
Lawrence Berkeley National Laboratory
LBL Publications

Title
Collective benefits in traffic during mega events via the use of information technologies.

Permalink
https://escholarship.org/uc/item/5n14w8tv

Journal
Journal of the Royal Society Interface, 14(129)

Authors
Xu, Yanyan
González, Marta

Publication Date
2017-04-01

DOI
10.1098/rsif.2016.1041
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5n14w8tv
https://escholarship.org
http://www.cdlib.org/


rsif.royalsocietypublishing.org
Research
Cite this article: Xu Y, González MC. 2017
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Collective benefits in traffic during mega
events via the use of information
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Yanyan Xu1 and Marta C. González1,2

1Department of Civil and Environmental Engineering, and 2Center for Advanced Urbanism, MIT, Cambridge,
MA 02139, USA

Information technologies today can inform each of us about the route with

the shortest time, but they do not contain incentives to manage travellers

such that we all get collective benefits in travel times. To that end we need

travel demand estimates and target strategies to reduce the traffic volume

from the congested roads during peak hours in a feasible way. During

large events, the traffic inconveniences in large cities are unusually high,

yet temporary, and the entire population may be more willing to adopt col-

lective recommendations for collective benefits in traffic. In this paper, we

integrate, for the first time, big data resources to estimate the impact of

events on traffic and propose target strategies for collective good at the

urban scale. In the context of the Olympic Games in Rio de Janeiro, we

first predict the expected increase in traffic. To that end, we integrate data

from mobile phones, Airbnb, Waze and transit information, with game sche-

dules and expected attendance in each venue. Next, we evaluate different

route choice scenarios for drivers during the peak hours. Finally, we gather

information on the trips that contribute the most to the global congestion

which could be redirected from vehicles to transit. Interestingly, we show

that (i) following new route alternatives during the event with individual

shortest times can save more collective travel time than keeping the routine

routes used before the event, uncovering the positive value of information

technologies during events; (ii) with only a small proportion of people selected

from specific areas switching from driving to public transport, the collective

travel time can be reduced to a great extent. Results are presented online for

evaluation by the public and policymakers (www.flows-rio2016.com (last

accessed 3 September 2017)).
1. Introduction
Daily traffic has important implications for the functioning of our cities [1–4].

It affects total energy use, equity, air pollution and urban sprawling. Given this

impact, master plans of urban transportation need to be technically sound,

economically affordable and publicly acceptable [5–11]. This becomes a more

pressing need when preparing for large events, which unusually stress the use

of the available infrastructures and put at risk the overall success of the event.

In their best attempts, goals of an urban transportation plan seek to:

(i) avoid long and unnecessary motorized travel, (ii) shift the movement of

people to socially efficient modes, such as walking, biking and public transit,

and (iii) improve the technology and operational management of transportation

services. To reach these goals, plans today try to promote the use of bus rapid

transit (BRT), congestion charging or bike sharing. But much less is done to

develop real-time information platforms that provide the value of choices for

the social good. Nowadays, the most popular information platforms, such as

Waze or Google Transit Feeds, give us individual information about travel

times but do not take into account global information, e.g. providing incentives

to reduce global costs regarding our route choices. One limitation may be that

the main set of infrastructures in urban transportation planning of mature cities

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2016.1041&domain=pdf&date_stamp=2017-04-12
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were developed in the 1970s, before the information age, and

relied on the results of travel diaries, limiting the communi-

cation with the majority of the actual travellers. Second,

demand management faces the ‘tragedy of the commons’.

Space in streets is a shared-resource system where individual

users act independently according to their own self-interest,

behaving contrary to the common good by depleting that

resource. The population, however, may be more prone to

take actions for collective benefits while hosting a big event.

We propose demand-management strategies during

mega events. Large-scale events happen every year around

the world, such as the Olympic Games, world expositions,

concerts, pilgrimages, etc. They attract a large number of partici-

pants and tourists travelling to one destination, thereby

producing increased pressure on transportation, especially for

cities with an already large population [12,13]. Past research

has tried to estimate the impact of events on the economy and

air quality of the host city [14–16]. Moreover, in the face of chan-

ging conditions in cities, a new topic—city resilience—has

drawn attention from academics and decision-makers in

recent years [17–20]. In the case of transportation networks,

researchers mainly study the resilience of a network to cope

with the unexpected damage or perturbations of transportation

facilities [21–24] or guide long-term transportation construction

[25,26]. For instance, Donovan and Work quantified the resili-

ence of a transportation system to extreme events using GPS

data from taxis [23]. Their model detects the event from histori-

cal data, and as a result it cannot forewarn the impact of

forthcoming events. In the context of traffic management

during large-scale events, previous efforts have focused on

ensuring the efficient travel of participants. However, the

disruptions to the travel of the local population are not taken

into account. Currently, the most frequently used policy to

reduce motorized travels is to limit the number of vehicles

with a specific-ending plate number, but without efficient strat-

egies to target congested bottlenecks [27,28]. Consequently,

the new paradigm is to achieve the collective benefits of all

travellers during events by integrating multiple data resources

using information technologies to calculate the costs and

communicate the benefits of various strategies [29,30].

Specifically, we evaluate the impact of large-scale events on

the traffic in the host city and evaluate the impact of strategies

to overcome it. We aim at understanding the change of travel

demand during large-scale events, and to address reasonable

demand-management strategies to mitigate traffic congestion

during the event. We take the Summer Olympics 2016 in Rio

de Janeiro as a case of study to estimate the impact of large-

scale events on the travel of the local population. Rio de Janeiro

is one of the most congested cities in the world according to the

TomTom report on global traffic congestion [31]. A study

released by the Industry Federation of the State of Rio de

Janeiro (FIRJAN) confirmed that traffic congestion has resulted

in tremendous economic costs. The study found that

congestion costs of the cities of Rio and São Paulo added

roughly USD43 billion in 2013 alone. The loss amounts

nearly 8% of the gross domestic product of each metropolitan

area. This is greater than the estimated budget for transport

capital investment in Brazil, Mexico and Argentina combined.

Traffic congestion originates from the imbalanced develop-

ment of travel demand of vehicles and the road network

supply [32,33]. For a booming city, the traffic congestion

can be mitigated through constructing more roadways and

transit infrastructure. But for mature urban areas like Rio,
opportunities for further investments in transportation

infrastructure are often limited [34].

The International Olympic Committee estimates 0.48

million tourists in Rio for Olympics, which is about 7.5% of

the population of Rio. To understand the impact of the Olym-

pics, we estimate the travel demand of the local population

and their fraction in private vehicles using mobile phone

data, also known as call detail records (CDRs) combined

with Waze data. The travel times of commuters taking pri-

vate cars are estimated during the morning and evening

peak hours and compared with Google maps in the same

hour. During the Olympics, we estimate the origin and desti-

nation of tourists using the Olympic Games’ schedule,

information on the expected audience in each venues, and

Airbnb properties [35] and hotels. To estimate the increase

in vehicular traffic, we estimate the taxi demand of tourists

going to the events each hour and also the reduced capacity

in the dedicated Olympic lanes. Both the tourists’ taxi

demand and the local vehicle demand are assigned to the

road network under three routing scenarios: habit, selfish
and altruism. The goal is to assess how if certain routing rec-

ommendations are followed we can gain collective benefits in

vehicular traffic. To evaluate the results, we estimate the

travel time of tourists and travel time increment of local com-

muters’ under the three scenarios in the commuting peak

hours. In addition, we also propose a mode change strategy,

that targets a selected fraction of travellers to change from

driving to the metro and BRT. To this end, we uncover the

origin–destination (OD) pairs with the most contribution to

the collective travel time and consider the overall benefit of

taking one vehicle out of that pair. Finally, we demonstrate

the effectiveness of the proposed demand-management strat-

egy by comparing it with a benchmark program that reduces

the same number of vehicles distributed randomly (which is

similar to car reductions by plate numbers). A detailed dia-

gram of the data and modelling pipeline can be found in

the electronic supplementary material, figure S1.
2. Results
2.1. Travel demand estimation
2.1.1. Travel demand estimation before the Olympics
Previous studies generated the average hourly travel demand

at the census tract scale using CDRs from mobile phones

(include the timestamp and location for every phone call or

SMS of anonymous users), census records and surveys data

in Rio de Janeiro [11,36–38]. In the travel demand estimation

framework, the stay locations of each user are recognized

and labelled as home, works or other. The most visited place

during weekday nights and weekends is labelled as home, the

most visited place during weekday working hours is labelled

as work, and the rest are labelled as other. Consequently, we

classify the trips of each person as: home-based-work (or com-

muting, includes travel from home to work and from work to

home), home-based-other (trips between home and other), and

non-home-based (trips between non-home places, e.g. work and

other). After aggregating the trips to census tract scale with

the geographical locations of their origins and destinations,

we get the number of mobile phone users travelling from

tract to tract on hourly basis. Then, the travel demand of all

residents is estimated by scaling the user demand with an
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expansion factor, which is defined as the ratio between the actual

population of the origin tract from the census and the number

of users whose homes are located in that tract. In this way, we

get a reasonable person OD matrix with different trip pur-

poses. To assess the traffic in the road network, we need to

estimate vehicle demand. Namely the vehicles OD matrix,

counting the number of private vehicles used by residents

from their origin to their destination tracts. In this work, we

only consider the motor vehicles used by residents and thereby

simply scale the person demand of each OD pair with the

vehicle usage rate in its origin tract. The estimated vehicle

demand is 0.44 million from 1.69 million trips of residents

during the morning peak hours and 0.44 million vehicles and

1.61 during the evening peak hours in the Rio de Janeiro muni-

cipality. The 24-h trip demand with different trip classes is

given in the electronic supplementary material, figure S3a,b
and note 1.

Next, we extend the vehicle demand to small fluctuations

in 5 weekdays, using the records of Waze Mobile [39]. Waze

provided the records of Wazers for seven months in 2015. The

datasets include the location of user, timestamp, level and

duration of jam, average speed and length of the queue. We

relate the fluctuations in the average length of the queue of

traffic jams in the entire road network as proportional to

the fluctuations of the total vehicle demand in this hour (pre-

viously estimated with mobile phone data). In other words,

we calculate the average queue length in the whole munici-

pality area of Rio in each hour each weekday, and use that

value as a global congestion index. Using it to uniformly

extend the travel demand of all OD pairs in 5 weekdays

(see details in the electronic supplementary material, figures

S2c and 4 and note 2).
2.1.2. Travel demand estimation during the Olympics
To build the OD matrices during the Olympics, we need to

infer the additional trips, that is, the origins and destinations

and the flow between them. During the Olympics, the trips

of tourists mainly contain the following three categories: travel-

ling from residences to venues, departing from the venues and

others (going to restaurants, shopping areas, scenic regions,
etc.). Among them, the trips from residences to venues are

more predictable and the most important factor to increase traf-

fic at a particular time. Therefore, we only consider the flow

from spectators’ residences to the game venues. Figure 1a rep-

resents the location of 12 Olympic venues, the distribution of

Airbnb properties and hotels, the metro and the BRT lines in

Rio. Most of the tourists’ residences are distributed in the

southeast coastal area. As planned by the municipal govern-

ment, most venues are located around the metro or BRT

stations, which makes public transportation quite convenient

for most of the spectators.

The person travel demand equals the sum of local demand

before the Olympics and the number of people going to sta-

diums from their residences in the same time interval. To

estimate this increase, the number of spectators arriving at

each venue is estimated each hour based on the Olympic

game schedule and the expected audience in each venue.

For each hour, we add the expected audience of the venue

if there are games that start in the venue in the given hour.

This information was provided by the city together with the

games schedule. Figure 1b shows the results on weekdays

during the Olympics. The maximum number of spectators is

nearly 0.1 million, which is a considerable fraction of

the number of commuters in the peak hour. To determine the

departure from hotels/Airbnb places to venues, we make

the following assumptions: (i) 30% of spectators depart 1 h

ahead; 40% of spectators depart 2 h ahead; the others depart

3 h ahead. (ii) We also use the distribution of Airbnb properties

to capture the distribution of origins of the local population

that can affords the tickets. Namely, all the spectators are

distributed from the Airbnb properties and hotels, and are

named tourists in the rest of the paper (see the electronic sup-

plementary material, figure S2d for the distribution of the

population density in Rio de Janeiro). As the Airbnb properties

and hotels distribute across tracts, we first aggregate them to

tracts with their geographical locations and assign an accom-

modation capacity to each tract. Then, for each tract, we

define a factor pt as the ratio between the accommodation

capacity of the tract to the total accommodation capacity in

Rio. While the 12 venues are each located in a different tract.

Finally, the number of trips from each tract to the venues
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tract are estimated by scaling the total demand to the venue

with the factor pt in the origin tract (see the electronic

supplementary material, figure S5 and note 3).

To estimate the additional vehicle demand during the

Olympics, we estimate the travel mode of tourists in each

hour. Based on their required travel distances, a considerably

fraction of them may use public transportation or taxi which

will not affect our vehicle traffic and the subsequent strat-

egies. We allow travel mode of tourists in four categories:

walking and Metro/BRT, bike and Metro/BRT, taxi and

bus. To that end, we simply take into account the distance

to metro/BRT stations, the total travel time and the number

of mode transitions. Figure 2a shows the results of travels

by mode on 8 August (Monday). As expected, most tourists

choose Metro/BRT because both their hotels and venues

are near to Metro/BRT stations. Nonetheless, during the day-

time, we estimate that about 10 000 tourists choose taxis to

the venues per hour, which produces a considerable increase

in vehicles added to the streets to only 12 destinations. As it is

unlikely that the tourists travel alone, we assume taxi occu-

pancy as 2, that is, two tourists per taxi per trip (see the

electronic supplementary material, figure S6).

Figure 2b shows the total trips and the individual car trips

on 10 weekdays from 8–19 August. Car trips increase the local

vehicle demand for private cars estimated from CDRs and the

taxi trips estimated for tourists. The morning peak is around

9.00 and the evening peak is around 18.00. During the peak

hour, about 27% of the total trips occur. The number increases

to approximately 60 000 trips during the Olympics. Conse-

quently, traffic in the city will be especially congested for the

paths from tourists’ residences to venues.
2.2. Travel time estimates and analysis of impacts in
vehicular traffic

Before the Olympics, we assign the drivers to the routes distri-

buting them via their shortest travel times and taking into

account the resulting congestion as streets fill up. This is a

common approximation to model the complex problem of

route selection. Namely, the user equilibrium (UE) model,

which implies no driver can unilaterally reduce his/her

travel time by changing routes. In our implementation of the

UE model, the travel times of links depend on the volume-
over-capacity ratio (VoC), calculated with the Bureau of

Public Roads (BPR) function:

teðveÞ ¼ fs 1þ a
ve

Ce

� �b
" #

� tf
e ð2:1Þ

where te(ve) is the average travel time on link e; tf
e is the free flow

travel time on this link; fs is a scale factor and not less

than 1. The coefficients in BPR are calibrated using field

data collected by surveillance cameras as fs ¼ 1.15, a ¼ 0.18,

b ¼ 5.0. Finally, we compare our estimated travel times of top

commuter OD pairs with the results of the Google maps API

in the same hour, finding very good agreement (see the elec-

tronic supplementary material, figures S3 and S7, and note 4).

The Olympics will disrupt the routes of a fraction of travel-

lers, especially those with routine routes that follow the paths

to the games or trough the reduced capacity of the lanes dedi-

cated to the Olympics. These are lanes in which only buses

carrying athletes and staff can travel. In the trips assignment

during the Olympics, this reduced capacity also generates

traffic.

Our goal is to evaluate the impact on travel times under

three types of vehicular route choices: (i) habit: all travellers

will follow their routine travel routes even if this route is

more congested during the Olympics; (ii) selfish: travellers

have good knowledge of the traffic situation and each of

them will choose the route with the shortest travel time,

which follows the UE model; (iii) altruism: travellers follow

the travel routes for the best case scenario for the collective

travel time. In this case, the travel route of each traveller is

assigned taking into account their effects on the total travel

time. We evaluate the results of routing strategy both

on taxis and residential vehicles. The traffic states on the

roads are diverse under the three scenarios (see the electronic

supplementary material, figure S9).

Figure 3a,b is a box plot of the distribution of tourists’

travel times during the morning and evening peak hour on

10 weekdays, respectively. The habit scenario always per-

forms worse than selfish and altruism as local travellers will

not give way to tourists and their journey times increase con-

siderably. Selfish and altruism scenarios, by contrast, allow

travellers to choose their routes towards their own or

others’ benefit. Interestingly, in the morning peak hour, tour-

ists’ travel times under altruism are globally similar than
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selfish, while they are much worse than selfish and habit in the

evening. The reason is that in the morning, the flow direction

of tourists (mainly from urban to suburban) is opposite to

most of the commuting trips (mainly from suburb to the

urban core). While in the evening peak hour, more commu-

ters have a similar direction to the tourists (mainly from the

urban core to the suburbs). In this case, under altruism
some taxis would detour, taking a longer travel time than

selfish and habit.
Furthermore, we evaluate the impact of the Olympics

on local commuters, calculating the average percentage

increment of commuter’s travel times as

Icomm ¼
P

od[OD ðt
Olym
od � tbefore

od Þf c
odP

od[OD tbefore
od f c

od

� 100% ð2:2Þ

where od is one of all the OD pairs; fc
od refers to the number of

commuters; tOlym
od and tbefore

od refer to the travel time in the od
route before and during the Olympics, respectively. Icomm

can be negative as selfish or altruism allows that some commu-

ters find shorter paths than before. Figure 3c,d depicts the

distribution of commuters travel time in a log scale on week-

days. More people have longer travel times (Icomm . 20%)

under the habit scenario than under the selfish or altruism scen-

arios. Moreover, in contrast with selfish, altruism increases

the number of commuters suffering longer travel times

but earns overall benefits for the majority of commuters.

Figure 3e,f illustrates the average percentage increment per

day. The increment with the habit scenario is always larger, fol-

lowed by selfish and altruism. Furthermore, certain peak hours

are subject to the most serious delays, e.g. morning peaks on 9

and 16 August, evening peaks on 12, 15 and 19 August. This is

the essence of the altruism strategy: while a small fraction of

people suffer longer travel times via detours to less popular

routes [11], the overall saving in travel time is larger than in

the selfish strategy. While in previous work it was already

observed that altruism versus selfish strategies do not produce

large differences [11], here we see that both strategies have
considerable differences with the habit scenario. This shows

the benefits of information technologies to help decrease con-

gestion during the events when people can select alternative

routes that are different from their routine routes.

To further evaluate this effect, we see the effects of the

interplay between habit and selfish, meaning a fraction of

people changing routes towards their shortest travel times,

and others keeping their routine routes. To examine such inter-

mediate states, we define a selfish parameter L to account for

the fraction of selfish travellers. L ranges from 0 to 1, where 0

implies the habit scenario, and 1 implies the selfish scenario.

Specifically, the travellers in each OD pair seek their shortest

travel time with a percentage of L and their routes need to be

reassigned, others are following their habit routes. Each link

can be occupied by habit flow and selfish flow. The habit

flow is calculated as vhabit
e . (1 2 L), where vhabit

e is the link

volume under habit scenario. The selfish flow vselfish
e is obtained

by assigning the selfish demand using the UE model.

Therefore, the VoC is calculated by

VoCe ¼
vhabit

e ð1� LÞ þ vselfish
e

Ce
ð2:3Þ

and the BPR function in equation (2.1) is used to estimate the

travel time on each link. For each OD trip, the total commuting

time also contains two parts: (1 2 L) . fc
od . thabit

od and L . fc
od .

tselfish
od , where thabit

od is the travel time under the habit scenario

and tselfish
od is the shortest travel time under the selfish para-

meter L. Figure 3g,h indicates the average increment for

commuters on each weekday with different values of L. The

increment percentage decreases with the increase of L, indicat-

ing that the impact of the Olympics recedes if more travellers

are selfishly looking for their best routes as opposed to using

their routine routes.

Most of the transportation planning strategies designed to

reduce motorized vehicles are applied independently of

origin and destination of the travellers, as a consequence

they are very costly in terms of the percentage of car

reduction (usually 20% of the cars selected by the ending



Figure 4. Interactive visualization of travel times before the Olympics and during the Olympics via various strategies of mobility. The purple hexagon reflects the
origin of trips. The white hexagons are associated with the Google travel times for comparison. The colours of other hexagons reflect the travel time from the
selected origin to them. Results are presented online at www.flows-rio2016.com.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20161041

6

digit in the plates). They achieve very modest benefits in

travel times, usually of the order of 2% [40]. Based on the esti-

mation of travel delays of commuters under the selfish
scenario, we explore the spatial impact of the Olympics on

commuters. To achieve this, we average the percentage incre-

ment of commuter trips to origin and destination zones.

Results indicate that commuters who live in the northeast

of Rio suffer serious impact in the morning peak hour (see

the electronic supplementary material, figure S10). In

addition, people working in the eastern coastal area suffer

travel delays most in both the morning and the evening

peak hours. We also find that the densely populated Govern-

ador Island suffers critical delays as one of the two bridges

between the island and mainland are set as Olympic lanes.

To facilitate policymaking, we visualize the travel time

before and during the Olympics all over the metropolitan

area of Rio, as shown in figure 4. From the visualization, travel-

lers can explore their travel time increment during the peak

hours due to the Olympics. In addition, the platform provides

travel times under different scenarios, which helps travellers

and policymakers realize the collective benefits generated by

the travel demand-management strategy. To be scalable, this

proof-of-concept strategy needs to be managed so that users

have reliable access to the information required.
2.3. Informed mode change
With the aim of mitigating the traffic congestion during the

Olympics, the government of Rio de Janeiro has made impor-

tant investments, such as enhancing the capacity of the traffic

network, extensions to the public transportation infrastructures,

including construction of new metro and BRT lines. As a comp-

lement to those efforts, in this work we propose an efficient

strategy to manage the travel demand with the present trans-

port infrastructure; concretely, reducing a fraction of vehicle

demand toward relieving congestion during the peak period.

With the purpose of selecting which critical trips to

reduce, we evaluate the contribution of each OD trip to the

collective travel time. Namely, we consider the following

question: how much time will we save collectively if we

take one vehicle out from a given OD route? We represent

the road network as a directed graph GðN , EÞ, where N is

the set of nodes and E is the set of directed edges. After
assigning the travel demand to the road network, each road

segment e [ E is associated with volume ve and travel time

during traffic te. First, for a road segment, we estimate the

travel time saving of others if we reduce one vehicle using

the marginal edge cost, which is the partial gradient of total

travel time over the current volume. For each edge, we have

MCe ¼
@ðveteÞ
@ve

¼ teðveÞ þ fsab
ve

Ce

� �b

� tf
e,

ð2:4Þ

where the edge travel time te is calculated using the calibrated

BPR function in equation (2.1). The marginal edge cost MCe

consists of two terms: the first one te reflects the travel time of

one vehicle and the second would be the saved travel time

by other vehicles in the same edge. The travel route pi,j of

each OD trip (i, j) is the set of edges on the path. Consequently,

we calculate the marginal path cost of OD pair (i, j ) as the sum

of MCe for the edges is traversed by the path:

MCp ¼
X
e[E

depMCe, ð2:5Þ

where dep is the delta function, which is 1 if edge e is traversed

by path p, 0 otherwise.

Larger values of MCp indicate more collective travel time

would be saved if we take the trip out. Consequently, a sensible

strategy is to reduce the demand from top-ranked OD pairs. To

formulate a feasible strategy, we only consider the trips in

which both origins and destinations are located close to the

metro or BRT stations, which means these people could

switch to public transport rather than driving. In our exper-

iments, we define the maximum distance from the centroid

of a zone to the nearest station. We evaluate the effects of this

distance defined as 1, 2 or 3 km. First, we select the trips with

origins and destinations within a certain distance of the nearest

metro or BRT station. Then, we calculate the MCp for each trip

and reduce the demand from the top-ranked trips by 60%. The

number of top-ranked trips ranges from 1000 to 10 000. Finally,

we reassign the remainder of the demand to the road network

and check the reduction of the collective travel time. As a

benchmark, we keep the same number of total reduced trips

but uniformly distribute them to all OD pairs near Metro and

BRT stations.

http://www.flows-rio2016.com
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Figure 5a illustrates the reduction in collective travel times

as a percentage of the travel time before the strategy, which

approximately follows a linear relationship with the number

of reduced OD pairs. Interestingly, in contrast to the uniform

benchmark, the strategy based on marginal costs is more effec-

tive by a factor of five. For example, reducing 60% of the flow

from the selected 5000 OD pairs at the range of 2 km, represents

1.14% of the total vehicle flows. In that case, the reduction in the

percentage of collective travel time is more than 10% with the

marginal cost strategy and only 2% with the uniform bench-

mark case. In addition, different distance thresholds produce

similar results for the same number of OD pairs. However, as

shown in figure 5b, greater distances indicate a lower percen-

tage in the total flow. This is because larger distances provide

more options to the collective travel time saving and affects

car travel in a less concentrated fraction.

Figure 5c presents the spatial distribution of the reduced car

demand for f2 km, 6000 OD pairsg. This case reduces the
collective travel time by 10.6% at the expense of a 1.4% decrease

in the total car demand, and improves the average speed of all

vehicles from 37.08 to 39.94 km h21. Implying that a consider-

able fraction of the travel times of local commuters and tourists

decrease, especially for the travellers with long trips (see the

electronic supplementary material, figure S11). Interestingly,

the distribution of destinations concentrates a very small area

in the Centro of Rio (Downtown). Meanwhile, the distribution

of origins concentrates in two areas, the west end of the BRT

line and the west end of the metro line. This suggests that

people living in two neighbourhoods in the West Zone of Rio

(e.g. Santa Cruz and Paciência) and three neighbourhoods in

the North Zone of Rio (e.g. Guadalupe, Marechal Hermes

and Bento Ribeiro) would have to switch from driving to

BRT or metro lines during the morning peak hour, if they

work in Downtown. Moreover, figure 5c gives the additional

ridership in each segment of the metro and BRT line. As can

be seen, the maximum increase is 5000 travellers in the
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morning peak hour, in contrast with the capacity of the metro

and BRT, approximately 30 000 passengers per hour per direc-

tion. If the current capacity of BRT cannot meet the needs of the

mode change strategy, it is convenient and economical to add

buses to the current BRT system. Finally, to investigate the

impact in travel times of the proposed strategy on the individ-

uals changing modes, we compared their average driving

travel time with the transit time from the Google API (GTFs).

Based on these estimates, average travel time would drop

from 96.3 to 80.5 min if taking BRT and metro during the morn-

ing peak. This may encourage individuals to cooperate with the

proposed travel demand-management strategy.
.Soc.Interface
14:20161041
3. Discussion
Mega events can greatly benefit the host city in many aspects,

such as attracting investment and tourism and stimulating the

economy. Nevertheless, it also disrupts the routine of the city.

One of the most feared costs by the population is the increase in

travel times, especially for already dense cities, which are more

likely to host the event. In the run-up to the Olympics, city plan-

ners need estimates on how the traffic will be affected, in order to

establish appropriate policies to cope with the impact. However,

the current impact evaluation on travellers is mostly confined to

qualitative studies with anecdotal experience of events manage-

ment. We lack quantitative methods to support the strategies.

This is mostly due to difficulties regarding data availability to esti-

mate travel demand. In this work, we present a method to

estimate urban travel demand and the time increments to

commuters during a large event by integrating multiple and

large-scale data resources. Moreover, we evaluate the effects of

various routing strategies on the increase in congestion.

As a case of study, we analysed the 2016 Summer Olympics

in Rio de Janeiro. The large inflow of tourists increases the

travel demand while the establishment of Olympic lanes

decreases the road network supply. The first task is to estimate

the rise in the demand-to-supply ratio on the streets and how

this will affect travel times. First, we estimate the person and

vehicle travel demands during the Olympics in Rio by estimat-

ing the number of tourists and their travel modes. In particular,

we expect a greater number of tourists travelling during the

morning peaks of 8, 12 and 15 August as well as the evening

peaks of 12 and 15–17 August. By estimating the routes of

vehicles under three distinct scenarios, habit, selfish and

altruism, we assess quantitatively the impact of the Olympics

on commuters. We find that the habit scenario produces the

greatest travel times, followed by selfish and altruism. For

some peak hours, the increment in the percentage of travel

times of all commuters can be up to 7% if people follow their

routine routes. The selfish scenario, which is the maximum

benefit possible via changing routes, still produces about 5%

of the increment for the most affected peak hours. This is in

agreement with the magnitude of savings reported by Çolak

et al. [11] in routine conditions. They showed that the collective

travel times could be decreased at most by 4.7–7.7% by routing

strategies (altruism).

The most effective strategy to reduce traffic is informed

mode change. This improves existing practices of restricting

cars by the ending digit of the plate numbers. To generate

this strategy, we calculate the contribution of each OD pair

to the collective travel time. Namely, the drivers who are

mostly involved in traffic bottlenecks are encouraged to
change from driving to public transportation. Finally, by

reducing 1% of the total cars, but targeting the zones near

metro and BRT lines, the decrease in overall travel time

reaches about 9%. Wang et al. reported that a 1% target

decrease in demand can achieve 14% and 18% decreases in

travel times for the San Francisco Bay Area and Boston,

respectively [40]. However, the proposed countermeasures

did not consider the existing alternatives for travel modes.

By contrast, our strategy only targets drivers within 3 km of

public transportation both in their origins and their desti-

nations. For incentives, discounts for transit and ridership

services in the selected communities could be tested.

Overall, we propose a methodology to give travel rec-

ommendations to users towards their collective benefits

using information technologies. Specifically, we showed that

the use of information to target mode change can be the

most cost-effective alternative to increasing capacity in trans-

portation. This information-based approach is convenient not

only for relieving congestion, but also potentially increasing

the use of public transport, which would deliver better

environmental outcomes, stronger communities and more sus-

tainable cities. We have estimated how the travel demand in

each zone contributes differently to overall congestion; these

results can be helpful for the planning of routes of public trans-

portation. In future studies, we can calculate the reduction in

emissions associated with the improvement in travel times

when taking one vehicle out from the selected OD pairs,

thereby managing vehicle demand to improve air quality.

The data resources used in our work are the by-products of

the use of communication technologies (CDRs and Waze) or

open-source repositories (event schedule, venue property,

Airbnb, hotels and OpenStreetMap). Consequently, the pro-

posed methods are portable for events in other cities.

Meanwhile, as the data resources are becoming more abun-

dant, our work represents a feasible application for demand

prediction and management that improves urban well-being.

We evaluated three ideal scenarios and their impacts

during the Olympics. We expect that the most likely routing

behaviour to be between habit and selfish, meaning that only a

fraction of the population may find their shortest routes while

the others will follow their habit routes before the Olympics.

To have an idea of such scenarios, we have defined a selfish

parameter L, and reported the results for different values that

go from the habit to selfish case.

An interesting avenue is to estimate empirical routing behav-

iour [41]. Collecting data about individual route choices before

and after the event is useful to understand changes in behaviour

during large events. Also, comparing the actual change of traffic

conditions from Waze during the Olympics versus our esti-

mates, as well as the comparison of other mitigation strategies,

such as ridesharing, and changes in the departure times of

travellers, can be key emphasis in the future work.
4. Method
4.1. Datasets
The data resources used in this work are: mobile phone data

(CDRs), Waze data, camera data, Airbnb data, hotel data, the

Olympic game schedules and information of venues, as well as

the OpenStreetMap. CDRs consist of five months of 2.19 million

anonymous users and are used to estimate the 24 h routine ODs

before the Olympics. Waze datasets contain 4.6 million reports
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during seven months and are used to extend the 24 h ODs to 5

weekdays. We argue that the larger overall congestion length in

the road network relates to the larger number of cars. Also,

camera datasets provide the relationship between traffic volumes

and average speeds in 85 main streets and are used to calibrate the

relationship between volume-over-capacity and actual travel time.

Airbnb data sets were reviewed on the website of Airbnb in Janu-

ary 2015 [35], and contain 13 400 properties and each property

provides its location and the number of accommodations avail-

able. We estimated the distribution of tourists’ residences using

the Airbnb dataset together with information from 106 hotels.

OpenStreetMap provides the road network we used in our

demand assignment. Game schedules, and locations and

capacities of the venues were used to estimate the tourists’ destina-

tion and departure times. Among the datasets, CDRs, Waze data

and camera data are a by-product of the activity. Other datasets

are all publicly available (see the electronic supplementary

material, figures S1–S5 and S7, and notes 1–4).

4.2. Tourists travel mode split
In order to estimate the added vehicle demand during the Olympics,

the taxi demand of tourists must be calculated from the tourists total

demand in each hour. We define four mobility modes for tourists:

walking and metro/BRT, bike and metro/BRT, taxi and bus. The

reason we merge the metro line and BRT lines together is that they

are a closed loop, as shown in figure 1. Walking and metro/BRT

implies the origin and destination of tourists is near enough to the

stations (1 km). Bike and metro/BRT implies they are near enough

for biking (2 km). Tourists will consider bus travel if travel time

and the number of transfers are both acceptable (less than 3). Other-

wise, they will choose to take a taxi to the venues. We assume the

occupancy of taxis by tourists is 2, meaning two tourists will take

one taxi on average during the Olympics (see the electronic

supplementary material, figure S6 and note 3).

4.3. Travel time estimation
To estimate travellers’ delay during the Olympics, we represent

their routing trips before and during the Olympics using a traffic

assignment model. Traffic assignment aims to estimate the travel

time and volume on each road segment. The estimation is
implemented by appointing reasonable (usually shortest travel

time) travel paths for all of the trips from their origin to destination.

Before the Olympics, we assume that all travellers have found their

routes with the shortest travel time and assign the demand with

the UE model. To validate the estimated travel time, we compare

the travel times of the top 5000 commuter OD pairs with Google

maps APIs during the morning peak hour. The results show that

the estimates are reasonable (see the electronic supplementary

material, figure S3). During the Olympics, both the demand and

the capacity of the road networks change. For the habit scenario,

all of the travellers follow their routes before the Olympics, we

update the volume and travel time on each edge only considering

the additional tourists flow. Tourists’ routes are chosen according

to the shortest travel path before the Olympics. For the selfish scen-

ario, we assign the new demand with UE model as before the

Olympics. For altruism scenario, we calculate the shortest path

with respect to the marginal cost for each OD pair, which makes

the entire road network reach system optimum. To obtain more

realistic estimates of travellers’ journeys during the Olympics, we

argue that only a fraction of people can find their shortest path,

which means one fraction of the drivers follow their routine

routes, while the remaining fraction is assigned using the UE

model to the available space (see the electronic supplementary

material, figures S9 and 10, and note 5).
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11. Çolak S, Lima A, González MC. 2016 Understanding
congested travel in urban areas. Nat. Commun. 7,
10793. (doi:10.1038/ncomms10793)

12. Burgan B, Mules T. 1992 Economic impact of
sporting events. Ann. Tourism Res. 19, 700 – 710.
(doi:10.1016/0160-7383(92)90062-T)

13. Dörk M, Gruen D, Williamson C, Carpendale S. 2010
A visual backchannel for large-scale events. Vis.
Comput. Graph. IEEE Trans. 16, 1129 – 1138. (doi:10.
1109/TVCG.2010.129)

14. Hotchkiss JL, Moore RE, Zobay SM. 2003 Impact of
the 1996 Summer Olympic games on employment
and wages in Georgia. Southern Econ. J. 69,
691 – 704. (doi:10.2307/1061702)

15. Lee C-K, Taylor T. 2005 Critical reflections on
the economic impact assessment of a mega-event: the
case of 2002 FIFA World Cup. Tourism Manag. 26,
595 – 603. (doi:10.1016/j.tourman.2004.03.002)

16. Peel JL, Klein M, Flanders WD, Mulholland JA,
Tolbert PE. 2010 Impact of improved air quality

http://dx.doi.org/10.1038/nature03248
http://dx.doi.org/10.1038/nature03248
http://dx.doi.org/10.1038/ncomms9166
http://dx.doi.org/10.1103/PhysRevE.73.036125
http://dx.doi.org/10.1103/PhysRevE.73.036125
http://dx.doi.org/10.1126/science.1150198
http://dx.doi.org/10.1140/epjb/e2009-00438-2
http://dx.doi.org/10.1038/jes.2010.14
http://dx.doi.org/10.1038/nature10190
http://dx.doi.org/10.1038/nature10190
http://dx.doi.org/10.1038/ncomms10793
http://dx.doi.org/10.1016/0160-7383(92)90062-T
http://dx.doi.org/10.1109/TVCG.2010.129
http://dx.doi.org/10.1109/TVCG.2010.129
http://dx.doi.org/10.2307/1061702
http://dx.doi.org/10.1016/j.tourman.2004.03.002


rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20161041

10
during the 1996 summer olympic games in atlanta
on multiple cardiovascular and respiratory
outcomes. Res. Rep. (Health Effects Institute) 148,
3 – 23.

17. Chen L, Miller-Hooks E. 2012 Resilience: an indicator
of recovery capability in intermodal freight
transport. Transp. Sci. 46, 109 – 123. (doi:10.1287/
trsc.1110.0376)

18. Meerow S, Newell JP, Stults M. 2016 Defining urban
resilience: a review. Landsc. Urban Plann. 147,
38 – 49. (doi:10.1016/j.landurbplan.2015.11.011)

19. Liu X, Stanley HE, Gao J. 2016 Breakdown of
interdependent directed networks. Proc. Natl Acad.
Sci. USA 113, 1138 – 1143. (doi:10.1073/pnas.
1523412113)

20. Gao J, Barzel B, Barabási A-L. 2016 Universal
resilience patterns in complex networks. Nature
530, 307 – 312. (doi:10.1038/nature16948)

21. Ip W, Wang D. 2011 Resilience and friability of
transportation networks: evaluation, analysis and
optimization. IEEE Syst. J. 5, 189 – 198. (doi:10.
1109/JSYST.2010.2096670)

22. Faturechi R, Miller-Hooks E. 2014 Travel time
resilience of roadway networks under disaster.
Transp. Res. Part B Methodol. 70, 47 – 64. (doi:10.
1016/j.trb.2014.08.007)

23. Donovan B, Work DB. 2015 Using coarse GPS data
to quantify city-scale transportation system
resilience to extreme events. (http://arxiv.org/abs/
1507.06011)

24. Chopra SS, Dillon T, Bilec MM, Khanna V. 2016 A
network-based framework for assessing
infrastructure resilience: a case study of the London
metro system. J. R. Soc. Interface 13, 20160113.
(doi:10.1098/rsif.2016.0113)

25. Jin JG, Tang LC, Sun L, Lee D-H. 2014 Enhancing
metro network resilience via localized integration
with bus services. Transp. Res. Part E Logist. Transp.
Rev. 63, 17 – 30. (doi:10.1016/j.tre.2014.01.002)

26. SteadieSeifi M, Dellaert NP, Nuijten W, Van Woensel
T, Raoufi R. 2014 Multimodal freight transportation
planning: a literature review. Eur. J. Operat. Res.
233, 1 – 15. (doi:10.1016/j.ejor.2013.06.055)

27. Levinson D. 2003 The value of advanced traveler
information systems for route choice. Transp. Res.
Part C Emerg. Technol. 11, 75 – 87. (doi:10.1016/
S0968-090X(02)00023-2)

28. Selten R, Chmura T, Pitz T, Kube S, Schreckenberg M.
2007 Commuters route choice behaviour. Games Econ.
Behav. 58, 394 – 406. (doi:10.1016/j.geb.2006.03.012)

29. González MC, Hidalgo CA, Barabasi A-L. 2008
Understanding individual human mobility patterns.
Nature 453, 779 – 782. (doi:10.1038/nature06958)

30. Batty M, Axhausen KW, Giannotti F, Pozdnoukhov A,
Bazzani A, Wachowicz M, Ouzounis G, Portugali Y.
2012 Smart cities of the future. Eur. Phys. J. Spec. Top.
214, 481 – 518. (doi:10.1140/epjst/e2012-01703-3)

31. TomTom. 2016 Tomtom traffic index, measuring
congestion worldwide. See http://www.tomtom.
com/en_gb/trafficindex/city/RIO.

32. Braess D, Nagurney A, Wakolbinger T. 2005 On a
paradox of traffic planning. Transp. Sci. 39,
446 – 450. (doi:10.1287/trsc.1050.0127)

33. Black C, Schreffler E. 2010 Understanding transport
demand management and its role in delivery of
sustainable urban transport. Transp. Res.
Rec. J. Transp. Res. Board 2163, 81 – 88. (doi:10.
3141/2163-09)

34. Luten K et al. 2004 Publication Number: FHWA-
HOP-05-001, US Department of Transportation
Federal Highway Administration.

35. Airbnb. 2015 Rio de janeiro state of rio de janeiro
brazil-airbnb. See https://www.airbnb.com/s/Rio-
de-Janeiro-State-of-Rio-de-Janeiro-Brazil.

36. Çolak S, Alexander LP, Alvim BG, Mehndiratta SR,
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