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ABSTRACT OF THE DISSERTATION 

Effective Health Monitoring Strategies for Complex Structures 

by 

Colin Michael Haynes 

Doctor of Philosophy in Structural Engineering 

University of California, San Diego, 2014 

Professor Michael Todd, Chair 

The aim of this dissertation is to develop structural health monitoring (SHM) strategies 

specifically suited for application to structures of significant geometric or material complexity.  

To accomplish this aim, a statistical framework is developed that characterizes and idealizes such 

environments and then finds optimal approaches from a detection theory standpoint.  An optimal 

detector for discriminating damaged and undamaged cases in complex structures is derived.  A 

maximum-likelihood approach to estimating the first arrival point is presented as part of a larger 

framework for damage localization.  Novel sensor fusion approaches are also developed to 

account for the varying uncertainties associated with each sensor pair in the array. 
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Extensive empirical validation of the statistical framework is provided through 

experiments on multiple testbeds with diverse geometries, materials, and damage modes.  The 

proposed approaches to damage detection and localization are proved to be effective through 

quantitative comparison with existing approaches from the literature. 

Characterizing the wave scattering properties (also called scattering matrices) from 

geometric features is an important topic for guided wave SHM, whether the features are damage 

modes or not.  Two different sensing methodologies are presented for constructing empirical 

estimates of the scattering matrices.  Additionally, other topics of critical importance to SHM 

system design are addressed—namely, uncertainty quantification, Bayesian experimental design, 

and optimal sensor placement.  The result is a significant step forward in advancing SHM toward 

structures of realistic complexity.   
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  Chapter 1

Introduction 

1.1. Structural Health Monitoring 

Structural health monitoring (SHM) refers to the process of in-service embedded 

monitoring for effectively managing structural systems with respect to the potential occurrence 

of damage.  The goal of a SHM system is to decrease the cost of sustaining safe operations by 

facilitating condition-based maintenance [1].  In other words, the principal objective is to direct 

decision-making based on the current health of the structure.  While related, SHM systems are 

distinguished in concept from non-destructive evaluation (NDE) approaches in two major 

respects.  First, SHM systems utilize embedded sensors to provide monitoring without the need 

to take the system offline for inspection. Second, SHM systems are focused on more 

autonomous operation, reducing or even eliminating the need for expert interpretation of results. 

It is now common practice to present SHM in terms of a multi-step, statistical pattern 

recognition process.  Viewed through such a lens, there exists a natural hierarchy of information 

about a structure’s state that may be exploited in order to provide a meaningful diagnosis and 
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thereby make well-informed decisions about performance, maintenance, or operational fitness 

[2].  This hierarchy is summarized as follows. 

1. Damage detection – The most basic SHM systems must provide some indication about 

whether the structure has become damaged.  Because all materials have inherent 

defects, such an assessment must be based upon pre-established definitions of the target 

damage resulting from an operational evaluation of the system [3].  Damage detection is 

addressed theoretically in Section 2.2 and experimental validation is provided in 

Section 3.3.1. 

2. Damage localization – Following the question of existence is the question of damage 

location.  A novel approach to damage localization is presented in Section 2.4 and a 

comparative study of various localization techniques is given in Section 3.3.2 

3. Damage extent and damage type – Questions regarding characterization of the 

damage are next addressed.  To answer these questions requires the implementation of a 

model of the damage with respect to the inspection technique used.  Chapter 4 

addresses methods of damage characterization that are useful for accomplishing this 

step. 

4. Damage prognosis – The ultimate goal for practical implementation of SHM systems 

is to use information about the damage to drive decision-making, perhaps through 

estimating failure probabilities or the structure’s remaining useful life.  While a 

tremendous incentive exists to develop such technology, solutions have proven elusive 

for most applications [4]. 

In order to answer the previous questions and satisfy the objective of the SHM system, 

a four-step process has been described by Farrar and Worden [1]. 
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1. Operational evaluation – The economic and life-safety case for implementing SHM 

must be understood in as much detail as possible, so as to establish the parameters that 

will drive the system design.  The operating environment, expected damage modes, and 

any limitations on data acquisition must be considered in this step. 

2. Data acquisition – The sensing modality must be chosen along with all of the particulars 

of the data acquisition process.  This step must also consider any necessary data 

cleansing and normalization that will help in isolating the damage-sensitive aspects of 

the acquired signals. 

3. Feature selection – “Features” in the SHM literature are the metrics used to distinguish 

damaged and undamaged data.  This dissertation will adopt a detection-theory-based 

approach to identifying appropriate features, and will refer to the process alternately as 

detector design. 

4. Statistical model development – Once the features have been selected, statistical models 

of the damaged and undamaged distributions are necessary to provide estimates of the 

structural health with quantifiable confidence. 

Although all steps must be considered, this dissertation is primarily focused on the last 

two steps in this outline – that is, with developing appropriate metrics and statistical models for 

enhancing damage detection, localization, and characterization. 

1.2. Review of Existing Structural Health Monitoring Technologies 

Due to the potential cost savings offered by its realization, there has been much interest 

in the field of SHM recently across many different application domains.  Ensuring the continued 

serviceability of civil infrastructure (such as bridges and buildings) is a significant challenge 
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both in the United States and globally that has attracted attention to SHM [5, 6].  Pipeline 

inspection has been an active research field, driven partly by very significant interest in 

developing the technology for the oil and gas industry [7–9].  In the aerospace industry, several 

application areas have garnered significant interest.  Rapid inspection of satellite structures for 

pre-launch verification has made use of SHM/NDE technologies [10, 11].  Chia et al. presented 

work toward developing smart hangar technology, where noncontact measurements would be 

used to inspect aircraft structures [12].  Advanced composite materials have generated 

substantial interest in the research community due primarily to their increased usage in both 

military and commercial aircraft – only a few examples from this extensive research field are 

cited for reference [13–15].  Next-generation marine vessels are also adopting composite 

materials and for similar reasons there exists a need for capable monitoring systems [16]. 

Many different sensing methodologies have been deployed for these various 

applications in order to generate the data necessary for SHM.  Vibration-based SHM is a vast 

field based on monitoring the dynamic response of structures to a variety of inputs – a 

comprehensive review was carried out by Doebling et al. [17].  There are many methods based 

upon strain measurements, which can be sensed by conventional gages or other techniques [18].  

Optical fibers (especially fiber Bragg grating strain sensors) have been of particular interest for 

strain-based SHM due to a number of inherent advantages, including survivability, immunity to 

electromagnetic interference, and ease of embedding into various structures [19].   

There are also hosts of supporting technologies that are necessary for the final 

implementation of SHM.  For larger structures, wireless sensor networks are very attractive and 

often necessary to avoid the complications encountered when using traditional cable 

connections [20].  Often, battery power is impractical for deployment over the entire design life 

of the structure, giving rise to the field of energy harvesting.  By using various ambient energy 
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sources—of which the most common is mechanical vibration, but which may also include solar, 

thermal, or chemical sources—the power demands of the sensor nodes can often be met 

indefinitely [21, 22].  Damage prognosis, which has been recognized as a key step in moving 

SHM to practice, stands at the intersection of failure modeling, hazard analysis, and 

probabilistic risk assessment [4]. 

In this dissertation, the research has been driven less by a specific application than by a 

perceived need in all application areas to address objectives of SHM in a way that recognizes 

the inherent uncertainties in the process.  That said, most of the structures and specimens used 

for experimental testing are either directly taken from aerospace structures or motivated by 

challenges in the aerospace industry.  To solve the challenges that arise in these applications, 

this dissertation will focus on active sensing systems based on ultrasonic guided waves, which 

are described in the next section. 

1.3. Introduction to Ultrasonic Guided Waves 

Ultrasonic testing represents one of the most prevalent inspection techniques for NDE 

and SHM [23].  The term “ultrasonic” simply refers to the frequency range of the waves, which 

is higher than the range of human hearing.  The work in this dissertation makes use of 

frequencies in the range of 50-500 kHz, although for other applications either higher or lower 

frequencies may be warranted. 

The ultrasonic inspection process begins with some kind of transducer converting a 

voltage pulse into a mechanical stress wave.  The transducer is usually a piezoelectric element, 

which transforms applied voltages to mechanical strain and vice versa.  When bonded to a 

structure, the sensors are capable of both exciting ultrasonic waves into the host material and 

sensing incident waves.  When the ultrasonic waves are guided by the boundaries of a one-
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dimensional (1D) or two-dimensional (2D) propagation medium, they belong to a unique class 

known as ultrasonic guided waves (UGWs).  Guided waves are formed by the resonance of 

waves in the material as they reflect off the boundaries.  The particular class of guided wave 

that is of interest for many UGW SHM applications is that of Lamb waves, which propagate in 

plate-like structures [24, 25].  There are two classes of Lamb wave modes—symmetric modes 

and antisymmetric modes.  Although the number of modes in each class is infinite, higher 

modes can only exist at higher excitation frequencies.  Therefore, below a certain cut-off 

frequency-thickness product, only the fundamental antisymmetric (A0) and fundamental 

symmetric (S0) modes exist.  All of the experiments considered in this dissertation are below the 

cut-off frequency-thicknesses product of their respective media, and therefore these are the only 

two modes generally discussed.  Which mode is dominant for a particular application primarily 

relates to the transducer design, although the so-called “mode ratio” may be influenced by other 

factors as well. 

Guided waves are of particular interest in SHM for a number of reasons.  Among 

nondestructive testing methods, UGW inspection offers relatively large coverage areas per 

sensor with appropriate system design, particularly considering the corresponding sensitivity to 

small damage [26].  UGW inspection is often still feasible when access to the part is limited.  

The transducers used for generating UGW are easily embeddable and relatively inexpensive 

[27]. 

The propagation of UGW is governed by several parameters, most notably material 

properties (especially elastic moduli and density), the product of excitation frequency and plate 

thickness, temperature, material stresses, and boundary conditions.  In general, the velocity of 

UGW is a frequency-dependent parameter, giving rise to the phenomenon known as dispersion.  

Because of the dispersive character of these waves, any wave with non-zero frequency 
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bandwidth (i.e., all real waves) will have a distinct group and a phase velocity.  The group 

velocity is the speed at which the envelope of the wave packet propagates, while the phase 

velocity is the speed of the particles within the wave packet.  Because of their dispersive 

character, guided wave packets tend to spread in time as they propagate in space, making signal 

interpretation much more challenging [28]. 

For monitoring of damage, the wavelength of interrogation is perhaps the most critical 

parameter.  In order to maintain sensitivity to a particular form of damage, the wavelengths 

must be of the same order as the damage scale [3, 29].  The efficacy of UGW as an inspection 

technique is ultimately dependent on the fact that the wave scattering changes when damage is 

present.  One of the most significant challenges associated with the UGW SHM approach is that 

all geometric irregularities (stiffener elements, material changes, boundaries, etc.) cause 

changes in the wave propagation.  Most of these geometric features represent impedance 

mismatches that cause waves to scatter in the same way as the target damage, which further 

complicates the accurate inspection of geometrically-complex structures.  Note that geometric 

or structural “features” should not be confused with signal “features” introduced previously, 

which in this dissertation will usually be referred to as “metrics” or “detectors” to avoid 

ambiguity. 

1.4. Motivation for Statistical Approach 

There are two fundamental approaches that may be taken to analyze the structural 

response to UGW inspection.  The first is to construct a high-fidelity model of the wave 

propagation, beginning from the fundamental wave equation and taking into account all of the 

boundary conditions and properties of the medium necessary to accurately predict the expected 

response.  Analytical solutions are generally difficult to obtain, but several authors have 
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obtained such solutions for very specific types of scatterers [30–32].  Where exact solutions 

prove intractable, finite element modeling and other related numerical methods have been 

employed by many authors to characterize wave propagation, especially the interaction of those 

waves with defects [29, 33–35]. 

The second approach is to adopt a statistical viewpoint, treating the signals as random 

processes and attempting to characterize them sufficiently to facilitate the SHM pattern 

recognition procedure.  For particularly complex structures, analytical solutions can quickly 

become intractable and numerical simulations infeasible, whereas statistical methods tend to 

flourish where uncertainty is high.  As a result, the statistical approach has been taken in this 

dissertation.  In some areas, this strategy implies developing simplified approximate models to 

characterize complex phenomena [36].  Other authors have proposed a variety of methods that 

minimize the a priori information required for UGW SHM, in a similar spirit [37–40]. 

1.5. Data Cleansing 

1.5.1. Baseline Subtraction 

Because of the inherently comparative nature of the questions posed in the SHM 

process, it is necessary to ask how the signals produced by UGW sparse sensor arrays are 

changed by the presence of damage.  It has already been mentioned that to produce damage-

sensitive signals, UGW inspection relies on wave scattering from the damage (in much the same 

way as a sonar or radar system does).  Because any change in mechanical impedance causes 

UGW to scatter, there seem to be few damage modes to which UGW are not sensitive in some 

way. 
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On the other hand, to distinguish damaged from undamaged signals, some comparison 

with a reference is essential.  Baseline subtraction proposes to subtract from each newly-

recorded signal a previous signal recorded in a known reference state.  The result, known as the 

“residual” signal, may then be operated upon.  In theory, if the structure and the environmental 

conditions have not changed, the new signal will be very similar to the baseline, resulting in a 

residual that is very close to zero.  If there are significant reflections in the residual signal, they 

are interpreted as reflections from damage that was not present in the baseline state.  Naturally, 

any real case will be subject to some noise processes that cause imprecise baseline subtraction 

and non-zero residuals which, without appropriate adjustment, can also be interpreted as 

damage reflections. 

1.5.2. Environmental Compensation 

In order to create a successful UGW SHM system, it is necessary to discriminate benign 

changes in the signals from those caused by damage.  UGW are impacted by many factors, 

including changes in the structure, sensor properties, or bond properties.  The structure may see 

changes in loading profile, boundary conditions, or the vibration environment, to name a few 

examples.  Sensors are susceptible to load, temperature, and usually to electromagnetic fields.  

The bond condition may change over time with any parameter that influences epoxy, most 

notably humidity and temperature.  For a SHM system to provide robust damage information 

over the life of the structure, all of these factors (and more) must be taken into account and 

procedures must be put in place to mitigate their effect. 

Of all of the potential environmental changes that affect the signal without indicating 

damage, temperature effects are perhaps the most significant and most studied.  Temperature 

affects both the group and phase velocity of UGW propagating in the structure, as well as 

changing the bond properties and the transducer properties themselves.  As reported by 
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Konstantinidis et al., the velocity changes with temperature arise from two sources [40].  

Thermal expansion changes the dimensions of the structure, including the thickness, density, 

and propagation distance, and the wave velocities change according to the temperature 

dependence of the elastic modulus of the material.  Temperature can also degrade the 

piezoelectric properties of the sensors, depending on the particular material used for actuation, 

leading to a decrease in signal amplitude at high temperatures [41].  Changes in adhesive 

properties can also decrease the received amplitudes in a similar fashion. 

Environmental compensation is not the focus of this dissertation, and all of the 

experiments were carried out in a lab setting where environmental parameters could be 

controlled.  However, it is not a topic that can entirely be ignored when utilizing baseline 

subtraction techniques, which are especially sensitive to changes in wave velocity.  Therefore, 

optimal baseline subtraction (OBS), as described by Croxford et al. [42], is applied in the 

majority of the tests considered here.  The OBS procedure involves first saving a database of 

measurements distributed across the range of environmental conditions anticipated for the 

operation of the structure.  The structure must be in a reference (presumed undamaged) 

condition as this set of baselines is acquired.  For each test thereafter, each of the baselines is 

subtracted from the current test result, yielding the residual signal.  The implicit assumption 

behind all SHM methods is that changes due to damage must be somehow orthogonal to the 

benign changes occurring due to changes in the operating environment—otherwise it would be 

impossible to identify damage.  Baseline subtraction techniques assume, therefore, that the 

damage will produce changes in the signal that are not contained in the database of baseline 

measurements.  The OBS procedure chooses the baseline that minimizes the norm of the 

residual, reasoning that such a minimization will choose the baseline taken under most similar 

environmental condition to the current test. 



11 

 

1.5.3. Sparse Array Signal Processing 

In designing a sensor system to acquire UGW data from a structure, another decision 

point is encountered regarding the necessary density of instrumentation.  In some applications, 

sensors are needed only to cover a very limited area and may be clustered very closely around 

particular “hotspots” where damage initiation is anticipated.  Some systems are designed to 

have very dense arrays of sensors covering a wider area over which damage may appear.  Still 

others may cluster sensors into nodes that are suitable for coherent beamforming of incoming 

waves, by which the direction of the incoming wave may be determined as well as the range 

[43].  The sensor system with the greatest ratio of coverage area to sensor count is the sparse 

array system, whereby each instrumented location consists of only a single transducer, and each 

pair of transducers is separated by a distance much larger than the wavelength of interrogation.  

Sparse array techniques can provide excellent coverage area per sensor, thus offering cost and 

weight savings over methods utilizing denser configurations [44].  The decision as to which 

type of system is optimal is ultimately based on the specific application.  This dissertation will 

focus on the last class – sparse arrays. 

In a sparse sensor array, the relative phase between sensors is highly uncertain.  As part 

of the data cleansing process, after the OBS procedure is implemented, the data are therefore 

enveloped to remove phase information.  The enveloping procedure involves taking the 

magnitude of the analytic signal, implemented by the Hilbert transform.  As Croxford et al. 

noted, it is important to envelope after baseline subtraction to achieve the best results [44]. 

1.6. Contributions of the Dissertation Work 

The significant contributions of this dissertation are summarized as follows: 

1. A statistical framework for SHM is developed and demonstrated. 
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2. An optimal damage detector for sparse arrays and minimum a priori knowledge is 

derived and validated. 

3. A novel sensor fusion approach for enhanced localization is developed and validated. 

4. Scattering matrix characterizations for complex geometries and damage modes are 

studied, leading to the development of geometrical models for improved localization. 

5. Critical supporting topics that will enable SHM to bridge the gap to practice are 

addressed in uncertainty quantification and Bayesian experimental design. 
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  Chapter 2

Statistical Framework for Structural Health Monitoring 

2.1. Introduction to Detection Theory 

SHM is naturally framed in terms of a statistical pattern recognition framework.  

Therefore, it is natural to begin with an introduction to detection theory.  For a given detection 

problem, the decision to be made is whether damage is present or not present.  This dichotomy 

immediately suggests the application of a binary hypothesis test, and in fact this dissertation 

will borrow substantially from the field of detection theory in order to find the most effective 

SHM strategies [45]. 

Given the binary hypothesis test, there are four decision states that may occur: 

undamaged trials may be labeled undamaged (true negatives), undamaged trials labeled 

damaged (false positives or false alarms), damaged trials labeled undamaged (false negatives), 

and damaged trials labeled as damaged (true positives or correct detections).  The probability of 

false alarm (
FAP ) is then simply defined as the ratio of the number of false alarms to the total 

number of undamaged trials.  Similarly, the probability of detection (
DP ) is the ratio of correct 

detections to damaged trials.  There is an inherent trade-off between the probability of detection 

and the probability of false alarm – both cannot be minimized simultaneously.  Figure 1 shows a 

graphical illustration of the tradeoff, where the red distribution is the damaged class and the 
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blue distribution is undamaged.  Usually, the detection problem is formulated as maximizing the 

probability of detection with a fixed acceptable probability of false alarm.  This approach to 

optimal decision-making is known as the Neyman-Pearson (NP) criterion for damage detection 

[45]. 

 

Figure 1 – Example histogram for binary hypothesis testing illustration 

To provide quantifiable comparisons of different binary classifiers (or in the 

terminology of the SHM field, different features for damage detection), receiver operating 

characteristic (ROC) analysis is used.  For a given binary detection problem the ROC compares 

the detection rate to the false alarm rate parametrically, independent of any specific underlying 

probabilistic structure [46].  To calculate the ROC curves, a threshold value is first chosen and 

each feature value is compared to that threshold.  Then, the probability of detection and the 

probability of false alarm are calculated based on the resulting classifications.  Varying the 
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threshold value from the minimum to the maximum feature values while repeating the 

preceding calculation at each point will generate the desired ROC curves. 

Typically, ROC curves are plotted with probability of detection on the vertical axis and 

the probability of false alarm on the horizontal axis.  A perfect detector would have a true 

positive rate of unity regardless of the false alarm rate; because this rarely occurs in practice, it 

is helpful to compare which detectors approach the performance of the perfect detector.  

Qualitatively, best performance corresponds to curves that are closer to the upper-left corner of 

the graph, with the 45-degree line representing the uninformed classifier (i.e. random guessing).  

For situations where a simple quantification of the detector performance (independent of 

threshold value) is desired, it is possible to reduce the ROC performance to a single scalar 

value.  Perhaps the most common of these measures is the area under the curve (AUC), which 

as the name implies is simply the area under the ROC curve.  Since ROC curves are plotted on 

the unit square, and the lower-bound, random-guessing AUC value is 0.5, the AUC should 

always be between 0.5 and 1. 

2.2. Theoretical Detector Derivation 

Beginning with the first portion of the SHM taxonomy, question of whether damage is 

present in the structure is addressed.  In this dissertation, damage detection will be addressed in 

a global sense that is entirely separate from the subsequent question of damage location.  That 

is, the entire sensor array for the system (however defined for a particular application) will 

render a decision of “damaged” or “undamaged” after each test.  In order to derive an optimal 

detector using a classical detection theory approach, certain assumptions must be made about 

the signal and the underlying background noise process in which the signal appears.  These 

assumptions are informed by experimental experience with sparse-array UGW SHM systems as 
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applied to the type of structures of interest for this dissertation.  Rather than attempt to 

rigorously attempt to prove each of the assumptions at the outset, the derivation is completed 

first and the result is later validated empirically. 

To begin, the data acquisition process is assumed to be linear, or near enough to linear 

that any nonlinearities do not have a substantial effect on the output signals.  Next, the 

underlying noise process is assumed to produce Gaussian, independent, and identically 

distributed (i.i.d.) samples in time.  After the first arrival (that is, the time when the first wave 

packet reflected from damage arrives) from any given sensor pair, the received signal is 

assumed to be composed of a complicated superposition of scattered waveforms, each of similar 

shape to the actuation pulse.  According to the central limit theorem, the measured waveform 

may then also be modeled as a set of Gaussian i.i.d. samples in time.  Note that the last 

assumption specializes the derivation to those structures where the arrivals of different wave 

packets are not clearly separable – that is, the structure and sensor system must be such that the 

signal is the superposition of many reflections beginning with the first arrival.  Such structures 

are of great interest in moving SHM to practical application where the geometry is usually quite 

complex. 

The first step after acquiring the raw data is to perform data cleansing by removing non-

damage influences. The data are windowed in time to exclude data does not include damage 

information and to limit the quantity of data processed.  Next, considering that the frequency 

content outside of the excitation bandwidth provides no information on the damage state (again, 

implicitly assuming linear wave propagation and scattering), the waveforms are match-filtered 

to the actuation signal.  The OBS procedure, as described in Section 1.5.1, is applied to the 

filtered signals to yield residual signals.  Since it is a simple subtraction, OBS is a linear 

process, so the output data are still Gaussian-distributed.  Furthermore, according to the purpose 
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of the OBS procedure, the resulting residual should be noise only for undamaged records and 

the damage signal plus noise for damaged records, setting up the conditions for the binary 

hypothesis test. 

The residual signals are next enveloped to remove phase by taking the magnitude of the 

Hilbert transform, as per the discussion in Section 1.5.3.  The sum of the squares of 

independent, Gaussian-distributed components follows a Rayleigh distribution.  The envelope 

values are, in fact, the sum of the analytic signal’s real and imaginary parts squared, which are 

Gaussian i.i.d. variates.  Therefore, the final envelope values are Rayleigh-distributed with 

Rayleigh parameter 0 for the H0 (noise-only) hypothesis and 1 for the H1 (signal + noise) 

hypothesis. 

The optimal detector for choosing between the H0 hypothesis and the H1 hypothesis—

that is, the detector that satisfies the NP criterion by maximizing the detection rate given a fixed 

false alarm rate—can be found through the likelihood ratio test [45].  The likelihood ratio is 

given by: 
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where x represents the residual signal of length N data points, p is the probability density 

function (PDF) of x, and  is the decision threshold.  The PDF of a Rayleigh distributed variable 
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Substituting, the likelihood ratio becomes: 
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Taking the natural logarithm of both sides and rearranging: 
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Note that the first terms in each set of parentheses cancel out.  Finally, incorporating all terms 

that do not depend on the data into a new threshold ’, the expression becomes: 
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which is referred to as the energy detector [45].  Because imperfect baseline subtraction is 

usually the dominant source of noise in UGW SHM systems [44], the noise will have very 
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similar frequency content to the damage reflections the system must detect.  Thus, it is 

reasonable that detecting an increase in energy in the residual signal is the optimal solution for 

the situation of sparse arrays in geometrically-complex structures.  However, this proposition 

must still be evaluated experimentally to validate the assumptions made.  Validation is provided 

in Section 3.3.1, where the data-driven method of ROC comparison will show that the energy 

detector outperforms a selection of other detectors from the literature. 

Note that typically in application, it is advantageous to normalize the energy values for 

each sensor pair according to the energy contained in their baseline signals.  While this does not 

affect the detection rate per se, it does make the detector output more consistent and easier to 

compare across sensor pairs and tests.  Therefore, the final form of the detector that will be used 

for damage detection throughout this dissertation will be referred to as the normalized residual 

energy (NRE), and is given by the following expression: 
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where y[n] is the baseline signal. 

2.3. Time-of-Flight Localization 

When the presence of damage in a global sense has been thus established, it is natural to 

examine the question of damage location next.  In considering UGW SHM systems, there are 

three basic approaches to localizing damage: tomographic methods, elliptical methods, and 

hyperbolic methods [47].  The first class of methods involves either scanning a transducer 

(whether contact or air-coupled) over the structure, or using laser excitation to scan through 
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each point of interest on the structure [48].  The last two classes are based on sparse array 

sensor systems.  Methods that estimate the time of arrival of the wave packet scattered from the 

damage are known as elliptical methods, and these are perhaps the most common in the SHM 

literature [49, 50].  Hyperbolic methods are typically those that depend on cross-correlations of 

sensor responses, or time differences of arrival [51].  In this dissertation, methods from all three 

approaches are considered, with particular focus being placed on the ellipse method as the basis 

for the proposed localization paradigm for complex structures. 

First-arrival localization bases the location estimate on the time-of-flight from the 

(known) actuation time until the time at which the first damage reflection is received.  Knowing 

the locations of the sensors and the group velocity of the wave establishes the start point, end 

point, and total distance traveled.  With that information, the location of the reflector can be 

narrowed to an ellipse with the two sensors at the foci and a semi-major axis corresponding to 

the distance the waves are predicted to travel in the estimated time to first arrival.  Such 

procedures have become known in the SHM literature as elliptical methods. 

It can easily be inferred that the effectiveness of the ellipse method is highly dependent 

on the estimation of the group velocity, the sensor locations, and the time of first arrival. The 

group velocity can sometimes be a difficult parameter to estimate, particularly due to its 

sensitivity to environmental conditions.  However, these uncertainties have been very well-

studied, as have the methods of estimating the group velocity.  The ellipse method has even 

been extended to fully anisotropic plates [52].  While sensor locations are usually known with a 

relatively high degree of certainty, some authors have explicitly considered how to manage this 

uncertainty as well [37].  For the structures considered here, the most significant source of 

uncertainty in the ellipse method is the estimation of the first-arrival time.  Because realistic 

structures tend to be more geometrically complex than simple, uniform plates, damage 
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reflections quickly become obscured by reflections from benign geometric features (so-called 

“secondary reflections”) [53].  First-arrival estimation in such environments is addressed fully 

in Section 2.5. 

However, the ellipse method is not used directly because with each sensor pair 

predicting only a line, the uncertainty of the prediction is not taken into account, and the 

problem of how to deal with ambiguous overlapping regions remains unaddressed.  Some 

authors have proposed superimposing a second dimension on the ellipse to represent the 

uncertainty [54].  Instead, to create localization images in the present work, a delay-and-sum 

beamforming approach is used.  In such an approach, an image of the structure is created where 

each pixel value represents each sensor pair’s signal value (or a transformation of the signal 

values, as presented in Section 2.5) delayed according to the expected time-of-flight to that 

location and then summed over all sensor pairs.   Mathematically, the expression is given by: 

  ( ) ( )ij ij
i j

r rI V  (2.9) 

where p represents a particular point on the structure, I represents the vector of pixel values, V 

represents the signals used for the delay-and-sum, and  represents the time-of-flight to each 

point.  The indices i and j denote the actuating and receiving sensors. 

2.4. Proposed Localization Paradigm 

Figure 2 shows a visual representation of the overall processing procedure used in the 

proposed localization paradigm.  It begins with the data being collected on the left and proceeds 

until it concludes with a damage location estimate on the right.  Each of the orange, double-

lined nodes in the figure represents a step where one of various techniques may be chosen to 
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enhance the SHM system performance.  The process centers on a weighted delay-and-sum 

beamforming step, taking as inputs the first-arrival estimation result and weights from the 

sensor fusion technique, beam spread function, feature models, and damage models.  The beam 

spread function and feature modeling steps are based on the geometry of the system and are 

grouped accordingly – these are discussed in Section 4.3.  The sensor fusion procedure, which 

can augment both damage detection and localization, is described in Section 2.7.  Damage 

modeling—particularly empirical approaches to estimating the scattering properties of various 

defects—is discussed in Sections 4.1 and 4.2.  Thus, this dissertation presents a comprehensive 

methodology for damage localization using UGW SHM systems on complex structures. 

 

Figure 2 - Flowchart illustrating proposed damage localization paradigm 
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2.5. Maximum-Likelihood Estimation Procedure 

Given that procedure that has been outlined for estimating damage location, the 

procedure for identifying the first-arrival point becomes crucially important.  In simple 

applications, very straightforward methods may be applied by establishing time windows during 

which the first arrival must occur and amplitude thresholds based upon the expected noise floor.  

However, challenges arise when the secondary reflections become closer in time and amplitude 

to the first damage reflection, or when a priori knowledge is limited for established appropriate 

windows and thresholds.  This situation is the case considered in this dissertation. 

To implement first-arrival localization, this dissertation builds upon previous work by 

Flynn et al. [55].  Flynn proposed a maximum-likelihood estimation approach and proceeded to 

propose some assumptions about the signal properties of the residual signals encountered in 

UGW SHM systems – assumptions that correspond closely with the assumptions proposed for 

damage detection in Section 2.2.  The key assumptions of this approach are as follows: the noise 

process of the baseline-subtracted residual signal may be described by a Gaussian-distributed 

random process.  Before, the first-arriving damage reflection, only noise is present, and 

therefore the signal itself is modeled as Gaussian-distributed.  After the first arrival, due to the 

complex, overlapping echoes of waves reflected from the damage, the central limit theorem is 

invoked to say the signal may also be described as a Gaussian-distributed random process 

whose samples are i.i.d.  Enveloping the data requires summing the magnitude and phase of the 

signal in quadrature, resulting finally in two Raleigh-distributed random processes—one before 

the first arrival and one after the first arrival.  The assumptions of the baseline-subtraction 

process imply that the Rayleigh parameter of the second section should be greater than the first 

section.  The first-arrival point, therefore, can be estimated by finding the transition point 

between the two statistical regimes. 
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Computing the maximum likelihood estimate (MLE) of each of the two Rayleigh 

parameters, a likelihood ratio test can be implemented to describe the likelihood that each time 

point is the first arrival.  The MLE of Rayleigh parameters is a well-known expression, given by 

taking the value of the Rayleigh parameter that maximizes the likelihood expression: 
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Because the samples of the time series are independent, the total likelihood function may be 

expressed as the product of the individual likelihood functions.  Taking the log of the likelihood 

(which is a standard procedure because the log is a monotonic function and therefore does not 

change the maximization result), the following expression is obtained: 
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Taking the derivative with respect to   and setting equal to zero, the solution may be obtained 

as follows: 
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Now, the likelihood ratio test can be formulated to provide the MLE of the arrival point 

in the signal.  Assuming the arrival point to correspond to a time-of-flight of n  , the total 

likelihood function of all the independent samples can be broken into two parts: 
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Note that each Rayleigh parameter is a function of the time-of-flight index  .  This likelihood 

ratio should not be confused with the one given by Equation (2.4), which was comparing 

undamaged and damaged hypotheses.   
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Grouping the terms and substituting the MLE estimates of 1  and 2 , the final expression is 

obtained as follows: 
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Note that all terms that do not depend on   may be dropped from the final form, 

because they do not affect the maximum or therefore the resulting location estimate.  Because 

the maximum of the resulting vector is the predicted arrival point, the output of this filter may 

then be used in a delay-and sum procedure to produce a predicted damage location in the 



26 

 

structure.  An example residual signal (taken from the bolted frame structure) and the 

corresponding MLE filter result are given in Figure 3.  The green dotted line indicates the 

maximum of the MLE result, which is the first-arrival estimate according to this procedure.  

Despite the complex multitude of secondary reflections, the process correctly identifies the first 

reflected wave packet. 

 

Figure 3 - Side-by-side comparison of enveloped residual and MLE filter result 

There are some other key assumptions that go into the first-arrival estimation procedure 

that should be noted here.  As is common to delay-and-sum formulations, this approach assumes 

single-mode propagation.  That is, one mode is dominantly actuated and received by the sensor 

array, and this mode has a known group velocity.  This dissertation is also concerned only with 

point-like scatterers assumed to occur at one location.  While it is possible that this approach 
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could be extended to multiple damage locations or even possibly to larger areas of damage, such 

damage modes are outside the present scope. 

Another fundamental premise of the estimation is that the signal is broken into two 

sections– before and after the first arrival of a significant damage reflection.  Thus, the method 

inherently assumes that sensor pairs at arbitrary locations are actually able to observe damage 

reflections—that is, the amplitude of the first-arriving wave (and the subsequent reflections) 

should be greater than the noise floor in a statistically-significant sense.  However, the impact of 

sensor pairs not observing the damage can be mitigated with proper application of sensor fusion 

principles.  Also note that this derivation differs slightly from the original formulation in that it 

does not attempt to integrate the information from different sensor pairs.  Flynn et al. asserted 

that the results from each sensor pair could also be considered independent likelihood functions 

and that the resulting log-likelihood estimates should be summed together accordingly (hence 

the delay-and-sum technique was incorporated from the start) [55].   Here, however, the MLE 

estimation procedure is considered to be a kind of nonlinear filter that may be applied to each 

signal.  This viewpoint allows flexibility to scale the contributions of each sensor pair to the 

delay-and-sum procedure through sensor fusion without weakening the validity of the imaging 

scheme in any way.  Sensor fusion turns out to be quite important in structures of significant 

complexity, as will be demonstrated in Section 3.3.2. 

2.6. Alternative Statistical Formulations 

While this dissertation will demonstrate the effectiveness of the MLE procedure for 

damage localization, it may be possible to improve performance even further by examining the 

underlying assumptions more closely.  Because the MLE first-arrival estimation procedure 

plays a large part in the localization framework, it is important to understand the input variables 
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that have a significant influence over the filter result.  Modeling the statistics of UGW residual 

signals as characterized by pre- and post-arrival Rayleigh distributions with a sharp transition (a 

“Rayleigh step” model) is one possible choice – to discover other plausible formulations, the 

statistical regimes of the signal must be characterized more closely.  However, it should be 

noted at the outset that despite providing valuable insight into the foundational assumptions of 

the MLE formulation, a better-performing formulation was not obtained, and the first-arrival 

estimation presented in Section 2.5 is used in the remainder of this dissertation. 

All of the comparison methods to be presented in Section 3.3.2 make use of time 

windowing of various kinds to limit the impact of the secondary reflections.  Therefore, it is a 

fair question to ask how sensitive the MLE formulation is to changes in the time windowing.  

Figure 4 shows an example of the same ultrasonic signal truncated to a number of points 

between 2000 and 6000 (corresponding to 800 and 2400 µs).  Circles highlight the maxima, 

which are chosen as the estimated first-arrival points.  (Again, recall that vertical shifts do not 

affect the MLE formulation.)  The figure shows that MLE is sensitive to the signal length, but 

that the filter shape varies as smoothly as can be expected.  Moreover, the resulting estimation 

selects one of three points which are the most likely separation depending on the length of the 

signal that is retained.  When used in the delay-and-sum architecture, the resulting estimation is 

less sensitive to the time window chosen than most of the competing methods. 
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Figure 4 - MLE Rayleigh-step model truncation study 

Figure 5 shows a representative residual signal from a damaged trial, broken down into 

five sections.  The first regime is composed of the pre-actuation time (if any is recorded) and the 

actuation pulse that may cause electro-magnetic interference.  Then follows an interval where 

the direct arrival has not reached the receiving sensor.  Next, depending on the damage location, 

there may be an interval after the direct arrival but before the first arrival of the damage 

reflected wave.  This third regime is still in comprehended in the “noise-only” definition for 

damage detection, but typically has a higher residual energy level than the time before the first 

direct arrival.  Finally, there is the regime following the first damage reflection, after which the 

complex superposition of secondary damage reflections occurs.  At first, the magnitude of these 

reflections tends to increase –the first-arriving wave packet is usually not the highest amplitude.  

The increase may be related to increasingly imprecise baseline subtraction as the reflections 

create a very different interference pattern.  Referring to the example of the baseline signal, 

however, it is noted that the amplitude of the two subtracting signals begins to decrease rapidly 
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as the echoes begin to die out.  Therefore, a fifth regime may be observed where the residual 

signal again tends to decrease toward the end of the record, if the signal is not truncated before 

this transition occurs. 

 

Figure 5 - Typical baseline and residual signals, divided into distinct sections: 1 – EMI, 2 – before direct 
arrival, 3 – before first arriving damage reflection, 4 – increasing residual energy, 5 – decreasing residual 

energy 

In seeking to more accurately model the statistics of the residual signal for UGW SHM 

systems, three alternative formulations were developed: 

1. Rayleigh ramp – Rather than simply having a step in the Rayleigh parameter at the first-

arrival point, this model proposes that the Rayleigh parameter after the first arrival 

should grow in time.  The concept is to better approximate signals where the true first 

arrival is much smaller in amplitude than the subsequent echoes.  The growth in time, 

for simplicity, is simply taken to be linear.  The model is described graphically in 

Figure 6. 
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Figure 6 - Rayleigh ramp model 

2. Baseline-proportional Rayleigh – This model assumes that the Rayleigh parameter is 

variable throughout the signal and is proportional to the baseline signal amplitude, 

which is intended to represent a noise process associated with imperfect baseline 

subtraction.  The proportionality constant is modeled as having a step increase at the 

first-arrival point.  The trend of Rayleigh parameter varies from signal to signal, but an 

illustration is given in Figure 7. 

 

Figure 7 - Non-constant Rayleigh model (may be proportional to baseline signal) 

3. Rician – Whereas the standard MLE approach is based on a Rayleigh distributed signal, 

a Rician model may also be used.  In communications theory, a Rician fading channel is 

distinguished from a Rayleigh fading channel in that there is a dominant (or direct) 

arrival surrounded by lesser echoes.  The Rician distribution therefore has an additional 
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parameter, known as the noncentrality parameter, that expresses the amplitude 

relationship between the direct and indirect arrivals.  When the noncentrality parameter 

is zero, the distribution becomes a Raleigh distribution.  It was thought that by using 

such a model, the additional parameter could be related to the expected arrival 

amplitude (generated from some simple models of the structure) to improve 

performance.  The model is illustrated in Figure 8. 

 

Figure 8 - Rician model; scale parameter on left and noncentrality parameter on right 

The effectiveness of each of the statistical formulations has been evaluated, beginning 

with synthetic data generated based on the statistical assumptions, as well as using sample 

signals collected from UGW SHM systems.  Testing with synthetic data involved using random 

number generation to build signals that matched exactly the assumptions (e.g., one Rayleigh 

parameter pre-arrival and a linearly-increasing Rayleigh parameter post-arrival).  Because the 

arrival point is specified and known, the Monte Carlo simulations of the prediction accuracy can 

be generated for each of the filters.  An example of such a test is given in Figure 9.  In this 

figure, the known arrival point is designated by the red dotted line, and the maxima of both the 

Rayleigh ramp and Rayleigh step models are shown.  The Rayleigh ramp exhibits a tendency to 
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grow again after peaking, as well as producing erratic values toward the beginning of the signal, 

both of which degraded its performance.  The Rayleigh step is shown as a reference, and 

although in this particular case the predicted points are very close to one another, after Monte 

Carlo simulation, the Rayleigh step proved to be more effective.  Filter performance was also 

compared qualitatively by application to test data where the damage location is similarly known 

in advance. 

 

Figure 9 - Comparison of performance of two MLE filters applied to a simulated signal 

The alternative formulations fail to outperform the previous MLE filtering procedure 

for signals that are fair approximations of those observed in UGW testing.  Detailed analysis of 

the reasons for this failure has not been rigorously established, but it seems that the simplicity of 

the Rayleigh-step assumption lends robustness which produces a better result.  Through 
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qualitative analysis, this section has examined some of the properties of baseline-subtracted 

residual signals and the MLE formulations that may be used to model them.  It is left to future 

work to explore the formulations proposed here or new ones that may be able to further enhance 

first-arrival estimation accuracy. 

2.7. Sensor Fusion 

The (often) large volumes of data obtained by SHM systems must in every case be 

reduced, ultimately, to a decision about the health of the structure.  Almost always, the SHM 

system must combine data from different sources, and these sources of data are rarely 

completely uniform.  However, methods for how to deal with data sources that are not 

commensurate (i.e., synchronously sampled and the same data type) or which have different 

associated uncertainties have received relatively little attention in the SHM literature.  These are 

the challenges that sensor fusion techniques seek to address. 

Sensor fusion for this dissertation is defined as the process of integrating data from 

multiple sources in a way that enhances the decision-making performance of the SHM system.  

An overview of the general sensor fusion process along with many application examples may be 

found in Hall [56].  While sensor fusion is important for both damage detection and damage 

localization, how the procedure is applied is somewhat differently, and so the approach taken 

for each application will be discussed separately. 

This dissertation will make use of the sensor fusion hierarchy outlined by Liu and Wang 

[57] and subsequently applied to a UGW SHM system by Lu and Michaels [58].  According to 

this hierarchy, there are three levels into which sensor fusion techniques may be classified – 

data-level, feature-level, and decision-level.  The objective of sensor fusion process is always to 

take the full data matrix (which for UGW SHM systems has a size corresponding to the number 
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of time samples by the number of sensor pairs by the number of trials) and reduce it down to a 

set of decisions.  Which level of fusion is chosen chiefly governs the order that the each of the 

dimensions is integrated.  As such, it is a choice – only one of the levels of sensor fusion may be 

implemented at a time.  Figure 10 illustrates graphically what sensor fusion as applied to 

damage detection looks like.  Each of the yellow “Compute feature” boxes represents the step of 

computing the NRE metric as described in Section 2.2.  Blue boxes indicate that some outside 

information may be added to the detection process.  The red boxes are where each of the sensor 

fusion techniques discussed in the following sections is implemented.  Each of the levels is next 

defined more fully, along with the example methods that were applied for the damage detection 

study. 

 

Figure 10 - Fusion hierarchy as applied to damage detection 

Data-level fusion is the lowest level on which the fusion process may be performed.  

Data-level methods combine raw data from each of the sensors directly.  As such, these 
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methods are often computationally expensive to execute.  Furthermore, they may be difficult to 

implement for some SHM systems because of the requirement that all of the data be 

commensurate.  One data-level fusion technique is implemented here, which involves 

concatenating the waveforms from all sensor pairs together before processing and calculating 

the normalized residual energy metric.  Because the metric does not depend on time per se and 

the signals are commensurate in this case, concatenating the signals is not problematic.  For the 

frame structure, this technique is further subdivided to consider pulse-echo and pitch-catch 

cases separately. 

Feature-level fusion involves calculating feature values (i.e., applying the appropriate 

detector) for each sensor pair individually and then combining the features to make decisions.  

Feature-level fusion is retains a more of the underlying information than the decision-level 

fusion, but is substantially easier to apply than data-level fusion.  Many of the common sensor 

fusion methods for SHM, such as simply averaging feature levels across all sensor pairs, belong 

to this category.  For illustration purposes, three different matrix norms are applied to the data – 

the L1 norm (or arithmetic mean), the L2 Norm (or sum square), and the L∞ Norm (or maximum 

value). 

Decision-level fusion is the highest-level fusion in this hierarchy.  In these methods, 

each sensor makes its own decision on the damage state independently, and the results from all 

of the decisions are then fused.  In this way, there is no coordination between the data acquired 

from different sensors.  Voting is one decision-level technique that is considered here.  Any 

decision-level technique, including voting, involves determining the statistics of each sensor 

pair individually based on the baseline data.  Then, detection thresholds may be established for 

each sensor pair allowing the decisions to be made independently.  For the case of voting, after 

the decisions have been made, the number of waveforms whose feature value exceeds the 
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predetermined threshold is counted.  The vote count then becomes the metric distinguishing the 

damaged and undamaged classes.  A hybrid approach may also be used, whereby the features of 

all waveforms pertaining to either an actuator or a sensor are aggregated using some matrix 

norm (or other feature-level technique), and each sensor (rather than sensor pair) gets a vote.  

The hybrid approach is reminiscent of those proposed by Su et al. [59, 60]. 

For the localization paradigm presented previously, the role of sensor fusion is to 

appropriately balance the contributions of the MLE filtering result of each sensor pair in the 

delay-and-sum beamforming step.  As such, the natural choice is techniques based on decision-

level fusion.  The sensor fusion step is particularly important for larger, complex structures 

instrumented with a sparse array because damage in arbitrary locations does not cause 

significant changes in the signal between some of the sensor pairs.  Unaddressed, the lack of 

damage observability causes the maximum-likelihood estimate of the first arrival to break down 

and thus degrades localization performance. 

Therefore, the NP criterion is applied to establish thresholds for the signals from each 

sensor pair separately.  With such thresholds established from the baseline data, only the sensors 

that detect the presence of damage are selected for use in the localization procedure.  A very 

similar approach has been proposed by Niri et al. [61] in the context of acoustic emission – 

here, the method will be referred to as “NP binary fusion”.  The binary hypothesis tests are 

carried out in the same way that was outlined in Section 2.2, utilizing the normalized residual 

energy (NRE) as the theoretically-optimal damage detection metric for systems with minimal a 

priori knowledge and high signal complexity [62]. 

Next, the matrix of all threshold values for each sensor pair (denoted as Γ ) is 

computed by taking the maximum across all of the undamaged trials as shown in Equation 

(1.16).  The index (z) represents the different trials. 
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Then the NRE values are compared to the thresholds to form D: 
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Finally, the scaling factor applied to each pair, F, is defined to be one for all pairs that exceed 

the threshold and zero otherwise for NP binary fusion: 
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Increasing the sophistication another step, the contribution of each sensor pair’s data to 

the delay-and-sum procedure may be weighted in accordance with some estimate of confidence 

that the sensor pair can observe the damage.  Niri et al. [61] at this juncture rely on a model of 

their structure, from which they predict the signal-to-noise ratio (SNR) of each sensor a priori 

by a Monte Carlo simulation.  However, this solution is not directly applicable to baseline-

subtraction techniques, where SNR is more difficult to define and would require models of the 

uncertainty in the subtraction process (more on this topic in Section 4.3.1).  Here, therefore, a 

data-driven method is developed.  The only data available from which to estimate the 

confidence of each sensor pair are the metric values computed on each waveform.  By 

comparing the current metric value to the sensor-level threshold, a statistical distance from the 

baseline set may be computed, yielding a set of “confidence factors”.  This method, as described 

mathematically in Equation (1.16), will be referred to as “NP direct scaling” fusion.   
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These confidence factors are analogous to the SNR for passive sensing systems, since 

they represent by what margin a particular measurement has emerged from the “noise floor” of 

metric values that belong to the undamaged set. No guarantee of optimality is given because 

such a guarantee would have to consider the relationship between uncertainty in the input and 

output of the MLE first-arrival estimation.  This relationship is a complicated question outside 

the scope of this dissertation, but recommended for future study.  In this case, the statistical 

distance used is simply the ratio already defined as the NRE metric, but other scaling functions 

are possible.  For example, one alternate choice of scaling factors might be the number of 

standard deviations of the baseline NRE values from the threshold.  Again, further study to 

understand the propagation of uncertainty through the MLE first-arrival estimation process is 

required to determine what the optimal scaling technique might be.  However, considering that 

the present approach utilizes the only helpful information available—that is, the comparison 

with threshold levels for each pair—it is reasonable to expect improved performance.  The data, 

presented in Section 3.3.3, support this supposition.   

In order to apply the confidence factors correctly, prior to applying them to the data, the 

minimum of each MLE filter result is subtracted from itself to make the minimum value zero.  

This normalization procedure does not impact the delay-and-sum result because the MLE 

formulation is invariant to additive shifts.  Further note that the range of values produced by the 

MLE filter is difficult to relate to any particular property of the underlying physical signal.  

Therefore, scaling by confidence factors does not weaken the validity of the imaging scheme in 

any way. 
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  Chapter 3

Experimental Validation  

3.1. Bolted Frame Structure 

The first structure upon which the statistical SHM framework will be tested is a three-

story bolted frame.  Several elements of the design are of interest for the present application.  

While bolted joints do transmit UGW energy between elements, it is extremely difficult to 

precisely predict the nature of that interaction, due to the high uncertainty of parameters like 

contact pressure, surface roughness, etc.  The geometry is also somewhat unusual for UGW 

SHM applications, where the majority of work is done in plate-like structures.  The frame 

would best be classified as a 1D manifold, which is to say that each element is 1D but they are 

connected to one another in 3D space.  This type of geometry introduces multipath uncertainty 

because there are typically several paths that can be taken from one point to another.  Finally, 

the two types of “damage” introduced to the frame were non-destructive in nature.  Because the 

damage modes were reversible, it was possible to collect much more data than would have been 

feasible for destructive tests, allowing sufficiently large data sets for meaningful statistical 

analysis. 
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3.1.1. Geometry 

The bolted frame is composed of 19 elements made of 2-inch-wide by 1/8-inch-thick 

(5.1 cm by 3.2 mm) plates with 12 and 24 inch (30.5 cm and 61.0 cm) lengths.  The elements 

connect through angle brackets on each end with two ¼-inch-diameter (6.35 mm) bolts per 

connection.  Both the elements and the angle brackets are made of steel.  A picture of the 

geometry is given in Figure 11. 

 

Figure 11 - Bolted frame geometry overview 

3.1.2. Data Acquisition 

For this test, 16 piezoceramic sensor-actuators were positioned on the structure as 

shown in Figure 12.  While the structure itself is possesses substantial symmetry, the sensors 

were deliberately applied asymmetrically.  Such asymmetry was introduced to help minimize 

multipath ambiguity which may complicate source localization in the medium.   
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Figure 12 - Sensor layout in bolted frame structure 

A National Instruments data acquisition system recorded both pitch-catch and pulse-

echo for the entire 16x16 array with 14 bits of precision at a 2.5 MHz sampling frequency.  The 

chosen actuation signal, shown in Figure 13, was a Gaussian-modulated sinusoid with a center 

frequency of 135 kHz.  Each of these lead-zirconate-titanate (PZT) discs had a diameter of 12 

mm and each was protected by sandwiching it between a magnet of the same diameter and an 

epoxy backing that also protected the electrical leads.  The magnet was included as an aid for 

quickly attaching the sensors to ferromagnetic structures while retaining the ability to move 

them later.  For these tests, however, each of the sensors was bonded to the steel element using 

Elmer’s glue to improve the bond condition and therefore the power of the transmitted and 

received signals.  Finally, it was determined that these sensors excite predominantly 

antisymmetric (A0) mode waves in the 3.18-mm-thick plates. 
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Figure 13 - Actuation signal for the bolted frame structure 

3.1.3. Test Protocol 

Two modes of damage were introduced in the frame structure.  First, fastener preload 

loss was simulated by loosening the bolts in two stages (designated “partially loosened” and “no 

preload”).  The bolt torque levels were not rigorously quantified for the test, but the tightening 

procedure was kept as consistent as possible across all trials.  The process of loosening a bolt 

produces a change in contact pressure, which causes a very dramatic change in the UGW 

propagation, as was subsequently verified by full-field measurements of the wavefield [63].  In 

all, 20 bolts were loosened, accounting for at least one bolt at each node of the structure.  Before 

each trial, 2 baselines and 8 undamaged records were recorded, followed by 5 records at the 

partially-loosened stage and 5 more at the no-preload stage. 
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Figure 14 - Magnet damage applied to the bolted frame structure 

The second damage type consisted in placing a magnet on the structure, as shown in 

Figure 14, which causes a local change in the mechanical impedance.  Because any mechanical 

impedance change serves to scatter UGWs, the magnet has a similar impact to what corrosion or 

other forms of real damage might, while retaining the benefit of being completely reversible 

[64].  In all, the magnet was placed in 261 locations, essentially every location on each of the 

elements at one-inch (2.5 cm) intervals.  Interspersed with the damaged cases were collected 

261 undamaged records, a quarter of which were designated as the baseline set. 

3.2. Fuselage Rib Structure 

The second structure selected for testing was a section of fuselage rib from a British 

Aerospace BAe 146 aircraft, pictured in Figure 15.  As an actual component from a commercial 

aircraft, this structure is well-suited for this type of study.  Therefore, both forms of damage 
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introduced (holes and cracks) were done in a destructive manner to more closely represent 

damage modes that may be of practical interest. 

 

Figure 15 - Fuselage rib overview 

3.2.1. Geometry 

Details of the fuselage rib geometry are given in Figure 16.  The longest dimension of 

the structure is about 1.7 m.  The typical thickness of the top surface is 2.5 mm, and the typical 

stringer thickness is the same.  However, many areas of non-uniform thickness, different 

stringer arrangements and sizes, and different ducts are all evident, defying a simple 

geometrical description. 

 

Figure 16 - Simplified geometry of fuselage rib structure, with sensors and damage locations noted 
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3.2.2. Data Acquisition 

Six PZT discs were directly applied to the top surface of the structure with 

cyanoacrylate adhesive in the arrangement shown in Figure 16.  Again, the sensors were 

deliberately placed with no symmetry, and are arranged in such a way that different pairs have 

different line-of-sight obstructions to test the effect of the obstacles on system performance.  

The excitation signal was a 5-cycle, Gaussian-modulated sinusoid centered at 190 kHz for this 

test. Due to data acquisition limitations, the sensors were used exclusively in pitch-catch mode.  

The PZT discs had a diameter of 20 mm and were designed to excite the first symmetric Lamb 

wave mode (S0) with at least 10 times the magnitude of the first antisymmetric (A0) mode. 

3.2.3. Test Protocol 

Damage was introduced in two modes: through-holes and simulated cracks.  The holes 

were drilled in 4 stages, progressively increasing the diameter to 3.4, 4.8, 6.0, and 8.0 mm.  The 

damage locations were chosen to present increasing levels of difficulty for the sensor network, 

with the final hole being located a considerable distance outside the sensor array.  Before each 

hole location was drilled, 10 baseline records were saved.  The damage, therefore, does not 

appear as cumulative, but each hole is considered individually.  After each increase in diameter, 

3 records were acquired. 

Cracks were simulated by using a hacksaw to notch the stringers (through the whole 

thickness) on the reverse side of the fuselage rib.  Notches were introduced in two stages, the 

first being about half the depth of the stiffener, and the second being the full depth.  Again, 

before each crack was begun, 10 baseline records were saved, and after each increment of 

damage, 5 records were acquired.  An example of the simulated crack damage is shown in 

Figure 17. 
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Figure 17 - Crack damage introduced in fuselage rib structure 

3.3. Comparative Studies 

3.3.1. Detection 

In order to validate the optimality of the detector presented previously, ROC curves are 

computed for the data collected from the two testbeds.  In this way, the energy detector may be 

compared empirically to other candidate detectors, and to this end six detectors were selected 

from the SHM literature.  Taking x[n] to be the residual signal and y[n] to be the original 

baseline, the formulas for these six features are given in Table 1, where f0 is the frequency bin 

corresponding to the waveform’s center frequency, w is a window function (in this case, a 

Hamming window), and  and  represent the means and standard deviations, respectively, of 

the subscripted waveforms.  Finally, 0 is the time of arrival of the first wave packet, determined 

by applying the MLE filtering approach.  Note that the correlation coefficient uses original 

waveforms before baseline subtraction, denoted by xy[n].  Because damage detection is an 

inherently comparative process, each formula is essentially a variation on the ratio of the 
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residual to the original baseline either in the time domain or frequency domain.  The result of 

each formula (except the correlation coefficient) may therefore be converted to a dB value for 

convenience.  Dividing by the baseline feature value normalizes the values according to the 

amount of energy that can propagate between two given sensors. 

 
Table 1 - Description of features used in ROC comparison 

Name Equation Reference 

Normalized Maximum Residual 
 
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
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 Croxford et al. [42] 
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 Michaels et al. [65] 

Normalized Residual Energy 
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 Kay [45] 

FFT at center frequency 
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Correlation coefficient 
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Lu and Michaels [58] 

Short Time Fourier Transform 
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 Ihn and Chang [66] 

In order to calculate these ROC curves, the feature values are first calculated for each 

sensor pair and each record separately.  That is, no sensor fusion is implemented, but the binary 
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hypothesis test is applied to each actuator-sensor combination in turn and the results are 

aggregated.  Instead of having a 16-sensor system for the frame structure, therefore, this 

methodology essentially sums together the detection performance of 16x15 = 240 pitch-catch 

pairs and 16 pulse-echo sensors.  The detection problem therefore much more difficult because 

it measures the ability of each sensor pair to independently detect damage at any location.  For 

the purposes of comparing metrics, however, it is instructive to look at the data before fusion. 

 

Figure 18 - Detection metric ROC for frame bolt damage 
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Figure 19 - Detection metric ROC for frame magnet damage 

 

Figure 20 - Detection metric ROC for fuselage rib crack damage 
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Figure 21 - Detection metric ROC for fuselage rib hole damage 

The ROC comparisons are presented in Figure 18 for the frame structure bolt damage, 

Figure 19 for frame magnet damage, Figure 20 for the fuselage rib crack damage, and Figure 21 

for the fuselage rib hole damage.  As predicted theoretically, the energy metric does generally 

perform best for both structures, especially for low false alarm rates (which is the region of 

interest for most SHM applications).  Interestingly, the maximum amplitude metric performs 

similarly well for both structures.  One possible explanation for this result is the particular 

character of the reflections – if the damage happens to result in very sharp peaks of energy, the 

maximum amplitude metric would be expected to perform well.  Of course, the fact that the 

energy metric is theoretically optimal for the given problem definition does not preclude other 

metrics from performing just as well, provided they have the same statistics.  Also note that 

because the correlation coefficient metric does not use baseline subtraction, there is no 
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opportunity for environmental compensation, which may explain its poor performance in the 

frame structure tests. 

When the data are fused together, the detection results only improve.  For the bolted 

frame structure, 223 of the 261 magnet damage trials are detected for a threshold value that 

yields no false alarms (over 85% 
DP ).  Most of the damage trials that are not detected are on 

one of the three elements that were not instrumented with a sensor.  That is, the detection (and 

the localization) performance of the SHM system varies based on sensor coverage and damage 

position.  Figure 22 shows the detection plot used ultimately to decide which magnet cases were 

correctly detected and passed to the localization algorithm.  In the plot, the NRE metric is on the 

y-axis and the x-axis is labeled “Trial number”, which is simply all of the tests aggregated into 

the appropriate damaged or undamaged class (with no implication of the order in which the 

trials were recorded).  Clearly, the bolt damage can easily be detected, but note also that each 

cluster on the damaged side represents a different bolt location, demonstrating again the 

variability of the metric with damage position.  The undamaged cases in the two examples have 

very different means, and the cause is the different test procedures.  For bolt damage, 

retightening the bolts is not sufficient to bring the structure back to exactly the same undamaged 

state—the contact condition of the joint inevitably changes—so the undamaged trials have 

higher residual levels after baseline subtraction. 
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Figure 22 - Detection results in bolted frame for magnet damage (left) and bolt damage (right) 

Figure 23 shows the damage detection results for the fuselage rib and reveals that both 

damage modes were detectable.  As expected, the damage closer to the center of the sensor 

network produced a relatively greater shift in the fused detector value.  All but the most remote 

hole (hole 4) yielded perfect detectability for the fused data using a simple 
1L  norm (more on 

optimal sensor fusion choices in Section 3.3.3).  Furthermore, each step of increasing damage 

size is manifested as an upward jump in the metric value.  Such trends give reason to believe a 

measure of damage extent could be derived from the data in the future.  Finally, despite not 

directly affecting the primary waveguide in the top surface of the fuselage rib, the crack damage 

on the stringers was also perfectly detectable, producing a change in residual level on the same 

order as the through-holes in the top surface. 
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Figure 23 - Detection results in fuselage rib for hole damage (left) and crack damage (right) 

Given the preceding results, the optimality of the energy metric for UGW inspection in 

geometrically-complex environments has been established both theoretically and empirically. 

3.3.2. Localization 

In order to establish the effectiveness of the previously described localization paradigm, 

a comparison with other localization techniques from the literature is presented.  A similar 

comparative study was performed by Flynn et al. previously [55], and the current list of 

methods is the same except for the addition of the MVDR method.  Each of the methods is 

described and references are provided – for more details, the reader is referred to Flynn et al. or 

the references given. 

All of the presented techniques use data filtered about the input frequency band and 

then baseline-subtracted.  Each signal is enveloped by taking the magnitude of the Hilbert 

transform, unless otherwise mentioned. The WTOA, TDOA, and WTP methods also apply an 

exponential window on the data to suppress later reflections.  Because the boundary reflections 

and inaccurate baseline subtraction become more dominant with time, the purpose of the 
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exponential time window is to mitigate those effects by giving the information earlier in the 

signal a relatively higher weighting.  The time constant for the exponential decay was chosen as 

80 µs for the fuselage rib and 200 µs for the frame structure (according to the approximate ratio 

of group velocities).  Note that exponential windowing, and many of the other methods, are 

highly dependent on tuning parameters like exponential constants or time windows.  Each of the 

methods is implemented as follows: 

TOA – the time of arrival method or the ellipse method is the most basic approach, 

simply computing the delay-and-sum result for the enveloped waveform [67].  The TOA 

formulation is described mathematically by Equation (3.1): 

  ( ) ( )TOA
ij ij

i j

r rI x  (3.1) 

WTOA – the windowed time of arrival method adds an exponential time window to the 

TOA method in order to suppress secondary reflections.   The WTOA formulation is described 

mathematically by Equation (3.2): 

    ( ) ( ) ( )WTOA
ij ij ij

i j

r r w r I x  (3.2) 

TDOA – the time difference of arrival method is based on correlations between each 

two sensor pairs that share exactly one sensor in common [51].  Because the algorithm does not 

require knowledge of the time origin of the source signal, TDOA is commonly used by passive 

systems for source localization.  Because the method operates on two sensor pairs 

simultaneously, the fusion approaches are not implemented to avoid a potentially false 

comparison.  The TDOA formulation is described mathematically by Equation (3.3): 
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RAPID – the reconstruction algorithm for the probabilistic inspection of damage uses 

cross-correlations between baseline and test signals (without enveloping) as the basis for 

localizing damage [68].  Each transducer pair contributes to elliptical sub-regions, the size of 

which is controlled by an additional factor,  .  This parameter was set to a value of 1.45 based 

on calibrating it in post-processing to maximize the localization accuracy (a procedure which 

generally is not feasible).  The RAPID formulation is described mathematically by Equation 

(3.4): 
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 (3.4) 

where R is the ratio of the time-of-flight to the pixel of interest to the direct-arrival time 

between the sensors and ( )R
ij r  is the zero-lag cross-correlation of the baseline and test signals 

for sensor pair ij.  RAPID also applies a time window to the cross-correlation the arrival time of 

the point of interest (again, in an attempt to minimize the impact of any reflected signals).  Here, 

the window width was chosen to be about the length of one actuation pulse.  For the frame 

structure, this window was 50 µs, and for the fuselage rib, it was 30 µs. 

EA – the energy arrival method is based on a ratio of energies, both in a time window 

beginning at the estimated arrival time and cumulatively up to that point [69].  In effect, the 

energy in the window centered at the expected arrival time is inversely weighted by the energy 
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preceding that time window.  The EA method is similar to the MLE approach in that it searches 

for the time point where the previous signal energy is minimized compared to the energy of the 

reflection, but it does not consider the reflections occurring after the narrow time window.  The 

EA formulation is described mathematically by Equation (3.5): 
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TP – the total product method takes the short-time Fourier transform of each signal, 

computed at the actuation frequency and centered on the expected arrival time [66].  The results 

are then multiplied across all sensor pairs.  As was previously noted by Flynn et al., this is 

approximately equivalent to the product of the filtered and enveloped waveform.  Therefore, the 

simpler implementation has again been adopted.  Because this technique is multiplicative, 

applying weighting factors to the sensor pairs (as proposed for the sensor fusion methods) does 

not change the result.  There is therefore no difference in this method between NP binary and 

NP direct scaling fusion techniques. The EA formulation is described mathematically by 

Equation (3.6): 

    2
0( ) , ( )TP

ij ij ij ij
i j i j

r S x r    I  (3.6) 

WTP – the weighted total product method adds an exponential time window to the TP 

method, as described by Equation (3.7): 
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    2( ) ( ) ( )WTP
ij ij ij

i j

r x r w r I  (3.7) 

MVDR – the minimum variance distortionless response method computes a set of 

optimal weights such that the energy that is not present in the “look direction” of any given 

pixel is minimized.  The objective, therefore, is to minimize imaging artifacts outside a 

particular look direction.  Where appropriate, phase information, dispersion compensation, and 

scattering fields may also be integrated directly into the approach to enhance the imaging 

results.  However, to perform a fair comparison with the other techniques presented, these 

options were not implemented.  Beam spreading, as defined by Equation (4.4), is typically 

included in the computation of the initial “steering vectors.”  While it was not implemented for 

the frame structure to better represent the physics, it was included for the fuselage rib, as the 

method was found to perform marginally better including effect.  Furthermore, the MVDR 

method’s optimization over the look vector is analogous to the sensor weighting provided by the 

sensor fusion techniques, so these methods were not applied.  The mathematics of MVDR 

imaging is more complicated than the other methods, but a full description is given by Hall and 

Michaels [70].  
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Table 2 - Mean prediction error for the bolted frame structure 

Frame Structure - Mean Prediction Error (mm)   

MLE TOA WTOA TDOA RAPID EA TP WTP MVDR Fusion Technique 

250 1019 730 624 636 926 1010 743 423 All PC channels 

132 1004 645 - 222 943 1077 391 612 NP binary 

120 970 614 - 141 747 - - - NP direct scaling 

Table 2 compares the results obtained by applying each of the preceding localization 

algorithms to the frame structure with no feature modeling applied.  To construct a quantitative 

comparison a convenient and descriptive measure of the localization accuracy may be 

calculated by simply taking the distance between the predicted location and the true damage 

location.  The results for both NP binary fusion and NP direct scaling fusion methods are 

presented, along with the results obtained using all pitch-catch sensor pairs.  A more detailed 

analysis of the effect of fusion techniques is given in Section 3.3.3.  For those methods where 

the fusion method chosen either does not influence the results or the application of the method 

is undefined, the entries are not repeated.  For a structure of this complexity, the TOA, WTOA, 

TDOA, EA, and TP methods are all unable to outperform the completely uninformed localizer, 

which for the frame structure produces a mean error of 644 mm, as presented in Table 7 in the 

next section.  (The uninformed localizer is a reference technique that takes no information from 

the sensing system. In such a situation, the best damage prediction possible is to always predict 

the “geometric centroid” of the structure, which is to say the point that is closest, on average, to 

every other possible damage location.)  The MLE formulation achieves the best localization 

accuracy for these tests.  In fact, only the RAPID and WTP methods are able to approach the 

level of performance achieved by MLE.  Also note that for every localization algorithm, NP 

direct scaling fusion improved localization performance over that obtained by NP binary fusion. 
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Table 3 compares the results from each localization algorithm applied to the fuselage 

rib structure, again with no feature modeling.  The performance of the MLE formulation is 

again superior, this time by a factor of more than two (in terms of mean prediction error) over 

the second-best method.  For each structure, the second-best algorithm is RAPID, while none of 

the other methods exhibited similar performance on both of the structures tested. 

 
Table 3 - Mean prediction error for the fuselage rib structure 

Fuselage Rib Structure - Mean Prediction Error (mm)   

MLE TOA WTOA TDOA RAPID EA TP WTP MVDR Fusion Technique 

194 573 339 296 336 259 473 303 414 All PC channels 

74 601 309 - 149 188 630 337 382 NP binary 

63 443 324 - 141 163 - - - NP direct scaling 

To visualize their performance, localization performance curves are computed for each 

algorithm.  These plots express the fraction of damage cases where the technique is able to 

localize the error to within a specific error bound.  They may be interpreted similar to receiver 

operating characteristic curves, in that the best performance implies the curves should approach 

the top left corner, but note that the x-axis is not bounded except by the size of the structure.  

The localization performance curves for the bolted frame structure are given in Figure 24and the 

corresponding curves for the fuselage rib are given in Figure 25.  Similar to ROC analysis, the 

performance represented by these curves can be represented by an AUC metric, except the area 

must be integrate from zero to the maximum error of the x-axis.  Normalizing such that perfect 

localization would produce a value of one, the comparison results are again presented using this 

metric in Table 4 and Table 5. 
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Table 4 - Normalized AUC, bolted frame localization performance curves 

Frame Structure - Normalized AUC   

MLE TOA WTOA TDOA RAPID EA TP WTP MVDR Fusion Technique 

0.857 0.412 0.580 0.641 0.633 0.466 0.417 0.572 0.757 All PC channels 

0.925 0.420 0.629 - 0.874 0.456 0.378 0.776 0.647 NP binary 

0.931 0.440 0.647 - 0.919 0.570 - - - NP direct scaling 

 

Figure 24 - Localization performance curves for bolted frame structure 
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Table 5 - Normalized AUC, fuselage rib localization performance curves 

Fuselage Rib Structure - Normalized AUC   

MLE TOA WTOA TDOA RAPID EA TP WTP MVDR Fusion Technique 

0.785 0.346 0.615 0.667 0.618 0.709 0.462 0.657 0.529 All PC channels 

0.921 0.313 0.648 - 0.832 0.788 0.280 0.617 0.567 NP binary 

0.929 0.495 0.630 - 0.838 0.818 - - - NP direct scaling 

 

Figure 25 - Localization performance curves for fuselage rib structure 

Each method of comparison suggests the same conclusion – the MLE procedure 

produces the most accurate results of any algorithm implemented here.  The RAPID method 
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performs second-best, and no other method is able to produce comparable results for both the 

bolted frame and the fuselage rib.  These conclusions hold independent of the particular sensor 

fusion method selected, a question examined more closely in the following section. 

In the UGW SHM literature, it is common to think of delay-and-sum as generating 

images of the damage, where the highest pixel value or values represent the damage location.  

To visualize the MLE filtering results in a consistent manner, a final graphical view of the 

results is presented.  The following damage localization figures are maps of the log-likelihood 

that the damage is at a given point on the structure.  Because the damage detection question has 

been answered affirmatively in each of these cases, the location of the maximum likelihood is 

taken to be the predicted damage location.  In the plots, sensors are noted as white circles with 

their corresponding channel numbers.  To generate a convenient color-scale, the log-likelihood 

output from the algorithm has been normalized to a linear scale between 0 and 1.  However, it is 

important to remember that these values do not represent a probability in any sense, only a 

normalized likelihood that is useful for visualizing how a particular maximum point came to be 

selected.  These maps are also not meant to represent damage maps directly, and in their current 

form they cannot be used to estimate the size or extent of damage. 

Two damage likelihood maps (of the 223 total) were chosen as representative examples 

for the bolted frame.  Figure 26 shows an example where the damage location estimate directly 

coincides with the prediction.  The pixel values in the image are significantly higher on the 

element containing the damage than on the other elements.  The values also decrease farther 

away from the damage, as would be expected for a good localization procedure.   
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Figure 26 - Likelihood map for damage location prediction, frame trial 133. All dimensions are given in 
mm. 

Figure 27 is an example case where the estimation is less accurate.  In that scenario, the 

damage was located on an element on which no sensor was located, a situation that tends to 

produce higher estimation errors (again, as expected).  The UGW SHM system overage is not 

uniform – that is, damage toward the center of the sensor array will be more easily observed 

than those on the outer edges. 
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Figure 27 - Likelihood map for damage location prediction, frame trial 187. All dimensions are given in 
mm. 

Thus, the accuracy of the localization is dependent on the location of the damage on the 

structure, as demonstrated by Figure 28.  In this figure, each element of the bolted frame is 

broken into three and the average localization error on each segment computed. 
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Figure 28 - Average localization error by region on the bolted frame structure.  Areas with insufficient 
data are shown cross-hatched.  All units are given in mm. 

Similar images have been generated for the fuselage rib structure as well.  In these 

figures, black circles represent major through-holes in the part and the solid black lines 

represent the larger stringers behind the instrumented surface.  The part’s actual geometry is 

more complex—smaller stringers and thickness changes were not considered for simplicity—

but these considerations incorporate the some of the most significant geometrical obstacles to 

UGW inspection.  As in the previous case, the likelihood values are normalized to fall between 

0 and 1, where 1 represents the predicted damage location. 
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One example from each hole location on the fuselage rib, each at the maximum hole 

diameter, is presented for illustrative purposes.  The first two hole locations, shown in Figure 29 

and Figure 30, are located very precisely due to their central location with respect to the sensor 

array.  Figure 31 shows a more challenging hole location, in that there is a large through-hole 

nearby which obscures the direct line of sight of the closest sensors.  It is clear that the 

likelihood map is distorted in that region because the localization algorithm incorporates a basic 

model of the obstacle.  In fact, similar distortions may be observed around the geometric 

features in each of the likelihood maps.  Finally, Figure 32 depicts the final hole location, which 

is positioned well outside of the sensor array.  Because the array viewed from that angle is 

nearly linear, the range to the damage can be predicted with much more accuracy than the 

angular component of the location.  As a result, there is a roughly elliptical band of high 

likelihoods with nearly the correct range, but because the predicted position is uncertain and 

fluctuates within that band, a higher prediction error is observed for the last hole location. 

 

Figure 29 - Likelihood map for damage location prediction, fuselage rib trial 10 
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Figure 30 - Likelihood map for damage location prediction, fuselage rib trial 22 

 

Figure 31 - Likelihood map for damage location prediction, fuselage rib trial 34 

 

Figure 32 - Likelihood map for damage location prediction, fuselage rib trial 46 
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3.3.3. Sensor Fusion 

As was introduced in Section 2.7, sensor fusion is defined as the process of integrating 

data from multiple sources in a way that enhances the decision-making performance of the 

SHM system.  Which techniques will produce the most effective sensor fusion is an application-

dependent question.  For damage detection, the objective is to increase the class separability 

between the undamaged and damaged data.  This principle is illustrated graphically in Figure 33, 

which shows two forms of sensor fusion applied to the frame magnet damage.  Because in 

practice the class labels are unknown, a single threshold value must be chosen, drawing a 

horizontal line across the given plots.  Therefore, the best detector is one that minimizes the 

overlap of the two clusters when projected onto the y-axis.  Clearly, the voting fusion technique 

on the right side does a much better job of separating the two classes in metric value.   

 

Figure 33 - Two forms of sensor fusion applied to the frame magnet damage: L1 norm (left) and voting 
(right) 
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In order to quantify the degree of separation (or the ease of correctly classifying a 

particular measurement as damaged or undamaged), a metric known as the Fisher Discriminant 

Ratio (FDR) is introduced [71].  The FDR is defined as: 

 

2
1 2
2 2
1 2

( )
FDR

 
 





 (3.8) 

where the symbols   and   represent the means and standard deviations of the respective 

classes.  The data after fusion is reduced to a vector of scalar values, one for each trial.  As such, 

calculating the mean and standard deviations of the undamaged and damaged classes is 

straightforward.  For the damage types that included multiple levels of damage, all damaged 

cases were lumped together into the damaged class for the purposes of this comparison.  Note 

that the FDR increases as the means get farther apart and as the variances decrease, both of 

which make the classes more easily distinguishable from one another.  Therefore, the most 

desirable fusion technique is the one with the highest FDR value. 
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Table 6 - Comparison of fusion techniques -- probability of detection for false alarm rate of zero 

  
Frame Magnet 
FDR Frame Bolt FDR 

Fuselage Rib 
FDR 

Data-level Fusion       

Energy sum over sensors 3.271 9.538 N/A 

Energy sum (pitch-catch pairs only) 4.128 9.441 2.786 

Energy sum (pulse-echo pairs only) 0.485 5.000 N/A 

Feature-level Fusion       

L1 Norm (linear mean, correct) 4.576 15.923 5.969 

L2 Norm (sum square) 5.127 22.889 5.133 

L∞ Norm (maximum) 3.674 29.273 4.539 

Decision-level Fusion       

Simple voting 2.138 3.956 8.114 

Voting - L1 Norm on Receivers 0.838 2.649 6.363 

Voting - L2 Norm on Receivers 3.346 0.487 9.016 

Voting - L∞ Norm on Receivers 3.736 1.141 7.336 

Voting - L1 Norm on Actuators 0.810 2.617 6.306 

Voting - L2 Norm on Actuators 3.119 0.481 10.140 

Voting - L∞ Norm on Actuators 3.431 1.137 6.793 

A selection of sensor fusion techniques from each level were applied to the test results 

from the bolted frame and the fuselage rib.  The resulting comparison of FDR results is 

presented in Table 6.  All of the voting fusion techniques, it should be noted, require threshold 

values for each sensor pair.  Using a separate threshold for each of the 
2N  sensors naturally 

requires more baseline data be retained than simply one threshold value on the final fused 

feature value.  Finally, none of these methods seek to add information to the detection problem 
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– they simply map the information in the data to a decision, hopefully in the most effective way 

possible.   

From the fusion results, it appears that the best technique is different for each type of 

damage.  The best performing fusion technique for the frame magnet damage is the L2 norm, 

whereas for bolt damage in the same structure the best technique is the L∞ norm.  In the fuselage 

rib, the voting using L2 norm on actuators is the most effective in this experiment. The 

differences in optimal fusion techniques may be due to a number of factors: the specific 

differences in scattering behavior of the different damage mechanisms and the sensor density 

with respect to the size of the structure are the most likely candidates.  A more detailed 

characterization of the scattering properties may be an important step in formulating the optimal 

fusion techniques a priori. 

The different matrix norm techniques seem to exhibit similar performance, despite 

indicating vastly different approaches to integrating data.  The maximum, or L∞ norm, takes 

only information from the sensor that shows the highest possibility of damage, which may be 

why it is more effective in the very sparse array of the frame structure.  On the other extreme, 

the mean technique weights every sensor equally in calculating the final feature value. Voting 

schemes do seem to work very well for each structure and damage type.  The hybrid methods 

voting/matrix norm methods are sometimes more and sometimes less effective, depending on 

the particular case considered.  The challenge when using a voting scheme for a SHM system is 

determining what the threshold values for each sensor pair should be, since the final probability 

of detection is only as good as the selected threshold values.  Data-level fusion did not seem to 

yield particularly good results for any of the damage cases.  Because of the details of the data 

acquisition process, the pulse-echo waveforms are substantially noisier, and for the frame 

structure it can be seen that their inclusion can actually hurt the overall detection performance.  
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Of course, it is important not to overgeneralize these trends from limited sample sizes, but this 

comparison is a good empirical starting point towards developing optimal sensor fusion for 

damage detection. 

For damage localization, the objective of sensor fusion is instead to optimally combine 

data through the delay-and-sum process in order to produce accurate location estimates.  With 

the MLE first-arrival localization approach having been validated for the proposed application 

in Section 3.3.2, the next step is to test the performance of the proposed sensor fusion approach 

outlined in Section 2.7.  Table 7 and Table 8 show results for the MLE formulation with 

different sensor fusion strategies implemented.  Trials 100 and 200 give the reference results 

obtained using no localization information (i.e. simply picking the geometric centroid each 

time).  Next, the cases using all pitch-catch (PC) channels is presented, which represents the 

default sensor fusion technique for most delay-and-sum localization.  Followed those cases are 

the results obtained by using the location of the sensor receiving the most votes in the sensor-

by-sensor detection threshold process – again, though not a localization technique based on 

delay-and-sum, it provides a useful reference against which to compare the subsequent 

techniques.  An appropriate UGW SHM localization strategy would be expected to outperform 

all of the first three techniques.  As expected, without appropriate sensor fusion techniques, the 

ellipse methods of localization (in cases 101 and 201) for such complex structures are very 

inaccurate, and methods not based on delay and sum (as for 102 and 202) can be more accurate.  

Finally, results are presented for NP binary fusion and NP direct scaling fusion, both with and 

without the geometric feature modeling, which will be described in Section 4.3.  For simplicity, 

the parameters were calculated using NP direct scaling only and kept constant for both of the 

fusion methods presented.  Two metrics of localization performance are presented for each case: 

the average prediction error and the AUC metric. 
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Table 7- Frame structure localization results for various fusion and modeling choices 

Run # Mean Error (mm) AUC Delay (µs) Attenuation Fusion Technique 

100 649 0.562 0 1 Centroid (no info) 

101 251 0.832 0 1 All PC channels 

102 133 0.911 0 1 Most popular sensor 

103 136 0.911 0 1 NP binary 

104 121 0.919 0 1 NP direct scaling 

105 69.4 0.955 5.8 0.595 NP binary 

106 65.4 0.957 5.8 0.595 NP direct scaling 

 
Table 8 - Fuselage rib structure localization results for various fusion and modeling choices 

Run # 
Mean Error 
(mm) AUC Delay (µs) Attenuation Fusion Technique 

200  254  0.703  [0, 0]  [1,1] 
Centroid (no info) 

201  196  0.780  [0, 0]  [1,1] 
All PC channels 

202  140  0.838  [0, 0]  [1,1] 
Most popular sensor 

203  78.9  0.916  [0, 0]  [1,1] 
NP binary 

204  59.6  0.931  [0, 0]  [1,1] 
NP direct scaling 

205  72.5  0.922  [1.44, 0.010]  [0.995, 0.995] 
NP binary 

206  56.2  0.936  [1.44, 0.010]  [0.995, 0.995] 
NP direct scaling 

 

For both the frame and rib structures, NP direct scaling outperformed NP binary sensor 

fusion, just as both of those techniques outperformed the results using all sensor pairs.  The 

implementation of some form of feature modeling likewise produced a drop in the localization 
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error, most significant for the frame structure.  The fuselage rib was not as dramatically 

influenced by feature modeling, most likely because the quantity and diversity of the features 

made the parameter estimates less precise.  The final average localization error in the frame 

structure was a mere 65 mm, compared to a maximum path distance in the structure of 1.8 

meters.  The UGW wavelength in the frame is about 25 mm—an average error about 2.5 times 

the wavelength is an excellent result.  The results in the fuselage rib structure are similarly 

excellent, with the average error decreasing from 196 mm with no sensor fusion or feature 

modeling down to just 56 mm when NP direct scaling and feature modeling were implemented. 

A portion of this chapter has been published in Structural Health Monitoring: An 

International Journal, Colin Haynes, Michael Todd, Eric Flynn, and Anthony Croxford, 2013. 

The title of this paper is “Statistically-based damage detection in geometrically-complex 

structures using ultrasonic interrogation”. The dissertation author was the primary investigator 

and author of this paper. 

 A separate portion this chapter has been has been submitted for publication in 

Mechanical Systems and Signal Processing, Colin Haynes and Michael Todd. The title of this 

paper is “Enhanced Damage Localization for Complex Structures through Statistical Modeling 

and Sensor Fusion”. The dissertation author was the primary investigator and author of this 

paper.  
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  Chapter 4

Empirical Estimation of Wave Scattering 

Any inhomogeneity in the mechanical impedance of a structure will cause elastic waves 

to scatter in a way that is governed by material properties, wave properties, and the specific 

geometry of the scatterer.  This chapter presents an empirical approach to estimating scattering 

profiles, both of specific types of damage and of geometric features.  The aim of developing 

such profiles is to facilitate the SHM process by allowing quantitative prediction of how 

ultrasonic signals will interact with scatterers.  Understanding these interactions can aid in SHM 

system design (such as optimal sensor placement and tailoring actuation signals), as well as in 

more accurate damage identification.  Damage localization has been shown to benefit from 

models of directional types of damage, as well as modeling of the geometric features 

themselves [36, 72].  For damage characterization, modeling is indispensable to producing a 

prediction of the structural state [73]. 

A scattering matrix is a way of quantifying the magnitude and directionality of such an 

interaction, whether due to defects or to structural features.  Since the terminology of the 

“scattering matrix” was borrowed from electromagnetic theory [74, 75], the interaction of 

ultrasonic waves with scatterers has been studied by many authors.  An overview of some of the 

different ways these phenomena may be described was given by Wilcox and Velichko [35].  
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Scattering matrix methods typically compare the magnitude or energy of the wavefront 

scattered in all directions as a function of incident direction [76].  Usually these representations 

consider the far-field scattering behavior of the target feature [35].  The most general 

description of the scattering of a feature would be a function of incident angle, reflected angle, 

wave mode, frequency, and even possibly the radius at which the response is measured.  In 

focusing on empirical techniques for estimating these scattering matrices, this work may 

complement theoretical or numerical approaches where solutions can be found.  For more 

complex situations where analytical models cannot be constructed, experimental techniques 

may be the only feasible option.  Although there are many sensing modalities that may be used, 

two examples are presented here—bolt bearing damage interrogated by fixed piezoelectric 

sensors and rivet scattering inspected through scanning-laser-generated ultrasound.  Finally, the 

chapter concludes with a section on how geometrical models may be used to improve the 

damage localization process. 

4.1. Bolt Bearing Damage Scattering Characterization  

For an example of estimating scattering matrices from experiment, the case of bolt 

bearing damage in composite materials is considered.  In particular, interaction of Lamb waves 

with bolt bearing damage in carbon fiber reinforced polymer (CFRP) bolted joints has been 

studied parametrically.  The use of CFRP materials for aerospace structures has become 

widespread in due to their superior specific strength and specific stiffness.  Moreover, 

mechanically-fastened connections, and specifically bolted joints, are the predominant 

connection type for primary structures made of advanced composites [77].  However, such 

connections are not as well understood as their isotropic counterparts, and the characterization 

of the failure mechanisms of CFRP bolted connections remains an active research area.  As 
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CFRP bolted joints become more common features in aircraft design, it becomes increasingly 

important to develop systems capable of monitoring their failure mechanisms.  Bolt bearing 

failure is of particular interest because connections that fail in this mode tend to have the highest 

strength, and so this is a preferable failure mode from a design perspective [78].   

If the goals of SHM are to be realized, inspection techniques must exist that are 

sensitive to the damage mechanisms of interest – hence, the first objective of the current work, 

which is to establish the sensitivity of UGW inspection to bearing damage.  Once that objective 

has been satisfied, the second goal is to determine the scattering properties of the damage as a 

function of the various parameters that may affect the UGW interaction. 

Several of the aspects of the problem have been studied previously, including: the 

interaction of guided waves with various scatterers, the effect of applied load (i.e. the stress 

state of the material) on guided wave propagation [79, 80], bolt bearing damage in CFRP 

materials [77, 81], and the inspection of bolted joints [82, 83].  However, this study was the 

first, to the author’s knowledge, to propose inspecting bolt bearing damage in CFRP through the 

use of a UGW system. 

4.1.1. Experimental Methods 

To begin experimental investigation, two CFRP test specimens were fabricated, which 

will be referred to as plates 101 and 102.  The laminates consisted of eight T700S/2592 prepreg 

layers in a [-45 0 45 90]s stacking sequence.  The final laminate measured 200 mm x 120 mm x 

1.15 mm with 6-mm-diameter holes drilled to bolt to the tensile testing fixture in such a way 

that will introduce damage at a predictable location.  The entire test fixture is shown in Figure 

34.  Several 40-mm-square CFRP washers on either side of the plate allow the other connecting 

elements to grip the specimens without contacting the surface of the plates, which is necessary 

to avoid putting pressure directly onto the sensors that are used to instrument them.  The 
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double-shear testing configuration puts the highest stress on one side of a single target hole, 

ultimately introducing bolt bearing failure. 

 

Figure 34 - Overview of tensile testing apparatus, plate 101 

Each test specimen was instrumented with a uniformly-spaced circular array of eight 

macro fiber composite (MFC) sensors.  MFCs are favored in composite applications because of 

their conformability to curved surfaces, their directional actuation characteristics, and their 

durability.  The usefulness of MFCs in guided wave SHM for such applications has been 

demonstrated by many studies [84, 85].  The MFCs used for this experiment were all of the 

M2814-P2 type cut to a final dimension of 14 mm wide by 6 mm long, bonded to the surface of 

the laminate with a standard two-part epoxy adhesive.  The sensors were positioned such that 

the front edge of the MFC was 30 mm away from the center of the target hole, oriented with the 
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principal axis of the MFC passing through the center of the hole.  An overview of the sensor 

layout is given in Figure 35.  Positioning the MFCs in a uniform circular array around the target 

hole where the defect was to be introduced facilitates the investigation of the directionality of 

the interaction. For reflections from a perfect cylindrical hole, the scattering matrix result can be 

calculated theoretically (at least for isotropic materials) or determined numerically using 

techniques such as finite element modeling or semi-analytical finite element modeling [32].  

However, such results are not readily available in the literature for anisotropic materials, 

especially for complex defect structures like CFRP bolt bearing damage.  As a result, the 

optimal angles of interrogation under different conditions are determined here by taking an 

experimental approach to estimating the scattering matrices. 

 

Figure 35 - Overview of MFC array, plate 101 

Ultrasonic data were acquired by using each MFC to actuate sequentially, receiving 

with all other sensors upon each actuation.  The actuation signal was chosen as a three-cycle 

Gaussian-modulated sinusoid.  Generally, the optimal frequency for actuation of a UGW SHM 
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system may be selected by considering the sensor properties, the material properties of the 

medium, and the ratio of the target defect size to the wavelength.  Determining the amplitudes 

and directions of the guided wave modes generated by an MFC sensor is a difficult question, 

though Collet et al. have presented some useful information obtained from finite element 

analysis [86].  From the results of that study, it may be inferred that the forward-propagation 

direction (the direction that will interact first with the bolt hole) is dominated by the S0 mode of 

propagation.  While the present work is not focused on detailed analysis of the wave 

propagation, this information is helpful for predicting the approximate group velocity, and thus 

the time window during which the scattered waves will be received.  Indeed, rather than attempt 

to calculate the dispersion curves for this particular quasi-isotropic CFRP layup, the velocity of 

the dominant mode was determined from a simple experiment in a feature-less plate of the same 

material.  Bonding two identical MFC sensors 60 mm apart on the surrogate plate, the same 

actuation parameters were used to launch and receive a pulse.  From a basic time-of-flight 

calculation, the velocity was found to be about 4.0 km/s. 

For plate 101, the data acquisition system did not support pulse-echo measurements, but 

all pitch-catch channels were recorded at a sampling frequency of 10 MHz.  A center frequency 

of 300 kHz was chosen primarily because it provided a relatively high-amplitude response for 

the forward-propagating wave.  Plate 102, however, was tested with a different data acquisition 

system, enabling the acquisition of both the pulse-echo responses and a parametric study of 

different actuation frequencies to be undertaken.  The second data acquisition system operated 

at a sampling frequency of 2.5 MHz. 

Each waveform was then denoised by applying a matched filter—that is, convolving the 

received signal with the input signal. This filtering procedure, as mentioned before, has the 

effect of eliminating frequency content other than that contained in the actuation signal, which 
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implicitly assumes linear data acquisition.  Each signal is then enveloped by taking the 

magnitude of the Hilbert transform of the signal.  Given that the sensor locations and wave 

speed have been determined, it is a straightforward calculation to determine the time window 

inside which the direct-arriving wave should fall.  The other arrivals are either insensitive to 

damage (because the path does not interact with the hole) or more sensitive to non-damage-

related parameters than the direct arrival (because the path includes edge reflections).  

Therefore, appropriate time windows are applied to select the proper wave packet, with the 

same window being used for all sensor pairs (since the nominal distances are the same and 

directional velocity differences may be neglected).  Because no model for the effect of bolt 

bearing damage on guided waves in composites is available, it is difficult to determine an 

optimal detector a priori.  Therefore, as a detector that has been shown to be effective in 

situations with minimal prior knowledge, the NRE metric presented in Section 2.2 is applied to 

the present situation as well.   

Both of the specimens were subjected to a displacement-controlled tensile test until 

three different damage levels were introduced.  The first level corresponded to the first 

significant load drop observed in the load-displacement curve. The following two damage levels 

were based on loading to a prescribed displacement beyond the initial load drop.  While every 

effort was taken to ensure the consistency of the damage modes compared, the two plates used a 

slightly different test procedure.  Tests for plate 101 were conducted at the University of Tokyo.  

After each load increment, plate 101 was unloaded and removed from the bolt fixture for the 

ultrasonic interrogation.  Because all of the ultrasonic tests were conducted on the plate once 

removed from the test fixture, the boundary conditions were kept consistent.  The damage in 

plate 102, by contrast, was introduced at the University of California, San Diego via a single 

tensile test, during which the loading was merely paused to take ultrasonic readings.  Therefore, 
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the lateral restraint condition remained consistent for the plate 102 tests, although it was 

necessarily different from the plate 101 condition.  Lateral restraint has been shown to 

particularly influence damage structure and the load level when damage initiates [87].  

However, introducing the damage in a single tensile test allowed the effect of load state on the 

UGW inspection to be considered. 

Figure 36 and Figure 37 show the load-displacement curves for each of the tests 

conducted.  During each pause at the discrete loading levels for plate 102, the test apparatus 

relaxed slightly, causing the load drops for constant displacements that can be seen at regular 

displacement intervals (particularly at higher load values).  However, the ultrasonic 

interrogation was not performed until the load level was stable enough (relative to the load 

increment of the tensile test) for all sensors to take their readings at the same nominal load state. 

 

Figure 36 - Load vs. displacement curves for plate 101 
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Figure 37 - Load vs. displacement curve for plate 102 

Following the plate 101 tensile test, the specimen was cut along the line of damage 

progression, polished, and photographed with an electron microscope in order to capture the 

cross-section of the damage.  The resulting photograph is presented in Figure 38.  Note the 

periodic buckling of the zero-degree fibers (second layers from the outside), as well as the “X” 

patterns in the inner layers denoting shear failure [88].  The damage microstructure is presented 

to provide a more specific understanding of the type of damage that the UGW inspection 

attempts to identify in this experiment.  The particular damage structure is not of primary 

importance, however – each specimen will exhibit slight variations to which a SHM system 

must be robust to be of practical interest. 
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Figure 38 - Electron microscope photograph of bolt bearing damage cross-section 

4.1.2. Scattering Results 

For plate 101, three baseline trials were acquired before any loading began.  Three more 

trials were conducted after each of the five load levels, of which two remained in the elastic 

region and three introduced progressive levels of damage.  For plate 102, 18 trials were run 

before any loading.  Among these baselines were various configurations, including trials with 

the specimen being placed in and removed from the bolt fixture.  After this set of data was 

recorded, all further trials were conducted with the specimen in the test fixture under different 

levels of load.  A baseline tensile test was then conducted to 2 kN, well within the elastic region 

of the specimen, with two baseline trials at every 0.5 kN interval.  Finally, the main tensile test 

was conducted to failure (as shown in Figure 37), with trials at each 0.5 kN interval of loading 

also.  These trials compose the undamaged data and three levels of damaged data, with eight 

additional unloaded trials after the damage had been introduced. 

A representative group of waveforms taken from plate 102 is included in Figure 39.  

The figure shows the filtered and enveloped waveforms recorded by the 7-6 sensor pair for all 

the trials during the final tensile test.  The waveforms are labeled according to the load state 

under which they were taken, which include all cases from unloaded to the introduction of 
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damage at the end of the test.  The boundaries of the time window applied to the signal are 

denoted by green lines – the peak that falls between the lines is the reflection of the dominant 

mode with the target hole.  The wave packet arriving around 10 s is the result of the proximity 

of the MFCs to one another; despite their directional nature, some energy still travels directly 

between adjacent sensors, thus arriving earlier than the intended first arrival.  Arrivals after 30 

s represent reflections from the boundaries of the small test specimen.  Closer inspection of the 

peak of the wave packet of interest, shown in the inset, reveals that the amplitudes vary both 

with load and with damage level.  An analogous plot is given in Figure 40 for sensor pair 2-6.  

This pair, rather than being adjacent, is on opposite sides of the target hole.  As such, the first 

peak observed in the target hole reflection, because that path is also the direct path.  From the 

inset, it may be observed that the sensitivity of the waveform to load effects is different from the 

other direction. 

 

Figure 39 - Time series results for sensor pair 7-6, plate 102 
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Figure 40 - Time series result for sensor pair 2-6, plate 102 

Now that the underlying data has been examined, scatter plots are generated to attempt 

a quantification of the scattering directionality under various conditions.  One representative 

scatter plot is given for each specimen based on the first-arrival-amplitude of the target hole 

reflection.  Note that the coordinate system is defined such that the damage progresses in the 

180° direction.  Each plot can only show the results for one actuator, which is labeled in the 

figure with a red square.  All examples here are using sensor 6, and each sensor’s response 

plotted in the direction of that sensor.  The plots for plate 102 also include pulse-echo channels, 

although these channels have a higher noise floor because they are significantly influenced by 

electro-magnetic interference effects from the actuation.  While the amplitudes of these pulse-

echo channels are therefore more variable than the respective pitch-catch channels, some cases 

still showed statistical separation between damaged and undamaged cases.  As a result, the 

pulse-echo channels have been included where available. 
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Figure 41 - Amplitude scattering matrix, actuator 6, plate 101 

 

Figure 42 - Amplitude scattering matrix, actuator 6, plate 102 

It is evident that the experimental scattering matrix results, even for the undamaged 

cases, are not quite symmetric.  Only a slight directional dependence would be expected from 

the quasi-isotropic laminate (as demonstrated by Salas and Cesnik [13]), and the results are not 

entirely consistent with the theoretical predictions for this case.  The presence of the bolt fixture 
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is unlikely to be the cause, since the plate 101 tests (shown in Figure 41) were conducted after 

removing the specimen from the bolt fixture (thus there was no contact around the bolt hole).  

Plate 102 tests (shown in Figure 42) were all conducted under a consistent lateral restraint 

condition since the plate was not removed from the fixture, so it is reasonable to conclude that 

lateral restraint is not the most likely cause of the asymmetry cause.  Instead, discrepancies 

among the MFC sensors such as slight variations in location, orientation, and bond condition are 

probably the main factors contributing to the asymmetry.  An uncertainty quantification study 

was also conducted to study the main effects that impacted the UGW system [89] – the results 

are given in Section 0.  In both cases, there are angles for which some separation between 

damage states is noted, but it is difficult to determine a definite pattern from the first-arrival-

amplitude scattering matrix comparisons directly. 

 

Figure 43 - Baseline-subtraction scattering matrix, actuator 6, plate 101 
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Figure 44 - Baseline-subtraction scattering matrix, actuator 6, plate 102 

To visualize the damage progression another way, baseline subtraction was applied to 

the data and the NRE metric was used to construct scattering matrices.  The resulting ratios are 

typically expressed in decibels, so the minimum value (across all sensors and trials) was 

subtracted to shift the negative dB values (which are inconvenient for polar plots) to positive 

values.  The resulting plot indicates the smallest deviation from the baseline by the smallest 

magnitude of the radial component, which is still expressed in dB units.  The plots shown are 

qualitative in nature, meant to highlight the patterns of residual scatter for each angle of 

interrogation. 

First, it is clear from the baseline-subtracted results that the residual energy becomes 

greater as the damage level increases.  Certain angles exhibit a more pronounced change with 

damage level, whereas the distinction is not as clear for others.  Comparing the results for the 

two specimens against one another, however, the observed patterns are quite dissimilar.  As 

demonstrated by Figure 43 for plate 101, the reflections that bounce back from the damaged 

side of the hole produce a relatively large separation among damage cases.  However, the result 
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from plate 102 shown in Figure 44 suggests the opposite – waves propagating past the hole and 

received on the opposite side from the actuator produce the best separation.  In the next section, 

the angular dependence is investigated more quantitatively and a possible cause of the 

discrepancy is discussed. 

4.1.3. Angular Dependence of Scattering 

To provide a quantification of performance at each input and output angle, the class 

separation between the data from each damage level and the undamaged data is computed for 

each sensor pair.  Because of the small sample sizes when considering each sensor pair and 

frequency independently (there are relatively few trials for each level, particularly for the 

damaged cases), it is difficult to estimate the intra-class variability accurately.  Additionally, the 

NRE metric is non-negative and should always increase as damage is introduced.  Therefore, a 

modified version of the Student’s t-test statistic is introduced as an appropriate class separation 

metric: 
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where 
( )u  is the standard deviation of the undamaged class, 

( )u  is the mean of the 

undamaged class, and zv  represents each metric value for the damaged class.  Note that if the 

sample value is less than the mean of the undamaged class, the separation is set to zero so that it 

does not contribute to the summation.  The class separation metric is not intended to be used for 

detection—it is instead used to compare various acquisition parameters given knowledge of the 

class labels for each test. 
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Figure 45 (which is taken from plate 101 data) compares the class separation for each 

sensor pair.  Separate plots are given for each of the three damage levels, with all of the data 

acquired at a 300 kHz actuation frequency.  The values of the distance measure may seem quite 

high because there is excellent separation among classes for specific sensor pairs.  However, the 

scale of the vertical axis is not as important as the comparison between interrogation angles.  

From this point of view, it is evident that the best separation for all damage levels is obtained by 

using the sensors on the damaged side of the hole (sensors 4, 5 and 6) both to actuate and to 

receive.  That is, the results are best when waves are generated from the damaged side, 

reflecting off of the damage and being received by a nearby sensor.  These sensor pairs will 

henceforth be referred to as “backscatter angles”. 

 

Figure 45 - Interrogation angle comparison for plate 101, 300 kHz 
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Figure 46 - Interrogation angle comparison for plate 102, 300 kHz 

Figure 46 shows the analogous data for plate 102, using only the data acquired with the 

300 kHz actuation frequency to match the previous plot.  However, the observed pattern is not 

the same for the plate 102 tests.  Rather than the backscatter angles, the data suggest that the 

through-transmission paths (the sensors separated by 180 degrees) are the best choice for 

separating damaged trials.  Because the plates were fabricated and instrumented according to 

identical procedures, the most likely cause for the dramatic difference plate 102 was under load 

when the measurements were taken, while the plate 101 tests were always conducted with the 

load removed.  The loading results in a different contact condition between the bolt and the 

bearing surface of the plate, causing the waves to interact with the hole differently.  This 

hypothesis was confirmed by comparing results from plate 102 taken in an unloaded state 

(removed from the bolt fixture) before and after the introduction of damage.  The resulting 
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pattern, given in Figure 47, is much more similar to the plate 101 results than to the plate 102 

results obtained under load.  Such influences may be difficult to predict in advance with 

modeling approaches for predicting the scattering from defects, such as that presented by 

Fromme and Sayir [32].  Results of this type highlight the motivation for taking the empirical 

approach implemented here.  Of course, any given practical application will likely be different 

as well; for example, most connections involve more bolts than just one, resulting in more 

complex contact conditions.  These considerations, while worthy of further investigation, are 

beyond the scope of this dissertation. 

 

Figure 47 - Plate 102 unloaded results, damage level 3 only 
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4.1.4. Frequency Dependence of Scattering 

With the optimal angles of interrogation thus established, the effect of actuation 

frequency is now examined for the plate 102 data.  The same modified t-test metric as before 

was computed over the average NRE level of all sensor pairs.  The results are given in Figure 

48, where the class separation values for each damage level (1-3) are stacked on one another.  

Again, the higher the t-test metric, the better separation is achieved – with that in mind, the 

results imply that there is a peak in system performance around 325 kHz.  The trend in Figure 

48 is quite similar to the trend in the amplitude of the received signals (which is dependent 

primarily on the sensor properties).  That higher signal amplitude would improve detection 

performance is not surprising.  On the other hand, the wavelength of the interrogation signal 

(which is often a parameter of prime importance in achieving sensitivity to damage) varies 

between approximately 2.5-6 mm or about 0.4 to 1 hole-diameters.  Therefore, the effect of 

signal amplitude seems to be more important in this case than any sensitivity gained by 

matching the wavelength more closely with the damage scale.  Finally, this comparison 

provides some justification for the 300 kHz actuation frequency selected for previous 

comparisons. 
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Figure 48 - Class separation vs. actuation frequency, plate 102 

4.1.5. Load Dependence of Scattering 

For the plate 102 tests, the recorded signals include the effect of applied load, and the 

majority of the tests were conducted without removing the specimen from the tensile testing 

machine.  Since results have already been presented that suggest the scattering properties are a 

function of the load state, the relationship is explored further.  Applied stress on a material is 

known to have a nonlinear and anisotropic effect on wave propagation, referred to as the 

acoustoelastic effect.  This effect causes slight shift in both the group and phase velocity of 

UGW; measured in all directions for a unidirectional CFRP laminate, one study found the 

maximum velocity change to be around 1.9x10-4 /MPa [90].  Using this value as an estimated 

upper bound on the acoustoelastic effect in the present test article, it can be shown that such a 

phase difference would be nearly impossible to observe given the sampling rate of the present 

system and the small size of the specimen – the details of that calculation follow.   
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It has already been noted that the estimated group velocity in the material is 4.0 km/s.  

Therefore, the acoustoelastic velocity change would be around 0.74 m/s/MPa.  Bearing damage 

initiated in this specimen at a load of 3.5 kN.  Considering this force to be applied directly to the 

half-cylindrical surface of the bolt hole in direct contact with the bolt, the maximum stress in 

the material at failure can be found.  However, this stress level is not representative average 

stress state of the material the UGW propagates through.  In fact, much of the material towards 

the plate edge is unstressed, whereas material between the bolt holes (but far from either one) 

sees a stress equal to the load over the cross-sectional area. Finite element analysis providing a 

more detailed picture of the stress state has been carried out by Takeda et al. [18].  To construct 

a conservative estimate of the true average stress on any given path, the average of the 

maximum stress and the uniform tensile stress is used.  Using the foregoing values, equation 

(4.2) gives the mathematical expression for calculating the change in velocity and thence the 

resulting shift in the arriving wave (expressed in the number of samples): 
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 (4.2) 

where v represents the nominal wave speed, c the acoustoelastic coefficient, P the tensile load, σ 

the stress, d the hole diameter, b the plate thickness, w the plate width, s the total propagation 

distance of the wave, fs the sampling frequency, and finally n the number of samples until the 

first arrival occurs.  Using the conservative values, the resulting velocity change would be 

approximately 35 m/s.  At a sampling rate of 2.5 MHz, this change in group velocity would 

result in a time shift of just one-third of a sample in the arriving signals.  Given that the true 
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nonlinear acoustoelastic effect should be lower than this upper bound, in the presence of any 

noise, the current system cannot detect a difference in response due to this effect directly.  Lee 

et al. do propose a way of finding small phase shifts through a zero-crossing method [91], but 

such an estimation would still not be practical in this case due to the complicated stress state 

around the bolt hole and higher noise floors due to limitations on signal averaging. 

Although the velocity change may not be observable, it has been noted in the plate 102 

tests that a significant change is observed in the amplitude of the waves with load.  This primary 

effect is may be due to the interaction of the bolt itself with the guided waves, which can be 

reasonably assumed to change with load level, or even with the effect of load on the transducer 

or bonding properties. 

Because there is a noticeable change in the received signals for different levels of load, 

it is necessary to identify such changes and compensate for them in order to detect the formation 

of bolt bearing damage.  The results confirm that it is possible, using the OBS procedure to find 

the most similar baseline, to classify lower load levels from the load level of the selected 

baseline.  In effect, this is equivalent to using a k-nearest neighbor classifier with k=1.  In this 

way, load states within the allowable operating range can be tracked with this system—all 

undamaged records in the load range where baselines existed were assigned the correct load 

state by this procedure.  Higher loads for which baselines were not obtained do show an 

increase in the residual level, which, given proper threshold selection, would provide warning 

that the load exceeds the maximum allowable.  Of course, the practice of using OBS would 

become more difficult if the load state was more complex than the current uniaxial condition 

since correspondingly more baselines would be required – however, for the present case, this 

compensation method proves effective. 
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Finally, bolt bearing damage causes a further increase in residual level, which can be 

detected by appropriate threshold selection according to the usual procedure.  To demonstrate 

the damage detection potential of the system, Figure 49 shows the NRE metric values for the 

plate 102 trials.  Only the result for 300 kHz is given, but all of the other frequencies showed 

similar results (i.e. the residual levels for all damaged tests were greater than the undamaged 

tests).  For the example in Figure 49, it is clear that if a threshold level of around 0.12 had been 

chosen the SHM system would yield 100% correct detection with no false alarms for this 

limited sample set.  It should be noted that this comparison does not use any intelligent sensor 

fusion scheme, but simply uses the 
1L norm of the sensor pairs on the feature level.  The results 

are therefore likely suboptimal for an eight-sensor system, but on the other hand, that is not 

likely the arrangement that would be selected for an actual SHM application.  Of course, such a 

scenario would not be as simple and perfect detection is not be possible in practice, but this 

result validates the capability of the UGW approach to correctly identify bolt bearing failure.  
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Figure 49 – NRE metric computed for plate 102 trials 

A detailed investigation of the scattering properties of bolt bearing damage has thus 

been carried out.  Numerous parameters that may influence the UGW-damage interaction were 

considered, including the input and output wave angles, actuation frequency (or wavelength), 

and load state.  The results indicate that not only are UGW systems potentially sensitive to this 

unique form of damage, but that the resulting changes in scattering properties can be quantified.  

Furthermore, this work has shown that damage detection is not only possible, but that there is 

the potential to use the OBS approach to monitor the load state of the bolted connection. 

4.2. Rivet Scattering Characterization 

In building an empirical scattering model, the spatial density of measured data is a 

critical parameter.  Where movable transducers are infeasible, noncontact methods become 

particularly advantageous.  The next example presents work that was done to estimate the 
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scattering matrix of rivets on an aerospace component, both with and without artificial crack 

damage. 

The sensing modality chosen for the rivet scattering characterization was a scanning-

laser-generated ultrasound system [9].  This technique represents a very different approach from 

the sparse sensor arrays used in the majority of this dissertation.  Instead on having a few 

scattered sensing sites, the wavefield can be visualized with high spatial resolution over the 

entire area of interest.  For quantitatively characterizing the scattering properties, such full-field 

data is very useful, as will become apparent in the subsequent sections. 

The scanning laser system used in this experiment generates UGWs in the structure by 

directing a Q-switched pulsed laser so that the beam impinges on the surface.  These UGWs 

propagate throughout the structure and are received by a single, surface-mounted PZT sensor.  

A two-dimensional scanning mirror is then used to perform a raster scan over the area of the 

structure that is to be inspected.  By invoking elastodynamic reciprocity (for the case of linear 

wave propagation), the resulting data can be interpreted as a full-field measurement of the 

structural response from UGW actuated at the fixed PZT sensor location. 

Scanning-laser-generated ultrasound systems have several advantages which make them 

attractive for such a study [92, 93].  Such systems can rapidly produce a very high spatial 

density of information.  The systems are noncontact and may be used on structures tens of 

meters distant, depending on the ability to focus the laser beam.  Producing videos of the wave 

propagation is also a very intuitive way of interpreting guided wave data.  However, the 

technology remains more of a non-destructive evaluation method, since the inspections require 

that the somewhat bulky and expensive laser system be deployed when inspection is called for.  

Furthermore, the large quantities of data only amplify the need for adequate signal processing 

techniques for automating the damage identification procedure. 
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4.2.1. Specimen Description & Data Acquisition 

For this test, a riveted tail section from a military aircraft is considered.  The section is 

made up of a carbon fiber composite material with unknown properties, the skin of which is 

fixed to the substructure via several rivet lines.  Each rivet has a diameter of 5 mm, and they are 

all spaced at 22 mm apart, on center.  An overview of the structure is given in Figure 50.  Two 

rivet lines, comprising 20 total rivets, were chosen for analysis by the laser-generated UGW.  

Figure 51 shows a detail of the scan area, with the rivet numbering scheme and the surface-

mounted PZT sensor location noted. 

 

Figure 50 - Riveted specimen overview (laser spot is visible and appears larger because it is in motion) 
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Figure 51 - Detail of scan area, with rivet numbers and sensor location noted 

Four rivets, designated as rivets 3, 8, 13, and 18, were artificially damaged before any 

data acquisition was initiated.  At each of the four locations, a simulated crack was machined, 

each with a different length and direction.  Rivet 13 was completely removed.  One surface 

crack was also machined independent from any rivet-related damage, but that damage mode is 

not considered here. 

4.2.2. Polar Wavenumber Processing 

Because circular PZT sensors are among the most common transducers for SHM, and 

because these PZT sensors generate radially-propagating wavefields, it is natural to consider a 

polar coordinate system in processing full-field data with one sensor as the source.  Many small 

defects or geometrical features (such as rivets) are also characterized by radial scattering 

patterns.  In order to produce a quantitative estimate of the scattering profile of both undamaged 
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and damaged rivets, a polar-wavenumber processing method is proposed.  A graphical 

representation of the procedure is also given in Figure 52.  Rather than (or in addition to) 

removing the incident wavefield through either time- or wavenumber-domain processing [94], 

the data is re-interpolated to a polar coordinate system, centered on each rivet in turn.  A 3D 

Fourier transform yields the frequency-wavenumber data, after which a 3D window is applied 

to filter out all waves that do not have positive (outgoing) radial wavenumbers, effectively 

isolating waves emanating from the rivet.  If desired, another filter may be applied to select only 

the frequencies of interest, but in this case the frequency filters applied were analog filters on 

the data acquisition hardware (which band-pass filtered between 40 and 150 kHz).  Finally, an 

inverse 3D Fourier transform returns the data to the space-time domain (or the feature extraction 

process can be implemented in the wavenumber domain directly). 

 

Figure 52 - Flowchart illustrating wavenumber processing procedure 
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4.2.3. Scattering Matrix Results 

Figure 53 presents an overview of the global wave propagation in the riveted specimen.  

At this specific time (55 µs after the actuation began), the faster-propagating S0 mode has 

interacted with all of the rivets and begun to scatter.  Roughly circular scatter patterns may be 

observed around each of the rivets, although these and the wave propagation are distorted by the 

slight anisotropy of the composite material.  The slower but higher-amplitude A0 mode is also 

evident as it emanates from the sensor location. 

  

Figure 53 - Overview of wave propagation in riveted specimen 

The scattering pattern of each rivet is estimated by establishing a spatial window of 40 

mm x 40 mm centered on the rivet (which is the maximum size of the window such that the 

windows do not include the adjacent rivets).  After implementing the polar wavenumber 

transformation on the data in that window, the scattering pattern at a fixed radius of 4 mm is 

extracted.  The resulting representations are therefore rather near-field, at about twice the rivet 

radius, but this parameter could be adjusted as needed for a particular application.  The data is 
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re-interpolated on that circumference and the energy of the wavefield is calculated over a 

specific time window, chosen to correspond with the expected arrival of the first scattered 

waves from the rivet.  Note that the “scattering matrices” presented here are really a slice of a 

higher order tensor, because they are sampled at only one incident wave direction (because that 

transducer is fixed).  A more complete characterization would use several transducers to 

highlight several incident wave angles, because UGW sensitivity to crack damage in particular 

is known to be highly directional-dependent.  However, due to time constraints, this study 

focuses on only one incident angle, as well as the S0 mode (because it is the first to arrive, 

whereas the A0 arrival is superimposed with the S0 waves as well).  However, it is feasible to 

perform mode selection in the frequency-wavenumber domain to use both modes, as has been 

demonstrated in previous work [95]. 

The scattering pattern of a few of the rivets is presented, where each has been rotated 

such that the incident wave approaches the rivet from the 0-degree direction.  In Figure 54, the 

results from two undamaged and two damaged rivets, one from each rivet line, are depicted.  

The damage presence and direction is indicated by the solid red line.  The notable feature of the 

undamaged plots is that most of the energy is scattered directly back to the source.  While it is 

difficult to definitively say based on its orientation what the damage does to the scattering 

matrix, neither of the damaged cases follows the same tendency of scattering energy directly 

backward.  Note that the absolute amplitudes of the plots are not expected to be equal because 

each rivet is a different distance and direction away from the source, so the incident waves have 

different energies. 
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Figure 54 - Scattering matrix estimation for four example rivets 

In order to interpret the changes in rivet scattering matrices from a damage detection 

perspective, two different metrics were implemented.  The first metric, known as circularity, 

measures how similar the shape of the scattering profile is to a circle.  While it is not expected 

that the scattering pattern should be circular per se, such a metric gives an effective measure of 

whether sudden deviations are present (which are observed at the angles corresponding to crack 

damage).  Circularity, which is a common metric in the digital image processing field, is 

defined according to: 

 
2

C p
v

A
  (4.3) 
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where p is the perimeter and A is the area of the shape [96].  For a perfect circle, the value of the 

circularity would be a lower-bound of 4Cv  .  Higher values indicate less circular objects.  

The result of computing this metric for each rivet’s scattering profile is given in Figure 55.  The 

magenta triangles represent the damaged rivets, the green stars represent healthy rivets, and the 

dotted black line denotes the partition between the two rivet lines.  Rivets 13 and 18 are easily 

distinguished from the undamaged cases by this metric, but rivets 3 and 8 are less well-

separated. 

 

Figure 55 - Circularity of scattering profiles for each rivet 

The second metric is better for a self-referencing damage detection paradigm.  For this 

metric, the average correlation coefficient between a particular rivet and all of the other rivets is 

computed.  Assuming that most of the rivets will be intact for situations where SHM is useful, 

damaged rivets should have scattering patterns that are less similar to the majority of healthy 

rivets.  Figure 56 presents the comparison of average correlation coefficients. 



110 

 

 

Figure 56 - Average correlation coefficient for each rivet with all other rivets 

The results of the correlation coefficient comparison indicate that the damage is 

creating a significant change in the scattering pattern.  The healthy rivets have scattering matrix 

correlation coefficients clustered in the range of 0.5-0.75.  By contrast, rivets 3, 8, and 13 have 

values all less than 0.4, giving a clear indication that something is wrong with the rivet.  

Interestingly, however, rivet 18 does not exhibit the expected decrease, despite being clearly 

separable for the circularity metric. 

While more study would be required to completely characterize the rivet scattering 

pattern and the changes corresponding to damage, the results have shown that full-field UGW 

systems have the potential to extract empirical scattering matrix estimates.  Preliminary 

approaches to damage detection using these empirical estimates were also shown to produce 

reasonable results. 
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4.3. Low-order Feature Modeling 

Knowledge of the geometry of a specimen is always critical to a successful UGW SHM 

system, though it is not always possible to generate detailed models of the wave propagation for 

every situation.  Estimation of scattering properties is therefore not only helpful for modeling 

damage, but also for modeling geometric features.  Where there are opportunities to add 

physical knowledge of the medium into post-processing, the system’s performance tends to be 

enhanced.  For example, Flynn et al. demonstrated that implementing simple models of such 

geometric features can provide significant improvement in detection performance, and validated 

that conclusion for a 2D structure with a bonded stringer [36].  Flynn et al. also showed 

dramatically decreasing returns from further increases in model complexity.  These modeling 

approaches can be viewed as an attempt to estimate the amplitude of response that should be 

expected for each possible damage location and then utilize that estimate to enhance the 

predictions.  Alternatively, the models could be interpreted as a weighting of the localization 

procedure according to the uncertainty in the localization estimate.  Generally, the more features 

are in the wave path, the more uncertain that result becomes when received.  

Applying a similar approach to the bolted frame and fuselage rib structures, simple 

models were developed to represent the major geometric features in each of the testbeds.  Direct 

measurement is the most straightforward way of obtaining the scattering properties of different 

structural features, but is not always practical in every situation.  Where it is not feasible to 

measure, it is possible to estimate those properties through supervised learning.  In this case, the 

model parameters were estimated by a global minimization process where the average 

localization error was used as the fitness function for the search.  Lacking direct measurement 

of feature parameters for the fuselage rib and frame structures, the set of damaged trials for each 

structure was split into “training” and “test” cases.  For the frame, one in four trials were used in 
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training; for the fuselage rib, one trial each from the first, third, and fourth hole diameters was 

selected, also dedicating one-fourth of the cases for training.  Only these training cases were 

used in generated the model parameters, and to calculate the results presented in Section 3.3.2, 

only test cases are used.  Such a procedure is standard for machine-learning problems.  Because 

the bolted frame has only two parameters, a direct search method was computationally feasible, 

whereas for the fuselage rib’s four parameters, a genetic algorithm routine was utilized.  

Calibrating the values in a post hoc fashion is necessary because some kind of training data is 

always required in SHM applications where detailed models are not available or are highly 

uncertain.  However, similar to the previous study, the localization results are only weakly 

sensitive to changes in the particular modeling parameters.  In other words, merely including 

some recognition of the presence of geometric features is enough to realize most of the 

performance benefit.  The impact on the localization performance of applying appropriate 

model parameters is presented. 

4.3.1. Beam spread function 

Another modeling consideration that ought not be ignored in this discussion involves 

how a wavefront loses energy as it travels, either from material attenuation or from geometric 

spreading of the wave energy [26].  Typically, the material attenuation in 2D metallic structures 

(usually modeled as a logarithmic decrease in wave amplitude with distance) is negligible 

compared to the geometric spreading [97, 98].  Here, the combination of factors that cause the 

amplitude of the wave to decrease with propagation distance will be referred to as the beam 

spread function.  While different beam spread function models have been proposed by various 

authors, in a 2D medium the amplitude should vary according to: 
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where ( )id r  is the distance from the actuating transducer to an arbitrary scattering point, and 

( )jd r  is the distance from the scattering point to the receiving transducer [26, 36].  For a 

structure composed of 1D elements, there is no beam spread effect.  Such models have been 

shown to be beneficial in situations where estimating the expected amplitude of the scattered 

waveform is important. 

However, when the model given in Equation (4.4) was included in the localization 

procedure, the resulting prediction accuracy was not improved.  To understand this result, one 

must recognize first that the MLE first-arrival localization result is calculated from the baseline-

subtracted residual signal, which (contrary to ordinary signals) has a tendency to grow in time 

due to increasingly imprecise subtraction.  The MLE filter result is also not directly an 

amplitude, but is instead a representation of the goodness-of-fit of a particular signal model.  

Therefore, in order to characterize the expected amplitude of the MLE filter result with distance, 

the true beam spread function should actually be composed of two terms – one decreasing due 

to the energy dissipation (both the smaller material attenuation and the geometric spreading) 

and one increasing due to increasingly imprecise baseline subtraction.  Because the baseline-

subtraction error is proportional to the underlying signal amplitude, however, this term would 

not be increasing for all time, but would eventually start to decay again.  Baseline subtraction 

accuracy is also geometry dependent, as some boundary conditions are more changeable than 

others, and therefore a greater source of subtraction error.  It is clear that the resulting composite 

function would be difficult to estimate a priori.  A beam spread function of unity (which is in 

fact the default if no such modeling is considered) produced the best results and is used for all 
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localization in this dissertation.  However, further work on how to most appropriately estimate 

the function of baseline-subtracted amplitude with distance is recommended.  

A portion of this chapter has been published in Structural Health Monitoring: An 

International Journal, Colin Haynes, Takeaki Nadabe, Nobuo Takeda, and Michael Todd, 2014. 

The title of this paper is “Monitoring of Bearing Failure in Composite Bolted Connections 

Using Ultrasonic Guided Waves:  A Parametric Study”. The dissertation author was the primary 

investigator and author of this paper. 

Another portion of Chapter 4 has been published in Key Engineering Materials, Colin 

Haynes, Takeaki Nadabe, Nobuo Takeda, and Michael Todd, 2013. The title of this paper is 

“Scattering Matrix Approach to Informing Damage Monitoring and Prognosis in Composite 

Bolted Connections.”  The dissertation author was the primary investigator and author of this 

paper. 

Another portion of Chapter 4 has been published in Proc. of the International Workshop 

on Structural Health Monitoring, Colin Haynes and Michael Todd, 2013.  The title of this paper 

is “Effect of Applied Load on Guided Wave Monitoring of a Composite Bolted Joint”.  The 

dissertation author was the primary investigator and author of this paper. 

Another portion of Chapter 4 has been published in Proc. of the Asia-Pacific Workshop 

on Structural Health Monitoring, Colin Haynes, Takeaki Nadabe, Nobuo Takeda, and Michael 

Todd, 2012.  The title of this paper is “Scattering Matrix Approach to Informing Damage 

Monitoring and Prognosis in Composite Bolted Connections”.  The dissertation author was the 

primary investigator and author of this paper. 
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  Chapter 5

Supporting Topics for System Implementation 

While the preceding sections address many central topics in the paradigm of UGW 

SHM, there are still many other topics that are important for transitioning SHM from research to 

practice.  Two of those topics are discussed in this chapter: uncertainty quantification and 

Bayesian experimental design.  One example is given for each field to demonstrate its 

application to the SHM methodology developed in this dissertation. 

5.1. Uncertainty Quantification 

5.1.1. Motivation for Uncertainty Quantification 

Uncertainty in measurements has guided every aspect of the SHM strategy presented so 

far, but in some situations it is critical to have a well-quantified understanding.  The goal of 

uncertainty quantification (UQ) is to characterize the effect of both parametric variability and 

non-parametric uncertainty on the output of an experiment or simulation [99].  Particularly for 
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higher-cost structures, efficiency and performance can be improved while reducing costs if 

estimates of uncertainty can be reliably obtained. 

Many different approaches have been developed for UQ in the area of structural 

dynamics and SHM [100].  Perhaps the most basic and commonly used technique is the Monte 

Carlo simulation.  Monte Carlo simulations obtain outputs (which may be from experiment, but 

are more commonly from simulation) based on randomly sampling each of the input parameters 

of interest.  Monte Carlo simulations (and the related techniques that more efficiently sample 

the design space) therefore overcome a lack of knowledge of either the system or its inputs 

through repeated sampling.  On the other hand, if the distributions of the inputs to an estimation 

process are known, complete information of the uncertainty in the outputs may be obtained by 

analytically propagating PDFs through to find output distributions.  Often, however, the system 

is not well-defined enough for such analyses, or the analytical solution proves intractable.  

Sensitivity analyses, both global and local in scope, are often quite useful to quantify how 

results vary with changes in input.  Analysis of variance studies are another major class of 

methods that seek to determine the main factors in driving the uncertainty of the output.  While 

other methods have been utilized in connection with the work of this dissertation, for illustrative 

purposes one example of analysis of variance has been chosen for detailed description in the 

following section. 

5.1.2. Application Example 

In the course of empirically estimating scattering profiles for the bolt bearing damage in 

Section 4.1, it was observed that the resulting scattering matrices differed substantially from the 

expected behavior for a circular through-hole scatterer (for which analytical solutions are 

available).  An undamaged circular through-hole would be expected to produce results 

symmetric about the direction of the incident waves, for example, but this was often not true of 
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the experimental result.  Therefore, UQ techniques are applied to help identify the causes for 

some of those discrepancies and understand how the sources of uncertainty may be affecting the 

damage detection problem. 

UQ can be furthered by model-driven approaches, which can generate surrogate data 

helpful for exploring the relationship between input and output variance.  To be helpful in this 

case, however, a model would require very detailed modeling of the MFC sensors, their bond 

condition, and the bolt bearing damage.  Such a model is not currently available—creating one 

would be time consuming and difficult to validate.  Instead, measured responses are compared 

with measured parameters to evaluate their influence on the results. 

The first step in successfully understanding the uncertainty is to assess the factors that 

may be influencing the result.  Sensor bond condition, the sensor length, and the orientation and 

position of the sensors are all factors expected to affect the amplitude of the received signals.  

The state of the bolt fixture (particularly the applied load) was also observed to affect the 

amplitude.  For the arrival time, which is directly related to the group velocity, the temperature 

and the position of the sensors (both the radial and rotational coordinates) are expected to 

produce changes.  However, not all of the parameters that affect the results can be included in 

the analysis because some cannot be measured – most notably, no information is available on 

the bond condition. 

For this study, particular emphasis was placed on determining the impact of the 

location, orientation, and dimensions of the MFC sensors on the UGW results.  In order to 

measure these parameters as accurately as possible, a high-resolution scan of the specimen was 

made.  Each of the geometric parameters was measured from that image, along with an 

estimated uncertainty for each.  For the coordinate locations, the center of the leading edge of 

each MFC was established and used for the measurements (consistent with how the distances 
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were measured for the original installation).  The resulting estimates are presented in Table 9.  

Column 2 gives the nominal angular positions of each sensor, whereas the values in column 3 

represent the deviation of the measured values from those in column 2.  Orientation error 

represents the angular deviation of the sensor direction, as estimated from the directions of the 

MFC fibers, from the radius it should be aligned with.  Finally, recognizing that the sensors are 

not perfectly rectangular, an average length and width of the active area of the sensors are 

given.  The bottom row of the table presents the mean and standard deviation of the values for 

all eight sensors.  Where appropriate, the mean of the absolute values are used so that the mean 

of the angle and orientation errors represents how much those measures tend to deviate from the 

presumed values. 

 
Table 9 - Geometrical properties estimated from high-resolution scan 

Sensor 
Nominal 
Angle (deg) 

Angle 
Error (deg) 

Radial 
Distance 
(mm) 

Orientation 
Error (deg) 

Length 
(mm) 

Width 
(mm) 

1 0 -1.4 29.57 0.88 6.24 13.65 

2 45 -2.1 29.99 1.45 6.35 13.71 

3 90 -0.8 30.12 0.08 6.32 13.72 

4 135 0.2 29.46 -0.83 6.19 13.62 

5 180 0.0 30.04 -0.88 6.24 13.63 

6 225 -0.4 30.27 -0.38 6.40 13.63 

7 270 -0.2 30.14 -0.65 6.26 13.70 

8 315 -0.7 30.30 -0.72 6.22 13.64 

Avg N/A 0.71±0.66 29.99±0.29 0.73±0.37 6.28±0.07 13.66±0.04 
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In order to analyze the variance in the result due to the factors just quantified, features 

must likewise be selected from the received time series for comparison.  The three features 

considered are: the amplitude of the target hole reflection, the arrival time of the same, and the 

NRE metric computed on the relevant time window.  These three metrics together should 

capture the relevant features of the response variance for the following analysis. To give a 

qualitative impression of the variability of the time series on which these metrics are computed, 

Figure 57 shows the average of all of the time series for MFC sensors separated by 135°.  The 

red dotted lines show the limits of one standard deviation, and the mean and standard deviations 

of the arrival estimate are shown in green. 

 

Figure 57 - Average time series for all MFC sensors separated by 135° 

For the analysis of variance study, the R2 statistic introduced to quantify the effect that 

each parameter has on the overall variability in the system.  For a particular factor, the R2 
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statistic represents the ratio of the sum of the conditional variance with the factor held fixed at 

each of its levels to the overall variance of the feature.  Essentially, the result is related to the 

significance of the considered variable in determining the overall variance of the response, with 

higher values indicating a more significant parameter.  The mathematical representation is given 

in Equation (5.1): 
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where v represents the feature values, the superscript denotes a particular level of the variable 

value, and an over-bar denotes the mean value.  Nlevels is the number of unique values the 

variable takes and Ntrials is the number of undamaged tests. 

The factors used to calculate the R2 statistics are each derived from the measurements 

presented in Table 9.  “R” is the radial distance of each sensor from the center of the hole.  

“Load” is the tensile load applied to the specimen during each test.  Orientation error is given by 

“ 12 ”, which calculated as the sum of the absolute values of the orientation errors of the 

receiving and sensing MFC.  Sensor length, denoted “L12”, is defined similarly.  The nominal 

difference in angle between the pair is represented by “  ”, and “  ” is the error between the 

measured to the nominal difference in angle.  Finally, “Random” is a reference vector included 

to provide a verification check on the computation.  For this category, the R2 statistic is 

computed from a set of values generated from a normal distribution – because a random vector 

is not related to the output result, it is expected to yield a result near zero.  Each set of values is 

broken down into five “levels” (by percentile) to facilitate the comparison by ensuring that each 

factor has the same number of levels.  The results are presented in Figure 58. 
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Figure 58 - R2 values for signal amplitude, time of arrival, and NRE metric 

First, it is clear that the random vector does not contribute significantly to the overall 

variance, so the rest of the factors may be examined.  For the signal amplitude, by far the most 

significant factor is the nominal angle difference.  Considering that the scattering pattern from 

the hole is primarily driven by this parameter, it is not unreasonable to think that it may drive 

the variance as well, so this is not a surprising result.  Angle difference is also the dominant 

factor in the variance of the estimated time of arrival, most likely for the same reason.  For both 

of amplitude and time of arrival, the error in the angle difference is the next most significant 

factor.  Interestingly, the applied load has almost no influence on the variance in either of the 

first two cases.  By contrast, load is the most significant effect when considering the NRE 

metric, which possibly explains why detection performance was found to be substantially 

affected by the presence of load.  The influence of angle difference, on the other hand, 
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dramatically decreases for the NRE metric, suggesting that baseline subtraction mitigates the 

sensitivity to this parameter. 

The results, unfortunately, are not conclusive in the sense of suggesting one particular 

parameter that will do the most to reduce the overall variance if it can be better controlled.  All 

of the parameters are significant in affecting the results, so it must be concluded that care should 

be taken to place sensors as exactly as possible if the scattering matrices measured by fixed 

transducer locations are to be matched to their theoretical counterparts.  As described in Chapter 

4, there are other sensing methodologies that may be used to estimate scattering matrices, but 

for situations utilizing fixed sensor locations, this study gives insight into the expected 

uncertainty. 

5.2. Bayesian Experimental Design & Optimal Sensor Placement 

As expressed in Section 1.1, the goal of a SHM system is to decrease the cost of 

sustaining safe operations by facilitating condition-based maintenance.  The primary drivers of 

implementing SHM, therefore, can be expressed in economic terms.  Improved reliability and 

life-safety, reduced downtime due to unexpected maintenance demands, the ability to adjust 

operation based on the state of the structure, lower costs through maintenance and performance 

optimization – all of these may be viewed in terms of a cost-savings to the owner.  Likewise, 

each decision made involves potential costs.  Just in determining how to instrument the 

structure, many choices are involved: for instance, the price of the sensors and data acquisition 

equipment, added weight, power consumption, and false-alarm rates.  Identifying and 

quantifying all of the costs associated with SHM allows for the system to be designed 

intelligently through a procedure known as Bayesian experimental design (BED) [101, 102]. 
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The BED process will be illustrated in this section by applying it to another key 

supporting topic for SHM system deployment: optimal sensor placement. 

The criterion for designing the best SHM system from the standpoint of Bayes cost may 

be expressed as:  

        d e

,

min C , P | , P Ca b a b be
a b

d d e e  
 

 
 
  (5.2) 

 

The symbol e refers to the SHM system design (“experiment” in BED terminology), 

involving whatever parameters are viewed as pertinent to the optimization.  This may take into 

account a wide variety of design parameters, including the type, number, and location of 

sensors, the data acquisition used, and elements of the feature extraction process (such as the 

decision threshold).  All possible decisions ad  taken based on the damage prognosis and all 

possible true states of the structure, b  are considered in the summation. The likelihood 

function  P | ,a bd e  is the term that is most often the focus of research in developing a 

SHM system.  This function represents the probability that the system will make decision ad  

given the actual state of the structure b  and the SHM system used to assess that true state (e).  

In other words, this function gives a measure of the prediction accuracy of the system, whether 

from probabilities of detection estimated from testing (data-driven) or from validated models 

(model-driven).  The term  dC ,a bd  , then, represents the cost of making a particular 

decision given the true state of the structure.  Finally, the term  P b  is the prior probability 

of each state occurring (established through the system’s operational evaluation), and  eC e  is 

the cost of implementing the SHM system. 
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The first step in applying the BED approach to SHM is to select the target states of the 

structure between which the system should discriminate [103]. Next, the possible actions that 

may be taken in response to information on the structure’s state must be determined. Once these 

parameters have been established, the BED procedure can be used to optimize the SHM system 

in a number of different ways.  To demonstrate the BED methodology, the bolted frame 

structure is used.  As an example of the methodology, various costs are assumed and an optimal 

sensor layout will be established using a data-driven approach. 

In this case, certain assumptions guide the BED framework.  When the SHM system 

detects damage, the action will be to immediately inspect and repair, whereas no action will be 

taken for a negative reading.  The likelihood function  P | ,a bd e  is estimated from ROC 

analysis of the test data described in Sections 0 and 3.2.3 – that is, the probabilities for a given 

system and damage state are found from the percentage of the test cases in that state and using 

that system arrangement that are classified in each category.  Finally, the prior probabilities that 

each damage state will occur are assumed (both bolt and magnet damage are assigned equal 

prior probability).  Because the bolted frame structure has no prior history of failure, loading, 

etc., the prior probabilities are taken to be equal for bolt and magnet damage modes. 

With costs thus assigned, optimal system design can now be considered.  The first 

example answers the question of how many sensors should be used in the SHM system.  It is 

expected that as the cost of missed detection (false negative) increases, the BED framework 

would favor using more sensors to achieve a better coverage.  Lower costs of missed detection 

would allow the cost of adding more sensors to drive the decision.  This trend is indeed 

observed, as shown in Figure 59.  As the missed detection to false alarm cost ratio increases, the 

optimal number of sensors (denoted by the vertical red line) continues to increase. 
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Figure 59 - Optimal number of sensors, varying missed detection to false alarm cost ratios 

By contrast, if for weight, space, or other constraints, only a certain number of sensors 

may be used, the BED procedure can optimally select their locations based on the relative costs 

of false alarm and missed detection for each type of damage.  Figure 60 shows sensor layouts 

where the bolted frame is constrained to have only four sensors and the missed detection cost is 

varied.  Four sensors is an extremely sparse system for the size of the structure being monitored, 

which serves to highlight the trade-offs as the missed detection cost changes.  When the missed 

detection cost is relatively low, as in the top-left example, the system chooses the most 

conservative arrangement possible.  The sensors tend to cluster in smaller regions, achieving 

very accurate local prediction by sacrificing coverage area in order to minimize false alarms.  

By contrast, when the missed detection cost is relatively high, as in the bottom-right example, 

the BED framework chooses network that are more spread out, maximizing coverage and 

minimizing the areas where damage might escape detection altogether. 
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Figure 60 - Four-sensor layouts for different missed detection costs.  Red dots indicate sensor locations. 

Examining the ROCs directly can provide more insight into the trade-off process.  

Continuing to consider the case where the sensor system is constrained to exactly four sensors, 

Figure 61 presents results for magnet damage only.  Each line on the plot represents the ROC of 

the sensor arrangement that was found to be optimal at one of the missed detection cost values 

(with the cost of false alarm held constant).  As the missed detection cost increases, the system 

biases more towards solutions that have a better detection rate as well as the accompanying 

higher false alarm rate.  Graphically, this trend appears as solutions being driven up and to the 

right.  Furthermore, it is clear that the markers are always closest to the top left in their 

particular region—that is, the BED algorithm selects sensor arrangements that are locally 

optimal (in terms of the ROC) for the specified missed detection cost ratio.  Similar results may 

be observed for the bolt damage case; however this case is omitted due to the near-perfect 

detectability of that damage type which makes comparison more difficult. 
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Figure 61 - ROC of optimal four-sensor configurations for magnet damage alone. The square markers 
indicate the point on those ROC curves that provided the optimal performance for a particular cost. 

Looking at the two damage modes simultaneously presents a different challenge, 

however.  The chosen points on each of the ROC plots independently are no longer necessarily 

the local optima.  Because detecting the each form of damage requires a different strategy, the 

optimal solution now consists of a compromise.  Figure 62 demonstrates this principle through 

the ROCs for each type of damage at several different missed detection cost ratios, where the 

layout was jointly optimized. 
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Figure 62 - ROCs for magnet and bolt damage, considered jointly 

BED provides a useful framework designing SHM systems that balance the various 

trade-offs that arise.  Using the example of the bolted frame structure, the principles of system 

selection through the BED process have been demonstrated.  If the costs of various decisions 

and alternatives can be established, BED can be used to suggest optimal sensor layouts, 

actuation procedures, threshold values, and many other decisions.  Here, the BED process was 

first used to determine the optimal number of sensors based on the costs of the sensors and the 

costs of incorrectly assessing the damage.  As expected, more sensors are used when the 

decision costs increase relative to the sensor cost.  Next, it was assumed that the sensor count is 

fixed at four sensors, and the optimal arrangements of those sensors were plotted.  Furthermore, 

ROC analysis may be used to show that the system selects the optimal points on the ROC curve 

based on the cost ratios and the types of damage considered. 

A portion of this chapter has been published in Proc. of SPIE, Colin Haynes and 

Michael Todd, 2013.  The title of this paper is “Uncertainty quantification of a guided wave 
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structural health monitoring system for composite bolted joints”.  The dissertation author was 

the primary investigator and author of this paper. 

Another portion of this chapter has been published in Proc. of the European Workshop 

on Structural Health Monitoring, Colin Haynes and Michael Todd, 2012.  The title of this paper 

is “Bayesian Experimental Design for Damage Detection in a Bolted Frame”.  The dissertation 

author was the primary investigator and author of this paper. 

 
 
  



130 

  Chapter 6

Conclusions and Future Work 

6.1. Conclusions 

Many UGW SHM studies to date have focused on testing various algorithms in simple, 

plate-like structures with few geometric scatterers.  When applied to complex materials and 

geometries, the increased uncertainty often causes these algorithms to break down.  Here, a 

statistical framework was proposed at the outset, accounting for the expected uncertainty by 

modeling the signals as random processes.  Residual signals from guided wave processes can be 

broken into pre-arrival and post-arrival regimes.  The principles of detection theory were then 

applied to derive an optimal detector for discriminating damaged and undamaged cases.  

Maximum likelihood estimation was utilized to estimate the first-arrival point, which was 

integrated into a comprehensive localization framework.  Novel sensor fusion techniques were 

developed to improve localization accuracy by weighting sensor pars by their associated 

uncertainty. 

In order to validate the presuppositions of the statistical framework, several experiments 

were carried out, including different materials, geometries, and damage types.  A bolted frame 

structure made of steel was tested with reversible damage—both magnets and bolt loosening.  A 

section of a metallic fuselage rib was tested destructively through machined through-holes and 
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cracks.  For the combined data from these two tests, the statistical approaches to detection, 

localization, and sensor fusion were validated.  Through extensive comparative studies, the 

approach was shown to outperform a selection of techniques from the literature.  Data-driven 

comparisons like these lend strong support to the proposed SHM strategy.  Another focus of the 

dissertation was to develop techniques for empirical estimation of scattering properties, as 

detailed in two different examples.  A scattering matrix characterization of bolt bearing damage 

was constructed, investigating the effect of applied load, input and output wave angles, and 

actuation frequency on the results.  Next, damaged and undamaged rivets were characterized 

using full-field UGW data. 

Several supporting topics are also considered which are important for bridging the gap 

to practice.  In order to translate SHM assessments into decisions, uncertainty quantification is 

an essential step.  One example is presented for analysis of variance on the scattering matrix 

estimations.  Finally, Bayesian experimental design provides a cohesive framework for decision 

making and balancing trade-offs in terms of quantified costs, and as such forms a good 

conclusion for tying together all of elements of a comprehensive SHM strategy. 

In all, this dissertation represents a significant step forward in advancing SHM toward 

structures of realistic complexity.  Through detection theory arguments and empirical studies, 

the statistical approach to managing the uncertainty in such environments has been shown to be 

effective. 

6.2.  Future Work 

There are a number of topics suggested by this dissertation that may warrant further 

study.  Currently, the localization formulations only consider point-like scatterers.  Whether the 

MLE filtering and other localization processes may be extended to larger area damage is an 



132 

 

important question.  The framework as presented currently are searching only for one damage 

site – for some applications, multi-site damage may be critical to investigate.  Some kind of 

uncertainty analysis relating to the output of the MLE filtering process would also be important, 

especially in lending support to the proposed sensor fusion scheme.  Relating to the scattering 

matrix analysis, digital image processing techniques may be of great help in processing full-

field data, and should be examined for that purpose.  Finally, more detailed investigation of the 

appropriate beam spread function for residual signals may lead to a further improvement in 

localization accuracy. 
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