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Abstract

Safe and Secure Optimization in Human-Cyber-Physical Systems

by

Berkay Turan

In our rapidly evolving technological landscape, the proliferation of enabling technologies

for autonomous systems has given rise to a burgeoning realm of societal-scale smart systems.

One noteworthy category within this domain is Human-Cyber-Physical Systems (H-CPS),

which encompass physical systems controlled by a blend of computer-based algorithms and

human inputs. Examples of H-CPS include the smart grid and autonomous transportation sys-

tems. These systems harness the potential of distributed computing units, fast communication

channels, and real-time data collection, offering efficient mechanisms for their management.

This requires a synthesis of tools from distributed optimization, machine learning, game theory,

and stochastic control.

However, the advent of H-CPS also presents novel challenges. Human decisions, often

stochastic and beyond direct control, must be factored into the developed mechanisms. More-

over, the dependable operation of H-CPS hinges on secure communication between physical

systems and computing units, raising concerns regarding user data privacy and system security.

The growing number of humans and devices generates copious amounts of data from sensing

units, necessitating computationally efficient data processing to ensure seamless H-CPS oper-

ation.

This thesis aims to design network control, optimization, and learning frameworks that

enhance safety, robustness, and efficiency in H-CPS, with practical applications in smart in-

frastructure systems like the power grid and transportation networks. Additionally, its rele-

vance extends to diverse Internet of Things applications, emphasizing user data privacy, such

ix



as the development of language models from text data. The thesis unfolds in three intercon-

nected chapters. In the first chapter, we introduce provably efficient and adversarially robust

multi-agent optimization algorithms tailored for distributed resource allocation and distributed

learning scenarios in the presence of malicious agents. Moving forward to the second chap-

ter, we aim to design prices for shared resources that do not violate hard (mainly physical)

constraints of the system, without any two-way communications with the users as common in

distributed optimization based methods. The third chapter focuses on crafting and analyzing

joint ride pricing and fleet management policies for the control of autonomous urban mobility

fleets. Throughout these chapters, we not only analyze the theoretical performance of our pro-

posed mechanisms but also substantiate their effectiveness through extensive simulations on

real-world problems.
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Chapter 1

Introduction

In our age of swiftly advancing technology led by artificial intelligence, the fusion of Human-

Cyber-Physical Systems (H-CPS) has paved the way for the development of transformative

societal-scale smart infrastructure systems. H-CPS are a class of complex systems that inte-

grate physical components, computational elements, and human decision-making. These sys-

tems are designed to operate and interact in the real world, connecting the digital and physical

realms, such as smart infrastructure systems, intelligent transportation systems, and the Inter-

net of Things. In H-CPS, the computational elements in the digital realm play a crucial role, as

their overarching goal is to continuously collect data from the physical realm and implement

efficient optimization algorithms for decision-making and learning to improve the performance

of the system.

The integration of optimization frameworks within H-CPS brings up novel challenges that

need to be addressed for the efficient and secure operation of such systems. As mentioned

earlier, efficient operation heavily depends on optimization, however, H-CPS are often multi-

agent systems respecting user privacy. This necessitates the optimization of the system to be

performed collaboratively and in a distributed fashion, where the users and the system operator

try to find the optimal operation parameters through back-and-forth communication with min-
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imum private information exchange. Accordingly, the success of optimization algorithms in

distributed setups relies on 1) trustworthy user behavior and 2) reliable communication chan-

nels. In case either user behavior or communication channels become corrupted (e.g., due

to corrupted user data in distributed learning setups or man-in-the-middle attacks to hack the

communication channels), then the operation of the H-CPS becomes compromised and security

becomes a major concern.

Furthermore, stochastic components of H-CPS (e.g., due to unpredictable and uncertain

human behavior) raise concerns about reliability and safety when optimizing the efficiency of

the systems. In systems where the operation has to abide by safety constraints but is also im-

pacted by human decisions that can not directly be controlled (e,g., demand response programs

where power grid safety is critical but power generation/consumption can only be impacted

through incentives), the optimization algorithms have to predict user behavior and account for

the uncertainties in order to ensure safety. Another application where uncertain behavior im-

pacts performance is ride-sharing systems, where the reliability of the system is measured by

customer demand fulfillment rate. The efficient and reliable operation of such transportation

systems depends on coupled optimization of ride prices and idle vehicle relocation decisions

while accounting for stochastic customer demand.

Given the aforementioned challenges inherently present in H-CPS, the purpose of this the-

sis is to develop state-of-the-art optimization, control, and learning frameworks for promoting

efficiency and security in societal-scale H-CPS, with applications in resource management

in smart infrastructure systems, intelligent transportation systems, and multi-user distributed

learning.

2
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1.1 Summary of Contributions

Safe and Robust Pricing for Distributed Resource Allocation

Security of optimization algorithms for distributed resource allocation is important for the

seamless operation of many safety-critical systems such as the electric power grid. The shared

goal in these systems is to allocate the resources to the users such that the total utility of the

users is maximized. However, the user-specific utilities for accessing the resources are private

information, and therefore a direct allocation of the resources by the provider is not possible.

Accordingly, distributed optimization methods have become suitable tools, where users de-

termine their resource consumption based on prices, and the prices are updated based on all

the users’ resource consumption levels. Because these resource allocation schemes are actual

physical systems with physical constraints (e.g., the capacity of a power line), the prices should

ensure that the users’ resource consumption will not overload the system (e.g., exceeding the

capacity of a power line might cause a fire). Without any two-way communication with the

users to access their private information (e.g., related to their private utility functions), de-

signing prices for resources that allow the users to freely determine their profit-maximizing

resource demand, while simultaneously meeting the hard constraints of the system, becomes

challenging. As such, this thesis proposes a safe pricing mechanism that induces user demand

always satisfying the constraints, while promoting efficient utilization of the resources.

In addition, such distributed optimization methods require reliable communication between

the users and the resource provider and can be affected severely when this communication be-

comes unreliable (e.g., the electricity meter of a household always reads 0 while the house

consumes a lot of power). In such cases, the resource provider might think that there are

under-utilized resources (while there are none) due to miscommunication and can decide to

reduce the prices, which in turn will cause the users to consume more resources. This will

cause an overload of the system and damage the physical hardware, which might lead to a seri-

3
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ous disaster. To prevent this, this thesis establishes robust distributed optimization algorithms

for resource allocation that are resilient to attacks and manipulations on the communication

channels.

Adversarially Robust Distributed Learning

Many learning applications such as image classification, which is one of the significant prob-

lems for autonomous driving, or language models, which are used applied for text prediction,

rely on user data. In such applications, the goal is to develop a model that optimizes a certain

performance metric on a given dataset. Due to privacy, it is not feasible to collect the user

data and create the globally optimal model in a centralized manner. Instead, the models are

optimized in a distributed fashion, where each user communicates the information on how to

update the global model to optimize the performance for their own data to a central machine,

which then aggregates the collective information to update the global model.

Given the distributed nature of this framework that heavily relies on trustworthy communi-

cation between the users and the central machine, security and robustness become major con-

cerns. If some of the users communicate corrupted information intentionally or unintentionally

due to corrupted data or cyber-attacks, the global model can become arbitrarily corrupted. Ac-

cordingly, this thesis proposes distributed optimization algorithms that are robust to corruptions

on the communicated information in multi-agent learning problems.

Fleets of Autonomous Electric Vehicles for Urban Mobility

Shared use of autonomous electric vehicles is a promising candidate for future urban mobility

thanks to the advancements in electric vehicle and autonomous driving technologies. With the

urban population projected to reach 60 percent of the world population by 2030, private cars are

widely recognized as unsustainable for the future of personal urban mobility. Unlike personal

vehicles that are operated by a driver to provide mobility services, shared autonomous vehicles

4
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can be controlled centrally, and idle vehicles can be efficiently relocated to locations with

demand without depending on the drivers’ decisions. Additionally, electric vehicles provide

opportunities for cheap and environment-friendly energy resources (e.g., solar energy). By

exploiting the temporal and geographical differences in electricity prices, the operation costs of

this fleet can be minimized. All in all, the deployment of a fleet of autonomous electric vehicles

enables more efficient transportation services at potentially lower costs compared to the current

services, which would benefit both the customers and the service provider. However, these

benefits would heavily depend on optimally controlling the fleet for routing and charging and

optimally determining the ride prices. Therefore, it is crucial to develop controllers that can

make real-time decisions by adapting to the uncertainties and changes in the environment. To

this end, this thesis proposes reinforcement-learning based control policies for control of such

fleets.

Additionally, this thesis offers a rigorous theoretical analysis of duopolistic competition

involving two firms offering transportation services through autonomous electric vehicle fleets.

The derived closed-form mathematical expressions quantify the competition’s effects on ride

prices, firm profits, aggregate demand served, and consumer surplus. These findings can assist

investors in making informed decisions about competing platforms and efficient urban mobility

technology investments.

5
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1.2 Chapter Overviews

Chapter 1

Chapter 1 presents the motivations for this thesis, summary of main contributions, and chapter

overviews.

Chapter 2

Chapter 2 presents results on robust distributed optimization algorithms in presence of mali-

cious agents.

Section 2.2 studies attack-resilient distributed algorithms for resource allocation systems

based on primal-dual optimization when Byzantine attackers are present in the system. In par-

ticular, we design attack-resilient primal-dual algorithms for static and dynamic impersonation

attacks by means of robust statistics. For static impersonation attacks, we formulate a robusti-

fied optimization model and show that our algorithm guarantees convergence to a neighborhood

of the optimal solution of the robustified problem. On the other hand, a robust optimization

model is not required for the dynamic impersonation attack scenario and we are able to de-

sign an algorithm that is shown to converge to a near-optimal solution of the original problem.

We analyze the performances of our algorithms through both theoretical and computational

studies.

Section 2.3 proposes a first-order distributed optimization algorithm tailored to learning

applications that is provably robust to Byzantine failures—arbitrary and potentially adversarial

behavior, where all the participating agents are prone to failure. We model each agent’s state

over time as a two-state Markov chain that indicates Byzantine or trustworthy behaviors at

different time instants. We set no restrictions on the maximum number of Byzantine agents

at any given time. We design our method based on three layers of defense: 1) temporal ro-

bust aggregation, 2) spatial robust aggregation, and 3) gradient normalization. We study two

6
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settings for stochastic optimization, namely Sample Average Approximation and Stochastic

Approximation. We provide convergence guarantees of our method for strongly convex and

smooth non-convex cost functions and provide numerical evidence demonstrating the efficacy

and robustness of RANGE in the proposed setting.

Chapter 3

Chapter 3 introduces a novel algorithm for solving network utility maximization (NUM) prob-

lems that arise in resource allocation schemes over networks with known safety-critical con-

straints, where the constraints form an arbitrary convex and compact feasible set. Inspired by

applications where customers’ demand can only be affected through posted prices and real-

time two-way communication with customers is not available, we require an algorithm to gen-

erate “safe prices”. This means that at no iteration should the realized demand in response

to the posted prices violate the safety constraints of the network. Thus, in contrast to exist-

ing distributed first-order methods, our algorithm, called safe pricing for NUM (SPNUM), is

guaranteed to produce feasible primal iterates at all iterations. At the heart of the algorithm lie

two key steps that must go hand in hand to guarantee safety and convergence: 1) applying a

projected gradient method on a shrunk feasible set to get the desired demand, and 2) estimating

the price response function of the users and determining the price so that the induced demand

is close to the desired demand. We ensure safety by adjusting the shrinkage to account for the

error between the induced demand and the desired demand. In addition, by gradually reducing

the amount of shrinkage and the step size of the gradient method, we prove that the primal

iterates produced by the SPNUM achieve a sublinear static regret of O(log (T )) after T time

steps.

Chapter 4

Chapter 4 presents studies on the use of fleets of autonomous electric vehicles for urban mo-

7
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bility.

Section 4.2 considers the joint routing, battery charging, and pricing problem faced by a

profit-maximizing transportation service provider that operates a fleet of autonomous electric

vehicles. We first establish the static planning problem by considering time-invariant system

parameters and determine the optimal static policy. While the static policy provides stability

of customer queues waiting for rides even if consider the system dynamics, we see that it is

inefficient to utilize a static policy as it can lead to long wait times for customers and low prof-

its. To accommodate for the stochastic nature of trip demands, renewable energy availability,

and electricity prices and to further optimally manage the autonomous fleet given the need to

generate integer allocations, a real-time policy is required. The optimal real-time policy that

executes actions based on full state information of the system is the solution of a complex dy-

namic program. However, we argue that it is intractable to exactly solve for the optimal policy

using exact dynamic programming methods and therefore apply deep reinforcement learning

to develop a near-optimal control policy. The two case studies we conducted in Manhattan and

San Francisco demonstrate the efficacy of our real-time policy in terms of network stability and

profits, while keeping the queue lengths up to 200 times less than the static policy.

Section 4.3 investigates the impacts of competition in autonomous mobility-on-demand

systems. By adopting a network-flow based formulation, we first determine the optimal strate-

gies of profit-maximizing platform operators in monopoly and duopoly markets, including the

optimal prices of rides. Furthermore, we characterize the platform operator’s profits and the

consumer surplus. We show that for the duopoly, the equilibrium prices for rides have to be

symmetric between the firms. Then, in order to study the benefits of introducing competition

in the market, we derive universal theoretical bounds on the ratio of prices for rides, aggregate

demand served, profits of the firms, and consumer surplus between the monopolistic and the

duopolistic setting. We discuss how consumers’ firm loyalty affects each of the aforementioned

metrics. Finally, using the Manhattan network and demand data, we quantify the efficacy of

8
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static pricing and routing policies and compare them to real-time model predictive policies.

Chapter 5

Chapter 5 presents the conclusions of this thesis and future directions.

9



Chapter 2

Adversarially Robust Multi-Agent

Distributed Optimization Algorithms

2.1 Introduction

This chapter delves into the intricate intersection of distributed optimization and security,

with a specific emphasis on its robustness within the context of cyber-physical systems. Our

exploration encompasses a wide spectrum of multi-agent distributed optimization frameworks,

including resource allocation systems that fall under the general umbrella of Network Utility

Maximization (NUM) problems as well as distributed learning.

The NUM problems manifest in diverse domains, ranging from the classic example of

congestion control in data networks [14] to the optimization of electricity pricing and demand-

supply balancing in smart power distribution networks [15, 16]. Additionally, they extend to

user transmission management in wireless cellular networks [17, 18], optimal caching policies

by content delivery networks [19], and power optimization in energy-restricted wireless sensor

networks [20, 21], along with congestion control systems in urban traffic networks [22]. In

these contexts, the common objective is to minimize the aggregate cost functions of N users

10
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while adhering to coupling constraints, all while preserving the privacy of user-specific cost

functions and coordination constraints. Scholars have advocated the use of primal-dual opti-

mization methods in these distributed scenarios, as they naturally facilitate decomposable algo-

rithms conducive to distributed implementation [23]. Notably, these methods enjoy both prac-

tical success and strong theoretical foundations, ensuring rapid convergence to near-optimal

solutions [24]. In addition, distributed optimization has emerged as an attractive tool for schol-

ars in the field of distributed learning, owing to its applicability in large-scale data processing,

privacy preservation, and the potential for parallel algorithm execution [25, 26, 27].

Nevertheless, the inherent distributed nature of these methods, involving physically sepa-

rated servers or agents connected over networks, exposes the system to vulnerabilities distinct

from their traditional centralized counterparts [28]. Ensuring the robustness and security of

distributed methods becomes imperative when evaluating algorithmic performance [26]. In

a centralized system, one can typically rely on data cleanliness, faultless computation, and

the presence of reliable hardware, with minimal communication requirements. Conversely,

distributed algorithms often make assumptions of trustworthy data, error-free computation,

and dependable communication channels. Additionally, privacy constraints may preclude data

corruption checks, and the distributed computing infrastructure can increase the likelihood of

encountering faulty hardware, such as personal devices [29]. Moreover, unreliable commu-

nication can occur due to factors like noisy wireless communication or, more critically, due

to man-in-the-middle adversarial attacks. In man-in-the-middle attacks, adversaries can take

control of network sub-systems and manipulate the information exchanged between machines,

potentially obstructing convergence to optimal solutions, as seen in Byzantine attacks [30].

In this chapter, we focus on designing robust distributed optimization algorithms for sce-

narios where communication channels are susceptible to adversarial attacks. These attacks can

compromise the stability of distributed systems, potentially leading to hardware damage and

system-wide disruptions. Our objective is to illuminate strategies for enhancing the resilience

11
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and security of distributed optimization algorithms for resource allocation (Section 2.2) and

learning (Section 2.3) while bridging the gap between theoretical foundations and practical

implementation in the face of these multifaceted challenges.

12
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2.2 Resilient Primal-Dual Optimization Algorithms for Dis-

tributed Resource Allocation

In this section, our goal is to design attack-resilient primal-dual algorithms in order to

solve multi-agent resource allocation problems in presence of Byzantine attackers. If a com-

munication channel is attacked and becomes compromised, the attacker can modify messages

and/or inject fresh messages into the network on the agents’ behalf. We consider two scenarios

with different attacker capabilities. A static impersonation attack scenario considers the set

of agents communicating through compromised channels to be the same for the duration of

the algorithm, whereas a dynamic impersonation attack scenario considers the case where all

agents are susceptible to attacks and hence communicate through compromised channels for a

limited fraction of the algorithm’s runtime. Our main contributions are as follows:

• We propose resilient distributed resource allocation algorithms under the two aforemen-

tioned attack scenarios that rely on robust mean estimation.

• We provide convergence guarantees of the proposed algorithms. We show that our algo-

rithm for the dynamic impersonation attack scenario converges to the optimal solution

of the regularized problem, while our algorithm for the static impersonation attack sce-

nario converges to an O(α2
1) neighborhood of the optimal solution of a robustified and

regularized optimization model, where α1 ∈ [0, 1
2
) is a known upper bound on fraction

of attacked channels.

• We provide empirical evidence that supports our theoretical results on convergence and

preventing constraint violation. We do so via computational simulations on electric ve-

hicle charging and power distribution applications.

Related work: Vulnerabilities of various types of distributed algorithms have been identified

and addressed in a number of recent studies. Relevant examples can be found in [31, 32, 33, 34,
13
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35, 36, 37, 38, 39] which study secure decentralized algorithms on a general network topology

but consider consensus-based optimization models. There are two fundamental differences

between distributed resource allocation and consensus problems that make these algorithms

inapplicable in our case:

• In resource allocation problems, each agent is solving for their own optimal level of

resource consumption, i.e., each agent is solving for their own parameter, whereas con-

sensus problems focus on all agents solving for a shared (global) parameter.

• Unlike resilient consensus algorithms, in resource allocation problems pertaining to ac-

cess to critical infrastructure systems such as power or transportation networks, one can-

not simply block a set of users’ access to the network even if they are deemed likely to

be attackers.

A recently popular line of works in [40, 41, 42, 43, 44] focuses on building resilient algorithms

for distributed statistical learning. A crucial difference from the work presented in this section

is that they assume identical functions across the agents. In fact, we employ robust statistics

[45, 46] to develop our resilient algorithms, and particularly, we develop novel results for robust

mean estimation, a topic that is recently rekindled in [47, 48, 49].

Organization: In Subsection 2.2.1, we provide an overview of the basic primal-dual algorithm

for resource allocation. In Subsection 2.2.2, we formally define two Byzantine attack models

and demonstrate how Byzantine attacks can alter the primal-dual optimization procedure. In

Subsection 2.2.3, we present two attack-resilient primal-dual algorithms corresponding to the

different attack scenarios along with their convergence analysis. In Subsection 2.2.4, we pro-

vide numerical results for our algorithms.

Notations. Unless otherwise specified, ∥ · ∥ denotes the standard Euclidean norm. For any

N ∈ N, [N ] denotes the finite set {1, ..., N}. Given θ, θi indicates the i’th block/entry of θ

that corresponds to the parameter of agent i. θi,j denotes the j’th element of vector θi.
14
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Algorithm 1: PD-DRA Procedure.
1: for k = 1, 2, ... do
2: (Communication stage):

(a) Central coordinator receives {θ(k)
i }Ni=1 from agents and computes

θ
(k)

:= 1
N

∑N
i=1 θ

(k)
i , {∇θgt(θ

(k)
)}Tt=1.

(b) Central coordinator broadcasts the vector g(k) :=
∑T

t=1 λ
(k)
t ∇θgt(θ

(k)
).

3: (Computation stage):

(a) Agent i computes the update for θ(k+1)
i according to (2.4a) using the received

g(k).

(b) The central coordinator computes the update for λ(k+1) according to (2.4b).

4: end for

2.2.1 Overview of Primal-Dual Algorithm for Resource Allocation

We consider the following multi-agent optimization problem with an objective to minimize

the average cost incurred by the agents, subject to a set of constraints that are functions of the

average of the agents’ parameters:

min
θi∈Rd,∀i

f(θ) :=
1

N

N∑
i=1

fi(θi)

subject to gt

(
1
N

∑N
i=1 θi

)
≤ 0, t = 1, . . . , T,

θi ∈ Ci, i = 1, . . . , N,

(2.1)

where fi(·) : Rd → R is the continuously differentiable and convex cost function of agent i and

gt(·) : Rd → R are continuously differentiable and convex set of constraints. The parameter θi

of agent i is constrained to be in a compact convex set Ci ∈ Rd.

Running Example 2.2.1 (Resource Allocation Problem) Throughout the rest of this section,

we use the following toy example as a running example to clarify the concepts and the meth-
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ods: We consider an EV charging example with 5 agents. The cost function fi(·) is monotone

decreasing and is the same for all agents. As an example, we set fi(θi) = (θi − 10)2 as the

quadratic cost function which is monotonically decreasing for 0 ≤ θi ≤ 10. There is a charg-

ing station with 5 EV charging points, three of which have a maximum charging rate of 7kW,

and two have a rate of 10kW. The total rate at which the charging station is able to deliver

electricity is determined by the grid, and let it be upper bounded by 25kW (hence, the average

rate is upper bounded by 25
5
= 5kW). Accordingly, the constraints of this system are stated as:

g
(
(1/5)

∑5
i=1 θi

)
:= (1/5)

∑5
i=1 θi − 5 ≤ 0,

0 ≤ θi ≤ 7, i = 1, 2, 3,

0 ≤ θi ≤ 10, i = 4, 5.

Note that θ is a real number, hence dimension d = 1. The optimal solution in this example is

to deliver electricity at a rate of 5kW to all agents due to symmetry.

The optimization problem in (2.1) can not be solved centrally, because the utility functions

fi(·) are private to the agents, and furthermore the coupling constraints on the resources are

only known by a central coordinator. Accordingly, the goal of the primal-dual distributed re-

source allocation (PD-DRA) procedure in Algorithm 1 is to solve (2.1) in a distributed manner,

where the agents observe a pricing signal received from the central coordinator and communi-

cate their parameters to the central coordinator [24]. Consequent to this information exchange,

the pricing signal and the agents’ parameters are updated by the central coordinator and by the

individual agents, respectively.

In order to derive the update rules used by Algorithm 1, we first consider the Lagrangian
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function of (2.1):

L({θi}Ni=1;λ) :=
1

N

N∑
i=1

fi(θi) +
T∑
t=1

λtgt

( 1

N

N∑
i=1

θi

)
, (2.2)

where λt ≥ 0 is the dual variable associated with constraint gt(·) and λ = [λ1 . . . λT ]
⊺ ∈ RT

+ is

the vector of the dual variables. Under strong duality (e.g., when the Slater’s condition holds),

solving problem (2.1) is equivalent to solving its dual problem:

max
λ∈RT

+

min
θi∈Ci,∀i

L({θi}Ni=1;λ). (P)

As suggested in [24], we consider a regularized version of (P). Let us define

Lυ({θi}Ni=1;λ) := L({θi}Ni=1;λ) +
υ
2N

∑N
i=1 ∥θi∥2 − υ

2
∥λ∥2, (2.3)

such that Lυ(·) is υ-strongly convex and υ-strongly concave in {θi}Ni=1 and λ, respectively.

Remark 2.2.1 Adding regularization terms is a typical technique used in optimization, called

dual smoothing[50]. We add the regularization terms for the purposes of convergence analysis

used in this section, which can be applied to strongly convex/concave functions. Indeed adding

the regularization terms might change the solution of the original optimization problem. How-

ever, as explained in [51, Proposition 5.2], by an appropriate selection of the regularization

parameters, we can recover an optimality gap guarantee for the original problem based on the

solution to the regularized problem.

We define the regularized problem as:

max
λ∈RT

+

min
θi∈Ci,∀i

Lυ({θi}Ni=1;λ). (Pυ)

17



Adversarially Robust Multi-Agent Distributed Optimization Algorithms Chapter 2

Let γ > 0 be the step size and k ∈ Z+ be the iteration index. The primal-dual recursion

performs projected gradient descent/ascent on the primal/dual variables as follows:

θ
(k+1)
i = PCi

(
θ
(k)
i − γ∇θiLυ({θ(k)

i }Ni=1;λ
(k))
)
, ∀i ∈ [N ], (2.4a)

λ(k+1) =
[
λ(k) + γ∇λLυ({θ(k)

i }Ni=1;λ
(k))
]
+
, (2.4b)

where PCi(·) is the Euclidean projection operator to set Ci and [·]+ denotes max{·, 0} operator.

According to (2.3), the gradients with respect to (w.r.t.) the primal and the dual variables are

given respectively by:

∇θiLυ({θ(k)
i }Ni=1;λ

(k)) =
1

N

(
∇θifi(θ

(k)
i ) + υθ

(k)
i

+
∑T

t=1 λ
(k)
t ∇θgt(θ)

∣∣∣
θ= 1

N

∑N
i=1 θ

(k)
i

)
,

(2.5a)

[
∇λLυ({θ(k)

i }Ni=1;λ
(k))
]
t
= gt

(
1
N

∑N
i=1θ

(k)
i

)
− υλ(k)t , (2.5b)

for all i, t. It is worthwhile to highlight that both gradients depend on the average parameter

θ
(k)

:= 1
N

∑N
i=1 θ

(k)
i . From the above equations (2.5a) and (2.5b), we can determine which

variables should be communicated between the central coordinator and the agents so that the

gradients can be computed locally, see Algorithm 1.

Since the regularized primal-dual problem is strongly convex/concave in primal/dual vari-

ables, Algorithm 1 converges linearly to the optimal solution of (Pυ) [24]. To study this, let

us concatenate the primal and the dual variables and denote z(k) := ({θ(k)
i }Ni=1,λ

(k)) as the

primal-dual variable at the kth iteration and define the mapping Φ(z(k)) as:

Φ(z(k)) :=

 ∇θLυ({θ(k)
i }Ni=1,λ

(k))

−∇λLυ({θ(k)
i }Ni=1,λ

(k))

 . (2.6)
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Proposition 2.2.1 [24, Theorem 3.5] Assume that the map Φ(z(k)) is LΦ Lipschitz continuous.

For all k ≥ 1, we have

∥z(k+1) − z⋆∥2 ≤ (1− 2γυ + γ2L2
Φ)∥z(k) − z⋆∥2, (2.7)

where z⋆ is a saddle point to the (Pυ). Setting γ = υ/L2
Φ gives

∥z(k+1) − z⋆∥2 ≤
(
1− υ2/L2

Φ

)
∥z(k) − z⋆∥2,

∀ k ≥ 1.

2.2.2 Problem Formulation

Even though the PD-DRA provides strong theoretical convergence guarantee, it relies on

error-free communication between the central coordinator and the agents, and is not robust to

attacks on the channels between the agents and the central coordinator, as described below.

We study a situation when the uplink communication channels between some of the agents

and the central coordinator are compromised.1 Let A(k) ⊂ [N ] be the set of agents commu-

nicating through compromised uplink channels at iteration k, whose identities are unknown to

the central coordinator, and letH(k) := [N ] \ A(k) be the set of agents communicating through

trustworthy uplink channels at iteration k. Instead of receiving θ
(k)
i from each agent i ∈ [N ] at

1The work presented in this section studies the case where only uplink channels are compromised. However,
the case of downlink corruption can also be addressed. Since the downlink channel is a broadcast channel, a
compromised downlink channel results in no agent receiving a trustworthy pricing signal. In that case, there is
no optimization method based solution to that problem since there is no communication. If we assume however
that all the downlink channels are point-to-point between the central coordinator and each agent, the methods
developed in this section can be applied in a similar fashion.
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(a) A static impersonation attack scenario, agents 4 and 5 are permanently communicating through
compromised channels.

(b) A dynamic impersonation scenario, where the set of agents communicating through compromised
channels are changing.

Figure 2.1: Illustration of (a) static impersonation attack, and (b) dynamic impersonation at-
tack. Blue arrows represent trustworthy channels, whereas red arrows represent compromised
channels.

iteration k (Algorithm 1 Step 2(a)), the central coordinator receives the following messages:

r
(k)
i =


θ
(k)
i , if i ∈ H(k),

b
(k)
i , if i ∈ A(k).

(2.8)

We consider a Byzantine attack scenario, under which the messages sent through the compro-

mised channels, b(k)i , can be chosen arbitrarily by an adversary. This also encompasses faulty

messages due to erroneous inputs or erroneous channels, since we set no restrictions on b
(k)
i .

The adversary’s goal is to harm the system and cause suboptimalities. When the messages are

erroneous or chosen adversarily, the central coordinator computes the gradients and therefore

the pricing signal using these erroneous messages. The agents then update their parameters

based on this erroneous pricing signal, which can lead to an overall suboptimal resource allo-

cation. Moreover, the choice of the compromised channelsA(k) affects the impact of the attack
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and the precautions to be taken in order to defend against the attack. As such, we study two

Byzantine attack scenarios that differ in the set of the compromised channels as illustrated in

Figure 2.1.

Running Example 2.2.2 (Byzantine Attack) Let agent 1 be communicating through a com-

promised channel at all iterations, i.e., A(k) = {1}, ∀k. The compromised message sent to

the central coordinator is b
(k)
1 = 1kW, ∀k. This means that irrespective of θ(k)

1 , the central

coordinator receives a message indicating agent 1 is willing to charge at rate of 1kW.

2.2.2.1 Attack scenarios

1. A static impersonation attack, where an adversary takes over a subset of uplink chan-

nels permanently and the set of agents communicating through compromised channels

is fixed (i.e., A(k) = A, ∀k). Consequently, the central coordinator is never able to

communicate reliably with agents i ∈ A. In this case, it is not feasible to optimize the

original problem (P) since the contribution from f(θi) : i ∈ A becomes unknown to

the central coordinator. Yet, we assume that it is also not possible to deny access to re-

sources to agents who are suspected of potentially being under attack. As a compromise,

we formulate the following optimization problem:

min
θi∈Ci,i∈H

f(θ) :=
1

N

∑
i∈H

fi(θi)

subject to max
θj∈Cj ,j∈A

gt

(
1
N

∑N
i=1 θi

)
≤ 0, ∀t ∈ [T ].

(2.9)

The objective of (2.9) is to minimize the cost of the agents with trustworthy channels

subject to a robust set of constraints that consider the worst case scenario, in which the

parameters of the agents with compromised channels are assumed to be maximizing the

constraints (e.g., those agents are assumed to be consuming the maximum amount of

resources). It is critical to mention that during a primal-dual algorithm scheme, the mes-
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sages received through the compromised channels can be anything. The robust approach

is to however ignore those messages, and assume that the parameters of the agents com-

municating through those channels are maximizing the constraints so that the operation

of the system is feasible under any circumstance. Our goal is to develop an attack-

resilient PD-DRA to solve the robust optimization problem (2.9).

Running Example 2.2.3 (Robust Optimization Model) Since agent 1 is sending a com-

promised message of 1kW and their true parameter can be anything, the worst-case ap-

proach is to assume that they are charging at the maximum rate, which is 7kW for that

agent. Hence, the robust constraint is:

max
θj∈Cj ,j∈A

g

(
1

5

5∑
i=1

θi

)
= max

θj∈Cj ,j∈A

1

5

5∑
i=1

θi − 5

=
1

5

∑
i∈H

θi + max
θj∈Cj ,j∈A

1

5

∑
j∈A

θj − 5 =
4

5
θH − 3.6,

where we used |H| = 4 and the notation θH = 1
|H|
∑

i∈H θi. The robust constraint states

that:

4

5
θH − 3.6 ≤ 0⇒ θH ≤ 4.5.

The optimal solution in this case is to deliver electricity at a rate of 4.5kW to the trustwor-

thy agents. Since the compromised agent has the same cost function, their true charging

rate will also be 4.5kW, even though the message sent is 1kW and the central coordinator

assumes their charging rate is 7kW.

2. A dynamic impersonation attack, where all the agents might be affected by the adver-

sarial attacks but only for a limited fraction of time and hence, the set of agents commu-

nicating through compromised channels A(k) has to dynamically change with iteration
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Figure 2.2: Illustration of basic PD-DRA algorithm failure under static impersonation attack.
(a) The agents’ parameters do not converge, (b) the objective function does not converge and
moreover there is constraint violation. We only display one constraint for brevity.

k. As opposed to the static case, this scenario considers the case where the central co-

ordinator is able to communicate reliably with all the agents at some iterations. Due to

this distinction, it is necessary to mention that the static attack is not a special case of the

dynamic attack and both scenarios are distinguishable from each other. The dynamic sce-

nario could be applicable when agents do not have dedicated communication channels to

the central coordinator and instead communicate over random access systems which are

more appropriate for distributed deployments. Hence, each user periodically accesses

authenticated network devices/subsystems that are controlled by Byzantine adversaries

and can alter the user’s message. Our goal is to develop an attack-resilient PD-DRA

algorithm that can still solve the original regularized problem (Pυ) in this environment.

2.2.2.2 Limitations of the Basic PD-DRA Algorithm

Applying the basic PD-DRA algorithm under a Byzantine attack scenario can lead to

undesirable outcomes. Recall that the gradients in (2.5) depend on the average parameter
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θ
(k)

. Under a Byzantine attack scenario, if the central coordinator forms the naive average

θ̃(k) = (1/N)
∑N

i=1 r
(k)
i and computes the gradients ∇gt(θ̃(k)) accordingly, this may result in

large error since the deviation θ̃(k) − (1/N)
∑N

i=1 θ
(k)
i can be large (proportional to the maxi-

mum diameter of Ci’s). This in turn can obstruct convergence and also overload the system by

causing constraint violations.

Running Example 2.2.4 (Basic PD-DRA Failure) If the central coordinator believes all the

agents are sending trustworthy information, then the optimal solution will occur when one

agent is demanding 1kW and the others are demanding 6kW (so that the average is 5kW).

But since the 1kW message is compromised and all the agents have same cost function, the

compromised agent’s true electricity demand is also at a rate of 6kW. Hence, the solution

delivers electricity at an average rate of 6kW, which is infeasible.

We preview our numerical result of applying the basic PD-DRA method under a static im-

personation attack scenario for an optimal electric vehicle charging application in Figure 2.2.

For constraint gt(·), we define constraint violation as max{0, gt(θ
(k)
)}. Observe that the PD-

DRA method does not provide convergence and the first constraint is being violated. From

resource allocation perspective, this means that the agents are asking to consume more re-

sources than the available amount in the system, which is infeasible. For details regarding the

experimental setup, please see Subsection 2.2.4.

2.2.3 Resilient PD-DRA Algorithms

Motivated by the failure of the basic PD-DRA procedure under Byzantine attack scenarios,

resilient PD-DRA algorithms are necessary to optimize multi-agent systems in a distributed

manner when the system is susceptible to attacks. We hold the following assumption to be

true throughout the rest of this section and propose two different attack resilient PD-DRA

algorithms corresponding to the different attack scenarios outlined in Subsecton 2.2.2.
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Assumption 2.2.1 For all θ ∈ Rd and for all t, the gradient of gt is bounded with ∥∇gt(θ)∥≤B

and is L-Lipschitz continuous. Moreover, since maximum resource that can be consumed by

an agent is bounded due to limited amount of resources, we let 0 ∈ Ci and upper bound the

diameters of Ci by R:

max
θ,θ′∈Ci

∥θ − θ′∥ ≤ R, i = 1, ..., N. (2.10)

Running Example 2.2.5 (Assumptions) The constraint in our running example satisfies that

∇g(θ) = 1, which is bounded by B = 1 and is L = 0-Lipschitz continuous. Since the

maximum charging rate is upper bounded by 7kW for three of the agents and by 10kW for two

of the agents, R = 10.

2.2.3.1 Static Impersonation Attack

Under this attack scenario, given the complete lack of any credible information on the re-

source consumption parameters of the agents that permanently communicate through compro-

mised channels, the central coordinator can only hope to solve the robust optimization model

defined in (2.9) instead. This formulation considers a worst-case scenario on how much re-

sources the compromised agents will consume, which ensures constraint satisfaction in all

cases. However, the constraints in (2.9) require the knowledge of the set A and the sets

Cj,∀j ∈ A, yet the central coordinator lacks this information.

Hence, in order to develop a robust optimization model that can handle the worst-case

scenario without the knowledge of A, we let α1 ≥ |A|/N as a known upper bound to the

fraction of agents communicating through compromised channels and assume α1 < 1/2,

where less than half of the agents are communicating through compromised channels.2 Let

θH := 1
|H|
∑

i∈H θi be the mean of the agent’s parameters that are sent through trustworthy

2If more than half of the agents communicate through compromised channels, then the adversary controls the
majority and therefore the median, which will be used to estimate the average parameter later in this section. In
that case, there is no optimization based solution the central coordinator can implement in order to securely run
the system.
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channels. We then define the following set of constraints

gt(θ) := gt(θ) + α1

(
RB + 1

2
LR2

)
, (2.11)

and formulate a conservative approximation of (2.9):

Lemma 2.2.1 Under Assumption 2.2.1 the following problem yields a conservative approxi-

mation of (2.9), i.e., its feasible set is a subset of the feasible set of (2.9):

min
θi∈Ci,i∈H

1

N

∑
i∈H

fi(θi)

subject to gt
(
(1− α1)θH

)
≤ 0, ∀ t ∈ [T ],

(2.12)

The proof can be found in Appendix A.1.1.

Remark 2.2.2 The proof of Lemma 2.2.1 is done by upper bounding constraints of (2.9) using

Assumption 2.2.1 and the fact that α1 ≥ |A|/N . The looser these upper bounds compared to

the true values, the more conservative is (2.12). This approach potentially leaves less resources

available to the agents communicating through trustworthy channels by assuming more than

|A| number of agents having maximum possible impact on the constraints, irrespective of their

set Ci or the true value/gradient of the constraints.

Running Example 2.2.6 (Conservative Approximation) With B = 1, L = 0, and R = 10,

the conservative approximation of the running example has the following constraint:

g((1− α1)θH) = g((1− α1)θH) + α1(RB +
1

2
LR2)

= (1− α1)θH − 5 + 10α1

If α1 = |A|/N = 0.2, then the upper bound is the fraction of compromised channels. In that

26



Adversarially Robust Multi-Agent Distributed Optimization Algorithms Chapter 2

case, the constraint is:

0.8θH − 3 ≤ 0⇔ θH ≤ 3.75,

which is more conservative compared to the constraint of the robust optimization model (which

was θH ≤ 4.5). The optimal solution in this case is to deliver electricity at a rate of 3.75kW

to the agents. The conservatism arises due to the difference between agent-specific maximum

charging rate 7kW and the absolute maximum charging rate 10kW. Since the constraint is

linear, the gradient is constant. Hence, the smoothness and Lipschitz bounds hold with equality

without causing additional conservatism.

If however α1 = 0.4, then the central coordinator assumes two agents communicating through

compromised channels. In this case the conservative approximation has the constraint as

0.6θH − 1 ≤ 0⇔ θH ≤
5

3
,

which results in charging at an even slower rate since the central coordinator has to be robust

against two agents charging at the maximum rate of 10kW.

To develop an attack resilient PD-DRA algorithm, we again define the regularized La-

grangian function of (2.12):

Lυ({θi}i∈H;λ;H) := 1
N

∑
i∈Hfi(θi) +

∑T
t=1λtgt

(
(1− α1)θH

)
+ υ

2N

∑
i∈H ∥θi∥2 − υ

2
∥λ∥2.

(2.13)

The above function is (1 − α1)υ-strongly convex and concave in θ and λ, respectively (since

(1 − α1) ≤ |H|
N
≤ 1). Our main task is to tackle the following modified problem of (P) under
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Byzantine attack on (some of) the uplinks:

max
λ∈RT

+

min
θi∈Ci,∀i∈H

Lυ({θi}i∈H;λ;H). (P′
υ)

Notice that (P′
υ) bears a similar form as (P) and thus one may apply the PD-DRA method to

the former. The gradients with respect to primal/dual variables are given by:

∇θiLυ({θ(k)
i }i∈H;λ(k);H) = 1

N

(
∇θifi(θ

(k)
i ) + υθ

(k)
i ,

+ (1−α1)N
|H|

∑T
t=1 λ

(k)
t ∇θgt(θ)

∣∣∣
θ=(1−α1)θ̄

(k)
H

)
,∀i ∈ H,

(2.14a)

[
∇λLυ({θ(k)

i }i∈H;λ(k);H)
]
t
= gt

(
(1− α1)θ

(k)

H

)
− υλ(k)t . (2.14b)

However, such application requires the central coordinator to compute the sample average

θ
(k)

H = 1
|H|
∑

i∈H θ
(k)
i , (2.15)

at each iteration. The above might not be computationally feasible under the attack model,

since the central coordinator is oblivious to the identity of H. As a solution, the central coor-

dinator computes the robust mean θ̂
(k)
H of the received parameters {r(k)

i }i∈[N ] using a median-

based mean estimator described next.

Overview of Median-Based Mean Estimation

Consider a set of N vectors {xi ∈ Rd}Ni=1, among which at least (1 − α1)N are trustworthy

(xi ∈ H) and at most α1N are compromised (xi ∈ A). We consider a simple median-based

estimator applied to each coordinate j = 1, . . . , d. First, define the coordinate-wise median as:

[xmed]j = med
(
{[xi]j}Ni=1

)
,
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where med(·) computes the median of the operand. Then, our estimator is computed as the

mean of the nearest (1− α1)N neighbors of [xmed]j . Our estimator is:

[x̂H]j =
1

(1−α1)N

∑
i∈Nj

[xi]j, (2.16)

where we have defined the set with |Nj| = (1− α1)N as:

Nj = {i ∈ [N ] :
∣∣[xi − xmed

]
j

∣∣ ≤ rj},

such that rj is chosen to satisfy |Nj| = (1− α1)N .

The following bounds the performance of (2.16):

Proposition 2.2.2 Let xH be the mean of the trustworthy vectors. Suppose that

max
i∈H
∥xi − xH∥∞ ≤ r

, then for any α1 ∈ (0, 1
2
), it holds that:

∥x̂H − xH∥ ≤
2α1

1− α1

1 +

√
(1− α1)2

1− 2α1

 r
√
d. (2.17)

The proof can be found in Appendix A.1.2. We note that for sufficiently small α1, the

right hand side on (2.17) can be approximated by O(α1r
√
d). Using this median-based mean

estimator, we propose the robust PD-DRA algorithm as follows.

Robust PD-DRA Algorithm

We summarize the static impersonation attack resilient PD-DRA method in Algorithm 2. The

algorithm behaves similarly as Algorithm 1 applied to (P′
υ), with the exception that the cen-

tral coordinator is oblivious to H, and it uses a robust mean estimator to find an approximate
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Algorithm 2: Robust PD-DRA Algorithm

1: Input: Each agent has initial state θ
(0)
i .

2: for k = 1, 2, ... do
3: (At the Central Coordinator):

(a) Receives {r(k)
i }Ni=1, see (2.8), from agents.

(b) Computes robust mean θ̂
(k)
H using the estimator (2.16).

(c) Broadcasts the vector ĝ(k)
H :=

∑T
t=1 λ

(k)
t ∇θgt((1− α1)θ̂

(k)
H ) to agents.

(d) Computes the update for λ(k+1) with (2.18b).

4: (At each agent i∈ H):

(a) Agent receives ĝ(k)
H .

(b) Agent computes update for θ(k+1)
i with (2.18a).

5: end for

average for the signals sent through the trustworthy links, as illustrated in Figure 2.3. This ap-

proximate value is used to compute the new price signals, and sent back to agents. In particular,

the primal-dual updates are:

θ
(k+1)
i = PCi

(
θ
(k)
i − γ

N

(
ĝ
(k)
H +∇θifi(θ

(k)
i ) + υθ

(k)
i

))
, (2.18a)

λ
(k+1)
t =

[
λ
(k)
t + γ

(
gt((1− α1)θ̂

(k)
H )− υλ(k)t

)]
+
. (2.18b)

We note that the update rule in (2.18a) is valid for agents in setH, because the gradients of the

Lagrangian are defined only for those agents in (2.14a). The agents in set A may or may not

use the same update rule, however, this does not have any impact on the algorithm as they can

never communicate their true parameters to the central coordinator.
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Lemma 2.2.2 Algorithm 2 is a primal-dual algorithm [24] for (P′
υ) with perturbed gradients:

ĝ
(k)
θ = ∇θLυ(θ

(k);λ(k);H) + e
(k)
θ , (2.19a)

ĝ
(k)
λ = ∇λLυ(θ

(k);λ(k);H) + e
(k)
λ , (2.19b)

where we have used concatenated variable as θ = ({θi}i∈H). Under Assumption 2.2.1 and

assuming that λ(k)t ≤ λ for all k, we have:

∥e(k)
θ ∥ ≤(1− α1)λLT∥θ̂(k)

H − θ
(k)

H ∥+
|H| − (1− α1)N

|H| λBT, (2.20)

∥e(k)
λ ∥ ≤ (1− α1)BT∥θ̂(k)

H − θ
(k)

H ∥. (2.21)

The proof can be found in Appendix A.1.3. The assumption λ(k)t ≤ λ can be guaranteed since

gt((1−α1)θ̂
(k)
H ) is bounded, which is proven in Appendix A.1.8. Furthermore, the performance

analysis for the median based estimator shows that

∥θ̂(k)
H − θ

(k)

H ∥ = O(α1R
√
d) (2.22)

when α1 is small. Finally, based on Lemma 2.2.2, we can analyze the convergence of Algo-

rithm 2. Let ẑ⋆ = (θ̂⋆, λ̂⋆) be a saddle point of (P′
υ) and define

Φ(z(k)) :=

 ∇θLυ({θ(k)
i }i∈H,λ(k);H)

−∇λLυ({θ(k)
i }i∈H,λ(k);H)

 . (2.23)

We are ready to present our main result for static attacks.

Theorem 2.2.1 Assume the map Φ(z(k)) is LΦ-Lipschitz continuous. For Algorithm 2, for all
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Figure 2.3: Robust mean estimation under static impersonation attack. Red/blue circles cor-
respond to parameters received through compromised/trustworthy channels, respectively. In
this example, there are N = 5 agents and agents 1 and 2 are always communicating through
compromised channels. At iteration k, the central coordinator computes the robust mean θ̂

(k)
H

of the received parameters {r(k)i }i∈[N ].

k ≥ 0 it holds:

∥z(k+1) − ẑ⋆∥2 ≤
(
1− γυ′ + 2γ2L2

Φ

)
∥z(k) − ẑ⋆∥2 +

(
4γ

υ′
+ 2γ2

)
Ek. (2.24)

where υ′ := (1 − α1)υ and Ek := ∥e(k)
θ ∥2 + ∥e

(k)
λ ∥2 is the total perturbation at iteration k.

Moreover, if we choose γ < υ′/2L2
Φ and Ek is upper bounded by E for all k, then

lim sup
k→∞

∥z(k) − ẑ⋆∥2 ≤
4
υ′ + 2γ

υ′ − 2γL2
Φ

E. (2.25)

The proof can be found in Appendix A.1.4. Combining with (2.22) shows that the resilient PD-

DRA method converges to aO(α2
1R

2d) neighborhood of the saddle point of (P′
υ). Moreover, it

shows that the convergence rate to the neighborhood is linear, which is similar to the classical

analysis in [24].
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2.2.3.2 Dynamic Impersonation Attack

Under this attack scenario, the set of agents communicating through compromised channels

is dynamically changing with iterations. We make the following assumption on how frequently

each agent’s communications are compromised:

Assumption 2.2.2 Let m be a fixed window size and α2 < 0.5 be a known upper bound on

how frequent an agent communicates through a compromised channel. Then, for all k ≥ m−1

and for all agents i ∈ [N ], among the received parameters {r(k−ℓ)
i }m−1

ℓ=0 at most α2m are sent

through compromised channels.

It is important to recall that the dynamic attack scenario does not generalize the static

attack scenario and there is a significant distinction between the two. The static attack scenario

assumes that a fixed set of agents’ communications are permanently compromised. It may

occur when when the attacker compromises set of communication channels and those channels

are assigned to the agents via a static channel allocation scheme.

On the contrary, for the dynamic attack scenario, each user’s communications are vulner-

able to attacks for at most a given α2 fraction of iterations over a window of size m under

Assumption 2.2.2, and hence each agent is able to communicate reliably with the central coor-

dinator at some iterations. This scheme may occur when the attacker compromises a fixed set

of communication channels (same as the static scenario), however, the channels are assigned to

the agents via a dynamic channel allocation scheme (e.g., do a round-robin channel allocation.

If there are m communication channels out of which α2m are compromised, assigning chan-

nels dynamically in a cyclic way to the agents ensures that over a window of m, every agent

has sent α2m compromised messages). Although the attacker behaves the same way, we can

simulate both scenarios by static/dynamic channel allocation. In cyber-physical systems, such

dynamic allocation schemes are commonly used (e.g., dynamic IP assignment to be protected

from hackers).
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Interestingly, it is possible to develop an algorithm that converges to the optimal solution of

Problem (Pυ). The intuition behind is that the received parameters over a long period of time

contain a fraction of trustworthy information that can extracted by the algorithm to perform

faithful computations.

Our algorithm is similar in nature to an averaging gradient scheme where the primal-dual

updates utilize the averages of time delayed gradients. Furthermore, the scheme is combined

with the robust mean estimator developed in Sec. 2.2.3.1 to approximate the averages of out-

dated gradients, as illustrated in Figure 2.4. Specifically, the central coordinator chooses a

window size of m. For any iteration k ≥ m − 1, instead of using r
(k)
i for computing the

average parameter θ
(k)

and the gradients, the central coordinator computes the robust mean

θ̂
(k)
i from the received parameters {r(k−ℓ)

i }m−1
ℓ=0 using the median-based mean estimator (2.16)

for all agents i ∈ [N ], applied on the sequence of historical received parameters. Note that

we have replaced α1 by α2, N by m in this application. It then uses θ̂(k) := 1
N

∑N
i=1 θ̂

(k)
i for

computation of the primal-dual updates.

In the previous static impersonation attack scenario, the central coordinator is never able

to communicate reliably with the agents with compromised channels, hence we have to com-

promise and make the problem robust by assuming the worst-case scenario. In this dynamic

impersonation attack scenario, Assumption 2.2.2 ensures that out of any m consecutive param-

eters of an agent received by the central coordinator, at least (1 − α2)m of them will be sent

through a trustworthy channel. Consequently, this scenario is easier to tackle since the central

coordinator can make use of this history of information. In particular, if the central coordinator

can robustify the received parameters over a window, the perturbation in the gradients behaves

similar to that of incremental aggregate gradients (IAG) methods [52, 53, 54] and therefore

guarantee convergence for sufficiently small step sizes. This is the main idea behind the design

of our method.

We adopt an averaging scheme that aims to mitigate the effect of the parameters received
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Figure 2.4: Robust mean estimation under dynamic impersonation attacks. Red/blue circles
correspond to parameters received through compromised/trustworthy channels, respectively.
In this example, there are N = 5 agents and the set of agents communicating through compro-
mised channels is changing at every iteration. At iteration k, the central coordinator computes
the robust mean θ̂

(k)
i of the received parameters {r(k−ℓ)

i }m−1
ℓ=0 for all agents i ∈ [N ]. Then,

computes the naive average of {θ̂(k)
i }Ni=1 to get the average parameter θ̂(k).

through the compromised channels by considering the robust mean of the last m parameters.

Specifically, the central coordinator chooses a window size of m. For all k ≥ m−1, instead of

using r
(k)
i for computing the average parameter θ

(k)
and the gradients, the central coordinator

computes the robust mean θ̂
(k)
i of the received parameters {r(k−ℓ)

i }m−1
ℓ=0 using the median-based

mean estimator (2.16) for all agents i ∈ [N ] and uses θ̂(k) := 1
N

∑N
i=1 θ̂

(k)
i for computations.

Figure 2.4 illustrates this scheme.

We summarize our robust averaging PD-DRA method in Algorithm 3. The primal-dual

updates are described by:

θ
(k+1)
i = PCi

(
θ
(k)
i − γ

N

(
ĝ(k) +∇θifi(θ

(k)
i ) + υθ

(k)
i

))
, (2.26a)

λ
(k+1)
t =

[
λ
(k)
t + γ

(
gt(θ̂

(k))− υλ(k)t

)]
+
. (2.26b)
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Lemma 2.2.3 Algorithm 3 is a primal-dual algorithm for (Pυ) with perturbed gradients:

ĝ
(k)
θ = ∇θLυ(θ

(k);λ(k)) + e
(k)
θ , (2.27a)

ĝ
(k)
λ = ∇λLυ(θ

(k);λ(k)) + e
(k)
λ , (2.27b)

where we have used concatenated variable as θ = ({θi}i∈N). Under Assumption 2.2.1 and

assuming that λ(k)t ≤ λ for all k, we have:

∥e(k)
θ ∥ ≤

λLT

N

N∑
i=1

∥θ(k)
i − θ̂

(k)
i ∥, (2.28a)

∥e(k)
λ ∥ ≤

BT

N

N∑
i=1

∥θ(k)
i − θ̂

(k)
i ∥. (2.28b)

The proof can be found in Appendix A.1.5. The assumption λ
(k)
t ≤ λ can be guaranteed

since gt(θ̂(k)) is bounded, which is proven in Appendix A.1.8. Let z(k) := ({θ(k)
i }Ni=1,λ

(k))

be the primal-dual variable at the kth iteration and define the mapping Φ(z(k)) as in (2.6). We

observe that the algorithm’s behavior is similar to the incremental aggregated gradient method

in [52, 53, 54]. The following Lemma, which is inspired by [52, 53, 54], upper bounds the

perturbation in the gradients in (2.28) by the maximum optimality gap in a finite window of

size 2m− 1:

Lemma 2.2.4 Assume the map Φ(z(k)) isLΦ-Lipschitz continuous. LetEk := ∥e(k)
θ ∥2+∥e

(k)
λ ∥2.

Then, for all k ≥ 2(m− 1) we have:

Ek ≤ γ2C max
0≤ℓ≤2(m−1)

∥z(k−ℓ) − z⋆∥2, (2.29)
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Algorithm 3: Averaging PD-DRA Algorithm

1: Input: Each agent has initial state θ
(0)
i .

2: for k = 0, 1, . . . ,m− 2 do
3: Apply basic PD-DRA (Run Algorithm 1).
4: end for
5: for k = m− 1,m, . . . do
6: (At the Central Coordinator):

(a) Receives {r(k)
i }Ni=1, see (2.8), from agents.

(b) For all agents i = 1, . . . , N , computes robust mean θ̂
(k)
i of {r(k−ℓ)

i }m−1
ℓ=0

using the estimator (2.16) with parameters α1 → α2, N → m.

(c) Computes θ̂(k) := 1
N

∑N
i=1 θ̂

(k)
i .

(d) Broadcasts the vector ĝ(k) :=
∑T

t=1 λ
(k)
t ∇θgt(θ̂

(k)) to agents.

(e) Computes the update for λ(k+1) with (2.26b).

7: (At each agent i):

(a) Agent receives ĝ(k).

(b) Agent computes update for θ(k+1)
i with (2.26a).

8: end for

where

C =

(
T 2(λ

2
L2 +B2)

N

)
×
(

1

LΦ

+ (1 +
√
d)λLT

)2

×
(
1 + Cα

1− α2

+ Cα

)2

× (m− 1)2,

(2.30)

and

Cα =
2α2

1− α2

1 +

√
(1− α2)2

1− 2α2

√d.
The proof can be found in Appendix A.1.6. Using on Lemmas 2.2.3 and 2.2.4, we can analyze

the converge of Algorithm 3:

Theorem 2.2.2 Assume the map Φ(z(k)) is LΦ-Lipschitz continuous. For Algorithm 3, for all
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k ≥ 2(m− 1) it holds that:

∥z(k+1) − z⋆∥2 ≤ (1− γυ + 2γ2L2
Φ)∥z(k) − z⋆∥2

+

(
4γ

υ
+ 2γ2

)
γ2C max

0≤ℓ≤2(m−1)
∥z(k−ℓ) − z⋆∥2.

(2.31)

Moreover, if we choose γ sufficiently small such that it satisfies

υ − 2γL2
Φ −

4Cγ2

υ
− 2Cγ3 > 0,

then:

∥z(k) − z⋆∥2 ≤ ρk−2(m−1)∥z(2(m−1)) − z⋆∥2, (2.32)

and

lim
k→∞
∥z(k) − z⋆∥2 = 0, (2.33)

where ρ = (1− γυ + 2γ2L2
Φ + 4Cγ3

υ
+ 2Cγ4)

1
1+2(m−1) .

The proof can be found in Appendix A.1.7. Theorem 2.2.2 shows that the robust averaging PD-

DRA method converges geometrically to the optimal solution of (Pυ) under said assumptions.

2.2.3.3 Remarks

A few remarks highlighting design criteria to be explored in practical implementations are

in order:

• Theorem 2.2.1 illustrates a trade-off in the choice of the step size γ between convergence

speed and accuracy. In particular, (2.24) shows that the convergence rate factor 1−γυ+2γ2L2
Φ

can be minimized by setting γ = υ/(4L2
Φ). Meanwhile, the asymptotic upper bound in

(2.25) is increasing with γ and it can be minimized by setting γ → 0.

• Theorem 2.2.2 illustrates a trade-off between the window size m and the convergence rate.
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Observe that increasing the window size m decreases the rate of convergence by increasing

ρ (Equations (2.30) and (2.32)). On the other hand, the likelihood that Assumption 2.2.2

holds true in a stochastic setting (e.g., channels being compromised with some probability)

increases with a larger window size m.

• Under the dynamic impersonation attack scenario, the choice of α2 does not affect con-

vergence accuracy to the saddle point of (Pυ), but only changes the convergence rate. As

such, choosing the largest α2 such that α2m = ⌊m−1
2
⌋ (i.e., assuming maximum possible

number of iterates received through compromised channels) makes the algorithm robustly

applicable to all dynamic impersonation attack scenarios regardless of the frequency of the

attack.

• In case the central coordinator can not identify the attack scenario as static or dynamic

impersonation (or the attack can be a mixture of both), a mixture of both Algorithms 2

and 3 can be applied. In particular, this can be done by adding Step 6(b) of Algorithm 3

before Step 3(b) of Algorithm 2, and applying the rest of the Algorithm 2 as it is. The

central coordinator first computes robust parameters θ̂(k)
i by computing the robust mean of

{r(k−ℓ)
i }m−1

ℓ=0 for all agents, and then computes the robust mean of {θ̂(k)
i }Ni=1. This effectively

makes Algorithm 2 robust to possible dynamic impersonation attacks on uplink channels

that are thought to be trustworthy for all iterations.

2.2.4 Numerical Study

In this subsection, we demonstrate the performance of our methods and verify our theoret-

ical claims by applying our algorithms for: 1) an electric vehicle (EV) charging coordinator

under static impersonation attack, 2) an electric vehicle charging coordinator under dynamic

impersonation attack, and 3) a power distribution network with flexible demand under dynamic

impersonation attack. The EV charging coordinator problem resembles classic network utility
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maximization problems such as those studied in communication networks whereas the power

distribution network problem has more nuisances that we will discuss next. To solve the con-

vex optimization problems in order to get the optimal solutions, we used CVX, a package for

specifying and solving convex programs[55].

2.2.4.1 Electric Vehicle (EV) Charging Facility

In this study, the aim is to optimize EV charging demand over time. We consider multiple

EVs receiving charge under the same local feeder/transformer. Each agent (or EV owner) has

different utility of charging at different times. Hence, at a given time period, it is desired to

charge those EVs who have a higher utility (or less cost) for that time period. This problem falls

into the broad category of network utility maximization problems, which can be formulated as:

min
θi∈Rd

+,∀i
f(θ) =

1

N

N∑
i=1

fi(θi) (2.34a)

subject to
1

N

N∑
i=1

θi ⪯ e, (2.34b)

θmin
i ⪯ θi ⪯ θmax

i , ∀i, (2.34c)

Θmin
i ≤ 1Tθi ≤ Θmax

i , ∀i, (2.34d)

where N × e ∈ Rd is the vector of maximum available transformer capacity in all time pe-

riods and ⪯ denotes component-wise inequality between the vectors. The available capacity

changes with time of day as exogenous load on the transformer varies with time as well. The

elements {θi,j}dj=1 of the vector θi correspond to the electricity demand of the EV i at time

slots j = 1 . . . d. The constraint (2.34c) restricts the amount an EV can charge at each time

slot, whereas the constraint (2.34d) bounds the total amount an EV can charge. For this study,
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Figure 2.5: Numerical study results for optimal electric vehicle charging under static im-
personation attack. (a) Optimal parameter of agent 70 converges to a neighborhood of the
optimal solution of the robust optimization problem for |A|/N = 0.2 and α1 = 0.3, (b)
The algorithm provides convergence of the objective function value, (c) Mean squared error
for different number of compromised channels and different choices of upper bound α1, (d)
Mean squared error when α1 = |A|/N .

we set the cost function to be:

fi(θ) = −
d∑

j=1

βi,j log θi,j, (2.35)

where βi,j are generated randomly from a uniform distribution in [0, 1]. We study this problem

under both attack scenarios for N = 100 EVs.

Static impersonation attack

We simulated various static impersonation attack scenarios and ran Algorithm 2. The results

are displayed in Figure 2.5.

In Figure 2.5a, we plot agent 70’s electricity demand for some time periods, with

|A|/N = 0.2 and α1 = 0.3. Each different color corresponds to a different dimension of

the parameter vector (i.e., electricity demand for different time periods). A colored solid line

corresponds to a dimension of the parameter vector iterates generated by the algorithm. A

dashed line with the same marker and color as a solid line is the optimal value correspond-

ing to that dimension of the parameter vector, which is the solution of the regularized robust

optimization problem (formulated as (P′
υ)) of (2.34). Observe that Algorithm 2 successfully
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provides convergence to a close neighborhood of the optimal solution of the regularized robust

optimization problem. Furthermore, in Figure 2.5b we show that the objective function value

converges, as opposed to a non-resilient PD-DRA method that is shown to oscillate and violate

the constraint in Figure 2.2. Our robust optimization model on the other hand ensures there is

no constraint violation.

In Figure 2.5c, we plot the mean squared error (MSE) in primal variables θi for different

number of compromised channels |A| and different choices of α1, which is the upper bound on

fraction of compromised links known by the central coordinator. The MSE is calculated by:

MSE = lim
k→∞

1

|H|
∑
i∈H

∥θ(k)
i − θ̂⋆

i ∥2, (2.36)

where θ̂⋆
i is the solution to (P′

υ) with α1 = |A|/N , i.e., the solution to the regularized and

robustified problem with the knowledge of the compromised channels. Naturally, the looser

the upper bound, the larger the error, since it increases the amount of conservatism. Hence,

having an accurate upper bound on fraction of compromised channels significantly improves

the performance.

Finally, in Figure 2.5d we exhibit the efficacy of our approach with median-based mean

estimation. We plot the mean squared error in primal variables, when the upper bound on α1

is tight, i.e., α1 = |A|/N . The error tends to increase with |A|/N , however, considering the

magnitude, the error is negligible and we can conclude that the median-based mean estimator

performs well.

Dynamic impersonation attack

We simulated a dynamic impersonation attack scenario and ran Algorithm 3. To simulate a

dynamic impersonation attack, we assigned a probability p for an uplink to be compromised
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Figure 2.6: Numerical study results demonstrating convergence of Algorithm 3 for optimal
electric vehicle charging under two dynamic impersonation attack scenarios: (a) p = 0.1, (b)
p = 0.2. Observe that the number of iterations it takes to converge for (b) is much larger than
for (a).

at each iteration3. For p = 0.1, we picked a window size m = 20 and α2 = 0.45, whereas

for p = 0.2, we picked a window size m = 100 and α2 = 0.49. The results are displayed in

Figure 2.6. Each different color corresponds to a different dimension of the parameter vector. A

colored solid line corresponds to a dimension of the parameter vector iterates generated by the

algorithm. A dashed line with the same color as a solid line is the optimal value corresponding

to that dimension of the parameter vector, which is the solution of the regularized optimization

problem (formulated as (Pυ)) of (2.34).

In both scenarios, Algorithm 3 successfully provides convergence to the optimal solution

of the regularized problem. Observe that for p = 0.2, we chose a larger window size and a

larger α2 in order to meet Assumption 2.2.2. However, this restricts us to choose a smaller

step size γ as dictated by Theorem 2.2.2 and in turn slower convergence. This highlights an

important trade-off between robustness and convergence rate, where a larger window size m

3Although a probabilistic scenario does not guarantee that Assumption 2.2.2 holds, with sufficiently large
window size m and α2, it holds with high probability at each iteration. Even though we do not study this scenario
theoretically, our algorithm still performs well.
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Figure 2.7: IEEE 9 bus system with 3 generators (supplies) represented by sources and 8
loads (demands) represented by arrows.

and larger α2 makes the algorithm more robust while decreasing the convergence rate.

2.2.4.2 Power Distribution Network

We consider the IEEE N = 9 bus system with Ng = 3 generators and Nℓ = 8 loads as

shown in Figure 2.7. The power network cost minimization problem can be stated as:

min
di,gi∈R+

f(d, g) = −
Nℓ∑
i=1

Ui(di) +

Ng∑
i=1

Ci(gi) (2.37a)

subject to 1T (d− g) = 0, (2.37b)

H(d− g) ≤ c, (2.37c)

where d = [d1 . . . dN ]
T and g = [g1 . . . gN ]

T are the vectors of load and generation at each

node, respectively (di = 0 for nodes without load and gj = 0 for nodes without generators).

The first constraint (2.37b) ensures the power supply is equal to the demand, and the second

constraint (2.37c) is the power flow constraint limiting the power flow on each branch.

Observe that the formulation in (2.37) does not directly match with our general formu-

lation in (2.1) mainly due to the presence of equality constraint (2.37b), which prevents the

application of the robustified formulation in (2.9) and hence the robust PD-DRA algorithm for

static impersonation attacks. Nevertheless, our algorithm for dynamic impersonation attacks
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Figure 2.8: Numerical study results for power network under dynamic impersonation attack:
(a)/(b) displaying convergence of the demand/supply, respectively.

can still be applied since it does not require any robustified constraints (which cannot be done

for equality constraints).

We have chosen the utility function for load i to be Ui(di) = βi log di and randomly gen-

erated βi from a uniform distribution in [500, 1000]. For generators, we set the cost function

Ci(gi) = ecigi , where c1 = 0.01, c2 = 0.011, c3 = 0.012. We obtained the Power Transfer

Distribution Factor (PTDF) matrix H and the vector of flow limits c from MATPOWER[56]. To

simulate a dynamic impersonation attack scenario, we assigned a probability p for an uplink to
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be compromised at each iteration. We ran Algorithm 3 for p = 0.15, m = 75 and α2 = 0.49.

The results are shown in Figure 2.8. In both Figures 2.8a and 2.8b, each different color

corresponds to a different agent. A colored solid line corresponds to an agent’s parameter

iterates generated by the algorithm. A dashed line with the same color as a solid line is the to

the optimal value of that agent’s parameter, which is the solution of the regularized optimization

problem (formulated as (Pυ)) of (2.37). Our algorithm successfully generates sequences that

convergence to the optimal solution of the regularized problem for both power supplying and

power demanding agents.

2.2.5 Conclusion

In this section, we studied two strategies for establishing primal-dual algorithms for re-

source allocation in presence of Byzantine attackers. Specifically, we consider static and dy-

namic impersonation attack scenarios and propose an attack-resilient primal-dual algorithm

for each scenario based on robust mean estimation techniques. We derive bounds for the per-

formance (in terms of distance to optimality) of the proposed algorithms and show that our

algorithm for static impersonation attack converges to a neighborhood of the optimal solu-

tion of the regularized and robustified resource allocation problem, whereas our algorithm for

dynamic impersonation attack converges to the optimal solution of the original regularized

problem. We verify our theoretical results via computational simulations for network utility

maximization problems involving optimal distributed resource allocation, such as power dis-

tribution networks.
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2.3 Robust Distributed Optimization With Randomly Cor-

rupted Gradients

In this section, we propose a first-order distributed optimization algorithm that is prov-

ably robust to Byzantine failures—arbitrary and potentially adversarial behavior, where all the

participating agents are prone to failure. Robust distributed optimization under adversarial

manipulation has been studied for various corruption models, see [57, 58] for comprehensive

reviews. For example, gradients communicated over a network are usually modeled as cor-

rupted by: non-malicious noise [59], adversarial noise [60], quantization [61], or because the

gradients are inexact oracles [62]. Although robust optimization methods with strong theo-

retical guarantees are well established [63, 60], a drawback of these approaches is that the

corrupt gradients are assumed to be within a bounded neighborhood of the trustworthy ones,

i.e., corruption can be modeled as a bounded additive noise to the trustworthy gradients.

On the other hand, an adversarial corruption model, which can be unbounded and arbi-

trary, has been extensively studied in the distributed learning literature under categories of data

poisoning [64] and model update poisoning attacks [65, 66]. This line of work models corrup-

tion as an arbitrary manipulation on the information sent by the agents or on the data samples

stored at the agents. However, the adversary is often assumed to have limited capability, i.e., the

adversary is only able to manipulate a certain fraction of agents or data samples. Although suc-

cessful defense mechanisms based on robust aggregation methods [67, 68, 69, 70, 71, 41, 72]

and data sanitation using robust statistics [64] are shown to be robust to these types of manip-

ulation, robust estimation techniques rely on a bounded α fraction of agents/data points being

corrupt at all times. Therefore, they are not applicable if there exist iterations with more than

α fraction of corrupted agents. For instance, if at any iteration more than half of the agents

behave unpredictably and send arbitrarily corrupt information, then the aggregate will be arbi-

trarily corrupted. In fact, it was recently shown that even more benign-looking manipulations
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are able to get through these defense mechanisms with corruption rates as low as .5− 1% [73].

In this section, we study another corruption model where existing defense mechanisms are

prone to failure. In particular, we adopt a distributed optimization framework where a group

of agents communicates local gradient information to a central machine that aggregates and

distributes information back to the agents. By modeling the temporal dynamics of the agents’

states (either trustworthy or corrupted/Byzantine) via a two-state Markov chain, we allow all

the agents to be susceptible to arbitrary corruption. This type of corruption would occur

in practical applications of distributed optimization due to various reasons including but not

limited to:

1. Behavioral (intentional or unintentional) changes of the agents: Due to its privacy-

preserving nature, the models established for practical applications such as text comple-

tion are trained using user text data without observing it. Besides unintentional mistakes

that can be made by a user at random times, users can intentionally behave differently

at different time periods. For instance, a multilingual person who works in the United

States could be typing in English during work hours and in another language after work

hours. These periods can also be longer or shorter in duration. If the goal is to train a

text completion model for English, then we consider the user as Byzantine when they

type in another language and trustworthy when they type in English. In this setting, a

Markovian Byzantine agent model would be a suitable corruption model.

2. Cyber attacks in cyber-physical systems: Among the many types of cyber attacks, Byzan-

tine attacks and man-in-the-middle attacks are important to defend against for distributed

optimization algorithms. The attacker is free to hack any user at any time, however, the

hack is not necessarily successful all the time, for instance, due to the existence of a

firewall. In this case, it would be suitable to model the dynamics of a trustworthy agent’s

state as a Markov chain with a certain probability of turning into Byzantine, which would
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capture the aforementioned random characteristics of a Byzantine attack. On the other

hand, literature on Byzantine fault detection and man-in-the-middle attack detection es-

tablishes that with repeated interactions with the agents, these types of attacks can be

detected [74, 75]. However, there are no certain guarantees on how long a successful

detection would take as it would depend on how the attacker behaves. To resemble this

randomness in the detection time and success, it would be suitable to model the dynam-

ics of a Byzantine agent’s state as a Markov chain with a certain probability of turning

into trustworthy. Given these features of cyber attacks and defense on cyber-physical

systems, it would be suitable to approximate the agent behavior by a Markovian model

as opposed to a static model for distributed optimization applications.

A consequence of the Markovian setting is that there could exist iterations at which the

majority of the agents send corrupt gradients to the central machine, in which case existing

defense mechanisms would fail. For this setting, we develop a robust distributed optimization

algorithm with provable convergence guarantees for a number of function classes.

Contributions: Our main contribution is a distributed stochastic optimization algorithm,

named Robust Aggregating Normalized Gradient Method (RANGE), that achieves strong con-

vergence guarantees while being robust to a newly proposed Markovian gradient corruption

model.

• We propose a novel Markovian Byzantine agent model that models dynamically chang-

ing sets of Byzantine agents with no assumptions on the maximum fraction of Byzantine

agents at a particular iteration.

• We study two settings for stochastic optimization for RANGE, namely Sample Average

Approximation (SAA) and Stochastic Approximation (SA). We prove that for both SAA

and SA, when the parameters are tuned appropriately according to the spectral gap of the

Markov chain, RANGE converges to a neighborhood of the optimal solution at a linear
49



Adversarially Robust Multi-Agent Distributed Optimization Algorithms Chapter 2

rate for strongly convex cost functions.

• We prove that for smooth (possibly non-convex) cost functions, RANGE converges to

a neighborhood of a stationary point at a rate of O(1/
√
T ), where T is the number of

iterations.

• For the SAA setting, we show that RANGE achieves lower error rates in the Markovian

Byzantine agent setup with an expected α fraction of Byzantine agents than state-of-

the-art algorithms in the setup with a bounded α fraction of Byzantine agents for all

iterations.

• We show that RANGE achieves lower statistical error rates in the SA setting than the

SAA setting for sufficiently low corruption rates, i.e., the expected fraction of Byzantine

agents. We provide an explicit characterization of such bound.

• We provide numerical evidence demonstrating the efficacy and robustness of RANGE in

the proposed setting.

RANGE is designed with three ingredients: (1) temporal robust aggregation, (2) spatial

robust aggregation, and (3) gradient normalization. The temporal robust aggregation step esti-

mates the robust mean of each agent’s historical gradient data over a finite window to compute

a robustified gradient for each agent. Informally, the received gradients over a period of time

contain a fraction of trustworthy information that can be extracted by the algorithm to perform

faithful computations rather than applying potentially corrupt gradients directly. In case the

robustified gradient produced by temporal robust aggregation becomes contaminated by cor-

ruption, another layer of defense mechanism is implemented via spatial robust aggregation of

all the agents’ robustified gradients. Lastly, normalization preserves only the directional infor-

mation and thus prevents large updates that corrupt gradients might cause in case the temporal
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robust aggregation and spatial robust aggregation steps do not sufficiently eliminate corrup-

tions.

Related work: The work presented in this section has connections to the literature on (i)

normalized gradient method, (ii) gradient clipping, and (iii) delayed gradient descent.

• Normalized Gradient Method: Normalized gradient method is a well-studied algorithm

for optimization and is supported by theoretical convergence guarantees for convex [76] and

quasi-convex optimization [77]. Using normalized updates is gaining popularity, especially

for non-convex optimization [78], since for non-convex objectives, unlike the convex ones, the

magnitude of the gradient provides less information about the value of the function, while the

direction still indicates the direction of steepest descent. An important benefit of this is the fast

evasion of saddle points [79]. Seeing the need for large batch sizes for variance reduction of

stochastic gradients as a drawback of normalized updates, a recent work [80] proves that adding

momentum removes the need for large batch sizes on non-convex objectives while matching

the best-known convergence rates. In a preliminary conference report [11], we investigated

the robustness properties of the normalized subgradient method for solving deterministic op-

timization problems in a centralized fashion. In the current section, we expand [11] into a

distributed setup with a stochastic objective function, additionally study non-convex objectives

both theoretically and numerically, and employ two additional layers of defense by means of

robust mean estimation before applying normalization to improve our algorithm.

• Gradient Clipping: As a similar method to normalization, gradient clipping is a common

technique in optimization used for privacy [81]. Recent studies demonstrate that gradient clip-

ping can be applied for robustness to model update poisoning attacks [82] and label noise [83].

However, similar to robust distributed optimization literature, due to the limitations on the

amount of corruption and adversarial agents, their methods are inapplicable in our setting and

can be outperformed, as we will show numerically in Subsection 2.3.6.
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• Delayed Gradient Descent: Temporal robust aggregation step of our method is in princi-

ple similar to a delayed gradient descent method [84], since temporal aggregation is a lin-

ear combination of the past gradients. Motivated by applications to distributed optimization

over networks, researchers have established convergence guarantees for deterministic [85] and

stochastic delayed gradient methods [86]. Given strong theoretical results, we integrate the

delayed gradient method to our algorithm via temporal robust aggregation and show that it

improves robustness.

Organization: The remainder of this section is organized as follows. In Subsection 2.3.1, we

define the problem setting. In Subsection 2.3.2, we describe our algorithm called RANGE and

discuss how it can solve the proposed problem. In Subsections 2.3.3 and 2.3.4, we present

the convergence properties of RANGE for the SAA and SA settings, respectively. In Subsec-

tion 2.3.5, we discuss two special cases of RANGE, one without temporal robust aggregation

and one with independent random corruption. In Subsection 2.3.6, we provide numerical re-

sults for RANGE.

Notations and conventions: Unless otherwise specified, ∥ · ∥ denotes the standard Euclidean

norm. For any N ∈ N, [N ] denotes the finite set {1, ..., N}. Given a vector v, if ∥v∥ = 0,

then v/∥v∥ = 0. The O(·) notation hides constants, logarithmic terms, and only includes the

dominant terms. Given a function f(x, z), ∂kf(x, z) denotes the partial derivative of f(x, z)

with respect to k’th coordinate of x.

2.3.1 Problem Setup

In this subsection, we formally set up our problem and introduce key concepts and defini-

tions that will be used in this section. We are interested in the stochastic optimization problem

x⋆ = argmin
x∈X

F (x) = argmin
x∈X

E
z∼D

[f(x, z)], (2.38)
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where f(x, z) is a cost function of a parameter vector x ∈ X ⊆ Rd associated with a data point

z ∈ Z and the data points are sampled from some unknown distributionD. To solve (2.38), we

study two settings for stochastic optimization, namely Sample Average Approximation (SAA)

[87] and Stochastic Approximation (SA) [88], in a distributed setup with one central machine

and N agents that compute stochastic gradients at a point x via∇f(x, z) based on independent

samples z ∼ D.

In iterative distributed first-order methods, given the parameter vector xt at iteration t, the

central machine receives the feedback ∇Fi,t(xt) from all the agents, aggregates by computing

the average, and applies a descent step to get the updated parameter xt+1. Here,

Fi,t(xt) =
1

b

b∑
j=1

f(xt, z
j
i,t) (2.39)

is the empirical risk function and {zji,t}j∈[b] are the b data points used for gradient compu-

tation at agent i and iteration t. In SAA, each agent uses a fixed set of data samples to

estimate the gradient at all iterations, i.e., {zji,τ}j∈[b] = {zji,τ ′}j∈[b] and Fi,τ (x) = Fi,τ ′(x)

∀i ∈ [N ], x ∈ X , τ, τ ′ ∈ N0 [89]. In SA, the agents sample b new data points from D at each

iteration and therefore Fi,τ (x) and Fi,τ ′(x) are independent random variables ∀i ∈ [N ], x ∈ X ,

τ, τ ′ ∈ N0 such that τ ̸= τ ′ [89].

Such methods, however, rely on the feedback received from each agent being trustworthy

gradient information and might fail to converge when the feedback becomes corrupt, as one

single corrupt feedback can have an arbitrarily large effect. Denote the set of agents commu-

nicating corrupt gradient information, i.e., Byzantine agents, at iteration t by Bt, and the set of

agents communicating trustworthy gradient information, i.e., trustworthy agents, at iteration t
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by T t. At each iteration t, the feedback is determined as:

gi,t =

 ∇Fi,t(xt) if i ∈ T t,

⋆ if i ∈ Bt,
(2.40)

where the corrupt feedback ⋆ is arbitrary and is possibly chosen by an adversary, who may have

full knowledge of the problem. We note that this model encompasses a large class of scenarios

where the feedback can become corrupt (e.g., errors in communication or computation, corrupt

data, adversarial manipulation) since we set no restrictions on ⋆.

Contrary to existing literature, we study dynamically changing sets of Byzantine agents

Bt and trustworthy agents T t, where the transition of each agent from Byzantine/trustworthy

state to trustworthy/Byzantine state happens probabilistically at each iteration. In particular,

we define

pb = P(i ∈ Bt+1|i ∈ T t), ∀i ∈ [N ],∀t, (2.41)

pt = P(i ∈ T t+1|i ∈ Bt), ∀i ∈ [N ],∀t, (2.42)

where 0 < pb < pt < 1/2. Accordingly, each agent’s state transition over time is governed by

a two-state Markov chain with transition matrix

M =

1− pb pb

pt 1− pt

 , (2.43)

and stationary distribution

π⋆ =

[
pt

pt + pb

pb
pt + pb

]
, (2.44)

where state 0 corresponds to the trustworthy state and state 1 corresponds to the Byzantine

state. We note that the exact knowledge of the transition probabilities is not necessary. We can
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take pb as an upper bound on the trustworthy to Byzantine transition probability, and pt as a

lower bound on the Byzantine to trustworthy transition probability.

In the next subsection, we explain the first-order method we propose to obtain a near-

optimal solution to (2.38) in setting defined by (2.40)-(2.42). For completeness, we end this

subsection with a couple of standard definitions from convex analysis regarding a differentiable

function f : Rd → R.

Definition 2.3.1 A differentiable function f is said to be L-smooth if there exists L > 0 such

that

∥∇f(x1)−∇f(x2)∥ ≤ L∥x1 − x2∥, (2.45)

for all x1, x2 ∈ X .

Definition 2.3.2 A differentiable function f is said to be µ-strongly convex if there exists

µ > 0 such that

⟨∇f(x1)−∇f(x2), x1 − x2⟩ ≥ µ∥x1 − x2∥2, (2.46)

for all x1, x2 ∈ X .

2.3.2 Robust Aggregating Normalized Gradient Method (RANGE)

To solve Problem (2.38) in the Byzantine setting defined by (2.40)-(2.42), we propose

an algorithm called Robust Aggregating Normalized Gradient MEthod (RANGE), which is

summarized in Algorithm 4. There are three main interacting ideas behind Algorithm 4 to

guarantee convergence and robustness: 1) temporal robust aggregation, 2) spatial robust aggre-

gation, and 3) gradient normalization. Temporal robust aggregation in Step 8 of Algorithm 4

aims to compute a robustified gradient for all agents by estimating a robust mean of a window

of past gradients. The intuition behind this is that despite corruptions, the feedback received

over a long period from every single agent contains a fraction of trustworthy information that
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Algorithm 4: Robust Aggregating Normalized Gradient Method (RANGE)
1: Input: Initialize x1 ∈ X , step size γ, window size m, m0 ∈ N0, T , and α1, α2 < 0.5

s.t. α1m,α2N ∈ N0.
2: for t = 1 to T +m− 1 +m0 do
3: Broadcast xt to the agents.
4: Receive gi,t, defined in (2.40), for i ∈ [N ].
5: if t ≤ m− 1 then
6: Set ĝi,t = gi,t.
7: else
8: Compute the robust mean ĝi,t of {gi,t−τ}m−1

τ=0 using (2.47) with parameters α1

and m, for i ∈ [N ].
9: end if

10: Compute the robust mean ˆ̂gt of {ĝi,t}i∈[N ] using (2.47) with parameters α2 and N .

11: Compute xt+1 = ΠX

(
xt − γ ˆ̂gt/∥ˆ̂gt∥

)
.

12: end for

the algorithm can extract to perform accurate computations. To defend against the scenarios

where the robustified gradient produced by the temporal robust aggregation step is corrupted

for some of the agents (e.g., if the window only contains corrupted gradients), in Step 10 of

Algorithm 4 we implement a second layer of robust mean estimation when aggregating all the

agents’ robustified gradients in order to eliminate those corrupted gradients. Lastly, by gradi-

ent normalization in Step 11 of Algortihm 4, we restrict the aggregate gradient to only contain

directional information. This prevents arbitrarily large updates in case the temporal robust

aggregation and spatial robust aggregation steps do not sufficiently eliminate the corruptions.

Let us provide a summary of Algorithm 4. At each iteration t, the central node receives

the feedback gi,t according to (2.40) from all the agents. If t ≥ m, it estimates a robustified

gradient ĝi,t for each agent i ∈ [N ] by performing a temporal robust aggregation over a window

of gradients {gi,t−τ}m−1
τ=0 using the median-based mean estimator that will be described later. If

t < m, it simply sets ĝi,t = gi,t. Then, it aggregates the robustified gradients {ĝi,t}i∈[N ] using

the same median-based mean estimator to get the robust aggregate ˆ̂gt and moves the iterate

along ˆ̂gt/∥ˆ̂gt∥ with step size γ. Finally the algorithm projects the point back to the decision set
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X .

To get a good grasp of why RANGE works, let us discuss how the mechanics of each step

assist the convergence of the algorithm, starting with the robust mean estimator.

Robust mean estimator: Suppose that we have a set of k vectors {vi ∈ Rd}k−1
i=0 that may

contain corrupted values, whose identities are not known. We wish to estimate the mean of the

trustworthy vectors robustly by minimizing the impact of the corrupt gradients on the mean

estimate, potentially by filtering the corrupt gradients out. We consider a simple median-based

estimator applied to each coordinate j = 1, . . . , d. First, define the coordinate-wise median as

[vmed]j = med
(
{[vi]j}k−1

i=0

)
, where med(·) computes the coordinate-wise medians. Then, our

estimator is computed as the mean of the nearest (1− α)k neighbors of [vmed]j , where α is a

chosen threshold parameter such that αk ∈ N0. We propose the estimator

[v̂]j =
1

(1− α)k
∑
i∈Nj

[vi]j, (2.47)

where Nj = {i ∈ {0, 1, . . . , k − 1} :
∣∣[vi − vmed

]
j

∣∣ ≤ rj}, such that rj is chosen to satisfy

|Nj| = (1− α)k.

The outcome of this estimator depends on the threshold parameter α. If α is chosen such

that the number of trustworthy vectors is less than (1 − α)k, then Nj will contain arbitrarily

corrupted gradients and the estimate will be arbitrarily corrupted. However, if α is chosen such

that the number of trustworthy vectors is at least (1 − α)k, we have the following theoretical

guarantees for the performance of this estimator:

Proposition 2.3.1 [5, Proposition 2] Let H be the set of trustworthy vectors and

|H| ≥ (1 − α)k. Let vH be the mean of the trustworthy vectors. Suppose that

maxi∈H ∥vi − vH∥∞ ≤ r, then for any α ∈ [0, 1/2), it holds that:

∥v̂ − vH∥ ≤ Cαr, (2.48)
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where

Cα =
2α

1− α

(
1 +

√
(1− α)2
1− 2α

)
√
d. (2.49)

We note that the right hand side of (2.48) can be approximated as O(αr
√
d) for small α.

Temporal robust aggregation: Following the mechanics of the robust mean estimator, two

scenarios can happen every time temporal robust aggregation is applied in Step 8 of Algo-

rithm 4 to a window of m latest gradients from each agent: (i) there are less than (1 − α1)m

trustworthy gradients in the window of size m; (ii) there are at least (1 − α1)m trustworthy

gradients in the window of size m. Under scenario (i), Nj contains arbitrarily corrupted gradi-

ents, and therefore we have to assume that the estimated mean is arbitrarily corrupted. We say

that the temporal robust aggregation fails in this scenario. Under scenario (ii), the estimated

mean is close to the true mean of the trustworthy gradients, and the error is bounded by (2.48).

Therefore if scenario (ii) happens at any iteration, instead of using a probably corrupt gradient

that can be adversarial, the temporal robust aggregation step computes a robustified gradient

close to the mean of past trustworthy gradients. We say that the temporal robust aggregation

succeeds in this scenario. Accordingly, we can view scenario (ii) as a perturbed version of the

delayed gradient method, whose convergence properties have been well-studied [85]. Note that

both scenarios (i) and (ii) happen with some probability determined by pt, pb, α1 and m.

Spatial robust aggregation: Similar to the temporal robust aggregation step, two scenarios

can happen every time spatial robust aggregation is applied in Step 10 of Algorithm 4 to N

robustified gradients: (I) there are less than (1 − α2)N agents for which the temporal robust

aggregation step succeeds, (II) there are at least (1−α2)N agents for which the temporal robust

aggregation step succeeds. By similar arguments as above, scenario (I) results in an arbitrarily

corrupted estimate, whereas scenario (II) results in an estimate that is close to the true mean

of the successfully robustified gradients, and the error is bounded by (2.48). We note that both

scenarios (I) and (II) happen with some probability determined by α2, N , and probabilities of
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scenarios (i) and (ii).

Gradient normalization: The main idea behind the normalization step is to prevent large

updates that corrupt gradients might cause. Since in the case of scenario (I), the temporal

robust aggregation and the spatial robust aggregation steps fail to produce an aggregate gradient

estimate for which the theoretical error bounds hold, we have to assume that the aggregate

gradient estimate becomes arbitrarily corrupted. When this happens and corruptions get past

through the two layers of defense, we limit the amount of damage caused by the corrupted

aggregate gradient estimate by normalization.

In the next subsection, we state the convergence guarantees of RANGE for strongly convex

and smooth (possibly non-convex) cost functions for the SAA setting.

2.3.3 Convergence Properties of RANGE for the SAA Setting

Before presenting the convergence results, we need to state some technical assumptions.

Assumption 2.3.1 For all k ∈ [d] and x ∈ X , define the random variable

fk(x, z) := ∂kf(x, z)− ∂kF (x)

. We assume that for all k ∈ [d] and x ∈ X , fk(x, z) is a sub-gamma random variable with

variance factor σ and scale parameter a for some a ≥ 0, i.e.:

log E
z∼D

[eλfk(x,z)] ≤ λ2σ2

2(1− a|λ|) , ∀x, k, |λ| <
1

a
. (2.50)

Assumption 2.3.1 shows bounded moments of the loss function with respect to the data dis-

tribution. Note that sub-Gaussian/sub-exponential random variables satisfy Assumption 2.3.1

with a = 0/a = σ, respectively. Therefore, Assumption 2.3.1 is less restrictive than sub-

Gaussian/sub-exponential assumptions in the literature [41, 71].
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Assumption 2.3.2 The function f(·, z) is L-smooth, ∀z ∈ Z .

In addition, when F (·) is strongly convex, we have the following assumption on X and the

minimizer of F (·):

Assumption 2.3.3 The parameter set X is assumed to be convex and compact with diameter

R. Furthermore, F (x) has a unique minimizer x⋆ ∈ X satisfying∇F (x⋆) = 0.

Together with the convexity of F , the above assumption implies that the minimizer of F (·) in

X is also the minimizer of F (·) in Rd. We note that by selecting X as the euclidean norm ball

of a large radius R, the assumption can be satisfied.

Recall from Proposition 2.3.1 that in order for the error bound (2.48) to hold in Algorithm 4

Step 8, the robust mean estimator (2.47) requires that at least (1−α1)m vectors in {gi,t−τ}m−1
τ=0

are trustworthy gradients (scenario (ii) in Sec. 2.3.2). Similarly, in order for the error bound

(2.48) to hold in Algorithm 4 Step 10, the robust mean estimator (2.47) requires that at least

(1 − α2)N vectors in {ĝi,t}i∈[N ] are successfully robustified (scenario (II) in Sec. 2.3.2). In

order to mathematically formalize these scenarios, we define the following random variables:

• Wi,t = 1 if i ∈ Bt, 0 otherwise,

• Yi,t = 1 if for agent i,
∑

τ∈[t−m+1,t]Wi,τ > α1m (scenario (i)), Yi,t = 0 otherwise

(scenario (ii)),

• Zt = 1 if
∑

i∈[N ] Yi,t > α2N (scenario (I)), Zt = 0 otherwise (scenario (II)).

Using the above definitions of random variables, when Yi,t = 1, the temporal robust ag-

gregation step fails to produce a robustified gradient for agent i. Therefore when Zt = 1,

the algorithm fails to produce a robustified update direction as the spatial robust aggregation

step becomes contaminated. The challenge of the convergence analysis of Algorithm 4 arises

from studying both scenarios Zt = 0 and Zt = 1 along with their probabilities of happening.

60



Adversarially Robust Multi-Agent Distributed Optimization Algorithms Chapter 2

However, given the Markovian property of {Wi,t}∀t, Zt is not independent of the past, which

presents an obstacle in the convergence analysis. To overcome this, we state the next lemma,

which establishes a uniform bound on the probability that Zt = 1 given the network state at an

earlier time instant:

Lemma 2.3.1 Let St = {xt, {πi
t}i∈[N ]} denote the system state at iteration t, where πi

t is the

distribution of the state of agent i at iteration t. Define

Π1
m0

=
pb + pt(1− pb − pt)m0

pb + pt
, (2.51)

for all m0 ∈ N0. Given the algorithm parameters (m,N, α1, α2) and the transition matrix M ,

for all m0 ∈ N0 such that 1/2 > α1 > Π1
m0

and for all t ≥ m + m0, there exists a uniform

bound on P(Zt = 1|St−m+1−m0) = E[Zt|St−m+1−m0 ] independent of St−m+1−m0 such that:

E[Zt|St−m+1−m0 ] ≤ PZ(m0,m,N, α1, α2,M). (2.52)

Let Pm
Z (m0) := PZ(m0,m,N, α1, α2,M). Then, the above bound holds for:

Pm
Z (m0) =

N∑
k=α2N+1

(
N

k

)
(Pm

Y (m0))
k(1− Pm

Y (m0))
(N−k), (2.53)

where

Pm
Y (m0) = exp

(
−m(α1 − Π1

m0
)2(pb + pt)

)
. (2.54)

Proof of Lemma 2.3.1 can be found in Appendix A.2.3. Given a non-negative integer

m0 ∈ N0, Lemma 2.3.1 sets an upper bound on E[Zt|St−m+1−m0 ] independent of the system

state at time t−m+1−m0, but only as functions of the algorithm parameters (m,N, α1, α2),

the transition matrix M , and m0. Although Lemma 2.3.1 provides a practical closed form

bound, it is derived by using a Chernoff-type bound for Markov chains [90]. It facilitates
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exposition of the method but it is not tight. In Appendix A.2.8, we provide a tighter bound on

Pm
Z (m0). Note that by Hoeffding’s inequality, we have Pm

Z (m0) ≤ e−2(α2−Pm
Y (m0))2N .

Remark 2.3.1 It is worthwhile to discuss how the upper bound on (2.53) depends on pb and

pt. By chain rule, we have that:

dPm
Z (m0)

dpi
=
dPm

Z (m0)

dPm
Y (m0)

× dPm
Y (m0)

dpi
, i ∈ {b, t}. (2.55)

Note that Pm
Z (m0) is 1 − FB(α2N,N, P

m
Y (m0)), where FB is the cumulative distribu-

tion function of the binomial distribution with parameters (N,Pm
Y (m0)) evaluated at α2N .

FB(α2N,N, P
m
Y (m0)) is given by [91]:

(N − α2N)

(
N

α2N

)∫ 1−Pm
Y (m0)

0

tN−α2N−1(1− t)α2Ndt, (2.56)

which is decreasing with Pm
Y (m0). Accordingly, we have that dPm

Z (m0)/dP
m
Y (m0) > 0. We

also show in Appendix A.2.4 that form0 = O(1/(pb+pt)), i.e., whenm0 is chosen at the order

of the mixing time
dPm

Y (m0)

dpb
> 0,

dPm
Y (m0)

dpt
< 0. (2.57)

Therefore, dPm
Z (m0)/dpb > 0 and dPm

Z (m0)/dpt < 0. This is in accordance with the intuition

that the corruption rate increases with pb and decreases with pt. In Figure 2.9, we plot Pm
Z (m0)

for varying pb and pt while keeping the rest of the variables constant.

Remark 2.3.2 We discuss the upper bound in Lemma 2.3.1 for the edge cases of the parame-

ters pb and pt. Lemma 2.3.1 requires 0 < pb < pt < 1/2, i.e., the Markov chain to be ergodic.

Subsection 2.3.5.3 discusses the case pb = pt = 0. Moreover, for a fixed pt, we can evaluate

the bounds as pb → 0. Set m0 = k0/pt and m = k/(α2
1pt) for some k0, k ≫ 1. Then, we have
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Figure 2.9: Plot of Pm
Z (m0) for varying pb with pt = 0.4 (left), and varying pt with pb = 0.1

(right) for window sizes m = {40, 200, 1000}. The rest of the parameters are kept constant
at α1 = 0.45, α2 = 0.3, N = 10, and m0 = 100.

that

lim
pb→0

Pm
Y (m0) = exp

(
−k (α1 − (1− pt)

k0
pt )2

α2
1

)
(2.58)

≤ exp (−k(1− e−k0/α1)
2) ≈ 0 (2.59)

Therefore, Pm
Z (m0) ≈ 0 for k, k0 ≫ 1 as pb → 0.

In the other extreme as both pb, pt → 1/2, we have Π1
m0

= 1/2 and therefore Pm
Y (m0) = 1,

which results in Pm
Z (m0) = 1. This is because when the corruption rate pb/(pb + pt) → 1/2,

it becomes impossible to distinguish trustworthy information from the corrupted.

2.3.3.1 Strongly Convex and Smooth Functions

We are now ready to present the main technical result on convergence guarantees of

RANGE for a strongly convex cost function F (·). For the following result, we do not require

strong convexity of individual cost functions f(·, z).

Theorem 2.3.1 Let F (·) be µ-strongly convex and Assumptions 2.3.1, 2.3.2, and 2.3.3 hold.

Define the condition number as κ := L/µ. Let m0 ∈ N0 be a non-negative integer such that
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Π1
m0

< 1/2. If the algorithm parameters (m,N, α1, α2) and the transition matrix M satisfy

Pm
Z (m0) <

1

1 + κ
, (2.60)

then for any T ≥ 1, the iterates produced by Algorithm 4 in the SAA setting, with

γ ≤ min

{
4σ

C(m0)µ
√

(1− α2)Nb
,
κR

2

}
, (2.61)

where

C(m0) =1 + 4Pm
Z (m0)(1 + 1/κ)(m− 1 +m0)

+ 4κ(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1)),

(2.62)

have the following property:

E[∥xT+m+m0 − x⋆∥2] ≤ (∥x1 − x⋆∥+ γ(m+m0 − 1))2
(
1− c0(m0)γ

)T
+O

(
1√
Nb

+
Cα2√
b

)
,

(2.63)

where

c0(m0) =
2

κR
(1− Pm

Z (m0)(1 + κ)), (2.64)

and Cαi
for i = 1, 2, are given by (2.49).

Proof outline: The proof follows by bounding the distance of xt+1 to the optimal so-

lution x⋆ in terms of xt via perturbed gradient analysis. We define the perturbation as

∇F (xt)/∥∇F (xt)∥− ˆ̂gt/∥ˆ̂gt∥ and bound the norm of the perturbation in the events Zt = 1 and

Zt = 0 separately.

The complete proof of Thoerem 2.3.1 can be found in Appendix A.2.1. When Zt = 1,
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we assume the worst-case scenario such that ˆ̂gt is moving xt in the opposite direction of x⋆.

When Zt = 0, we split the perturbation into 3 terms (Lemma A.2.1 in Appendix A.2.2): 1)

the error due to stochastic and delayed gradients, which depends on the variance σ2, step-size

γ, window size m, 2) the error of the temporal robust aggregator given by the median-based

mean estimator’s bound (2.48), which is proportional to the maximum distance between the

stochastic gradients in a window of m, and 3) the error of the spatial robust aggregator given

by (2.48) again, which depends on the maximum distance between the robustified gradients of

the N agents. To upper bound the expected value of the aforementioned maximum distances,

we use Theorem 2.5 in [92], which offers a convenient bound for the expected value of the

maximum of finitely many exponentially integrable random variables. □

The complete proof of Theorem 2.3.1 and the explicit constants of (2.63) can be found in

Appendix A.2.1. According to Theorem 2.3.1, RANGE provides convergence to a neighbor-

hood of the optimal solution at a linear rate as long as (2.60) is satisfied. The neighborhood of

convergence is

O
(

1√
Nb

+
Cα2√
b

)
, (2.65)

where N is the number of agents and b is the number of data samples used for gradient com-

putation (i.e., mini-batch size).

Remark 2.3.3 The convergence rate in (2.63) is governed by the term (1 − c0(m0)γ). Ac-

cordingly, the smaller c0(m0), the slower the convergence. Note that c0(m0) given by (2.64)

is decreasing with κ. For ill-conditioned problems with big κ, c0(m0) is small and therefore

convergence is slower. Additionally, observe that c0(m0) is decreasing with Pm
Z (m0). In ac-

cordance with Remark 2.3.1, the bigger pb or the smaller pt, the slower the convergence since

Pm
Z (m0) gets bigger.

Remark 2.3.4 In Appendix A.2.1, we show that the only dependence of the neighborhood of

convergence in (2.65) on m0 is through Pm
Z (m0) given by (2.53). By taking m0 ≫ 1, we
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minimize (2.51) to get Π1
m0
≈ pb/(pb + pt), which then minimizes Pm

Y (m0) and Pm
Z (m0).

Hence we get a tight asymptotic bound with respect to m0 for m0 →∞.

Impact of Temporal Robust Aggregation: The temporal robust aggregation step helps reduc-

ing the neighborhood of convergence by reducing the effective fraction of Byzantine agents at

each iteration. The convergence neighborhood given by (2.65) consists of two terms: first term

due to variance of the stochastic gradients and the second term due to Byzantine agents. In

[41], it is shown that in the setting with a bounded α fraction of Byzantine agents, no algorithm

can achieve an error lower than

Ω̃

(
1√
Nb

+
α√
b

)
. (2.66)

In the stationary distribution of the Markov chain, the probability that an agent is Byzantine is

equal to pb/(pb+pt), and the expected fraction of Byzantine agents in an iteration is pb/(pb+pt).

Therefore, it is reasonable to argue that α in (2.66) is similar to pb/(pb+pt). For Lemma 2.3.1 to

hold, we need α1 > Π1
m0
≈ pb/(pb + pt) for m0 ≫ 1 and thus α1 is of the order of α in (2.66).

On the other hand, our error bound in (2.65) is a function of Cα2 , where Cα2 = O(α2) for

small α2. Because RANGE aims to eliminate α2 fraction of agents’ robustified gradients via

spatial robust aggregation, it can be viewed as the effective fraction of Byzantine agents, and

hence our bound is consistent with (2.66). Interestingly, we can set α2 as arbitrarily small as

possible. Note that we need to satisfy (2.60) for convergence. However, in (2.53), we can select

α2 sufficiently small for small Pm
Y (m0). But Pm

Y (m0) is given by (2.54), which is a function of

α1, m, and m0. As such, we can always set m arbitrarily large such that Pm
Y (m0) is arbitrarily

small for all m0 ∈ N0, and hence we can select α2 arbitrarily small to satisfy (2.60). As a

result, by employing the temporal robust aggregation step before spatial robust aggregation,

which is beneficial only when agents’ states change over time, we reduce the effective fraction

of Byzantine agents from pb/(pb+pt) to α2. This setup shows that the lower bound (2.66) does

not hold for the proposed Markovian setting as a result of temporal robust aggregation.
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Figure 2.10: RANGE with and without the normalization step for the linear regression prob-
lem in Subection 2.3.6.1.

Remark 2.3.5 Without any corruption, RANGE suffers an error ofO(1/
√
Nb). Even if we use

unbiased stochastic gradients with diminishing step-sizes, this error is unavoidable due to the

normalization step. This is because as observed by [80], if ∇Fi(xt) = ∇F (xt) + η for very

small η, it might be that ∇Fi(xt)/∥∇Fi(xt)∥ is very far from ∇F (xt)/∥∇F (xt)∥, especially

when ∥∇F (xt)∥ is close to 0. On the other hand, the normalization step is the key feature of

our algorithm to achieve robustness. Due to the stochasticity of the Markovian model, there

is a probability ( ≤ Pm
Z (m0)) that the first two layers of robust aggregation fail. In this case,

the overall aggregate can be arbitrarily corrupted and we require normalization to defend

against such cases. Figure 2.10 numerically demonstrates the importance of normalization

by simulating RANGE with and without normalization for the linear regression problem in

Subsection 2.3.6.1.

Observe that choice of m, α1, and α2 plays an important role, as they determine

whether (2.60) holds or not. Next, we discuss how to pick m, α1, and α2 in practice.

Choices of m, α1, and α2: For a given transition matrix M , there always exists a set of

parameters m, α1, and α2 such that (2.60) is satisfied. Finding a principled way to select

the set of optimal parameters is currently an open question. Instead, next we describe an

implementable closed form expression for the minimum window size as a function of α1, α2,
67



Adversarially Robust Multi-Agent Distributed Optimization Algorithms Chapter 2

pt, and pb. Using Hoeffding’s inequality on (2.53), we rewrite (2.60) as:

Pm
Z (m0) ≤ exp(−2(α2 − Pm

Y (m0))
2N) <

1

1 + κ
. (2.67)

This gives us the condition on α2
4:

α2 > Pm
Y (m0) +

√
log(1 + κ)

2N
. (2.68)

Considering (2.54), given m0 ∈ N0, if

exp
(
−m(α1 − Π1

m0
)2(pb + pt)

)
< α2 −

√
log(1 + κ)

2N
(2.69)

holds, then (2.60) is satisfied. Additionally, we require that α1 < 0.5 for the algorithm’s input

so that the robust mean estimator succeeds, which requires Π1
m0

< 0.5. This also gives us a

lower bound on m0:

m0 >
log(pt − pb)− log(2pt)

log(1− pb − pt)
(2.70)

We can rearrange (2.68) to get the minimum window size that is sufficient for convergence as

a function of α1, α2, pt, pb, and any choice of m0 that satisfies (2.70):

Corollary 2.3.1 For all m0 ∈ N0 satisfying (2.70), if α2 >
√

log(1 + κ)/(2N), α1 > Π1
m0

,

and

m > − log(α2 −
√
(1 + κ)/(2N))

(α1 − Π1
m0

)(pb + pt)
(2.71)

then (2.60) holds.

Corollary 2.3.1 is convenient in practice for selecting α1, α2, and m. Given pb,

4This is the condition on α2 for the Hoeffding bound (2.67) to hold, rather than the exact inequality in (2.53).
Consequently, it results in an additive

√
log(1 + κ)/(2N) term that is independent of Pm

Y (m0). However, this
does not contradict our statement that we can set α2 arbitrarily small by reducing Pm

Y (m0) with a large window
m, since that statement is based on the exact form in (2.53) rather than the Hoeffding bound (2.67).

68



Adversarially Robust Multi-Agent Distributed Optimization Algorithms Chapter 2

pt, and κ, one picks m0 and α1 such that Π1
m0

< α1 < 0.5 and α2 such that√
log(1 + κ)/(2N) < α2 < 0.54 and α2N ∈ N0. Then, the window size is m is picked

such that α1m ∈ N0 and (2.71) holds. With these parameter choices, (2.60) is satisfied. Note

that the (pt + pb) term in the denominator of (2.71) corresponds to the spectral gap of the

Markov chain. Therefore, smaller spectral gap, which also implies larger relaxation and mix-

ing time [93], results in a larger minimum window size. Intuitively, we select the window size

at the order of the mixing time so that the Markov chain gets close to its stationary distribu-

tion and the Byzantine agents transition into trustworthy state. This allows the temporal robust

aggregation step to successfully produce a robustified gradient by extracting the trustworthy

information.

2.3.3.2 Smooth (Possibly Non-Convex) Functions

Next, we study the convergence of RANGE for smooth (possibly non-convex) cost func-

tions. For this problem class, we need the following assumption on X :

Assumption 2.3.4 Problem (2.38) is unconstrained, i.e., X = Rd.

The next theorem states the convergence guarantees of RANGE for smooth F (·):

Theorem 2.3.2 Let Assumptions 2.3.1, 2.3.2, and 2.3.4 hold. Choose step-size γ = γ0/
√
T

with γ0 > 0. Let m0 ∈ N0 be a non-negative integer such that Π1
m0

< 1/2. If the algorithm

parameters (m,N, α1, α2) and the transition matrix M satisfy

Pm
Z (m0) < 1/2, (2.72)

then for any T ≥ 1, the iterates {xt}T+m−1+m0
t=m+m0

produced by Algorithm 4 in the SAA setting
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satisfy

1

T

T+m−1+m0∑
t=m+m0

E[∥∇F (xt)∥] ≤
F (x1)− F (x⋆)√
Tγ0(1− 2Pm

Z (m0))
+
C(m0)γ0√

T
+O

(
1

T

)
+O

(
1√
Nb

+
Cα2√
b

)
,

(2.73)

where

C(m0) = L
(
1/2 + 4(m− 1 +m0)P

m
Z (m0)

+ 2(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))
)
,

(2.74)

and Cαi
for i = 1, 2, are given by (2.49).

The proof of Theorem 2.3.2 is similar to that of Theorem 2.3.1, and the complete proof and

the explicit constants of (2.73) can be found in Appendix A.2.5. According to Theorem 2.3.2,

RANGE produces a point x̃ ∈ {xm+m0 , . . . , xT+m−1+m0} such that

E [∥∇F (x̃)∥] ≤O
(

1√
Nb

+
Cα2√
b
+

1√
T

)
. (2.75)

Note that when T →∞, the right-hand side of the above inequality is the same as (2.65).

Remark 2.3.6 We mention that Theorem 2.3.2 is valid for smooth convex cost functions and

strongly convex cost functions with an unbounded parameter set as well. For convex functions

with a bounded set, we can add regularization terms to make them strongly convex, in which

case the guarantees of Theorem 2.3.1 hold. Adding regularization terms is a typical technique

used in optimization, called dual smoothing [50].

In the next subsection, we state the convergence guarantees of RANGE for strongly convex

and smooth (possibly non-convex) cost functions for the SA setting.
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2.3.4 Convergence Properties of RANGE for the SA Setting

Theorems 2.3.1 and 2.3.2 state convergence guarantees of RANGE for the SAA setting.

The next theorem states the convergence result for the SA setting for strongly convex cost

functions.

Theorem 2.3.3 Let F (·) be µ-strongly convex and Assumptions 2.3.1, 2.3.2, and 2.3.3 hold.

Define the condition number as κ := L/µ. Let m0 ∈ N0 be a non-negative integer such that

Π1
m0

< 1/2. If the algorithm parameters (m,N, α1, α2) and the transition matrix M satisfy

Pm
Z (m0) <

1

1 + κ
, (2.76)

then for any T ≥ 1, the iterates produced by Algorithm 4 in the SA setting, with

γ ≤ min

{
4σ

C(m0)µ
√

(1− α2)N(1− α1)mb
,
κR

2

}
, (2.77)

have the following property:

E[∥xT+m+m0 − x⋆∥2] ≤ (∥x1 − x⋆∥+ γ(m+m0 − 1))2 (1− c0(m0)γ)
T

+O
(

1√
(1− α1)mNb

+
Cα2 + Cα1(1 + Cα2)√

b

)
,

(2.78)

where c0(m0), C(m0) and Cαi
for i = 1, 2, are given by (2.64), (2.62), and (2.49).

Proof of Theorem 2.3.3 and the explicit constants of (2.78) can be found in Appendix A.2.6.

According to Theorem 2.3.3, RANGE provides convergence to a neighborhood of the optimal

solution at a linear rate, where the neighborhood of convergence is

O
(

1√
(1− α1)mNb

+
Cα2 + Cα1(1 + Cα2)√

b

)
. (2.79)
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Comparing the above result to (2.65), there are two impacts of using the SA setting instead of

the SAA setting:

1. The error due to variance of the stochastic gradients reduces by a factor ofO(
√
(1− α1)m),

2. The error due to Byzantine agents increases by a factor of O(1 + Cα1 + Cα1/Cα2).

When agents use new samples at each iteration in the SA setting, temporal robust aggregation

results in a variance reduction, since it estimates the mean of (1−α1)m independent minibatch

gradients. However, this comes at the cost of the higher error caused by the Byzantine agents.

Given these two counteracting impacts of the SA setting on the error, the order of error in

(2.79) is less than (2.65) if

Cα1 <
1√

N(1 + Cα2)
. (2.80)

Therefore, RANGE performs better in the SA setting compared to the SAA setting if α1 ≪ 1,

which is possible if pb ≪ pt. Otherwise, the benefit of variance reduction provided by temporal

robust aggregation is dominated by the damage caused by the Byzantine agents.

The next theorem states the convergence result of RANGE for the SA setting for non-

convex cost functions.

Theorem 2.3.4 Let Assumptions 2.3.1, 2.3.2, and 2.3.4 hold. Choose step-size γ = γ0/
√
T

with γ0 > 0. Let m0 ∈ N0 be a non-negative integer such that Π1
m0

< 1/2. If the algorithm

parameters (m,N, α1, α2) and the transition matrix M satisfy

Pm
Z (m0) < 1/2, (2.81)

then for any T ≥ 1, the iterates {xt}T+m−1+m0
t=m+m0

produced by Algorithm 4 in the SA setting
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satisfy

1

T

T+m−1+m0∑
t=m+m0

E[∥∇F (xt)∥] ≤
F (x1)− F (x⋆)√
Tγ0(1− 2Pm

Z (m0))
+
C(m0)γ0√

T
+O

(
1

T

)

+O
(

1√
(1− α1)mNb

+
Cα2 + Cα1(1 + Cα2)√

b

)
,

(2.82)

where C(mo) and Cαi
for i = 1, 2, are given by (2.74) and (2.49).

Proof of Theorem 2.3.4 and the explicit constants of (2.82) can be found in Appendix A.2.7.

Note that when T →∞, the right hand side of (2.82) is the same as (2.79).

2.3.5 Special Cases

2.3.5.1 Window Size m = 1

When we select the window size m to be 1, we have to set α1 = 0 since α1m ∈ N0 and

α1 < 0.5. This means that we skip the temporal robust aggregation step and set the robustified

gradient ĝi,t = gi,t. In this case, the counterpart of Lemma 2.3.1 with m = 1 gives:

P 1
Z(m0) ≤

N∑
k=α2N+1

(
N

k

)
(P 1

Y (m0))
k(1− P 1

Y (m0))
(N−k), (2.83)

where

P 1
Y (m0) = max

i∈[N ],t
P(Yi,t = 1|St−m0) = max

i∈[N ],t
P(Wi,t = 1|St−m0)

=
pb + pt(1− pb − pt)m0

pb + pt
. (2.84)

Accordingly, Theorems 2.3.1, 2.3.2, 2.3.3, and 2.3.4 hold with m = 1 and P 1
Z(m0) given by

(2.83) and (2.84). Note that P 1
Y (m0)→ pb/(pb + pt) as m0 →∞.
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2.3.5.2 Independent Random Corruption

A special case of the agents’ state transition occurs when pb + pt = 1. We get

M = [π⋆T π⋆T ]T , and hence the state of an agent at t + 1 is independent of the state at t.

In this case, an agent becomes Byzantine and sends corrupted gradient information randomly

with probability pb at all iterations. Hence, we can state the counterpart of Lemma 2.3.1 without

the need to condition on a previous time instant, i.e.,

Pm
Z := E[Zt] =

N∑
k=α2N+1

(
N

k

)
(Pm

Y )k(1− Pm
Y )(N−k), (2.85)

where

Pm
Y =

m∑
j=α1m+1

(
m

j

)
pjbp

m−j
t . (2.86)

Accordingly, Theorems 2.3.1, 2.3.2, 2.3.3, and 2.3.4 hold with m0 = 0 and Pm
Z (m0) replaced

by Pm
Z given by (2.85) and (2.86).

2.3.5.3 Recovering the Static Corruption Model

The static setting where agents do not change states is recovered by letting pb = pt = 0.

Recall from Remark 2.3.2 that Lemma 2.3.1 can not be used in this case as it requires the

Markov chain to be ergodic. However, if we assume that pb/(pb + pt) fraction of the agents

are initially corrupted, our results recover the static setting by choosing α2 = pb/(pb + pt) and

m0 = 0 to ensure Pm
Z (0) = 0 for any m. Furthermore, we can remove the temporal robust

aggregation step by letting m = 1 and α1 = 1, since it will not eliminate any corruption and

does not provide any variance reduction for the SAA setting.

74



Adversarially Robust Multi-Agent Distributed Optimization Algorithms Chapter 2

0 4000 8000 12000 16000 20000
10−1

100

101

102

103

(1, 0, 0.1)

(1, 0, 0.3)

(1, 0, 0.4)

(100, 0.3, 0.1)

Parallel Iterations

‖x
t
−
x
?
‖2

Figure 2.11: Convergence performance of RANGE in linear regression with four configura-
tions of (m,α1, α2) for pt = 0.1, pb = 0.025.

2.3.6 Numerical Experiments

In this subsection, we present numerical evidence supporting our theoretical results and

demonstrating the efficacy of RANGE. The first experiment is a simple linear regression with

synthetic data to illustrate the benefits of the temporal robust aggregation step of RANGE and

to compare the SAA and the SA settings. The second experiment is an image classification task

on the EMNIST dataset [94] using a neural network to compare the performance of RANGE to

existing distributed optimization algorithms in practical non-convex tasks for the SAA setting.

Both experiments were performed on a laptop computer with Intel® CoreTM i7-8750H CPU

(6×2.20 GHz) and 16 GB DDR4 2666MHz RAM.
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2.3.6.1 Linear Regression with Synthetic Data

We consider the following stochastic optimization problem:

x⋆ = argmin
x∈X

E
V,Y

[|Y − V Tx|], (2.87)

where V ∈ Rd is the random vector corresponding to the data points and Y ∈ R is the random

variable corresponding to the associated label values or outputs. We let d = 100 and con-

structed the solution vector x⋆ by sampling a random point from the interior of the d-ball with

radiusR = 10. In the SAA setting, the goal is to solve the following deterministic optimization

problem

min
x∈X
∥y − vx∥2, (2.88)

where v ∈ RB×d is a matrix containing the B data vectors in its rows and y ∈ RB is the vector

containing the B associated label values or outputs. We let B = 1000 and randomly generated

the entries of v from N (0, 1). We distributed the data points equally among N = 10 agents.

For all i ∈ [B], we generated the outputs y according to yi = vix
⋆ + ξi, where ξi ∼ N (0, R2)

is the noise and vi is the i’th row of v.

The main goal of the experiment is to demonstrate: 1) how α2 affects the robustness and

the performance of the algorithm, and 2) how temporal robust aggregation can help us pick

a better α2 and improve the performance. We note that there are two effects of α2 on the

performance: 1) In the spatial robust aggregation step, the algorithm eliminates α2 fraction

of the robustified gradients {ĝi,t}i∈[N ] and therefore provides robustness in case there are less

than α2 fraction of corrupted {ĝi,t}i∈[N ], and 2) by aggregating (1 − α2)N number of agents’

robustified gradients, it reduces the variance of the stochastic gradients. In order to guarantee

robustness, it is desirable to increase α2 so that we do not add the corrupted {ĝi,t}i∈[N ] to the

aggregate. On the other hand, increasing α2 results in aggregating less number of agents’
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gradients, which in turn results in a higher variance of the stochastic gradients. Given these

counteracting impacts of α2, it is not desirable to choose it too small or too big.

We ran RANGE for 20k iterations pt = 0.1 and pb = 0.025 using four

configurations of (m,α1, α2). At each iteration, we picked the corrupt gradient as

2∥∇F (xt)∥(x⋆ − xt)/∥x⋆ − xt∥. In Figure 2.11, we plot the convergence behaviour of

RANGE for all four configurations. When m = 1 and α2 = 0.1, we observe that the iter-

ates diverge. Since 0.1 < pb/(pb + pt) = 0.2, the expected value of the fraction of Byzantine

agents at each iteration is larger than α2, and hence the aggregate gradient estimate becomes

corrupted most of the time. On the contrary, setting α2 = 0.3 or α2 = 0.4 provides robustness

and RANGE converges. However, we observe that the configuration with α2 = 0.3 performs

slightly better than the one with α2 = 0.4. This is because smaller α2 aggregates more agents’

gradients, which results in a larger variance reduction. All in all, while selecting a smaller α2

provides variance reduction, it reduces the robustness of RANGE by including more agents at

the spatial robust aggregation step.

On the other hand, the configuration withm = 100, α1 = 0.3 and α2 = 0.1 outperforms the

rest. When we utilize the temporal robust aggregation step, it effectively reduces the expected

value of the fraction of Byzantine agents at each iteration. Consequently, we can select a

smaller α2 in order to benefit from larger variance reduction while still being robust thanks to

temporal robust aggregation.

Next, we study the SA setting by re-sampling B new data points at each iteration. Keeping

pt = 0.1 constant, we simulate a high corruption rate with pb = 0.025 and a low corruption

rate with pb = 0.01. We set α1 = 0.3 when pb = 0.025 and α1 = 0.1 when pb = 0.01.

We fixed the window size m = 100 and α2 = 0.1 for both cases. In Figure 2.12 we plot the

convergence behavior of RANGE in the SA and the SAA settings for both corruption rates.

We observe that when the corruption rate is low, RANGE performs better in the SA setting due

to variance reduction provided by temporal robust aggregation. However, when the corruption

77



Adversarially Robust Multi-Agent Distributed Optimization Algorithms Chapter 2

0 5000 10000 15000 20000

10−1

101

pb = 0.01

SA

SAA

0 5000 10000 15000 20000

pb = 0.025

Parallel Iterations

‖x
t
−
x
?
‖2

Figure 2.12: Comparison of the SA and the SAA settings in linear regression.

rate is high, RANGE performs worse in the SA setting as the damage caused by the Byzantine

agents dominates.

2.3.6.2 Image Classification with EMNIST Dataset

In this study, we experiment with the image classification task on the EMNIST dataset [94]

in the SAA setting. We train a feed-forward neural network with two hidden layers and 64

neurons at each hidden layer. We partition the data into N = 200 equal sizes, representing the

data at N agents. The batch size for gradient computation is set to b = 300.

We train the neural network using (a) RANGE, (b) vanilla SGD, (c) median aggregation

[41], and (d) norm clipping [82]. We note that although the median aggregation method in [41]

and the norm clipping method in [82] are developed for the setting with a bounded fraction

of Byzantine agents, we implement them in the Markovian Byzantine agent setting because

no existing work studies the same setup as ours. For transition probabilities pt = 0.2 and

pb ∈ {0, 0.05, 0.15}, we train three networks with learning rates 0.1, 0.01, and 0.001, and

pick the best-performing one. We let m = 50, α1 = 0.25, α2 = 0.2 for RANGE when pb = 0

and pb = 0.05; m = 50, α1 = 0.45, α2 = 0.3 when pb = 0.15. We set the threshold for
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Figure 2.13: Training neural networks for image classification on the EMNIST dataset.
Four distributed optimization algorithms are compared under pt = 0.2 and pb = 0 (left),
pb = 0.015 (middle), and pb = 0.15 (right) using test accuracy of the trained network as
metric. The legend is shared among all plots.

norm clipping to be 10 as it is shown to perform well in [82]. We simulate corruption by

simply inverting and boosting the magnitude of the gradient, i.e., by setting ⋆ = −c∇Fi,t(xt)

in (2.40), where c is sampled uniformly from [5, 15] at each iteration.

In Figure 2.13 we plot the test accuracy of the models during training. For pb = 0, all

algorithms successfully train the neural network as expected. For pb = 0.05, vanilla SGD

has negligible performance as it is not robust to corruption. On the other hand, norm clip-

ping and median aggregation methods have satisfactory performance. Nonetheless, RANGE

outperforms norm clipping and median aggregation algorithms by margins of 3.7% and 6.3%,

respectively. For pb = 0.15, we observe that the median aggregation method also fails. The

median is no longer robust since it is corrupted if more than half of the agents become Byzan-

tine at any iteration, which frequently happens when pb/(pb+pt) is high. Norm clipping is still

robust, however, RANGE beats it by a margin of 8.3%.

2.3.7 Conclusions

We introduced a distributed optimization algorithm, named RANGE, that is provably robust

to Byzantine failures. By modeling each agent’s state transition trajectory over time, namely

from trustworthy to Byzantine and vice versa, as a two-state Markov chain, we allow all the
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agents to be prone to failure. RANGE is based on three ideas: 1) temporal robust aggregation,

which computes a robustified gradient for each agent by estimating a robust mean of a window

of past gradients, 2) spatial robust aggregation, which computes a robust mean of all the agents’

robustified gradients to estimate the aggregate gradient, and 3) gradient normalization, which

restricts the aggregate gradient to only contain directional information and therefore prevents

arbitrarily large updates that corrupt gradients might cause. We prove that for strongly convex

and smooth non-convex cost functions RANGE achieves convergence to a neighborhood of a

stationary point, where the neighborhood depends on the variance of the stochastic gradients

and the corruption rate. Numerical experiments on linear regression and image classification

on EMNIST dataset demonstrate the robustness and efficacy of RANGE.

80



Chapter 3

Safe Pricing for Resource Allocation in

Safety-Critical Networks

3.1 Introduction

Many applications falling within the scope of resource allocation over networks, e.g., power

distribution systems [15], congestion control in data networks [18], wireless cellular networks

[17], and congestion control in urban traffic networks [22], deal with a multi-user optimization

problem that falls under the general umbrella of network utility maximization (NUM) problems.

The shared goal in these problems is to safely and efficiently allocate the shared resources to

the users, where safety refers to satisfying the constraints of the system that depend on the

resource allocation of all the users, and efficiency refers to the total utility of the users for a

given resource allocation.

In NUM problems, the user-specific utility functions are assumed to be private to the users

and therefore a centralized solution is not possible. Accordingly, distributed optimization meth-

ods have become suitable tools thanks to the separable structure of NUM problems [23, 95].

The idea is to decompose the main problem into sub-problems that can be solved by the in-
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dividual users and use the solutions of the sub-problems to solve the main problem [96, 97],

and this has been advocated for use in different applications, e.g., [16, 18]. Among the two

main types of decomposition methods, primal decomposition methods correspond to a direct

allocation of the resources by a central coordinator and solve the primal problem, whereas dual

decomposition methods based on the Lagrangian dual problem [98] correspond to resource al-

location via pricing and solve the dual problem [23]. Due to the structure of NUM problems,

the latter approach has been widely adopted in the literature [23, 99, 100]. Additionally, it

gives users the freedom of determining their own demand based on pricing-type signals.

Although there is extensive literature on pricing algorithms based on dual decomposition,

the majority of studies focus on linear constraints [99, 100, 101, 102, 9], or on non-linear

constraints with the assumption of separability and full user knowledge of these constraints

[103, 104, 105]. Furthermore, none of the aforementioned studies propose an iterative pric-

ing algorithm that induces resource demand satisfying the hard constraints of the problem

during the iterative optimization process. Instead, these studies only provide bounds on the

infeasibility amount of the resource demand (e.g., [100, 102]). Our preliminary work in [9]

is an exception, which is limited to problems with linear inequality constraints characterized

by binary matrices. Thus, pricing-based solutions can only be realized after convergence to a

near-feasible point for resource allocation systems with safety-critical constraints. Therefore,

implementation of such solutions requires a negotiation process through a two-way commu-

nication network if the system has hard safety-critical constraints, which can be considered

impractical in many applications.

The research presented in this chapter is motivated by the context of network resource al-

location applications, which involve a number of key considerations. First, users themselves

determine their own resource demand in response to the prices, with the actual demand only

becoming observable ex-post. Second, it is essential that the systems in question have safety-

critical hard constraints that must not be violated by users’ resource demand at any time. Fi-
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nally, it is important to recognize that the constraints associated with such resource allocation

systems can form arbitrary convex and compact feasible sets. One particularly relevant ex-

ample of this type of application can be seen in the context of price-based demand response,

in which users determine their own electricity consumption in response to prices that must be

set such that the realized demand does not violate the capacity constraints of the electric grid

[106]. This is necessary to ensure the safe and reliable operation of the grid, as violating the ca-

pacity constraints could have serious physical implications that could compromise the overall

integrity of the system. In light of these considerations, it is evident that the resource demand

of users must always satisfy the constraints of the system, even as they respond dynamically to

pricing information.

To this end, in this chapter, we develop an iterative pricing algorithm to solve NUM prob-

lems with arbitrary convex and compact feasible sets, called safe pricing for NUM (SPNUM).

We design our algorithm based solely on the realized demand in response to prices and com-

municate to the users only the prices for the resources at each iteration. Our contributions can

be summarized as follows:

• We introduce a novel algorithm, the SPNUM, for solving NUM problems with arbitrary

convex and compact feasible sets through pricing. Our algorithm iteratively designs

prices and allows users the freedom of determining their own decision variable based

on prices according to their own profit maximization problem (without imposing any

iterative variable update rule on the users).

• We characterize a principled way to choose algorithm parameters to guarantee feasible

primal iterates at all iterations. Furthermore, we prove that the static regret incurred by

the feasible primal iterates produced by the SPNUM, i.e., the cumulative gap between

the optimal objective value and the objective function evaluated at the primal iterates, up

to time T is bounded by O(log (T )).
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• We numerically evaluate our algorithm to support our theoretical findings and compare

its performance to existing first-order distributed methods for NUM problems.

To the best of the authors’ knowledge, no previous work has studied pricing algorithms

for NUM problems on arbitrary convex feasible sets that are unknown to the users, even with-

out consideration of safety. While primal-dual algorithms [107, 24, 108, 5] can handle non-

separable arbitrary convex feasible sets, they rely on a primal update rule users need to follow

in order to converge as opposed to maximizing their own profit based on observed prices. To

this end, our contributions extend beyond safety, since SPNUM solves NUM problems on ar-

bitrary convex feasible sets by iteratively designing prices and allowing the users to determine

their own resource demand according to their own profit maximization problem.

The primal feasibility and the regret guarantees of the SPNUM result from a combination

of two ingredients: 1) given prices and demand at a given instant, we apply a projected gradient

method on a shrunk feasible set to get the next desired demand, and 2) we estimate the price

response function of the users around the current prices and determine the next prices so that

the induced demand is close to the desired demand. To ensure the algorithm behaves as a

projected gradient method, the induced demand must be in the strict interior of the feasible

set. The algorithm operates on a shrunk feasible set to account for the error between induced

and desired demand, and gradually reduces shrinkage and step size to converge to the optimal

solution.

Related work: Besides dual (sub)gradient methods, a few other branches of literature study a

similar problem to ours. We highlight how those lines of work do not meet our particular design

criteria and what differentiates the work presented in this chapter from them. Additional details

on distributed optimization algorithms and their classifications can be found in the surveys

[26, 109].

1. Primal-dual methods: Primal-dual methods tackle multi-user optimization problems
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with arbitrary convex global constraints by applying a projected gradient descent/ascent on the

primal/dual variables of the Lagrangian [107, 24, 108, 5]. The dual variables are updated using

the aggregate resource demand information of the users and can be used for pricing of the

resources. Therefore the update rule for the dual variables meets our design goals. However,

the primal variables, i.e., the resource demand of the users, are updated by applying one step

of gradient descent instead of solving for the profit-maximizing optimal demand in response to

prices. Accordingly, these algorithms do not resemble the selfish profit-maximizing behavior

of the users we adopt in this chapter.

2. Projected gradient methods: The main goal of the projected gradient methods is to main-

tain feasibility by projecting the primal variables on the feasible convex set after each update

step. Scholars have extensively studied the convergence properties of the projected gradient

methods under different assumptions [96, 110, 111]. On the other hand, the main challenge

brought by our setup is that the primal variables are controlled solely by the users and cannot

be manipulated (e.g., projected). Even though we can determine a feasible desired resource

allocation by means of a projected gradient method, the prices that induce such resource de-

mand are unknown due to the privacy of the utility functions, which brings unique challenges

not addressed by the previous literature.

3. Interior point methods: Interior point methods are commonly used to solve inequality-

constrained problems by using barrier functions to convert them into a sequence of equality-

constrained problems, which are then solved using Newton’s method [112]. While producing

feasible iterates, the use of Newton’s method requires the Hessian, which is often not available

in practical applications, such as demand response without two-way communications. To ad-

dress this limitation, previous works such as [113] and [114] have proposed feasible interior

point methods that approximate the Hessian using first or second-order information exchange.

However, these methods do not match the profit maximization rule we would like to preserve in
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this chapter, which allows users to freely determine their resource consumption in response to

posted prices. Closest to our setup and design goals in this chapter would be [115, 116], where

separable optimization problems with linear constraints are considered. While [115] proposes

a Newton-like dual update that approximates the Hessian using first-order information, only

the asymptotic convergence of the algorithm is proven and the feasibility of primal iterates is

not guaranteed. [116] proposes an interior point method using Lagrangian dual decomposition

with theoretical guarantees, but requires the exact Hessian for dual updates.

Organization: The remainder of this chapter is organized as follows. In Section 3.2, we for-

malize the problem setup. In Section 3.3, we describe the SPNUM (Algorithm 5) and in Sec-

tion 3.4, we prove its feasibility and regret guarantees. In Section 3.5, we provide a numerical

study demonstrating the efficacy of the SDGM.

Notation and Basic Definitions: We denote the set of real numbers by R and the set of non-

negative real numbers by R+. For vectors, ∥ · ∥ denotes the standard Euclidean norm and ∥ · ∥p
denotes the p-norm. For matrices, ∥ · ∥ denotes the matrix norm. Given a positive integer

n > 0, [n] denotes the set of integers {1, 2, . . . , n}. For two vectors x, y ∈ Rd, ⟨x, y⟩ denotes

the inner product of x and y. Given a vector x = [x⊤1 , x
⊤
2 , . . . , x

⊤
n ]

⊤ ∈ Rd, xi ∈ Rdi denotes

the i’th block of x. For a matrix A ∈ Rm×n, Aj denotes the j’th row of A, A:,j denotes the

j’th column of A. Given a matrix A ∈ Rm×m, diag(A) ∈ Rm is the vector of the diagonals

of A, κ(A) is the condition number of A, and σmin(A)/σmax(A) are the minimum/maximum

singular values of A. Given a function f : X ⊆ Rd → R, ∇f denotes the gradient of f , ∇kf

denotes the k’th order gradient of f , and domf denotes the domain X of f . Given two vectors

x, y ∈ Rm, x ≤ y implies element-wise inequality. Given a set X ⊂ Rd, X int denotes the

interior of X . Given a convex and compact set X ⊂ Rd and a point x ∈ Rd, ΠX (x) denotes

the Euclidian projection of x onto X . We denote the closed and the open Euclidean ball with

radius r centered at origin as B̄(r) and B(r), respectively. Id denotes the identity matrix of size

86



Safe Pricing for Resource Allocation in Safety-Critical Networks Chapter 3

d, 1d denotes the vector of all 1’s with dimension d, and ei denotes the unit vector with 1 in

i’th dimension and 0 everywhere else.

Definition 3.1.1 A differentiable function f(·) is said to be µ-strongly concave over the do-

main X if there exists µ > 0 such that

⟨∇f(x2)−∇f(x1), x1 − x2⟩ ≥ µ∥x1 − x2∥2 (3.1)

holds for all x1, x2 ∈ X .

Definition 3.1.2 A differentiable function f(·) is said to be L-smooth over the domain X if

there exists L > 0 such that

∥∇f(x1)−∇f(x2)∥ ≤ L∥x1 − x2∥ (3.2)

holds for all x1, x2 ∈ X .

Definition 3.1.3 A function f(·) is said to be M -Lipschitz continuous over the domain X if

there exists M > 0 such that

∥f(x1)− f(x2)∥ ≤M∥x1 − x2∥ (3.3)

holds for all x1, x2 ∈ X .

3.2 Problem Setup

We study the standard NUM problem [18], where the goal is to allocate resources to n users

subject to a set of coupling constraints such that the total utility of the users is maximized. It
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can be formulated as the following optimization problem:

max
x∈domf⊆Rd

f(x) =
n∑

i=1

fi(xi) (3.4a)

s.t. x ∈ X , (3.4b)

where fi(·) is the concave utility function of user i that depends on the di-dimensional vector of

resource consumption, denoted by xi ∈ domfi ⊆ Rdi , and X ⊂ Rd is the convex and compact

set of feasible resource allocations. We also have
∑

i∈[n] di = d, domf =
∏

i∈[n] domfi, and

define d̄ = maxi∈[n] di.

For all users i ∈ [n], we define the setXi = {xi ∈ Rdi : ∃x ∈ X s.t. xi is the i’th block of x}

as the set of values that user i’s resource demand vector can take in the aggregate feasible

set X . Note that since X is convex and compact, Xi is convex and compact, ∀i ∈ [n].

Furthermore, if x ∈ X , then xi ∈ Xi and if x ∈ X int, then xi ∈ X int
i hold by definition. We

make the following assumptions on the feasible set X , and on the utility functions over Xi,

∀i ∈ [n].

Assumption 3.2.1 The feasible set X is a subset of domf , i.e., X ⊆ domf . The diameter of

the feasible set X is bounded by R, i.e., ∥x − y∥ ≤ R, ∀x, y ∈ X . There exists a vector x̃ in

the interior of X such that x̃ ∈ X int.

Assumption 3.2.2 For all i ∈ [n], the utility function fi(·) is µ-strongly concave, L-smooth,

M -Lipschitz continuous, and has β-smooth gradient over Xi.

Example 1 (Utility function) For instance, take fi(xi) = fα(xi) to be an α-fair utility func-

tion (see [117]) and let Xi = [xi, x̄i] with xi > 0. We have that ∇fi(xi) ≤ 1/xαi ,

−α/xα+1
i ≤ ∇2f

(
i xi) ≤ −α/x̄α+1

i , and α(α + 1)/x̄α+2
i ≤ ∇3fi(xi) ≤ α(α + 1)/xα+2

i ,

∀x ∈ Xi. Therefore, fi(xi) is α/x̄α+1
i -strongly concave, α/xα+1

i -smooth, and 1/xαi -Lipschitz

continuous, and has α(α + 1)/xα+2
i -smooth gradient over Xi.
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Under Assumption 3.2.2, the objective function (3.4a) is strongly concave with coefficient µ.

Accordingly, the convex optimization problem (3.4) has a unique solution denoted by x⋆ and

an optimal objective value denoted by f ⋆.

Since fi(·) are private to the users, (3.4) cannot be solved centrally. Therefore, distributed

optimization methods based on the dual decomposition framework have been proposed in the

literature (e.g., [23] for the case when X is a polytope) in order to incentivize selfish users

with private utility functions to follow the optimal global solution. The common high-level

idea is to divide the main problem into subproblems that can be solved by the individual users

upon observing a pricing signal, and iteratively design prices {p0, p1, . . . } to converge to the

optimal resource allocation vector x⋆. In this framework, upon observing a price pi ∈ Rdi , each

user i ∈ [n] determines their own decision variable according to their own profit maximization

problem:

gi(pi) = argmax
xi∈domfi

fi(xi)− ⟨pi, xi⟩. (3.5)

We call gi(·) the price response function of user i and let

g(p) = [g1(p1)
⊤, g2(p2)

⊤, . . . , gn(pn)
⊤] be the concatenated vector of price responses

given a price vector p ∈ Rd.

In the next section, we propose an algorithm to iteratively design pt, ∀t ≥ 1, that produce

feasible primal solutions, i.e., xt ∈ X , ∀t ≥ 1, where xti = gi(p
t
i) is determined by user i

through (3.5). In addition, the algorithm should produce primal iterates that result in a sublinear

static regret per user, which is measured by

R(T ) =
1

n

T∑
t=1

f ⋆ − f(xt). (3.6)

It is worthwhile to highlight that even without the safety criterion, the literature on dis-

tributed optimization methods does not provide a distributed solution based on pricing to
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(3.4) with any type of convergence guarantees. Existing works in the literature 1) uti-

lize a pricing algorithm based on the dual decomposition framework but consider linear

constraints [99, 100, 101, 102, 9] or non-linear and separable constraints known by the

users [103, 104, 105], or 2) solve the Lagrangian dual problem by primal-dual methods

[107, 24, 108, 5], which restrict the users to follow a primal update method that cannot be

enforced in the setting where users only care about maximizing their own profit dictated by

(3.5). Therefore, a pricing algorithm that induces a sequence of primal iterates converging to

the optimal solution of (3.4) with general convex and compact feasible sets X is novel in the

distributed optimization literature.

Additionally, we note that the definition of regret in (3.6) quantifies the difference between

the efficiencies of the optimal resource allocation and the proposed algorithm up to time T .

When the primal iterates {xt}t∈[T ] are in the feasible setX , users’ resource demand can actually

be realized through the posted prices without waiting for the convergence of the algorithm,

and therefore regret is a meaningful measure. On the other hand, although the above sum

is computable for many of the existing works mentioned earlier (e.g., [100, 101] with linear

constraints), they do not guarantee feasible primal iterates but only establish bounds on the

amount of constraint violation at a given iteration t. Therefore, solutions are only realizable

after convergence to a near-feasible point for resource allocation systems with safety-critical

constraints. As such, they can be viewed as complex negotiations with users over what their

potential demand would be in response to different prices in order to converge to the optimal

price, which renders regret a less meaningful measure. By incorporating primal feasibility into

our design goals, we aim to continually allocate resources to the users through posted prices

during the iterative optimization process and measure the overall efficiency of this process

through regret.
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3.3 Safe Pricing Algorithm for NUM

In this section, we describe the price update algorithm we propose, called Safe Pricing for

NUM (SPNUM), that produces feasible primal iterates satisfying a sublinear regret. To do so,

we will use some definitions and results from [6] regarding the geometric properties of convex

and compact sets. While the primary focus of [6] centers on a linear stochastic bandit setup

that bears little resemblance to the NUM setup under study, the definitions of the shrunk set

outlined in the former are applicable to the present context as well.

3.3.1 Geometric Properties of the Feasible Set

The main ingredient that ensures the safety of SPNUM is that it operates on a shrunk

feasible set, which is formally defined as follows:

Definition 3.3.1 For a compact set X ⊂ Rd and a positive scalar ∆ ∈ R+, we define the

shrunk version of X as X∆ := {x ∈ X : x+ v ∈ X ,∀v ∈ B̄(∆)}.

Example 2 (Shrunk polytope) Let A ∈ Rm×d and X = {x ∈ Rd : Ax ≤ c} be a polytope.

The shrunk version of X is defined as X∆ = {x ∈ Rd : A⊤
j x ≤ cj −∆∥Aj∥, j ∈ [m]}.

Remark 3.3.1 If X is convex and compact, then X∆ is also convex and compact.1

Given the above definition of the shrunk version of a set, one can consider the maximum

shrinkage that a set can withstand while still being nonempty. We introduce the maximum

shrinkage of a set in the following definition.

Definition 3.3.2 For a compact set X ⊂ Rd, we define the maximum shrinkage of X , as

HX := sup{∆ : X∆ ̸= ∅}.
1We can equivalently define X∆ using Minkowski subtraction. The Minkowski subtraction of sets A,B ⊆ Rd

is defined as A ⊖ B := {a − b : a ∈ A, b ∈ B}, or equivalently, A ⊖ B =
⋂

b∈B(A − b). Therefore,
X∆ = X ⊖ B(∆) is an intersection of convex and closed sets and hence is convex and closed [118, Section 3.1].
By Definition 3.3.1, X∆ is a subset of X , and therefore bounded. A closed and bounded convex set is convex and
compact.
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3.3.2 Description of the Algorithm

Algorithm 5: Safe Pricing for NUM
1: Input: p0, ∆t, γt, ηt.
2: (Initialization stage):
3: Each user i ∈ [n] receives p0i and p−t

i = p0i + η0e1+mod(t,di), ∀t ∈ [di] and solves

xti = gi(p
t
i), t = −di,−di + 1, . . . , 0. (3.7)

4: For all i ∈ [n], estimate the Jacobian of gi as:

∇̂g0i =

[
x−di
i − x0i
η0

, . . . ,
x−1
i − x0i
η0

]
(3.8)

5: for t = 0, 1, . . . do
6: (Update stage)
7: Compute x̂t+1 = ΠX∆t (x

t + γtpt).
8: Set pt+1

i = pti + [∇̂gti ]−1(x̂t+1
i − xti), for all i ∈ [n].

9: Each user i ∈ [n] receives pt+1
i and solves xt+1

i = gi(p
t+1
i )

10: (Sampling stage)
11: Each user i ∈ [n] receives pt+1,s

i = pt+1
i + ηt+1e1+mod(t,di) and solves

xt+1,s
i = gi(p

t+1,s
i )

12: For each user i ∈ [n]

[∇̂gti ]:,1+mod(t,di) ← (xt+1,s
i − xt+1

i )/ηt+1 (3.9)

∇̂gt+1
i = ∇̂gti (3.10)

13: end for

The proposed method, called safe pricing for NUM (SPNUM) and outlined in Algorithm 5,

consists of two stages at each iteration: 1) update stage (Step 6) and 2) sampling stage (Step 10).

The update stage proceeds similarly to a projected gradient method on the primal iterates while

designing prices that induce realized iterates close to a desired iterate. The sampling stage

estimates the Jacobians of the price response functions of the users, which are used during the

update stage.

In the update stage, the algorithm first determines a desired next iterate x̂t+1 in Step 7.
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However, because the primal variables are not directly controllable, prices that induce xt+1

that is close to x̂t+1 have to be determined at Step 8. Accordingly, at the heart of the update

stage lie two key steps:

1. At iteration t, the central coordinator observes xt and determines the next desired iterate

x̂t+1 by means of a projected gradient ascent step in Step 7. This is because if xt ∈ X int, then

xi ∈ X int
i , which implies that pti = ∇fi(xt) by Assumption 3.2.2 and the first order optimality

condition for (3.5). Therefore, pt = ∇f(xt). In addition, projection is performed onto a

shrunk set X∆t , where ∆t controls the amount of shrinkage at time t. This is the key ingredient

to ensure the safety of the algorithm because the uncertainty in the price response functions

will cause the actual induced iterate xt+1 in response to the price vector pt+1 to deviate from

the desired iterate x̂t+1. By adding this safety margin to the constraint, we can ensure safety if

∥xt+1 − x̂t+1∥ ∈ B̄(∆t). Finally, by utilizing a diminishing safety margin sequence {∆t}t≥0,

we can ensure convergence to the optimal solution of (3.4).

2. Once the desired next iterate x̂t+1 is determined, the central coordinator has to determine

pt+1
i that would ideally induce x̂t+1

i , ∀i ∈ [n]. However, the price response function is unknown

to the central coordinator, and therefore an exact solution is not possible. Instead, the central

coordinator makes a linear approximation of the price response function using the Jacobian

estimate of gi, ∀i ∈ [n]. In particular, the central coordinator keeps an estimate of the Jacobian

denoted by ∇̂gti initialized in Steps 3 and 4 of the algorithm, which is constructed by varying the

price vector along each dimension and estimating the gradient using the difference equation.

This results in the following linear approximation of the price response function around pti:

ĝi(p) = xti + ∇̂gti(p− pti). (3.11)

By setting p = pt+1
i , ĝi(pt+1

i ) = x̂t+1, and rearranging, we get the price update rule in Step 8.
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This requires that the ∇̂gti is an invertible matrix, which will be proven in Section 3.4.

After determining pt+1 and xt+1, the algorithm proceeds to the sampling stage to update the

Jacobian estimates. To achieve this, the central coordinator varies the price vector pt+1
i along

the dimension 1+mod(t, di) in Step 11 for user i ∈ [n], resulting in a sampling price of pt+1,s
i .

The response is observed and denoted as xt+1,s
i . The difference between xt+1,s

i and xt+1
i divided

by the amount of price variation serves as an estimate of the gradient of the price response

function along the 1+mod(t, di)’th principal axis, which becomes the 1+mod(t, di)’th column

of the Jacobian estimate ∇̂gt+1
i in Step 12. It is worthwhile to highlight that for a user i, the

error between x̂t+1
i and xt+1

i has two sources: 1) the difference between the estimated Jacobian

and the actual Jacobian, i.e., ∇̂gti − ∇gi(pti), and 2) the high order terms not captured by the

linear approximation, i.e., R1 = gi(p
t)−∇gi(pt)(p− pt).

It is necessary that there exists an initial price vector p0 such that the demand vectors in

response to the initial sampling prices in (3.7) are in X int so that the algorithm can proceed as

described above. Since this has to hold before getting any feedback from the users, we make

the following assumption:

Assumption 3.3.1 There exists a known price vector p0 such that g(p0) ∈ X int and for all

i ∈ [n], x−di
i ∈ X int

i .

The above assumption guarantees that the initial demand vectors in (3.7) are in X int
i , ∀i ∈ [n]

and therefore the initial Jacobian estimation is meaningful.

Remark 3.3.2 One way to satisfy Assumption 3.3.1 is to choose η0 such that X√
nη0

µ

is non-

empty and p0 such that g(p0) ∈ X√
nη0

µ

, which is proven in Appendix B.8.

In the next section, we characterize a principled way to choose parameters ∆t, γt, and ηt in

order to produce feasible primal iterates. Additionally, we prove that the regret incurred by the

iterates produced by Algorithm 5 isO(log(T )) after T iterations, and the last iterate converges

to the optimal solution at the rate O(log(T )/T ).
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3.4 Feasibility and Regret Analysis

In order to prove the safety and the regret guarantees of our algorithm, we will need to

bound the distance between a point in x ∈ X and its projection onto the shrunk set ΠX∆
(x).

The following definition from [6] formalizes this notion called the sharpness of a set, which is

defined as the maximum distance from any point in a set to the projection of it onto the shrunk

version of that set.

Definition 3.4.1 For a convex and compact set X ⊂ Rd, we define the sharpness of X as

SharpX (∆) := sup
x∈X
∥ΠX∆

(x)− x∥, (3.12)

for all non-negative ∆ such that X∆ is nonempty.

The following proposition establishes a bound on the sharpness of convex and compact sets as

a linear function of ∆:

Proposition 3.4.1 [6, Corollary 11] For a convex, compact set X ⊂ Rd with non-empty inte-

rior, we have that SharpX (∆) ≤ ΓX∆ where ΓX ≥ 1 is a constant that depends only on the

geometry and the dimension of X .

Example 3 (Sharpness of a polytope [6]) Let X = {x ∈ Rd : Ax ≤ c} be a polytope

with a nonempty interior. Define IA to refer to the collection of all sets of d indices such

that for each {i1, i2, ..., id} ∈ IA the vectors Ai1 , Ai2 , ..., Aid are linearly independent. For

each ℓ ∈ IA where ℓ = {i1, i2, ..., id}, we define Aℓ = [A⊤
i1
A⊤

i2
... A⊤

id
]⊤. We have that

SharpX (∆) ≤
√
dKX∆, where KX := maxℓ∈IA κ(A

ℓ).

Example 4 (Sharpness of a ball in Rd) Let X = {x ∈ Rd : (x − x0)⊤(x − x0) ≤ r2} be a

ball in Rd with radius r centered at x0. We have that SharpX (∆) = ∆.
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Although we do not specify a closed-form expression of ΓX for a general convex and compact

set X , it relates to the sharpness of polytopes that are contained in X , which have closed-

form bounds as given by Example 3. We refer the reader to [6] (Proposition 10) for a detailed

discussion.

The next lemma characterizes the regularity properties of gi(pi) over the set of prices that

induce a resource demand in X int
i for a user i ∈ [n]. This property is crucial for our analysis

and for the feasibility of the algorithm, as we need to show that the inverse of the matrix ∇̂gti
for the price update rule in Step 8 is a valid operation.

Lemma 3.4.1 Let Pi = {pi ∈ Rdi : gi(pi) ∈ X int
i } be the set of prices that induce a resource

demand in X int
i for a user i ∈ [n]. Over Pi, gi(pi) is bijective, 1/µ-Lipschitz continuous, and

β/µ3-smooth. Accordingly, gi(pi) is invertible and∇gi(pi) = [∇2fi(gi(pi))]
−1.

The proof of Lemma 3.4.1 can be found in Appendix B.1. Lemma 3.4.1 establishes that

the true Jacobian of the price response function for user i is invertible because it corresponds

to the inverse of the Hessian of the strongly concave utility function of user i. However, this

does not imply that the estimated Jacobian ∇̂gti is invertible since it is constructed by finite

difference gradient approximation. The next lemma states that the estimated Jacobian ∇̂gti
is close enough to ∇gi(pt), which allows us to bound the minimum singular value of it and

therefore guarantees invertibility with the appropriate choice of algorithm parameters.

Lemma 3.4.2 Let γt = 1/(µ(t + τ)), ∆t = ∆/(t + τ)2, and ηt = µ∆t−1/(4
√
n) for some

∆ > 0 and

τ = max
{
2, 2d̄− 1, 1 +

2µ∆ΓX

M
√
n
,

√
∆

HX
,
LβM

√
d̄
(
µ+ 32LΓX

√
n(d̄− 1)

)
2µ4ΓX

}
. (3.13)

Suppose that at iteration t, xk ∈ X int
ηk

√
n

µ

, ∀k ∈ [max{t− d̄+1, 0}, t]. Then, the following holds
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for all i ∈ [n]:

∥∇̂gti −∇gi(pti)∥ ≤ eti, (3.14)

where

eti=
2β
√
di

µ3

(
ηt+2L(di−1)(M

√
nγt+2∆tΓX )

)
≤ 1

2L
. (3.15)

Accordingly, σmin(∇̂gti) ≥ 1
2L

and therefore ∇̂gti is invertible.

The proof of Lemma 3.4.2 can be found in Appendix B.2. Lemma 3.4.2 characterizes a prin-

cipled way to choose the algorithm parameters with respect to a free parameter ∆ in order

to bound the difference between ∇̂gti and ∇gi(pt). In the following subsections, we will first

characterize the choice of ∆ that guarantees primal feasibility at all iterations and then prove

the regret and convergence guarantees of Algorithm 5 under this choice of parameters.

3.4.1 Feasibility Analysis

The following proposition characterizes the choice of the parameters ∆t, γt, and ηt to

ensure feasible primal iterates:

Proposition 3.4.2 Let γt = 1/(µ(t+ τ)) and ∆t = ∆/(t+ τ)2, ηt = µ∆t−1/(4
√
n), where τ

is given by (3.13) and

∆ = βLMn3/2(6L+
√
d(µ/
√
n+ 32L(d̄− 1)))/µ5. (3.16)

Then for all t ≥ 0, ∥x̂t+1 − xt+1∥ < 3∆t/4 and ∥xt+1 − xt+1,s∥ ≤ ∆t/4. Accordingly, for all

t ≥ 0, the iterates xt and xt,s produced by Algorithm 5 are feasible and in the strict interior of

the feasible set, i.e., xt ∈ X int
ηt

√
n

µ

and xt,s ∈ X int, ∀t ≥ 1.
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The proof of Proposition 3.4.2 can be found in Appendix B.3. Given that under Proposi-

tion 3.4.2, xt for all t ≥ 1 are feasible and therefore implementable, the static regret (3.6) is a

valid choice of performance metric. Next, we prove that the regret of Algorithm 5 isO(log(T ))

and the primal variables converge to the optimal solution at the rate O(log(T )/T ).

3.4.2 Regret and Convergence Analysis

As our algorithm alternates between executing one update and one sampling stage, after T

iterations it will have executed T/2 update stages and T/2 sampling stages. In this case, the

regret per user is fairly calculated as:

R(T ) =
1

n

T/2∑
t=1

(f(x⋆)− f(xt) + f(x⋆)− f(xt,s)). (3.17)

The following theorem establishes an upper bound on the regret incurred by the primal

iterates produced by Algorithm 5, and the squared distance between last iterate xT/2 and the

optimum solution x⋆:

Theorem 3.4.1 Let p0, γt, ∆t, and ηt be chosen as in Proposition 3.4.2. Then for all t ≥ 0,

the iterates produced by Algorithm 5 are feasible. Furthermore, the regret R(T ) for T ≥ 2

satisfies

R(T ) ≤ O(log(T )(1 + ∆ΓX/n)), (3.18)

where O(·) hides other constants. In addition, the last primal iterate xT/2 satisfies

∥xT/2 − x⋆∥2 ≤ O(log(T )/T ). (3.19)

Proof outline: Since the algorithm proceeds similarly to a projected gradient method, the proof

is similar to that of a projected gradient ascent for strongly concave functions. We have an
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additional error term due to ∥xt+1 − x̂t+1∥, which is O(∆t). The error term impacts the result

as O(∑T/2
t=1 ∆

t/γt), which results in an additive O(log(T )∆ΓX/n) term.

The complete proof of Theorem 3.4.1 and the explicit constants of (3.18) can be found

in Appendix B.6. According to Theorem 3.4.1, Algorithm 5 produces feasible solutions that

achieve a sublinear regret of O(log(T )). Furthermore, the primal variables induced by the

prices converge to the optimal solution at the rate O(log(T )/T ).

Remark 3.4.1 When di = 1, ∀i ∈ [n], ∆ = O(βn3/2) and R(T ) = O(log(T )(1 +√nβΓX )).

In the next section, we numerically demonstrate our theoretical results about the primal vari-

ables induced by Algorithm 5 and compare its performance to existing pricing algorithms.

3.5 Numerical Studies

In this section, we demonstrate the efficacy of SPNUM via three numerical studies: 1) a

benchmarking study to compare SPNUM’s convergence and feasibility performance to existing

pricing methods that solve the NUM problem, 2) a toy NUM problem with a non-linear feasible

set to demonstrate the success of SPNUM on non-linear feasible sets, and 3) a parameter study

to demonstrate how the regret depends on the second order smoothness parameter β, sharpness

parameter ΓX , and the number of users n.

3.5.1 Benchmarking Study

In this study, our aim is to compare the safety and convergence performance of SP-

NUM to the existing algorithms on feasible sets characterized by linear inequalities, i.e.,

X = {x ∈ Rd : Ax ≤ c}. We compare SPNUM to DG [102], which can achieve a linear

convergence rate, and SDGM [9], which can provide safety when A is a binary matrix.

99



Safe Pricing for Resource Allocation in Safety-Critical Networks Chapter 3

0 200 400 600 800 1000

0.0

0.5

1.0

1.5

‖x
t
−
x
?
‖2

Primal Convergence

SPNUM

SDGM

DG

0 200 400 600 800 1000

0.0

0.5

1.0

1.5

‖[A
x
t
−
c]

+
‖/
‖c
‖

×10−1 Primal Infeasibility

Iteration t

A ∈ {0, 1}m×n

(a)

0 200 400 600 800 1000

0.00

0.25

0.50

0.75

1.00

‖x
t
−
x
?
‖2

×101 Primal Convergence

SPNUM

SDGM

DG

0 200 400 600 800 1000

0

2

4

6

‖[A
x
t
−
c]

+
‖/
‖c
‖

×10−1 Primal Infeasibility

Iteration t

A ∈ Rm×n

(b)

Figure 3.1: Results for the benchmarking study. In all plots, SPNUM is shown in blue,
SDGM in green, and DG in red. The shaded areas correspond to one standard deviation.
In (a), we plot the convergence of the primal variables measured by ∥xt − x⋆∥2 (left) and
the infeasibility amount measured by ∥[Axt − c]+∥/∥c∥ (right) for all three algorithms when
A ∈ {0, 1}m×n is a binary matrix. In (b), we plot the convergence of the primal variables
measured by ∥xt − x⋆∥2 (left) and the infeasibility amount measured by ∥[Axt − c]+∥/∥c∥
(right) for all three algorithms when A ∈ Rm×n is a real matrix.

We have implemented all algorithms on two types ofAmatrices: 1)A is a binary matrix and

2) A is a real matrix. For both cases, we randomly generated a collection of 50 networks with a

random number of users n taking (integer) values in range [5, 20], and a random number of con-

straints m taking values in the interval [5, 10] (generated independently). Inspired by [102], for

all users i ∈ [n], we let the utility function be fi(xi) = −0.5(xi−3)2−xi−θi log(1+exi), where

θi is sampled uniformly from [0, 1] for each network configuration (we shifted the quadratic

term by 3 to ensure that the optimal solution is on the boundary of the feasible set). We set

domfi = [0, 1] for all i ∈ [n]. For each network configuration, we first randomly generated

a matrix Â by sampling m × n Bernoulli random variables for the binary matrix case, and by

sampling m × n random variables from the continuous uniform distribution in [−1, 1] for the

real matrix case. We then let A = [Â⊤ In]
⊤. For the binary case, we let c = 1m+n, and for the

real case, we let c = [0.11⊤
m 1⊤

n ]
⊤.2

We note that Xi ⊆ [0, 1], ∀i ∈ [n]. Within Xi, using bounds on θi and computing the

derivatives of fi, we get M = 2, L = 5/4, µ = 1, β = sinh(1)/(2(1 + cosh(1))2) ≈ 0.0909.

2For SPNUM, we additionally include the constraints x ≥ 0 in X to satisfy Assumption 3.2.1. For the other
algorithms, this is not needed.
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Finally, from Example 3 we have ΓX ≤
√
nκ(A).

For each configuration, we initialized the dual variables and prices to induce

x0i = η0/µ, ∀i ∈ [n], and ran all three algorithms for a horizon of T = 1000. We demonstrate

the results for the binary matrix case and the real matrix case in Figure 3.1a and Figure 3.1b,

respectively. In Figure 3.1a we observe that 1) while DG converges the fastest, it is not safe,

2) SDGM and SPNUM converge slower but are safe, and 3) SDGM converges faster than SP-

NUM because it is designed specifically for this setting. On the other hand, in Figure 3.1b we

observe that 1) SDGM does not provide safety and convergence when A is a real matrix, as

its assumptions do not hold anymore (note that the plot for ∥xt − x⋆∥2 flattens for SDGM), 2)

SPNUM successfully provides safety and convergence.

3.5.2 SPNUM on Non-linear Feasible Set

This study aims to demonstrate numerically the regret and safety guarantees of SPNUM on

a problem with a feasible set characterized by non-linear inequalities. We select the feasible set

X = {x ∈ Rd : ∥x∥ ≤ 1} as the unit ball in Rd centered at the origin. At the beginning of each

run, we sample the number of users n as an integer from the range [5, 20] uniformly at random.

For all i ∈ [n], we let the utility function be fi(xi) = −0.5(xi − yi)2 − xi − θi log(1 + exi),

where θi is sampled uniformly from [0, 1] and yi is sampled uniformly from [−2, 2] at random

at the beginning of each run.

Noting that Xi = [−1, 1], using bounds on θi and yi and computing the derivatives of fi,

we get M = 4+e/(1+e), L = 5/4, µ = 1, β = sinh(1)/(2(1+cosh(1))2) ≈ 0.0909. Finally,

from Example 4 we have ΓX = 1.

We initialize the prices to induce x0i = η0/µ, ∀i ∈ [n], and ran SPNUM 100 times for a

horizon of T = 50. The results are illustrated in Figure 3.2. The figure shows that 1) the regret

of SPNUM grows as O(log(t)), 2) SPNUM guarantees feasible iterates at all iterations, and 3)
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Figure 3.2: Results for the numerical study on SPNUM on non-linear feasible set. In the left
figure, the regret divided by log(1 + t) is plotted in green, and constraint violation is plotted
in blue, where constraint violation is 0 if xt ∈ X and 1 otherwise. In the right figure, we plot
the primal convergence measured as ∥xt − x⋆∥2. Shaded areas correspond to one standard
deviation.

the primal iterates produced by SPNUM converge to the optimal solution.

3.5.3 Impact of Sharpness on Regret

In this study, our aim is to support our theoretical results about SPNUM with numerical ex-

amples. In particular, we study the impact of sharpness parameter ΓX and the number of users n

on regret through β. We set di = 1, in which caseR(T ) = O(log(T )(1+β√nΓX )) as stated in

Remark 3.4.1. For each user i, we set fi(xi) = θi(cos(ω(x−1))/ω2−10(x−2)2−x sin(ω)/ω),

where θi is sampled uniformly from [1, 2]. This particular choice of fi allows us to control β

while keeping the other parameters constant by simply choosing ω. Using the bounds on θi

and computing the derivatives of fi, we get M = 40, L = 42, µ = 19, and β = 2ω.

In order to have control over the sharpness parameter ΓX , we study linear constraints of

the form X = {x ∈ Rn : x ≥ 0, Ax ≤ c}, where Aij = (1 − K)/(1 + K(n − 1)) if i ̸= j,

and Aii = 1. This choice of A allows us to parameterize the feasible set as a function of the

condition number K, since κ(A) = K and ΓX =
√
nκ(A). Finally, since fi is increasing over
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Figure 3.3: Results for the numerical study on the impact of sharpness on regret. The figures
on each row share the same y-axis. The shaded areas correspond to one standard deviation.
The title of each subfigure denotes the (β,ΓX ) configuration, and the regret incurred by dif-
ferent values of n are plotted for each configuration. We observe that in the top row of figures,
i.e., when β is small, both ΓX and n have little effect on the regret (e.g., increasing ΓX by 8
times only doubles the regret for all n). On the other hand, the bottom row of figures demon-
strates that when β is larger, then ΓX and n have a significant impact.

Xi, the optimal solution is given by x⋆ = 1n.

For n = {2, 4, 8, 16}, ω = {0.001, 0.1}, and K = {4/√n, 8/√n, 16/√n, 32/√n}, we

randomly sampled 10 sets of {θi}i∈[n], initialized p0i so that x0i = η0/µ, ∀i ∈ [n], and

ran SPNUM for a horizon of T = 500. Note that this corresponds to configurations of

β = {0.002, 0.2} and ΓX = {4, 8, 16, 32}. We plot the regret for each configuration in Fig-

ure 3.3. The results indicate that 1) when β is small, ΓX and n have little impact on the regret,

and 2) when β is large, regret grows with ΓX and n as the term proportional to
√
nβΓX domi-

nates.
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3.6 Conclusion

In this chapter, we introduced a novel algorithm, called the safe pricing for NUM (SP-

NUM), for solving resource allocation problems over networks with arbitrary convex and

compact feasible sets in a distributed fashion. Our algorithm iteratively designs prices for

resources and allows the users the determine their own resource demand in response to prices

according to their own profit maximization problem. The prices produced by SPNUM ensure

that the induced demand satisfies the constraints of the system during the optimization pro-

cess, which promotes safety. This is done by: 1) shrinking the constraint set and applying a

projected gradient method to the primal variables to determine the updated desired demand,

and 2) determining the prices that would induce the desired demand by estimating the price

response function of the users using the historical data. By carefully controlling the amount of

shrinkage to account for the error in the estimated price response, we ensure the safety of the

algorithm. In addition, we have proven that the regret incurred by the SPNUM is O(log(T )),

and the primal variables converge to the optimal solution at the rate of O(log(T )/T ).
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Chapter 4

Ride Pricing and Control Policies for

Autonomous Urban Mobility Fleets

4.1 Introduction

The rapid evolution of enabling technologies for autonomous driving coupled with ad-

vancements in eco-friendly electric vehicles (EVs) has facilitated state-of-the-art transporta-

tion options for urban mobility. Owing to these developments in automation, it is possible for

an autonomous-mobility-on-demand (AMoD) fleet of autonomous EVs to serve the society’s

transportation needs, with multiple companies now heavily investing in AMoD technology

[119].

The introduction of autonomous vehicles for mobility-on-demand services provides an op-

portunity for better fleet management. Specifically, idle vehicles can be rebalanced throughout

the network in order to prevent accumulating at certain locations and to serve induced demand

at every location. Autonomous vehicles allow rebalancing to be performed centrally by a plat-

form operator who observes the state of all the vehicles and the demand, rather than locally

by individual drivers. Furthermore, EVs provide opportunities for cheap and environment-
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friendly energy resources (e.g., solar energy). However, electricity supplies and prices differ

among the network both geographically and temporally. As such, this diversity can be ex-

ploited for cheaper energy options when the fleet is operated by a platform operator that is

aware of the electricity prices throughout the whole network. Moreover, a dynamic pricing

scheme for rides is essential to maximize profits earned by serving the customers. Coupling

an optimal fleet management policy with a dynamic pricing scheme allows the revenues to

be maximized while reducing the rebalancing cost and the waiting time of the customers by

adjusting the induced demand.

Building upon the aforementioned opportunities presented by electric AMoD systems, our

study delves into static and dynamic control policies for these systems. In particular, we de-

velop and underscore the advantages of real-time control strategies, supported by empirical

performance assessments on real network and demand data in Section 4.2.

Additionally in Section 4.3, we extend our investigation to examine the impact of competi-

tion on critical factors within electric AMoD systems operated by profit-maximizing platform

operators. This analysis encompasses ride prices, aggregate demand served, profits of the firms,

and consumer surplus, providing a comprehensive assessment of the competitive landscape in

this domain.
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4.2 Dynamic Pricing and Fleet Management for Electric Au-

tonomous Mobility on Demand Systems

In this section, we study joint pricing and fleet management control policies for electric

AMoD systems. We consider a model that captures the opportunities and challenges of an

AMoD fleet of EVs, and consists of complex state and action spaces. In particular, the plat-

form operator has to consider the number of customers waiting to be served at each location

(ride request queue lengths), the electricity prices, traffic conditions, and the states of the EVs

(locations, battery energy levels) in order to make decisions. These decisions consist of pricing

for rides for every origin-destination (OD) pair and routing/charging decision for every vehicle

in the network. Upon taking an action, the state of the network undergoes through a stochastic

transition due to the randomness in customer behaviour, electricity prices, and travel times.

We first adopt the common approach of network flow modeling to develop an optimal static

pricing, routing, and charging policy that we use as a baseline in this section. However, flow-

based solutions generate fractional flows which can not directly be implemented. Moreover,

a static policy executes same actions independent of the network state and is oblivious to the

stochastic events that occur in the real setting. Hence, it is not optimal to utilize the static

policy in a real dynamic environment. Therefore, a real-time policy that generates integer

solutions and acknowledges the network state is required, and can be determined by solving

the underlying dynamic program. Due to the continuous and high dimensional state-action

spaces however, it is infeasible to develop an optimal real-time policy using exact dynamic

programming algorithms. As such, we utilize deep reinforcement learning (RL) to develop a

near-optimal policy. Specifically, we show that it is possible to learn a policy via Proximal

Policy Optimization (PPO) [120] that increases the total profits generated by jointly managing

the fleet of EVs (by making routing and charging decisions) and pricing for the rides. We

demonstrate the performance of our policy by using the total profits generated and the queue
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Figure 4.1: The schematic diagram of our framework. Our deep RL agent processes the state
of the vehicles, queues and electricity prices and outputs a control policy for pricing as well
as autonomous EVs’ routing and charging.

lengths as metrics.

Our contributions can be summarized as follows:

1. We formalize a vehicle and network model that captures the aforementioned character-

istics of an AMoD fleet of EVs as well as the stochasticity in demand and electricity

prices.

2. We analyze the static problem, where we consider a time-invariant environment (time-

invariant arrivals, electricity prices, etc.) to characterize the family of policies that guar-

antee stability of the dynamic system, to gain insight towards the actual dynamic prob-

lem, and to further provide a baseline for comparison.

3. We employ deep RL methods to learn a joint pricing, routing and charging policy that

effectively stabilizes the queues and increases the profits.

We visualize our real-time framework as a schematic diagram in Figure 4.1 and preview our

results in Figure 4.2, showing that a real-time pricing and routing policy can successfully keep

the queue lengths 400 times lower than the static policy. This policy is also able to decrease
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Figure 4.2: (a) The optimal static policy manages to stabilize the queues over a very long
time period but is unable to clear them whereas (b) RL control policy stabilizes the queues
and manages to keep them significantly low (note the scales).

the charging costs by 25% by utilizing smart charging strategies (which will be demonstrated

in Subsection 4.2.4).

Related work: Comprehensive research perceiving various aspects of AMoD systems is be-

ing conducted in the literature. Studies surrounding fleet management focus on optimal EV

charging in order to reduce electricity costs as well as optimal vehicle routing in order to serve

the customers and to rebalance the empty vehicles throughout the network so as to reduce the

operational costs and the customers’ waiting times. Time-invariant control policies adopting

queueing theoretical [121], fluidic [122], network flow [123], and Markovian [124] models

have been developed by using the steady state of the system. The authors of [125] consider

ride-sharing systems with mixed autonomy. However, the proposed control policies in these pa-

pers are not adaptive to the time-varying nature of the future demand. As such, there is work on

developing time-varying model predictive control (MPC) algorithms [126, 127, 128, 129, 130].

The authors of [128, 129] propose data-driven algortihms and the authors of [130] propose a

stochastic MPC algorithm focusing on vehicle rebalancing. In [126], the authors also con-

sider a fleet of EVs and hence propose an MPC approach that optimizes vehicle routing and
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scheduling subject to energy constraints. Using a fluid-based optimization framework, the au-

thors of [131] investigate tradeoffs between fleet size, rebalancing cost, and queueing effects

in terms of passenger and vehicle flows under time-varying demand. The authors in [132] de-

velop a parametric controller that approximately solves the intractable dynamic program for

rebalancing over an infinite-horizon. Similar to AMoD, carsharing systems also require rebal-

ancing in order to operate efficiently. By adopting a Markovian model, the authors of [133]

introduce a dynamic proactive rebalancing algorithm for carsharing systems by taking into ac-

count an estimate of the future demand using historical data. In [134], the authors develop an

integrated multi-objective mixed integer linear programming optimization and discrete event

simulation framework to optimize vehicle and personnel rebalancing in an electric carsharing

system. Using a network-flow based model, the authors of [135] propose a two-stage approxi-

mation scheme to establish a real-time rebalancing algorithm for shared mobility systems that

accounts for stochasticity in customer demand and journey valuations.

Aside from these, there are studies on applications of RL methods in transportation such

as adaptive routing [136], traffic management [137, 138], traffic signal control [139, 140], and

dynamic routing of autonomous vehicles with the goal of reducing congestion in mixed au-

tonomy traffic networks [141]. Relevant studies to the work presented in this section aim to

develop dynamic policies for rebalancing as well as ride request assignment via decentralized

reinforcement learning approaches [142, 143, 144, 145]. In these works however, the policies

are developed and applied locally by each autonomous vehicle and this decentralized approach

may sacrifice system level optimality. A centralized deep RL approach tackling the rebalancing

problem is proposed in [146], which is closest to the approach we adopt in this section. Al-

though their study adopts a centralized deep RL approach similar to the work presented in this

section, they have a different system model and solely focus on the rebalancing problem and

do not consider pricing for rides as a control variable for the queues nor the charging problem

of EVs as reviewed next.
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Regarding charging strategies for large populations of EVs, [147, 148, 149] provide in-

depth reviews and studies of smart charging technologies. An agent-based model to simulate

the operations of an AMoD fleet of EVs under various vehicle and infrastructure scenarios has

been examined in [150]. By augmenting optimal battery management of autonomous electric

vehicles to the classic dial-a-ride problem (DARP), the authors of [151] introduce the electric

autonomous DARP that aims to minimize the total travel time of all the vehicles and riders.

The authors of [12] propose an online charge scheduling algorithm for EVs providing AMoD

services. By adopting a static network flow model in [13], the benefits of smart charging have

been investigated and approximate closed form expressions that highlight the trade-off between

operational costs and charging costs have been derived. Furthermore, [152] studies interac-

tions between AMoD systems and the power grid. In addition, [153] studies the implications

of pricing schemes on an AMoD fleet of EVs. In [154], the authors propose a dynamic joint

pricing and routing strategy for non-electric shared mobility on demand services. [155] stud-

ies a quadratic programming problem in order to jointly optimize vehicle dispatching, charge

scheduling, and charging infrastructure, while the demand is defined exogenously.

To the best of our knowledge, there is no existing work on centralized real-time manage-

ment for electric AMoD systems addressing the joint optimization scheme of vehicle routing

and charging as well as pricing for the rides. In this section, we aim to highlight the benefits

of a real-time controller that jointly: (i) routes the vehicles throughout the network in order to

serve the demand for rides as well as to relocate the empty vehicles for further use, (ii) executes

smart charging strategies by exploiting the diversity in the electricity prices (both geograph-

ically and temporally) in order to minimize charging costs, and (iii) adjusts the demand for

rides by setting prices in order to stabilize the system (i.e., the queues of customers waiting for

rides) while maximizing profits.

Organization: The remainder of the section is organized as follows. In Subsection 4.2.1,
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we present the system model and define the platform operator’s optimization problem. In

Subsection 4.2.2, we discuss the static planning problem associated with the system model and

characterize the optimal static policy. In Subsection 4.2.3, we propose a method for developing

a near-optimal real-time policy using deep reinforcement learning. In Subsection 4.2.4, we

present the numerical results of the case studies we have conducted in Manhattan and San

Francisco to demonstrate the performance of our real-time control policy.

4.2.1 System Model and Problem Definition

Network and Demand Models: We consider a fleet of AMoD EVs operating within a trans-

portation network characterized by a fully connected graph consisting of M = {1, . . . ,m}

nodes that can each serve as a trip origin or destination. We study a discrete-time system with

time periods normalized to integral units t ∈ {0, 1, 2, . . . }. In this discrete-time system, we

model the arrival of the potential riders with OD pair (i, j) as a Poisson process with an arrival

rate of λij(t) in period t, where λii(t) = 0. We adopted a price-responsive rider model studied

in [156]. We assume that the riders are heterogeneous in terms of their willingness to pay. In

particular, if the price for receiving a ride from node i to node j in period t is set to ℓij(t), the

induced arrival rate for rides from i to j is given by Λij(t) = λij(t)(1−F (ℓij(t))), where F (·)

is the cumulative distribution of riders’ willingness to pay with a support of [0, ℓmax]
1. Thus,

the number of new ride requests in time period t is Aij(t) ∼ Pois(Λij(t)) for OD pair (i, j).

Vehicle Model: To capture the effect of trip demand and the associated charging and routing

(routing also implies rebalancing of the empty vehicles) decisions on the costs associated with

operating the fleet (maintenance, mileage, etc.), we assume that each autonomous vehicle in

the fleet has a per period operational cost of β. Furthermore, as the vehicles are electric, they

1For brevity of notation, we uniformly set ℓmax to be the maximum willingness to pay for all OD pairs without
loss of generality. Our results can be derived in a similar fashion by replacing ℓmax with ℓijmax, where ℓijmax is the
maximum willingness to pay for OD pair (i, j).
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have to sustain charge in order to operate. Without loss of generality, we assume there is a

charging station placed at each node i ∈ M. To charge at node i during time period t, the

operator pays a price of electricity pi(t) per unit of energy. We assume that all EVs in the fleet

have a battery capacity denoted as vmax ∈ Z+; therefore, each EV has a discrete battery energy

level v ∈ V , where V = {v ∈ N|0 ≤ v ≤ vmax}. In our discrete-time model, we assume each

vehicle takes one period to charge one unit of energy and τij periods to travel between OD pair

(i, j), while consuming vij units of energy2.

Ride Hailing Model: The platform operator dynamically routes the fleet of EVs in order to

serve the demand at each node. Customers that purchase a ride are not immediately matched

with a ride, but enter the queue for OD pair (i, j). After the platform operator executes routing

decisions for the fleet, the customers in the queue for OD pair (i, j) are matched with rides

and served in a first-come, first-served discipline. A measure of the expected wait time is not

available to each arriving customer. However, the operator knows that longer wait times will

negatively affect their business and hence seeks to minimize the total wait time experienced by

users. Denote the queue length for OD pair (i, j) by qij(t). If after serving the customers, the

queue length qij(t) > 0, the platform operator is penalized by a fixed cost of w per person at

the queue to account for the value of time of the customers.

Platform Operator’s Problem: We consider a profit-maximizing AMoD operator that man-

ages a fleet of EVs that make trips to provide transportation services to customers. The oper-

ator’s goal is to maximize profits by 1) setting prices for rides and hence managing customer

demand at each node; 2) optimally operating the AMoD fleet (i.e., charging and routing) to

minimize operational and charging costs. We will study two types of control policies the plat-

form operator utilizes: 1) a static policy, where the pricing, routing and charging decisions

2In this section, we consider the travel times to be constant and exogenously defined for the time period the
policy is developed for. This is because we assume that the number of AMoD vehicles is much less compared
to the rest of the traffic. Also, to consider changing traffic conditions throughout the day, it is possible to train
multiple static and real-time control policies for the different time intervals.
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are time invariant and independent of the state of the system; 2) a real-time policy, where the

pricing, routing and charging decisions are dependent on the system state.

4.2.2 Analysis of the Static Problem

In this subsection, we establish and discuss the static planning problem to provide a mea-

sure for comparison and demonstrate the efficacy of the real-time policy (which will be dis-

cussed in Subsection 4.2.3). To do so, we consider the fluid scaling of the dynamic network

and characterize the static problem via a network flow formulation. Under this setting, we use

the expected values of the variables (arrivals and prices of electricity) and ignore their time

dependent dynamics, while allowing the vehicle routing decisions to be flows (real numbers)

rather than integers. The static problem is convenient for determining the optimal static pric-

ing, routing, and charging policy, under which the queueing network of the dynamic system is

stable [157]3.

4.2.2.1 Static Profit Maximization Problem

We formulate the static optimization problem via a network flow model that aims to max-

imize the platform operator’s profits. The platform operator maximizes its profits by setting

prices and making routing and charging decisions such that the system remains stable.

Let ℓij be the prices for rides for OD pair (i, j), xvij be the number of vehicles at node i

with energy level v being routed to node j, and xvic be the number of vehicles charging at node

i starting with energy level v. We state the platform operator’s profit maximization problem as

follows:
3The stability condition that we are interested in is rate stability of all queues. A queue for OD pair (i, j) is

rate stable if lim
t→∞

qij(t)/t = 0.
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max
xv
ic,x

v
ij ,ℓij

∑
i∈M

∑
j∈M

λijℓij(1− F (ℓij))−
∑
i∈M

vmax−1∑
v=0

(β + pi)x
v
ic − β

∑
i∈M

∑
j∈M

vmax∑
v=vij

xvijτij

(4.1a)

subject to λij(1− F (ℓij)) ≤
vmax∑
v=vij

xvij ∀i, j ∈M, (4.1b)

xvic +
∑
j∈M

xvij = xv−1
ic +

∑
j∈M

x
v+vji
ji ∀i ∈M, ∀v ∈ V , (4.1c)

xvmax
ic = 0 ∀i ∈M, (4.1d)

xvij = 0 ∀v < vij, ∀i, j ∈M, (4.1e)

xvic ≥ 0, xvij ≥ 0 ∀i, j ∈M, ∀v ∈ V , (4.1f)

xvic = xvij = 0 ∀v /∈ V , ∀i, j ∈M. (4.1g)

The first term in the objective function in (4.1) accounts for the aggregate revenue the platform

generates by providing rides for λij(1 − F (ℓij)) number of riders with a price of ℓij . The

second term is the operational and charging costs incurred by the charging vehicles (assuming

that pi(t) = pi ∀t under the static setting), and the last term is the operational costs of the

trip-making vehicles (including rebalancing trips).

The constraint (4.1b) requires the platform to operate at least as many vehicles to serve

all the induced demand between any two nodes i and j (The rest are the vehicles travelling

without passengers, i.e., rebalancing vehicles). We will refer to this as the demand satisfaction

constraint. The constraint (4.1c) is the flow balance constraint for each node and each battery

energy level, which restricts the number of available vehicles at node i and energy level v to

be the sum of arrivals from all nodes (including idle vehicles) and vehicles that are charging

with energy level v− 1. The constraint (4.1d) ensures that the vehicles with full battery do not

charge further, and the constraint (4.1e) ensures the vehicles sustain enough charge to travel
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between OD pair (i, j).

The solution to the optimization problem in (4.1) is the optimal static policy that consists

of optimal prices as well as optimal vehicle routing and charging decisions. This policy can

not directly be implemented in a real environment because it does not yield integer valued

solutions. It is possible generate integer-valued solutions to be implemented in a real environ-

ment using the fractional flows (e.g., randomizing the vehicle decisions according to the flows,

which we do in Subsection 4.2.4), yet the methodology is not the focus of the work presented

in this section. Instead, we highlight a sufficient condition for a realizable policy (generating

integer valued actions) to provide stability according to the feasible solutions of (4.1):

Proposition 4.2.1 Let {ℓ̃ij, x̃vij, x̃vic} be a feasible solution of (4.1). Let µ be a policy that

generates integer actions and can be implemented in the real environment. Then, µ guarantees

stability of the system if for all OD pairs (i, j):

1. The time average of the induced arrivals equals (1− F (ℓ̃ij)), and

2. The time average of the routed vehicles equals
∑vmax

v=vij
x̃vij .

The proof of Proposition 4.2.1 is provided in Appendix C.1.1. According to Proposition 4.2.1,

for a static pricing policy with the optimal prices ℓ∗ij , there exists an integer-valued routing and

charging policy that maintains stability of the system.

Corollary 4.2.1 An example policy that generates integer-valued actions is randomizing ac-

cording to the flows. Precisely, given a feasible solution {ℓ̃ij, x̃vij, x̃vic} of (4.1), integer-valued

actions can be generated by routing a vehicle at node i with energy level v to node j with

probability

ψv
ij =

x̃vij∑m
k=1 x̃

v
ik + xvic

,

and charging with probability

ψv
ic =

x̃vic∑m
k=1 x̃

v
ik + xvic

,
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∀i, j ∈ M and ∀v ∈ V . Combining this randomized policy with a static pricing policy of

ℓij(t) = ℓ̃ij, ∀t, results in a policy satisfying the criteria in Proposition 4.2.1.

The optimization problem in (4.1) is non-convex for a general F (·). Nonetheless, when

the platform’s profits are convex in the induced demand λij(1 − F (·)), it can be rewritten as

a convex optimization problem and can be solved exactly. Hence, we assume that the rider’s

willingness to pay is uniformly distributed in [0, ℓmax], i.e., F (ℓij) =
ℓij
ℓmax

4.

Marginal Pricing: The prices for rides are a crucial component of the profits generated. The

next proposition highlights how the optimal prices ℓ∗ij for rides are related to the network pa-

rameters, prices of electricity, and the operational costs.

Proposition 4.2.2 Let ν∗ij be optimal the dual variable corresponding to the demand satisfac-

tion constraint for OD pair (i, j). The optimal prices ℓ∗ij are:

ℓ∗ij =
ℓmax + ν∗ij

2
. (4.2)

These prices can be upper bounded by:

ℓ∗ij ≤
ℓmax + β(τij + τji + vij + vji) + vijpj + vjipi

2
(4.3)

4It is also possible to use other distributions that might reflect real willingness-to-pay distributions more accu-
rately (such as pareto distribution, exponential distribution, triangular distribution, constant elasticity distribution,
and normal distribution). Among these, pareto, exponential, and constant elasticity distributions preserve convex-
ity and therefore the static planning problem can be solved efficiently. Triangular and normal distributions are not
convex in their support and therefore the static planning problem is not a convex optimization problem. Neverthe-
less, it can still be solved numerically for the optimal static policy. Using these distributions however we cannot
derive the closed-form results that allow us to interpret the pricing policy of the platform operator. The real-time
policy proposed in Subsection 4.2.3 uses model-free Reinforcement Learning and therefore can be applied using
other distributions or any other customer price response model.
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Moreover, with these optimal prices ℓ∗ij , the profits generated per period is:

P =
m∑
i=1

m∑
j=1

λij
ℓmax

(ℓmax − ℓ∗ij)2. (4.4)

The proof of Proposition 4.2.2 is provided in Appendix C.1.2. Observe that the profits in

Equation (4.4) are decreasing as the prices for rides increase. Thus expensive rides generate

less profits compared to the cheaper rides and it is more beneficial if the optimal dual variables

ν∗ij are small and prices are close to ℓmax/2. We can interpret the dual variables ν∗ij as the cost of

providing a single ride between i and j to the platform. In the worst case scenario, every single

requested ride from node i requires rebalancing and charging both at the origin and the desti-

nation. Hence the upper bound on (4.3) includes the operational costs of passenger-carrying,

rebalancing and charging vehicles (both at the origin and the destination); and the energy costs

of both passenger-carrying and rebalancing trips multiplied by the price of electricity at the trip

destinations. Similar to the taxes applied on products, whose burden is shared among the sup-

plier and the customer; the costs associated with rides are shared among the platform operator

and the riders (which is why the price paid by the riders include half of the cost of the ride).

Although the static policy guarantees stability (by appropriate implementation of integer-

valued actions as dictated by Proposition 4.2.1), it does not perform well in a real dynamic

setting because it does not acknowledge the stochastic dynamics of the system. On the other

hand, a real-time policy that executes decisions based on the current state of the environment

would likely perform better (e.g., if the queue length for OD pair (i, j) is very large, then it is

probably better for the platform operator to set higher prices to prevent the queue from growing

further). Accordingly, we present a practical way of implementing a real-time policy in the next

subsection.
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4.2.3 The Real-Time Policy

The static policy established in the previous subsection has three major issues:

1. Because it is based on a flow model, it generates static fractional flows that are not

directly implementable in the real setting.

2. It neglects the stochastic events that occur in the dynamic setting (e.g., the induced ar-

rivals), and assumes everything is deterministic. Hence, it does consider the unexpected

occurrences (e.g., queues might build in the dynamic setting, whereas the static model

assumes no queues) when executing actions.

3. It assumes perfect knowledge of the network parameters (arrivals, trip durations, energy

consumptions of the trips, and prices of electricity).

Due to the above reasons, it is impractical to implement the static policy in the dynamic

environment. A real-time policy that generates integer solutions and takes into account the

current state of the network which is essential for decision making is necessary, and can be

determined by solving the dynamic program that describes the system (with full knowledge

of the network parameters) for the optimal policy. Such solutions would address issues 1 and

2 outlined above. Inspired by our theoretical model, the state information that describes the

network fully consists of the vehicle states (locations, energy levels), queue lengths for each

OD pair, and electricity prices at each node. Upon obtaining the full state information, the

actions have to be executed for pricing for rides and fleet management (vehicle routing and

charging). Consequent to taking actions, the platform operator observes a reward (consisting

of revenue gained by arrivals, queue costs, and operational and charging costs), and the network

transitions into a new state (Although the transition into the new state is stochastic, the random

processes that govern this stochastic transition is known if the network parameters are known).

The solution of this dynamic program is the optimal policy that determines which action to
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take for each state the system is in, and can nominally be derived using classical exact dynamic

programming algorithms (e.g., value iteration). However, the complexity and the scale of our

dynamic problem presents a difficulty here: Aside from having a large dimensional state space

(for instance, m = 10, vmax = 5, τij = 3 ∀i, j: the state has dimension 1240) and action

space, the cardinality of these spaces are not finite (queues can grow unbounded, prices are

continuous). Considering that the computational complexity per iteration for value iteration

is O(|A||S|2) and for policy iteration O(|A||S|2 + |S|3) [158], where S and A are the state

space and the action space, respectively, the problem is computationally intractable to solve

using classical dynamic programming. Even if we did make them finite by putting a cap on

the queue lengths and discretizing the prices, curse of dimensionality renders the problem

intractable to solve with classical exact dynamic programming algorithms. As such, we resort

to approximate dynamic programming methods. Specifically, we define the policy via a deep

neural network that takes the full state information of the network as input and outputs the

best action5. Subsequently, we apply a model-free reinforcement learning algorithm to train

the neural network in order to improve the performance of the policy. Since it is model-free,

it does not require a modeling of the network (hence, it does not require knowledge of the

network parameters), which resolves the third issue associated with the static policy.

We adopted a practical policy gradient method, called Proximal Policy Optimization (PPO),

developed in [120], which is effective for optimizing large nonlinear policies such as neural

networks. We chose PPO mainly because it supports continuous state-action spaces and guar-

antees monotonic improvement.6

We note that it is possible to apply reinforcement learning to learn a policy in any environ-

5In general, the policy is a stochastic policy and determines the probabilities of taking the actions rather than
deterministically producing an action.

6Although the policy outputs a continuous set of actions, integer actions can be generated by randomizing.
This is done during both training and testing, therefore the RL agent observes the integer state transitions and
learns as if the policy outputs integer actions. We discuss how to generate integer actions in more detail in
Subsection 4.2.3.1.
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ment, real or artificial, as long as there is data available. In this section, we use our theoretical

model described in Subsection 4.2.1 to create the environment and generate data, mainly be-

cause there is no electric AMoD microsimulation environment available and also to verify our

findings about the static policy. Developing a microsimulator for electric AMoD (like SUMO

[159]) and integrating it with a deep reinforcement learning library to create a framework for

real traffic experiments remains a future work. To ensure that our numerical experiments are

reproducible, in the remainder of this subsection, we describe the Markov Decision Process

(MDP) that governs this dynamic environment, which is a direct extension of our static model.

It is also possible to enrich the environment and the MDP to reflect real life constraints more

accurately such as road capacity and charging station constraints. Since the approach we adopt

to develop the real-time policy is model-free, it can be applied identically.

In Subsection 4.2.4 we present numerical results on real-time policies developed through

reinforcement learning based on dynamic environments generated through our theoretical

model. The goal of the experiments is to primarily answer the following questions:

1. Can we develop a real-time control and pricing policy for AMoD using reinforcement

learning and what are its potential benefits over the static policy?

2. How does the policy trained for a specific network perform, if the network parameters

change?

3. Can we develop a global policy that can be utilized in any network with moderate fine

tuning?

The reader may skip reading Subsection 4.2.3.1 if they are not interested in the details of

the MDP model used in our numerical experiment.
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4.2.3.1 The Real-Time Problem as MDP

We define the MDP by the tuple (S,A, T , r), where S is the state space, A is the action

space, T is the state transition operator and r is the reward function. We describe these elements

as follows:

1. S: The state space consists of prices of electricity at each node, the queue lengths for

each origin-destination pair, and the number of vehicles at each node and each energy level.

However, since travelling from node i to node j takes τij periods of time, we need to define

intermediate nodes. As such, we define τij − 1 number of intermediate nodes between each

origin and destination pair, for each battery energy level v. Hence, the state space consists

of sd = m2 + (vmax + 1)((
∑m

i=1

∑m
j=1 τij) − m2 + 2m) dimensional vectors in Rsd

≥0 (We

include all the non-negative valued vectors, however, only m2 − m entries can grow to in-

finity because they are queue lengths, and the rest are always upper bounded by fleet size or

maximum price of electricity). As such, we define the elements of the state vector at time t

as s(t) = [p(t) q(t) sveh(t)], where p(t) = [pi(t)]i∈M is the electricity prices state vector,

q(t) = [qij(t)]i,j∈M;i ̸=j is the queue lengths state vector, and sveh(t) = [svijk(t)]∀i,j,k,v is the

vehicle state vector, where svijk(t) is the number of vehicles at vehicle state (i, j, k, v). The ve-

hicle state (i, j, k, v) specifies the location of a vehicle that is travelling between OD pair (i, j)

as the k’th intermediate node between nodes i and j, and specifies the battery energy level of a

vehicle as v (The states of the vehicles at the nodes i ∈ M with energy level v is denoted by

(i, i, 0, v)).

2. A: The action space consists of prices for rides at each origin-destination pair and rout-

ing/charging decisions for vehicles at nodes i ∈ M at each energy level v. The price actions

are continuous in range [0, ℓmax]. Each vehicle at state (i, i, 0, v) (∀i ∈M, ∀v ∈ V) can either

charge, stay idle or travel to one of the remaining m − 1 nodes. To allow for different tran-

sitions for vehicles at the same state (some might charge, some might travel to another node),
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we define the action taken at time t for vehicles at state (i, i, 0, v) as an m + 1 dimensional

probability vector with entries in [0, 1] that sum up to 1: αv
i (t) = [αv

i1(t) . . . α
v
im(t) α

v
ic(t)],

where αvmax
ic (t) = 0 and αv

ij(t) = 0 if v < vij . The action space is then all the vectors a of

dimension ad = m2−m+ (vmax +1)(m2 +m), whose first m2−m entries are the prices and

the rest are the probability vectors satisfying the aforementioned properties. As such, we define

the elements of the action vector at time t as a(t) = [ℓ(t) α(t)], where ℓ(t) = [ℓij]i,j∈M,i ̸=j is

the vector of prices and α(t) = [αv
i (t)]∀i,v is the vector of routing/charging actions.

3. T : The transition operator is defined as Tijk = Pr(s(t + 1) = j|s(t) = i, a(t) = k).

We can define the transition probabilities for electricity prices p(t+1), queue lengths q(t+1),

and vehicle states sveh(t+ 1) as follows:

Electricity Price Transitions: Since we assume that the dynamics of prices of electric-

ity are exogenous to our AMoD system, Pr(p(t + 1) = p2|p(t) = p1, a(t)) =

Pr(p(t + 1) = p2|p(t) = p1), i.e., the dynamics of the price are independent of the ac-

tion taken. Depending on the setting, new prices might either be deterministic or distributed

according to some probability density function at time t: p(t) ∼ P(t), which is determined by

the electricity provider.

Vehicle Transitions: For each vehicle at node i and energy level v, the transition probability is

defined by the action probability vector αv
i (t). Each vehicle transitions into state (i, j, 1, v−vij)

with probability αv
ij(t), stays idle in state (i, i, 0, v) with probability αv

ii(t) or charges and tran-

sitions into state (i, i, 0, v + 1) with probability αv
ic(t). The vehicles at intermediate states

(i, j, k, v) transition into state (i, j, k + 1, v) if k < τij − 1 or (j, j, 0, v) if k = τij − 1 with

probability 1. The total transition probability to the vehicle states sveh(t+1) given sveh(t) and

α(t) is the sum of all the probabilities of the feasible transitions from sveh(t) to sveh(t + 1)

under α(t), where the probability of a feasible transition is the multiplication of individual ve-

hicle transition probabilities (since the vehicle transition probabilities are independent). Note
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that instead of gradually dissipating the energy of the vehicles on their route, we immediately

discharge the required energy for the trip from their batteries and keep them constant during

the trip. This ensures that the vehicles have enough battery to complete the ride and does not

violate the model, because the vehicles arrive to their destinations with true value of energy

and a new action will only be taken when they reach the destination.

Queue Transitions: The queue lengths transition according to the prices and the vehicle rout-

ing decisions. For prices ℓij(t) and induced arrival rate Λij(t), the probability that Aij(t) new

customers arrive in the queue (i, j) is:

Pr(Aij(t)) =
e−Λij(t)Λij(t)

Aij(t)

(Aij(t))!

Let us denote the total number of vehicles routed from node i to j at time t as xij(t), which is

given by:

xij(t) =
vmax∑
v=vij

xvij(t) =
vmax∑
v=vij

s
v−vij
ij1 (t+ 1). (4.5)

Given sveh(t+ 1) and xij(t), the probability that the queue length qij(t+ 1) = q is:

Pr(qij(t+ 1) = q|s(t),a(t), sveh(t+ 1)) = Pr(Aij(t) = q − qij(t) + xij(t)),

if q > 0, and Pr(Aij(t) ≤ −qij(t) + xij(t)) if q = 0. Since the arrivals are independent, the

total probability that the queue vector q(t+ 1) = q is:

Pr(q(t+ 1) = q|s(t),a(t), sveh(t+ 1)) =
∏
i∈M

∏
j∈M
j ̸=i

Pr(qij(t+ 1)|s(t),a(t), sveh(t+ 1)).
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Figure 4.3: The schematic diagram representing the state transition of our MDP. Upon taking
an action, a vehicle at state (i, i, 0, v) charges for a price of pi(t) and transitions into state
(i, i, 0, v + 1) with probability αv

ic(t), stays idle at state (i, i, 0, v) with probability αv
ii(t), or

starts traveling to another node j and transitions into state (i, j, 1, v − vij) with probability
αv
ij(t). Furthermore, Aij(t) new customers arrive to the queue (i, j) depending on the price

ℓij(t). After the routing and charging decisions are executed for all the EVs in the fleet, the
queues are modified.

Hence, the transition probability is defined as:

Pr(s(t+ 1)|s(t),a(t)) =Pr(p(t+ 1)|p(t))× Pr(sveh(t+ 1)|s(t),α(t))

× Pr(q(t+ 1)|s(t),α(t), sveh(t+ 1))

(4.6)

We illustrate how the vehicles and queues transition into new states consequent to an action in

Figure 4.3.

4. r: The reward function r(t) is a function of state-action pairs at time t:

r(t) = r(a(t), s(t)). Let xvic(t) denote the number of vehicles charging at node i starting

with energy level v at time period t. The reward function r(t) is defined as:

r(t) =
∑
i∈M

∑
j∈M
j ̸=i

ℓij(t)Aij(t)− w
∑
∈M

∑
j∈M
j ̸=i

qij(t)−
∑
i∈M

vmax−1∑
v=0

(β + pi)x
v
ic(t)

− β
∑
i∈M

∑
j∈M
j ̸=i

xij(t)− β
∑
i∈M

∑
j∈M
j ̸=i

τij−1∑
k=1

vmax−1∑
v=0

svijk(t) (4.7)
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The first term corresponds to the revenue generated by the passengers that request a ride for a

price ℓij(t), the second term is the queue cost of the passengers that have not yet been served,

the third term is the charging and operational costs of the charging vehicles and the last two

terms are the operational costs of the vehicles making trips. Note that revenue generated is

immediately added to the reward function when the passengers enter the network instead of

after the passengers are served. Since the reinforcement learning approach is based on maxi-

mizing the cumulative reward gained, all the passengers eventually have to be served in order

to prevent queues from blowing up and hence it does not violate the model to add the revenues

immediately.

Using the definitions of the tuple (S,A, T , r), we model the dynamic problem as an MDP.

Given large-dimensional state and action spaces with infinite cardinality, we can not solve the

MDP using exact dynamic programming methods. As a solution, we characterize the real-time

policy via a deep neural network and execute reinforcement learning in order to develop a

real-time policy.

4.2.3.2 Reinforcement Learning Method

In this part, we go through the preliminaries of reinforcement learning and briefly explain

the idea of the algorithm we adopted.

Preliminaries

The real-time policy associated with the MDP is defined as a function parameterized by θ:

πθ(a|s) = π : S ×A → [0, 1],

i.e., a probability distribution in the state-action space. Given a state s, the policy returns the

probability for taking the action a (for all actions), and samples an action according to the
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probability distribution. The goal is to derive the optimal policy π∗, which maximizes the

discounted cumulative expected rewards Jπ:

Jπ∗ = max
π

Jπ = max
π

Eπ

[
∞∑
t=0

γtr(t)

]
,

π∗ = argmax
π

Eπ

[
∞∑
t=0

γtr(t)

]
,

where γ ∈ (0, 1] is the discount factor. The value of taking an action a in state s, and following

the policy π afterwards is characterized by the value function Qπ(s,a):

Qπ(s,a) = Eπ

[
∞∑
t=0

γtr(t)|s(0) = s,a(0) = a

]
.

The value of being in state s is formalized by the value function Vπ(s):

Vπ(s) = Ea(0),π

[
∞∑
t=0

γtr(t)|s(0) = s

]
,

and the advantage of taking the action a in state s and following the policy π thereafter is

defined as the advantage function Aπ(s,a):

Aπ(s,a) = Qπ(s,a)− Vπ(s).

The methods used by reinforcement learning algorithms can be divided into three main groups:

1) critic-only methods, 2) actor-only methods, and 3) actor-critic methods, where the word

critic refers to the value function and the word actor refers to the policy [160]. Critic-only

(or value-function based) methods (such as Q-learning [161] and SARSA [162]) improve a

127



Ride Pricing and Control Policies for Autonomous Urban Mobility Fleets Chapter 4

deterministic policy using the value function by iterating:

a∗ = argmax
a

Qπ(s,a),

π(a∗|s)←− 1.

Actor-only methods (or policy gradient methods), such as Williams’ REINFORCE algorithm

[163], improve the policy by updating the parameter θ by gradient ascent, without using any

form of a stored value function:

θ(t+ 1) = θ(t) + α∇θEπθ(t)

[∑
τ

γτr(τ)

]
.

The advantage of policy gradient methods is their ability to generate actions from a continuous

action space by utilizing a parameterized policy.

Finally, actor-critic methods [164, 165] make use of both the value functions and policy

gradients:

θ(t+ 1) = θ(t) + α∇θEπθ(t)

[
Qπθ(t)

(s,a)
]
.

Actor-critic methods are able to produce actions in a continuous action space, while reducing

the high variance of the policy gradients by adding a critic (value function).

All of these methods aim to update the parameters θ (or directly update the policy π for

critic-only methods) to improve the policy. In deep reinforcement learning, the policy π is

defined by a deep neural network, whose weights constitute the parameter θ. To develop a real-

time policy for our MDP, we adopt a practical policy gradient method called Proximal Policy

Optimization (PPO).

Proximal Policy Optimization

PPO is a practical policy gradient method developed in [120], and is effective for optimizing
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large non-linear policies such as deep neural networks. It preserves some of the benefits of

trust region policy optimization (TRPO) [166] such as monotonic improvement, but is much

simpler to implement because it can be optimized by a first-order optimizer, and is empirically

shown to have better sample complexity.

In TRPO, an objective function (the “surrogate” objective) is maximized subject to a con-

straint on the size of the policy update so that the new policy is not too far from the old policy:

maximize
θ

Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
(4.8a)

subject to Êt [KL [πθold(·|st), πθ(·|st)]] ≤ δ, (4.8b)

where πθ is a stochastic policy and Ât is an estimator of the advantage function at timestep

t. The expectation Êt[. . . ] indicates the empirical average over a finite batch of samples and

KL [πθold(·|st), πθ(·|st)] denotes the Kullback–Leibler divergence between πθold and π. Al-

though TRPO solves the above constrained maximization problem using conjugate gradient,

the theory justifying TRPO actually suggests using a penalty instead of a constraint, i.e., solv-

ing the unconstrained optimization problem

maximize
θ

Êt

[
πθ(at|st)
πθold(at|st)

Ât − βKL [πθold(·|st), πθ(·|st)]
]
, (4.9)

for some penalty coefficient β. TRPO uses a hard constraint rather than a penalty because it

is hard to choose a single value of β that performs well. To overcome this issue and develop

a first-order algorithm that emulates the monotonic improvement of TRPO (without solving

the constrained optimization problem), two PPO algorithms are constructed by: 1) clipping the

surrogate objective and 2) using adaptive KL penalty coefficient [120].

1. Clipped Surrogate Objective: Let rt(θ) denote the probability ratio rt(θ) = πθ(at|st)
πθold

(at|st) ,
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so r(θold) = 1. TRPO maximizes

L(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
= Êt

[
rt(θ)Ât

]
. (4.10)

subject to the KL divergence constraint. Without a constraint however this would lead to

a large policy update. To prevent this, PPO modifies the surrogate objective to penalize

changes to the policy that move rt(θ) away from 1:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
, (4.11)

where ϵ is a hyperparameter, usually 0.1 or 0.2. The term clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)

modifies the surrogate objective by clipping the probability ratio, which removes the

incentive for moving rt outside of the interval [1 − ϵ, 1 + ϵ]. By taking the minimum of

the clipped and the unclipped objective, the final objective becomes a lower bound on

the unclipped objective.

2. Adaptive KL Penalty Coefficient: Another approach is to use a penalty on KL divergence

and to adapt the penalty coefficient so that some target value of the KL divergence dtarg is

achieved at each policy update. In each policy update, the following steps are performed:

• Using several epochs of minibatch SGD, optimize the KL-penalized objective

LKLPEN(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât − βKL [πθold(·|st), πθ(·|st)]
]

(4.12)

• Compute d = Êt [KL [πθold(·|st), πθ(·|st)]]

– If d < dtarg/1.5, β ← β/2

– If d > dtarg × 1.5, β ← β × 2.
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The updated β is then used for the next policy update. This scheme allows β to adjust

if KL divergence is significantly different than dtarg so that the desired KL divergence

between the old and the updated policy is attained.

A PPO algorithm using fixed-length trajectory segments is summarized in Algorithm 6. Each

iteration, each of N (parallel) actors collect T timesteps of data. Then the surrogate loss on

these NT timesteps of data is constructed and optimized with minibatch SGD for K epochs.

Algorithm 6: PPO, Actor-Critic Style
for iteration = 0, 1, 2, . . . do

for actor = 1, 2, . . . , N do
Run policy πθold in environment for T timesteps.
Compute advantage estimates Â1, . . . , ÂT

end
Optimize surrogate LCLIP or LKLPEN w.r.t. θ, with K epochs and minibatch size
M ≤ NT .
θold ← θ

end

In this section, we used the PPO algorithm with the clipped surrogate objective, because

experimentally it it shown to have better performance than the PPO algorithm with adaptive

KL penalty coefficient [120]. We refer the reader to [120] for a comprehensive study on PPO

algorithms.

In the next subsection, we present our numerical studies demonstrating the performance of

the RL policy.

4.2.4 Numerical Study

In this subsection, we discuss the numerical experiments and results for the performance of

reinforcement learning approach to the dynamic problem and compare with the performance

of several static policies, including the optimal static policy outlined in Subsection 4.2.2. We

solved for the optimal static policy using CVX, a package for specifying and solving convex
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programs [55]. To implement the dynamic environment compatible with reinforcement learn-

ing algorithms, we used Gym toolkit [167] developed by OpenAI to create an environment.

For the implementation of the PPO algorithm, we used Stable Baselines toolkit [168].

We chose an operational cost of β = $0.1 (by normalizing the average price of an electric

car over 5 years [169]) and maximum willingness to pay ℓmax = $30. For prices of electricity

pi(t), we generated random prices for different locations and different times using the statistics

of locational marginal prices in [170]. We chose a maximum battery capacity of 20kWh. We

discretrized the battery energy into 5 units, where one unit of battery energy is 4kWh. The time

it takes to deliver one unit of charge is taken as one time epoch, which is equal to 5 minutes in

our setup. The waiting time cost for one period is w = $2 (average hourly wage is around $24

in the United States [171]).

Note that the dimension of the state space grows significantly with battery capacity vmax,

because it expands the states each vehicle can have by vmax.

Therefore, for computational purposes, we conducted two case studies: 1) Non-electric

AMoD case study with a larger network in Manhattan, 2) Electric AMoD case study with

a smaller network in San Francisco. We picked two different real world networks in order

to demonstrate the universality of reinforcement learning method in establishing a real-time

policy. In particular, our intention is to support the claim that the success of the reinforcement

learning method is not restricted to a single network, but generalizes to multiple real world

networks. Both experiments were performed on a laptop computer with Intel® CoreTM i7-

8750H CPU (6×2.20 GHz) and 16 GB DDR4 2666MHz RAM.

4.2.4.1 Case Study in Manhattan

In a non-electric AMoD network, the energy dimension v vanishes. Because there is no

charging action7, we can perform coarser discretizations of time. Specifically, we can allow

7The vehicles still refuel, however this takes negligible time compared to the trip durations.
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each discrete time epoch to cover 5×min
i,j|i ̸=j

τij minutes, and normalize the travel times τij and w

accordingly (For EV’s, because charging takes a non-negligible but shorter time than travelling,

in general we have τij > 1, and larger number of states). The static profit maximization

problem in (4.1) for AMoD with non-electric vehicles can be rewritten as:

max
xij ,ℓij

∑
i∈M

∑
j∈M

λijℓij(1− F (ℓij))− βg
∑
i∈M

∑
j∈M

xijτij

subject to λij(1− F (ℓij)) ≤ xij ∀i, j ∈M,∑
j∈M

xij =
∑
j∈M

xji ∀i ∈M,

xij ≥ 0 ∀i, j ∈M.

(4.13)

The operational costs βg = $2.5 (per 10 minutes, [172]) are different than those of electric

vehicles. Because there is no “charging” (or refueling action, since it takes negligible time),

βg also includes fuel cost. The optimal static policy is used to compare and highlight the

performance of the real-time policy8.

Figure 4.4: Manhattan divided into m = 10 regions.

We divided Manhattan into 10 regions as in Figure 4.4, and using the yellow taxi data from
8The solution of the static problem yields vehicle flows. In order to make the policy compatible with our

environment and to generate integer actions that can be applied in a dynamic setting, we randomized the actions
by dividing each flow for OD pair (i, j) (and energy level v) by the total number of vehicles in i (and energy level
v) and used that fraction as the probability of sending a vehicle from i to j (with energy level v).
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the New York City Taxi and Limousine Commission dataset [173] for May 04, 2019, Saturday

between 18.00-20.00, we extracted the average arrival rates for rides and trip durations between

the regions (we exclude the rides occurring in the same region). We trained our model by cre-

ating new induced random arrivals with the same average arrival rate using prices determined

by our policy. For the fleet size, we used a fleet of 1200 autonomous vehicles (according to the

optimal fleet size emerging from the static problem).

For training, we used a neural network with 4 hidden layers and 128 neurons in each hid-

den layer. The rest of the parameters are left as default as specified by the Stable Baselines

toolkit [168]. In order to get the best policy, we train 3 different models using DDPG[174],

TRPO[166], and PPO. We trained the models for 10 million iterations, and the performances

of the trained models are summarized in Table 4.1 using average rewards and queue lengths

as metrics. Our experiments indicate that the model trained using PPO is performing the best

among the three, hence we use that model as our real-time policy.

Metrics
Algorithms

DDPG TRPO PPO

Average Rewards 9825.69 13142.47 15527.34
Average Queue Length 431.76 87.96 68.11

Table 4.1: Performances of RL policies trained with different algorithms.

We compare different policies’ performance using the rewards and total queue length as

metrics. The results are demonstrated in Figure 4.5. In Figure 4.5a we compare the rewards

generated and the total queue length by applying the static and the real-time policies as defined

in Subsections 4.2.2 and 4.2.3. We can observe that while the optimal static policy provides

rate stability in a dynamic setting (since the queues do not blow up), it fails to generate profits

as it is not able to clear the queues. On the other hand, the real-time policy is able to keep

the total length of the queues 100 times shorter than the static policy while generating higher

profits.
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Figure 4.5: Comparison of different policies for the Manhattan case study. The legends for all
figures are the same as the top left figure, where red lines correspond to the real-time policy
and blue lines correspond to the static policies (We excluded the running averages for (d),
because the static policy diverges). In all scenarios, we use the rewards generated and the
total queue length as metrics. In (a), we demonstrate the results from applying the real-time
policy and the optimal static policy. In (b), we compare the real-time policy with the static
policy that utilizes 5% higher prices than the optimal static policy. In (c), we utilize a surge
pricing policy along with the optimal static policy and compare with the real-time policy. In
(d), we employ the real-time policy and static policy developed for May 4, 2019, Saturday for
the arrivals on May 11, 2019, Saturday.
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The optimal static policy fails to generate profits and is not necessarily the best static pol-

icy to apply in a dynamic setting. As such, in Figure 4.5b we demonstrate the performance

of a sub-optimal static policy, where the prices are 5% higher than the optimal static prices to

reduce the arrival rates and hence reduce the queue lengths. Observe that the profits generated

are higher than the profits generated using optimal static policy for the static planning problem

while the total queue length is less. This result indicates that under the stochasticity of the

dynamic setting, a sub-optimal static policy can perform better than the optimal static policy.

Furthermore, we summarize the performances of other static policies with higher static prices,

namely with 5%, 10%, 20%30%, and 40% higher prices than the optimal static prices in Ta-

ble 4.2. Among these, an increase of 10% performs the best in terms of rewards. Nevertheless,

this policy does still do worse in terms of rewards and total queue length compared to the real-

time policy, which generates around 10% more rewards and results in 70% less queues. Lastly

we note that although a 40% increase in prices results in minimum average queue length, this is

a result of significantly reduced induced demand and therefore it generates very low rewards.

Metrics

% of opt.
static prices 105% 110% 120% 130% 140%

Average Rewards 12234.13 14112.77 13739.35 12046.91 9625.82
Average Queue Length 584.05 231.93 74.64 30.88 14.20

Table 4.2: Performances of static pricing policies for Manhattan case study.

Next, we showcase that even some heuristic modifications which resemble what is done

in practice can do better than the optimal static policy. We utilize the optimal static policy,

but additionally utilize a surge-pricing policy. The surge-pricing policy aims to decrease the

arrival rates for longer queues so that the queues will stay shorter and the rewards will increase.

At each time period, for all OD pairs, the policy is to increase the price by 50% if the queue

is longer than 100% of the induced arrival rate. The results are displayed in Figure 4.5c.

New arrivals bring higher revenue per person and the total queue length is decreased, which
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stabilizes the network while generating more profits than the optimal static policy. The surge

pricing policy results in stable short queues and higher rewards compared to the optimal static

policy for the static setting, however, both the real-time policy and the static pricing policy with

10% higher prices are superior. Performances of other surge pricing policies that multiply the

prices by 1.25/1.5/2 if the queue is longer than 50%/100%/200% of the induced arrival rates

can be found in Table 4.3. Accordingly, the best surge pricing policy maximizing the rewards

is to multiply the prices by 1.25 if the queue is longer than 50% of the induced arrival rate. Yet,

our real-time policy still generates around 20% more rewards and results in 32% less queues.

We note that a surge pricing policy that multiplies the prices by 2 when the queues are longer

than 50% of the induced arrival rates minimizes the queues by decreasing the induced arrival

rates significantly, which results in substantially low rewards.

Surge
Queue Thr. 50% 100% 200%

Queue Rewards Queue Rewards Queue Rewards
1.25× 101.25 13022.83 186.56 12897.30 380.34 12357.33
1.5× 91.89 12602.90 178.22 12589.71 370.18 12233.95
2× 83.15 5272.04 162.99 6224.69 337.01 7485.75

Table 4.3: Performances of surge pricing policies for Manhattan case study.

Finally, we test how the static and the real-time policies are robust to variations in input

statistics. We compare the rewards generated and the total queue length applying the static

and the real-time policies for the arrival rates of May 11, 2019, Saturday between 18.00-20.00.

The results are displayed in Figure 4.5d. Even though the arrival rates between May 11 and

May 4 do not differ much, the static policy is not resilient and fails to stabilize when there is a

slight change in the network. The real-time policy, on the other hand, is still able to stabilize

the network and generate profits. The neural-network based policy is able to determine the

correct pricing and routing decisions by considering the current state of the network, even

under different arrival rates.

These experiments show us that we can indeed develop a real-time policy using deep re-
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Figure 4.6: Performances of the specific model that is
trained from scratch and fine-tuned global model (for dif-
ferent amounts of fine-tuning as specified in the legend): re-
wards (left) and queue lengths (right).

Figure 4.7: San Francisco
divided into m = 7 regions.
Map obtained from the San
Francisco County Trans-
portation Authority [175].

inforcement learning and this policy is resilient to small changes in the network parameters.

The next study investigates the idea of generality, i.e., whether we can develop a global real-

time policy and fine-tune it to a specific environment with few-shots of training, rather than

developing a new policy from scratch.

Few-shot Learning: A common problem with reinforcement learning approaches is that be-

cause the agent is trained for a specific environment, it fails to respond to a slightly changed

environment. Hence, one would need to train a different model for different environments (dif-

ferent network configurations, different arrival rates). However, this is not a feasible solution

considering that training one model takes millions of iterations. As a more tractable solution,

one could train a global model using different environments, and then calibrate it to the desired

environment with fewer iterations rather than training a new model from scratch. We tested

this phenomenon by training a global model for Manhattan using various arrival rates and net-

work configurations that we extracted from different 2-hour intervals (We trained the global

model for 10 million iterations). We then trained this model for the network configuration and

arrival rates on May 6, 2019, Monday between 15.00-17.00. The results are displayed in Fig-

ure 4.6. Even with no additional training, the global model performs better than the specific
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Figure 4.8: Charging costs for the optimal static policy and the real-time policy in San Fran-
cisco case study.

model trained from scratch for 2 million iterations. Furthermore, with only few iterations, it is

possible to improve the performance of the global model significantly. This is an anticipated

result, because although the network configurations and arrival rates for different 2-hour in-

tervals are different, the environments are not fundamentally different (the state transitions are

governed by similar random processes) and hence it is possible to generalize a global policy

and fine-tune it to the desired environment with fewer number of iterations.

4.2.4.2 Case Study in San Francisco

We conducted the case study in San Francisco by utilizing an EV fleet of 420 vehicles.

We divided San Francisco into 7 regions as in Figure 4.7, and using the traceset of mobility of

taxi cabs data from CRAWDAD [176], we obtained the average arrival rates and travel times

between regions (we exclude the rides occurring in the same region).

In Figure 4.8, we compare the charging costs paid under the real-time policy and the static

policy. The static policy is generated by using the average value of the electricity prices,

whereas the real-time policy takes into account the current electricity prices before execut-

ing an action. Therefore, the real-time policy provides cheaper charging options by utilizing

smart charging strategies, decreasing the average charging costs by 25%.
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Figure 4.9: Comparison of different policies for San Francisco case study. The legends for all
figures are the same as the top left figure, where red lines correspond to the real-time policy
and blue lines correspond to the static policies. In all scenarios, we use the rewards generated
and the total queue length as metrics. In (a), we demonstrate the results from applying the
real-time policy and the optimal static policy. In (b), we compare the real-time policy with
a sub-optimal static policy, where the prices are 5% higher than the optimal static policy. In
(c), we utilize a surge pricing policy along with the optimal static policy and compare with
the real-time policy.

In Figure 4.9a, we compare the rewards and the total queue length resulting from the real-

time policy and the static policy. In Figure 4.9b, we compare the RL policy to the static policy

with 5% higher prices than the optimal static policy, and summarize performances of several

other static pricing policies in Table 4.5.

In Figure 4.9c, we use the static policy but also utilize a surge pricing policy that multiplies

the prices by 1.5 if the queues are longer than 100% of the induced arrival rates. The perfor-

mances of other surge pricing policies are also displayed in Table 4.4. Similar to the case study

in Manhattan, the results demonstrate that the performance of the trained real-time policy is

superior to the other policies. In particular, the RL policy is able to generate around 24% more

rewards and result in around 75% less queues than the best heuristic policy, which utilizes 30%

higher static prices than the optimal static policy.
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Surge
Queue Thr. 50% 100% 200%

Queue Rewards Queue Rewards Queue Rewards
1.25× 67.62 718.66 75.92 715.02 99.56 687.45
1.5× 25.16 650.90 34.32 687.71 49.94 708.38
2× 14.06 331.21 20.55 455.25 44.44 611.23

Table 4.4: Performances of surge pricing policies for San Francisco case study.

Metrics

% of opt.
static prices 105% 110% 120% 130% 140%

Average Rewards 4.98 485.65 696.38 721.89 682.76
Average Queue Length 456.83 211.04 87.15 45.28 25.66

Table 4.5: Performances of static pricing policies for San Francisco case study.

4.2.5 Conclusion

In this section, we developed a real-time control policy based on deep reinforcement learn-

ing for operating an AMoD fleet of EVs as well as pricing for rides. Our real-time control

policy jointly makes decisions for: 1) vehicle routing in order to serve passenger demand and

to rebalance the empty vehicles, 2) vehicle charging in order to sustain energy for rides while

exploiting geographical and temporal diversity in electricity prices for cheaper charging op-

tions, and 3) pricing for rides in order to adjust the potential demand so that the network is

stable and the profits are maximized. Furthermore, we formulated the static planning prob-

lem associated with the dynamic problem in order to define the optimal static policy for the

static planning problem. When implemented correctly, the static policy provides stability of

the queues in the dynamic setting, yet it is not optimal regarding the profits and keeping the

queues sufficiently low. Finally, we conducted case studies in Manhattan and San Francisco

that demonstrate the performance of our developed policy. The two case studies on differ-

ent networks indicate that reinforcement learning can be a universal method for establishing

well performing real-time policies that can be applied to many real world networks. Lastly,

by doing the Manhattan study with non-electric vehicles and San Francisco study with electric
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vehicles, we have also demonstrated that a real-time policy using reinforcement learning can

be established for both electric and non-electric AMoD systems.
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4.3 Competition in Electric Autonomous Mobility on De-

mand Systems

In this section, we study the effects of competition in electric AMoD systems that are op-

erated by profit-maximizing platform operators. Owing to the opportunities that autonomous

electric vehicles create for efficient control schemes and cost-effective operation, it is possible

for a single platform operator to provide cheap rides through optimizing the prices of rides

for geographical load balancing as well as optimally routing and charging the fleet of electric

vehicles. However, a monopolistic market with a single AMoD provider is in general disadvan-

tageous for customer welfare. Therefore, introduction of another AMoD service provider to

the market results in firms competing over the customers, hence forcing them to charge fairer

prices and provide a higher quality of service. Our primary goal is to investigate the optimal

behaviour of the firms in a monopoly and duopoly and quantify the impacts of competition on

the customers as well as the firms.

Our contributions can be summarized as follows:

• We formalize the platform operator’s profit maximization problem by adopting a static

network-flow based model that captures the characteristics of an AMoD fleet, and derive

expressions for the ride prices, profits, and consumer surplus under the optimal static

policy.

• We prove that if the competitors have identical costs, then the duopoly equilibrium prices

have to be symmetric. We show that under a mild sufficient condition on maximum travel

costs that can be met with electric vehicles, the duopoly prices in equilibrium are never

larger than the optimal monopoly prices. Furthermore, we derive theoretical bounds for

the ratio of prices, induced demand, profits, and consumer surplus in the monopoly and

the duopoly equilibrium.
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• We study a real-time pricing and fleet management policy using model predictive control,

and demonstrate the performance numerically on real network and demand data.

Related work: Research on competition in ride-sharing markets is relevant to ours. In terms

of a broader scope on platform competition in two-sided markets, [177] and [178] introduce

general frameworks and provide in-depth analysis. The impacts of single/multi-homing users

on the market equilibria have been investigated in [179]. Theoretical studies on dynamic plat-

form competition [180] and spatial platform competition [181] in two sided markets further

provide insights towards competition in ride-sharing markets. Besides these, scholars examine

the competition between ride-sharing and taxis [182, 183], where Uber is considered to be a

monopoly. These works however do not capture the competition among ride-sharing platforms,

yet ride-sharing markets are rather oligopolies in many countries[184]. Accordingly, a recent

work [185] presents a head-to-head comparison of Uber, Lyft, and taxis using statistical meth-

ods. Another line of work related to ours focuses on the benefits of spatial price discrimination

[186] and dynamic pricing in ride-sharing networks [187, 188]. These however do not study

a competitive market. Closest to the work presented in this section is [189], which studies

the effects of thickness (i.e., the mass of drivers) and competition on the equilibria of ride-

sharing markets. It shows that competition always increases the welfare of the drivers, whereas

it decreases the welfare of the customers if the market is not sufficiently thick.

To the best of our knowledge, there is no existing work on competition in electric AMoD

systems. Our study aims to form the bridge between AMoD and competition literature with

our theoretical findings. We hope that the closed form bounds quantifying the impacts of

competition would help investors make informed policy decisions about competing AMoD

platforms and investing in efficient AMoD technologies.
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(a) Duopoly demand functions (b) Monopoly demand functions

Figure 4.10: Graphical illustration of the demand functions for (a) duopoly, and (b) monopoly.
The axes correspond to the uniform random variables x and y scaled by 1/ℓmax. In duopoly,
the line σx+ (1− σ)y = ℓ1ij corresponds to the customers who earn 0 pay-off buying a ride
from firm 1, and the line σx+(1−σ)(ℓmax−y) = ℓ2ij corresponds to the customers who earn
0 pay-off buying a ride from firm 2. As such, for the price tuple (ℓ1ij , ℓ

2
ij), the blue shaded area

corresponds to the demand function for firm 1, whereas the red corresponds to the demand
function for firm 2. Monopoly is the special case of duopoly, where the prices for rides set by
firm 2 are set to infinity: ℓ2ij =∞.

4.3.1 System Model and Problem Definition

Network and Demand Models: We consider two fleets of AMoD EVs operated by two

competitors within a transportation network characterized by a complete graph consisting of

N = {1, . . . , n} nodes. Each of these nodes can serve as a trip origin or destination.

We study a discrete-time system with time periods normalized to integral units

t ∈ {0, 1, 2, . . . }. In each period, potential riders of mass θij seek rides between origin-

destination (OD) pair (i, j), where θii = 0. We assume that customers have different valuations

for riding with each firm, represented by the tuple (v1, v2) where vf is the customer’s valuation

for firm f . To capture customer heterogeneity, we let (v1, v2) ∼ V , where V denotes the PDF

of the joint distribution with support [0, ℓmax]
2. Here, ℓmax is the maximum valuation of the
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customers for both firms, i.e. the maximum willingness to pay9. To characterize the distribu-

tion V , we adopt the model proposed by [189] and assume that the distribution of the random

variables (v1, v2) is defined implicitly through:

v1 = σx+ (1− σ)y, (4.14)

v2 = σx+ (1− σ)(ℓmax − y), (4.15)

where x and y are iid uniform random variables with support [0, ℓmax] and σ ∈ [0, 1]. We

refer to x as the common value component and y as the idiosyncratic component, with σ as

the measure of correlation over customers’ preferences10. In particular, x can be viewed as a

customer’s valuation of the ride itself and y (or ℓmax − y) can be viewed as a customer’s valu-

ation of firm 1 itself (or firm 2 itself). A customer is identified by the draws from distributions

of x and y, which are then mapped to that customer’s valuations for riding with firms 1 and

2 via (4.14) and (4.15). A customer with valuations (v1, v2) makes a decision upon observing

the prices for rides. If the prices for rides between OD pair (i, j) in period are set to be ℓ1ij

and ℓ2ij by firm 1 and 2, respectively, the customer buys a ride from firm f if vf − ℓfij > 0

and vf − ℓfij > v−f − ℓ−f
ij (given firm f , −f denotes the other firm), i.e., the customer gains

a positive pay-off for purchasing a ride from firm f and this pay-off is higher than the pay-off

that the customer would gain by buying from the other firm. Otherwise they do not buy a

ride from either of the firms and leave the system. Hence, for a price tuple (ℓ1ij, ℓ
2
ij) for OD

pair (i, j), the induced mass of arrivals for firm f is given by Θf
ij := θijD(ℓfij, ℓ

−f
ij ), where

D : [0, ℓmax]
2 → [0, 1] is the demand function of customers which determines the fraction of

customers that would buy a ride from firm f upon observing the prices. This function has a

9For brevity of notation, we uniformly set ℓmax to be the maximum willingness to pay for all OD pairs without
loss of generality. Our results can be derived in a similar fashion by replacing ℓmax with ℓijmax, where ℓijmax is the
maximum willingness to pay for OD pair (i, j).

10In the monopolistic setting, σ measures the correlation between customers’ valuation of riding with the mo-
nopolistic firm and customers’ valuation of riding with outside options (e.g., public transport).
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Figure 4.11: Demand function (left) and willingness to pay distribution (right) as a function
of ride prices for several values of σ ∈ [0.5, 1].

simple geometric interpretation depicted in Figure 4.10. We plot the demand function and the

willingness to pay distribution as a function of ride prices for several values of σ in the monop-

olistic setting in Figure 4.11. Note that the demand function is concave if ℓ1ij < (1− σ)ℓmax, is

linear if (1− σ)ℓmax ≤ ℓ1ij < σℓmax, and is convex if σℓmax ≤ ℓ1ij .

Vehicle Model: In order to best serve its customers and maximize its profits, each operator

needs to dispatch its fleet, including vehicle routing and charging. To implicitly capture the

effect of trip demand and the associated charging and routing decisions on the fleet size and

hence the operational costs incurred by each operator, we assume that each vehicle in charging

or trip-making mode has a per period operational cost of βc and βt, respectively. A trip-making

vehicle can either be occupied by a customer, which we refer to as a customer carrying vehicle;

or can be empty, which we refer to as a rebalancing vehicle. We note that in the work presented

in this section, we set the capacity of a vehicle to be one passenger. Furthermore, as the vehicles

are electric, they have to sustain charge in order to operate, which needs to be purchased from

the power grid. Without loss of generality, we assume there is a charging station placed at each

node i ∈ N . To charge at node i, the operator pays a price of electricity pi per unit of energy.

We assume that all EVs in the fleet have a battery capacity denoted as emax ∈ Z+; therefore,

each EV has a discrete battery energy level e ∈ E , where E = {e ∈ N|0 ≤ e ≤ emax}. In our

discrete-time model, we assume each vehicle takes one period to charge one unit of energy and
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τij periods to travel between OD pair (i, j), while consuming eij units of energy.

Platform Operator’s Problem: We consider a profit-maximizing AMoD operator that man-

ages a fleet of EVs that make trips to provide transportation services to customers. The oper-

ator’s goal is to maximize profits by 1) setting prices for rides and hence managing customer

demand at each node; 2) optimally operating the AMoD fleet (i.e., charging and routing) to

minimize operational and charging costs. Next, we study the static planning problem for both

the monopoly and the duopoly settings in order to characterize the optimal static prices and to

examine the effects of competition in electric AMoD systems.

4.3.2 Analysis of the Static Problem

In this subsection, we establish and discuss the static planning problems considering a

single operator (i.e., monopoly) and two competing operators (i.e., duopoly) in order to study

the effect of competition in an electric AMoD system. We consider the fluid scaling of the

network and characterize the static planning problem via a network flow formulation. The

static problem is convenient for determining the optimal static pricing, routing, and charging

policy of the platform operator.

4.3.2.1 Monopoly Static Planning Problem

We define the monopoly to be the setting where the firm 2 is removed. In order to make

the comparison between the monopoly and the duopoly consistent, we keep the customer be-

haviour and the demand function D same. Hence, removing firm 2 from the system is equiva-

lent to setting prices for rides posted by firm 2 to be∞, and the induced demand for rides for

OD pair (i, j) to be D(ℓ1ij,∞) for a given ℓ1ij .

The goal of the platform operator is to maximize its profits by setting prices for rides and

making routing and charging decisions such that the induced demand is served. Let xeij be the
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number of vehicles at node i with energy level e being routed to node j and xeic be the number

of vehicles charging at node i and currently at energy level e. We state the platform operator’s

problem as follows:

max
xe
ic,x

e
ij ,ℓ

1
ij

n∑
i=1

n∑
j=1

θijℓ
1
ijD(ℓ1ij,∞)

n∑
i=1

emax−1∑
e=0

(βc+pi)x
e
ic−βt

n∑
i=1

n∑
j=1

emax∑
e=eij

xeijτij (4.16a)

subject to θijD(ℓ1ij,∞) ≤
emax∑
e=eij

xeij ∀i, j ∈ N , (4.16b)

xeic +
n∑

j=1

xeij = xe−1
ic +

n∑
j=1

x
e+eji
ji , ∀i ∈ N , ∀e ∈ E , (4.16c)

xemax
ic = 0, ∀i ∈ N , (4.16d)

xeij = 0, ∀e < eij, ∀i, j ∈ N , (4.16e)

xeic ≥ 0, xeij ≥ 0, ∀i, j ∈ N , ∀e ∈ E , (4.16f)

xeic = xeij = 0, ∀e /∈ E , ∀i, j ∈ N . (4.16g)

The objective function (4.16a) corresponds to the profits earned by the firm per period. In

particular, the first term in (4.16a) accounts for the aggregate revenue the platform generates

by providing rides for θijD(ℓ1ij,∞) number of riders with a price of ℓ1ij . The second term is

the operational and charging costs incurred by the charging vehicles, and the last term is the

operational costs of the trip-making vehicles.

The constraint (4.16b) requires the platform to operate at least as many vehicles to serve

all the induced demand between any two nodes i and j (The rest are the vehicles travelling

without passengers, i.e., rebalancing vehicles). We will refer to this as the demand satisfaction

constraint. We let λij be the dual variable associated with (4.16b) and λmij be the optimal dual

variable. The constraint (4.16c) is the flow balance constraint for each node and each battery

energy level, which restricts the number of available vehicles at node i and energy level e to
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be the sum of arrivals from all nodes and vehicles that are charging with energy level e − 1.

The constraint (4.16d) ensures that the vehicles with full battery do not charge further, and the

constraint (4.16e) ensures the vehicles sustain enough charge to travel between OD pair (i, j).

It is worthwhile to mention that unlike traditional minimum-cost flow problems, where

the objective is to minimize total travel cost, the objective of (4.16) is to maximize the total

revenue minus the costs, i.e., profits. Furthermore, in traditional minimum-cost flow problems,

demand elasticity in response to price is not explicit and the elasticity is often modeled in

response to travel times [190, 191], whereas the explicit dependency of the induced demand to

prices via D(ℓ1ij,∞) results in a more challenging task. The prices affect the induced demand,

which affects the routing decisions and this causes a complex interplay between the decision

variables.

Optimal Pricing: The prices for rides are a crucial component of the profits generated. The

next proposition highlights how the optimal prices ℓmij := ℓ1∗ij for rides are related to the network

parameters, prices of electricity, and the operational costs. In the following results, we inves-

tigate this interconnection by providing upper bounds on the prices that a profit-maximizing

monopolist may charge customers, as well the corresponding profits generated. We highlight

the fact that the monopolist’s profits are in fact a decreasing function of the optimal prices for

rides. The higher the monopolist has to charge its customers, the lower its generated profits.

This could be a motivation for the monopolist to invest in efficient vehicle technology and

cheap charging solutions.

Proposition 4.3.1 Define

λij := βt(τij + τji) + eij(pj + βc) + eji(pi + βc).

Let λmij be the optimal dual variable corresponding to the demand satisfaction constraint
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(4.16b) for OD pair (i, j). The optimal monopoly prices ℓmij are:

ℓmij=



λm
ij+
√

(λm
ij )

2+6σ(1−σ)ℓ2max

3
,

λm
ij

ℓmax
< 3−5σ

2

(1+σ)ℓmax+2λm
ij

4
, 3−5σ

2
≤ λm

ij

ℓmax
< 3σ−1

2

2λm
ij+ℓmax

3
, 3σ−1

2
≤ λm

ij

ℓmax
≤ 1.

(4.17)

These prices can be upper bounded by:

ℓmij ≤



λij+
√

(λij)2+6σ(1−σ)ℓ2max

3
,

λij

ℓmax
< 3−5σ

2

(1+σ)ℓmax+2λij

4
, 3−5σ

2
≤ λij

ℓmax
< 3σ−1

2

2λij+ℓmax

3
, 3σ−1

2
≤ λij

ℓmax
≤ 1.

(4.18)

The proof can be found in Appendix C.2.1. We can interpret the dual variables λmij as the cost of

providing a single ride between i and j to the platform. In the worst case scenario, every single

requested ride from node i requires rebalancing and charging both at the origin and the desti-

nation. Hence the upper bounds on (4.18) include the operational costs of passenger-carrying,

rebalancing and charging vehicles (both at the origin and the destination); and the energy costs

of both passenger-carrying and rebalancing trips multiplied by the price of electricity at the trip

destinations (This is exactly what λij consists of).

Similar to the taxes applied on products, whose burden is shared among the supplier and

the customer; the costs associated with rides are shared among the platform operator and the

riders (which is why the price paid by the riders include some fraction of the cost of the ride).

We note that if the optimal dual variables λmij fall in the region

[(3 − 5σ)ℓmax/2, (3σ − 1)ℓmax/2], then the optimal prices given by (4.17) fall in the region

[(1− σ)ℓmax, σℓmax]. In this region, the demand function D(ℓmij ,∞) is linear. Hence, the opti-

mization problem (4.16) (with the additional constraint (1−σ)ℓmax ≤ ℓ1ij ≤ σℓmax, ∀i, j ∈ N ,
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without losing global optimality) becomes a convex quadratic program and can be solved in

polynomial time. The following assumptions guarantee this:

Assumption 4.3.1 Assume that σ ≥ 3/5, i.e., the customers’ preferences over the two firms

are highly correlated.

Assumption 4.3.2 We assume max
i,j

λij ≤ (3σ−1)(3−σ)
4(5−3σ)

ℓmax as an upper bound on the maximum

cost of a ride in the network.

Remark 4.3.1 Assumption 4.3.1 implies that at least 3/5 (60%) of the customers’ valuations

between the firms are correlated. Higher correlation implies that riders’ valuations of the rides

provided by a firm depend less on the identity of the firm. This is reasonable for ride-sharing

platforms, where majority of the customers decide depending heavily on the price rather than

the identity of the firm.

Assumption 4.3.2 imposes an upper bound on the maximum cost of a ride. This can be satisfied

in practice, especially with electric vehicles. Observe that the bound is increasing with σ, hence

it is tightest when σ = 3/5. To give numbers with a simple calculation, consider a network with

farthest OD pair of 15 miles and 30 minutes away (with average speed 30mph), σ = 3/5 and

ℓmax = $50. An average EV consumes 34kWh energy to drive for 100 miles. For an average

price of electricity of $0.11 per kWh and a charger with 20kW charging speed, the EV charges

10kWh in 30 minutes for $1.1, that allows for 30 miles of range. If we amortize the cost of a

very expensive EV of $100k over 5 years, we get per minute operational cost of $0.04. In total,

to do the trip and the rebalancing, the vehicle drives for 30 miles for 1 hour and charges for 30

minutes. In total, this yields a cost of 90×$0.04+$1.1 = $4.7 = max
i,j

λij ≤ (3σ−1)(3−σ)
4(5−3σ)

= $7.5.

Whereas the fuel for gasoline vehicles costs about 4 times more (around $0.16 per mile), which

would yield max
i,j

λij = $8.00.

Next, we relate the optimal prices ℓmij to the profits generated by the operator and the con-

sumer surplus. The profits are defined by the objective function in (4.16a). The consumer
152



Ride Pricing and Control Policies for Autonomous Urban Mobility Fleets Chapter 4

surplus is defined as the difference between the price that customers pay and the price that they

are willing to pay, i.e., the aggregate pay-off of the customers.

Proposition 4.3.2 Suppose that Assumptions 4.3.1 and 4.3.2 hold. With the optimal monopoly

prices ℓmij , the profits per period are:

Pm =
n∑

i=1

n∑
j=1

θij
4σℓmax

(ℓmax(1 + σ)− 2ℓmij )
2. (4.19)

The consumer surplus with the optimal prices is:

CSm=
n∑

i=1

n∑
j=1

θij
ℓmax(σ

2+σ+1)−3ℓmij (1+σ−
ℓmij
ℓmax

)

6σ
. (4.20)

The proof can be found in Appendix C.2.2. Notice that the profits in (4.19) are decreasing as

the prices for rides increase. Thus expensive rides generate less profits compared to the cheaper

rides and it is more beneficial if the optimal dual variables λmij are small and prices are close

to ℓmax(1 + σ)/4. Thus, the operator has incentive to use more efficient routing and charging

policies so they can lower ride prices as much as possible. Moreover, by computing ∂CSm

∂ℓmij
using

(4.20), one identifies that lower prices generate higher consumer surplus, which is an intuitive

result.

4.3.2.2 Duopoly Static Planning Problem

We study the duopoly as a game between two firms. At a high level, the game is described

by firm f observing firm −f ’s prices and solving the optimization problem (4.16) (by consid-

ering firm −f ’s prices to be ℓ−f
ij rather than ∞ for the demand function). We consider two

competitors with identical operational costs βt and βc, and study the optimal pricing strategy

when the firms are at an equilibrium. In an equilibrium, no firm benefits from unilaterally

changing the prices for any number of OD pairs (and as a result the optimal solution to their
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static planning problem). Given {ℓ−f
ij }∀i,j∈N , the best response of firm f is the best pricing,

routing and charging strategy of f , which is the solution of (4.16) (with ℓ−f
ij instead of∞ in the

demand function). Since the operational costs and the prices of electricity are identical for both

of the firms, their best response to their competitor’s prices are the same. As such, it is intuitive

that there exists an equilibrium in which both firms set the prices equal (ℓfij = ℓ−f
ij , ∀i, j ∈ N ),

and we show that this is in fact the case. Such an equilibrium is commonly referred to as a

symmetric duopoly equilibrium. Furthermore, we show that no asymmetric equilibria can ex-

ist under this setting, i.e., identical firms will not set different prices for the same OD pair at

equilibrium.

Let the following static planning problem characterize the state in which both firms serve

equal number of customers for all OD pairs and have identical pricing strategies:

max
xe
ic,x

e
ij ,ℓ

1
ij

n∑
i=1

n∑
j=1

θijℓ
1
ijD(ℓ1ij, ℓ

2
ij)
∣∣∣
ℓ1ij=ℓ2ij

−
n∑

i=1

emax−1∑
e=0

(βc + pi)x
e
ic−βt

n∑
i=1

n∑
j=1

emax∑
e=eij

xeijτij

(4.21a)

subject to θijD(ℓ1ij, ℓ
2
ij)
∣∣∣
ℓ1ij=ℓ2ij

≤
emax∑
e=eij

xeij, ∀i, j ∈ N , (4.21b)

(4.16c)− (4.16g).

We note that the optimization problem (4.21) is in general non-convex due to D(ℓ1ij, ℓ
2
ij). Since

there are no constraints on the fleet size and furthermore prices that control the demand are de-

cision variables, a feasible solution to the above optimization problem always exists. Moreover,

the optimal solution to (4.21) specifies an equilibrium of the duopoly.

Proposition 4.3.3 Suppose that σ ≥ 1/2 and Assumption 4.3.2 holds. The firms are in an

equilibrium when their routing, charging, and symmetric pricing strategy follows the solution

of (4.21).
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Proof outline: We first determine the optimal pricing strategy {ℓdij}i,j∈N of (4.21) using the first

and second order optimality conditions (similar to proof of Proposition 1). Then, by stating the

first order optimality condition for firm f we show that when firm −f sets prices as ℓ−f
ij = ℓdij ,

∀i, j ∈ N , then the best response of firm f is to set ℓfij = ℓdij , ∀i, j ∈ N . Hence, they are in an

equilibrium. □

The complete proof can be found in Appendix C.2.3. Accordingly, there exists a duopoly

equilibrium characterized as the optimal solution of (4.21), in which the firms set identical

prices. The optimal solution to (4.21) is however not necessarily unique and there can be many

solutions yielding the same profits. For instance, if pi = pj,∀i, j ∈ N , then the optimal

charging strategy is not unique. We let {ℓdij}i,j∈N to be the equilibrium prices determined as

an optimal solution of (4.21) and say that the firms are in a symmetric duopoly equilibrium as

long as ℓ1ij = ℓ2ij = ℓdij,∀i, j ∈ N . Furthermore, in the next proposition, we state that if both

firms serve all OD pairs, equilibrium prices can not be asymmetric.

Proposition 4.3.4 Suppose that σ ≥ 1/2 and Assumption 4.3.2 holds. There exists no asym-

metric equilibrium prices, in which both firms serve nonzero demand for all OD pairs with

nonzero potential riders.

Proof outline: We let ℓ1ij = ℓ2ij + δ for some δ > 0 and show by contradiction that the first-

order optimality condition can not simultaneously be satisfied for both firms. Since the demand

function D(ℓ1ij, ℓ
2
ij) has different expressions for ℓ1ij ≤ (1− σ)ℓmax and ℓ1ij > (1− σ)ℓmax, we

separately study three cases: (i) ℓ1ij, ℓ
2
ij ≤ (1 − σ)ℓmax, (ii) ℓ1ij, ℓ

2
ij > (1 − σ)ℓmax, and (iii)

ℓ1ij > (1 − σ)ℓmax, ℓ2ij ≤ (1 − σ)ℓmax. For all cases, we first assume that the first-order

optimality condition hold for both firms and bound the difference between the dual variables

leading to ℓ1ij and ℓ2ij in terms of δ. For cases (i) and (ii), we show by using the bound on the

dual variables that if the first-order condition for firm 2 is satisfied (i.e., is equal to 0), then the

first-order condition for firm 1 is always less than 0, which is a contradiction. For case (iii), we
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show that with first-order condition satisfying prices, ℓ2ij + δ is always less than ℓ1ij , which is a

contradiction. □

The complete proof is provided in Appendix C.2.4. As we have identified that the duopoly

can only be in a symmetric equilibrium, we analyze the effects of competition in state of a

symmetric equilibrium.

The next set of results characterize the effects of competition on the ride prices, the op-

erators’ profits, the total societal ride demand served, and the consumer surplus. In the first

result, we provide lower and upper bounds on the price reduction the customers will see with

the introduction of the second firm and moving from a monopoly to a symmetric duopoly

equilibrium.

Proposition 4.3.5 Suppose that Assumptions 4.3.1 and 4.3.2 hold. Let λij be defined as in

Proposition 4.3.1. Define

∆1(λij) := 4ℓ2max + (2λij + (15σ − 3)ℓmax)(2λij + (1− σ)ℓmax),

∆2(λij) := 2(σℓmax − λij)2 + 2(ℓmax − λij)2 + 11(σ − 1)2ℓ2max.

Let λdij be the optimal dual variable corresponding to the demand satisfaction constraint

(4.21b). The symmetric duopoly equilibrium prices are determined as:

ℓdij =


(3−5σ)ℓmax+2λd

ij+
√

∆1(λd
ij)

8
,

λd
ij

ℓmax
≤ 3(1−σ)2

2(σ+1)

(5−3σ)ℓmax+2λd
ij−
√

∆2(λd
ij)

4
, o.w.,

(4.22)

Moreover, denote the difference between optimal monopoly and symmetric duopoly equilibrium
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prices for OD pair (i, j) as ∆ℓij := ℓmij − ℓdij . Then:

∆ℓij≥


(7σ−1)ℓmax−2λij−

√
∆1(λij)

8
,

λij

ℓmax
≤ 3(1−σ)2

2(σ+1)

(4σ−4)ℓmax−2λij+
√

∆2(λij)

4
, o.w.,

(4.23)

and

∆ℓij≤
(7σ−1)ℓmax+4λij−ℓmax

√
−15σ2+18σ+1

8
. (4.24)

Proof outline: We state the first and the second order optimality conditions on (4.21) to get the

duopoly equilibrium prices. To lower bound the price difference, we evaluate the monopoly

prices at λmij = 0 and the duopoly equilibrium prices at λdij = (3σ−1)(3−σ)
4(5−3σ)

ℓmax (and to upper

bound, vice versa). □

The complete proof can be found in Appendix C.2.5. An interesting observation is how σ

affects the prices. For the optimal monopoly prices, ∂ℓmij/∂σ > 0, i.e., the monopolist serving

a population with higher σ charges more for the rides with identical costs (i.e., identical λmij ).

The reason is that larger σ shifts the distribution of customers’ valuations for the monopolist

from intermediate to extreme values (as σ increases from 1/2 to 1, the distribution shifts from

triangular to uniform). This shift in the distribution modifies the demand function D(ℓ1ij,∞),

which leads to an increase on the optimal prices. Simply put, larger σ, i.e., lack of firm loyalty,

leads to an increase in the prices for the monopoly. On the contrary for the duopoly equilibrium

prices, ∂ℓdij/∂σ < 0. That is, the duopoly serving a population with higher σ charges less for

the rides with identical costs (i.e., identical λdij). The intuition behind is that larger σ indicates

a lack of firm loyalty (when σ = 1, the customers buy from the firm that offers lower prices).

Hence, higher σ strengthens the competition and causes the firms to charge less. The reader

can observe that when σ = 1, ℓdij = λdij , i.e., the equilibrium prices are equal to the costs of

providing the rides to the platform, which is the lowest the firms can go without losing money

but make no profit.
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Observe that the lower bounds in (4.23) are decreasing functions of λij . Given the maxi-

mum value of λij equal to λij =
(3σ−1)(3−σ)

4(5−3σ)
ℓmax, the lower bound on the price difference is 0.

Hence, we can conclude that the duopoly prices are never higher than the monopoly prices, for

all OD pairs.

Proposition 4.3.5 characterizes the effect of competition on the prices depending on the

network parameters and therefore the dual variables. The next series of results aim to determine

universal bounds on the ratio of prices, induced demand, profits and consumer surplus in the

monopoly and the duopoly, independent of the network parameters.

Proposition 4.3.6 (Price Bounds) Suppose that Assumptions 4.3.1 and 4.3.2 hold. For all OD

pairs, the optimal monopoly prices obey the following:

2ℓmax/5 ≤ ℓm ≤ ℓmij ≤ ℓ
m ≤ 3ℓmax/4, (4.25)

where ℓm := 1+σ
4
ℓmax and ℓ

m
:= 7+14σ−9σ2

40−24σ
ℓmax. Furthermore, the symmetric duopoly equilib-

rium prices obey:

0 ≤ ℓd ≤ ℓdij ≤ ℓ
d ≤ ℓmax/2, (4.26)

where ℓd := 3−5σ+
√
−15σ2+18σ+1

8
ℓmax and ℓ

d
:= 1+σ

4
ℓmax. Moreover for all OD pairs (i, j), the

ratio between the symmetric duopoly equilibrium prices and the optimal monopoly prices obey

the following:
ℓd

ℓ
m ≤

ℓdij
ℓmij
≤ ℓ

d

ℓm
= 1. (4.27)

Proof outline: The proof is done by evaluating the optimal monopoly prices given by (4.17) at

λmij = 0 and λmij = (3σ−1)(3−σ)
4(5−3σ)

ℓmax as well as the duopoly equilibrium prices given by (4.22)

at λdij = 0 and λdij = (3σ−1)(3−σ)
4(5−3σ)

ℓmax to get the bounds on the prices in terms of σ. Then, we

impose the condition σ ∈ [3/5, 1] to get the uniform bounds.

The complete proof can be found in Appendix C.2.6. An observation is that increasing
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σ increases both the upper and the lower bounds for the optimal monopoly prices, whereas

decreases the lower bound on the duopoly equilibrium prices and increases the upper bound.

This is because for the optimal monopoly prices, ∂ℓmij/∂σ > 0. However, because it strengthens

the competition between the firms in the duopoly, it can cause the prices to go much lower,

hence decreasing the lower bound (when σ = 1: if λdij = 0, then ℓdij = 0). The upper bound on

the duopoly equilibrium prices still increases, because according to Assumption 4.3.2 a larger

σ permits a larger λdij and hence higher prices. Consequently, the upper bound on the price

ratio is always 1 independent of σ while the lower bound is decreasing with σ.

The next result characterizes the effect of competition on the total customer demand for

rides that are served by either firm. We show that the aggregate demand served by the duopoly

is at least equal to and can be up to 4 times higher than the demand served by the monopoly.

Proposition 4.3.7 (Demand Bounds) Suppose that Assumptions 4.3.1 and 4.3.2 hold. For all

OD pairs (i, j), the monopoly demand functions evaluated at the optimal monopoly prices

obey:

1/4 ≤ Dm ≤ D(ℓmij ,∞) ≤ D
m ≤ 2/3, (4.28)

where Dm := 13−3σ2−6σ
40σ−24σ2 and D

m
:= 1+σ

4σ
. The duopoly demand functions at the duopoly

equilibrium prices obey:

1/4 ≤ Dd ≤ D(ℓdij, ℓ
d
ij) ≤ D

d ≤ 1/2, (4.29)

where Dd := 1
4σ

and D
d
:= 1

2
− (−(1+σ)+

√
−15σ2+18σ+1)

2

128σ(1−σ)
. Furthermore, the ratio between the

total demand served between any OD pair
2D(ℓdij ,ℓ

d
ij)

D(ℓmij ,∞)
obeys the following:

1 ≤ 2

1 + σ
=

2Dd

D
m ≤

2D(ℓdij, ℓ
d
ij)

D(ℓmij ,∞)
≤ 2D

d

Dm ≤ 4 (4.30)
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Proof outline: The proof is done by evaluating the demand functions for the monopoly and

the duopoly at the price bounds given by (4.25) and (4.26), and then imposing the condition

σ ∈ [3/5, 1] to get uniform bounds.

The complete proof can be found in Appendix C.2.7. Taking into account that induced

demand is inversely proportional to prices, the impact of σ on the demand function bounds is

in accordance with price bounds in Proposition 4.3.6.

Remark 4.3.2 The upper bound in (4.30) is achieved when σ = 1, λmij = (3σ−1)(3−σ)
4(5−3σ)

ℓmax and

λdij = 0. Although it is achievable for some OD pairs, it is not possible to achieve it for all

OD pairs simultaneously. This is because for λdij to be 0, constraint (4.21b) has to be slack,

meaning node i has excess supply of vehicles that are being rebalanced to node j. This however

can not hold simultaneously for all OD pairs, since that would mean there are empty vehicles

being routed between all OD pairs, which would not be optimal.

Interestingly, we see that this potential increase in the aggregate demand never translates

into a profit increase for the firms because of the competition. As expected, profits decrease in

the presence of competition. According to the next result, the profits generated by a single firm

in duopoly is always less than 85% of the profits generated by the monopoly.

Proposition 4.3.8 (Profit Bounds) Suppose that Assumptions 4.3.1 and 4.3.2 hold. Let profits

earned by serving the induced demand between OD pair (i, j) in the monopoly be Pm
ij . With

the optimal monopoly prices, Pm
ij for all (i, j) obey the following:

θijℓmax/16 ≤ θijP
m ≤ Pm

ij ≤ θijP
m ≤ θijℓmax/4, (4.31)

where

Pm =
(3σ2 + 6σ − 13)2

64σ(5− 3σ)2
ℓmax, P

m
=

(1 + σ)2

16σ
ℓmax.
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Similarly, let profits earned by serving the induced demand between OD pair (i, j) by a single

firm in the duopoly be P d
ij . With the duopoly equilibrium prices, P d

ij for all (i, j) obey:

0 ≤ θijP
d ≤ P d

ij ≤ θijP
d ≤ (4 +

√
10)ℓmaxθij/48 (4.32)

where

P d=

(
ℓ
d − (3σ − 1)(3− σ)

4(5− 3σ)
ℓmax

)
×Dd=

1− σ
2σ(5− 3σ)

ℓmax,

P
d
= ℓdD

d
.

Furthermore, for all OD pairs, the ratio
P d
ij

Pm
ij

obeys:

8(1− σ)
(σ + 1)2(5− 3σ)

=
P d

P
m ≤

P d
ij

Pm
ij

≤ P
d

Pm ⪅ 0.85. (4.33)

Proof outline: The proof is done by evaluating the profits for the monopoly given by (4.19)

at the price bounds given by (4.25). For the duopoly, we first derive the dual objective, show

that it decreases with ℓdij , and evaluate at the duopoly equilibrium price bounds given by (4.26).

Then, we impose the condition σ ∈ [3/5, 1] to get the uniform bounds.

The complete proof can be found in Appendix C.2.8. Since lower prices generate more

profits in the monopoly and the price bounds are increasing with σ, the profit bounds of the

monopoly are decreasing with σ. Similarly, the duopoly profit bounds are decreasing with σ

too. Since σ increases the upper bound on prices, the lower bound on the profits decrease.

However, although σ decreases the lower bound on the prices, the upper bound on the profits

still decrease. This is because competition in the duopoly is a downward driving force on the

prices. Consequently, lower prices in the duopoly do not only result from lower λdij , but also

stronger competition. Hence, although lower prices increase the aggregate demand, because
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the firms are now competing over the customers, neither of the firms serve enough customers

to compensate for the decrease in the prices. Hence, the profits decrease.

The upper bound in (4.33) is achieved when σ = 3/5, λmij = (3σ−1)(3−σ)
4(5−3σ)

ℓmax, and λdij = 0.

Due to the same argument in Remark 4.3.2, it can not be achieved simultaneously by all the OD

pairs. Consequently, the ratio of total profits can not achieve this upper bound with equality.

How do the customers benefit from the introduction of competition? We saw that a reduc-

tion in ride prices is expected. Next, we show that the consumer surplus in the duopolistic

setting is at least equal to and can be up to 16 times the consumer surplus in the monopoly.

Proposition 4.3.9 (Consumer Surplus Bounds) Suppose that Assumptions 4.3.1 and 4.3.2

hold. Let the consumer surplus of customers requesting a ride between OD pair (i, j) in the

monopoly be CSm
ij . With the optimal monopoly prices, CSm

ij for all (i, j) obey:

θij
ℓmax

32
≤ θijCSm ≤ CSm

ij ≤ θijCS
m ≤ θij

13

90
ℓmax, (4.34)

where

CSm =
171σ4 − 660σ3 + 1378σ2 − 1748σ + 907

384σ(5− 3σ)2
ℓmax,

CS
m
= (7σ2 − 2σ + 7)ℓmax/(96σ).

Similarly, let the consumer surplus of customers requesting a ride between OD pair (i, j) in

the duopoly be CSd
ij . With the duopoly equilibrium prices, CSd

ij for all (i, j) obey:

θij
ℓmax

8
≤ θijCSd ≤ CSd

ij ≤ θijCS
d ≤ θij

ℓmax

2
, (4.35)

where

CSd = (σ2 − 2σ + 13)ℓmax/(96σ),
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CS
d
=

ℓmax

24σ(1− σ)
(
(2σ)3 − (σ + 1− 2

ℓd

ℓmax

)3 − 24σ(1− ℓd

ℓmax

)(σ − 1 +
ℓd

ℓmax

)
)
.

Furthermore, for all OD pairs, the ratio
CSd

ij

CSm
ij

obeys:

1 ≤ σ2 − 2σ + 13

7σ2 − 2σ + 7
≤ CSd

CS
m ≤

CSd
ij

CSm
ij

≤ CS
d

CSm ≤ 16. (4.36)

Proof outline: The proof is done by evaluating the consumer surplus for the monopoly given by

(4.20) at the price bounds given by (4.25). For the duopoly, we compute the consumer surplus

at the price bounds given by (4.26) in a similar fashion to the the proof of Proposition 4.3.2.

Then, we impose the condition σ ∈ [3/5, 1] to get the uniform bounds.

The complete proof can be found in Appendix C.2.9. Considering the fact that lower prices

(both in the duopoly and the monopoly) increase the consumer surplus by inducing more cus-

tomers and increasing the surplus per customer, the dependency of the price bounds on σ

reflects to the consumer surplus bounds.

Remark 4.3.2 applies for the upper bound in (4.36) too, and thus it can not be achieved for

all OD pairs simultaneously. Therefore, the ratio of total consumer surplus cannot achieve this

upper bound with equality.

So far, we have studied the effects of competition in an electric AMoD system by adopting

a static network-flow formulation. Although very convenient for analysis, this formulation

does not reflect the randomness in arrivals nor constrains vehicles dispatch decisions to be

integer valued (e.g., 0.25 customer may be served). To address these discrepancies with the

real environment, in the next subsection, we modify our model to account for the randomness

in arrivals and furthermore design a control policy that can be implemented in real-time.
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4.3.3 Real-Time Control

To accommodate for the stochastic nature of the arrivals, we model the arrival of the po-

tential customers OD pair (i, j) as a Poisson process with an arrival rate of θij . Moreover, we

allow the firms to set prices real-time and use the same price-responsive demand model. In

particular, during period t, for a price tuple (ℓ1ijt, ℓ
2
ijt) for OD pair (i, j), the induced arrival rate

for firm f is given by Θf
ijt = θijD(ℓfijt, ℓ

−f
ijt ). Thus, the number of new ride requests in time

period t for firm f isAf
ijt ∼ Pois(Θf

ijt) for OD pair (i, j). As a consequence of this randomness

in the customer arrivals, the platform operator might not be able to assign every customer to a

ride immediately (if the number of induced arrivals exceed the number of available vehicles).

In order to address this nuance, we adopt the following ride-sharing model:

Ride Hailing Model: Customers that purchase a ride during period t are not immediately

matched with a ride, but enter the queue for OD pair (i, j) to be served at the beginning of

period t+1. After the platform operator executes routing decisions for the fleet at the beginning

of period t+1, the customers in the queue for OD pair (i, j) are matched with rides and served

on a first-come, first-served basis.

Under these additional modeling modifications, our goal is to establish a real-time pric-

ing and fleet management policy that can be implemented in a real environment and provides

stability of the queues11. In fact, the model studied in Subsection 4.3.2 is the static planning

problem associated with this real environment, where we ignored the stochasticity of the ar-

rivals and used the expected values, while allowing the vehicle routing decisions to be flows

(real numbers) rather than integers. For the monopoly (or the symmetric duopoly), the solution

to this static planning problem in (4.16) (or (4.21)) is the optimal static policy that consists of

optimal prices as well as optimal vehicle routing and charging decisions. This policy can not

directly be implemented in a real environment because it does not yield integer-valued solu-

11The stability condition that we are interested in is rate stability of all queues. A queue for OD pair (i, j) is
rate stable if lim

t→∞
qij(t)/t = 0.

164



Ride Pricing and Control Policies for Autonomous Urban Mobility Fleets Chapter 4

tions. In Section 4.2, it was proven that randomizing the vehicle decisions according to the

optimal solution of the static problem to get integer-valued actions guarantees the stability of

the queues. However, considering random arrivals, this method may not execute the most prof-

itable actions since it does not take the real-time queue lengths into consideration. Although

it guarantees stability of the queues, it does not seek to minimize the queue lengths and hence

the wait time of the passengers, which would negatively affect the business.

Instead of using the randomized solution to implement real-time actions, it is possible to

realize a real-time policy that acknowledges the queue lengths and hence aims to maximize the

profits while minimizing the total wait time of the customers. To achieve this, we propose to

apply finite-horizon model predictive control (MPC) in our numerical experiment (albeit with

no performance guarantee).

MPC Procedure: The idea of finite-horizon MPC is to observe the current state of the envi-

ronment and determine the best control strategy for a planning horizon of T by predicting the

state path of the environment. Then, only the control strategy at the initial time period is im-

plemented and the process is repeated. Specifically, let S be the state of the vehicles (locations,

energy levels) and {Qij}i,j∈N be the outstanding customer demand (i.e., people who have re-

quested a ride but not yet served) at the beginning of planning time. The MPC Algorithm is

summarized as follows:

Algorithm 7: MPC Procedure
1: S ← Get vehicle states (locations, energy levels)
2: Qij ← Count outstanding customers
3: {xeijt, xeict, ℓijt}∀i,j,e,t ← Solve (4.37)
4: Execute {xeij0, xeic0, ℓij0}∀i,j,e

At each period, Algorithm 7 is run and the system state is observed. Using this informa-

tion, the optimal fleet management and pricing strategy is computed for the next T periods by

solving (4.37). Vehicle routing/charging and pricing decisions are executed for the initial time
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period and the environment transitions into next state. Then, Algorithm 7 is re-run and this

process is repeated during the entire operation of the system.

Next, we state the optimization problem (4.37) for the controller using a dynamic pricing

scheme in monopoly. Let the decision variable ℓ1ijt be the price for rides between OD pair (i, j)

in period t, xeijt be the number of vehicles at node i with energy level e being routed to node

j in period t, xeict be the number of vehicles charging at node i starting with energy level e in

period t, and qijt be the people waiting in the queue for OD pair (i, j) in period t. We state the

problem as follows:

max
xe
ict,x

e
ijt,qijt,ℓ

1
ijt

∑
ijt

ℓ1ijtθijD(ℓ1ijt,∞)−
∑
ijt

wijtqijt − βt
∑
ijet

τijx
e
ijt −

∑
iet

(βc + pi)x
t
ic

(4.37a)

s.t. qijt0 ≥ Qij −
∑
e

xeijt0 , ∀i, j ∈ N (4.37b)

qijt ≥ qijt−1 + θijD(ℓ1ijt−1,∞)−
∑
e

xeijt, ∀i, j ∈ N , ∀t > t0, (4.37c)

∑
j

xeijt + xeict −
∑
j

x
e+eji
jit−τji

− xe−1
ict−1 = seit, ∀i ∈ N , ∀e ∈ E , ∀t ≥ t0 (4.37d)

xemax
ict = 0, ∀i ∈ N , ∀t ≥ t0, (4.37e)

xeijt = 0, ∀e < eij,∀i, j ∈ N ,∀t ≥ t0, (4.37f)

xeijt, x
e
ict, qijt ≥ 0, xeijt, x

e
ict ∈ N, ∀i, j ∈ N , ∀e ∈ E , ∀t ≥ t0, (4.37g)

xeijt = xeict = 0,∀e /∈ E ,∀t < t0,∀i, j ∈ N . (4.37h)

The first term in the objective function (4.37a) corresponds to the expected revenue gained by

setting prices ℓ1ijt. The second term assigns a cost to the queue lengths, where wijt is the cost

per person in the queue for OD pair (i, j) at the time period t. The third term is the operational

costs of the trip-making vehicles, and the last term is the operational and the charging costs of
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the charging vehicles. Hence, the objective is to maximize the profits minus the queue penalty.

The state variable seit denotes the number of vehicles at node iwith energy level e, at the be-

ginning of time period t. At the beginning of the planning time t = t0, seit0 is simply the number

of available vehicles at node iwith energy level e. For t > t0, seit denotes the number of vehicles

that will be available at the beginning of time period t, at node i with energy level e. These are

the vehicles that are en route to another node at the time of planning. Hence, (4.37d) is the vehi-

cle balance constraint. The constraints (4.37c) along with the non-negativity constraint (4.37g),

implement the queue length transition qijt = max{0, qijt−1 + θijD(ℓ1ijt−1,∞) −∑e x
e
ijt} as

two linear inequalities. For t = t0, the queue length is modified via (4.37b), where Qij denotes

the number of passengers waiting to be served at the planning time.

The MPC controller using a dynamic pricing scheme for the duopoly can be stated in a

similar way to the monopoly. We exclude it here and refer the reader to the Appendix C.2.10.

We end this subsection by noting that it is possible to implement a model predictive con-

troller with static prices in monopoly simply by adding the constraint ℓ1ijt = ℓmij ,∀t ≥ t0

to (4.37). For the duopoly, we replace D(ℓ1ijt,∞) with D(ℓ1ijt, ℓ
2
ijt) and add the constraint

ℓ1ijt = ℓ2ijt = ℓdij,∀t ≥ t0.

4.3.4 Numerical Study

In this subsection, we discuss the effects of competition and the performances of the real-

time controllers via numerical examples. To solve the optimization problems we used the

Gurobi Optimizer [192].

In our discrete-time system, we chose one period to be equal to ∆t = 5 minutes, which

is equal to the time it takes to deliver one unit of battery energy. We chose operational costs

of βt = $0.2 and βc = $0.1 (by taking the amortized average price of an electric car over 5

years [169] as a reference), maximum willingness to pay ℓmax = $50, and σ = 3/5. We chose
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Figure 4.12: Manhattan divided into n = 20 regions.

a battery capacity of 24kWh, and discretized the battery energy into emax = 6 units, where

one unit of battery energy is 4kWh. Price of electricity per unit of energy (4kWh) ranges from

$0.32 to $1.2[193], and we randomly sampled pi for all locations uniformly from this range.

For the network and demand data, we divided Manhattan into 20 regions as in Figure 4.12.

Using the yellow taxi data from the New York City Taxi and Limousine Commission dataset

[173] for May 09, 2019, Thursday between 15.00-17.00, we extracted the average arrival rates

for rides, average trip durations, and average distances between the regions (we excluded the

rides occurring in the same region). Note that the demand data used is not the data of potential

riders, but the data of realized rides. Although it is not ideal to impose a demand function on

the data of realized rides, this is the best data we could use due to lack of available data on

potential riders. This is a common approach in the literature of pricing schemes in ride-sharing

platforms [186, 194], as the realized rides leaving a location can be seen as a reasonable proxy

for the potential riders at that location.

4.3.4.1 Effects of Competition Under Static Setting

In this study, we analyze the effects of competition using prices for rides, induced demand,

profits, and consumer surplus as metrics. To get the values of the aforementioned metrics in
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Figure 4.13: Best response prices for some rides originating from node 6.

the monopoly, we solved (4.16). For the duopoly, we can not solve (4.21) since the problem

is non-convex. Therefore, we implemented best-response dynamics to see empirically whether

this process would converge to an equilibrium of the duopoly so that we could numerically

compare the monopoly and the duopoly. Although we do not have a theoretical guarantee for

convergence of best response dynamics, we know that only symmetric equilibria exist accord-

ing to Proposition 4.3.4. Fortunately, our experiment converged to a symmetric equilibrium in

a couple of iterations as demonstrated in Figure 4.13.

In Table 4.6, we display the ratios of performance metrics in the monopoly and the symmet-

ric duopoly equilibrium. Moreover, we compute the theoretic upper and lower bounds derived

in Subsection 4.3.2 for σ = 3/5 for comparison. To summarize the table, competition results

in a 20% decrease in the average prices of rides, a 44% increase in the total induced demand, a

43% decrease in the profits of a single firm, and a 100% increase in the consumer surplus.

Impact of σ: The correlation over customers’ preferences is measured by σ, and the effects of

competition depend on the value of σ. To study how σ influences the effects of competition,

we present the ratios of performance metrics in the monopoly and the symmetric duopoly

equilibrium for σ = 0.8 and σ = 1 in Table 4.7.

169



Ride Pricing and Control Policies for Autonomous Urban Mobility Fleets Chapter 4

Metrics Empirical Theoretic LB Theoretic UB
ℓdavg/ℓ

m
avg 0.80 0.67 1

Dd/Dm 1.44 1.25 2.26
P d/Pm 0.57 0.39 0.85

CSd/CSm 2.00 1.46 5.89

Table 4.6: Ratios of average prices, induced demand, profits, and consumer surplus in the
monopoly and the symmetric duopoly equilibrium for σ = 3/5.

Metrics
Empirical Theoretic LB Theoretic UB

σ = 0.8 σ = 1 σ = 0.8 σ = 1 σ = 0.8 σ = 1
ℓdavg/ℓ

m
avg 0.42 0.11 0.29 0 1 1

Dd/Dm 1.73 2.04 1.11 1 2.55 4
P d/Pm 0.32 0 0.19 0 0.74 0

CSd/CSm 2.95 4.18 1.22 1 9.22 16

Table 4.7: Ratios of average prices, induced demand, profits, and consumer surplus in the
monopoly and the symmetric duopoly equilibrium for σ = 0.8 and σ = 1.

The results in Tables 4.6 and 4.7 indicate that the higher the σ, the stronger the competition

between the firms. A larger σ indicates higher correlation over customers’ preferences, which

means that the customers care less about the identity of the firm and more about lower prices

when buying a ride (σ = 1 means they buy from the firm that offers the lower price). Hence,

a stronger competition requires the firms to drop their prices further, which in turn decreases

their profits more. This is in favor of the customers, since lower prices induce more demand

while generating higher consumer surplus.

4.3.4.2 Real-Time Control

In this study, we demonstrate the performances of the model predictive controllers utilizing

static and dynamic pricing schemes using profits (minus the queue penalty) and the average

wait time of the customers as metrics. To quantify the queue penalty, we set queue penalty per

person to be wijt = $4 (by doubling the average hourly wage of $24 in the U.S.[171]).
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We computed the instantaneous profits in one period as:

Profits = Revenue− (Operational + Charging Costs), (4.38)

the queue penalty in one period as:

Queue Penalty = w × Outstanding Customers, (4.39)

and used the objective value of (4.16) as an upper bound on the average profits for comparison.

We define

Normalized Queue Length :=
Outstanding Customers

Induced Demand
(4.40)

and compute the instantaneous average wait time of customers in one period as:

Avg. Wait Time = Normalized Queue Length×∆t. (4.41)

We implemented the MPC with T = 10×∆t as the planning horizon, and ran the environ-

ment for 50×∆t.

Monopoly

We plot the instantaneous average wait time for MPC with static prices (MPC-SP) and dynamic

prices (MPC-DP) in Figure 4.14, and summarize the results in Table 4.8.

Metrics MPC-SP MPC-DP % Impr.

Mean Profits-Queue Penalty ($) 11700.86 11778.13
0.66%

% of static 98.36% 99.02%
Mean Avg. Wait Time (sec) 6.91 5.64 18.38%
Var. Avg. Wait Time (sec) 32.58 20.95 35.7%

Table 4.8: MPC results in the monopoly. Mean and variance are computed over time. The
static objective value is 11894.9.
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Figure 4.14: MPC results. We plot the normalized queue length for the MPC with static prices
(a)/MPC with dynamic prices (b).

We observe that both controllers are able to keep the queue lengths very short (around 2%

of the induced demand), and still generate substantial amount of profits that is close to the

static objective. In particular, MPC-SP generates 98.36% and MPC-DP generates 99.02% of

the static profits, including the queue penalty. Although the marginal benefits of using dynamic

pricing might seem low, a 0.66% increase in average profits would make a considerable differ-

ence in the long run (e.g., from Table 4.8, a $77 increase in profits per period adds up to more

than an increase of $900 per hour). Moreover, we observe that the mean of average wait time

for MPC-SP is 6.91 seconds, while that of MPC-DP is 5.64 seconds which is an improvement

of 18.38%. Lastly, a dynamic pricing scheme reduces the variance of the average wait time by

35.7%, which indicates a more robust system with predictable wait times.

We furthermore generated integer actions by randomizing according to the flows of the
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Figure 4.15: Monopoly Static Policy Queues

static solution and implemented the static policy in the real environment to compare its per-

formance. In Figure 4.15 we plot the average wait time using the static policy. Although it

provides stability of the queues, it results in bad wait times with a mean of 36.9 minutes, which

is more than 300 times longer than both MPC-SP and MPC-DP.

Duopoly

We computed the mean value of the metrics over both firms to get the performances of the

controllers. The results are summarized in Table 4.9.

Metrics MPC-SP MPC-DP % Impr.

Mean Profits-Queue Penalty ($) 6670.89 6729.2
0.87%

% of static 98.56% 99.42%
Mean Avg. Wait Time (sec) 7.27 5.01 31.08%
Var. Avg. Wait Time (sec) 44.68 17.92 59.89%

Table 4.9: MPC results in the duopoly. Mean and variance are computed over time. The static
objective value is 6768.2.

Similar to the monopoly, both controllers are able to keep the queues short while generating

profits close to the static objective, with dynamic pricing scheme increasing the efficiency.
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4.3.5 Conclusion

In this section, we studied the impacts of competition on electric AMoD systems by com-

paring the monopoly and the duopoly in equilibrium. By formalizing the optimal strategies

of profit-maximizing platform operators, we show that the identical competitors can only be

in a symmetric equilibrium. In state of a symmetric duopoly equilibrium, the prices for rides

and the profits of the firms are always less than those in the monopolistic setting, whereas

the aggregate demand served and the consumer surplus are always higher. The closed-form

universal bounds we provide quantify the amount of increase/reduction on the said metrics.

These bounds depend heavily on the correlation between customers’ preferences and there-

fore the strength of the competition. The numerical studies using network and demand data

of Manhattan indicate that stronger competition boosts the amount of increase/reduction on

the metrics. Lastly, we experimentally demonstrate that it is possible to implement a real-time

control policy for fleet management using model predictive control, and show that a real-time

pricing policy further improves the performance.
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Conclusions

5.1 Review

In this thesis, we have explored a multitude of challenges encompassed within the overarch-

ing domain of optimization in Human-Cyber-Physical Systems, with a keen focus on elevating

robustness, safety, and efficiency.

Namely in Chapter 2, we showcased the potential shortcomings of vanilla distributed opti-

mization algorithms in the presence of malicious agents and proposed novel robust distributed

optimization algorithms based on robust estimation techniques, with applications on distributed

resource allocation and distributed learning. In Chapter 3, we introduced a novel algorithm for

solving resource allocation problems over networks through pricing only and without any two-

way communications with agents as common in distributed optimization methods. The prices

produced by our algorithm ensure that the induced demand satisfies the constraints of the sys-

tem during the optimization process, which promotes safety. In Chapter 4 we developed a

real-time control policy based on deep reinforcement learning for operating an AMoD fleet

of EVs as well as pricing for rides. Additionally, we provided theoretical studies quantifying

the impacts of competition on ride prices, profits of the platform operators, aggregate demand
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served, and consumer surplus by comparing the monopoly and the duopoly.

5.2 Future Directions

The high-level methodology for the research presented in this thesis is to 1) identify the

real-world challenge, 2) characterize a mathematical model that captures the real-world chal-

lenge accurately, and 3) develop a solution that addresses the challenge using performance

metrics quantifiable by the mathematical model. Inevitably, the mathematical modeling of

real-world problems through assumptions leads to some level of abstraction. Furthermore,

while we were interested in certain performance metrics in this thesis (e.g., convergence rate,

safety), other researchers might put importance on other performance metrics (e.g., complexity

of the algorithm). Accordingly, here we discuss some future research directions that would take

the work presented in this thesis to the next level by addressing the potential shortcomings.

5.2.1 Improving Memory & Time Complexity of Robust Distributed Op-

timization Algorithms

One of the novel ideas used in Chapter 2 to improve the robustness of the distributed opti-

mization algorithms is to exploit the temporal dynamics of user behavior to detect anomalies

through robust statistics. This necessitates the storage of a large number of high-dimensional

vectors for the robust mean estimator, which can be seen as a trade-off between memory and

robustness. It would be an interesting future direction to develop a robust mean estimator that

can save on memory costs. Another novel idea for robustness in Chapter 2 is the normaliza-

tion of the gradient and it is well known that normalized gradient-based optimization benefits

significantly from using momentum [80], which reduces the time complexity. Given this, an-

other potential future direction is to study whether momentum can be incorporated into the
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algorithms presented in Chapter 2 while preserving their robustness properties. Although this

thesis focused on whether robustness can be achieved without compromising efficiency too

much, this trade-off could be addressed by improving the memory and time complexities of

the presented algorithms.

5.2.2 Safe Pricing for Resource Allocation in Non-stationary Environ-

ments

Chapter 3 tackles the resource allocation problem in settings where users’ resource de-

mand can only be impacted through prices using a commonly adopted mathematical model of

Network Utility Maximization problems. Although this model captures the essence of the real-

world problem, it does not take into account the temporally changing behavior of the users and

the system overall. In particular, the user utility for the resources as well as the safety-critical

constraints of the system can change over time, which would mathematically be captured us-

ing time-dependent utility and constraint functions, e.g., [195]. Safe pricing algorithms for

resource allocation in such non-stationary environments would reduce the level of abstraction

and have a wider range of real-world applications.

5.2.3 Global Control Policies for Electric AMoD Systems

The studies in Chapter 4 demonstrated that it is possible to develop a real-time control and

pricing policy for electric AMoD systems using reinforcement learning. Over the past few

years, scholars have studied the fleet management problem for fleets of autonomous vehicles

using various reinforcement learning approaches. One example is [196], which reveals that re-

inforcement learning agents can, with the aid of graph neural networks, attain behavior policies

marked by significantly enhanced transferability, generalizability, and scalability. This success

is owed to graph neural networks’ ability to exploit the connectivity encoded by the transporta-
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tion network. As such, the utilization of graph neural networks to develop global a joint pricing

and fleet management policy for electric AMoD systems would be a promising future direction

of research.
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Supplements to Chapter 2

A.1 Proofs for Results in Section 2.2

A.1.1 Proof of Lemma 2.2.1

Observe that in both (2.9) and (2.12), the decision variables of the optimization problems

are {θi}i∈H. Hence, it suffices to show that any given set of {θi}i∈H satisfying constraints of

(2.12) also satisfies constraints of (2.9). Let θA := 1
|A|
∑

i∈A θi. Since gt is L-smooth, the

following holds:

max
θj∈Cj ,j∈A

gt
(

1
N

∑N
i=1 θi

)
= max

θj∈Cj ,j∈A
gt
( |H|

N
θH + |A|

N
θA)

= max
θj∈Cj ,j∈A

gt
(
(1− α1)θH + (α1 − |A|

N
)θH + |A|

N
θA
)

≤ max
θj∈Cj ,j∈A

(
gt
(
(1− α1)θH

)
+
〈
θ̃,∇gt

(
(1− α1)θH

)〉
+ L

2
∥θ̃∥2

)
,

(A.1)

where we defined θ̃ := (α1 − |A|
N
)θH + |A|

N
θA. Observe that

∥θ̃∥ ≤ (α1 − |A|
N
)∥θH∥+ |A|

N
∥θA∥ ≤ α1R. (A.2)
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Furthermore, since the gradient of gt is uniformly bounded by B and α2
1 ≤ α1, (A.1) can be

upper bounded by:

gt
(
(1− α1)θH

)
+ α1

(
RB + 1

2
LR2

)
(A.3)

Hence, we have shown that for any given set of {θi}i∈H, the following holds:

max
θj∈Cj ,j∈A

gt
(

1
N

∑N
i=1 θi

)
≤ gt

(
(1− α1)θH

)
+ α1

(
RB + 1

2
LR2

)
. (A.4)

As such defining ct := α1

(
RB + 1

2
LR2

)
, it can be seen that if a set of {θi}i∈H satisfies

gt
(
(1− α1)θH

)
+ ct ≤ 0, t = 1, ..., T, (A.5)

the same set of {θi}i∈H satisfies the desired constraint (2.9).

A.1.2 Proof of Proposition 2.2.2

Fix any j ∈ [d]. The assumption implies that for all i ∈ H, one has:

|[xi − xH]j| ≤ r. (A.6)

We observe that |H| ≥ (1−α1)N . Applying [40, Lemma 1] shows that the median estimator1

satisfies

|[xmed − xH]j| ≤ (1− α1)

√
1

1− 2α1

r. (A.7)

The above implies that for all i ∈ H, we have

|[xi − xmed]j| ≤

1 +

√
(1− α1)2

1− 2α1

 r. (A.8)

1At each coordinate, the median is the geometric median estimator of one dimension in [40].
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This implies that rj ≤
(
1 +

√
(1−α1)2

1−2α1

)
r, since |H| ≥ (1 − α1)N . We then bound the

performance of x̂H:

(1− α1)N [x̂H]j =
∑
i∈Nj

[xi]j =
∑
i∈H

[xi]j −
∑

i∈H\Nj

[xi]j +
∑

i∈A∩Nj

[xi]j, (A.9)

thus

(1− α1)N [x̂H − xH]j = −
∑

i∈H\Nj

[xi − xH]j +
∑

i∈A∩Nj

[xi − xH]j

= −
∑

i∈H\Nj

[xi − xH]j +
∑

i∈A∩Nj

[xi − xmed + xmed − xH]j

(A.10)

Notice that |A ∩ Nj| ≤ α1N and thus |H \ Nj| ≤ α1N . Gathering terms shows

|[x̂− xH]j| ≤
2α1N

(1− α1)N

1 +

√
(1− α1)2

1− 2α1

 r. (A.11)

The above holds for all j ∈ [d]. Applying the norm equivalence shows the desired bound.

A.1.3 Proof of Lemma 2.2.2

Let
[
e
(k)
θ

]
i

denote the ith block of e
(k)
θ , and

[
ĝ
(k)
θ

]
i

denote the ith block of ĝ
(k)
θ . From

Equation (2.18a): [
ĝ
(k)
θ

]
i
=

1

N

(
ĝ
(k)
H +∇θifi(θ

(k)
i ) + υθ

(k)
i

)
. (A.12)

Furthermore, we replace ĝ
(k)
H from Algorithm 2 Step 3(c):

[
ĝ
(k)
θ

]
i
=

1

N

( T∑
t=1

λ
(k)
t ∇θgt((1− α1)θ̂

(k)
H ) +∇θifi(θ

(k)
i ) + υθ

(k)
i

)
. (A.13)
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The perturbation
[
e
(k)
θ

]
i
=
[
ĝ
(k)
θ

]
i
−∇θiLυ({θi}i∈H;λ;H) is given by the difference between

(A.13) and (2.14a):

[
e
(k)
θ

]
i
=

1

N

T∑
t=1

λ
(k)
t

(
∇θgt((1− α1)θ̂

(k)
H )− (1− α1)N

|H| ∇θgt((1− α1)θ̄
(k)
H )
)
. (A.14)

By adding and subtracting 1
N

(∑T
t=1 λ

(k)
t ∇θgt((1− α1)θ̄

(k)
H

)
, the above expression becomes:

[
e
(k)
θ

]
i
=

1

N

T∑
t=1

λ
(k)
t

(
∇θgt

(
(1− α1)θ̂

(k)
H
)
−∇θgt

(
(1− α1)θ

(k)

H
)

+
|H| − (1− α1)N

|H| ∇θgt
(
(1− α1)θ

(k)

H
)) (A.15)

Similarly, comparing (2.19b) with (2.18b) and (2.14b), we identify that:

[
e
(k)
λ

]
t
= gt

(
(1− α1)θ̂

(k)
H
)
− gt

(
(1− α1)θ

(k)

H
)
. (A.16)

Using Assumption 2.2.1 and the said assumptions, we immediately see that

∥
[
e
(k)
θ

]
i
∥ ≤(1− α1)

λLT

N
∥θ̂(k)

H − θ
(k)

H ∥+
|H| − (1− α1)N

|H|
λBT

N
(A.17)

which then implies (2.20). Assumption 2.2.1 implies that gt is B-Lipschitz continuous, there-

fore

|
[
e
(k)
λ

]
t
| ≤ B(1− α1)∥θ̂(k)

H − θ
(k)

H ∥, (A.18)

which implies (2.21).

A.1.4 Proof of Theorem 2.2.1

Based on Lemma 2.2.2, our idea is to perform a perturbation analysis on the PDA algo-

rithm. Without loss of generality, we assume N = 1 and denote θ = θ1. To simplify notations
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we define υ′ := (1 − α1)υ. We also drop the subscript, denote the modified and regular-

ized Lagrangian function as L = Lυ. Furthermore, we denote the saddle point to (P′
υ) as

z⋆ = (θ⋆,λ⋆).

Using the fact that θ⋆ = PC(θ
⋆) = PC

(
θ⋆− γ∇θL(θ⋆,λ⋆)

)
, we observe that in the primal

update:

∥θ(k+1) − θ⋆∥2
(a)

≤∥θ(k) − θ⋆∥2 − 2γ⟨ĝ(k)
θ −∇θL(θ⋆,λ⋆),θ(k) − θ⋆⟩

+ γ2∥ĝ(k)
θ −∇θL(θ⋆,λ⋆)∥2 (A.19)

where (a) is due to the projection inequality ∥PC(x− y)∥ ≤ ∥x− y∥. Furthermore, using the

Young’s inequality, for any c0, c1 > 0, we have

∥θ(k+1) − θ⋆∥2 ≤ ∥θ(k) − θ⋆∥2 − 2γ⟨∇θL(θ(k),λ(k))−∇θL(θ⋆,λ⋆),θ(k) − θ⋆⟩

+γ2(1 + c0)∥∇θL(θ(k),λ(k))−∇θL(θ⋆,λ⋆)∥2−2γ⟨e(k)
θ ,θ(k) − θ⋆⟩+ γ2

(
1 +

1

c0

)
∥e(k)

θ ∥2

≤ (1 + 2c1γ)∥θ(k) − θ⋆∥2 − 2γ⟨∇θL(θ(k),λ(k))−∇θL(θ⋆,λ⋆),θ(k) − θ⋆⟩

+ γ2(1 + c0)∥∇θL(θ(k),λ(k))−∇θL(θ⋆,λ⋆)∥2 +
(2γ
c1

+ γ2 +
γ2

c0

)
∥e(k)

θ ∥2. (A.20)

Similarly, in the dual update we get,

∥λ(k+1) − λ⋆∥2 ≤ ∥λ(k) − λ⋆∥2 + γ2∥ĝ(k)
λ −∇λL(θ⋆,λ⋆)∥2

+ 2γ⟨ĝ(k)
λ −∇λL(θ⋆,λ⋆),λ(k) − λ⋆⟩

≤ (1 + 2c1γ)∥λ(k) − λ⋆∥2 + 2γ⟨∇λL(θ(k),λ(k))−∇λL(θ⋆,λ⋆),λ(k) − λ⋆⟩

+ γ2(1 + c0)∥∇λL(θ(k),λ(k))−∇λL(θ⋆,λ⋆)∥2 +
(2γ
c1

+ γ2 +
γ2

c0

)
∥e(k)

λ ∥2. (A.21)
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Summing up the two inequalities gives:

∥z(k+1) − z⋆∥2 ≤ (1 + 2c1γ)∥z(k) − z⋆∥2 +
(2γ
c1

+ γ2 +
γ2

c0

)
Ek

− 2γ⟨Φ(z(k))−Φ(z⋆), z(k) − z⋆⟩+ γ2(1 + c0)∥Φ(z(k))−Φ(z⋆)∥2
(a)

≤
(
1 + 2γ(c1 − υ′) + γ2(1 + c0)L

2
Φ

)
∥z(k) − z⋆∥2 +

(2γ
c1

+ γ2 +
γ2

c0

)
Ek, (A.22)

where (a) uses the strong monotonicity and smoothness of the map Φ, cf. [24, Lemma 3.4].

Setting c1 = υ′/2 yields

∥z(k+1) − z⋆∥2 ≤
(
1− γυ′ + γ2(1 + c0)L

2
Φ

)
∥z(k) − z⋆∥2 +

(4γ
υ′

+ γ2 +
γ2

c0

)
Ek. (A.23)

Observe that we can choose γ such that 1 − γυ′ + γ2(1 + c0)L
2
Φ < 1. Moreover, the above

inequality implies that ∥z(k) − z⋆∥2 evaluates to

∥z(k+1) − z⋆∥2 ≤ (1− γυ′ + γ2(1 + c0)L
2
Φ)

k∥z(0) − z⋆∥2

+
k∑

ℓ=1

(1− γυ′ + γ2(1 + c0)L
2
Φ)

k−ℓ
(4γ
υ′

+ γ2 +
γ2

c0

)
Eℓ.

(A.24)

If Ek ≤ E for all k, then z(k) converges to a neighborhood of z⋆ of radius

lim sup
k→∞

∥z(k) − z⋆∥2 ≤
4γ
υ′ + γ2 + γ2

c0

γυ′ − γ2(1 + c0)L2
Φ

E. (A.25)

Setting c0 = 1 concludes the proof.
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A.1.5 Proof of Lemma 2.2.3

Comparing the equations in (2.27) with (2.26a) and (2.26b), we identify that:

[
e
(k)
θ

]
j
=

1

N

T∑
t=1

λ
(k)
t

(
∇θgt

(
1
N

∑N
i=1 θ̂

(k)
i

)
−∇θgt

(
1
N

∑N
i=1 θ

(k)
i

))
, (A.26)

[
e
(k)
λ

]
t
= gt

(
1
N

∑N
i=1 θ̂

(k)
i

)
− gt

(
1
N

∑N
i=1 θ

(k)
i

)
, (A.27)

where
[
e
(k)
θ

]
j

denotes the jth block of e(k)
θ . Using Assumption 2.2.1, we immediately see that:

∥
[
e
(k)
θ

]
j
∥ ≤ λLT

N
∥ 1
N

N∑
i=1

(θ
(k)
i − θ̂

(k)
i )∥

≤ λLT

N2

N∑
i=1

∥θ(k)
i − θ̂

(k)
i ∥,

(A.28)

which then implies (2.28a). Assumption 2.2.1 implies that gt is B-Lipschitz continuous, there-

fore

|
[
e
(k)
λ

]
t
| ≤ B∥ 1

N

N∑
i=1

(θ
(k)
i − θ̂

(k)
i )∥

≤ B

N

N∑
i=1

∥θ(k)
i − θ̂

(k)
i ∥,

(A.29)

which implies (2.28b).

A.1.6 Proof of Lemma 2.2.4

Observe that the gradient perturbation in both dual and primal variables is upper bounded

by some constant times
∑N

i=1 ∥θ
(k)
i − θ̂

(k)
i ∥ in (2.28). Thus, we would like to upper bound this

term. Let H(k)
i be the set of (1 − α2)m trustworthy parameters of agent i out of the last m

parameters at iteration k, i.e., (1 − α2)m trustworthy parameters from set {r(k−ℓ)
i }m−1

ℓ=0 . Note

that if a parameter is trustworthy, then r
(k−ℓ)
i = θ

(k−ℓ)
i . Hence we define the mean of the
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iterates in setH(k)
i as:

θ
(k)
i :=

1

(1− α2)m

∑
θ
(k−ℓ)
i ∈H(k)

i

θ
(k−ℓ)
i . (A.30)

Using triangular inequality, we can write:

∥θ(k)
i − θ̂

(k)
i ∥ = ∥θ(k)

i − θ
(k)
i + θ

(k)
i − θ̂

(k)
i ∥ ≤ ∥θ(k)

i − θ
(k)
i ∥+ ∥θ(k)

i − θ̂
(k)
i ∥. (A.31)

Let θ̂(k)
i be the estimated mean using median-based estimator. Using norm equivalence:

max
θ
(k−ℓ)
i ∈H(k)

i

∥θ(k−ℓ)
i − θ

(k)
i ∥∞ ≤ max

θ
(k−ℓ)
i ∈H(k)

i

∥θ(k−ℓ)
i − θ

(k)
i ∥

≤ max
0≤ℓ≤m−1

∥θ(k−ℓ)
i − θ

(k)
i ∥.

(A.32)

Thus, under Assumption 2.2.2, Proposition 2.2.2 suggests:

∥θ(k)
i − θ̂

(k)
i ∥ ≤ Cα max

0≤ℓ≤m−1
∥θ(k−ℓ)

i − θ
(k)
i ∥, (A.33)

where Cα = 2α2

1−α2

(
1 +

√
(1−α2)2

1−2α2

)√
d.

Let ℓ⋆ = argmax
0≤ℓ≤m−1

∥θ(k−ℓ)
i − θ

(k)
i ∥. Then:

max
0≤ℓ≤m−1

∥θ(k−ℓ)
i − θ

(k)
i ∥ = ∥θ(k−ℓ⋆)

i − θ
(k)
i ∥

= ∥θ(k−ℓ⋆)
i − θ

(k−ℓ⋆+1)
i + θ

(k−ℓ⋆+1)
i − . . .− θ

(k−1)
i + θ

(k+1)
i − θ

(k)
i + θ

(k)
i − θ

(k)
i ∥

≤ ∥θ(k)
i − θ

(k)
i ∥+

k−1∑
j=k−ℓ⋆

∥θ(j)
i − θ

(j+1)
i ∥

≤ ∥θ(k)
i − θ

(k)
i ∥+

k−1∑
j=k−ℓ⋆

∥γ[ĝ(j)
θ ]i∥

≤ ∥θ(k)
i − θ

(k)
i ∥+ γ

k−1∑
j=k−m+1

∥[ĝ(j)
θ ]i∥,

(A.34)
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where [ĝ
(j)
θ ]i denotes the ith block of ĝ(j)

θ . Using equations (A.33) and (A.34), we can rewrite

(A.31):

∥θ(k)
i − θ̂

(k)
i ∥ ≤(1 + Cα)∥θ(k)

i − θ
(k)
i ∥+ γCα

k−1∑
j=k−m+1

∥[ĝ(j)
θ ]i∥. (A.35)

Next step is to bound the ∥θ(k)
i − θ

(k)
i ∥ term:

∥θ(k)
i − θ

(k)
i ∥ = ∥θ(k)

i −
1

(1− α2)m

∑
θ
(k−ℓ)
i ∈H(k)

i

θ
(k−ℓ)
i ∥

≤ 1

(1− α2)m

∑
θ
(k−ℓ)
i ∈H(k)

i

∥θ(k)
i − θ

(k−ℓ)
i ∥

≤ 1

(1− α2)m

m−1∑
ℓ=0

∥θ(k)
i − θ

(k−ℓ)
i ∥

=
1

(1− α2)m

m−1∑
ℓ=0

∥θ(k)
i − θ

(k−1)
i + θ

(k−1)
i − . . .− θ

(k−ℓ+1)
i + θ

(k−ℓ+1)
i − θ

(k−ℓ)
i ∥

≤ 1

(1− α2)m

m−1∑
ℓ=0

k−1∑
j=k−ℓ

∥θ(j+1)
i − θ

(j)
i ∥

≤ m

(1− α2)m

k−1∑
j=k−m+1

∥θ(j+1)
i − θ

(j)
i ∥

≤ 1

1− α2

γ
k−1∑

j=k−m+1

∥[ĝ(j)
θ ]i∥.

(A.36)

Plugging (A.36) into (A.35):

∥θ(k)
i − θ̂

(k)
i ∥ ≤

(
1 + Cα

1− α2

+ Cα

)
γ

k−1∑
j=k−m+1

∥[ĝ(j)
θ ]i∥. (A.37)

For brevity of notation, let
(

1+Cα

1−α2
+ Cα

)
= Cα and let∇θL(k)

υ := ∇θLυ(θ
(k);λ(k)). Summing

up (A.37) for all agents and using norm equivalence:
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N∑
i=1

∥θ(k)
i − θ̂

(k)
i ∥ ≤ Cα

√
Nγ

k−1∑
j=k−m+1

∥ĝ(j)
θ ∥

(2.27a)
= Cα

√
Nγ

k−1∑
j=k−m+1

∥∇θL(j)
υ + e

(j)
θ ∥

≤ Cα

√
Nγ

k−1∑
j=k−m+1

∥∇θL(j)
υ ∥+ ∥e(j)

θ ∥.

(A.38)

Using (2.28a):

∥e(j)
θ ∥ ≤

λLT

N

N∑
i=1

∥θ(j)
i − θ̂

(j)
i ∥

=
λLT

N

N∑
i=1

∥θ(j)
i − θ⋆

i + θ⋆
i − θ̂

(j)
i ∥

≤ λLT

N

N∑
i=1

∥θ(j)
i − θ⋆

i ∥+ ∥θ̂(j)
i − θ⋆

i ∥

(∗)
≤ (1 +

√
d)
λLT

N

N∑
i=1

max
0≤ℓi≤m−1

∥θ(j−ℓi)
i − θ⋆

i ∥

≤ (1 +
√
d)λLT max

i
0≤ℓi≤m−1

∥θ(j−ℓi)
i − θ⋆

i ∥

≤ (1 +
√
d)λLT max

0≤ℓ≤m−1
∥z(j−ℓ) − z⋆∥,

(A.39)

where (∗) is obtained by:

∥θ̂(j)
i − θ⋆

i ∥ ≤
√
d∥θ̂(j)

i − θ⋆
i ∥∞

≤
√
d max
0≤ℓ≤m−1

∥θ(j−ℓ)
i − θ⋆

i ∥∞

≤
√
d max
0≤ℓ≤m−1

∥θ(j−ℓ)
i − θ⋆

i ∥,

(A.40)

and ∥θ(j)
i − θ⋆

i ∥ ≤ max
0≤ℓ≤m−1

∥θ(j−ℓ)
i − θ⋆

i ∥.
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Furthermore, by using the LΦ-Lipschitz property of Φ(z):

∥∇θL(j)
υ ∥ ≤ ∥Φ(z(j))∥ = ∥Φ(z(j))−Φ(z⋆)∥

≤ 1

LΦ

∥z(j) − z⋆∥

≤ 1

LΦ

max
0≤ℓ≤m−1

∥z(j−ℓ) − z⋆∥

(A.41)

We can rewrite (A.38) using equations (A.39) and (A.41):

N∑
i=1

∥θ(k)
i − θ̂

(k)
i ∥ ≤ Cα

√
Nγ

k−1∑
j=k−m+1

∥∇θL(j)
υ ∥+ ∥e(j)

θ ∥

≤ Cα

√
NC0γ

k−1∑
j=k−m+1

max
0≤ℓ≤m−1

∥z(j−ℓ) − z⋆∥

≤ Cα

√
NC0(m− 1)γ max

1≤ℓ≤2(m−1)
∥z(k−ℓ) − z⋆∥,

(A.42)

where C0 =
1
LΦ

+ (1 +
√
d)λLT . Finally, using (2.28) and letting C1 =

(
λLT
N

)2
+
(
BT
N

)2:

Ek = ∥e(k)
θ ∥2 + ∥e

(k)
λ ∥2 ≤ C1

(
N∑
i=1

∥θ(k)
i − θ̂

(k)
i ∥
)2

≤ C1(Cα

√
NC0(m− 1))2γ2 max

1≤ℓ≤2(m−1)
∥z(k−ℓ) − z⋆∥2

≤ C1(Cα

√
NC0(m− 1))2γ2 max

0≤ℓ≤2(m−1)
∥z(k−ℓ) − z⋆∥2

≤ Cγ2 max
0≤ℓ≤2(m−1)

∥z(k−ℓ) − z⋆∥2,

(A.43)

where C =
(

T 2(λ
2
L2+B2)
N

)
×
(

1
LΦ

+ (1 +
√
d)λLT

)2
×
(

1+Cα

1−α2
+ Cα

)2
× (m− 1)2.
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A.1.7 Proof of Theorem 2.2.2

Based on Lemma 2.2.3, our idea is to perform a perturbation analysis on the PDA al-

gorithm. The first part of the proof is analogous to that of Theorem 2.2.1, and then upper

bounding Ek by Lemma 2.2.4. This yields:

∥z(k+1) − z⋆∥ ≤(1− γυ + 2γ2L2
Φ)∥z(k) − z⋆∥2

+

(
4γ

υ
+ 2γ2

)
γ2C max

0≤ℓ≤2(m−1)
∥z(k−ℓ) − z⋆∥2.

(A.44)

For the second part of the proof, we use the following Lemma:

Lemma A.1.1 [197, Lemma 3] Let {V (t)} be a sequence of real numbers satisfying

V (t+ 1) ≤ pV (t) + q max
t−τ(t)≤s≤t

V (s) + r, t ∈ N0,

for some nonnegative constants p,q, and r. If p+ q < 1 and

0 ≤ τ(t) ≤ τmax, t ∈ N0,

then

V (t) ≤ ρtV (0) + ϵ, t ∈ N0,

where ρ = (p+ q)
1

1+τmax and ϵ = r/(1− p− q).

We apply Lemma A.1.1 on (A.44) for t = k ≥ 2(m − 1), V (t) = V (k) = ∥z(k) − z⋆∥2,

p = 1− γυ + 2γ2L2
Φ, q =

(
4γ
υ
+ 2γ2

)
γ2C, r = 0, and τmax = 2(m− 1) to get:

V (k) ≤ ρk−2(m−1)V (2(m− 1)), k ≥ 2(m− 1), (A.45)
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where ρ = (1− γυ + 2γ2L2
Φ + 4Cγ3

υ
+ 2Cγ4)

1
1+2(m−1) . The condition p+ q < 1 is met when:

f(γ) = υ − 2γL2
Φ −

4Cγ2

υ
− 2Cγ3 > 0

Observe that f(γ) is a continuous function in γ, and f(0) = υ > 0. Hence, there exists a small

γ > 0 such that f(γ) > 0, which satisfies the required condition. Taking the limit as k goes to

infinity in (A.45):

lim
k→∞

V (k) ≤ lim
k→∞

ρk−2(m−1)V (2(m− 1)) = 0, (A.46)

since ρ < 1. Finally, since V (k) ≥ 0, we conclude that lim
k→∞

V (k) = lim
k→∞
∥z(k) − z⋆∥2 = 0.

A.1.8 Proof of Bounded Dual Variables

The proof is the same for statements in both Lemma 2.2.2 and Lemma 2.2.3. The update

rule given by (2.18b):

λ
(k+1)
t =

[
λ
(k)
t + γ

(
gt((1− α1)θ̂

(k)
H )− υλ(k)t

)]
+
. (A.47)

The update rule given by (2.26b):

λ
(k+1)
t =

[
λ
(k)
t + γ

(
gt(θ̂

(k))− υλ(k)t

)]
+
. (A.48)

Let gt(·) ≤M and 0 ≤ λ
(k)
t ≤ M

υ
. We can upper bound both (A.47) and (A.48) as:

λ
(k+1)
t ≤ (1− γυ)λ(k)t + γM ≤ M

υ
. (A.49)
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Hence, one can set λ(0)t ≤ M
υ

to guarantee assumption. Anyhow if M
υ
≤ λ

(k)
t :

λ
(k+1)
t ≤ (1− γυ)λ(k)t + γM ≤ λ

(k)
t . (A.50)

Thus, if λ(0)t ≤ M
υ

then λ = M
υ

. If λ(0)t ≥ M
υ

then λ = λ
(0)
t . This guarantees the assumption.

A.2 Proofs for Results in Section 2.3

A.2.1 Proof of Theorem 2.3.1

The proof will use the following theorem in [92] as an auxiliary result, which offers a con-

venient bound for the expected value of the maximum of finitely many exponentially integrable

random variables.

Theorem A.2.1 [92, Theorem 2.5] Let Z1, · · · , ZN be real-valued random variables such that

for every λ ∈ (0, a) and i = 1, . . . , N , the logarithm of the moment generating function of Zi

satisfies E[eλZi ] ≤ ϕ(λ) where ϕ is a convex and continuously differentiable function on [0, a)

with 0 < a ≤ ∞ such that ϕ(0) = ϕ′(0) = 0. Then

E[ max
i=1,...,N

Zi] ≤ inf
λ∈(0,a)

[
logN + ϕ(λ)

λ

]
. (A.51)

Using the update rule, we write

∥xt+1 − x⋆∥2 = ∥ΠX{xt − γ ˆ̂gt/∥ˆ̂gt∥} − x⋆∥2 ≤ ∥xt − x⋆ − γ ˆ̂gt/∥ˆ̂gt∥∥2 (A.52)

= ∥xt − x⋆∥2 − 2γ⟨ˆ̂gt/∥ˆ̂gt∥, xt − x⋆⟩+ γ2 (A.53)

= ∥xt − x⋆∥2 − 2γ(1− Zt)⟨
ˆ̂gZt=0
t

∥ˆ̂gZt=0
t ∥

, xt − x⋆⟩ − 2γZt⟨
ˆ̂gZt=1
t

∥ˆ̂gZt=1
t ∥

, xt − x⋆⟩+ γ2 (A.54)
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≤ ∥xt − x⋆∥2 − 2γ(1− Zt)⟨
∇F (xt)
∥∇F (xt)∥

, xt − x⋆⟩

− 2γ(1− Zt)⟨
ˆ̂gZt=0
t

∥ˆ̂gZt=0
t ∥

− ∇F (xt)
∥∇F (xt)∥

, xt − x⋆⟩+ 2γZt∥xt − x⋆∥+ γ2
(A.55)

≤ ∥xt − x⋆∥2 − 2γ(1− Zt)
µ

L
∥xt − x⋆∥

− 2γ(1− Zt)⟨
ˆ̂gZt=0
t

∥ˆ̂gZt=0
t ∥

− ∇F (xt)
∥∇F (xt)∥

, xt − x⋆⟩+ 2γZt∥xt − x⋆∥+ γ2
(A.56)

≤ ∥xt − x⋆∥2 −
2γ

κ
(1− Zt(1 + κ))∥xt − x⋆∥+ 2γ∥et∥∥xt − x⋆∥+ γ2, (A.57)

where

et =
∇F (xt)
∥∇F (xt)∥

−
ˆ̂gZt=0
t

∥ˆ̂gZt=0
t ∥

(A.58)

In case of the event Zt = 0, we know that there are at least (1−α2)N agents for which Yi,t = 0.

Therefore, we define the following sets:

• Define T t as the set of (1 − α2)N agents with smallest indices i ∈ [N ] for which Yi,t = 0,

i.e.,

T t = {i|i ∈ [N ], Yi,t = 0,
∑
i

1 = (1− α2)N} (A.59)

such that
∑

i∈T t i is minimized.

• For all agents i ∈ T t, define T t
i as the set of (1−α1)m smallest time indices τ ∈ [t−m+1, t]

for which Wi,τ = 0, i.e.,

T t
i = {τ |τ ∈ [t−m+ 1, t],Wi,τ = 0,

∑
τ

1 = (1− α1)m} (A.60)

such that
∑

τ∈T t
i
τ is minimized.

Using the above sets, the following Lemma, whose proof can be found in Appendix A.2.2,

bounds the norm of et:

Lemma A.2.1 Suppose that F (·) and Fi,τ (·), ∀i, τ , are L-smooth. Define ˆ̂gZt=0
t as the robus-
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tified gradient at iteration t when Zt = 0. Define the error et as

et =
∇F (xt)
∥∇F (xt)∥

−
ˆ̂gZt=0
t

∥ˆ̂gZt=0
t ∥

Then for all t ≥ m, the following bounds the norm of the error:

∥et∥ ≤
2

∥∇F (xt)∥

(
Lγ(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))

+

∥∥∥∥∥∥∇F (xt)− 1

(1− α1)m(1− α2)N

∑
i∈T t

∑
τ∈T t

i

∇Fi,τ (xt)

∥∥∥∥∥∥
+ 2Cα2max

i∈T t

∥∥∥∥∥∥ 1

(1− α1)m

∑
τ∈T t

i

∇Fi,τ (xt)−∇F (xt)

∥∥∥∥∥∥
∞

+
1

(1− α2)N

∑
i∈T t

max
τ,τ ′∈T t

i

Cα1∥∇Fi,τ (xτ ′)−∇Fi,τ ′(xτ ′)∥∞

+ 2Cα2Cα1 max
i∈T t,τ,τ ′∈T t

i

∥∇Fi,τ (xτ ′)−∇Fi,τ ′(xτ ′)∥∞
)

(A.61)

We plug (A.61) into (A.57) and take expectation of both sides with respect to z ∼ D noting

that∇Fi,τ (xt) = ∇Fi,τ ′(xt), ∀t, τ, τ ′ for the SAA, and use µ-strong convexity of F (·):

E
z∼D

[∥xt+1 − x⋆∥2] ≤ E
z∼D

[∥xt − x⋆∥2] + γ2

− 2γ

κ
(1− Zt(1 + κ)) E

z∼D
[∥xt − x⋆∥]

+
4γ2L(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))

µ

+
4γσ

µ
√
(1− α2)Nb

+
8γCα2

µ
E

z∼D
[max
i∈T t
∥∇Fi,t(xt)−∇F (xt)∥∞]

(A.62)
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≤ E
z∼D

[∥xt − x⋆∥2] + γ2

− 2γ

κ
(1− Zt(1 + κ)) E

z∼D
[∥xt − x⋆∥]

+
4γ2L(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))

µ

+
4γσ

µ
√
(1− α2)Nb

+
8γCα2

µ
inf

λ∈(0,b/a)

[
log (2(1− α2)Nd) + bϕ(λ/b)

λ

]
,

(A.63)

where the second inequality uses Assumption 2.3.1 and Theorem A.2.1 with

E
z∼D

[max
i∈T t
∥∇Fi,t(xt)−∇F (xt)∥∞] = E

z∼D
[ max
i∈T t,k∈[d]

|[∇Fi,t(xt)−∇F (xt)]k|

= E
z∼D

[ max
i∈T t,k∈[d]

{
[∇Fi,t(xt)−∇F (xt)]k, [∇F (xt)−∇Fi,t(xt)]k

}
(A.64)

and

E
z∼D

[eλ[∇Fi,t(xt)−∇F (xt)]k ] ≤ bϕ(λ/b), (A.65)

∀xt ∈ X , k ∈ [d], |λ| ≤ b/a, with ϕ(λ) = λ2σ2

2(1−a|λ|) . Note that the maximization is taken over

2|T t|d = 2(1−α2)Nd sub-gamma random variables. The inf
λ∈(0,b/a)

[·] term attains its minimum

at

λ⋆ =
2
√

log (2(1− α2)Nd)

2a
√

log (2(1− α2)Nd)/b+
√
2σ2/b

(A.66)

and the expression evaluated at λ⋆ becomes

[
log (2(1− α2)Nd) + bϕ(λ/b)

λ

]
λ=λ⋆

=
a

b
log (2(1− α2)Nd) +

σ
√

2 log (2(1− α2)Nd)√
b

(A.67)

The next step is to take expectation of (A.63) with respect to all randomness, where the chal-

lenge is to compute E[Zt∥xt − x⋆∥]. However, Zt is a random variable that depends on
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{Yi,t}i∈[N ], and Yi,t is a random variable which depends on {Wi,τ}τ∈[t−m+1,t]. All in all, Zt

is a random variable which depends on the agents’ state at time t−m+1 (which also not inde-

pendent of history). Since xt is also dependent on the agents’ state at time t−m+1, Zt and xt

are dependent random variables. Therefore, we can not directly compute E[Zt∥xt − x⋆∥]. But

considering the fact that the two-state Markov chain governing the agents’ states converges

exponentially fast to its stationary distribution, the idea is to use total law of expectation by

conditioning on the state at time t−m+ 1−m0 for some m0 ≥ 0, i.e.,

E[Zt∥xt − x⋆∥] = E[E[Zt∥xt − x⋆∥|St−m+1−m0 ]], (A.68)

where St−m+1−m0 = {xt−m+1−m0 , {πi
t−m+1−m0

}i∈[N ]} and πi
t−m+1−m0

is the distribution of the

state of agent i at time t−m+ 1−m0. Note that due to normalized updates:

∥xt − x⋆∥ ≤ ∥xt−m+1−m0 − x⋆∥+ γ(m− 1 +m0), (A.69)

and therefore (A.68) can be rewritten as

E[E[Zt∥xt − x⋆∥|St−m+1−m0 ]]

≤ E[∥xt−m+1−m0 − x⋆∥E[Zt|St−m+1−m0 ]] + E[γ(m− 1 +m0)E[Zt|St−m+1−m0 ]].

(A.70)

We now use Lemma 2.3.1 (or Lemma A.2.2 in Appendix A.2.8) to establish uniform bounds

on E[Zt|St−m+1−m0 ]:

E[∥xt − x⋆∥Zt] ≤ E[∥xt−m+1−m0 − x⋆∥]Pm
Z (m0) + γ(m− 1 +m0)P

m
Z (m0) (A.71)

≤ Pm
Z (m0) (E[∥xt − x⋆∥] + 2γ(m− 1 +m0)) , (A.72)

where the last inequality follows from the normalized updates. Now we take expectation of
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(A.63) with respect to all randomness and use (A.72):

E[∥xt+1 − x⋆∥2] ≤E[∥xt − x⋆∥2] + γ2

− 2γ

κ
(1− Pm

Z (m0)(1 + κ))E[∥xt − x⋆∥]

+ 4γ2Pm
Z (m0)(1 + 1/κ)(m− 1 +m0)

+ 4γ2κ(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))

+
4γσ

µ
√

(1− α2)Nb
+

8γCα2

µ

a

b
log (2(1− α2)Nd)

+
8γCα2

µ

σ
√
2 log (2(1− α2)Nd)√

b
.

(A.73)

Since Pm
Z (m0) < 1/(1 + κ), the coefficient of E[∥xt− x⋆∥] term is negative. Therefore, to

upper bound the inequality, we lower bound E [∥xt − x⋆∥] as:

E [∥xt − x⋆∥] = E
[∥xt − x⋆∥2
∥xt − x⋆∥

]
≥ E [∥xt − x⋆∥2]

R
. (A.74)

Using above, we rewrite (A.73) for all m0 ∈ N0 such that Pm
Z (m0) < 1/(1 + κ):

E[∥xt+1 − x⋆∥2] ≤E[∥xt − x⋆∥2]
(
1− 2γ

κR
(1− Pm

Z (m0)(1 + κ))

)
+ γ2C(m0) +

4γσ

µ
√
(1− α2)Nb

+
8γCα2

µ

a

b
log (2(1− α2)Nd)

+
8γCα2

µ

σ
√

2 log (2(1− α2)Nd)√
b

,

(A.75)

where

C(m0) =1 + 4Pm
Z (m0)(1 + 1/κ)(m− 1 +m0) + 4κ(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1)),

(A.76)
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c0(m0) =
2

κR
(1− Pm

Z (m0) (1 + κ)) . (A.77)

Note that (A.75) holds for all t ≥ m+m0. Hence, we can write:

E
[
∥xT+m+m0 − x⋆∥2

]
≤E

[
∥xm+m0 − x⋆∥2

]
(1− c0(m0)γ)

T

+
4γσ

µ
√

(1− α2)Nb

T+m+m0−1∑
t=m+m0

T+m+m0−1∏
i=t+1

(1− c0(m0)γ)

+
8γCα2

µ

T+m+m0−1∑
t=m+m0

T+m+m0−1∏
i=t+1

(1− c0(m0)γ)×(
a

b
log (2(1− α2)Nd) +

σ
√
2 log (2(1− α2)Nd)√

b

)

+ C(m0)γ
2

T+m+m0−1∑
t=m+m0

T+m+m0−1∏
i=t+1

(1− c0(m0)γ)

(A.78)

=E
[
∥xm+m0 − x⋆∥2

]
(1− c0(m0)γ)

T

+
4σ

µ
√

(1− α2)Nb

(1− (1− c0(m0)γ)
T )

c0(m0)

+
8Cα2

µ

a

b
log (2(1− α2)Nd)

(1− (1− c0(m0)γ)
T )

c0(m0)

+
8Cα2

µ

σ
√

2 log (2(1− α2)Nd)√
b

(1− (1− c0(m0)γ)
T )

c0(m0)

+ C(m0)γ
(1− (1− c0(m0)γ)

T )

c0(m0)
.

(A.79)

Next, we observe that (1 − (1 − c0(m0)γ)
T ) ≤ 1 and

∥xm+m0 − x⋆∥ ≤ (∥x1 − x⋆∥+ (m+m0 − 1)γ)2 to get the desired result:

E[∥xT+m+m0 − x⋆∥2] ≤ (∥x1 − x⋆∥+ γ(m+m0 − 1))2 (1− c0(m0)γ)
T

+
4σ

µ
√

(1− α2)Nbc0(m0)
+
C(m0)γ

c0(m0)

+
8aCα2 log (2(1− α2)Nd)

µc0(m0)b
+

8Cα2σ
√

2 log (2(1− α2)Nd)

µc0(m0)
√
b

.

(A.80)
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A.2.2 Proof of Lemma A.2.1

∥et∥ =
∥∥∥∥∥ ∇F (xt)∥∇F (xt)∥

−
ˆ̂gZt=0
t

∥ˆ̂gZt=0
t ∥

∥∥∥∥∥ (A.81)

=

∥∥∥∥∥∇F (xt)∥ˆ̂gZt=0
t ∥ − ˆ̂gZt=0

t ∥∇F (xt)∥
∥∇F (xt)∥∥ˆ̂gZt=0

t ∥

∥∥∥∥∥ (A.82)

=

∥∥∥∥∥∥ˆ̂gZt=0
t ∥(∇F (xt)− ˆ̂gZt=0

t )

∥∇F (xt)∥∥ˆ̂gZt=0
t ∥

+
ˆ̂gZt=0
t (∥ˆ̂gZt=0

t ∥ − ∥∇F (xt)∥)
∥∇F (xt)∥∥ˆ̂gZt=0

t ∥

∥∥∥∥∥ (A.83)

≤ 2
∥∇F (xt)− ˆ̂gZt=0

t ∥
∥∇F (xt)∥

(A.84)

Using the sets T t and {T t
i }i∈T t , we define:

¯̄gt =
1

(1− α1)m(1− α2)N

∑
i∈T t

∑
τ∈T t

i

∇Fi,τ (xτ ), (A.85)

¯̂gt =
1

(1− α2)N

∑
i∈T t

ĝi,t. (A.86)

Here, ¯̄g is the true mean of (1−α1)m(1−α2)N trustworthy gradients with time indices τ ∈ T i
t

from agents i ∈ T t, and ¯̂gt is the mean of the robustified gradients of agents i ∈ T t.

We split the numerator of (A.84) as follows:

∥∇F (xt)− ˆ̂gZt=0
t ∥ ≤ ∥∇F (xt)− ¯̄gt∥+ ∥¯̄gt − ¯̂gt∥+ ∥¯̂gt − ˆ̂gZt=0

t ∥. (A.87)

Next, we upper bound each term above using smoothness of F , normalized updates, and trian-

gular inequality:
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1.

∥∇F (xt)− ¯̄gt∥ =∥∇F (xt)−
1

(1− α1)m(1− α2)N

∑
i∈T t

∑
τ∈T t

i

∇Fi,τ (xτ )∥ (A.88)

≤∥∇F (xt)−
1

(1− α1)m(1− α2)N

∑
i∈T t

∑
τ∈T t

i

∇Fi,τ (xt)∥

+ ∥ 1

(1− α1)m(1− α2)N

∑
i∈T t

∑
τ∈T t

i

∇Fi,τ (xt)−∇Fi,τ (xτ )∥
(A.89)

≤∥∇F (xt)−
1

(1− α1)m(1− α2)N

∑
i∈T t

∑
τ∈T t

i

∇Fi,τ (xt)∥

+
L

(1− α1)m(1− α2)N

∑
i∈T t

∑
τ∈T t

i

∥xt − xτ∥ (A.90)

≤∥∇F (xt)−
1

(1− α1)m(1− α2)N

∑
i∈T t

∑
τ∈T t

i

∇Fi,τ (xt)∥

+ Lγ(m− 1). (A.91)

2.

∥¯̄gt − ¯̂gt∥ =∥
1

(1− α1)N

∑
i∈T t

ḡi,t − ĝi,t∥ ≤
1

(1− α2)N

∑
i∈T t

∥ḡi,t − ĝi,t∥ (A.92)

≤ 1

(1− α2)N

∑
i∈T t

max
τ∈T t

i

Cα1∥∇Fi,τ (xτ )

− 1

(1− α1)m

∑
τ ′∈T t

i

∇Fi,τ ′(xτ ′)∥∞
(A.93)

≤ 1

(1− α2)N

∑
i∈T t

max
τ,τ ′∈T t

i

Cα1∥∇Fi,τ (xτ )−∇Fi,τ ′(xτ ′)∥∞ (A.94)

≤ 1

(1− α2)N

∑
i∈T t

max
τ,τ ′∈T t

i

Cα1∥∇Fi,τ (xτ )−∇Fi,τ (xτ ′)∥∞

+
1

(1− α2)N

∑
i∈T t

max
τ,τ ′∈T t

i

Cα1∥∇Fi,τ (xτ ′)−∇Fi,τ ′(xτ ′)∥∞
(A.95)
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≤Cα1Lγ(m− 1)

+
1

(1− α2)N

∑
i∈T t

max
τ,τ ′∈T t

i

Cα1∥∇Fi,τ (xτ ′)−∇Fi,τ ′(xτ ′)∥∞.
(A.96)

3.

∥¯̂gt − ˆ̂gZt=0
t ∥ ≤Cα2max

i∈T t
∥ĝi,t −

1

(1− α2)N

∑
j∈T t

ĝj,t∥∞ ≤ Cα2 max
i,j∈T t

∥ĝi,t − ĝj,t∥∞ (A.97)

≤Cα2 max
i,j∈T t

(∥ĝi,t − ḡi,t∥∞ + ∥ĝj,t − ḡj,t∥∞ + ∥ḡi,t − ḡj,t∥∞) (A.98)

≤2Cα2max
i∈T t
∥ĝi,t − ḡi,t∥+ 2Cα2max

i∈T t
∥ḡi,t −∇F (xt)∥∞ (A.99)

≤2Cα2max
i∈T t
∥ĝi,t − ḡi,t∥

+ 2Cα2max
i∈T t
∥ 1

(1− α1)m

∑
τ∈T t

i

∇Fi,τ (xτ )−∇Fi,τ (xt)∥∞

+ 2Cα2max
i∈T t
∥ 1

(1− α1)m

∑
τ∈T t

i

∇Fi,τ (xt)−∇F (xt)∥∞ (A.100)

≤2Cα2max
i∈T t
∥ĝi,t − ḡi,t∥+ 2Cα2Lγ(m− 1)

+ 2Cα2max
i∈T t
∥ 1

(1− α1)m

∑
τ∈T t

i

∇Fi,τ (xt)−∇F (xt)∥∞
(A.101)

≤2(Cα1 + 1)Cα2Lγ(m− 1)

+ 2Cα2Cα1 max
i∈T t,τ,τ ′∈T t

i

∥∇Fi,τ (xτ ′)−∇Fi,τ ′(xτ ′)∥∞

+ 2Cα2max
i∈T t
∥ 1

(1− α1)m

∑
τ∈T t

i

∇Fi,τ (xt)−∇F (xt)∥∞, (A.102)

where the last inequality follows from (A.93)-(A.96). Gathering all three terms, we get the

desired result.
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A.2.3 Proof of Lemma 2.3.1

The goal is to find a uniform bound on E[Zt|St−m+1−m0 ] independent of the system state

at t−m+ 1−m0. Note that

E[Zt|St−m+1−m0 ] = P(Zt = 1|St−m+1−m0) = P
(

1
N

∑
i∈[N ] Yi,t > α2|St−m+1−m0

)
(A.103)

≤
N∑

k=α2N+1

(
N

k

)
(Pm

Y (m0))
k(1− Pm

Y (m0))
(N−k), (A.104)

where

Pm
Y (m0) = Pm

Y (m0,m, α1,M) = max
i∈[N ],t

E[Yi,t|St−m+1−m0 ] (A.105)

= max
i∈[N ],t

P[Yi,t = 1|St−m+1−m0 ] (A.106)

= max
i∈[N ],t

P

(
1

m

t∑
τ=t−m+1

Wi,τ > α1|St−m+1−m0

)
(A.107)

We can rewrite (A.107) using total law of probability:

Pm
Y (m0) = max

i∈[N ]

1∑
s=0

P

(
1

m

t∑
τ=t−m+1

Wi,τ>α1|Wi,t−m+1 = s

)

× Pπi
t−m+1−m0

(Wi,t−m+1 = s), (A.108)

where Pπi
t−m+1−m0

(Wi,t−m+1 = s) is the probability that Wi,t−m+1 = s given the distribution at

time t−m+ 1−m0. Let

Ps(m,α1m) = P

(
t∑

τ=t−m+1

Wi,τ>α1m|Wi,t−m+1 = s

)
(A.109)
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Accordingly, we know that:

P0(m,α1m) = pbP1(m− 1, α1m) + (1− pb)P0(m− 1, α1m) (A.110)

Similarly,

P1(m,α1m) = (1− pt)P1(m− 1, α1m− 1) + ptP0(m− 1, α1m− 1) (A.111)

≥ (1− pt)P1(m− 1, α1m) + ptP0(m− 1, α1m) (A.112)

= P0(m,α1m) + (1− pt − pb)(P1(m− 1, α1m)− P0(m− 1, α1m)) (A.113)

Since (1− pt − pb) ≥ 0, P1(m,α1m) ≥ P0(m,α1m) if P1(m− 1, α1m) ≥ P0(m− 1, α1m).

We know that

0 = P0(α1m+ 1, α1m) ≤ P1(α1m+ 1, α1m) (A.114)

because when Wi,t−m+1 = 0, then there can be at most α1m instances where Wi,τ = 1 for

τ ∈ [t−m+ 1, t−m+ 1+ α1m]. Therefore, the probability of having the sum strictly larger

than α1m is zero. This establishes that P1(m,α1m) ≥ P0(m,α1m). We also have a closed

form for

Pπi
t−m+1−m0

(Wi,t−m+1 = 1) =πi
t−m+1−m0

(0)
pb − pb(1− pb − pt)m0

pb + pt

+ πi
t−m+1−m0

(1)
pb + pt(1− pb − pt)m0

pb + pt

(A.115)

≤pb + pt(1− pb − pt)m0

pb + pt
, (A.116)

203



Supplements to Chapter 2 Chapter A

where the inequality holds with equality if πi
t−m+1−m0

(1) = 1, i.e., at time t−m+1−m0 the

agent was corrupted, which is the worst-case intuition. At this point, we have:

Pm
Y (m0) = max

i∈[N ]

1∑
s=0

Ps(m,α1m)Pπi
t−m+1−m0

(Wi,t−m+1 = s) (A.117)

≤
1∑

s=0

Ps(m,α1m)Πm0(i), (A.118)

where

Πm0(0) =
pt − pt(1− pb − pt)m0

pb + pt
(A.119)

Πm0(1) =
pb + pt(1− pb − pt)m0

pb + pt
. (A.120)

We have established that the initial distribution given above maximizes Pm
Y (m0). Next, we

argue that Pm
Y (m0) is larger over the Markov chain governed by Mm0 with

Mm0 =

1− p′b(m0) p′b(m0)

p′t(m0) 1− p′t(m0)

 , (A.121)

where p′b(m0) = pb+ pt(1− pb− pt)m0 and p′t(m0) = pt− pt(1− pb− pt)m0 . With some abuse

of notation, let

PMm

s (m,α1m) = PMm

s

(
t∑

τ=t−m+1

Wi,τ>α1m|Wi,t−m+1 = s

)
, (A.122)

where the superscriptMm denotes that the random variable follows the Markov chain governed

by M for m time steps. Using P1(·) ≥ P0(·), we have that

PMm

1 (m,α1m) = PMm−1

1 (m− 1, α1m− 1)(1− pt) + PMm−1

0 (m− 1, α1m− 1)pt (A.123)
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≤ PMm−1

1 (m− 1, α1m− 1)(1− p′t(m0)) + PMm−1

0 (m− 1, α1m− 1)p′t(m0) (A.124)

= P
Mm0M

m−1

1 (m,α1m), (A.125)

where the superscript Mm0M
m−1 indicates that the random variable follows the Markov chain

governed by Mm0 initially and M for the next m− 1 time steps. Similarly,

PMm

0 (m,α1m) = PMm−1

1 (m− 1, α1m)pb + PMm−1

0 (m− 1, α1m)(1− pb) (A.126)

≤PMm−1

1 (m− 1, α1m− 1)p′b(m0) + PMm−1

0 (m− 1, α1m− 1)(1− p′b(m0)) (A.127)

=P
Mm0M

m−1

0 (m,α1m). (A.128)

Recursively applying this with the boundary conditions

PMα1m

s (α1m,α1m) = P
M

α1m
m0

s (α1m,α1m) = 0

for s = 1, 2, we get:

PMm

s (m,α1m) ≤ P
Mm

m0
s (m,α1m). (A.129)

Therefore, we can upper bound Pm
Y (m0) as

Pm
Y (m0) ≤

1∑
s=0

P
Mm

m0
s (m,α1m)Πm0(s). (A.130)

The above is essentially the equal to the following:

Pm
Y (m0) ≤ PΠm0

(
1

m

t∑
τ=t−m+1

Wi,τ > α1), (A.131)

where the subscript Πm0 denotes the initial distribution of Wi,τ . Since the initial distribution of

Wi,τ is equal to the stationary distribution of Mm0 , we can use the following theorem to bound
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Pm
Y (m0):

Theorem A.2.2 [90, Theorem 1] For all pairs ((Xn), f), such that (Xn) is a finite, ergodic and

reversible Markov chain in stationary state with second largest eigenvalue λ and f is a function

taking values in [0, 1] such that E[f(Xi)] = µ, the following bounds, with λ0 = max(0, λ),

hold for all ϵ > 0 such that µ+ ϵ < 1 and all time n

P(
n∑

i=1

f(Xi) ≥ n(µ+ ϵ)) ≤ exp (−21− λ0
1 + λ0

nϵ2). (A.132)

Applying the above theorem with λ = (1− pb − pt), n = m, µ + ϵ = α1m, µ = Πm0(1), and

1 + λ0 = 2− pb − pt ≤ 2:

Pm
Y (m0) ≤ exp

(
−m(α1 − Πm0(1))

2(pb + pt)
)
, (A.133)

gives the desired bound on Pm
Y (m0). Note that Pm

Z (m0) is equal to 1−FB(α2N,N, P
m
Y (m0)),

where FB(α2N,N, P
m
Y (m0) is the cumulative distribution function of the binomial distribution

with parameters (N,Pm
Y (m0)) evaluated at α2N . FB(α2N,N, P

m
Y (m0) is given by [91]:

(N − α2N)

(
N

α2N

)∫ 1−Pm
Y (m0)

0

tN−α2N−1(1− t)α2Ndt, (A.134)

which decreases with Pm
Y (m0). Therefore, Pm

Z (m0) = 1−FB(α2N,N, P
m
Y (m0)) is maximized

when Pm
Y (m0) is maximized, which gives the desired bound on Pm

Z (m0).

A.2.4 Sensitivity Analysis of Pm
Y (m0) with respect to pb and pt

Let u = (α1 − Π1
m0

)2(pb + pt). By chain rule, we have

dPm
Y (m0)

dpi
=
dPm

Y (m0)

du
× du

dpi
= −me−mu du

dpi
, i = b, t. (A.135)
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The derivative of u with respect to pb is given by:

du

dpb
=
α1 − Π1

m0

pb + pt
×(pb(α1 + 2m0pt(1− pb − pt)m0−1 − 1)

+ pt(α1 + 2m0pt(1− pb − pt)m0−1 + (1− pb − pt)m0 − 2))

(A.136)

Noting that α1 > Πm
m0

, pt ≤ pt + pb, and (1− x)1/x ≤ e−1 for x ∈ [0, 1]:

du

dpb
≤ α1 − Π1

m0

pb + pt
× (pb(α1 + 2m0(pb + pt)e

−(m0−1)(pb+pt) − 1)

+ pt(α1 + 2m0(pb + pt)e
−(m0−1)(pb+pt) + e−m0(pb+pt) − 2)) (A.137)

Now, we set m0 = k0/(pb + pt) for some k0 ≥ 1:

du

dpb
≤α1 − Πm

m0

pb + pt
× (pb(α1 + 2k0e

−k0+pb+pt − 1)

+ pt(α1 + 2k0e
−k0+pb+pt + e−k0 − 2)) (A.138)

≤α1 − Πm
m0

pb + pt
× (pb(α1 + 2k0e

−k0+1 − 1)

+ pt(α1 + 2k0e
−k0+1 + e−k0 − 2)) (A.139)

< 0, (A.140)

where the last inequality holds when k0 ≥ 4. Therefore, when m0 ≥ 4/(pb + pt), we have that

du/dpb < 0, which implies that dPm
Y (m0)/dpb > 0. Similarly,

du

dpt
=
α1 − Π1

m0

pb + pt
×
(
pt(α1 + (2m0 + pb + pt − 1)(1− pb − pt)m0−1)

+ pb(α1 + 2m0pt(1− pb − pt)m0−1 − 2(1− pb − pt)m0 + 1)
) (A.141)

Noting that 2(1−pb−pt)m0 ≤ 2e−m0(pb+pt) = 2e−k0 < 1 for all k0 ≥ 1, all the summands above

are positive. Therefore, we conclude that du/dpt > 0, which implies dPm
Y (m0)/dpt < 0.
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A.2.5 Proof of Theorem 2.3.2

Due to Assumption 2.3.4, the iterates generated by the algorithm stay in X without projec-

tion. Hence, we proceed to analyze the convergence of the algorithm without projection.

Since f(·, z) is L-smooth, F (·) is L-smooth:

F (xt+1)− F (xt) ≤ ⟨∇F (xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

≤− γ⟨∇F (xt),
ˆ̂gt

∥ˆ̂gt∥
⟩+ Lγ2

2
(A.142)

=− γ(1− Zt)⟨∇F (xt),
ˆ̂gZt=0
t

∥ˆ̂gZt=0
t ∥

⟩ − γZt⟨∇F (xt),
ˆ̂gZt=1
t

∥ˆ̂gZt=1
t ∥

⟩+ Lγ2

2
(A.143)

=− γ(1− Zt)⟨∇F (xt),
∇F (xt)
∥∇F (xt)∥

⟩

+ γ(1− Zt)⟨∇F (xt),
∇F (xt)
∥∇F (xt)∥

−
ˆ̂gZt=0
t

∥ˆ̂gZt=0
t ∥

⟩

− γZt⟨∇F (xt),
ˆ̂gZt=1
t

∥ˆ̂gZt=1
t ∥

⟩+ Lγ2

2

(A.144)

≤− γ(1− 2Zt)∥∇F (xt)∥+ γ(1− Zt)∥∇F (xt)∥∥et∥+
Lγ2

2
, (A.145)

where

et =
∇F (xt)
∥∇F (xt)∥

−
ˆ̂gZt=0
t

∥ˆ̂gZt=0
t ∥

. (A.146)

Similar to Proof of Theorem 2.3.1 we define the following sets:

• Define T t as the set of (1 − α2)N agents with smallest indices i ∈ [N ] for which Yi,t = 0,

i.e.,

T t = {i|i ∈ [N ], Yi,t = 0,
∑
i

1 = (1− α2)N} (A.147)

such that
∑

i∈T t i is minimized.

• For all agents i ∈ T t, define T t
i as the set of (1−α1)m smallest time indices τ ∈ [t−m+1, t]
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for which Wi,τ = 0, i.e.,

T t
i = {τ |τ ∈ [t−m+ 1, t],Wi,τ = 0,

∑
τ

1 = (1− α1)m} (A.148)

such that
∑

τ∈T t
i
τ is minimized.

We now use Lemma A.2.1 to bound ∥et∥ and take expectation of both sides with respect to

z ∼ D noting that∇Fi,τ (xt) = ∇Fi,τ ′(xt), ∀t, τ, τ ′:

E
z∼D

[F (xt+1)− F (xt)] ≤ −γ(1− 2Zt) E
z∼D

[∥∇F (xt)∥] +
Lγ2

2

+ 2Lγ2(1− Zt)(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))

+ 2γ(1− Zt) E
z∼D

[∥∥∥∥∥∇F (xt)− 1

(1− α2)N

∑
i∈T t

∇Fi,t(xt)

∥∥∥∥∥
]

+ 4γ(1− Zt)Cα2 E
z∼D

[max
i∈T t
∥∇Fi,t(xt)−∇F (xt)∥∞] (A.149)

≤− γ(1− 2Zt) E
z∼D

[∥∇F (xt)∥] +
Lγ2

2

+ 2Lγ2(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))

+ 2γ
σ√

(1− α2)Nb

+ 4γCα2 inf
λ∈(0,b/a)

[
log (2(1− α2)Nd) + bϕ(λ/b)

λ

]
(A.150)

≤− γ(1− 2Zt) E
z∼D

[∥∇F (xt)∥] +
Lγ2

2

+ 2Lγ2(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))

+ 2γ
σ√

(1− α2)Nb
+ 4γCα2

a

b
log (2(1− α2)Nd)

+ 4γCα2

σ
√

2 log ((2(1− α2)Nd)√
b

,

(A.151)

where the last two inequalities follow from (A.64)-(A.67) in proof of Theorem 2.3.1.

Next step is to take expectation with respect to all randomness, where the challenge is to
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compute E[Zt∥∇F (xt)∥]. Due to the same reasoning in proof of Theorem 2.3.1, xt and Zt are

dependent. random variables. Therefore, we use a similar trick and use total law of expectation

by conditioning on the state at time t−m+ 1−m0 for some m0 ≥ 0, i.e.,

E[Zt∥∇F (xt)∥] = E[E[Zt∥∇F (xt)∥|St−m+1−m0 ]], (A.152)

where St−m+1−m0 = {xt−m+1−m0 , {πi
t−m+1−m0

}i∈[N ]} and πi
t−m+1−m0

is the distribution of the

state of agent i at time t −m + 1 −m0. Note that due to smoothness of F (·) and normalized

updates:

∥∇F (xt)∥ ≤ ∥∇F (xt−m+1−m0)∥+ Lγ(m− 1 +m0), (A.153)

and therefore (A.152) can be rewritten as

E[E[Zt∥∇F (xt)∥|St−m+1−m0 ]] ≤E[∥∇F (xt−m+m0−1)∥E[Zt|St−m+1−m0 ]]

+ E[Lγ(m− 1 +m0)E[Zt|St−m+1−m0 ]]

(A.154)

We now use Lemma 2.3.1 (or Lemma A.2.2 in Appendix A.2.8) to establish uniform

bounds on E[Zt|St−m+1−m0 ]:

E[∥∇F (xt)∥Zt] ≤ E[∥∇F (xt−m+m0−1)∥]Pm
Z (m0) + Lγ(m− 1 +m0)P

m
Z (m0) (A.155)

≤ Pm
Z (m0) (E[∥∇F (xt)∥] + 2Lγ(m− 1 +m0)) , (A.156)

where the last inequality follows from smoothness of F (·) and normalized updates. Now we
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take expectation of (A.150) with respect to all randomness and use (A.156):

E[F (xt+1)− F (xt)] ≤− γ(1− 2Pm
Z (m0))E[∥∇F (xt)∥] +

Lγ2

2

+ 4Lγ2Pm
Z (m0)(m− 1 +m0)

+ 2Lγ2(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))

+ 2γ
σ√

(1− α2)Nb
+ 4γCα2

a

b
log (2(1− α2)Nd)

+ 4γCα2

σ
√

2 log ((2(1− α2)Nd)√
b

(A.157)

Noting that F (xt) ≥ F (x⋆) for all t, we rearrange the terms, sum from t = m + m0 to

t = T +m+m0 − 1 to get the following result for all m0 ∈ N0 for which Pm
Z (m0) < 1/2:

1

T

T+m+m0−1∑
t=m+m0

E[∥∇F (xt)∥] ≤
E[F (xm+m0)]− F (x⋆)
γT (1− 2Pm

Z (m0))
+ C(m0)γ

+
2σ

(1− 2Pm
Z (m0))

√
(1− α2)Nb

+
4Cα2a log (2(1− α2)Nd)

(1− 2Pm
Z (m0))b

+
4Cα2σ

√
2 log ((2(1− α2)Nd)

(1− 2Pm
Z (m0))

√
b

,

(A.158)

where

C(m0) = L
(
0.5 + 4Pm

Z (m0)(m− 1 +m0) + 2(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))
)
.

(A.159)

Next, we upper bound E[F (xm+m0)] using smoothness of F :

F (xm+m0) ≤ F (x1) + ⟨∇F (x1), xm+m0 − x1⟩+
L

2
∥xm+m0 − x1∥2 (A.160)

≤ F (x1) + ∥∇F (x1)∥γ(m+m0 − 1) +
L

2
γ2(m+m0 − 1)2. (A.161)
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Finally, we set γ = γ0/
√
T and plug the above inequality into (A.158) to get the final result:

1

T

T+m−1+m0∑
t=m+m0

E[∥∇F (xt)∥] ≤
F (x1)− F (x⋆)√
Tγ0(1− 2Pm

Z (m0))
+
C(m0)γ0√

T

+
∥∇F (x1)∥(m− 1 +m0)

T (1− 2Pm
Z (m0))

+
Lγ0(m− 1 +m0)

2

2T 3/2(1− 2Pm
Z (m0))

+
2σ

(1− 2Pm
Z (m0))

√
(1− α2)Nb

+
4Cα2a log (2(1− α2)Nd)

(1− 2Pm
Z (m0))b

+
4Cα2σ

√
2 log ((2(1− α2)Nd)

(1− 2Pm
Z (m0))

√
b

,

(A.162)

A.2.6 Proof of Theorem 2.3.3

The proof is identical to that of Theorem 2.3.1 until (A.57). Next, we plug (A.61) into

(A.57) and take expectation of both sides with respect to z ∼ D, this time noting that∇Fi,τ (xt)

and∇Fi,τ ′(xt) are iid random variables ∀t, τ, τ ′ such that τ ̸= τ ′ in the SA setting. This results

in:

E
z∼D

[∥xt+1 − x⋆∥2] ≤ E
z∼D

[∥xt − x⋆∥2] + γ2 − 2γ

κ
(1− Zt(1 + κ)) E

z∼D
[∥xt − x⋆∥]

+
4γ2L(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))

µ

+
4γσ

µ
√
(1− α2)N(1− α1)mb

+
8γCα2

µ
E

z∼D
[max
i∈T t
∥∇Fi,t(xt)−∇F (xt)∥∞]

+
4γCα1

µ(1− α2)N

∑
i∈T t

2E
z∼D

[ max
τ,τ ′∈T t

i

∥∇Fi,τ (xτ ′)−∇F (xτ ′)∥∞]

+
8γCα1Cα2

µ
2E
z∼D

[ max
i∈T t,τ,τ ′∈T t

i

∥∇Fi,τ (xτ ′)−∇F (xτ ′)∥∞].

(A.163)

Next, we use Theorem A.2.1 on the last three terms above, noting that the first maximization is

over 2(1−α2)Nd sub-gamma random variables, the second maximization is over 4(1−α1)md
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sub-gamma random variables, and the last maximization is over 4(1− α1)m(1− α2)Nd sub-

gamma random variables. The rest of the proof is identical to that of Theorem 2.3.1, resulting

in:

E[∥xT+m+m0 − x⋆∥2] ≤ (∥x1 − x⋆∥+ γ(m+m0 − 1))2 (1− c0(m0)γ)
T

+
4σ

µ
√

(1− α2)N(1− α1)mbc0(m0)
+
C(m0)γ

c0(m0)

+
8aCα2 log (2(1− α2)Nd)

µc0(m0)b

+
8Cα2σ

√
2 log (2(1− α2)Nd)

µc0(m0)
√
b

+
8aCα1 log (4(1− α1)md)

µc0(m0)b

+
8Cα1σ

√
2 log (4(1− α1)md)

µc0(m0)
√
b

+
16aCα1Cα2 log (4(1− α2)N(1− α1)md)

µc0(m0)b

+
16Cα1Cα2σ

√
2 log (4(1− α2)N(1− α1)md)

µc0(m0)
√
b

,

(A.164)

A.2.7 Proof of Theorem 2.3.4

The proof is identical to that of Theorem 2.3.2 until (A.145). Next, we plug (A.61) into

(A.145) and take expectation of both sides with respect to z ∼ D, this time noting that

∇Fi,τ (xt) and ∇Fi,τ ′(xt) are iid random variables ∀t, τ, τ ′ such that τ ̸= τ ′ in the SA set-

ting:
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E
z∼D

[F (xt+1)− F (xt)] ≤− γ(1− 2Zt) E
z∼D

[∥∇F (xt)∥] +
Lγ2

2

+ 2Lγ2(m− 1)(1 + Cα1 + 2Cα2(Cα1 + 1))

+ 2γ
σ√

(1− α2)N(1− α1)mb

+ 4γCα2 E
z∼D

[max
i∈T t
∥∇Fi,t(xt)−∇F (xt)∥∞]

+
2γCα1

(1− α2)N

∑
i∈T t

2E
z∼D

[ max
τ,τ ′∈T t

i

∥∇Fi,τ (xτ ′)−∇F (xτ ′)∥∞]

+ 4γCα1Cα22E
z∼D

[ max
i∈T t,τ,τ ′∈T t

i

∥∇Fi,τ (xτ ′)−∇F (xτ ′)∥∞].

(A.165)

Next, we use Theorem A.2.1 on the last three terms above, noting that the first maximization is

over 2(1−α2)Nd sub-gamma random variables, the second maximization is over 4(1−α1)md

sub-gamma random variables, and the last maximization is over 4(1− α1)m(1− α2)Nd sub-

gamma random variables. The rest of the proof is identical to that of Theorem 2.3.2, resulting
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in:

1

T

T+m−1+m0∑
t=m+m0

E[∥∇F (xt)∥] ≤
F (x1)− F (x⋆)√
Tγ0(1− 2Pm

Z (m0))
+
C(m0)γ0√

T

+
∥∇F (x1)∥(m− 1 +m0)

T (1− 2Pm
Z (m0))

+
Lγ0(m− 1 +m0)

2

2T 3/2(1− 2Pm
Z (m0))

+
2σ

(1− 2Pm
Z (m0))

√
(1− α2)N(1− α1)mb

+
4Cα2a log (2(1− α2)Nd)

(1− 2Pm
Z (m0))b

+
4Cα2σ

√
2 log ((2(1− α2)Nd)

(1− 2Pm
Z (m0))

√
b

+
4Cα1a log (4(1− α1)md)

(1− 2Pm
Z (m0))b

+
4Cα1σ

√
2 log (4(1− α1)md)

(1− 2Pm
Z (m0))

√
b

+
8Cα1Cα2a log (4(1− α2)N(1− α1)md)

(1− 2Pm
Z (m0))b

+
8Cα1Cα2σ

√
2 log (4(1− α2)N(1− α1)md)

(1− 2Pm
Z (m0))

√
b

(A.166)

A.2.8 Tighter Bound on PZ(m0)

Lemma A.2.2 Given the network and algorithm parameters (m,N, α1, α2,M), the following

holds for all m0 ∈ Z+:

PZ(m0) ≤
N∑

k=α2N+1

(
N

k

)
(Pm

Y (m0))
k(1− Pm

Y (m0))
(1−k), (A.167)

where

Pm
Y (m0) =

1∑
s=0

m∑
k=α1m+1

rs(k;m, 1− pt, pb)Πm0(s) (A.168)
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with

rs(k;m, 1− pt, pb)

=

min(k,n−k)∑
i=0

(
n− i
k

)(
k

i

)
(1− pt)k−i(1− pb)n−k−i(1− pt − pb)i

+

min(k−1+s,n−k−s)∑
i=0

(
n− i− 1

k − 1 + s

)(
k − 1 + s

i

)
(1− pt)n−k−i−1+s

× (1− pb)n−k−i−s(1− pt − pb)i+1

(A.169)

and

Πm0(0) =
pt − pt(1− pb − pt)m0

pb + pt
(A.170)

Πm0(1) =
pb + pt(1− pb − pt)m0

pb + pt
(A.171)

Proof: The goal here is to find a tighter upper bound on PZ(m0) than the bound provided

in Lemma 2.3.1. The proof is identical to that of Lemma 2.3.1 until (A.108). A tighter bound is

established by deriving the exact expression on Pm
Y (m0) rather than using a Chernoff’s bound.

We continue from (A.108):

Pm
Y (m0) = max

i∈[N ]

1∑
s=0

P

(
1

m

t∑
τ=t−m+1

Wi,τ>α1|Wi,t−m+1 = s

)

× Pπi
t−m+1−m0

(Wi,t−m+1 = s), (A.172)

where Pπi
t−m+1−m0

(Wi,t−m+1 = s) is the probability that Wi,t−m+1 = s given the distribution at

time t−m+1−m0. The first multiplicand in the above equation has a closed form as follows
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[198]:

P

(
1

m

t∑
τ=t−m+1

Wi,τ > α1|Wi,t−m+1 = s

)

=
m∑

k=α1m+1

P

(
t∑

τ=t−m+1

Wi,τ = k|Wi,t−m+1 = s

)
=

m∑
k=α1m+1

rs(k;m, 1− pt, pb), (A.173)

where

rs(k;m, 1− pt, pb) =
min(k,m−k)∑

i=0

(
m− i
k

)(
k

i

)
(1− pt)k−i(1− pb)m−k−i(1− pt − pb)i

+

min(k−1+s,m−k−s)∑
i=0

(
m− i− 1

k − 1 + s

)(
k − 1 + s

i

)
(1− pt)m−k−i−1+s

× (1− pb)m−k−i−s(1− pt − pb)i+1.

(A.174)

Next, we determine Pπi
t−m+1−m0

(Wi,t−m+1 = s) for s = {0, 1} as follows:

Pπi
t−m+1−m0

(Wi,t−m+1 = 0) =
pt

pb + pt

+
(1− pb − pt)m0

pb + pt
(πi

t−m+1−m0
(0)pb − πi

t−m+1−m0
(1)pt), (A.175)

Pπi
t−m+1−m0

(Wi,t−m+1 = 1) = 1− Pπi
t−m+1−m0

(Wi,t−m+1 = 0) (A.176)

The above probabilities depend on the distribution at time t − m + 1 − m0. Noting that∑m
k=1 r1(k; ·) >

∑m
k=1 r0(k; ·) (as shown in Lemma 1), we upper bound (A.108) by up-

per bounding Pπi
t−m+1−m0

(Wi,t−m+1 = 1). To do so, we lower bound (A.175) by setting

πt−m+1−m0(1) = 1, i.e., by assuming that at time t − m + 1 − m0 the agent was Byzantine,
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which is the worst-case intuition. All in all we have:

Pm
Y (m0) =

1∑
s=0

m∑
k=α1m+1

rs(k;m, 1− pt, pb)Πm0(s), (A.177)

where

Πm0(0) =
pt − pt(1− pb − pt)m0

pb + pt
(A.178)

Πm0(1) =
pb + pt(1− pb − pt)m0

pb + pt
(A.179)
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Supplements to Chapter 3

B.1 Proof of Lemma 3.4.1

By definition, fi(xi) is strongly concave over Xi, therefore the optimization problem

maxx∈domfifi(xi) − ⟨xi, pi⟩ is strongly concave and has a unique solution for pi ∈ Pi. Since

Xi ⊆ domfi by Assumption 3.2.1, the optimal solution is in the interior of the feasible set.

Therefore the first-order optimality condition implies that the optimal solution gi(pi) satisfies

pi = ∇fi(gi(pi)), (B.1)

which implies that ∇fi is surjective for pi ∈ Pi. We also know that the gradient of a strongly

concave function is injective1, therefore,∇fi is bijective and invertible and gi(pi) = ∇f−1
i (pi),

which also proves that gi(pi) is bijective. By the inverse function theorem, we get that:

∇gi(pi) = [∇2fi(gi(pi))]
−1. (B.2)

1To see this, suppose that x1 ̸= x2 and therefore ∥x1 − x2∥ > 0. If ∇f(x1) = ∇f(x2), (3.1) results in
0 ≥ µ∥x1 − x2∥2, which is a contradiction and x1 = x2 must hold.
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Since fi is L-smooth and µ-strongly concave, inverse of it’s Hessian has eigenvalues in

[−1/µ,−1/L], which results in

∥∇gi(pi)∥ = ∥[∇2fi(gi(pi))]
−1∥ ≤ 1/µ, (B.3)

proving the Lipschitz property of gi(pi). To show smoothness, we let x1i = gi(p
1
i ) and

x2i = gi(p
2
i ) and write:

∥∇gi(p1i )−∇gi(p2i )∥ = ∥[∇2fi(x
1
i )]

−1−[∇2fi(x
2
i )]

−1∥ (B.4)

= ∥[∇2fi(x
1
i )]

−1(∇2fi(x
2
i )−∇2fi(x

1
i ))[∇2fi(x

2
i )]

−1∥ (B.5)

≤ β∥x1i − x2i ∥/µ2 ≤ β∥p1i − p2i ∥/µ3, (B.6)

where the last inequality uses 1/µ-Lipschitz continuity of gi(pi), which proves β/µ3-

smoothness of gi(pi).

B.2 Proof of Lemma 3.4.2

Firstly we note that by the choice of τ ≥
√

∆/HX , we can ensure that ∆t ≤ HX and that

X∆t is non-empty. Next, we show that eti ≤ 1/(2L), ∀t ≥ 0. Note that eti is decreasing with t,

and therefore is maximized for t = 0:

eti≤e0i=2β
√
di
(
η0+2L(di−1)(M

√
nγ0+2∆0ΓX )

)
/µ3 (B.7)

For τ ≥ 2µ∆ΓX/(M
√
n) and di ≤ d̄, we get:

e0i ≤
2β
√
d̄

µ3τ

(
M

8ΓX
+

4L(d̄− 1)M
√
n

µ

)
(B.8)
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= βM
√
d̄
(
µ+ 32LΓX

√
n(d̄− 1)

)
/(4µ4ΓX τ). (B.9)

Next, using τ ≥ LβM
√
d̄
(
µ+ 32LΓX

√
n(d̄− 1)

)
/(2µ4ΓX ):

eti ≤ e0i ≤ 1/(2L). (B.10)

We will prove the lemma by induction that if ∥∇̂gki − ∇gi(pki )∥ ≤ eki holds for

k ∈ [max{0, t − di + 1}, t − 1], then it holds for k = t. Using Cauchy-Schwarz inequal-

ity:

∥∇̂gti−∇gi(pti)∥ ≤
√
di max

j∈[di]
∥[∇̂gti ]:,j−[∇gi(pti)]:,j∥. (B.11)

For a given j ∈ [di], by construction of ∇̂gti we have

[∇̂gti ]:,j = (gi(p
ℓj
i + ηℓjej)− gi(pℓji ))/ηℓj , (B.12)

for some ℓj ∈ [max{0, t − di + 1}, t]. Using the Taylor series expansion, we can rewrite the

above as:

[∇̂gti ]:,j = [∇gi(pℓji )]:,j +R1/η
ℓj , (B.13)

where ∥R1∥ ≤ β(ηℓj)2/(2µ3) follows from [199, Lemma 1] using β/µ3-smoothness of gi.

Accordingly,

∥∇̂gti −∇gi(pti)∥ ≤
√
di max

j∈[di]
∥[∇gi(pℓji )]:,j − [∇gi(pti)]:,j∥+

√
diβη

ℓj/(2µ3)

≤ max
ℓj∈[max{0,t−di+1},t]

β
√
di

µ3
∥pℓji − pti∥+

√
diβη

ℓj

2µ3
, (B.14)
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where we used

∥[∇gi(pℓji )]:,j − [∇gi(pti)]:,j∥ ≤ ∥∇gi(p
ℓj
i )−∇gi(pti)∥, (B.15)

for all j ∈ [di], and smoothness of gi. Furthermore, note that for τ ≥ 2d̄ − 1, ηt−di+1 ≤ 4ηt

and therefore for t = 0 we have

∥∇̂g0i −∇gi(p0)∥ ≤ 2
√
diβη

0/µ3 ≤ e0i . (B.16)

Accordingly, the statement holds for t = 0, which covers the base case. For t > 0, we continue

from (B.14) and bound ∥pℓji − pti∥ as

∥pℓji − pti∥ ≤
t−1∑
k=ℓj

∥pki − pk+1
i ∥ (B.17)

=
t−1∑
k=ℓj

∥[∇̂gki ]−1(x̂k+1
i − xki )∥ (B.18)

≤
t−1∑
k=ℓj

∥[∇̂gki ]−1∥∥x̂k+1
i − xki ∥. (B.19)

The following two lemmas, whose proofs can be found in Appendices B.4 and B.5 bound each

of the terms in the above summation:

Lemma B.2.1 Suppose that ∥∇̂gti−∇gi(pti)∥ ≤ 1/(2L) for some t. Then σmin(∇̂gti) ≥ 1/(2L)

and ∥[∇̂gti ]−1∥ ≤ 2L.

Lemma B.2.2 For all t ≥ 0, if xt ∈ X int, then for a user i ∈ [n] the following holds:

∥x̂t+1
i − xti∥ ≤M

√
nγt +∆tΓX . (B.20)
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Using Lemmas B.2.1 and B.2.2, we get

max
ℓj∈[max{0,t−di+1},t]

∥pℓji − pti∥ ≤ max
ℓj∈[max{0,t−di+1},t]

2L
t−1∑
k=ℓj

M
√
nγk +∆kΓX (B.21)

≤ 2L(t− ℓmin)(M
√
nγℓmin +∆ℓminΓX ), (B.22)

where ℓmin = max{0, t − di + 1}. Lastly, note that t − ℓmin ≤ di − 1, γℓmin/γt ≤ 2, and

∆ℓmin/∆t ≤ 4 for τ ≥ 2d̄− 1, which gives the final result.

B.3 Proof of Proposition 3.4.2

We will prove by induction that if at iteration t, ∀k ∈ [max{t− d̄ + 1, 0}, t], xk ∈ X int√
nηk

µ

,

then xt+1 ∈ X int√
nηt+1

µ

and use Assumption 3.3.1 that x0 ∈ X int√
nη0

µ

. This will ensure that

xt+1,s ∈ X int as well by choice of ∆t and ηt. Therefore, we assume that xk ∈ X int√
nηk

µ

. Note that

x̂t+1 ∈ X int by definition.

For all i ∈ [n], we consider a modified utility function f̃i(xi), which is equal to fi(xi) if

xi ∈ Xi, and an L-smooth, µ-strongly concave extension with β-smooth gradient beyond the

set Xi. Accordingly, domf̃i = Rdi , and f̃i is L-smooth and µ-strongly concave over Rdi with

β-smooth gradient.

Using the modified utility function, we define the modified price response function

g̃i(pi) = argmax
xi∈Rdi

f̃i(xi)− ⟨xi, pi⟩. (B.23)

The following Lemma, whose proof can be found in Appendix B.7, characterizes the regu-

larity properties of g̃i(pi), ∀i ∈ [n], under Assumption 3.2.2:

Lemma B.3.1 For all i ∈ [n], let g̃i(pi) be the modified price response function in (B.23).

Then, g̃i(pi) is bijective, 1/µ-Lipschitz continuous and β/µ3-smooth over Rdi . Furthermore,
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let Pi = {pi ∈ Rdi : gi(pi) ∈ X int
i }. The following hold true:

1. If g̃i(pi) ∈ X int
i , then pi ∈ Pi.

2. If pi ∈ Pi, then g̃i(pi) = gi(pi).

For each user i ∈ [n], we let x̃t+1
i = g̃i(p

t+1
i ) and we rearrange the price update rule:

x̃t+1
i − x̂t+1

i = x̃t+1
i − xti − ∇̂gti(pt+1 − pt). (B.24)

We can also write the Taylor expansion of the modified price response function g̃i(p) around

pti:

g̃i(p
t+1
i )− g̃i(pti) = ∇g̃i(pti)(pt+1

i − pti) +R1. (B.25)

We replace g̃i(pti) = gi(p
t
i) = xti and ∇g̃i(pti) = ∇gi(pti) (since pti ∈ Pi) and plug the above

equation into (B.24):

x̃t+1
i − x̂t+1

i = (∇gi(pti)− ∇̂gti)(pt+1
i − pti) +R1. (B.26)

To bound the norm of the above equation, we use Lemma 3.4.2 to bound the norm of the first

term and [199, Lemma 1] to bound the second term:

∥x̃t+1
i − x̂t+1

i ∥ ≤ eti∥pt+1
i − pti∥+

β

2µ3
∥pt+1

i − pti∥2. (B.27)

Rearranging the price update rule and using Lemmas 3.4.2 and B.2.2 we can bound the norm

of the price change:

∥pt+1
i − pti∥ ≤ ∥[∇̂gti ]−1∥∥x̂t+1

i − xti∥ ≤ 2L(M
√
nγt +∆tΓX ). (B.28)

Note that both upper bounds for eti and ∥pt+1
i − pti∥ are decreasing with t. We can bound eti
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using τ > 2µ∆ΓX
M

√
n

and 1 ≤ ΓX as:

eti < βM
√
din(µ/

√
n+ 32L(d̄− 1))/(4µ4(t+ τ)) (B.29)

= βM
√
dinγ

t(µ/
√
n+ 32L(d̄− 1))/(4µ3), (B.30)

and further upper bound ∥pt+1
i − pti∥ as

∥pt+1
i − pti∥ ≤ 3LM

√
nγt. (B.31)

Plugging the above bounds and γt into (B.27):

∥x̃t+1
i − x̂t+1

i ∥ <
3βLM2n

4µ5(t+ τ)2

(
6L+

√
di
(
µ/
√
n+ 32L(d̄− 1)

))
. (B.32)

Next, using Cauchy-Schwarz inequality, we bound ∥x̃t+1 − xt+1∥ as

∥x̃t+1 − x̂t+1∥ < 3βLM2n3/2

4µ5(t+ τ)2

(
6L+

√
d
(
µ/
√
n+ 32L(d̄− 1)

))
(B.33)

= 3∆t/4, (B.34)

where we used the definition of ∆t and
∑

i∈[n]
√
di ≤

√
dn. This establishes that by definition

of a shrunk set and ∆t/4 =
√
nηt+1

µ
, x̃t+1 ∈ X int√

nηt+1

µ

. Furthermore, let x̃t+1,s
i = g̃i(p

t+1,s
i ).

Using 1/µ-Lipschitz continuity of g̃i(pi):

∥x̃t+1,s
i − x̃t+1

i ∥ ≤ ∆t/(4
√
n), (B.35)

and ∥x̃t+1,s − x̃t+1∥ ≤ ∆t/4. Accordingly, we have

∥x̃t+1,s − x̂t+1∥ < ∆t, (B.36)
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which establishes that x̃t+1,s ∈ X int.

Lastly, note that if x̃t+1, x̃t+1,s ∈ X int, then for all i ∈ [n], x̃t+1
i , x̃t+1,s

i ∈ X int
i , or equiv-

alently, g̃i(pt+1
i ), g̃i(p

t+1,s
i ) ∈ X int

i . Using Lemma B.3.1 we have that pt+1
i , pt+1,s

i ∈ Pi,

∀i ∈ [n]. Hence, g̃i(pt+1) = gi(p
t+1) and x̃t+1

i = xt+1
i as well as g̃i(pt+1,s) = gi(p

t+1,s)

and x̃t+1,s
i = xt+1,s

i for all i ∈ [n], which proves the proposition.

B.4 Proof of Lemma B.2.1

Note that for pti ∈ Pi, ∇gi(pt) = [∇2fi(gi(p
t))]−1 is symmetric by Schwarz’s theo-

rem, since ∇2fi(gi(pi)) is β-Lipschitz continuous for pi ∈ Pi. Accordingly, the minimum

singular value of ∇gi(pti) is equal to smallest absolute eigenvalue of [∇2fi(gi(p
t))]−1, i.e.,

σmin(∇gi(pti)) = 1/L. This implies that if ∥∇̂gti −∇gi(pti)∥ ≤ 1/(2L) holds, then

σmin(∇̂gti) = min
∥x∥=1

∥∇̂gtix∥ = min
∥x∥=1

∥∇gi(pti)x+ (∇̂gti −∇gi(pti))x∥ (B.37)

≥ min
∥x∥=1

∥∇gi(pti)x∥ − max
∥x∥=1

∥(∇̂gti −∇gi(pti))x∥ (B.38)

= 1/L− 1/(2L) ≥ 1/(2L), (B.39)

which implies that ∥[∇̂gti ]−1∥ = 1/σmin(∇̂gti) ≤ 2L.

B.5 Proof of Lemma B.2.2

To bound ∥x̂t+1
i − xti∥, we will use the following as an auxiliary result:

Theorem B.5.1 [118, Theorem 1.2.1] Let X be a convex and compact set in Rd. Then, the

metric projection onto X is contracting, that is,

∥ΠX (x)− ΠX (y)∥ ≤ ∥x− y∥, ∀x, y,∈ Rd.
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Using the above result, we bound ∥x̂t+1
i − xti∥ as:

∥x̂t+1
i − xti∥ ≤ ∥x̂t+1 − xt∥ (B.40)

= ∥ΠX∆t (x
t + ptγt)− ΠX∆t (x

t) + ΠX∆t (x
t)− xt∥ (B.41)

≤ ∥ΠX∆t (x
t + ptγt)− ΠX∆t (x

t)∥+∥ΠX∆t (x
t)− xt∥ (B.42)

≤ ∥ptγt∥+∆tΓX ≤M
√
nγt +∆tΓX , (B.43)

where we used ∥pti∥ = ∥∇fi(xti)∥ ≤M since xti ∈ X int
i , and Proposition 3.4.1.

B.6 Proof of Theorem 3.4.1

We denote the regret incurred by the update stage as Ru(T ) =
∑T/2

t=1 f(x
⋆)− f(xt) and the

regret incurred by the sampling stage as Rs(T ) =
∑T/2

t=1 f(x
⋆)− f(xt,s). Let yt+1 = xt + γtpt.

By Lemma B.3.1, we know that pt = ∇f(xt), ∀t ≥ 0, since xt ∈ X int by Proposition 3.4.2.

For t ≥ 1, we write using strong concavity:

f(x⋆)− f(xt) ≤ ⟨−∇f(xt), xt − x⋆⟩ − µ

2
∥xt − x⋆∥2 (B.44)

=
1

γt
⟨xt − yt+1, xt − x⋆⟩ − µ

2
∥xt − x⋆∥2 (B.45)

=
1

2γt
(
∥xt − yt+1∥2 + ∥xt − x⋆∥2 − ∥yt+1 − x⋆∥2

)
− µ

2
∥xt − x⋆∥2. (B.46)

Next, we bound the ∥yt+1 − x⋆∥2 term using Theorem B.5.1 as follows:

∥yt+1 − x⋆∥2 ≥∥ΠX∆t (y
t+1)− ΠX∆t (x

⋆)∥2 = ∥x̂t+1 − ΠX∆t (x
⋆)∥2 (B.47)

=∥x̂t+1 − xt+1 + xt+1 − x⋆ + x⋆ − ΠX∆t (x
⋆)∥2 (B.48)

=∥x̂t+1 − xt+1∥2 + ∥xt+1 − x⋆∥2 + ∥x⋆ − ΠX∆t (x
⋆)∥2
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+ 2⟨x̂t+1−xt+1, xt+1−x⋆⟩+2⟨xt+1−x⋆, x⋆−ΠX∆t (x
⋆)⟩

+ 2⟨x⋆ − ΠX∆t (x
⋆), x̂t+1 − xt+1⟩ (B.49)

≥∥xt+1 − x⋆∥2 − 2∥x̂t+1 − xt+1∥∥xt+1 − x⋆∥

− 2∥xt+1 − x⋆∥∥x⋆ − ΠX∆t (x
⋆)∥

− 2∥x⋆ − ΠX∆t (x
⋆)∥∥x̂t+1 − xt+1∥

(B.50)

≥∥xt+1 − x⋆∥2 − 2∆tR(ΓX + 3/4)− 3/2(∆t)2ΓX (B.51)

:=∥xt+1 − x⋆∥2 − Ct, (B.52)

where the last inequality uses ∥xt+1− x̂t+1∥ < 3∆t/4 given by Proposition 3.4.2 and Proposi-

tion 3.4.1 to bound ∥x⋆−ΠX∆t (x
⋆)∥. Plugging this in (B.46):

f(x⋆)− f(xt) ≤M
2nγt

2
− µ

2
∥xt − x⋆∥2 + Ct

2γt
+

1

2γt
(∥xt−x⋆∥2 − ∥xt+1 − x⋆∥2). (B.53)

Summing from t = 1 to T/2 telescopes the ∥xt − x⋆∥2 terms:

nRu(T ) ≤
M2n log(T/2)

2µ
+
µτ

2
∥x1 − x⋆∥2 +

T/2∑
t=2

(
1

2γt
− 1

2γt−1
− µ

2

)
∥xt − x⋆∥2

− 1

2γT/2
∥xT/2+1 − x⋆∥2 +

T/2∑
t=1

Ct

2γt

(B.54)

≤M
2n log(T/2)

2µ
+
µτ

2
∥x1 − x⋆∥2 +

T/2∑
t=1

Ct

2γt
. (B.55)

Finally, note that Ct = O(1/t2) because the it consists of terms ∆t and (∆t)2. Therefore, we

can use the bounds
∑T/2

t=1
1

t+τ
≤∑T/2

t=1
1

t+2
≤ log(T/2) and for k ≥ 2,

∑T/2
t=1

1
(t+2)k

≤ 1 to show
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that:

T/2∑
t=1

Ct

2γt
≤µ∆R(3/4 + ΓX ) log(T/2) + 3µ∆2ΓX/4. (B.56)

Plugging (B.56) into (B.55) and dividing by both sides by n, we get the regret incurred by the

update stages. For the sampling stages, we note that due to the strong concavity of f

f(xt)−f(xt,s) ≤ ⟨∇f(xt,s), xt−xt,s⟩ ≤M
√
n
∆t−1

4
. (B.57)

Accordingly f(x⋆)− f(xt,s) ≤ f(x⋆)− f(xt) +M
√
n∆t−1/4. Summing from t = 1 to T/2,

we get

nRs(T )=nRu(T )+
M

4

T∑
t=1

∆t−1≤nRu(T )+
∆M
√
n

4
, (B.58)

which gives the final result as

R(T ) ≤ 2Ru(T ) + ∆M/(4
√
n). (B.59)

To get the convergence result, we rearrange (B.53):

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2(1− µγt) +M2n(γt)2 + Ct + 2γt(f(xt)− f(x⋆)) (B.60)

≤ ∥xt − x⋆∥2(1− µγt) +M2n(γt)2 + Ct. (B.61)
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We get an equation like the above for all t ≥ 0. We multiply each by (1−µγt+1) for t < T/2−1

and sum them from t = 0 to t = T/2− 1 to get:

∥xT/2 − x⋆∥2 ≤∥x0 − x⋆∥2
T/2−1∏
t=0

(1− µγt) +M2n

T/2−1∑
t=0

(γt)2
T/2−1∏
i=t+1

(1− µγi)

+

T/2−1∑
t=0

Ct

T/2−1∏
i=t+1

(1− µγi)
(B.62)

≤∥x0 − x⋆∥2 τ − 1

τ − 1 + T/2
+

M2n log(T/2)

µ2(T/2 + τ − 1)

+
2R(3/4 + ΓX )∆ log(T/2)

(T/2 + τ − 1)
+

3∆2ΓX

2(T/2 + τ − 1)
.

(B.63)

which completes the proof.

B.7 Proof of Lemma B.3.1

. The first part of the lemma follows from the same steps as in Lemma 3.4.1 for pi ∈ Rdi

instead of pi ∈ Pi, and using f̃i and g̃i instead of fi and gi.

Next, we prove the second part of the lemma. For the first statement, given a pi ∈ Rdi ,

suppose that g̃i(pi) ∈ X int
i . This implies that there exists xi ∈ X int

i that satisfies ∇f̃i(xi) = pi.

Since f̃i(xi) = fi(xi) for xi ∈ X int
i , the same xi solves the optimization problem in (3.5),

which implies gxi(pi) = g̃i(pi). Therefore, gi(pi) ∈ X int
i , which proves pi ∈ Pi by definition.

To prove the second statement, note that if pi ∈ Pi, then gi(pi) ∈ X int
i . Since Xi ⊆ domfi

by Assumption 3.2.1, the first order optimality condition of (3.5) implies that there exists

xi = gi(pi) ∈ X int
i such that ∇fi(xi) = pi. The same xi solves the optimization problem

(B.23), since fi(xi) = f̃i(xi) for xi ∈ X int
i . The optimal solution to (B.23) has to be unique

due to strong concavity, therefore it must hold true that g̃i(pi) = gi(pi).
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B.8 Proof of Remark 3.3.2

For a user i ∈ [n], using the modified price response function g̃i(pi) introduced in the proof

of Proposition 3.4.2, we have that

∥x̃−t
i − x0i ∥ ≤ η0/µ, ∀t ∈ [−di,−1], (B.64)

which implies that x̃−t
i ∈ X int

i because x0 ∈ X int
η0

√
n

µ

. As such, x̃−t
i = x−t

i and p−t
i = ∇fi(x−t

i ).
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Supplements to Chapter 4

C.1 Proofs for Results in Section 4.2

C.1.1 Proof of Proposition 4.2.1

To prove Proposition 4.2.1, we first formulate the static optimization problem via a net-

work flow model that characterizes the capacity region of the network for a given set of prices

ℓij(t) = ℓij ∀t (Hence, Λij(t) = Λij ∀t). The capacity region is defined as the set of all arrival

rates [Λij]i,j∈M, where there exists a charging and routing policy under which the queueing

network of the system is stable. Let xvi be the number of vehicles available at node i, αv
ij be the

fraction of vehicles at node i with energy level v being routed to node j, and αv
ic be the fraction

of vehicles charging at node i starting with energy level v. We say the static vehicle allocation

for node i and energy level v is feasible if αv
ic +

∑
j∈M
j ̸=i

αv
ij ≤ 1.

The optimization problem that characterizes the capacity region of the network ensures that

the total number of vehicles routed from i to j is at least as large as the nominal arrival rate to
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the queue (i, j). Namely, the vehicle allocation problem can be formulated as follows:

min
xv
i ,α

v
ij ,α

v
ic

ρ (C.1a)

subject to Λij ≤
vmax∑
v=vij

xviα
v
ij ∀i, j ∈M, (C.1b)

ρ ≥ αv
ic +

∑
j∈M
j ̸=i

αv
ij ∀i ∈M, ∀v ∈ V , (C.1c)

xvi = xv−1
i αv−1

ic +
∑
j∈M

x
v+vji
i α

v+vji
ji ∀i ∈M, ∀v ∈ V , (C.1d)

αvmax
ic = 0 ∀i ∈M, (C.1e)

αv
ij = 0 ∀v < vij, ∀i, j ∈M (C.1f)

xvi ≥ 0, αv
ij ≥ 0 αv

ic ≥ 0, ∀i, j ∈M, ∀v ∈ V , (C.1g)

xvi = αv
ic = αv

ij = 0 ∀v /∈ V , ∀i, j ∈M. (C.1h)

The constraint (C.1c) upper bounds the allocation of vehicles for each node i and energy

level v. The constraints (C.1d)-(C.1f) are similar to those of optimization problem (4.1) with

xvi = xvic +
∑

j∈M xvij , α
v
ic = xvic/x

v
i , and αv

ij = xvij/x
v
i .

Lemma C.1.1 Let the optimal value of (C.1) be ρ∗. Then, ρ∗ ≤ 1 is a necessary and sufficient

condition of rate stability of the system under some routing and charging policy.

Proof: Consider the fluid scaling of the queueing network, Qrt
ij =

qij(⌊rt⌋)
r

(see [200] for

more discussion on the stability of fluid models), and let Qt
ij be the corresponding fluid limit.

The fluid model dynamics is as follows:

Qt
ij = Q0

ij + At
ij −X t

ij,

where At
ij is the total number of riders from node i to node j that have arrived to the network
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until time t andX t
ij is the total number of vehicles routed from node i to j up to time t. Suppose

that ρ∗ > 1 and there exists a policy under which for all t ≥ 0 and for all origin-destination

pairs (i, j), Qt
ij = 0. Pick a point t1, where Qt1

ij is differentiable for all (i, j). Then, for all

(i, j), Q̇t1
ij = 0. Since Ȧt1

ij = Λij , this implies Ẋ t1
ij = Λij . On the other hand, Ẋ t1

ij is the total

number of vehicles routed from i to j at t1. This implies Λij =
∑vmax

v=vij
xviα

v
ij for all (i, j) and

there exists αv
ij and αv

ic at time t1 such that the flow balance constraints hold and the allocation

vector [αv
ij α

v
ic] is feasible, i.e. αv

ic +
∑m

j=1
j ̸=i

αv
ij ≤ 1. This contradicts ρ∗ > 1.

Now suppose ρ∗ ≤ 1 and α∗ = [αv∗
ij αv∗

ic ] is an allocation vector that solves the static

problem. The cumulative number of vehicles routed from node i to j up to time t is

St
ij =

vmax∑
v=vij

xviα
v
ijt =

vmax∑
v=0

xviα
v
ijt ≥ Λijt

. Suppose that for some origin-destination pair (i, j), the queue Qt1
ij ≥ ϵ > 0 for some positive

t1 and ϵ. By continuity of the fluid limit, there exists t0 ∈ (0, t1) such that Qt0
ij = ϵ/2 and

Qt
ij > 0 for t ∈ [t0, t1]. Then, Q̇t

ij > 0 implies Λij >
∑vmax

v=vij
xviα

v
ij , which is a contradiction.

By Lemma C.1.1, the capacity region CΛ of the network is the set of all Λij ∈ R+ for which

the corresponding optimal solution to the optimization problem (C.1) satisfies ρ∗ ≤ 1. As long

as ρ∗ ≤ 1, there exists a routing and charging policy such that the queues will be bounded away

from infinity.

The platform operator’s goal is to maximize its profits by setting prices and making routing

and charging decisions such that the system remains stable. In its most general form, the

problem can be formulated as follows:

max
ℓij ,xv

i ,α
v
ij ,α

v
ic

U(Λij(ℓij), x
v
i , α

v
ij, α

v
ic)

subject to [Λij(ℓij)]i,j∈M ∈ CΛ,

(C.2)
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where U(·) is the utility function that depends on the prices, demand for rides and the vehicle

decisions.

Recall that xvic = xviα
v
ic and xvij = xviα

v
ij . Using these variables and noting that

αv
ic +

∑
j∈M αv

ij = 1 when ρ∗ ≤ 1, the platform operator’s profit maximization problem

can be stated as (4.1). A feasible solution of (4.1) guarantees rate stability of the system, since

the corresponding vehicle allocation problem (C.1) has solution ρ∗ ≤ 1.

C.1.2 Proof of Proposition 4.2.2

For brevity of notation, let β + pi = Pi. Let νij be the dual variables corresponding to the

demand satisfaction constraints and µv
i be the dual variables corresponding to the flow balance

constraints. Since the optimization problem (4.1) is a convex quadratic maximization problem

(given a with uniform F (·)) and Slater’s condition is satisfied, strong duality holds. We can

write the dual problem as:

min
νij ,µv

i

max
ℓij

m∑
i=1

m∑
j=1

(
λij(1−

ℓij
ℓmax

) (ℓi − νij)
)

(C.3a)

subject to νij ≥ 0, (C.3b)

νij + µv
i − µv−vij − βτij ≤ 0, (C.3c)

µv
i − µv+1

i − Pi ≤ 0 ∀i, j, v. (C.3d)

For fixed νij and µv
i , the inner maximization results in the optimal prices:

ℓ∗ij =
ℓmax + νij

2
. (C.4)

By strong duality, the optimal primal solution satisfies the dual solution with optimal dual

variables ν∗ij and µv
i
∗, which completes the first part of the proposition. The dual problem with
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optimal prices in (C.4) can be written as:

min
νij ,µv

i

m∑
i=1

m∑
j=1

λij
ℓmax

(
ℓmax − νij

2

)2

(C.5a)

subject to νij ≥ 0, (C.5b)

νij + µv
i − µ

v−vij
j − βτij ≤ 0, (C.5c)

µv
i − µv+1

i − Pi ≤ 0 ∀i, j, v. (C.5d)

The objective function in (C.5a) with optimal dual variables, along with (C.4) suggests:

P =
m∑
i=1

m∑
j=1

λij
ℓmax

(ℓmax − ℓ∗ij)2,

where profits P is the value of the objective function of both optimal and dual problems. To

get the upper bound on prices, we go through the following algebraic calculations using the

constraints. The inequality (C.5d) gives:

µ
v−vji
i ≤ vjiPi + µv

i , (C.6)

and equivalently:

µ
v−vij
j ≤ vijPj + µv

j . (C.7)

The inequalities (C.5c) and (C.5b) yield:

µv
i − µ

v−vij
j − βτij ≤ 0,

and equivalently:

µv
j − µ

v−vji
i − βτji ≤ 0, (C.8)
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Inequalities (C.6) and (C.8):

µv
j ≤ µv

i + βτji + vjiPi. (C.9)

And finally, the constraint (C.5c):

νij ≤ βτij + µ
v−vij
j − µv

i

(C.7)
≤ βτij + vijPj + µv

j − µv
i

(C.9)
≤ βτij + vijPj + βτji + vjiPi.

Replacing Pi = pi + β and rearranging the terms:

νij ≤ β(τij + τji + vij + vji) + vijpj + vjipi. (C.10)

Using the upper bound on the dual variables νij and (C.4), we can upper bound the optimal

prices.

C.2 Proofs for Results in Section 4.3

C.2.1 Proof of Proposition 4.3.1

For brevity of notation, let βc + pi = Pi. Let λij be the dual variables corresponding to the

demand satisfaction constraints and µe
i be the dual variables corresponding to the flow balance

constraints. We can state the dual problem as:

min
λij ,µe

i

max
ℓ1ij

n∑
i=1

n∑
j=1

θijD(ℓ1ij,∞)
(
ℓ1ij − λij

)
(C.11a)

subject to λij ≥ 0, (C.11b)

λij + µe
i − µ

e−eij
j − βtτij ≤ 0, (C.11c)
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µe
i − µe+1

i − Pi ≤ 0 ∀i, j, e. (C.11d)

For fixed λij and µe
i , the first order optimality condition is:

∂D(ℓ1ij,∞)

∂ℓ1ij
(ℓ1ij − λij) +D(ℓ1ij,∞) = 0 (C.12)

Depending on the region ℓ1ij is in, the demand function D(ℓ1ij,∞) has different forms:

D(ℓ1ij,∞)=



1− (ℓ1ij)
2

2ℓ2maxσ(1−σ)
,

ℓ1ij
ℓmax

< (1−σ)

1+σ−
2ℓ1ij
ℓmax

2σ
, (1− σ) ≤ ℓ1ij

ℓmax
< σ

(1−
ℓ1ij

ℓmax
)2

2σ(1−σ)
, σ ≤ ℓ1ij

ℓmax
≤ 1

(C.13)

First, suppose that
ℓ1ij
ℓmax

< (1− σ). Solving for ℓ1ij in (C.12) using (C.13), we get:

ℓmij =
(
λij +

√
λ2ij + 6ℓ2maxσ(1− σ)

)
/3. (C.14)

Furthermore, the second order optimality condition satisfies:

∂2D(ℓ1ij,∞)

∂(ℓ1ij)
2

(ℓmij − λij) + 2
∂D(ℓ1ij,∞)

∂ℓ1ij

∣∣∣∣∣
ℓ1ij=ℓmij

< 0. (C.15)

Hence, KKT conditions are satisfied and the optimal primal solution satisfies the dual solution

with optimal dual variables λmij . By checking the condition ℓmij ≤ (1− σ)ℓmax using (C.14), we

get the condition that λmij ≤ 3−5σ
2

. The optimal prices for the regions where
ℓmij
ℓmax
∈ [1 − σ, σ)

and
ℓmij
ℓmax
∈ [σ, 1] are derived in a similar fashion using the demand functions in those regions

given in (C.13).

To get the upper bound on prices, we go through the following algebraic calculations using
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the constraints. The inequality (C.11d) gives:

µ
e−eji
i ≤ ejiPi + µe

i , (C.16)

and equivalently:

µ
e−eij
j ≤ eijPj + µe

j . (C.17)

The inequalities (C.11c) and (C.11b) yield:

µe
i − µ

e−eij
j − βtτij ≤ 0,

and equivalently:

µe
j − µ

e−eji
i − βtτji ≤ 0, (C.18)

Inequalities (C.16) and (C.18):

µe
j ≤ µe

i + βtτji + ejiPi. (C.19)

And finally, the constraint (C.11c):

λij ≤ βτij + µ
e−eij
j − µe

i

(C.17)
≤ βtτij + eijPj + µe

j − µe
i

(C.19)
≤ βtτij + eijPj + βτji + ejiPi.

Replacing Pi = pi + βc and rearranging the terms:

λij≤βt(τij+τji)+eij(pj+βc)+eji(pi+βc)=λij, (C.20)

where the last equality follows from the definition provided in the proposition. Hence, we get
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the desired upper bound on the prices using the upper bound on the dual variables.

C.2.2 Proof of Proposition 4.3.2

Using Assumption 4.3.2, we see that (3−5σ)
2

≤ 0 and

(3−5σ)
2

ℓmax ≤ λmij ≤ max
i,j

λij ≤ (3σ−1)(3−σ)
4(5−3σ)

ℓmax ≤ 3σ−1
2
ℓmax. Hence, the optimal

prices fall in the region [(1− σ)ℓmax, σℓmax), and are given by:

ℓmij = ((1 + σ)ℓmax + λmij )/4. (C.21)

The dual problem with optimal prices in (C.21) can be stated as:

min
λij ,µe

i

n∑
i=1

n∑
j=1

θij
4σℓmax

(
(1 + σ)ℓmax − 2λij

2

)2

(C.22a)

subject to (C.11b)− (C.11d). (C.22b)

The objective function in (C.22a) with optimal dual variables, along with (C.21) suggests:

Pm =
n∑

i=1

n∑
j=1

θij
4σℓmax

((1 + σ)ℓmax − 2ℓmij )
2,

where profits Pm is the optimal value of the objective function of both primal and dual prob-

lems (Since the demand function is linear in the specified region, the problem is convex and

KKT conditions are satisfied. Hence, strong duality holds).

Consumer surplus is given by the difference between the price that customers pay and the

price that they are willing to pay. For OD pair (i, j) the customers with v1 > ℓmij have a positive

surplus of v1− ℓmij and the customers with v1 ≤ ℓmij have a zero surplus since they either do not

take the ride or have exactly a valuation of ℓmij . Since v1 = σx + (1 − σ)y and x and y are iid

uniform random variables in [0, ℓmax], the consumer surplus for a single unit of potential riders
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between OD pairs (i, j) is computed as:

∫ ℓmax

0

∫ ℓmax

ℓm
ij

−(1−σ)y

σ

1

ℓ2max

(σx+ (1− σ)y − ℓmij )dxdy =

ℓmax(σ
2 + σ + 1)− 3ℓmij (1 + σ − ℓmij

ℓmax
)

6σ
.

(C.23)

The total consumer surplus is then:

CSm
n∑

i=1

n∑
j=1

θij
ℓmax(σ

2 + σ + 1)− 3ℓmij (1 + σ − ℓmij
ℓmax

)

6σ
. (C.24)

C.2.3 Proof of Proposition 4.3.3

In order to prove that the firms are in an equilibrium, we first follow similar steps

as the proof of Proposition 4.3.1 and determine the optimal prices. Suppose that

ℓ1ij, ℓ
2
ij ∈

[
1−σ
2
ℓmax, (1− σ)ℓmax

]
. In that region:

D(ℓ1ij, ℓ
2
ij) =

4σ(1− σ − ℓ1ij−ℓ2ij
ℓmax

)− (
ℓ1ij+ℓ2ij
ℓmax

+ σ − 1)2

8σ(1− σ) (C.25)

∂D(ℓ1ij, ℓ
2
ij)

∂ℓ1ij
=

1

ℓmax

−6σ − 2ℓ1ij
ℓmax
− 2ℓ2ij

ℓmax
+ 2

8σ(1− σ) (C.26)

∂2D(ℓ1ij, ℓ
2
ij)

∂(ℓ1ij)
2

=
1

ℓ2max

−2
8σ(1− σ) (C.27)

Evaluated at ℓ1ij = ℓ2ij , the above expressions become:

D(ℓ1ij, ℓ
2
ij)
∣∣∣
ℓ1ij=ℓ2ij

=
1

2
−

(
2ℓ1ij
ℓmax

+ σ − 1)2

8σ(1− σ) (C.28)

∂D(ℓ1ij, ℓ
2
ij)

∂ℓ1ij

∣∣∣∣∣
ℓ1ij=ℓ2ij

=
1

ℓmax

−6σ − 4ℓ1ij
ℓmax

+ 2

8σ(1− σ) (C.29)
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For a given λij , the first order optimality condition is:

∂D(ℓ1ij, ℓ
2
ij)

∂ℓ1ij

∣∣∣∣∣
ℓ1ij=ℓ2ij

(ℓ1ij − λij) +D(ℓ1ij, ℓ
2
ij)
∣∣∣
ℓ1ij=ℓ2ij

= 0. (C.30)

We plug equations (C.28) and (C.29) into the above expression to get a quadratic equation in

ℓ1ij , which has two solutions. One of the solutions is infeasible with ℓ1ij < 0. Hence, we get a

unique solution at:

ℓdij =
(3− 5σ)ℓmax + 2λij +

√
∆1

8
, (C.31)

where ∆1 = 4ℓ2max+(2λij+(15σ−3)ℓmax)(2λij+(1−σ)ℓmax). Note that in the region where

ℓ1ij = ℓ2ij ≤ (1 − σ)ℓmax, D(ℓ1ij, ℓ
2
ij) is concave and thus we need to check the second order

optimality condition:

∂2D(ℓ1ij, ℓ
2
ij)

∂(ℓ1ij)
2

(ℓdij − λij) + 2
∂D(ℓ1ij, ℓ

2
ij)

∂ℓ1ij

∣∣∣∣∣
ℓ1ij=ℓ2ij=ℓdij

< 0. (C.32)

By plugging Equations (C.27), (C.29), and (C.31) into the above expression, one verifies that

it holds true. Hence, KKT conditions are satisfied and the optimal primal solution satisfies the

dual solution with optimal dual variables λdij:

ℓdij =
(3− 5σ)ℓmax + 2λdij +

√
∆∗

1

8
, (C.33)

where ∆∗
1 = 4ℓ2max + (2λdij + (15σ − 3)ℓmax)(2λ

d
ij + (1 − σ)ℓmax). Since the conjecture was

that ℓdij ∈
[
1−σ
2
ℓmax, (1− σ)ℓmax

]
, we check:

1− σ
2

ℓmax ≤
(3− 5σ)ℓmax + 2λdij +

√
∆∗

1

8
≤ (1− σ)ℓmax,
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to get λdij ≤ 3(1−σ)2

2(1+σ)
. For λdij = 0, (C.33) evaluates to (3−5σ)+

√
−15σ2+18σ+1
8

ℓmax ≥ 1−σ
2
ℓmax,

hence the prices fall in the specified region.

Now suppose that ℓ1ij, ℓ
2
ij ∈ ((1− σ)ℓmax,

σ+1
2
ℓmax]. In that region:

D(ℓ1ij, ℓ
2
ij) =

(1− σ +
ℓ2ij−ℓ1ij
ℓmax

)(3 + σ − 3ℓ1ij+ℓ2ij
ℓmax

)

8σ(1− σ) (C.34)

By following the same steps as before, we get optimal prices uniquely as:

ℓdij =
(5− 3σ)ℓmax + 2λdij −

√
∆∗

2

4
, (C.35)

where ∆∗
2 = 2(σℓmax − λdij)2 + 2(ℓmax − λdij)2 + 11(σ − 1)2ℓ2max. By imposing the condition

that ℓdij ∈ ((1− σ)ℓmax,
σ+1
2
ℓmax], one identifies:

3(1− σ)2
2(1 + σ)

ℓmax < λdij ≤
3σ + 1

4
ℓmax. (C.36)

The upper bound on the dual variables is derived identically to the Proposition 4.3.1. Hence

according to Assumption 4.3.2

λdij ≤ λij ≤
(3σ − 1)(3− σ)

4(5− 3σ)
ℓmax <

3σ + 1

2
ℓmax,

is satisfied.

All in all, we get the optimal prices as:

ℓdij =


(3−5σ)ℓmax+2λd

ij+
√

∆∗
1

8

λd
ij

ℓmax
≤ 3(σ−1)2

2(σ+1)

(5−3σ)ℓmax+2λd
ij−
√

∆∗
2

4
o.w.

(C.37)

We now show that when both firms set prices equal to {ℓdij}i,j∈N , they are in an equilibrium.
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Given firm −f ’s prices equal to {ℓdij}i,j∈N , firm f solves the following best response problem

to determine its optimal prices:

max
xe
ic,x

e
ij ,ℓ

f
ij

n∑
i=1

n∑
j=1

θijℓ
f
ijD(ℓfij, ℓ

d
ij)−

n∑
i=1

emax−1∑
e=0

(βc + pi)x
e
ic − βt

n∑
i=1

n∑
j=1

emax∑
e=eij

xeijτij

(C.38a)

subject to θijD(ℓfij, ℓ
d
ij) ≤

emax∑
e=eij

xeij ∀i, j ∈ N , (C.38b)

(4.16c)− (4.16g).

The first order optimality condition states:

∂D(ℓfij, ℓ
d
ij)

∂ℓfij
(ℓfij − λij) +D(ℓfij, ℓ

d
ij) = 0. (C.39)

Setting ℓfij = ℓdij satisfies the above equation with the optimal dual variable λdij be-

cause ℓ1ij = ℓ2ij = ℓdij is a solution to (C.30) with λij = λdij . Since both firms have the

identical best response problem (C.38), the first order condition is satisfied for both when

ℓ1ij = ℓ2ij = ℓdij,∀i, j ∈ N , and hence the firms are in an equilibrium.

C.2.4 Proof Of Proposition 4.3.4

We show that when ℓ1ij ̸= ℓ2ij and both firms serve greater than zero demand for an OD pair

(i, j), the firms cannot be in equilibrium. We do it by showing that the first order condition can

not hold for both firms simultaneously.

We let ℓ1ij = ℓ2ij + δℓmax, and add the following constraints:

• We constrain δ < (1 − σ) (If δ ≥ (1 − σ), then firm 1 does not serve any demand for
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that OD pair since the lines depicted on Figure 4.10a intersect at y ≥ ℓmax).

• We let ℓ1ij + ℓ
2
ij ≥ (1−σ)ℓmax (Otherwise if ℓ1ij + ℓ

2
ij = (1−σ)ℓmax−2ϵ lines depicted in

Figure 4.10a intersect at x = −2ϵ
2σ

. Then both firms can increase their profits by increasing

their prices by ϵ, while keeping the demand same).

• We let ℓ1ij + ℓ2ij ≤ (1 + σ)ℓmax (Otherwise, the lines depicted in Figure 4.10a intersect

at x ≥ ℓmax, and hence their prices don’t affect each others’ demand. In that case, the

prices are determined according to the monopoly prices, which are bounded by σℓmax

according to Assumption 4.3.2 and hence their sum is always bounded by (1 + σ)ℓmax).

Depending on whether ℓ1ij and ℓ2ij are greater than (1 − σ)ℓmax, we have different demand

functions and hence we study the following three cases:

Case 1: Let ℓ1ij, ℓ
2
ij ≤ (1 − σ)ℓmax. For ease of notation, we define ℓf :=

ℓfij
ℓmax

for firm f .

When ℓ1, ℓ2 ≤ 1− σ, the demand function for firm f is given by:

D(ℓf , ℓ−f ) =
4σ(1− σ − (ℓf − ℓ−f ))− (ℓf + ℓ−f + σ − 1)2

8σ(1− σ) (C.40)

∂D(ℓf , ℓ−f )

∂ℓf
=
−6σ − 2ℓf − 2ℓ−f + 2

8σ(1− σ) (C.41)

Using (C.40) and ℓ1 − ℓ2 = δ, the demand functions are determined as:

D(ℓ1, ℓ2) =
4σ(1− σ − δ)− (σ + 2ℓ1 − 1− δ)2

8σ(1− σ) , (C.42)

D(ℓ2, ℓ1) =
4σ(1− σ + δ)− (σ + 2ℓ1 − 1− δ)2

8σ(1− σ) . (C.43)

Furthermore, using (C.41), the derivatives of the demand functions are determined as:

∂D(ℓ1, ℓ2)

∂ℓ1
=
∂D(ℓ2, ℓ1)

∂ℓ2
=
−6σ − 4ℓ1 + 2 + 2δ

8σ(1− σ) . (C.44)
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In an equilibrium, both firms should satisfy the first order condition (FOC). We show that the

FOC can not hold for both of the firms. Define λf =
λf
ij

ℓmax
for firm f and let FOC for firm 2

hold:
∂D(ℓ2, ℓ1)

∂ℓ2
(ℓ2 − λ2) +D(ℓ2, ℓ1) = 0. (C.45)

Using (C.42), (C.43), and (C.44), we can rewrite the above equation as:

∂D(ℓ1, ℓ2)

∂ℓ1
(ℓ2 − ℓ1 + ℓ1 − λ1 + λ1 − λ2) +D(ℓ1, ℓ2)−

4σ(1− σ − δ)
8σ(1− σ) +

4σ(1− σ + δ)

8σ(1− σ)

=
∂D(ℓ1, ℓ2)

∂ℓ1
(ℓ1 − λ1) +D(ℓ1, ℓ2) +

δ

1− σ +
∂D(ℓ1, ℓ2)

∂ℓ1
(−δ − (λ2 − λ1)) = 0.

(C.46)

To proceed, we use the following lemma:

Lemma C.2.1 Let |δ| ≤ 1− σ, ℓ1 − ℓ2 = δ, and ℓ1, ℓ2 ≤ 1− σ. If the prices satisfy the FOC,

then the following inequality holds:

|λ1 − λ2| ≤ (2− σ(3σ − 2))|δ| (C.47)

Proof: Using (C.43) and (C.44), one can state the FOC for a given price ℓ−f = ℓf + δ

to get a quadratic equation in ℓf . This equation has two solutions, one of which is infeasible.

Hence, we get the optimal price ℓf as:

ℓf =
3− 5σ + 2λf − 3δ +

√
∆

8
, (C.48)

where

∆ = (δ + 2λf + 7σ − 1)2 + 32σ(δ − 2σ + 1).
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We compute the change in the optimal price with respect to the dual variable as:

∂ℓf
∂λf

=
1

4

(
1 +

δ + 2λf + 7σ − 1√
∆

)
(C.49)

The goal is to lower bound ∂ℓf
∂λf

. In order to do so, we study how ∂ℓf
∂λf

changes with λf and δ.

We first observe that
∂2ℓf
∂λ2f

< 0,

hence the we need to maximize λf in order to minimize ∂ℓf
∂λf

. Since ℓf is constrained to be less

than 1− σ, by upper bounding the expression in (C.48) we get a bound on λf as:

λf ≤
δ2 + δ(4− 8σ) + 3(σ − 1)2

2(δ + σ + 1)
(C.50)

Next, we plug the upper bound on λf to (C.49) to get an expression that is only dependent on

σ and δ and compute the partial derivative with respect to δ to get:

∂

∂δ

∂ℓf
∂λf

< 0,

hence we maximize δ in order to minimize ∂ℓf
∂λf

. We set δ = 1− σ to get:

∂ℓf
∂λf
≥ 1

2− σ(3σ − 2)
. (C.51)

Above inequality hods for all ℓf ≤ 1− σ. Since ℓ1, ℓ2 ≤ 1− σ, this means:

∣∣∣ ℓ1 − ℓ2
λ1 − λ2

∣∣∣ ≥ ℓ1 − ℓ2
λ1 − λ2

≥ 1

2− σ(3σ − 2)
. (C.52)

Plugging ℓ1 − ℓ2 = δ concludes the proof.

247



Supplements to Chapter 4 Chapter C

Going back to (C.46), we rearrange:

∂D(ℓ1, ℓ2)

∂ℓ1
(ℓ1 − λ1) +D(ℓ1, ℓ2) = −

δ

1− σ −
∂D(ℓ1, ℓ2)

∂ℓ1
(−δ − (λ2 − λ1))

Lemma C.2.1
≤ − δ

1− σ −
∂D(ℓ1, ℓ2)

∂ℓ1
δ(−1− (σ(3σ − 2)− 2))

= − δ

1− σ − δ(1− σ(3σ − 2))
−6σ − 4ℓ1 + 2 + 2δ

8σ(1− σ)

=
δ

8σ(1− σ)(−8σ + (1− σ(3σ − 2))(6σ + 4ℓ1 − 2− 2δ))

ℓ1≤1−σ

≤ δ

8σ(1− σ)(−8σ + (1− σ(3σ − 2))(2 + 2σ − 2δ))

≤ δ

8σ(1− σ)(−8σ + (1− σ(3σ − 2))(2 + 2σ))

= − δ

4σ(1− σ)(3σ
3 + σ2 + σ − 1) < 0, ∀σ ∈ [1/2, 1]. (C.53)

We conclude that FOC for firm 1 does not hold, hence they can not be in an equilibrium.

Case 2: Let ℓ1, ℓ2 ≥ (1−σ). In this region, the demand function and its derivative for firm

f can be stated as:

D(ℓf , ℓ−f ) =
(1− σ + (ℓ−f − ℓf ))(3 + σ − (3ℓf + ℓ−f ))

8σ(1− σ) (C.54)

∂D(ℓf , ℓ−f )

∂ℓf
=
−6 + 2σ + 6ℓf − 2ℓ−f

8σ(1− σ) (C.55)

Using the above equations and ℓ1 − ℓ2 = δ, we write:

D(ℓ1, ℓ2) =
(1− σ − δ)(3 + σ − 4ℓ2 − 3δ)

8σ(1− σ) , (C.56)

D(ℓ2, ℓ1) =
(1− σ + δ)(3 + σ − 4ℓ2 − δ)

8σ(1− σ) , (C.57)

∂D(ℓ1, ℓ2)

∂ℓ1
=
−6 + 2σ + 4ℓ2 + 6δ

8σ(1− σ) , (C.58)
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∂D(ℓ2, ℓ1)

∂ℓ2
=
−6 + 2σ + 4ℓ2 − 2δ

8σ(1− σ) . (C.59)

We follow similar steps as in Case 1 to show that FOC for both firms can not hold. We state

the FOC for firm 2:

∂D(ℓ2, ℓ1)

∂ℓ2
(ℓ2 − λ2) +D(ℓ2, ℓ1)

(C.58),(C.59)
=

(
∂D(ℓ1, ℓ2)

∂ℓ1
− 8δ

8σ(1− σ)

)
(ℓ2 − λ2) +D(ℓ2, ℓ1)

(C.56),(C.57)
=

(
∂D(ℓ1, ℓ2)

∂ℓ1
− 8δ

8σ(1− σ)

)
(ℓ2 − λ2) +D(ℓ1, ℓ2) +

δ(8− 4δ − 8ℓ2)

8σ(1− σ)

=
∂D(ℓ1, ℓ2)

∂ℓ1
(ℓ2 − ℓ1 + ℓ1 − λ1 + λ1 − λ2)

− 8δ

8σ(1− σ)(ℓ2 − λ2) +D(ℓ1, ℓ2) +
δ(8− 4δ − 8ℓ2)

8σ(1− σ)

=
∂D(ℓ1, ℓ2)

∂ℓ1
(ℓ1 − λ1) +D(ℓ1, ℓ2)−

8δ

8σ(1− σ)(ℓ2 − λ2)

+
∂D(ℓ1, ℓ2)

∂ℓ1
(−δ + λ1 − λ2) +

δ(8− 4δ − 8ℓ2)

8σ(1− σ)

= 0 (C.60)

For the FOC of firm 1 to hold, the following expression has to be equal to 0:

8δ

8σ(1− σ)(ℓ2 − λ2)−
∂D(ℓ1, ℓ2)

∂ℓ1
(−δ + λ1 − λ2)−

δ(8− 4δ − 8ℓ2)

8σ(1− σ) (C.61)

We show that the above expression is always less than zero by upper bounding it. To proceed,

we use the following lemma:

Lemma C.2.2 Let |δ| ≤ 1− σ, ℓ1 − ℓ2 = δ, and ℓ1, ℓ2 ≥ 1− σ. If the prices satisfy the FOC,

then the following inequality holds:

|λ1 − λ2| ≤
2|δ|

1− 2λ−2σ√
48(1−σ)2+(2λ−2σ)2

, (C.62)
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where

λ =
(3− σ)(3σ − 1)

4(5− 3σ)
.

Proof: Using (C.57) and (C.59), one can state the FOC for a given price ℓ−f = ℓf + δ

to get a quadratic equation in ℓf . This equation has two solutions, one of which is infeasible.

Hence, we get the optimal price ℓf as:

ℓf =
5− 3σ + 3δ + 2λf −

√
∆

4
(C.63)

where

∆ = (δ − σ − 1 + 2λf )
2 + 12(σ − 1)2 + 12δ(δ + 2− 2σ).

Similar to Lemma C.2.1, the goal is to lower bound ∂ℓf
∂λf

. It is computed as:

∂ℓf
∂λf

=
1

4

(
2− 2(δ + λf − σ − 1)√

∆

)
(C.64)

In order to minimize the RHS of the above expression, we study how it depends on the variables

it is a function of. We first identify that

∂2ℓf
∂λ2f

< 0,
∂

∂δ

∂ℓf
∂λf

< 0, (C.65)

and hence ∂ℓf
∂λf

is minimized when δ = 1− σ and λf = (3−σ)(3σ−1)
4(5−3σ)

. We plug these expressions

to ∂ℓf
∂λf

to get:

∂ℓf
∂λf
≥ 1

2

1− 2λ− 2σ√
48(1− σ)2 + (2λ− 2σ)2

 , (C.66)

where λ := (3−σ)(3σ−1)
4(5−3σ)

.
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The above inequality holds for all ℓf ≥ 1− σ as long as the FOC holds, hence this means:

∣∣∣ ℓ1 − ℓ2
λ1 − λ2

∣∣∣ ≥ ℓ1 − ℓ2
λ1 − λ2

≥
1− 2λ−2σ√

48(1−σ)2+(2λ−2σ)2

2
. (C.67)

Plugging ℓ1 − ℓ2 = δ concludes the proof.

The upper bound (C.62) in Lemma C.2.2 is concave in σ and is decreasing with σ in the interval

[0, 1]. For brevity of exposition, we therefore use a linear upper bound in σ. It can be shown

that
2

1− 2λ−2σ√
48(1−σ)2+(2λ−2σ)2

≤ 9− 5σ

4
, ∀σ ∈ [0, 1]. (C.68)

Using (C.68), we upper bound (C.61):

8δ

8σ(1− σ)(ℓ2 − λ2)−
∂D(ℓ1, ℓ2)

∂ℓ1
(−δ + λ1 − λ2)−

δ(8− 4δ − 8ℓ2)

8σ(1− σ)

<
δ

8σ(1− σ)
(
8(ℓ2 − λ2)− (8− 4δ − 8ℓ2)−

5− 5σ

4
(−6 + 2σ + 4ℓ2 + 6δ)

) (C.69)

Given λ2 and δ, ℓ2 is uniquely determined as in (C.63). We plug ℓ2 to (C.69), and conjecture

that (C.69) < 0. That gives:

δ(45σ + 19) + (1− σ)(5σ − 10λ2 + 53) < (5σ + 11)
√
∆ (C.70)

We take the square of both sides, collect terms on LHS, and re-state the conjecture as:

f(σ, λ2, δ) < 0, (C.71)
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where

f(σ, λ2, δ) =δ
2(1700σ2 + 280σ − 1212)

+ 8δ(25σ2 − 275σ2 + 459σ − 81)

− 300σ4 − 400σ3 + 2296σ2 − 5856σ

− 128(5σ + 3)λ22 + 32λ2δ(25σ
2 − 30σ − 27)

− 64λ2(5σ
2 − 46σ + 9) + 1236

(C.72)

Our goal is to maximize f(σ, λ2, δ) and show that it is less than 0. We first identify that

∂f(σ,λ2,δ)
∂λ2

> 0, hence f(σ, λ2, δ) is maximized when λ2 is maximized. We evaluate f(σ, λ2, δ)

at λ2 =
(3σ−1)(3−σ)

4(5−3σ)
. We next identify that ∂f(σ,,δ)

∂δ
> 0, hence set δ = 1− σ to get:

f(σ, λ2, δ) ≤ f(σ,
(3σ − 1)(3− σ)

4(5− 3σ)
, 1− σ)

=
8(3σ−1)(5σ−7)(−186 + 507σ−209σ2−155σ2+75σ4)

(5− 3σ)2
.

(C.73)

The above equation has roots at σ ≈ −1.8406, σ = 1/3, σ ≈ 0.49744, σ ≈ 1.2599, and

σ = 7/5 and therefore is less than 0 for σ ∈ [1/2, 1]. Hence, we conclude that f(σ, λ2, δ) < 0

and the conjecture was true. Going back, this means that the final expression in (C.69) is less

than zero, which means the expression in (C.61) is less than zero, meaning that the FOC of

firm 1:
∂D(ℓ1, ℓ2)

∂ℓ1
(ℓ1 − λ1) +D(ℓ1, ℓ2) < 0. (C.74)

Hence, the FOC for firm 1 can not hold, meaning the firms can not be in an equilibrium.

Case 3: Let ℓ2 ≤ 1 − σ, ℓ1 ≥ 1 − σ. We show by contradiction that the FOC-satisfying

prices can not be δ apart. We know that if the prices are in equilibrium, FOC holds for both.
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The optimal prices are given by (C.48) and (C.63) (replacing δ by −δ) as:

ℓ1 =
5− 3σ − 3δ + 2λ1 −

√
∆1

4
, (C.75)

ℓ2 =
3− 5σ + 2λ2 − 3δ +

√
∆2

8
, (C.76)

where

∆1 = (−δ − σ − 1 + 2λ1)
2 + 12(σ − 1)2 + 12δ(δ − 2 + 2σ),

and

∆2 = (δ + 2λ2 + 7σ − 1)2 + 32σ(δ − 2σ + 1).

But since ℓ1 = ℓ2 + δ, the following must be true:

3− 5σ + 2λ2 + 5δ +
√
∆2

8
=

5− 3σ − 3δ + 2λ1 −
√
∆1

4
. (C.77)

We show that the above equality can not hold by upper bounding the following function, which

is the difference between the LHS and the RHS of the above equality:

g(λ1, λ2, δ, σ) =
−7 + σ + 11δ + 2λ2 − 4λ1 +

√
∆2 − 2

√
∆1

8
. (C.78)

In order to upper bound the above function, we use the following lemma:

Lemma C.2.3 Let |δ| ≤ 1−σ and ℓ1−ℓ2 = δ. If the prices satisfy the FOC, then the following

inequality holds:

|λ1 − λ2| ≥ |δ| (C.79)

Proof: Given ℓ−f = ℓf + δ, the optimal prices for firm f are given by equations (C.48)

and (C.63), for ℓf ≤ 1−σ and ℓf > 1−σ, respectively. Our goal is to upper bound ∂ℓf
∂λf

, so that

we can lower bound the difference between the dual variables, given that the price difference
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is δ. In proofs of Lemmas C.2.1 and C.2.2, we have shown that

∂2ℓf
∂λ2f

< 0,
∂

∂δ

∂ℓf
∂λf

< 0,

and hence in order to upper bound ∂ℓf
∂λf

, we set λf = 0 and δ = 0 in equations (C.49) and

(C.64). That gives:

∂ℓf
∂λf
≤ 1

4

(
1 +

7σ − 1√
−18σ2 + 15σ + 1

)
, ℓf ≤ 1− σ, (C.80)

∂ℓf
∂λf
≤ 1

4

(
2 +

2(σ + 1)√
13σ2 − 22σ + 13

)
, ℓf > 1− σ (C.81)

Both of the above equations are increasing with σ, and are equal to 1 when σ = 1. Hence:

∂ℓf
∂λf
≤ 1, (C.82)

or equivalently
∂λf
∂ℓf
≥ 1. (C.83)

Since this holds for all ℓf : ∣∣∣λ1 − λ2
ℓ1 − ℓ2

∣∣∣ ≥ λ1 − λ2
ℓ1 − ℓ2

≥ 1. (C.84)

Setting ℓ1 − ℓ2 = δ concludes the proof.

Noting that ∂g(λ1,λ2,δ,σ)
∂λ2

≥ 0 and using Lemma C.2.3 with λ2 ≤ λ1− δ, we upper bound (C.78)

as:

g(λ1, λ2, σ, δ) ≤ ĝ(λ1, σ, δ) =
−7 + σ + 9δ − 2λ1 +

√
∆̂1 − 2

√
∆2

8
, (C.85)
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where

∆̂1 = (2λ1 − δ + 7σ − 1)2 + 32σ(δ − 2σ + 1).

Our goal is to maximize ĝ over its variables, and show that it is always less than 0. That would

mean that when the prices are determined by the FOC, the difference between ℓ2 + δ and ℓ1 is

always less than zero, which contradicts with ℓ1 − ℓ2 = δ. We compute the partial derivatives

of ĝ with respect to δ and λ1 to get:

∂ĝ(λ1, σ, δ)

∂λ1
> 0,

∂ĝ(λ1, σ, δ)

∂δ
> 0, (C.86)

and hence ĝ(λ1, σ, δ) is maximized when δ = 1 − σ and λ1 = 1
2

(Note that

λ1 ≤ (3−σ)(3σ−1)
4(5−3σ)

≤ 1
2
):

ĝ(λ1, σ, δ) ≤ ĝ(1/2, σ, 1− σ)=−8σ−1 +
√
−32σ2 + 48σ + 1

8
. (C.87)

Finally, we observe that ∂ĝ(1/2,σ,1−σ)
∂σ

< 0 for σ ∈ [1/2, 1], and hence ĝ is maximized when

σ = 1/2. Evaluated at σ = 1/2:

ĝ(1/2, 1/2, 1/2) =
1

8
(
√
17− 5) < 0. (C.88)

Hence, with the FOC satisfying prices, ℓ2 + δ is always less than ℓ1, which is a contradiction.

This means that FOC can not hold for both firms and thus they can not be in an equilibrium.

We have shown that given δ > 0, the FOC can not hold for both of the firms in none of the

cases. Hence, the only case when FOC holds for both of the firms is when δ = 0, i.e., ℓ1 = ℓ2.

Therefore asymmetric equilibria can not exist.
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C.2.5 Proof of Proposition 4.3.5

The symmetric duopoly equilibrium prices are determined in the proof of Proposition 4.3.3

(in Appendix C.2.3) as:

ℓdij =


(3−5σ)ℓmax+2λd

ij+
√

∆∗
1

8

λd
ij

ℓmax
≤ 3(σ−1)2

2(σ+1)

(5−3σ)ℓmax+2λd
ij−
√

∆∗
2

4
o.w.

, (C.89)

where

∆∗
1 = 4ℓ2max + (2λdij + (15σ − 3)ℓmax)(2λ

d
ij + (1− σ)ℓmax)

and

∆∗
2 = 2(σℓmax − λdij)2 + 2(ℓmax − λdij)2 + 11(σ − 1)2ℓ2max.

Both equations in (C.89) are decreasing functions of λdij . In order to lower bound the

difference between the monopoly prices and the duopoly prices, we lower bound the monopoly

prices by setting λmij = 0 and upper bound the duopoly prices by setting λdij = λij . In order

to upper bound the difference, we upper bound the monopoly prices by setting λmij = λij and

lower bound the duopoly prices by setting λdij = 0.

C.2.6 Proof of Proposition 4.3.6

Using λmij ≤ λij ≤ max
i,j

λij ≤ (3σ−1)(3−σ)
4(5−3σ)

ℓmax and λmij ≥ 0, (4.17) and (4.18) give:

(1 + σ)ℓmax

4
≤ ℓmij ≤

7 + 14σ − 9σ2

40− 24σ
ℓmax. (C.90)

Furthermore since σ ∈ [3/5, 1]; 2
5
≤ 1+σ

4
and 7+14σ−9σ2

40−24σ
≤ 3

4
, which completes the part for

bounds on monopoly prices. The bounds on duopoly prices is identical using equations in

(C.37).
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According to the definitions of ℓm, ℓ
m
, ℓd, and ℓ

d
, the bounds on the ratio of prices is:

ℓd

ℓ
m ≤

ℓdij
ℓmij
≤ ℓ

d

ℓm
. (C.91)

By plugging in the expressions of ℓm, ℓ
m
, ℓd, and ℓ

d
we get the desired inequality.

C.2.7 Proof of Proposition 4.3.7

From (C.13), the demand function of the monopoly with the optimal prices is:

D(ℓmij ,∞) =
1 + σ − 2ℓmij

ℓmax

2σ
, (C.92)

since ℓmij ∈ [(1 − σ)ℓmax, σℓmax] under Assumption 4.3.2. Plugging in the expressions for ℓm

and ℓ
m

and imposing the condition σ ∈ [3/5, 1], we get the desired bounds on (4.28).

The duopoly demand function for ℓdij = ℓd is given by (C.28) as:

D
d
= D(ℓd, ℓd) =

1

2
−

( 2ℓd

ℓmax
+ σ − 1)2

8σ(1− σ) , (C.93)

since ℓd ≤ (1− σ)ℓmax. The duopoly demand function for ℓdij = ℓ
d

is given by (C.34) as:

Dd = D(ℓ
d
, ℓ

d
) =

3 + σ − 4 ℓ
d

ℓmax

8σ
, (C.94)

since ℓ
d ≥ (1−σ)ℓmax. By plugging in the expressions for ℓd and ℓ

d
and imposing the condition

σ ∈ [3/5, 1], we get the desired inequalities in (4.29).

According to the definitions of Dm, D
m
, Dd, and D

d
, the bounds on the ratio of demand

functions is:
Dd

D
m ≤

Dd

Dm
≤ D

d

Dm . (C.95)
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By plugging in the expressions of Dm, D
m
, Dd, and D

d
and using the condition σ ∈ [3/5, 1],

we get the desired inequality in (4.30).

C.2.8 Proof of Proposition 4.3.8

The total profits generated in monopoly is given by (4.19). Accordingly, the profits earned

by serving the induced demand between OD pair (i, j) is:

Pm
ij =

θij
4σℓmax

(ℓmax(1 + σ)− 2ℓmij )
2 (C.96)

Furthermore, lower optimal monopoly prices generate higher profits according to (4.19).

Hence, the upper bound on Pm
ij is given by:

θij
4σℓmax

(ℓmax(1 + σ)− 2ℓm)2 = θij
(1 + σ)2

16σ
= θijP

m
, (C.97)

To get the lower bound, we evaluate (C.96) at ℓmij = ℓ
m

. By using the condition σ ∈ [3/5, 1],

we get the desired inequality in (4.31).

For the profits generated in duopoly, we first show that lower duopoly equilibrium prices

generate higher profits. Since (4.21) bears a similar form to (4.16), the dual objective with the

optimal prices and dual variables can be stated as (similar to (C.11a)):

P d =
n∑

i=1

n∑
j=1

θijD(ℓdij, ℓ
d
ij)
(
ℓdij − λdij

)
=

n∑
i=1

n∑
j=1

P d
ij, (C.98)

where we define

P d
ij = θijD(ℓdij, ℓ

d
ij)
(
ℓdij − λdij

)
(C.99)

to be profits earned by serving the induced demand between OD pair (i, j). By taking the
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derivative of P d
ij with respect to ℓdij:

dP d
ij

dℓdij
= θij

(
dD(ℓdij, ℓ

d
ij)

dℓdij

(
ℓdij − λdij

)
+D(ℓdij, ℓ

d
ij)(1−

dλdij
dℓdij

)

)
(C.100)

From (C.37),
dℓdij
dλd

ij
≤ 1. Hence,

dλd
ij

dℓdij
≥ 1. Furthermore, ℓdij ≥ λdij according to (C.37). Finally

from (C.28) and (C.34) (evaluated at ℓ1ij = ℓ2ij = ℓdij),
dD(ℓdij ,ℓ

d
ij)

dℓdij
≤ 0. All in all that gives:

dP d
ij

dℓdij
≤ 0,

which means lower duopoly equilibrium prices generate higher profits. In order to get the

upper bound, we evaluate (C.99) at ℓdij = ℓd (and λdij = 0 in this case)1. To get the lower

bound, we evaluate (C.99) at ℓdij = ℓ
d

(and λdij = (3σ−1)(3−σ)
4(5−3σ)

ℓmax in this case)2. To get the

desired inequality at (4.32), we impose σ ∈ [3/5, 1].

According to the definitions of Pm, P
m
, P d, and P

d
, the bounds on the ratio of profits

earned by serving the induced demand for OD pair (i, j) is:

P d

P
m ≤

P d
ij

Pm
ij

≤ P
d

Pm . (C.101)

By plugging in the expressions of Pm, P
m
, P d, and P

d
and using the condition σ ∈ [3/5, 1],

we get the desired inequality in (4.33).

1When ℓ1ij = ℓ2ij = ℓdij = ℓd ≤ (1 − σ)ℓmax, (4.21) is not a convex optimization problem (since the demand
function is concave in that region). Hence, strong duality might not hold. However, since we are computing an
upper bound on the objective function, the objective value of (4.21) is always less than or equal to the objective
value of the dual problem given by (C.98), due to weak duality. Hence, the upper bound holds and is tight when
strong duality holds.

2When ℓ1ij = ℓ2ij = ℓdij = ℓ
d ≥ (1 − σ)ℓmax, (4.21) is a convex optimization problem since the demand

function is linear in that region. Hence, strong duality holds and the value of (C.98) is equal to the objective value
of (4.21).
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C.2.9 Proof of Proposition 4.3.9

The consumer surplus in monopoly is given by (4.20). Accordingly, the consumer surplus

of customers requesting a ride between OD pair (i, j) is:

CSm
ij = θij

ℓmax(σ
2 + σ + 1)− 3ℓmij (1 + σ − ℓmij

ℓmax
)

6σ
, (C.102)

Observe that
∂CSm

ij

∂ℓmij
= θij

6
ℓmij

ℓmax
−3σ−3

6σ
≤ 0 for ℓmij ∈ [(1 − σ)ℓmax, σℓmax]. Hence, lower optimal

monopoly prices generate higher consumer surplus. Since ℓmij ≥ ℓm = 1+σ
4
ℓmax, the upper

bound on CSm
ij is given by:

θij
ℓmax(σ

2 + σ + 1)− 3ℓmax
1+σ
4
(1 + σ − 1+σ

4
)

6σ
= θij

7σ2 − 2σ + 7

96σ
ℓmax = θijCS

m
. (C.103)

Similarly, the lower bound on the consumer surplus is given by evaluating (C.102) at

ℓmij = ℓ
m
= 7+14σ−9σ2

40−24σ
ℓmax. By using the condition σ ∈ [3/5, 1], we get the desired inequality

in (4.34).

Similar to the monopoly, lower duopoly prices generate higher consumer surplus by induc-

ing more customers and generating higher surplus per customer. For ℓdij = ℓd ≤ (1 − σ)ℓmax,

the upper bound on the consumer surplus of customers requesting a ride between OD pair (i, j)

is computed as:

2θij

(∫ ℓd

1−σ

ℓmax
2

∫ ℓmax

ℓd−(1−σ)y
σ

(σx+ (1− σ)y − ℓd)dxdy +
∫ ℓmax

ℓd

1−σ

∫ ℓmax

0

(σx+ (1− σ)y − ℓd)dxdy
)

=
θijℓmax

24σ(1− σ)
(
(2σ)3 − (σ + 1− 2

ℓd

ℓmax

)3 − 24σ(1− ℓd

ℓmax

)(σ − 1 +
ℓd

ℓmax

)
)

= θijCS
d
. (C.104)

where the factor 2 is due to the symmetry of two firms.
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For ℓdij = ℓ
d
= 1+σ

4
ℓmax ≥ (1− σ)ℓmax, the lower bound is computed as:

2θij

∫ ℓmax

ℓmax
2

∫ ℓmax

ℓ
d−(1−σ)y

σ

(σx+ (1− σ)y − ℓd)dxdy = θij
σ2 − 2σ + 13

96σ
ℓmax = θijCSd (C.105)

By using the condition σ ∈ [3/5, 1], we get the desired inequality in (4.35).

According to the definitions of CSm,CS
m
,CSd, and CS

d
, the bounds on the ratio of con-

sumer surplus of customers requesting ride between OD pair (i, j) is:

CSd

CS
m ≤

CSd
ij

CSm
ij

≤ CS
d

CSm . (C.106)

By plugging in the expressions of CSm,CS
m
,CSd, and CS

d
and using the condition

σ ∈ [3/5, 1], we get the desired inequality in (4.36).

C.2.10 MPC with Dynamic Prices in Duopoly

One possible way to model the real-time duopoly pricing is an alternating-move duopoly

game. Specifically, every even t0, firm 1 sets new prices and executes fleet decisions, whereas

firm 2 only executes fleet decisions while keeping prices same as the previous time period.

Every odd t0, firm 2 sets new prices and executes fleet decisions, whereas firm 1 only executes

fleet decisions while keeping prices same as the previous time period. Furthermore, every even

t0, firm 1 is able to observe firm 2’s prices at the planning time, however, the future prices of

firm 2 depend on firm 2’s future states, which is unavailable to firm 1. Every odd t0 however,

since firm 2 will set the prices, firm 1 is oblivious to what firm 2’s prices will be, including the

planning time. One possible way of planning for these uncertainties would be to assume that

firm 2’s unknown prices would be the symmetric duopoly equilibrium prices and determine the

best strategy accordingly. In respect to these modeling specifications, we can formulate MPC

optimization problem with dynamic prices in the duopoly with slight modifications to (4.37).
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In particular, every even t0 firm 1 solves (4.37) with

D(ℓ1ijt0 ,∞)← D(ℓ1ijt0 , ℓ
2
ijt0

), (C.107)

D(ℓ1ijt,∞)← D(ℓ1ijt, ℓ
d
ij), ∀t > t0, (C.108)

ℓ1ijt = ℓ1ijt−1, ∀i, j ∈ N , ∀t = t0 + 2k − 1, k ∈ Z+, (C.109)

where ℓ2ijt0 = ℓ2ijt0−1. Every odd t0, firm 1 solves (4.37) with

D(ℓ1ijt,∞)← D(ℓ1ijt, ℓ
d
ij), ∀t ≥ t0 (C.110)

ℓ1ijt = ℓ1ijt−1, ∀i, j ∈ N , ∀t = t0 + 2k − 2, k ∈ Z+. (C.111)

The same method is applied for firm 2 with odd/even t switched.
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