculate that GA 

lattice inclusion results in suppression of iodine defect formation, and GA not incorporated in the 

lattice likely lies at grain boundaries where it serves to passivate under-coordinated iodine 

species owed to its Lewis acid nature and 6-fold hydrogen bonding capability. Parts of this 

hypothesis were later confirmed separately by several groups.1,2  
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4.1 Motivation 

The Goldschmidt Tolerance Factor (t) describes the relationship between crystal species 

necessary to achieve cubic symmetry and can be derived based on the geometrical relationship 

within the cubic structure. It is a very useful and important parameter that can be used to predict 

the degree of 3D cubic symmetry achieved through the combination of species used, where 3D 

hybrid perovskites form within the range of approximately 0.85 < t < 1.1 (Figure 4-1a).3 This 

degree of symmetry has been shown to have implications in terms of intrinsic crystal stability, 

where the enthalpy of formation (and Gibbs free energy) becomes lower (more stable) with 

increasing tolerance factor towards unity (Figure 4-1b), and also in terms of defect formation 

where the greater degree of strain within the lattice can increase point defect formation and 

thereby increase likelihood of reaction with external stimuli to degrade photovoltaic performance 

(Figure 4-1c).4,5  Moreover, the A-site within the perovskite crystal lattice provides the greatest 

degree of flexibility in terms of selection because it does not contribute directly to the electronic 

structure of the material, but only indirectly by altering the strain within the lattice. Therefore, its 

selection criteria lie only in its size and valency to tune the tolerance factor without disturbing 

the Pb-I bonding nature that gives rise to the great optoelectronic properties of hybrid 

perovskites. Thus, tuning the tolerance factor by varying the A-site cation of hybrid perovskites 

demonstrates great potential to alleviate large bottlenecks on device performances and stability 

via defect mitigation. 
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Figure 4-1: (a) tolerance factor versus A-site atomic radius and resulting crystal symmetry of 

perovskite structures. (b) relationship between enthalpy of formation and tolerance factor for 

hybrid perovskites. (c) lattice strain-defect formation relationship and implications.4,5 

 

In addition, a high quality active layer of a solar cell device must efficiently generate and extract 

charge carriers to enable high performance solar devices. Initially it was thought that grain 

boundaries (GBs) did not contribute largely to recombination losses in hybrid perovskites, owed 

to the high defect tolerances observed and theoretical defect calculations that indicate relatively 

shallow and non-detrimental trap levels.6,7,8,9 However, recent experimental evidence indicates 

that recombination centers exist at GBs and pose great limitations on reaching higher efficiencies 
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and long-term stability of perovskite materials.10,11,12,13,14 To effectively mitigate non-radiative 

carrier losses requires suppression of recombination pathways within the perovskite active layer, 

namely, defects. Owed to their solution-processed nature, GBs inevitably exist for which under-

coordinated ions may exist at their lattice terminations and surfaces of perovskites that can serve 

as charge carrier trap or recombination centers.15,16 Therefore, one of the greatest knobs that can 

be used to fine-tune the optoelectronic quality of perovskite films lies within its compositional 

flexibility and the dynamic versatility of solution chemistry. 

 

4.2 State-of-the-art and challenges 

There have been several reports on attempts to vary the A-site cation of perovskites and observe 

changes in optoelectronic properties. MA and FA are the base A-site cations that make up the 

majority of the composition owed to their appropriate sizing and the high efficiencies seen 

through their use. At this time, the state-of-the-art efficiency was 20.1%, accomplished via use of 

DMSO solvent engineering in pure FA-based perovskite films.17 However, other A-site cations 

have been employed as dopants to partially replace the MA or FA and induce strain within the 

lattice, thereby altering optoelectronic properties and stability of the perovskite films to achieve 

competitive performances. The most common is (partial) substitution with Cs, which has a 

relatively smaller size than MA and FA at 181 pm. Cs has shown to improve PCE and moisture-

related stability for both MA and FA with an optimized amount of 10% Cs (mol %), which can 

be attributed to tuning of the tolerance factor.18,19 Furthermore, ethylammonium (EA) has been 

another explored cation,20 having only one extra -CH than MA with an effective radius of 274 

pm and a tolerance factor of 1.030.21 This is slightly over the 1.0 tolerance factor limit for 3-D 
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perovskite integration, and thus forms a 2-D dimensionality for pure EA use and is not expected 

to fit within the lattice to maintain 3-D symmetry. Incorporation of 0.5 vol% proved to improve 

performances, attributed these effects to suppressed crystallization of the perovskite film, as well 

as improved stability.20 However, EA has been unable to achieve efficiencies competitive with 

the state-of-the-art compositions. 

Similarly to EA, other species used in compositional engineering have shown to alter film 

formation mechanisms and thus the resulting quality of the perovskite films. For instance, 

chlorine (Cl) use has shown to modify grain growth processes and greatly enhance the surface 

coverage of perovskite films, leading to higher performances within the devices.22,23 However, Cl 

has been shown to not directly substitute for I within the MAPbI3 crystal structure. We have 

attributed its role to improving charge transport across the heterojunction interfaces, rather than 

between grains within the perovskite film.24 In addition to geometrical and film formation 

effects, these cationic species can serve to suppress or passivate defects within the perovskite 

film. Passivation of under-coordinated species was demonstrated by several groups. For 

example, Abate and co-workers used an iodopentafluorobenzene (IPFB) post-treatment to 

successfully passivate under-coordinated iodine ions, while Noel et al. used the Lewis bases, 

thiophene and pyridine, to passivate under-coordinated Pb ions and achieve carrier lifetimes of 

perovskite films up to 2 μs.15,16 Internal passivation methods have also been reported. For 

instance, Chen and collaborators demonstrated a self-induced passivation effect due to residual 

PbI2 to serve as recombination barriers25. In addition, Br and Cl were suggested to preferentially 

locate at grain boundaries where they serve to assist in suppressing recombination and 

decoupling electron−hole pairs.26,27 Thus, we can see that the selection of organic A-site cationic 

species are critical to achieving high performance perovskite solar cells in terms of tolerance, 
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film formation dynamics, and defect suppression and passivation effects. The challenge is to find 

a molecule that is able to carry out all these functionalities simultaneously. 

 

4.3 Results and discussion 

4.3.1 Investigation of A-site candidates 

MA and FA are the major A-site cations utilized in hybrid perovskite materials, while 

other molecules have mostly been implemented in small quantities as dopants. At the time, 

various organic molecules with various atomic radii had been proposed as potential A-site 

candidates that had not yet been explored.21 We surveyed several candidates based on their 

relative radius size compared to MA and revealed CH5N3+, known as guanidinium (GA), as a 

promising candidate. GA had recently been revealed via computational studies to be promising 

for use in PVSK PV cells owed to its near zero dipole moment and was hypothesized to have a 

positive influence on bias-induced ionic motion and hysteresis effects seen in perovskite solar 

cells. However, the size of GA is much larger (278 pm) than the commonly employed MA (217 

pm) or FA (253) cations, and ought to form a 2D PVSK structure as the sole A-cation.28,28 Figure 

4-2 shows a comparison of molecular structure, sizes, tolerance factors, and dipole moments of 

the MA and GA A-site organic cations. 
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Figure 4-2: Strategy using guanidinium (GA) to partially replace methylammonium (MA) in the 

perovskite lattice, thereby tuning the tolerance factor towards unity. 

 

Here we utilize MAPbI3 due to its superior efficiencies at the time of this work. We can 

see that the tolerance factor for pure GA (100% A-site substitution) is slightly over unity, which 

means that it should not form 3-D GAPbI3, but rather 2-D GA2PbI4, owed to the excessive strain 

exerted by the oversized molecule that breaks the 3-D symmetry. However, introducing GA in 

smaller quantities to partially substitute for MA is a plausible route to tune tolerance factor and 

create a more intrinsically stable structure and suppress defect formation. 

 

4.3.2 Investigation of optical, structural, and morphological effects of GA incorporation 

In order to test the effects of GA addition within the perovskite film, incremental 

amounts of GA were added to the perovskite solution processed via a two-step spin-casting 

approach, where the quantities of such addition are shown in the table of Figure 4-3a. A 

prominent reddish color change of the pre-annealed PVSK film and an increase in resulting film 
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transparency post-annealing was observed as shown in Figure 4-3a. A nominal stoichiometry 

(which is not precise due to the lack of stoichiometric control in the 2-step process) is given to 

quantify molar ratios of MA to GA in the precursor solution. It was found that around 33 mol% 

was the upper limit of GA incorporation for successful 3D PVSK formation indicated by a 

distinct yellow resultant film color. UV-Visible absorption spectroscopy was utilized to 

investigate the optical effects of GA inclusion. Figure 4-3b shows the absorption spectra for 

increasing GA content, from which an increase in GA content results in a decrease in light 

absorption. At the initial time of this study, our interpretation of the data indicated that GA did 

not directly substitute for MA. However, a subsequent deeper analyses of composition and finer 

XRD measurements shows that GA does partially substitute for MA within the crystal lattice. 

Due to the 2-step processing technique, it is hard to determine to what extent the incorporation 

was successful for each molar ratio. From the Tauc plots in the inset of Figure 4-3b, it is apparent 

that the band gap (Eg) shifts to higher energies in accordance with increased GA amounts, 

forming what appears to be mixed MAPbI3 and either 1D or 2D GA phases in the intermediate 

ranges. However, with small GA incorporation approximately <15 mol%, the absorption 

characteristics and band gap can be preserved (Figure 4-3c,d). We found an optimal amount of 

GA incorporation to be 14 mol%, corresponding to MA86GA14PbI3. Herein after I will refer to 

this optimized composition as ‘GA’ and compare it to the reference MAPbI3 composition, 

labeled ‘MA.’ The extracted band gap for MA and GA were 1.56 eV and 1.55 eV, respectively. 

It was later confirmed by follow-up studies to this work that GA can successfully be 

incorporated into the PVSK crystal lattice and shows similar results.29,30  
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Figure 4-3: (a) Molar and weight ratios ranging from pure MA (Ref) to pure GA (Film 7) used 

in this study; (b) corresponding film colors for pre-annealed (top) and post-annealed (bottom) 

GA films; (c) absorption spectra for varying GA content with a log scale plot in the inset.   

 

We further examined the XRD spectra for the MA and GA samples (Figure 4-4a). It appears 

at first observation that the spectra are unchanged in comparison to the reference MA film as 

there are no peak changes (with the exception of a small peak splitting around 43 degrees 2-theta 

that corresponds to formation of a cubic perovskite phase). We also see that the relative peak 

intensity is increased via GA incorporation, indicating that the crystallinity is enhanced through 
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use of GA. Upon closer inspection of the major tetragonal perovskite peaks, we can see that there 

is a peak shift to lower 2-theta values via GA inclusion (Figure 4-4b,c). This indicates a slight 

lattice expansion of the perovskite unit cell, which was confirmed after extracting the lattice 

parameters from the XRD spectra and calculating the volume of the tetragonal unit cell to be 

901.45 Å3 for GA and for 890.76 Å3 for MA. To confirm the incorporation of GA into the film, 

fourier transform infrared spectroscopy (FTIR) was used to probe the molecular vibrations 

within the films (Figure 4-4d). Clear signature N-H and N=C stretching modes of the 

guanidinium molecule were observed between 3300-3500 cm-1 and at 1670 cm-1, confirmed by 

several literature sources.31,32 Thus, we can confirm that the guanidinium ion successfully 

incorporates into the tetragonal MAPbI3 lattice for an optimized amount of 14 mol%. It is also to 

be noted that an increased amount of guanidinium results in disappearance of the characteristic 

(110) and (220) tetragonal perovskite peaks, and lower 2-theta peaks emerge that likely 

correspond to 1D or 2D guanidinim-based perovskites, which correlates with the absorption 

trends seen regarding band gap (see SI of publication for more information on XRD spectra). 
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Figure 4-4: (a) XRD spectra for MA and GA films depicting preserved tetragonal structure of 

MA and enhanced crystallinity with GA incorporation. (b,c) peak shifts due to GA incorporation 

indicating lattice expansion. (d) FTIR spectra confirming GA inclusion within the film. 

 

To correlate the observed XRD improvements in relative peak enhancement, Scanning 

Electron Microscopy was employed to observe the surface features of the MA and GA films. 

Here, not only the MA and GA films are shown, but a film also with more GA content (25 

mol%). Figure 4-5 depicts these films with corresponding approximate stoichiometry, portraying 

a possible slight improvement in film continuity for the GA-based films as fewer grain 

protrusions and less prominent grain boundaries are apparent. The trend can be observed via both 
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magnifications to provide evidence that this feature is present on smaller and larger scales. 

However, these improvements (if any) are small and thus non-conclusive to correspond with 

XRD intensity increases. Moreover, FWHM values are similar for MA and GA films. 

 

Figure 4-5: Scanning Electron Microscopy (SEM) of (a,d) MAPbI3, (b,e) MA86GA14PbI3, and 

(c,f) MA75GA25PbI3 films, respectively. An improved morphology is observed yielding enhanced 

grain continuity via GA inclusion, correlating to enhanced crystallinity observed. 

 

4.3.3 Photo-physical studies 

PL spectroscopy was conducted to extract information regarding the charge carrier dynamics 

within the PVSK thin film. The carrier dynamics of MAPbI3 films with and without GA were 

carefully examined through steady-state PL (SSPL) and time resolved PL (TRPL) measurements. 
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The results showed the best performance came from a small amount of GA addition (Film 1), as 

shown in Figure 4-6.  The PVSK films for this measurement were prepared on glass substrates 

with an identical sequential two-step deposition technique as used for device fabrication. GA 

shows a large rise in SSPL intensity over four times that of the pure MA devices, as shown in 

Figure 4-6a. Even more intriguingly, the TRPL spectra shows a substantial enhancement in carrier 

lifetime (τ), superseding that of the reference by an order of magnitude. The curves display bi-

exponential character and were fitted accordingly with both fast and long decay components, 

where the fast decay component represents charge carrier trapping and the long decay component 

(τ) can be described as free carrier recombination.15  Figure 4-6b portrays an enhanced τavg,GA of 

692 ns for the GA film compared to τavg,MA=5.13 ns in the case of the MA reference. This 

substantial increase in τGA over two orders of magnitude (102) shows that charge carrier 

recombination is significantly suppressed, and suggests that trapping of carriers at defect states is 

greatly mitigated through use of GA. Interestingly, it was observed that additional GA amount 

reduces the PL intensity and carrier lifetime, indicating that exceeding the optimized 14 mol% 

ratio will begin to reverse the effects. This result is in accordance with the observed structural and 

morphological trends.   



 

 131 

 

Figure 4-6: (a) Comparison of relative PL intensities and (b) TRPL spectra of pure MA and GA 

PVSK films deposited on glass substrates. GA shows an increased PL intensity over 4 times MA 

and an enhanced carrier lifetime two orders of magnitude over that of MA.   

 

To gain insight into the enhancement of PL observed via use of GA, ultraviolet 

photoelectron spectroscopy (UPS) was used to identify the Fermi level (EF) and VB edge 

positions of MA and GA thin films (Figure 4-7). In comparing the two spectra, there appears to a 

slight shift in EF, with values located at approximately 4.59 eV and 4.54 eV for MA and GA, 

respectively, indicating an n-type nature of the PVSK film. A slight change in the VB energy 

level (EVB) is observed, where the pure-MA reference device yielded an EVB value of 5.95 eV in 

comparison to a slight shift to 5.75 eV for GA. However, UPS is a very sample-sensitive 
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technique, and thus these values are within the small ranges of error between samples. Thus, this 

Fermi level shift cannot be conclusive as a major factor for the improved performances. 

 

Figure 4-7: Ultraviolet photoelectron spectroscopy of MA and GA films. (a) full spectrum, (b) 

work function extraction from secondary electron cutoff, (c) VBM extraction. 

 

4.3.4 Electronic measurements 

To observe the effects of GA on device performance, current-voltage (J-V) measurements 

were employed for varying GA content with a planar device architecture of 

ITO/TiO2/PVSK/Spiro-OMeTAD/Au. A prominent enhancement of Voc through GA 

incorporation was observed, which is well correlated with the PL results. Figure 4-8a shows the 

J-V curve of the champion GA device in comparison to the reference (MA) sample, 
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demonstrating an enhancement of Voc from 1.025 V in the standard MA-based device to 1.071 V 

for GA. Furthermore, a slight increase in fill factor (FF) from 75.00 to 75.31 for MA and GA 

was observed, respectively. The Jsc remained relatively unaffected with GA inclusion, achieving 

21.24 mA/cm2 compared to 21.27 mA/cm2 for the pure MA device. The much improved Voc and 

slightly increased FF led to an overall power conversion efficiency (PCE) gain of 17.13% 

compared to 16.35% for the MA reference device. The average device characteristics (Figure 4-

8b) show the reproducibility of the observed performance enhancement for GA addition. We can 

see that GA provides an average increase in Voc of approximately 50 mV, while preserving the 

Jsc and improving the FF from 74.87% to 76.04%. These improvements lead to a device 

performance average of 16.27% over the 15.75% PCE of its MA-based counterpart. As the GA 

content was increased over 25 mol% GA, a steady decrease in Jsc was observed. For higher molar 

ratios, a Voc between 1.07-1.09 V was consistently achievable, where the maximum reached an 

impressive 1.112 V. However, the overall efficiencies of the higher Voc devices were inferior to 

that of the champion device due a large sacrifice in the Jsc and FF. This decrease in Jsc is 

attributed to the decrease in absorption intensity resulting from further breaking of the 3-D 

symmetry and secondary phase formation due to increased GA content within the film.  
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Figure 4-8: (a) Current-voltage characteristics of the champion GA and MA reference devices. 

The optimized GA device shows an improved Voc and preserved FF and Jsc yielding an overall 

efficiency improvement, as depicted in the inset. (b) Device averages demonstrating the 

consistency of enhanced performance characteristics for GA addition. 

 

To further probe the defect characteristics of GA-incorporated MAPbI3 films, admittance 

spectroscopy was employed. Carrier recombination dynamics in solar devices are largely 

influenced by defects within the absorber material, and the TRPL results indicate that defects are 

the culprit here. Admittance spectroscopy provides a useful route to extract the energy levels of 

defects residing within semiconductor materials. In this technique, the capacitance is directly 

associated with the charging and discharging of trapped charge carriers within the material, as 

has been described in further detail in our previous report.25 Occupancy of these trap sites 

depends on the location of the Fermi level, where traps below the Fermi level are assumed filled. 

Accordingly, by varying the AC voltage frequency and the temperature of the system we can 

probe these trap levels per Fermi level shift and extract information regarding the energy 
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required to de-trap the carrier from that trap state. A comparison of defect activation energies and 

densities determined from admittance spectroscopy measurements are provided in Figure 4-9. 

The activation energy of the MA-based device was calculated as 44.89 meV, which is in 

accordance with our previous report.26 We can observe that the defect activation energy of the 

GA-based device is significantly lower (24.42 meV), indicating that recombination within the 

bulk of the film has been successfully suppressed. Furthermore, the trap densities are reduced for 

the GA device versus MA. Among the native point defects within PVSK, iodine vacancies have 

shown to be most detrimental for charge trapping and non-radiative recombination due to their 

deep lying energy levels.34 It was suggested that chlorine inclusion can alter the lattice constant 

of PVSK and prevent formation of iodide vacancies, while chlorine has also proven to not 

remain in within the lattice upon solidification. GA may similarly affect the lattice constant 

during the solidification process thereby suppressing formation of deep iodide vacancies, as 

evidenced by the reduced defect activation energy. 

 

Figure 4-9: (a) Defect emission (activation) energies and (b) trap densities for the MA and GA 

devices extracted from thermal admittance spectroscopy. The lower de-trapping activation 
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energy and densities in the GA-based devices suggests successful suppression of trap-mediated 

recombination.  

 

Suppressing the formation of defects evidenced by the data presented in this study results 

in reduced trap-mediated recombination within the films and devices, leading to the enhanced 

optoelectronic quality and photovoltaic performance seen. Strain relaxation via tolerance factor 

tuning is likely the major factor for these observed results based on the evidence here. However, 

such a drastic improvement is relatively unprecedented via solely tolerance factor tuning, and 

thus there is likely more at play here. As such, we also turn our attention to defect passivation. 

Passivation effects have also been seen with perovskite films that show similar enhancements in 

PL, Voc, and PCE. For instance, passivation of under-coordinated iodine species has been 

demonstrated via post-film formation treatments using the IPFB Lewis acid.15 As a free cation, 

GA is a Lewis acid owed to the difference in covalent character between the central C atom and 

surrounding nitrogen. The C-N partial charge difference for GA within the solid state PVSK film 

has shown greater than for the free GA cation according to recent theoretical studies.28 In fact, 

the unique hydrogen bonding capability of GA has been previously demonstrated in metal-

organic frameworks (MOFs).35 The symmetry of the amine groups allows the GA molecule to 

form six hydrogen bonds with neighboring octahedra of the MOF, which enhanced its 

mechanical stability. Hence, we expect an increased quantity of hydrogen bonding capability 

between the partial negative (δ-) iodine ions of exposed PbI64- of neighboring PVSK crystals and 

the partial positive (δ+) ammonium ions of the organic GA species. In a similar manner, Li et al. 

utilized a phosphonic acid ammonium additive to induce a strong crosslinking hydrogen bonding 

between halide anions of neighboring grains within the PVSK crystal.36 Here, both the 
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ammonium and phosphonic terminal groups can effectively bind to the surface of PVSK, 

creating a strong crosslinking between adjacent grains that provides a smother morphology and 

better cohesion that led to enhanced performance and stability. Along these lines, we propose 

that any remaining GA that does not incorporate within the crystal structure (which is probable 

given the 2-step nature of deposition) preferentially resides at grain boundaries and can form 

hydrogen bonds with under-coordinated iodine species to effectively suppress associated defect 

states and non-radiative recombination pathways. However, a crosslinking effect from GA is 

unlikely as for the phosphonic acid ammonium crosslinking agents, since the GA molecule is 

significantly smaller and could only provide such crosslinking effects if the grains are very close 

to one another. We thus conclude the major role of GA is to tune the tolerance factor to increase 

intrinsic structural stability and suppress defect formation, accompanied by a minor role in 

passivation of under-coordinated iodide species at grain boundaries and surfaces and that 

incorporation of the passivant GA molecule directly into the precursor solution, as opposed to 

merely a surface treatment, may allow for suppression of defect formation throughout the film 

growth process, which would otherwise be inaccessible through post-film formation surface 

treatments. This may explain the exceptional carrier lifetime characteristics observed. 

 

4.3.5 Impacts of GA on stability 

The stability for the GA-based device was compared to the standard MA-based reference 

device (Figure 4-10). The devices were stored under a dry oxygen environment for and only 

exposed to ambient environment during measurement. We can see that initially both devices are 

relatively stable, whereas both devices later undergo a rapid decrease of the initial PCE. 
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Interestingly, the rate of PCE drop for the pure MA-based device is much higher than that of the 

device with GA inclusion, where the GA device maintains over 80% of its initial PCE compared 

to approximately 60% for the pure MA device over the time period. We can define the T80 

lifetime (which is the current standard for measuring stability in the field) as the time at which 

the PCE decays to 80% of its initial PCE. In comparing GA to MA, we see that the GA film has 

a T80 lifetime of 286 hours compared to 198 hours for the MA device. The enhanced stability 

could be explained by the following: the strain-relaxed crystal structure of the GA composition 

reduces the defect density within the material and can possibly enhance the crystallinity of the 

GA film that can allow for enhanced cohesion of neighboring PVSK grains, thereby providing a 

smoother and more continuous grains, as evidenced by XRD spectra and SEM images. As grain 

boundaries are highly susceptible to invasion by water molecules, the less vulnerable grain 

boundaries would mitigate the effects of attacking water molecules. Since the water molecules 

will primarily attack the more susceptible grain boundary regions, the GA ions located in these 

regions can passivate defect locations and prevent these defects from reacting with the incoming 

water molecules, since dangling bonds or under-coordinated species located at defect sites are 

more reactive sites. This would preserve the crystalline PVSK domains for longer than films 

without GA present, showing a similar decay trend to that of MA but at a different rate. 
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Figure 4-10: Normalized device PCE versus time for MA and GA devices. After approximately 

180 hours both devices begin to rapidly decay in performance, however GA shows a slightly 

improved PCE retention compared to MA. 

 
4.4 Summary 

In this work the have pioneered the guanidinium ion as a route to suppress defects in 

MAPbI3 thin films, leading to extraordinarily enhanced carrier lifetimes and open circuit 

voltages. Charge carrier dynamics were explored using time-resolved photoluminescence and 

photovoltage decay techniques, demonstrating an unprecedented improvement in carrier lifetime 

for GA-based films one two orders of magnitude larger than the pure MA films that led to an 

average open circuit voltage increase of 50 mV. A reduced defect activation energy measured by 

admittance spectroscopy indicates successful suppression and/or passivation of non-radiative 

recombination/trap centers within the MAPbI3 film. We initially proposed that the large 
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hydrogen bonding capability of the GA molecule allowed for effective passivation of under-

coordinated iodine species located at grain boundaries and surfaces and improved film quality by 

modifying the growth dynamics and associated defect formation energies and levels. We later re-

analyzed the role of GA and found its effects to be attributed to a strain relaxation effect, using 

the tolerance factor as a guideline to predict crystal stability. Due to the degree of carrier lifetime 

increase observed through TRPL, we further speculate that GA could serve to passivate defect 

sites at grain boundaries for those species that are inevitably unincorporated in the bulk lattice. 

After this work it was discovered that the organic A-site cation plays a critical role in carrier 

lifetimes observed owed to its polar nature and ability to reorient it in response to a photo-

generated carriers on the picosecond timescale, forming a large polaron that can enable charge 

carrier screening effects.37,38,39 For GA in particular, it was shown through NMR spectroscopy 

that GA reorients an order of magnitude faster than MA and achieves 102 increase in carrier 

lifetime, which correlates to the results of our work.29 Thus, there may be multiple factors that 

give rise to the extraordinary carrier lifetimes observed via use of guanidinium in hybrid 

perovskites. Further work should be done to decouple these mechanisms and truly understand 

how guanidinium can be utilized to construct high optoelectronic quality and stable perovskite 

materials and devices. This study represented the beginning of future studies relating to control 

of film formation, grain boundaries and associated defects, and passivation. 

 



 

 141 

4.5 Experimental 

4.5.1 Perovskite Solar Cell Fabrication:  

Methylammonium iodide (CH3NH3I, MAI) and methylammonium chloride (CH3NH3Cl, MACl) 

were synthesized according to methods described elsewhere. Guanidinium iodide (CH6N3I, GAI) 

and guanidine hydrochloride (CH6N3Cl, GACl) were purchased from Dyesol and Sigma Aldrich, 

respectively. Titanium dioxide (TiO2) was synthesized via a non-hydrolytic sol-gel approach. 

Glass and ITO substrates were prepared by sequential washing with acetone, detergent, 

deionized water, and 2-propanol. A solution containing TiO2 nanoparticles and a titanium 

diisopropoxide bis(acetylacetonate) (Ti-AcAc) stabilizing agent was spin-coated onto the 

substrate at 3000 RPM for 30 seconds and annealed in ambient environment at 150 ºC for 30 

minutes. After cooling, a solution of PbI2 (Sigma) in dimethylformamide (DMF) at a 

concentration of 450 mg-mL-1 was spin-coated onto the ITO/TiO2 substrate at 3000 RPM for 30 

seconds and annealed at 70 ºC for 15 minutes. A solution consisting a mixture of 50 mg/mL MAI 

and appropriate quantities of the additive (e.g. MACl, GAI, GACl, etc) dissolved in 2-propanol 

was spin-coated onto the PbI2 layer and subsequently annealed at 135 ºC for 15 min in ambient 

air. After allowing the films to cool, a 90 mg-mL-1 solution of spiro-OMeTAD in chlorobenzene 

with the addition of 45 µL Li-TFSI/acetonitrile (170 mg-mL-1) and 10uL tBP was spin-coated on 

top of the perovskite film at 3000 rpm RPM for 30 seconds. Lastly, a 100 nm layer of gold was 

thermally evaporated as the counter electrode with an active area of 0.108 cm2.  

 



 

 142 

4.5.2 Solar Cell and Thin Film Characterization 

Current-Density (J-V) Measurements: 

J-V curves were measured using a Keithley 2401 source unit measured under standard AM1.5G 

illumination (100 mW/cm2) provided by an Oriel Sol3A solar simulator. The light intensity was 

calibrated using a KG-5 filter diode as a reference cell. Reverse (1.2 Và-0.1 V) or forward (-0.1 

Và1.2 V) scans with a step size of 20 mV and delay time of 0.2s were used to obtain the J-V 

curves for an active area of 0.10 cm2. Differential light intensity response measurements utilized 

neutral density filters and aperture sizes to tune the light intensity, and a Si-diode was used to 

calibrate the light intensity. 

 

X-Ray Diffraction Analysis: 

θ-2θ scans were obtained using a Bruker D8 Discover Powder X-Ray Diffractometer equipped 

with a push plug gobel mirror and a monochromatic CuKα ( λ = 1.5405 Å) radiation source.  

 

Photoluminescence (PL) and Time Resolved Photoluminescence (TRPL) Measurements: 

A Horiba Jobin Yvon system with a red light source with an excitation at 640 nm was used to 

conduct PL measurements. TRPL spectra was obtained using a Picoharp 300 with time-

correlated single-photon counting capabilities. A picosecond diode laser provided excitation at a 

wavelength of 640 nm with a repetition frequency of 1 MHz (PDL 800B). 
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Scanning Electron Microscopy (SEM): 

An emission Nova 230 NanoSEM was used to obtain SEM images with an electron beam 

acceleration in the range of 500V to 30 kV. 

 

Admittance Spectroscopy: 

A Hewlett-Packard 4284A LCR Meter was used to conduct capacitance-voltage and capacitance-

frequency measurements. A Janis cryogenic probe station with an attached Lakeshore 331 

temperature controller with a thermocouple placed in contact with the sample were used as the 

electrical contacts and temperature control for this measurement.  
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Chapter 5. Lewis acid-base adduct method to control crystal growth 

(This chapter is based on the published work: Chem. 3, 2017, 290-302)  

 

Results seen through use of guanidinium-based precursors opened the door to numerous 

scientific questions to be answered and the possibility of further enhancement of perovskite thin 

film optoelectronic quality. In this light, we sought to explore the underlying solution and solid-

state chemistry during casting and crystallization processes to better understand the mechanisms 

by which thin film growth occurs and how enable further control.  This work systematically 

explored the properties of Lewis-bases by substituting single functional groups compared to 

conventional precursor solvents to further understand the connection between Lewis-base adduct 

formation and resulting perovskite thin film optoelectronic quality. Our results revealed the 

Lewis-base additive urea to most effectively improve optoelectronic quality of perovskite thin 

films, achieving a significant enhancement of macroscopic photoluminescence charge carrier 

lifetime from 200 ns of the base perovskite film to 752 ns with 4 mol % urea addition and an 

improvement in device performance from 17.34% to 18.55%.1 These effects were attributed to 

an effective mitigation of trap-mediated non-radiative recombination resulting from an observed 

retardation of crystal growth kinetics, attributed to the strong Lewis acid-base adduct formed 

between urea and perovskite precursors. A stronger interaction delays the crystallization process, 

thereby increasing the quality and sizes of individual crystal grains, evidenced by a reduced bulk 

defect density and increased photoluminescence properties. The non-volatile urea Lewis base 

was found to precipitate at grain boundaries and serve as a passivating agent for grain boundary 

defects, in a similar manner to guanidinium.  
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5.1 Motivation 

Although macroscopic properties of perovskite thin films have proven superior to many other 

photovoltaic materials, it was shown that heterogeneity at the microscale indeed exists and 

contributes to loss in optoelectronic quality.2,3  Initially, it was thought that grain boundaries 

were relatively benign, owed to the high performances achieved for hybrid perovskites, where 

the origin of such was said to be due to defects (structural disorders) at both grain boundaries and 

interiors that induce shallow trap states where charge carriers can localize and undergo non-

radiative recombination processes.1,2,4,5 Moreover, the defect density of grain interiors has been 

shown to be dependent on crystal facet orientation, resulting in facet-dependent photovoltaic 

performance within a single grain.3 Therefore, the ability to control solution-based crystallization 

is crucial in addressing the performance and stability implications imposed by grain boundaries, 

facets, and associated defects during growth processes. In addressing these challenges of 

microscopic heterogeneity in perovskite thin films, improved optoelectronic quality and film 

stability can be realized.  

 

5.2 State-of-the-art and challenges 

There have been several methods to control solution chemistry and crystal growth 

processes of hybrid perovskite thin films, where the majority of this control comes from the use 

of precursor composition, solvent, and additive choice. Early on, it was shown by Liang et al. 

that the crystallization rate can be controlled through introduction of a 1,8-diiodooctane 

additive.6 This Lewis base was said to temporarily chelate with Pb2+ (a Lewis acid), thereby 
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increasing the internal energy and entropy of the system to promote homogeneous nucleation and 

modify crystallization kinetics. Similarly, Wei and company utilized the precursor additive 1-

chloronphthalene to regulate the crystallization kinetics.7 More recently, Li and company have 

shown that use of acetonitrile as a solvent additive instead of DMSO can achieve similar effects 

using a two-step deposition technique, where the PbI2 scaffold layer grown using acetonitrile as a 

solvent additive achieved higher crystallinity and resulted in higher quality perovskite thin films 

upon conversion (with MAI) due to slower reaction kinetics.8 These results highlight that the 

choice of solvent and additive for each specific perovskite composition is critical in order to 

improve film formation and crystallization processes. In fact, even using a slightly off-

stoichiometry between the perovskite precursors, such as excess methylammonium 

iodide/chloride (MAI/MACl), or excess lead iodide (PbI2), have been reported to show 

improvements in film quality and resulting optoelectronic performance of perovskite films.9,10 

However, the underlying mechanisms remain elusive must be better understood in order to 

provide guidelines to pursue growth of higher quality perovskite thin films.  

More recently, Choi group has shed light onto a simple selection process of chemical 

additives based on the Mayer Bond Order (MBO), which is related to the strongest bond 

unsaturation. Their computational studies revealed that the chemical tetrahydrothiophene 1-oxide 

(THTO) was a strong candidate to control crystallization kinetics.11 The simulation results 

showed THTO to have a strong interaction with Pb2+, which they claimed to significantly delay 

crystallization and suppress formation of intermediate structures and homogeneous nucleation. 

As a result, heterogeneous nucleation at the interface was promoted and a slow growth rate along 

a preferred (100) plane occurred. Moreover, they claimed (via DFT studies) that this could be 

achieved because THTO could alter the surface energy of specific perovskite crystal orientations. 
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However, no concrete mechanism was unveiled nor guidelines for future work to build upon 

with chemical additives towards improving device performance.  

The solubility of perovskites is also an important factor to consider in terms of precursor 

chemistry. Hybrid perovskites demonstrate the unique property of retrograde (or inverse 

temperature) solubility, where the solubility typically decreases with increasing temperature as 

opposed to most salts where solubility increases with increases temperature, thus requiring 

undercooling to reach supersaturation. The solubility of each different perovskite precursor 

species is dependent on the particular solvent used. Interestingly, this only occurs when the 

precursor species are all mixed into one solution, whereas the individual perovskite precursors 

(e.g. MAX and PbX2) do not display this phenomenon (precipitation upon heating) and appear to 

follow the conventional solubility trend. This implies that the phenomenon is linked to the 

perovskite structure, and hints to the likelihood that intermediate complexes exist within the 

precursor solution. A proposed mechanism for this phenomenon has been provided by 

Saidaminov et al.12  

Along these lines, further insight into the precursor chemistry leading up to nucleation 

has recently been shown by Nayak et al. through single crystal studies.13 It was shown that 

perovskite precursors solutions contain colloidal Pb-based species and are thus not real solutions.  

These colloids are believed to be the seeds that initiate nucleation and subsequent growth of the 

perovskite film from solution, which can be influenced by acidic species that can arise from 

decomposed solvents. DMF can decompose into dimethylamine and formic acid, which they 

prove to be an important component to nucleation with the colloidal Pb species by adding excess 

MAI precursor and formic acid. The important take away from this study is that the choice of 
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solvent or chemical additive and its potential acidity influences on the solution are important 

considerations in the selection process that require further study. 

Furthermore, Niu et al. have demonstrated that nucleation is dependent on perovskite 

composition for thin films by showing that cesium-based perovskites precipitate and serve as 

heterogeneous nucleation sites that affect the overall growth dynamics and orientation.14 This 

highlights the importance in considering the specific solubility of the precursor components in a 

given solvent. This is also the case for use of chloride-based perovskite precursors, which have 

shown improved film formation and resulting optoelectronic properties. Tidhar and company 

showed that poor solubility of PbCl2 results in facile formation of precipitates that serve as 

nucleation sites, or “seeds,” that control the growth orientation and rate. Huang group showed 

that depositing multiple layers of methylammonium chloride onto the as-fabricated 

methylammonium iodide perovskite film (cycling) promotes a (220) preferential growth. Their 

studies reveal that Cl causes intermediate phase formation that slows crystallization kinetics of 

MAPbI3. Quick formation of MAPbI3 is expected to form randomly oriented grains because of 

the fast kinetics and thus random nature of the nucleation process. Slowed crystallization, on the 

other hand, allows for the nuclei to adjust orientation for more controlled growth along 

orientations that minimize the total Gibbs free energy.15  

Single crystal and shape evolution studies are important for observing and understanding 

growth mechanisms of materials under controlled environments. Hou et al. have demonstrated 

controlled growth orientations in oxide-based perovskites using additives in hydrothermal 

methods. In one study, urea was used as the additive, which decomposed to ammonium within 

the hydrothermal environment. The concentration of ammonium was found to control the shape 

evolution of the single crystals by preferentially binding to the (110) facets, thus slowing the 
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growth rate. While this is for oxide-based perovskites and using hydrothermal methods, the 

principles are relevant for this work.16,17 In terms of growth along preferred orientations in 

hybrid perovskites, Zhu and co-workers showed preferential growth of MAPbI3 by mixing the 

perovskite precursors in a polar solvent (acetonitrile) and “crashing” with a much less polar 

solvent (toluene). This technique effectively induced growth along a preferred orientation 

(acetonitrile), followed by subsequent precipitation (toluene).18 Similar effects were seen using 

large organic cations such as n-octylammonium and 1,3,-pentanediammonium. With optimal 

additive/precursor concentrations and rate of addition allowed for control of aspect ratios from 

bulk nanowires to nanosheets or nanoplates. This work highlights that both the rate of 

dissolution, concentration of precursors, and use of additives can be used to control the growth 

kinetics and resulting structure/orientation of perovskite crystals.  

Passivation is also a critical component to achieving high performance photovoltaic 

devices. In fact, it was not until the introduction of the amorphous hydrogenated silicon layer to 

passivate the crystalline silicon layer that silicon-based photovoltaic cells were able to achieve 

the higher efficiencies seen today. We have seen that as a result of the solution-processed nature 

of perovskite, under-coordinated ions may exist at grain boundaries and surfaces, as well as 

within the bulk, that can alter the defect properties within the thin film and thus trapping/non-

radiative recombination rates within the material. Thus, it is clear from these works that the 

solution chemistry is important for controlling nucleation and growth processes, suppressing 

formation of defects and grain boundaries, and enabling passivation effects within perovskite 

thin films to improve optoelectronic film quality. The key challenge is to find the right balance 

of precursors, solvents, and processing considerations that minimize trap density and provide the 

most control over film formation processes.  



 

 154 

5.3 Methodology 

There are three important steps that ought to be considered during the film formation 

process in terms of identifying the best Lewis base candidates: precursor chemistry, nucleation, 

and growth. In addition, a fourth consideration for the solid-state film is passivation effects. In 

this section I will discuss the important factors in these steps as they pertain to selection criteria. 

  

5.3.1 Precursor chemistry 

These parameters are both related to the electron donating/withdrawing strengths of our 

atoms and/or molecules in solution. Those molecules with a high degree of polarity will have a 

stronger solvation with other polar molecules and atoms surrounding it. This will change the 

chemistry within the solution and inevitably affect the assembly, kinetics, and thermodynamics 

of nucleation. The Pb2+ precursor species of perovskites acts as a Lewis acid and interact with 

the partial negative side (with the lone pair of electrons) of the Lewis base solvent or additive, 

such as the S=O on the common solvents dimethyl formamide (DMF) and dimethyl sulfoxide 

(DMSO). The strength of this interaction can be changed with variations to the chemical 

properties of the solvent/additive molecule that interacts with the Pb2+, thus changing the 

solvation energy and solubility of the components, which will ultimately affect the precursor 

chemistries that dictate the subsequent nucleation process.  
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5.3.2 Nucleation 

It is well known that Pb(II) halides are Lewis acids because they accept iodide anions to form 

iodoplumbate anions such as [Pb3I10]4− and [Pb5I16]6−. For this reason, the chemical additives 

chosen are Lewis bases (electron donators) that can coordinate with Pb2+ halides in solution 

(Lewis acids) to form Lewis acid-base adducts (intermediate phases) through dative bonding, 

such as the comment solvent and additive used DMF and DMSO.  DMSO forms a stronger 

adduct than DMF with Pb species, and as a result changes the activation energy barrier for 

nucleation. In this way, the growth rate can be slowed down. This is why DMSO has been 

largely used to achieve higher film coverage and reproducibility as it slows the growth process. 

The adduct is isolated from the main solvent (DMF) through dripping of an anti-solvent, such as 

ether, chlorobenzene, toluene, and other non-polar solvents. Since DMF forms a weaker adduct 

with Pb complexes than DMSO, the DMF is more readily forced out of the film and volatize due 

to the anti-solvent dripping, leaving behind the DMSO-Pb-halide adducts. Hence, by introducing 

species that form even stronger adducts than DMSO with Pb-halides, we can further control and 

optimize nucleation and growth dynamics by suppressing homogeneous nucleation and 

promoting heterogeneous nucleation. This can be understood by considering the activation 

energy barrier for nucleation, as provided below in Section 3.4.1. As we have seen, there are two 

contributions from (i) a reduction in total free energy due to bulk formation (bond formation) and 

(ii) a rise in total free energy due to the creation of a surface (broken bonds). The surface free 

energy increases with r2, while the volume (bulk) free energy decreases with r3. Thus, these two 

competing thermodynamic factors dictate the barrier for nucleation (activation energy) based on 

the critical point (radius or energy) in which the reduction in bulk free energy can overcome the 

interfacial (surface) free energy addition. This effect can be modulated through the adduct 
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method. By forming an adduct, the energy barrier for nucleation can be increased because the 

Lewis base additive forms a stronger adduct with the Pb-based Lewis acid than the solvent 

(DMF) typically does. This means that there is an energy barrier associated with dissociating the 

Lewis base additive from the Pb2+ before a perovskite nucleus can initiate. In addition, the 

supersaturation component of the bulk free energy term may change based on the interaction of 

the Lewis base and perovskite precursors, where Thus, we can provide a degree of control over 

the nucleation kinetics and thermodynamics. 

 

5.3.3 Growth: 

Chemical additives are an effective means of controlling growth rates and orientations during 

crystal growth. In the tetragonal perovskite system, there are many different crystallographic 

orientations as compared to cubic structures, however, the (110) and (001) planes are expected to 

be the most stable for the tetragonal perovskite structure. The surface energy is an important 

parameter in crystal growth that can be understood by examining the change in Gibbs free 

energy, defined as:  

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝛾𝑑𝐴 

𝛾 = ´
𝜕𝐺
𝜕𝐴¶�,è

 

where 𝛾 is the surface energy, defined as the change in Gibbs free energy per change in surface 

area (A) under constant temperature and pressure conditions. The driving force for equilibrium is 

to reduce the Gibbs free energy, and thus if we assume constant pressure and temperature 
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conditions, this is directly related to surface energy, which in turn is related to the number of 

“broken bonds” at the free surface. Of course, the relative free energies must be associated with 

the individual free energy associated with the bond broken of a specific atom. Those surfaces 

with the largest free energy associated with them will be the most unstable. As a result, the 

Lewis base additives will be more prone to interact more with a specific surface orientation 

depending on the exposed species at that orientation, for instance, those with more exposed Pb2+ 

species, thereby effectively lowering the surface energy of that orientation. These “capping” 

molecules can ultimately stunt growth along those unstable surfaces due to its adsorption to those 

surfaces. This potentially creates a situation in which growth must occur on a flat surface either 

by a ledge, spiral, or surface nucleation growth mechanism along the more stable orientations. 

Ledge growth mechanisms are much slower in growth rate as they are interface-controlled rather 

than diffusion controlled as in the case of higher energy surfaces. If a single atom/molecule 

leaves the liquid and attaches itself to the flat solid surface, the number of broken bonds 

associated with the interface will increase, thus increasing the surface energy. This increase in 

surface energy will be highly unstable and the atom/molecule will be more prone to de-attach 

back into the liquid solution. This means that the rate-limiting step occurs at the interface rather 

than being limited by diffusion of the proper atoms/molecules to the interface. Thus, we can 

effectively control both the growth kinetics and orientation through use of Lewis base additives 

in this way.  
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5.4.4 Passivation (solid-state effects) 

Lewis bases have the capability to act as passivating agents within the solid-state 

perovskite thin film after film formation. It has been shown that under-coordinated species and 

anti-site defects such as PbI3- (iodine occupies Pb site and forms a trimer with neighboring iodine 

atoms) commonly exist at free surfaces and grain boundaries, that can act as trap/recombination 

centers for charge carriers. An under-coordinated Pb at the free surface will mimic a Lewis acid, 

whereas under-coordinated I species a Lewis base at these surfaces. If the Lewis base additives 

do not incorporate into the perovskite crystal structure, they can interact with these under-

coordinated Lewis acid species, thus passivating the trap center. It is believed that these Lewis 

base additives may preferentially reside and grain boundaries, assuming they will not readily 

incorporate into the perovskite crystal structure, which is likely the case for larger passivating 

agents but may not be for smaller ones. However, this mechanism is not clearly defined. 

With a better understanding of the underlying interactions of perovskite precursors, 

solvents, and chemical additives for the different perovskite systems, processing techniques must 

be carefully tuned to construct perovskite films with high optoelectronic quality and stability. An 

important parameter for passivation considerations that must be taken into account is the Lewis 

base additive volatility. Those with higher volatility will be less likely to remain within the solid 

state film after film formation, and thus may be less effective as passivating agents. Thus, the 

volatility, which is related to the vapor pressure of the chemical, is an important component to 

this study that has not been largely identified nor systematically studied. An optimal balance 

must be established between interaction strength of the chemical additives with perovskite 

precursors and solvents, the solubility of precursors in the solution, and the processing dynamics 
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(volatility) of the selected additives in order to control crystallization processes to enhance film 

optoelectronic quality and stability. 

 

5.3.5 Selection Criteria 

Based on these considerations outlined in the prior section, the selection criteria for 

Lewis base candidates will be based on two properties: dipole moment, and volatility. Both of 

these factors will dictate the strength of the interactions between the perovskite precursors and 

Lewis base additives, which will in turn affect nucleation, growth, and passivation effects.  

The selection process for Lewis base additives will consist of systematic changes to the 

molecular structure of the reference DMSO additive. These molecules, shown in Figure 5-1 have 

incremental changes to the unsaturated bonds and functional groups. The unsaturated bonds 

change from C=O to C=S, while the functional groups change from methyl (CH3) to amine 

(NH2) one at a time. Each of these parameters will affect the overall dipole moment of the 

molecule and its corresponding interaction strength with Pb2+, which is directly correlated to the 

electronegativity of the elements involved. Amine groups are more electron withdrawing due to 

the nitrogen atom, and similarly it is expected that C=O will be more partial negative due to the 

strong electron withdrawing nature of the more electronegative oxygen atom compared to sulfur. 

Thus, molecules with C=O ought to have a stronger interaction with the Pb2+, and it is expected 

that the top row will have a higher interaction strength with the precursors than the bottom row 

(thio-sulfur-based). Since these molecules are added in small quantities and meant to interact 

directly with the Pb2+ (and MA+) precursors, the solubility is not the major factor explored, 

though it has an important effect in nucleation dynamics. Thus, the dielectric constant of the 
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additive is not strongly considered as the additive amounts introduced into the system are 

relatively small compared to the solvent and solute amounts. 

 

Figure 5-1: Selection criteria and candidates for Lewis base additives. 

 

5.4 Results and discussion 

5.4.1 Lewis base candidate selection 

Acetamide, urea, and thiourea were first analyzed to elucidate the best Lewis base 

candidate. Thin films were fabricated using the adduct approach where different molar ratios of 

each additive respective to the amount of Pb2+ in the system were used to form MAI•PbI2•Lewis 

base adduct species. The films were subsequently analyzed using SEM and XRD to observe 



 

 161 

effects on crystal growth modulation. A molar ratio of 10 mol% of the additive was used to 

observe impacts via SEM and XRD (Figure 5-2). Acetone (and also thioacetone) is excluded 

from this data set as its highly volatile nature results in near identical results to the reference 

(DMF), and it thus has very minimal impact on modulating crystal growth since it evaporates 

very quickly before the major solvent begins to dry. From the SEM images in Figure 5-2a, there 

is a clear trend following our hypothesis (scale bar for all images is 1µm). The grain size is 

greatly enhanced in the order of DMFà acetamide à urea à thiourea. This is accompanied by 

an increase in intensity of the XRD spectra that represents the number of planes of atoms 

contributing to a particular orientation within the crystal, which correlates to the larger grains 

oriented along the (110) and (220) directions (Figure 5-2b). Here we can also note the change in 

intensity scale (y-axis) for thiourea, where the maximum of the scale increases from 25k to 1M 

counts. This clearly corresponds to the greatly increased grain size seen for thiourea. However, 

we also note that there seem to be some secondary phase formation for the thiourea films seen as 

white inclusions. The thioacetamide XRD spectra is provided in Figure 5-2d, which shows a 

slight enhancement of XRD intensity compared to the reference, but not nearly as significantly 

as thiourea. This suggests that it is not only the thio- group that leads to stronger precursor-

additive interactions, but perhaps equally important are the amine functional groups in 

determining adduct strength.  
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Figure 5-2: (a) Top view SEM images of MAPbI3 with Lewis base additives, (b) XRD spectra 

of films with additives, (c) TGA of additive candidates, (d) XRD spectra of thiourea (with 

separate reference than those of (b). 

 

Figure 5-2c depicts the TGA analysis for the additives of interest. We observe the same trend, 

where DMSO is the first to evaporate around 50˚C, acetamide next around 90˚C, thioacetamide 

around 110˚C, urea <150˚C, and thiourea <180˚C. This follows the observed trend of XRD 
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spectra and grain sizes, and also the volatility and dipole moment trends shown in Figure 5-1, 

with the exception of thioacetamide, which may be a result of its higher volatility. 

 

5.4.2 Device Performance 

To directly observe the effects of these Lewis base candidates on optoelectronic quality 

and PV device performance, perovskite films were formed using the 1-step adduct method to 

measure PL characteristics and in a p-i-n device configuration of ITO/SnOx/MAPbI3/Spiro/Ag to 

measure device characteristics. Urea was first elucidated as the best Lewis base candidate to 

improve performances reproducibly. The photovoltaic performance of MAPbI3 perovskite solar 

cells was evaluated with different amounts of added urea, as detailed in Figure 5-3. The amount 

of urea varied from 0 mol % (without urea) to 6 mol % (0.06 mmol) with respect to MAI and 

PbI2 (1 mmol). As the urea amount increased from 0 (reference) to 4 mol %, the open-circuit 

voltage (VOC) and fill factor (FF) were systematically enhanced. With the addition of 4 mol % 

urea, the average VOC and FF were enhanced from 1.049 ± 0.016 to 1.089 ± 0.028 V (3.81% 

enhancement) and 0.72 ± 0.03 to 0.75 ± 0.03 (4.1% enhancement), respectively. This resulted in 

an improvement in the average PCE from 16.10% ± 0.70% to 17.75% ± 0.71% (10% 

enhancement). The current density and voltage (J-V) curves of the best-performing devices are 

shown in Figure 5-3b. A PCE of 18.55% was achieved with the addition of 4 mol % urea and 

17.34% was achievable without urea. The steady-state PCEs of the best-performing devices were 

16.80% and 18.25% without and with urea, respectively. The enhanced PCE was partially 

ascribed to a slight enhancement in JSC, which was confirmed from the external quantum 

efficiency (EQE) spectra in Figure 5-3c. The integrated JSC was calculated to be 20.91 mA/cm2 
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for the reference and 21.26 mA/cm2 with 4 mol % urea, which is well matched with the JSC 

measured from the J-V curve.  

 

Figure 5-3: (A) Photovoltaic parameters of MAPbI3 perovskite solar cells as a function of the 

amount of urea: short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), 

and power conversion efficiency (PCE). (B and C) Current density-voltage (J-V) curves (B) and 

external quantum efficiency (EQE) spectra (C) of the best-performing device with and without 4 

mol % urea.  

 

5.4.3 Crystallization and Morphology 

Next, we sought to investigate the crystallization dynamics of urea responsible for this 

increase in performance. The adduct film formed without urea (MAI•PbI2•DMSO) was 
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immediately converted to MAPbI3 upon heating at 65˚C, whereas a much slower conversion with 

an increased temperature of 100˚C was observed with addition of urea (Figure 5-4a,b). This 

effect is most likely a result of the change in intermolecular interactions upon addition of urea. 

We confirmed the interaction of urea with MAI, PbI2, and DMSO by measuring the FTIR spectra 

of the synthesized adduct powders in Figures 5-4c,d. The characteristic S=O stretch peak of 

DMSO in the MAI•PbI2•DMSO adduct was shifted from 1,018 to 1,010 cm-1 upon addition of 

urea. Also, the C=O stretch peak in urea was shifted from 1,676 to 1,651 cm-1, which is most 

likely caused by the interaction between urea and the MAI•PbI2•DMSO adduct to form a 

MAI•PbI2•DMSO•urea adduct. Considering the negligible shift of the C=O stretch peak of urea 

in MAI•PbI2•urea, the interaction of urea with MAI•PbI2 seems to be weak in the absence of 

DMSO, which probably allows the formation of MAPbI3 at a lower temperature than the 

sublimation temperature of urea.  
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Figure 5-4: (A) Schematics showing the formation of the perovskite layer with and without 

urea. (B) The films without (upper) and with 1 mmol of urea (lower) as a function of heat-

treatment temperature and time. (C) Fourier transform infrared (FTIR) spectra of 

MAI,PbI2,DMSO adduct, urea, MAI,PbI2,DMSO,urea, and MAI,PbI2,urea adduct powder. (D) 

The magnified FTIR spectra showing the fingerprint region for C=O and S=O stretch.  

 

Per the Arrhenius equation, the nucleation rate is inversely exponentially proportional to 

the activation energy (Ea) at constant temperature. Slower crystallization with the addition of 

urea is thus thought to originate from the strengthened interaction between perovskite precursors 

and Lewis bases (DMSO and urea), which increases the Ea. The stronger interaction is probably 

due to higher dipole moment of urea (4.56 D) than of DMSO (3.96 D) (Figure 5-1) and the 
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resulting enhanced Lewis acid-base interaction. The slower crystallization rate implies a higher 

critical Gibbs free energy for nucleation (∆𝐺¸), which decreases the number of nuclei formed and 

growth proceeds from a fewer number of nuclei. Therefore, the growth of larger grains is 

expected from the addition of urea. Furthermore, it has been reported that Lewis bases can 

interact with grain boundaries of perovskite films to passivate the defect sites. We presume that 

urea likely precipitates at grain boundaries and can interact with these defects after completion of 

crystal growth. However, too much residual photo-inactive urea can degrade photovoltaic 

performance. Thus, our motivation was to investigate the effects of the amount of urea added on 

photovoltaic performance.  

The FTIR spectra were also measured (Figure 5-5A) to investigate whether urea 

remained in the film after film formation. A magnified region containing the finger print region 

for the C=O stretch, N–H bend, and C–N stretch is shown in Figure 5-5B. Asymmetric peaks 

around 1,647 and 1,577 cm-1 (red arrows in Figure 5-5B) in the bare MAPbI3 film are reported to 

originate from N–H bending. With the addition of 4 mol % urea to the perovskite precursor 

solution, the peak at 1,647 cm-1 shifted to 1,665 cm-1 (black arrow), which can be attributed to 

overlap with the C=O stretching peak of urea at 1,676 cm-1, confirming the presence of urea. 

Furthermore, the XRD patterns in Figure 5-5C show no additional peaks or peak shifts upon 

addition of 4 mol % urea in comparison with the bare MAPbI3 film, implying that the added urea 

does not react with precursors to produce byproducts and exists in an amorphous form. The (110) 

oriented peaks of MAPbI3 were enhanced with addition of urea, whereas the intensities of the 

other peaks were essentially unchanged (intensity(110)/intensity(222) increased from 1.25 to 1.34). 

The preferred orientation induced by urea was further confirmed by XRD patterns with a higher 

amount of urea, in which the (110) orientation peaks were further enhanced. Furthermore, the 
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full-width half-maximum (FWHM) values of the peaks originating from perovskite were reduced 

(e.g., from 0.133 to 0.109 for the (110) peak), confirming that added urea interacts with 

perovskite precursors during crystal growth to enhance crystallinity and induce the preferred 

orientation.  

 

Figure 5-5: (A) Fourier transform infrared (FTIR) spectra of urea (powder), MAPbI3 (film), and 

MAPbI3 with 4 mol% urea (film). (B) The fingerprint region for C=O stretch (black arrows), N–

H bend (red arrows), and C–N stretch (blue arrows). (C) X-ray diffraction patterns of urea 

(powder) and perovskite film without and with 4 mol % urea. Peaks indexed with * and # 

originate from PbI2 and ITO, respectively. 
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The effect of added urea on the surface and cross-sectional morphology of the MAPbI3 

layer is investigated in Figure 5-6. As seen in the AFM images in Figures 5-6A,B, the 

constitutive grains were significantly enlarged from about 200 nm to larger than 1 mm, which 

correlates with enhanced FWHM in the XRD measurements in Figure 5-5C. The cross-sectional 

scanning electron microscopic (SEM) images of the perovskite solar cell based on MAPbI3 with 

and without 4 mol % urea are shown in Figures 5-6C,D, respectively. The thickness of the 

MAPbI3 layer was around 580 nm regardless of the addition of urea; the perovskite film with 

added urea displayed single interfaces of large grains along the direction perpendicular to the 

substrate, whereas the bare MAPbI3 film showed multiple interfaces between several smaller 

grains. The enlarged grains are also confirmed in the top-view SEM images in Figure 5-6E,F, in 

which nano-sized bumps can be observed on the surface of MAPbI3 grains with the addition of 4 

mol % urea. We speculate that the nano-sized bumps are related to the added urea. Because urea 

does not integrate as part of the perovskite lattice, it is possible that it can precipitate at the grain 

boundary of MAPbI3 and the surface of the film after completion of crystal growth, as has been 

previously observed for excess CH3NH3I and CH3NH3Br. It is expected that the precipitated urea 

interacts with the grain boundaries of perovskite to change the optoelectronic properties of 

perovskite film.  
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Figure 5-6: Atomic force microscopy (AFM) images of (A) bare MAPbI3 and (B) MAPbI3 with 

4 mol % urea on SnO2-coated ITO substrates. Cross-sectional scanning electron microscopy 

(SEM) images of perovskite solar cells based on (C) bare MAPbI3 and (D) MAPbI3 with 4 

mol % urea.  

 

5.4.4 Macroscopic Photoluminescence and the Role of Remnant Urea 

In Figure 5-7, UV-visible and PL of the MAPbI3 perovskite films were measured to 

evaluate the effect of added urea on the absorption and charge-carrier properties of the film. The 
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absorption of the MAPbI3 film in the wavelength region from 600 to 780 nm was slightly 

enhanced with the addition of urea, which can be correlated with the enhanced EQE in the same 

wavelength region. The enhancement of the absorption might result from the larger crystal size, 

which was found to enhance light-harvesting efficiency caused by enhanced light scattering, as 

reported previously. From closer inspection of the (1 – transmittance) spectra in Figure 5-7E, a 

steeper onset of absorption was observed with 4 mol % urea (slope of linear fit = 6.83) than with 

that of bare MAPbI3 film (slope of linear fit = 6.64). Thus, smaller Urbach (Eu) energy is 

expected with 4 mol % urea, which indicates a higher level of electronic order with 4 mol % 

urea. The steady-state PL is shown in Figure 5-7B. Notably, the PL peak intensity was increased 

more than three times from 0.9114 x 105 to 3.1839 x 105 upon addition of urea. The time-

resolved PL decay profiles of the MAPbI3 films were monitored at the peak emission (770 nm) 

in Figure 5-7C to find the origin of the enhanced PL intensity. The bare MAPbI3 film shows bi-

exponential decay with fast (t1 = 5.8 ns) and slow (t2 = 200.5 ns) components, whereas single 

exponential decay was observed (t2 = 738.3 ns) with 4 mol % urea without the fast component. 

The fast component (t1) might be related to trap-mediated monomolecular non-radiative 

recombination derived by defects at the grain boundaries. It has been reported that trap-mediated 

non-radiative recombination becomes dominant with a low intensity of excitation because of 

slow depopulation of charge carriers from the trap states. Time-resolved PL spectra of bare 

MAPbI3 films under different intensities of excitation was measured. As the excitation intensity 

decreased, t1 was highly increased from 17.15% to 92.51%, indicating that monomolecular trap-

mediated recombination becomes dominant, which supports the correlation between the fast-

decaying component and trap-mediated non-radiative recombination. In contrast, the PL decay 

profile of MAPbI3 film with 4 mol % urea shows a single exponential decay with t2~700 ns 
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regardless of the excitation intensity, which suggests a significantly decreased defect density 

after the addition of urea. Furthermore, t2, which is associated with bi-molecular radiative 

recombination of the perovskite film in bulk, was greatly increased from 200.5 to 752.4 ns with 

the addition of urea. This indicates that the charge-carrier lifetime is highly prolonged, which 

likely contributes to the enhanced VOC and FF observed. The measured PL lifetime of MAPbI3 

film with 4 mol % urea is superior to that of MAPbI3 film prepared with a variety of techniques 

to enlarge the grain size. The decrease in defect density with the addition of urea can be 

attributed to increased grain size as a result of slower crystallization with higher activation 

energy during the crystallization (Figure 5-7D), resulting in decreased grain boundaries and their 

associated defects. Moreover, the Lewis base urea is most likely precipitated at grain boundaries 
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in the final film, which serves to passivate the grain boundary defect sites and remove trap states, 

which will facilitate charge transport and enhance the quasi-Fermi level and thereby VOC. 

 

 

Figure 5-7: (A–C) UV-visible absorption (A), steady-state photoluminescence (PL) (B), and 

time-resolved PL decay profiles (C) of MAPbI3 film without and with 4 mol % urea. The films 

were deposited on a glass substrate. Inset in (C): magnified spectra showing the initial decay 

profile. Empty circles and solid lines indicate measured data and fitted curves, respectively. (D) 

Schematics showing film crystallization and corresponding charge transporting characteristics. 

 

To further confirm the nature of the decreased defects, we first investigated the presence of 

coordination species defects by using absorption spectra (Figure 5-8). To avoid saturation of 



 

 174 

absorption, we diluted the precursor solutions five times to decrease the thickness of MAPbI3 

films. As seen in Figure 5-8, an increase in absorption from 420 to 500 nm was reproducibly 

observed after the addition of urea. The absorption at these wavelength regions was reported to 

originate from coordination species such as PbI4S22- (S is undesired coordinating species such as 

solvent molecules), thus the increase in the absorption indicates an increase in the coordination 

species, which seems to be reasonable because remnant urea with higher dipole moment than 

DMSO is expected to form more coordinating species in the resulting MAPbI3 film. Therefore, 

in this study, the reduced defect density does not originate from coordination species defects.  

 

Figure 5-8: Absorption spectra of MAPbI3 film without and with 4 mol% urea. The precursor 

solution was diluted by 5 times (10.4 wt%) compared to one used for device fabrication (51.8 

wt%). 

 

Next, admittance spectroscopy was carried out to measure the density of the trap (Figures 5-9A 

and 5-9B). The structural disorders at the grain boundaries were reported to form a shallow trap 
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state close to the valance band maximum (VBM), which can be monitored by admittance 

spectroscopy. The density of the trap (NT) was estimated from the angular-frequency-dependent 

capacitance according to the following equation:  

𝑁�(𝐸E) = −
𝑉­*
𝑞𝑊

𝑑𝐶
𝑑𝜔

𝜔
𝑘𝑇 

where Vbi represents the built-in potential, W denotes the depletion width, C is the capacitance, 𝜔 

is the angular frequency, k is the Boltzmann constant, and T is the temperature. Eu = ET - EV, 

where ET and EV are the trap energy and valance band maximum, respectively. Vbi and W were 

measured with a Mott-Schottky plot (inset in Figure 5-9A), in which the measured Vbi values 

were 1.05 and 1.17 V for the devices without and with urea, respectively, correlating with 

enhanced VOC with urea. The calculated NT from frequency-dependent capacitance spectra 

(Figure 5-9A) is demonstrated in Figure 5-9B. With the addition of 4 mol % urea, the trap 

density is more than one order of magnitude decreased at around 𝐸E= 0.25 eV, corresponding to 

a shallow trap state, which possibly originates from structural disorder at the grain boundaries. 

Thus, we concluded that the addition of urea effectively reduces the trap state originating from 

grain boundaries.  
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Figure 5-9: (A and B) Frequency-capacitance (f-C) (A) and trap density curves (B) measured 

from perovskite solar cells without and with 4 mol % urea. Inset in (A) shows the Mott-Schottky 

plot of the devices; empty circles and squares represent measured data and solid lines indicate 

the linear fit of the data. (C) Scanning electron microscopic (SEM) images of MAPbI3 film with 

50 mol % urea. (D–H) Elemental distribution mapping images of the film. Dashed rectangular 

boxes in the images indicate the secondary phase formed at grain boundaries.  

 

Although the effect of urea on crystal growth is obvious, it was difficult to confirm the presence 

of urea at the grain boundaries and its passivation effect. We carried out supplemental 

experiments to investigate the passivation effect of urea. Urea was dissolved in 2-propanol at 

different concentrations (13.5, 27, and 54 mM) and was spin-coated on MAPbI3 film followed by 
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drying at 100˚C for 5 min. With 27 mM of urea, the average PCE of the devices was enhanced 

from 16.19% ± 0.65% to 16.86% ± 0.98%, and the steady-state PCE of the best-performing 

devices was enhanced from 17.11% to 17.94%. The enhanced PCE mainly resulted from 

enhanced VOC (1.089 ± 0.017 to 1.103 ± 0.027 V) and FF (0.693 ± 0.018 to 0.707 ± 0.024); no 

significant change in JSC was found as confirmed from the EQE spectrum. Steady-state and time- 

resolved PL decay profiles of the film with and without urea post-treatment were also measured 

to investigate the origin of the improved photovoltaic performance. The steady-state PL intensity 

was increased more than 2 times after treatment with urea solution. In the time-resolved PL 

decay profiles, the fast-decay component (t1 = 5.4 ns), associated with trap-mediated non- 

radiative recombination, observed from the reference film was significantly retarded to 30.7 ns. 

This is likely related to a radiative component resulting from passivation of the traps by urea 

considering the enhanced steady-state PL intensity. t2, which can be related to the bulk carrier 

lifetime, was hardly changed probably because the morphology (grain size) of the MAPbI3 film 

was pre- served. Finally, the photovoltaic performance of perovskite solar cells based on bare 

MAPbI3 with post-treatment urea and with 4 mol % urea was compared, and the devices with 4 

mol % urea showed the highest performance. Further details on these results can be found within 

the supplementary information portion of the manuscript. 

With a small amount of urea (4 mol %), however, it was difficult to identify the remnant 

urea at the grain boundaries of MAPbI3 film. We increased the amount of urea by 50 mol % to 

see whether the excessive urea crystallized at the grain boundaries. In SEM images of the 

MAPbI3 perovskite film with 50 mol % urea (Figure 5-10), we identified the formation of the 

secondary phase at the grain boundaries (yellow arrows in Figure 5-10).  
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Figure 5-10: Scanning electron microscopic (SEM) images of MAPbI3 film with 50 mol% urea. 

Yellow arrows in the image indicate secondary phase formed at grain boundaries  

 

To investigate the chemical composition, elemental distribution mapping was carried 

(Figures 5-9C–H). The mapping images clearly indicate the absence of Pb and I and the presence 

of C and N in the secondary phase as indicated in the dashed rectangular boxes, probably 

detected from urea (oxygen possibly comes from indium tin oxide [ITO] substrate). Therefore, 

we concluded that the added urea is precipitated at the grain boundaries of perovskite films. The 

urea was reported to behave like a semiconductor as a result of electron delocalization via p-

bond formation (C=NH, C=NH2+) and generation of a highly polar resonance hybrid structure. 

However, its conductivity is still low (3–6 x 10-8 S/cm). As a result, the thick layer of urea 

impedes extraction of the photo-generated hole from the perovskite layer. 
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5.4.5 Microscopic c-AFM 

c-AFM measurements were carried out (Figure 5-11) to investigate the spatially resolved 

electrical properties of the MAPbI3 films. Figures 5-11A,B show the distribution of the current 

signal measured between the tip and the perovskite film, which is over- laid on the topological 

images (grayscale). The current was measured under a DC bias voltage of 1.0 V in an ambient 

atmosphere and room-light conditions. For the bare MAPbI3 film (Figure 5-11A), the measured 

current was highly heterogeneous over the whole film. The heterogeneity existed between grains 

and different regions of the grain interior, which is in accordance with previous studies. Some of 

the grains showed a very low current signal (red region), indicating poor mobility and/or 

depleted charge carriers in this region, which degrades the overall photovoltaic performance of 

the perovskite solar cell. Figure 5-11C shows the trajectory of the scan of the height and current 

signal, in which the measured current varied significantly along the trajectory. The current signal 

was measured to be relatively higher at grain boundaries than in the grain interior, which was 

found to be caused by down- ward bend-bending at the grain boundary causing electron trapping. 

With the addition of urea (Figure 5-11B), the current signal was enhanced overall with much 

better homogeneity than bare MAPbI3 film. The homogeneous current can be confirmed from the 

scan trajectory in Figure 5-11D. The measured current was relatively constant across the two 

different grains regardless of the grain boundary present between grains, indicating that urea 

successfully passivates the grain boundaries to reduce carrier trapping at grain boundaries. 

Moreover, we attribute the homogeneous current signal across the grain interior to higher 

crystallinity with preferred orientation, which decreases the bulk defects and their dependency on 

facet. The probability distribution of the measured current from the MAPbI3 films with and 

without urea is shown in Figure 5-11E. Upon addition of urea, the overall current signal was 
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greatly increased with a narrower distribution, implying improved mobility and/or carrier 

density, which correlates with decreased trap density and improved carrier lifetime in the PL 

measurements.  

 

Figure 5-11: (A and B) Conducting AFM images of (A) bare MAPbI3 and (B) MAPbI3 film with 

4 mol % urea formed on SnO2-coated ITO substrates. Current images were overlaid on grayscale 

topology images. (C and D) Line-scan profiles of height and current along the black lines in (A) 

and (B), respectively. 

 

5.4.6 Impact of Urea on Stability 

Finally, the effect of the addition of urea on ex-situ and in-situ stability of the device was 

evaluated in Figure 5-12. For ex situ measurements (Figure 5-12A), the devices were stored 
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under dark conditions and measured over time; the devices were kept under light at maximum 

power for the in-situ measurements (Figure 5-12B). The reference device showed 43% 

degradation (from 17.1% to 9.8%) over 27 days; the device with urea showed 35% degradation 

(from 18.27% to 11.82%). During in situ measurement for 1 hr, the reference device showed 5% 

degradation but almost no degradation was observed with urea. The improved stability is 

probably a result of decreased grain boundaries, which can act as a pathway for ingression of 

moisture.55 However, accelerated degradation of MAPbI3 film under prolonged light exposure 

was observed. The initial degradation was slower with urea but was accelerated after 90 min of 

light exposure. Further study will be required to fully understand the effect of added urea on the 

stability of the perovskite film and device. 

 

Figure 5-12: (A) Ex-situ and (B) in-situ stability test of MAPbI3 perovskite solar cell without 

and with 4 mol% urea. The devices were stored under dark in ambient condition for ex-situ 

measurement while they were maintained at maximum power point under continuous one sun 

illumination for in-situ measurement.  
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5.5 Summary 

In conclusion, we have successfully demonstrated a bifunctional Lewis base additive for 

enhanced grain growth and grain boundary passivation. Addition of the Lewis base urea was 

found to retard crystal growth to enhance crystallinity and induce a preferred orientation. 

Because of the non-volatile nature of urea, we propose that it precipitates at the grain boundary 

after completion of film formation to passivate the defects at the grain boundaries. As a result of 

the enhanced crystallinity and grain boundary passivation, the trap density in both the grain 

interior and at the boundaries was significantly reduced, resulting in an enhanced carrier lifetime 

and a more homogeneous conductivity across the film. Finally, the steady-state PCE of the 

MAPbI3-based solar cell was enhanced from 16.80% to 18.25% upon an optimized addition of 

urea. We believe this work presents an effective strategy for decreasing microscopic 

heterogeneity in optoelectronic properties of perovskite films and will open new approaches to 

further enhancing the photovoltaic performance of perovskite solar cells toward their great 

potential.  

 

5.6 Experimental 

Device fabrication  

Indium doped tin oxide (ITO) glass was cleaned by sonication in detergent, acetone and 2- 

propanol for 15 min respectively. UV-ozone treatment was performed for 15 min to enhance the 

wettability before spin-coating of SnO2 precursor solution. 30 mM SnCl2∙2H2O (98%, Sigma-

Adrich) in ethanol (anhydrous, Decon Laboratories Inc.) solution was stirred for an hour, which 
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was filtered by 0.2 μm syringe filter before use. SnO2 layer was formed by spin- coating the 

precursor solution at 3000 rpm for 30 s two times. After first spin-coating, the film was dried at 

150 oC for 30 min while it was heated to 150 oC 5 min followed by 180 oC for 1 h after second 

cycle. Perovskite layer was formed from adduct solution. 1 mmol of CH3NH3I (MAI, Dyesol, 

159 mg), PbI2 (99.999%, Alfar Aesar, 461 mg) and dimethylsulfoxide (DMSO, anhydrous, 

>99.9%, Sigma-Aldrich, 78 mg) were dissolved in 500 mg of N,N-dimethylformamide (DMF, 

anhydrous, 99.8%, Sigma-Aldrich), to which x mmol (x=0.1, 0.2, 0.4, 0.6) of urea (99.0-100.5%, 

Sigma-Aldrich) was added. The solution was filtered by 0.2 μm syringe filter before use. SnO2 

coated substrate was treated with UV- ozone for 15 min before spin-coating the perovskite 

solution. The pervoskite solution was spin-coated at 4000 rpm for 25 s, to which 0.3 mL of 

diethyl ether (anhydrous, >99.0%, contains BHT as stabilizer, Sigma-Aldrich) was dropped. The 

resulting transparent adduct film was converted to perovskite by heat-treatment at 65 oC for 1 

min followed by 100 oC for 30 min. The spiro-MeOTAD solution was prepared by dissolving 

85.8 mg of spiro-MeOTAD (Lumtech) in 1 mL of chlorobenzene (anhydrous, 99.8%, Sigma-

Aldrich) in which 33.8 μl of 4-tert-butylpyridine (96%, Aldrich) and 19.3 μl of Li-TFSI (99.95%, 

Adrich, 520 mg/mL in acetonitrile) solution were added. The spiro-MeOTAD solution was spin-

coated at 3000 rpm for 20 s by dropping 17 μl of the solution on spinning substrate. On top of 

the spiro- MeOTAD layer, 80 nm-thick silver was thermally evaporated at 0.5 Å /s to be used as 

an electrode.  

Synthesis of adduct powder  

To synthesize the MAI∙PbI2∙DMSO adduct powder, 1 mmol of MAI, PbI2 and DMSO was 

dissolved in 500 mg of DMF. The solution was added dropwise to 10 mL of diethyl ether, in  
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which light yellow precipitate was formed after stirring for 5 min. The precipitate was collected 

and dried for 12 h under vacuum. For MAI∙PbI2∙DMSO∙urea and MAI∙PbI2∙urea adduct, same 

procedure was repeated while corresponding amount of urea (1 mmol) was added to the solution.  

Material Characterization  

Fourier transform infrared spectroscopy (FT-IR) measurement was carried out by FT/IR-6100 

(Jasco) with nitrogen gas purged. The films were prepared on sodium chloride substrate by 

dropping the precursor solution, which was followed by drying at 100 oC for 30 min. Surface 

and cross sectional morphology was investigated by scanning electron microscopy (SEM, Nova 

Nano 230) and atomic force microscopy (AFM, Bruker dimension Fast Scan) using peakforce 

tapping mode. 1ohm silicon tip (OTESPA, Bruker) was used to probe the morphology. X-ray 

diffraction patterns were recorded by X-ray diffractometer (PANalytical) with Cu kα radiation at 

a scan rate of 4 o/min. UV-vis spectra was acquired by U- 4100 spectrophotometer (Hitachi).  

Conducting atomic force microscopy  

Conducting atomic force microscopy (c-AFM) was measured by Bruker Dimension Icon 

Scanning Probe Microscope equipped with TUNA module using contact mode. The perovskite 

layers were prepared on SnO2 coated ITO substrate in which the ITO electrode was connected to 

the stage by silver paste. 0.01-0.025 ohm-cm Antimony (n) doped Si tip (SCM-PIC, Bruker) was 

used to probe the morphology and current with scan rate of 1.98 Hz.  

Photoluminescence spectroscopy  

Steady-state photoluminescence (PL) was measure by a Horiba Jobin Yvon system. A 640 nm 

monochromatic laser was used as an excitation fluorescence source. Time resolved PL decay 
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profile was obtained using a Picoharp 300 with time-correlated single-photon counting 

capabilities. A picosecond laser diode head (PLD 800B, PicoQuant) provided excitation at a 

wavelength of 640 nm with a repetition frequency of 100 kHz.  

Admittance spectroscopy  

Admittance spectroscopy measurement was carried out under dark without DC bias voltage to 

avoid the degradation of the device during the measurement. To measure the capacitance, 20 mV 

AC sinusoidal pulses with frequency from 20 Hz to 1MHz were applied to the devices. The x-

axis was converted from angular frequency (ω) to 𝐸𝜔 by measuring the attempt-to- escape 

frequency, which was obtained from frequency-dependent capacitance plot via relaxation 

process instead of Arrhenius plot of characteristic frequency.  

Device characterization  

Current density-voltage (J-V) curves were recorded using Keithley 2401 source meter under 

simulated one sun illumination (AM 1.5G, 100 mW/cm2) in ambient atmosphere. The one sun 

illumination was provided by Oriel Sol3A with class AAA solar simulator (Newport), in which 

light intensity was calibrated by NREL-certified Si photodiode equipped with KG-5 filter. The J-

V curves were measured at 0.1 V/s. During the measurement, the device was covered with metal 

aperture (0.103 cm2) to define the active area. All the devices were measured without pre-

conditioning such as light-soaking and applied bias voltage. Steady-state power output was 

recorded by measuring time-dependent photocurrent density under constant bias voltage. The 

external quantum efficiency (EQE) was measured using specially designed system (Enli tech) 

under AC mode without bias light.   
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Chapter 6. 2-D perovskite phase stabilization 

(This chapter is based on the publication Nat. Comm., 9, 3021, 2018) 

 

So far we have demonstrated the important roles that compositional and additive engineering 

play in modulating crystallization processes and defect natures of perovskite thin films. 

However, our approach thus far has been focused on passivation of GBs via small molecules, 

which can be easily dissociated from their GB locations by external stimuli owed to their 

relatively weak bonding nature. Here we focus on FAPbI3, which is a more ideal material than 

MAPbI3 owed to its higher theoretical efficiency potential (its Eg is closer to that of the ideal SQ 

limit absorber material) and its higher intrinsic thermal stability, which is a major shortcoming of 

MAPbI3. FAPbI3, however, is plagued by a poor intrinsic phase stability as it readily forms a 

notorious ‘yellow-’ or ‘𝛿-’ non-perovskite phase, which can greatly affect its efficiency and 

long-term stability. While compositional engineering has shown to be an effective means to 

overcome the phase purity issues of FAPbI3, this comes alongside an undesirable increase in 

bandgap that sacrifices the device photo-current. Here we report the fabrication of phase-pure 

formamidinium-lead tri-iodide perovskite films with excellent optoelectronic quality and 

stability via incorporation of long chain phenylethylammonium (PEA) into the precursor 

solution.1 The PEA inclusion resulted in an order of magnitude enhanced photoluminescence 

lifetime and a stabilized power conversion efficiency (PCE) of 20.64% (certified stabilized PCE 

of 19.77%) with a short-circuit current density exceeding 24 mA-cm−2 and an open-circuit 

voltage of 1.130 V, corresponding to a loss-in-potential of 0.35V, and significantly enhanced 

operational stability. PEA incorporation was found to not only modulate crystallization kinetics, 
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but spontaneously form a 2-D perovskite phase at the FAPbI3 grain boundaries to protect the 

perovskite grains from moisture-induced degradation and to suppress ion migration.  

 

6.1 Motivation 

Compositional engineering has been considered an important approach to enhance the 

stability and performance of PVSK solar cells. Important milestones have been achieved through 

compositional engineering. For example, incorporation of the formamidinium (FA) cation into 

the A-site has enabled the formation of a cubic FAPbI3 phase with a lower bandgap (Eg) of 1.48 

eV, higher absorption coefficient and longer carrier diffusion lengths than methylammonium 

(MA)-based tetragonal MAPbI3 (Eg = 1.57 eV). However, FAPbI3 has poor ambient stability 

because its non-PVSK hexagonal phase is more thermodynamically favorable than the cubic 

phase at room temperature. Partial substitution of FA and I with MA and/or Br has enabled 

fabrication of phase-pure FAPbI3 with improved performance and stability. Recently, 

incorporation of smaller inorganic A-site cations, such as Cs and Rb, have further improved the 

stability and PCE of FAPbI3 solar cells with the lowest open-circuit voltage (VOC) deficit of 

0.39V. As a result, high efficiency devices now typically utilize FA, MA, Cs, Rb, and Br in the 

perovskite structure, having a relative Eg larger than 1.60 eV. However, such compositional 

engineering has enhanced the VOC and stability at the expense of short-circuit current density 

(JSC) due to the increased Eg. Utilization of pure FAPbI3 is desired in regards to its lower Eg, 

which is close to the optimum value for a single junction solar cell suggested by the detailed 

balance limit. However, no efficient method has been developed so far to fabricate high-quality 

phase-pure FAPbI3 films and devices.  
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6.2 State of the art and challenges 

Recently, the manipulation of surface energy has been proposed as a means to stabilize 

metastable PVSK phases such as CsPbI3 and FAPbI3. Swarnkar et al. reported ambient stable α-

CsPbI3 in the form of a colloidal quantum dot, in which the contribution of surface energy 

significantly increases due to the high surface-to-volume ratio. Very recently, Fu et al. reported 

that the cubic FAPbI3 phase can be stabilized by functionalizing the surface with large-sized 

organic molecules. They demonstrated that the functionalized surface constitutes a lower 

formation energy that stabilizes the cubic FAPbI3 phase at room temperature. However, the 

steady-state PCE was as low as 14.5%. Several attempts have been made to utilize this approach, 

where impressive improvements in performance and stability have been demonstrated.  Li et al. 

reported compositional engineering of FAPbI3 with PEA as a partial substitution of the FA A-

site, as FA1-xPEAxPbI3, where quasi-3D structure can be formed that consists of PEA within the 

lattice (to a small extent) and also at grain boundaries to serve as passivating agents.2 They 

reported that the long hydrophobic chain of the PEA molecule can increase the transition energy 

from the black to yellow phase and help to improve moisture-related stability of the perovskite 

film. This work resulted in a device efficiency of 17.7%. Similarly, Zhou et al. demonstrated use 

of benzylamine (BA) in a FA, Cs, I, and Br based perovskite as a means to prevent phase 

segregation of the mixed perovskite and provide similar passivating and hydrophobic effects, 

achieving an efficiency of 18.1%.3 BA was also shown to create a 3D-2D heterostructure where 

secondary platelet-like 2D BA perovskite phases formed between 3D perovskite grains at GBs, 

resulting in greatly enhanced crystallinity and passivation of defects.4 The FA, Cs, I, Br based 

perovskite device achieved an efficiency of 17.6 with a 1.61 eV band gap, and 15.8% with a 1.72 

band gap alongside 80% PCE retention over 1,000 hours in ambient air. While these works have 
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shown that incorporation of large organic A-site molecules can be beneficial, their performance 

and stability are still relatively poor comparing with those of MAPbI3 or mixed-cation-halide 

PVSK solar cells. Here we report a method to fabricate high-quality stable FAPbI3 PVSK films 

via addition of 2D phenylethylammonium lead iodide (PEA2PbI4) in the precursor solution. The 

2D PEA2PbI4 is spontaneously formed at the grain boundaries of FAPbI3 to protects the FAPbI3 

from moisture and assists in charge separation/collection. Owed to its superior optoelectronic 

quality, solar cells with a stabilized efficiency of 20.64% (certified stabilized efficiency of 

19.77%) were fabricated. Notably, the PVSK solar cell shows a peak VOC of 1.130 V, 

corresponding to a loss-in-potential of 0.35 V considering the Eg of 1.48 eV versus 0.39 V for 

mixed-cation-halide perovskite solar cells. Furthermore, the device demonstrates significantly 

enhanced ambient and operational stability. 

 

6.3 Results and discussion 

6.3.1 Effects of 2D perovskite on phase purity of FAPbI3 

FAPbI3 films were prepared by the modified adduct method, in which N-methyl-2-

pyrrolidone (NMP) was used as the Lewis base to form an intermediate adduct phase prior to 

crystallization. 2-dimensional (2D) PEA2PbI4 precursors with different molar ratios ranging from 

1.25 to 10 mol% were added to the FAPbI3 perovskite solution. The steady-state PL spectra of 

the films were measured and are shown in Figure 6-1. A PL intensity enhancement is seen for 2D 

PEA2PbI4 addition up to 5 mol%, after which the intensity decreased again towards that of the 

bare FAPbI3 film Figure 6-1a. 
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Figure 6-1: Steady-state photoluminescence spectra of FAPbI3 perovskite film with different 

amount of added 2D PEA2PbI4 perovskite. (a) Original and (b) normalized spectra.  

 

As seen in Figure 6-1b, we observed no obvious changes in PL peak position until the amount of 

PEA2PbI4 reached 10 mol%, for which the PL peak blue-shifted by 6 nm. This blue-shift may be 

due to the formation of quasi-3D PVSK, where charge carriers are confined by a large potential 

barrier originating from the PEA2PbI4. Based on this observation, we presume the added 

PEA2PbI4 does not result in the formation of the quasi-3D PVSK if it remains below a certain 

threshold (Figure 6-2a). This quantity was then optimized based on photovoltaic performance. A 

planar heterojunction architecture consisting of Indium doped SnO2 (ITO) glass/compact-

SnO2/PVSK/spiro-MeOTAD/Ag or Au was utilized for construction of PVSK solar cells in this 

study. The addition of 1.67 mol% PEA2PbI4 was found to be optimal for photovoltaic 

performance, with an improvement in PCE of 11%. Notably, addition of 10 mol% PEA2PbI4 

significantly degraded the PCE to lower than 1%, which might result from the formation of 
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quasi-3D PVSK as the large potential barrier originating from PEA2PbI4 could hinder charge 

transport. Hence, an optimized 1.67 mol% PEA2PbI4 was used for further analysis. 

X-ray diffraction patterns (XRD) of pure FAPbI3 and FAPbI3 with 1.67 mol% PEA2PbI4 

are shown in Figure 6-2b. As can be seen, the bare FAPbI3 film contains a hexagonal non-PVSK 

phase (δ- phase) while the PVSK film prepared with 1.67 mol% PEA2PbI4 shows a pure PVSK 

phase. Furthermore, the overall signal intensity and full-width-half-maximum (FWHM) were 

enhanced with the addition of PEA2PbI4, indicating improved crystallinity. We speculate that the 

added large PEA molecules from PEA2PbI4 precursors interact with FAPbI3 crystals to facilitate 

formation of the cubic PVSK phase during crystallization. Such a speculation is correlated with 

the XRD analysis, in which the signal intensity and FWHM of the XRD peaks are enhanced in 

accordance with the increased amounts of PEA2PbI4 added. The enhancement of preferred 

orientation along the (001) plane with increased PEA2PbI4 also indicates that the added 

precursors of PEA2PbI4 functionalize a specific crystal facet to change its surface energy during 

crystal growth, thereby promoting the growth of the (001) orientation. A closer inspection of the 

normalized XRD patterns of the PVSK films with different amounts of added PEA2PbI4 found 

that a systematic change in peak position was observed with different amounts of PEA2PbI4 for 

which the XRD peaks were slightly shifted toward higher angles with the addition of relatively 

smaller amounts of PEA2PbI4 (1.25, 1.67, 2.50, and 5.0 mol%). This indicates that the lattice 

constant of FAPbI3 is reduced, likely due to compressive strain associated with the added 

PEA2PbI4. We speculate that the reduction in lattice constant can be also related to the enhanced 

phase purity of cubic FAPbI3 as it will have equivalent effects with incorporation of smaller A-

site cations on the tolerance factor and thus enthalpy of formation. Lower angle peaks around 12° 

appear upon addition of 10 mol% PEA2PbI4 corresponding to the formation of quasi-3D PVSK. 
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The pure phase PVSK film with 1.67 mol% PEA2PbI4 shows enhanced absorption over all wave- 

lengths (Figure 6-2c) compared to the bare FAPbI3 film where the absorption onset is hardly 

changed (inset of Figure 6-2c). The absorption onset is complemented by an almost identical 

normalized PL spectra, which indicates that the Eg was maintained. The enhanced absorption as 

seen when the PEA2PbI4 was added is probably due to an enhanced phase purity of the FAPbI3, 

with partial contribution from an enhanced light scattering owing to the improved crystallinity. 

 

 

Figure 6-2: Crystallographic and absorption properties. a Peak position for steady-state 

photolumimescence (PL) spectrum and normalized power conversion efficiency (PCE) of the 

devices for FAPbI3 perovskite with different amount of added 2D PEA2PbI4 perovskite. The 

error bar of the normalized PCE indicates standard deviation of the PCEs. At least 10 devices 

were fabricated for each condition. b X-ray diffraction patterns, c absorption and normalized PL 

spectra of bare FAPbI3 and FAPbI3 with 1.67 mol% PEA2PbI4. Inset of c shows onset region of 

the absorption spectra with linear approximation (solid lines). 
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6.3.2 Optoelectronic properties: PL and device efficiency 

Steady-state (SS) and time-resolved PL (TRPL) characteristics were investigated (Figure 

6-3). The steady-state PL intensity was largely enhanced more than five times from 4.3 ×105 to 

2.3 × 106 with addition of 1.67 mol% PEA2PbI4 into FAPbI3 film (Figure 6-3a). The large 

enhancement of PL intensity was attributed to a significantly elongated PL lifetime as seen in 

Figure 6-3b. The TRPL profiles were fitted with an exponential decay, in which bi- and tri- 

exponential decay models were used for the pure FAPbI3 and PEA2PbI4 incorporated FAPbI3 

films, respectively. The relatively fast decay component (τ1 around 3 ns) represents charge 

carrier trapping induced by trap states formed due to structural disorders, such as vacancy or 

interstitial defects, while the much slower components (τ2, τ3) represent free carrier radiative 

recombination. With addition of 1.67 mol% PEA2PbI4, the proportion of the fast decay 

component (τ1) was decreased (from 51.8% to 46.5%) while τ2 significantly elongated from 78.5 

ns to 148.7 ns. This indicates a reduced defect density and enhanced charge carrier lifetime. We 

attributed such improvements to enhanced phase purity and crystallinity of FAPbI3 as observed 

from the XRD measurements (Figure 6-2b), which decreases the structural disorders at grain 

interiors and/or boundaries. Moreover, a new decay component (τ3) with a significantly long 

lifetime (>1 μs) appeared after addition of the PEA2PbI4, which is likely related to the added 2D 

PVSK. As a result, the average PL lifetime was enhanced by nearly an order of magnitude from 

39.4 to 376.9 ns with addition of PEA2PbI4. During the optimization of the device, incorporation 

of 2 mol% Cs was found to further enhance the performance and reproducibility of the devices 

without a noticeable change in Eg. With additional 2 mol% Cs, the fraction of τ1 was further 

decreased, indicating a further decreased defect density, which has also been observed in 



 

 197 

previous studies. Consequently, the steady-state PL intensity and average PL lifetime were 

further enhanced, rationalizing the improved PCE with 2 mol% Cs.  

The PCE distribution of the devices with different amounts of PEA2PbI4 and Cs are 

compared in Figure 6-3c. The average PCE of the bare FAPbI3 PVSK solar cells was 

significantly enhanced by 13% from 15.95 ± 0.36% to 18.08 ± 0.52% with addition of 1.67 

mol% PEA2PbI4. The average PCE was further enhanced to 19.16 ± 0.37% with 2 mol% of Cs 

Current density and voltage (J–V) curves of the optimized control and target devices are 

demonstrated in Figure 6-3d, in which the highest PCE of the target device reached 21.06% (JSC: 

24.44 mA-cm−2, VOC: 1.126V, FF: 0.765) while a PCE of 16.41% was achieved with the control 

device (JSC: 24.23 mA-cm−2, VOC: 1.048V, FF: 0.646). A stabilized PCE of 20.64% was achieved 

with the target device while that of control device was 15.80% (Figure 6-3e). External quantum 

efficiency (EQE) spectra of the devices were compared in Figure 6-3f. An integrated JSC of 23.9 

mA-cm−2 from the target device was well-matched with the value measured from the J–V scan 

(<5% discrepancy), while control device shows that of 21.2 mA-cm−2 with a relatively large 

discrepancy of 14%. The relatively large discrepancy from the control FAPbI3 device is probably 

due to a more pronounced hysteresis, as seen in Figure 6-3d, which also results in a large 

discrepancy between the stabilized PCE and the PCE measured from the J–V scan. The 

performance of control device was highly reproducible. 
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Figure 6-3: Photoluminescence properties and photovoltaic performance. a) Steady-state and b 

time resolved PL spectra of the perovskite films incorporating bare FAPbI3, FAPbI3 with 2D 

perovskite and FA0.98Cs0.02PbI3 with 2D perovskite. Gray solid lines in b) are fitted lines for each 

curve. c) Power conversion efficiency (PCE) distribution of the devices incorporating the 

perovskites. All the devices were fabricated in same batch. d) Current density–voltage (J–V) 

curves, e steady-state PCE measurement and f external quantum efficiency (EQE) spectra of 

perovskite solar cells incorporating bare FAPbI3 (control) and FA0.98Cs0.02PbI3 with 2D 

perovskite (target). Photovoltaic parameters of the highest performing devices are summarized in 

the table in d), in which the values with and without parenthesis are from reverse (from VOC to 

JSC) and forward scan (from JSC to VOC), respectively. 

 

With optimized process parameters, an average PCE of 20.05 ± 0.45% was demonstrated, with a 

peak VOC of 1.130V corresponding to a loss-in-potential of 0.35 V considering a Eg of 1.48 eV, 
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which is the lowest VOC deficit reported to date for PVSK solar cells. One of the target devices 

was sent out for measurement in an independent laboratory and achieved a certified stabilized 

PCE of 19.77%. The enhanced device performance with PEA2PbI4 is mainly due to improved FF 

and VOC, which can be attributed to improved phase purity and elongated carrier lifetime with 

reduced defect density, facilitating carrier transport and reducing the charge recombination. 

 

6.3.3 The role of PEA2PbI4 

Under ambient conditions, cubic FAPbI3 can readily undergo conversion to a hexagonal 

non-PVSK phase, resulting in serious degradation in photovoltaic performance. The phase 

transformation is even accelerated under high-relative humidity conditions. To evaluate the 

effects of PEA2PbI4 incorporation on phase stability, we investigated changes in absorbance of 

the film under relative humidity (RH) of 80 ± 5%. Figure 6-4a shows photos of the PVSK film 

stored for different time periods. The bare FAPbI3 film was almost completely bleached within 

24 hours whereas no obvious change in color was observed for the films containing PEA2PbI4 

both with and without Cs. Figure 6-4b demonstrates the absorbance (at 600 nm) of the FAPbI3 

films with and without PEA2PbI4 as a function of exposure time. The absorbance of the bare 

FAPbI3 rapidly degraded within 24 hours, while FAPbI3 films with PEA2PbI4 did not show 

noticeable degradation within 24 hours. Similarly, films with 2 mol% Cs also remained stable 

after 24 hours. The color change of the bare FAPbI3 film under high RH is was shown to be due 

to its transformation to the δ-phase based on XRD spectra (Supplementary Figure 21 of the 

manuscript), whereas no detectable change in color for the films with PEA2PbI4 is correlated 

with their neat XRD spectra without the δ- phase. The enhanced phase stability under high RH 
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implies that the possible ingression pathway of moisture in the PVSK film is passivated. The 

concept from our previous works demonstrating grain boundary engineering techniques using the 

adduct approach, in which the additives precipitate at grain boundaries if not incorporated into 

the lattice of PVSK, can be extended to this work as well. Here, we postulate that grain 

boundaries within the film, which have been reported to be ingression pathways for moisture, 

might be passivated by the added PEA2PbI4.  
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Figure 6-4: Improved moisture stability with 2D perovskite at grain boundaries. a) Photos of the 

perovskite films incorporating bare FAPbI3, FAPbI3 with PEA2PbI4 and FA0.98Cs0.02PbI3 with 

PEA2PbI4 exposed to relative humidity (RH) of 80 ± 5% at 20 ± 2 °C for different time. b) 

Evolution of absorption of the films at 600 nm under RH 80 ± 5% at 20 ± 2 °C. The error bar 

indicates standard deviation of the absorbance measured from three films for each condition. c-e) 

top down SEM images of bare FAPbI3, FAPbI3 with PEA2PbI4 and FA0.98Cs0.02PbI3 with 

PEA2PbI4. f-h) Transmission electron microscopic (TEM) images of the FA0.98Cs0.02PbI3 film 

with 1.67 mol% PEA2PbI4. The inset of f demonstrates the lower magnification image showing 
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the polycrystalline nature with grain boundaries. The highlighted area (1) and (2) were 

investigated in d and e, respectively. Inset of h and h show Fast Fourier transform (FFT) analysis 

of the area within boxes, respectively. 

The vertically aligned PEA2PbI4 was sparsely observed in SEM images (Figure 6-4c-e) 

with addition of PEA2PbI4. However, the enhanced moisture stability throughout the whole-film 

implies that PEA2PbI4 most likely exists along the grain boundaries. To confirm our assumption, 

transmission electron microscopic (TEM) images of the FAPbI3 film with PEA2PbI4 was 

analyzed in Figure 6-4f–h. The inset of Figure 6-4c shows a piece of the polycrystalline film 

scratched off from the substrate. Several hundreds of nanometer sized grains and associated GBs 

are clearly visible from the image, and from which one of the grains is magnified in Figure 6-4c. 

The grain interior region, region (1), in Figure 6-4c was magnified and analyzed using Fast 

Fourier transform (FFT) in Figure 6-4d, in which an inter-planar spacing of 3.2 Å is well-

matched with the (002) reflection of cubic FAPbI3. The GB region, which is labeled region (2), 

reveals an inter-planar distance of 8.0Å (Figure 6-4e), which is well matched with the 

characteristic (002) reflection of 2D PEA2PbI4. This confirms the presence of 2D PEA2PbI4 at 

grain boundaries.  

 A schematic in Figure 6-5a shows PEA2PbI4 formation at the grain boundaries of the 3D 

PVSK film. Due to the aromatic rings and longer alkyl chains of PEA, PEA2PbI4 is expected to 

be more resistant to moisture-induced degradation and will protect the defective grain boundaries 

of 3D FAPbI3 to provide significantly enhanced moisture stability of the film. Regardless of the 

improved stability, however, one can expect degraded electronic properties of the film due to the 

poor charge carrier mobility of PEA2PbI4. We investigated the band structure of FA0.98Cs0.02PbI3 

(with 1.67mol% PEA2PbI4) and PEA2PbI4, which is illustrated in Figure 6-5b. The VBM was 
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measured using ultraviolet photoelectron spectroscopy (UPS, Supplementary Fig. 25), while the 

Eg was determined from Tauc plots of absorption measurements (Supplementary Fig. 26). As 

seen in Figure 6-5b, FA0.98Cs0.02PbI3 and PEA2PbI4 show a type I band alignment, which 

resembles the alignment between PVSK and PbI2 formed at grain boundaries that has been found 

to reduce charge carrier recombination and assist in charge separation/collection. Thus, an 

analogous advantage of PEA2PbI4 at GBs can be expected. c-AFM was performed in Figure 6-

5c-f to observe the spatially-resolved electrical properties of the films on the nano-to-micro 

scale. Under ambient light conditions (Figure 6-5c,d), current flow in the PVSK film with 

PEA2PbI4 was higher at/near the grain boundaries while relatively uniform current flow was 

observed in the bare FAPbI3 film. With light illumination (Figure 6-5e,f), the current flow was 

further enhanced at/near the grain boundaries with PEA2PbI4 whereas current flow in the bare 

FAPbI3 film was uniformly increased. This suggests that the charge separation and collection of 

photo-generated electrons is facilitated more effectively at grain boundaries with PEA2PbI4. As 

suggested for PbI2, thin PEA2PbI4 regions at grain boundaries might suffer a downwards band-

bending under illumination (dashed line in Figure 6-5b), where photo-generated electrons are 

transferred from grain interiors to GBs. Due to the high-potential barrier to the holes, charge 

recombination will be reduced, which might be the origin of the superior PL lifetime and 

photovoltaic performance seen through use of PEA2PbI4.  
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Figure 6-5: Band alignment and local conductivity with 2D perovskite. a Schematics of the 

device incorporating polycrystalline 3D perovskite film with 2D perovskite at grain boundaries 

and b band structure of each layer in device analyzed by ultraviolet photoelectron spectroscopy 

(UPS) and Tauc plots. Conductive atomic force microscopic (c-AFM) images of (c, e) bare 

FAPbI3 and (b, d) with 2D perovskite films on SnO2 coated ITO glass. The measurement was 

carried out with bias voltage of 100 mV under (c, d) room light or (d, f) low intensity light 

illumination provided by the AFM setup. Inset of each image shows corresponding topology of 

the films. Scale bar at left side is for (c) and (d) while at right side is for e and f. 

 

6.3.4 Stability of PEA2PbI4-FAPbI3 

The stability of the control and target devices was compared. Figure 6-6a demonstrates 

the changes in PCE of the un-encapsulated devices stored in a desiccator with a relative humidity 

lower than 30%. While the control device degraded by 29% over 1392 hours, the PEA2PbI4–
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based device maintained 98% of its initial efficiency during this time. The operational stability of 

the devices was also compared by maximum power point (MPP) tracking under 1 sun 

illumination in Figure 6-6b. Without encapsulation, the PCE of the control device rapidly 

degraded by 68% over 450 min whereas that of target device was relatively less (20%) during the 

time period. We performed 500 hours of light exposure test with the encapsulated control (bare 

FAPbI3 device) and target devices (w/ 1.67 mol% PEA2PbI4). The encapsulated devices were 

exposed to ca. 0.9 sun (90 ± 5 mW cm−2) under open-circuit condition, of which the steady-state 

PCE was periodically measured for different exposure times. As seen in Figure 6-6c, both of the 

devices showed a rapid initial decay in PCE followed by slower decay with an almost linear 

profile, which is in agreement with previous reports.  

 

Figure 6-6: Improved stability with 2D perovskite. a) Evolution of power conversion efficiency 

(PCE) of control and target devices. The devices were stored under dark with controlled 

humidity. b) Maximum power point tracking of the devices under 1 sun illumination in ambient 
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condition without encapsulation. c) Evolution of the PCEs measured from the encapsulated 

control and target devices exposed to continuous light (90 ± 5 mW cm−2) under open-circuit 

condition. The stabilized PCEs were measured at each time. Initial stabilized PCEs for control 

and target devices were 14.5% and 17.5%, respectively. The broken lines are linear fit of the 

post-burn-in region (after 48 h). Relative humidity (RH) and temperature (T) are indicated in the 

graphs for each measurement. d) Maximum power point tracking of the target device. The 

measurement was performed under 1 sun illumination in ambient condition with encapsulation. 

Inset of the figure shows the PCE without normalization. 

After 500 hours of exposure, the control device degraded to approximately 52.3% of its 

initial PCE whereas the target device maintained 72.3% of the initial PCE, indicating enhanced 

stability with addition of PEA2PbI4. We can extract the tentative time at which the PCE of the 

device decays to 80% of its initial PCE, denoted as T80, for the devices via fitting of the post-

burn-in region in which the PCE of the device shows a near linear decay profile (after 48 h). The 

T80 for control and target devices were calculated to be 592 hours and 1362 hours, respectively. 

This indicates the stability of the device was significantly improved with addition of PEA2PbI4. 

We also performed maximum power-point (MPP) tracking of the encapsulated target device 

under 1 sun (100 mW-cm−2) illumination in Figure 6-6d. A total of 18.7% of initial PCE was 

degraded for 130 hours of operation, which is relatively slower compared to the device 

maintained at open-circuit condition. This is correlated with previous studies that attributed the 

faster degradation under open-circuit condition to larger number of photo-generated charge 

carriers recombining within the device. Under operational condition with abundant photo-

generated charges and a built-in electric field, the major factors causing degradation might be the 

highly mobile and reactive charged defects (ions) and/or associated trapped charge carriers. We 
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suppose that the migration of charged (ionic) defects is possibly suppressed by PEA2PbI4 at grain 

boundaries. Temperature-dependent conductivity (σ) measurement of the lateral devices was 

performed to evaluate the activation energy for the ion migration (Fig. 6). The activation energy 

(Ea) for the migration can be determined according to the Nernst-Einstein relation,  

𝜎(𝑇) =
𝜎Ó
𝑇 𝑒𝑥𝑝 ´

−𝐸�
𝑘𝑇 ¶ 

where k is the Boltzmann constant and σ0 is a constant. The inset of Figure 6-7a describes the 

structure of the lateral devices. With bare FAPbI3, exponential enhancement in conductivity was 

clearly identified at around 130 K (Figure 6-7a), which is attributed to the contribution of ions. 

The Ea for the bare FAPbI3 film was calculated to be 0.16 eV, indicating a significant 

contribution coming from activated ions at RT, which might cause degradation of the material 

and device under operational condition with built-in electric field. The pronounced current–

voltage hysteresis behavior was observed even at very low temperature (180 K, Figure 6-7c). In 

the case of the FAPbI3 film with PEA2PbI4, the film did not show noticeable enhancement in 

conductivity with increased temperature. However, the overall conductivity was relativity lower 

than the bare FAPbI3 film (Figure 6-7c). Even with moderate light illumination the device does 

not show any indication of activated ions. As a result, the I-V curve does not display any 

hysteresis behavior (Figure 6-7d). Since GBs of 3D perovskites have been reported to be a major 

pathway for the migration of ions, passivation of GBs via incorporation of PEA2PbI4 likely 

suppresses the overall ion migration in the device. In addition, the improved phase purity of the 

film might also partially contribute to the suppressed ion migration since the secondary phase 

can generate defect sites that can act as an additional pathways for ion migration. We believe the 

suppressed ion migration contributes to enhanced operational stability of the target device. 
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Figure 6-7: Suppressed ion migration with 2D perovskite. Temperature-dependent conductivity 

of a bare FAPbI3 film and b with 1.67 mol% PEA2PbI4. Red circles in b indicate the data 

measured under moderate light illumination (intensity lower than 10 mW cm−2). Current–

voltage curves measured from the devices at 180 K. c Bare FAPbI3 film and d with 1.67 mol% 

PEA2PbI4. 
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6.4 Summary 

In this work, we have demonstrated a reproducible method to fabricate phase-pure 

formamidinium tri-iodide PVSK with high-optoelectronic quality and stability by incorporating a 

small amount of 2-dimensional PEA2PbI4 perovskite phase. The large phenylethylammonium 

molecules of PEA2PbI4 precursors interact with FAPbI3 crystals to facilitate formation of the 

cubic FAPbI3 phase during crystallization, which subsequently functionalize grain boundaries 

after crystallization is complete. The resulting phase-pure PVSK film has an identical Eg to that 

of pure FAPbI3 (1.48 eV) with an order of magnitude enhanced PL lifetime. An average PCE of 

20.05 ± 0.45% with a highest stabilized PCE of 20.64% (certified stabilized PCE of 19.77%) was 

achieved. Regardless of its low Eg, the solar cell showed a peak VOC of 1.130 V, corresponding 

to the lowest loss-in-potential of 0.35 V among all the reported PVSK solar cells. Owed to the 

functionalized grain boundaries by the 2D PEA2PbI4, the phase stability of the film under high 

relative humidity significantly improved and migration of ions (or charged defects) was 

suppressed, resulting in significantly improved ambient and operational stability of the device. 

Utilizing 2D perovskites, such as PEA2PbI4, at GBs will provide important insights for the 

research community to design PVSK materials to truly create highly efficient and durable solar 

cells for long-term field use.  

 

6.5 Experimental 

Synthesis of phenylethylammonium iodide 
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In a typical synthesis, 4.8 g of phenethylamine (39.6 mmol, Aldrich, >99%) was dissolved in 15 

mL of ethanol and placed in iced bath. Under vigorous stirring, 10.8 g of hydroiodic acid (57 

wt% in H2O, 48.1 mmol, Sigma-Aldrich, 99.99%, contains no stabilizer) was slowly added to the 

solution. The solution was stirred overnight to ensure complete reaction, which was followed by 

removal of the solvent by a rotary evaporator. The resulting solid was washed with diethyl ether 

several times until the color is changed to white. The white solid was further purified by 

recrystallization in mixed solvent of methanol and diethyl ether. Finally, white plate-like solid 

was filtered and dried under vacuum (yield around 90%).  

 

Device fabrication 

Indium doped tin oxide (ITO) glass was cleaned with successive sonication in detergent, 

deionized (DI) water, acetone and 2-propanol for 15 min, respectively. The cleaned substrates 

were further treated with UV-ozone to remove the organic residual and enhance the wettability. 

A total of 30 mM SnCl2∙2H2O (Aldrich, >99.995%) solution was prepared in ethanol (anhydrous, 

Decon Laboratories Inc.), which was filtered by 0.2 μm syringe filter before use. To form a SnO2 

layer, the solution was spin-coated on the cleaned substrate at 3000 rpm for 30 s, which was 

heat-treated at 150 °C for 30 min. After cooling down to room temperature, the spin-coating 

process was repeated one more time, which was followed by annealing at 150 °C for 5 min and 

180 °C for 1 h. The SnO2 coated ITO glass was further treated with UV-ozone before spin-

coating of PVSK solution. The PVSK layer was prepared by the modified adduct method. The 

bare FAPbI3 layer was formed from the PVSK solution containing equimolar amount of 

HC(NH2)2I (FAI, Dyesol), PbI2 (TCI, 99.99%) and N-Methyl-2-pyrrolidone (NMP, Sigma-
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Aldrich, anhydrous, 99.5%) in N,N-Dimethylformamide (DMF, Sigma- Aldrich, anhydrous, 

99.8%). Typically, 172 mg of FAI, 461 mg of PbI2 and 99 mg of NMP were added to 600 mg of 

DMF. For the 2D PVSK (PEA2PbI4) and Cs incorporated PVSK, corresponding amount of FAI 

was replaced with PEAI and CsI. For example, FAPbI3 with 1.67 mol% PEA2PbI4 was formed 

from a precursor solution containing 166.4 mg of FAI, 8.2 mg of phenylethylammonium iodide 

(PEAI), 453.4 mg of PbI2 and 97.4 mg of NMP in 600 mg of DMF. With 2 mol% of Cs, the 

precursor solution was prepared by mixing 163.0 mg of FAI, 8.2 mg of PEAI, 5.0 mg of CsI 

(Alfa Aesar, 99.999%), 453.4 mg of PbI2 and 97.4 mg of NMP in 600 mg. For the best 

performing devices, the amount of DMF was adjusted to 550 mg. Spin-coating of PVSK and 

hole transporting layer was performed in a glove box filled with dry air. The PVSK solution was 

spin-coated at 4000 rpm for 20 s where 0.15 mL of diethyl ether (anhydrous, >99.0%, contains 

BHT as stabilizer, Sigma-Aldrich) was dropped after 10 s on the spinning substrate. The 

resulting transparent adduct film was heat-treated at 100 °C for 1 min followed by 150 °C for 10 

min. (for the best performing target device, the annealing condition was adjusted to 80 °C 1 min 

followed by 150 °C for 20 min) The spiro-MeOTAD solution was prepared by dissolving 85.8 

mg of spiro-MeOTAD (Lumtec) in 1 mL of chlorobenzene (anhydrous, 99.8%, Sigma-Aldrich) 

which was doped by 33.8 μl of 4-tert-butylpyridine (96%, Aldrich) and 19.3 μl of Li-TFSI 

(99.95%, Aldrich, 520 mg mL−1 in acetonitrile) solution. The spiro-MeOTAD solution was spin-

coated on the PVSK layer at 3000 rpm for 20 s by dropping 17 μl of the solution on the spinning 

substrate. On top of the spiro-MeOTAD layer, ca. 100 nm-thick silver or gold layer was 

thermally evaporated at 0.5 Ås−1 to be used as an electrode. 

 

Material characterization  
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The PVSK layer was coated on a SnO2 coated ITO substrate for the measurements. UV-vis 

absorption spectra were recorded by U- 4100 spectrophotometer (Hitachi) equipped with 

integrating sphere. The mono-chromatic light was incident to the substrate side. XRD patterns 

were obtained by X-ray diffractometer (PANalytical) with Cu kα radiation at a scan rate of 4° 

min−1. Surface and cross-sectional morphology of the films and devices were investigated by 

scanning electron microscopy (SEM, Nova Nano 230). For the cross-sectional image, cross-

sectional surface of the sample was coated with ca. 1 nm-thick gold using sputter to enhance the 

conductivity. Transmission electron microscopic (TEM) analysis was performed by Titan Krios 

(FEI). The PVSK film was scratched off from the substrate and dispersed in toluene by 

sonication for 10 min, which was dropped on an aluminum grid. An accelerating voltage of 300 

kV was used for the measurement. Steady-state photoluminescence (PL) signal was analyzed by 

a Horiba Jobin Yvon system. A 640 nm monochromatic laser was used as a fluorescent 

excitation source. Time resolved PL decay profiles were obtained using a Picoharp 300 with 

time-correlated single-photon counting capabilities. The films were excited by a 640 nm pulse 

laser with a repetition frequency of 100 kHz provided by a picosecond laser diode head (PLD 

800B, PicoQuant). The energy density of the excitation light was ca. 1.4 nJ cm−2, in which 

carrier annihilation and non-geminate recombination are negligible. Ultraviolet photoelectron 

spectroscopic (UPS) analysis was carried out using Kratos Ultraviolet photoelectron 

spectrometer. He I (21.22 eV) source was used as an excitation source. The PVSK films were 

coated on ITO substrate and grounded using silver paste to avoid the charging during the 

measurement. Conductive atomic force microscopic (AFM) measurement was performed by a 

Bruker Dimension Icon Scanning Probe Microscope equipped with TUNA application module. 

The TUNA module provides ultra-high tunneling current sensitivity (<1 pA) with high-lateral 
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resolution. An antimony-doped Si tip (0.01–0.025 Ohm-cm) coated with 20 nm Pt-Ir was used as 

a probe. To avoid the electrically driven degradation during the measurement, a low bias voltage 

(100 mV) was applied. The measurement was carried out under either ambient lighting or low 

intensity illumination provided by the AFM setup. Temperature-dependent conductivity 

measurement was carried out using a commercial probe station (Lakeshore, TTP4) in which 

temperature of the device was controlled by thermoelectric plate and flow of liquid nitrogen. The 

electrical measurement was conducted with a source/measurement unit (Agilent, B2902A).  

 

Device characterization 

Current density–voltage (J–V) curves of the devices were measured using Keithley 2401 source 

meter under simulated one sun illumination (AM 1.5G, 100 mW-cm−2) in ambient atmosphere. 

The one sun illumination was generated from Oriel Sol3A with class AAA solar simulator 

(Newport), in which light intensity was calibrated by NREL-certified Si photodiode equipped 

with a KG-5 filter. Typically, the J–V curves were recorded at 0.1 Vs−1 (between 1.2 V and −0.1 

V with 65 data points and 0.2 s of delay time per point). During the measurement, the device was 

covered with a metal aperture (0.100 cm2) to define the active area. All the devices were 

measured without pre-conditioning such as light-soaking and applied bias voltage. Steady-state 

power conversion efficiency was calculated by measuring stabilized photocurrent density under 

constant bias voltage. The external quantum efficiency (EQE) was measured using a specially 

designed system (Enlitech) under AC mode (frequency = 133 Hz) without bias light. For electro- 

luminescence measurements, a Keithley 2400 source meter and silicon photodiode (Hamamatsu 
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S1133-14, Japan) were used to measure current–voltage–luminance characteristics of PVSK 

solar cells. 

 

Stability test  

Moisture stability of the films was tested by exposing the PVSK films under relative humidity of 

80 ± 5% and ambient lighting. Absorbance of the films was measured every 2 hours while the 

XRD of the films were recorded every 12 hours. For the devices, ex-situ tests were conducted by 

storing the devices in a desiccator (relative humidity, RH <30%) in a dark environment. The 

devices were taken out only for measurements in ambient conditions. For the operational 

stability, the maximum power point (MPP) tracking and continuous light exposure under open-

circuit condition were performed in ambient conditions (RH~50%, T~40 °C). For the MPP 

tracking, the photocurrent density was monitored while the devices were biased at MPP under 1 

sun illumination. For light exposure under open-circuit condition, the encapsulated devices were 

exposed to ca. 0.9 sun (90 ± 5 mW cm−2) generated by halogen lamps under open-circuit 

condition, where the steady-state PCE was periodically measured with different exposure time 

under 1 sun illumination. The encapsulation of the device was performed inside a nitrogen-filled 

glove box filled by using an UV-curable adhesive and glass cover. The glass substrate was 

superimposed on the active layer and fixed with the UV-curable adhesive. 
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Chapter 7. Conclusions and Future Outlook 

 

Hybrid perovskite materials show major promise as a potential industry-competitive PV 

technology if their limitations in (i) stability and (ii) efficiency can be further improved towards 

industry standards: >25% PCE with a 25+ year lifetime. These works have demonstrated 

effective ways to significantly enhance photovoltaic properties of hybrid perovskite thin films by 

utilizing this family of material’s compositional, dimensional, and chemical tunability through (i) 

guanidinium-based precursors, (ii) a Lewis acid-base adduct method, and (iii) the co-existence of 

2D/3D phases in perovskite thin films. Use of these led to an order of magnitude increase in 

photoluminescence lifetimes, and consequent Voc increases to yield device performance 

improvements up to >20% PCE. Stability was enhanced via these techniques, ultimately leading 

to unencapsulated devices with T80 lifetimes >1000 hours under continuous illumination and 

open-circuit conditions. I will discuss how these works can be further built upon to achieve even 

more substantial improvements in stability and efficiency. 

The VOC loss for the record efficiency perovskite solar cell is around 380 mV which is 

still much higher than the theoretically achievable value of ~220 mV and the best value that has 

been achieved for GaAs solar cells is ~300 mV.1 Experimental evidence suggests that this loss in 

potential originates from non-radiative recombination losses caused by defects, which indicates 

room for further control over defects to enhance the carrier lifetime and quasi Fermi level 

splitting.  
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However, owed to the low-temperature solution-based processing of metal halide 

perovskites, thin films are inevitably polycrystalline in nature with abundant surface and bulk 

crystal defects. The formation energy of Schottky disorders in the conventional CH3NH3PbI3 

perovskite has been calculated to be as low as 0.14 eV, resulting in an equilibrium vacancy 

concentration of 0.4% at room temperature.2 The trap densities of such polycrystalline thin films 

were measured to be within the range of 1016-1018 cm-3.3 This is relatively high compared to 

conventional high temperature vacuum-processed inorganic semiconductors, where typical 

defect densities of crystalline silicon and GaAs are ~108 and ~1013-1014 cm-3,4,5 respectively. Due 

to the ionic nature of the perovskite materials, the prevalent defects are charged defects of which 

activation energies for migration range from 0.5 eV to 2.0 eV. Therefore, the charged defects are 

highly likely to migrate under built-in and/or applied bias voltage, illumination, etc, which can 

degrade the operational stability of the perovskite solar cells. Thus far, the correlation between 

the charged defects and transient current-voltage behaviors (e.g. current-voltage hysteresis) has 

been actively studied. However, hard evidence and a consensus are still lacking in terms of the 

specific nature of the defects and their effects on performance and hysteresis, and perhaps even 

more importantly, there is absence of fundamental understanding of the correlations between the 

defects and long-term operational stability of the device. Thus, the nature of these defects and 

their associated physical models are still ambiguous, which has created difficulty in effectively 

handling defects in perovskites. 

The next level of efficiency and stability can be reached by focusing more on the 

fundamental nature of defects using experimental techniques to extract their identities. These 

defects can then be correlated to processing conditions, which will then help guide the research 

community in the proper direction, i.e. to know which defects are detrimental and what 
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processing parameters can be used to mitigate specific defects. Moreover, an effective strategy to 

further improve the longevity of these films and devices can be realized through molecular 

design of small molecules and polymers that can be used to form 2D perovskite phases and also 

assist in film growth and passivation. These molecules and polymers can be further tailored with 

more hydrophobic properties such as using fluorinated molecules and understanding which 

functional groups affect defect formation, passivation, and overall stability of the film. Similarly, 

new compositions preserving 3D symmetry can also be studied and realized via molecular design 

and synthesis, such as fluorinated cationic species with appropriate size, dipole moment, and 

functional groups. In addition, focus must be placed on the other components of the device to 

improve efficiency and stability, but in this dissertation I focus solely on the perovskite thin film. 

These types of directions ought to lead to a higher intrinsic stability and efficiency of the 

perovskite thin film, which will yield more reliable and efficient solar cell devices. 
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Chapter 8. Appendices 

A.1. Calculation of solar energy reaching Earth. 

*Calculation referenced from: Tsao, J., Lewis, N. & Crabtree, G. Solar FAQs. (2006) 

The solar constant (S0), also known as the total solar irradiance, is approximately 1370 W/m2 

or 1.37 kW/m2 as measured by satellites in space.  

This implies that the Sun is an emitting blackbody with a temperature, Tsun, of about 5800K. 

The cross-sectional area of the Earth irradiated by the Sun is: 

𝐴¸§v«« = 𝜋𝑟G 

The surface area of the Earth is:  

𝐴«,§4 = 4𝜋𝑟G 

Thus, the fraction of the solar constant received by Earth is: 

𝐴¸§v««
𝐴«,§4

∙ 𝑆Ó = 	
𝜋𝑟G

4𝜋𝑟G ∙ 𝑆Ó 		= 			
1
4 ∙ 1370	

𝑊
𝑚G 		= 		𝟑𝟒𝟐	

𝑾
𝒎𝟐 

However, about 30% of this flux is scattered and 19% absorbed by the Earth’s atmosphere 

and clouds. Therefore, the available amount reaching the Earth’s surface is: 

342 ∙ (1 − 0.49) = 𝟏𝟕𝟒.𝟒	
𝑾
𝒎𝟐 
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Integrating this average flux over the surface area of the Earth gives the total theoretical solar 

power received on Earth’s surface: 

𝑃�v�±¯ = ´174.4	
𝑊
𝑚G¶ ∙ (4𝜋𝑟

G) 

=	´174.4	
𝑊
𝑚G¶ ∙ 4𝜋(6378000	𝑚)

G = 𝟖𝟗,𝟑𝟎𝟎	𝐓𝐖	 

This means that in just 1.25 hours the Earth could supply all the energy needed for the entire 

year of 2018 (400.05 EJ)! 

If we have 10% efficient solar PV panels and 15 TW global power production requirements, 

then theoretically we would only need to cover a surface area 0.168% of Earth: 

𝐸𝑛𝑒𝑟𝑔𝑦	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑	𝑢𝑠𝑖𝑛𝑔	10%	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	𝑠𝑜𝑙𝑎𝑟	𝑝𝑎𝑛𝑒𝑙𝑠	 = 	0.10 ∙ (89,300	𝑇𝑊) = 8,930	𝑇𝑊 

	𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝐸𝑎𝑟𝑡ℎU𝑠	𝑠𝑢𝑟𝑓𝑎𝑐𝑒	𝑛𝑒𝑒𝑑𝑒𝑑	𝑡𝑜	𝑏𝑒	𝑐𝑜𝑣𝑒𝑟𝑒𝑑	𝑏𝑦	𝑠𝑜𝑙𝑎𝑟 =	
15	𝑇𝑊
8,930	𝑇𝑊 = 0.168% 

Therefore, the surface area needed would be: 

𝐴«,§4,§Vs = (0.168%) ∙ (4𝜋𝑟G) = 	 (0.17%) ∙ 4𝜋(6,378	𝑘𝑚)G = 𝟖𝟓𝟖,𝟕𝟗𝟐	𝒌𝒎𝟐 

This is roughly the size of Venezuela (882,050 km2). 

However, this assumes that all solar radiation is received 24 hours per day and does not take 

into account the number of peak solar hours seen per day. Thus, if we estimate a global 

average of 5 hours of peak sunlight per day, we have: 

5
24 ∙

(89,300	𝑇𝑊) = 18,601	𝑇𝑊 
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Now using a more realistic and appropriate 20% efficient panels, we get: 

𝐸𝑛𝑒𝑟𝑔𝑦	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑	𝑢𝑠𝑖𝑛𝑔	20%	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	𝑠𝑜𝑙𝑎𝑟	𝑝𝑎𝑛𝑒𝑙𝑠	 = 	0.20 ∙ (18,601	𝑇𝑊) = 3,720	𝑇𝑊 

	𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝐸𝑎𝑟𝑡ℎU𝑠	𝑠𝑢𝑟𝑓𝑎𝑐𝑒	𝑛𝑒𝑒𝑑𝑒𝑑	𝑡𝑜	𝑏𝑒	𝑐𝑜𝑣𝑒𝑟𝑒𝑑	𝑏𝑦	𝑠𝑜𝑙𝑎𝑟 =	
15	𝑇𝑊
3,720	𝑇𝑊 = 0.4032% 

Therefore, the surface area needed would be: 

𝐴«,§4,§Vs = (0.4032%) ∙ (4𝜋𝑟G) = 	 (0.4032%) ∙ 4𝜋(6,378	𝑘𝑚)G = 𝟐,𝟎𝟔𝟏,𝟏𝟎𝟏	𝒌𝒎𝟐 

This is roughly the size of Saudi Arabia (~2,000,000 km2). 

 




