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Modélisation Mathématique et Analyse Numérique

NUMERICAL SOLUTION OF LARGE SCALE HARTREE-FOCK-BOGOLIUBOV

EQUATIONS

Lin Lin1 and Xiaojie Wu2

Abstract. The Hartree-Fock-Bogoliubov (HFB) theory is the starting point for treating supercon-
ducting systems. However, the computational cost for solving large scale HFB equations can be much
larger than that of the Hartree-Fock equations, particularly when the Hamiltonian matrix is sparse,
and the number of electrons N is relatively small compared to the matrix size Nb. We first provide a
concise and relatively self-contained review of the HFB theory for general finite sized quantum systems,
with special focus on the treatment of spin symmetries from a linear algebra perspective. We then
demonstrate that the pole expansion and selected inversion (PEXSI) method can be particularly well
suited for solving large scale HFB equations. For a Hubbard-type Hamiltonian, the cost of PEXSI is at
most O(N2

b ) for both gapped and gapless systems, which can be significantly faster than the standard
cubic scaling diagonalization methods. We show that PEXSI can solve a two-dimensional Hubbard-
Hofstadter model with Nb up to 2.88×106, and the wall clock time is less than 100 s using 17280 CPU
cores. This enables the simulation of physical systems under experimentally realizable magnetic fields,
which cannot be otherwise simulated with smaller systems.

AMS Subject Classification. — Please, give AMS classification codes —.

The dates will be set by the publisher.

1. Introduction

The Hartree-Fock (HF) theory plays a fundamental role in quantum physics and chemistry. Similarly, the
Hartree-Fock-Bogoliubov (HFB) theory is the simplest first principle method for treating superconducting sys-
tems. The HFB theory generalizes the celebrated Bardeen-Cooper-Schrieffer (BCS) theory [3, 4], which suc-
cessfully explained superconducting phenomena when the phase transition temperature (denoted by Tc) is low.
Even for high Tc superconductors (HTC) where the HFB theory is not effective by itself, it is still the starting
point and a key component in more advanced theories, such as those based on quantum Monte Carlo meth-
ods [8, 47, 48] and quantum embedding theories [55, 56]. A distinctive feature of HFB is the existence of the
pairing effect. When pairing occurs, the number of particles is no longer a good quantum number, and a
fluctuating number of particles is the premise of the superconducting phenomena.

Consider a quantum many-body system discretized using Nb basis functions (called spin orbitals in quantum
physics literature) with N electrons (for HFB, this is defined in the sense of an ensemble average). Both the
HF and HFB equations are nonlinear equations, which can be solved iteratively via the self-consistent field
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1 Department of Mathematics, University of California, Berkeley, and Computational Research Division, Lawrence Berkeley

National Laboratory, Berkeley, CA 94720. Email: linlin@math.berkeley.edu
2 Department of Mathematics, University of California, Berkeley, CA 94720. Email: xiaojiewu@berkeley.edu

c© EDP Sciences, SMAI 1999

ar
X

iv
:1

91
2.

10
15

7v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
1 

D
ec

 2
01

9



2 TITLE WILL BE SET BY THE PUBLISHER

(SCF) iteration. However, the computational cost for solving the HFB equations can be much higher, due to
the following two reasons. 1) HF calculations require computing the lowest N eigenfunctions of a Hamiltonian
matrix of size Nb, while HFB requires computing the lowest Nb eigenfunctions of a quasi-Hamiltonian matrix
of size 2Nb, i.e. 50% of the eigenpairs. This essentially forbids the efficient usage of iterative eigensolvers,
even if Nb � N (such as the case of a large basis set or low-doping) or if the HFB Hamiltonian is sparse. 2)
The constraint of the number of electrons in the HF theory can be trivially satisfied by taking the lowest N
eigenfunctions. Such a constraint in the HFB theory can only be satisfied by iteratively adjusting the chemical
potential, which can increase the number of SCF iterations. Therefore in practice it can be difficult to perform
HFB calculations for large scale systems, such as the treatment of superconductors under an experimentally
realizable magnetic field [57], large quantum dots [11,15], nano-transport phenomena [28], to name a few.
Contribution:

The contribution of this paper is two-fold. First, we attempt to provide a relatively concise and self contained
derivation of the HFB theory. While the HFB theory itself is certainly well-known in the physics literature, our
experience indicated that the derivation of its general form for finite sized quantum systems, and the associated
linear algebra structures, are not commonly presented in detail. This is partly because many textbooks in
physics discuss the HFB and BCS theories together, and often focus on certain special cases such as the spin-
singlet coupling case or translational invariant systems. While these settings indeed occur most frequently in
practice, if one starts from such settings, some amount of reverse engineering could be needed to grasp the
overall picture. Our perspective largely follows that of the excellent textbook by Blaizot and Ripka [23]1, which
focuses on finite sized systems and therefore can be described using finite dimensional matrices. We compare
the difference between the numerical solution of HF equations and HFB equations, especially in the case when
Nb is large. We also introduce the concept of spin-singlet and spin-triplet couplings from a linear algebra
perspective, which reduces the dimension of the Hamiltonian. We hope our presentation would be useful for
interested readers not familiar with the matter.

Second, we propose to accelerate large scale HFB calculations using the pole expansion and selected inversion
(PEXSI) method [36, 38], which is a Fermi operator expansion (FOE) method for solving electronic structure
problems [14]. While the computational cost for diagonalizing the HFB Hamiltonian scales as O(N3

b ), PEXSI can
evaluate the generalized density matrix with cost that scales at most as O(N2

b ) for certain sparse Hamiltonians
(such as Hubbard-type Hamiltonians). As mentioned before, diagonalization methods for HF calculations
only need to evaluate the lowest N eigenpairs, and can immediately identify the chemical potential once the
eigenvalues are available. On the other hand, the cost of PEXSI only depends on Nb and is independent of
N , and the chemical potential can only be determined iteratively. Therefore for HF calculations, PEXSI only
becomes faster than diagonalization methods when the system size becomes relatively large. The advantage of
diagonalization methods no longer holds for HFB calculations, and therefore PEXSI can become advantageous
at rather small system sizes. Furthermore, the PEXSI method is ideally suited for parallel computing, and can
be scaled to 104 ∼ 105 processors.

Using a two-dimensional Hubbard-Hofstadter model for example, we demonstrate that the PEXSI method
can already be more efficient than diagonalization methods for small systems of less than 400 sites. Thanks to
the reduced complexity, we perform large scale HFB calculations for systems of 1.44 × 106 sites, and the wall
clock time of each calculation of grand canonical ensemble is less than 100 seconds using 17280 CPU cores. A
diagonalization method would require using a dense eigensolver for a complex matrix of size 2.88× 106, which
is prohibitively expensive. This allows us to approach the experimentally realizable range of magnetic fields of
around 20 Tesla, using a lattice of around 2×106 sites (and the matrix size is 4×106). We also demonstrate the
usage of the PEXSI based HFB method for studying phase diagrams and striped order of the pairing potential
for large systems.
Related works: The general mathematical formulation of of the HFB theory was studied comprehensively by
Bach, Lieb and Solovej [2], which leads to many subsequent works [6, 16, 17, 29, 32]. The first study HFB from
the perspective of numerical analysis only appeared a few years ago by Lewin and Paul [33], which focused

1Unfortunately, we found that this book seems to be out of production now.
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on the self-consistent field iterations in HFB calculations. Besides diagonalization methods, Fermi operator
expansion methods (based on the Chebyshev expansion) have also been used to accelerate the solution of HFB
equations [10,42,54].
Organization: The rest of the paper is organized as follows. We first introduce some background information,
including the HF theory and a corollary of Wick’s theorem in Section 2. This allows us to introduce the HFB
theory in Section 3, in a way that is parallel to the discussion of the HF theory. The numerical solution of HFB
equations using diagonalization methods, and the symmetry considerations are discussed in Section 4. We then
introduce the PEXSI method for HFB calculations in Section 5. We demonstrate the numerical performance of
PEXSI in Section 6. The conclusion and discussion are given in Section 7.

2. Preliminaries

Throughout the paper, we use the Dirac bra-ket notation for quantum states. For a matrix A ∈ Cm×n, its
transpose, complex conjugate (entry-wise), and Hermitian conjugate are denoted by A>, A,A†, respectively.
Unless otherwise mentioned, a vector is always viewed as a column vector.

In the second-quantized formulation, the state space is called the Fock space, denoted by F . The Fock
space is the direct sum of tensor products of multiple replicas of single-particle Hilbert space H. Given a basis
{|ψi〉}i=1,...,Nb of H, the occupancy number basis set for the Fock space is

{|s1, . . . , sNb〉 = |ψ1〉s1 . . . |ψNb〉
sNb}, si ∈ {0, 1}, i = 1, . . . , Nb,

which is an orthonormal basis set satisfying

〈si1 , . . . , siNb |sj1 , . . . , sjNb 〉 = δi1j1 · · · δiNb jNb . (2.1)

Here Nb is the number of basis functions, or the number of sites in the single-particle space H. Hence, the
dimension of Fock space is 2Nb .

A state |Ψ〉 ∈ F will be written as a linear combination of occupancy number basis elements as follows:

|Ψ〉 =
∑

s1,...,sNb∈{0,1}

Ψ(s1, . . . , sNb) |s1, . . . , sNb〉 , Ψ(s1, . . . , sNb) ∈ C. (2.2)

Hence the state vector |Ψ〉 can be identified with a vector Ψ ∈ C2Nb , and F ∼= C2Nb . Without loss of generality
we always assume |Ψ〉 is normalized, i.e.

〈Ψ|Ψ〉 =
∑

s1,...,sNb∈{0,1}

|Ψ(s1, . . . , sNb)|2 = 1. (2.3)

The fermionic creation and annihilation operators, which add and remove one particle in the quantum state,
are respectively defined as (p = 1, . . . , Nb)

â†p |s1, . . . , sNb〉 = (−1)
∑p−1
q=1 sq (1− sp) |s1, . . . , 1− sp, . . . , sNb〉 ,

âp |s1, . . . , sNb〉 = (−1)
∑p−1
q=1 sqsp |s1, . . . , 1− sp, . . . , sNb〉 .

(2.4)

They satisfy the canonical anti-communication relation (CAR)

{â†p, âq} = δpq, {â†p, â†q} = 0, {âp, âq} = 0, p, q = 1, . . . , Nb. (2.5)

The number operator defined as n̂p := â†pâp satisfies

n̂p |s1, . . . , sNb〉 = sp |s1, . . . , sNb〉 , p = 1, . . . , Nb. (2.6)
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The eigenvalues of number operators are either 0 or 1. We also define N̂ =
∑Nb
p=1 n̂p to be the total number

operator.
The state |0〉 := |0, . . . , 0〉 is called the vacuum state. In particular, an annihilation operator acting on the

vacuum state always vanishes, i.e.
âp |0〉 = 0, p = 1, . . . , Nb. (2.7)

In fact, Eq. (2.7) can also be viewed as the defining equation for the vacuum corresponding to a set of creation

and annihilation operators satisfying the CAR. For a given state |Ψ〉 ∈ F and a self-adjoint operator Ô, we

define 〈Ô〉 := 〈Ψ|Ô|Ψ〉 to be the expectation value of Ô.
In this paper, we assume that the quantum many-body Hamiltonian takes the form

Ĥ =

Nb∑
p,q=1

h0
pqâ
†
pâq +

1

4

Nb∑
p,q,r,s=1

Vpqrsâ
†
pâ
†
qâsâr (2.8)

Here h0 ∈ CNb×Nb is a Hermitian matrix. The superscript 0 means that h0 only comes from the single-particle
contribution. V is a 4-tensor and characterizes the two-particle interaction. Due to the CAR, without loss of
generality we may require V to satisfy the following symmetry properties

Vpqrs = −Vpqsr = −Vqprs = Vqpsr. (2.9)

In other words, V ∈ CNb×Nb×Nb×Nb is an anti-symmetric 4-tensor with respect to the permutation of indices
p, q or r, s. Furthermore, Vpqrs = V rspq. More general Hamiltonians such as those containing a cubic term with
respect to the creation and annihilation operators can be treated similarly. Note that the Hamiltonian should
be viewed as a discretized model, obtained by discretizing a quantum many-body Hamiltonian in the continuous
space using Nb spin orbitals. In quantum chemistry, the symmetry requirement of V in Eq. (2.9) implies that
we use the anti-symmetrized form of the two-electron integral [49]. For simplicity we omit the Hamiltonian in
the continuous space and the detailed form of the spin orbitals, and directly focus on the discretized model. If
an operator Ô commutes with the total number operator, i.e. [Ô, N̂ ] = 0, then Ô is called a particle number

preserving operator. It is clear that the many-body Hamiltonian Ĥ is a particle number preserving operator.
In the discussion below, when the context is clear we may drop the range of the summation.

Our goal is to compute the ground-state energy of (2.8), which can be obtained by variational principle as

E0 = inf
|Ψ〉∈F : 〈Ψ|Ψ〉=1

〈Ψ| Ĥ − µN̂ |Ψ〉 . (2.10)

The chemical potential µ is a Lagrange multiplier chosen so that the ground state wavefunction |Ψ〉 has a
number of electrons equal to a pre-specified integer N ∈ {0, 1, . . . , Nb}, such that

〈Ψ|N̂ |Ψ〉 = N. (2.11)

In the Hartree-Fock theory, the wavefunction is not minimized with respect to the entire Fock space, but is
assumed to be of the form

|Ψ〉 = ĉ†1 · · · ĉ
†
N |0〉 . (2.12)

Here we defined a new set of creation operators

ĉ†i =

Nb∑
p=1

â†pΦpi, i = 1, . . . , N. (2.13)

The columns of the matrix Φ ∈ CNb×N are a set of orthonormal vectors, and the new set creation operators
satisfy the CAR

{ĉ†i , ĉj} = δij , {ĉ†i , ĉ
†
j} = 0, {ĉi, ĉj} = 0.
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By extending Φ to be a unitary matrix Φ̃ of size Nb × Nb, we may define Nb creation operators {ĉ†i}
Nb
i=1,

and correspondingly the annihilation operators {ĉi}Nbi=1 that satisfy the CAR. Let us introduce the short hand
notation

â† =
(
â†1, . . . , â

†
Nb

)
, â = (â1, . . . , âNb)

>
,

and correspondingly

ĉ† =
(
ĉ†1, . . . , ĉ

†
Nb

)
, ĉ = (ĉ1, . . . , ĉNb)

>
.

They satisfy

ĉ† = â†Φ̃, ĉ = Φ̃†â.

A wavefunction of the form (2.12) is called a Slater determinant. The term “determinant” comes from that
the wavefunction (2.12) in the first quantized representation can be written as a determinant [49]. The set of
all Slater determinants is denoted by SHF. It can be directly verified that any Slater determinant satisfies the
constraint for the number of electrons (2.11). Hence the chemical potential only contributes a constant term
µN to the energy and can be neglected. Then the Hartree-Fock theory can be concisely formulated as

EHF
0 = inf

|Ψ〉∈SHF
〈Ψ|Ĥ|Ψ〉 . (2.14)

Note that each state |Ψ〉 ∈ SHF is automatically normalized due to the orthonormal constraint of the matrix Φ.

Using the CAR (more specifically ĉ†i ĉ
†
i = 0), we have for any |Ψ〉 ∈ SHF parameterized by Eq. (2.12)

ĉ†i |Ψ〉 = 0, i = 1, . . . , N.

In quantum physics, the creation and annihilation operators are often renamed as follows

b̂i = ĉ†i , b̂†i = ĉi, i = 1, . . . , N,

b̂i = ĉi, b̂†i = ĉ†i , i = N + 1, . . . , Nb.
(2.15)

We can readily verify that {b̂†i , b̂i} satisfy the CAR. Eq. (2.15) is often referred to as the particle-hole transforma-
tion, where the states i = 1, . . . , N defining the Slater determinant are called “holes”, and the rest of the states
i = N + 1, . . . , Nb are called “particles” [23]. Using the particle-hole transformation, the Slater determinant
satisfies

b̂i |Ψ〉 = 0, i = 1, . . . , Nb. (2.16)

Recall that the property (2.7) for the vacuum state |0〉, we find that a state |Ψ〉 ∈ SHF can be viewed as a

vacuum operator defined by the annihilation operators {b̂i}Nbi=1. In this sense, |Ψ〉 is called a quasi-particle
vacuum state [23].

The advantage of viewing |Ψ〉 as a quasi-particle vacuum state is that one may concisely derive the Hartree-
Fock equations using Wick’s theorem (see e.g. [23,44,49]). We omit the general formulation of Wick’s theorem
here, and only give the particular instance of Wick’s theorem useful for the purpose of this paper below.

Proposition 1 (Wick’s theorem). If |Ψ〉 is a quasi-particle vacuum state with respect to a set of creation and
annihilation operators satisfying the CAR, then the expectation value 〈A1A2A3A4〉 := 〈Ψ|A1A2A3A4|Ψ〉 with
respect to four operators A1, A2, A3, A4 can be evaluated as

〈A1A2A3A4〉 = 〈A1A2〉 〈A3A4〉 − 〈A1A3〉 〈A2A4〉+ 〈A1A4〉 〈A2A3〉 . (2.17)

For any |Ψ〉 ∈ F , we may define the density matrix as

ρpq := 〈â†qâp〉 , p, q = 1, . . . , Nb. (2.18)
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Then if |Ψ〉 ∈ SHF, by Wick’s theorem

〈â†pâ†qâsâr〉 = 〈â†pâr〉 〈â†qâs〉 − 〈â†pâs〉 〈â†qâr〉+ 〈â†pâ†q〉 〈âsâr〉
=ρrpρsq − ρspρrq.

(2.19)

Note that |Ψ〉 is an eigenstate of N̂ , and hence the anomalous term 〈â†pâ†q〉 = 〈âsâr〉 = 0.
Furthermore, through direct computation we can verify

ρpq =

N∑
i=1

ΦpiΦqi, p, q = 1, . . . , Nb,

or in matrix form
ρ = ΦΦ†.

Therefore the density matrix for a Slater determinant is a Hermitian, idempotent matrix and its trace is equal
to N . In fact this defines the set of admissible density matrices as

DHF =
{
ρ ∈ CNb×Nb |ρ† = ρ, ρ2 = ρ, Tr[ρ] = N

}
. (2.20)

The total energy functional with respect to |Ψ〉 ∈ SHF can be written as a functional of ρ as

EHF[ρ] := 〈Ĥ〉

=
∑
pq

h0
pqρqp +

1

4

∑
pqrs

Vpqrs(ρrpρsq − ρspρrq)

=
∑
pq

h0
pqρqp +

1

2

∑
pqrs

Vpqrsρrpρsq.

(2.21)

In the last equality, we have used the anti-symmetry condition Vpqrs = −Vpqsr.
To solve the minimization problem, we define

hpq[ρ] :=
∂EHF

∂ρqp
= h0

pq +
∑
rs

Vprqsρsr. (2.22)

Let ρ be the minimizer of Eq. (2.10) with the energy functional defined in Eq. (2.21), and assume that
there is a positive energy gap between the N -th and (N + 1)-th eigenvalues of h[ρ]. Then the corresponding
Euler-Lagrange equation gives the following nonlinear eigenvalue problem

h[ρ]Φ = ΦΛ, ρ = ΦΦ†. (2.23)

Here all columns of Φ ∈ CNb×N form an orthonormal set of N vectors, and Λ = diag(ε1, . . . , εN ) ∈ RN×N is
a diagonal matrix, i.e. (Λ,Φ) are the eigenpairs corresponding to the lowest N eigenvalues of h[ρ]. Eq. (2.23)
is called the Hartree-Fock equation, which needs to be solved self-consistently until convergence. The choice
of taking the lowest N eigenpairs is called the aufbau principle in quantum physics literature, which can be
rigorously proved for certain choice of two-particle interaction V [2].

3. Hartree-Fock-Bogoliubov theory

In the Hartree-Fock theory, a state |Ψ〉 ∈ SHF has a well defined number of electrons N , and the Hartree-Fock
Hamiltonian is a particle number preserving operator. The Hartree-Fock-Bogoliubov (HFB) theory relaxes such
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a constraint and allows the particle number to fluctuate. We first group the annihilation operators as a column
vector as

α̂ =

(
â
â†

)
, (3.1)

i.e. α̂p = âp, α̂Nb+p = â†p, p = 1, . . . , Nb, and the Hermitian conjugate of α̂ as α̂† =
(
â†, â

)
. Note that

{α̂†, α̂} are only formal notations. In particular, they do not satisfy the CAR (just note that for any 1 ≤ p ≤ Nb,
{α̂p, α̂p+Nb} = {âp, â†p} = 1 6= 0).

In parallel to the Hartree-Fock theory, the ground state wavefunction |Ψ〉 in the HFB theory is assumed to
be a generalized Slater determinant

|Ψ〉 = ĉ†1 · · · ĉ
†
Nb
|0〉 . (3.2)

Note that there are Nb instead of N creation operators acting on the vacuum state. In fact, we shall define Nb
creation operators

ĉ†i =

2Nb∑
p=1

α̂†pΦpi, i = 1, . . . , Nb. (3.3)

We shall demonstrate below that by a proper choice of Φ ∈ C2Nb×Nb , the new creation and annihilation operators

{ĉ†i , ĉi}
Nb
i=1 indeed satisfy the CAR. If so, we may perform a new (and trivial) particle-hole transformation as

b̂i = ĉ†i , b̂†i = ĉi i = 1, . . . , Nb. (3.4)

Then {b̂†i , b̂i}
Nb
i=1 satisfy the CAR, and the generalized Slater determinant (3.2) satisfy

b̂i |Ψ〉 = 0, i = 1, . . . , Nb, (3.5)

i.e. it is a quasi-particle vacuum state. The set of all such generalized Slater determinants is denoted by SHFB.
We define the density matrix ρ, and the pair matrix κ associated with a state |Ψ〉 as

ρpq := 〈â†qâp〉 , κpq := 〈âqâp〉 , p, q = 1, . . . , Nb. (3.6)

Note that |Ψ〉 ∈ SHFB does not necessarily have a well defined particle number, i.e. |Ψ〉 is not an eigenstate of

N̂ , and the pair matrix κ may not vanish. From the CAR we find that the density matrix and the pair matrix
satisfy the symmetry properties

ρ† = ρ, κ> = −κ. (3.7)

We also define generalized density matrix

Rpq := 〈α̂†qα̂p〉 , (3.8)

and its block structure is recorded in Proposition 2.

Proposition 2. In a matrix block form, the generalized density matrix R can be written as

R =

(
ρ κ
−κ I − ρ

)
. (3.9)

where I is the identity matrix of size Nb. Furthermore, R is Hermitian.

Proof. According to the block partition of α̂, let us first partition R in a 2× 2 matrix block form as

R =

(
A B
C D

)
. (3.10)
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Then clearly the (1, 1) matrix block A = ρ, and the (1, 2) matrix block B = κ. The (2, 1) block is

Cpq = 〈â†qâ†p〉 = 〈âpâq〉 = κqp.

Using the condition κ = −κ>, we have κqp = −κpq, and hence C = −κ.
Similarly, the (2, 2)-block can be computed as

Dpq = 〈âqâ†p〉 = δpq − 〈â†pâq〉 = δpq − ρqp.

Since ρ = ρ†, we have ρqp = ρpq, and hence D = I − ρ. This proves the form (3.9).
Again using symmetry properties of ρ, κ, we have

R† =

(
ρ† −κ>
κ† I − ρ†

)
=

(
ρ κ
−κ I − ρ

)
= R.

Hence R is Hermitian. �

For |Ψ〉 ∈ SHFB, we can apply Wick’s theorem in Proposition 1 again to evaluate expectation values

〈â†pâ†qâsâr〉 = 〈â†pâr〉 〈â†qâs〉 − 〈â†pâs〉 〈â†qâr〉+ 〈â†pâ†q〉 〈âsâr〉
=ρrpρsq − ρspρrq + κpqκrs.

(3.11)

Due to the breaking of the particle number symmetry, there is an anomalous term in the energy defined in
terms of the pair matrix κ and its conjugate. Furthermore, R can be written as

Rpq =

Nb∑
i=1

ΦpiΦqi, p, q = 1, . . . , 2Nb,

or in matrix form

R = ΦΦ†.

Hence R is an idempotent matrix, and we always have Tr[R] = Nb. In the HFB theory, the number of electrons
cannot be set by the rank condition of the generalized density matrix R. Instead it is givne by the trace of the
density matrix ρ, i.e. Tr[ρ] = N . The set of the generalized density matrix is defined as

DHFB =
{
R ∈ C2Nb×2Nb |R† = R, R2 = R, Tr[ρ] = N

}
. (3.12)

The total energy functional of the HFB theory is

EHFB[R] := 〈Ĥ − µN̂〉

=
∑
pq

(h0
pq − µδpq)ρqp +

1

4

∑
pqrs

Vpqrs(ρrpρsq − ρspρrq + κpqκrs)

=
∑
pq

(h0
pq − µδpq)ρqp +

1

2

∑
pqrs

Vpqrsρrpρsq +
1

4

∑
pqrs

Vpqrsκpqκrs.

(3.13)

Let R be the minimizer of the following problem

EHFB
0 = inf

R∈DHFB
EHFB[R]. (3.14)
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with its energy functional defined in Eq. (3.13). Similar to Eq. (2.22), the linearized Hamiltonian due to variation
with respect to ρ is (the only addition is a diagonal term due to the chemical potential)

hpq[ρ] :=
∂EHFB[R]

∂ρqp
= h0

pq − µδpq +
∑
rs

Vprqsρsr. (3.15)

Due to the pair matrix, we also define the pairing field (also called the pairing potential, or gap function in the
setting of translation-invariant systems) as

∆pq[κ] :=
∂EHFB[R]

∂κpq
=

1

4

∑
rs

Vpqrsκrs −
1

4

∑
rs

Vqprsκrs =
1

2

∑
rs

Vpqrsκrs. (3.16)

Note the difference between the order of the p, q indices in h and ∆. Here we have used the anti-symmetry
property of κ (and hence κ), as well as the anti-symmetry property of V . Similar to ρ, κ, the matrices h[ρ],∆[κ]
satisfy the symmetry properties

h = h†, ∆ = −∆>. (3.17)

Then the Euler-Lagrange equation corresponding to the minimization problem (3.14) gives the following
nonlinear eigenvalue problem

H [R]Φ = ΦΛ, R = ΦΦ†. (3.18)

Here the quasi-particle Hamiltonian H [R] is defined as

H [R] =

(
h[ρ] ∆[κ]

−∆[κ] −h[ρ]

)
. (3.19)

H [R] is a Hermitian matrix due to the symmetry properties of h,∆. The eigenvalues are ordered non-
decreasingly as ε1 ≤ ε2 . . . ≤ εNb , and Λ = diag(ε1, . . . , εNb). The eigenvectors Φ ∈ C2Nb×Nb are an or-
thonormal set of Nb vectors, and (Λ,Φ) are the eigenpairs corresponding to the lowest Nb eigenvalues of H [R].
The chemical potential µ should be adjusted so that

N = 〈Ψ|N̂ |Ψ〉 = Tr[ρ]. (3.20)

Again, the aufbau principle, or the choice of taking the algebraically lowest Nb eigenpairs, does not always hold,
but the principle can be rigorously proved for certain choice of two-particle interaction V [2,33]. The eigenvalue
problem (3.18) is called the Hartree-Fock-Bogoliubov (HFB) equation, which is also called the Bogoliubov-de
Genns (BdG) equation.

4. Solving Hartree-Fock-Bogoliubov equations

Similar to Hartree-Fock equations, the numerical solution of HFB equations is often obtained using self-
consistent field iterations. At the `-th iteration, the density matrix, pair matrix are denoted by ρ(`), κ(`),
respectively. We may then construct R(`) and the quasi-particle Hamiltonian H [R(`)]. The lowest Nb eigenpairs
of H [R(`)] further can be used to define ρ(`+1), κ(`+1), and may continue the iteration until reaching self-
consistency. Then we may compute the total energy using Eq. (3.13). We discuss the diagonalization method
for solving HFB equations for general quasi-particle Hamiltonians in Section 4.1. In practice, the quasi-particle
Hamiltonian often exhibits additional sparsity pattern due to the separation between spatial and spin degrees
of freedom. In such a case, the Hamiltonian can be block-diagonalized. This will be discussed in Section 4.2.
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4.1. General formulation

The quasi-particle Hamiltonian H is a highly structured matrix. The corresponding structure of its eigenpairs
is recorded in Proposition 3.

Proposition 3. The eigenvalues of H are real and symmetric with respect to 0. Assuming there is no zero
eigenvalue, H can be diagonalized in the following form

H

(
U V
V U

)
=

(
U V
V U

)(
Λ 0
0 −Λ

)
. (4.1)

Here Λ ∈ RNb×Nb is a diagonal matrix with positive entries, and the matrix(
U V
V U

)
∈ U(2Nb).

Proof. Without loss of generality let (u>, v>)> be an eigenvector with eigenvalue λ > 0, i.e.

H

(
u
v

)
= λ

(
u
v

)
,

or

hu+ ∆v = λu, −hv −∆u = λv.

Taking the complex conjugate and negating both equations, we have

−hu−∆v = −λu, hv + ∆u = λv.

In the matrix form, this becomes

H

(
v
v

)
= −λ

(
v
v

)
.

This holds for every eigenpair, and we prove the form of the decomposition (4.1). The eigenvectors form a
unitary matrix directly follow from that H is Hermitian. �

Due to Proposition 3, the lowest Nb eigenvalues are always non-positive and are denoted by

Λ = diag(ε1, . . . , εNb), εi ≤ 0.

Then according to Eq. (3.18), we find that

Φ =

(
V
U

)
.

The generalized density matrix can be constructed from the eigenvectors associated with negative eigenvalues
as

R =

(
V
U

)(
V > U>

)
. (4.2)

Compared to Eq. (3.9), we find that

ρ = V V >, κ = V U>. (4.3)

It remains to show that the creation and annihilation operators defined in Eq. (3.3) satisfy the CAR. Rewrite
Eq. (3.3) as

ĉ†i =

Nb∑
p=1

α̂†pV pi +

Nb∑
q=1

α̂qUqi, i = 1, . . . , Nb.
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Correspondingly the annihilation operators are defined as

ĉi =

Nb∑
p=1

α̂pVpi +

Nb∑
q=1

α̂†qUqi, i = 1, . . . , Nb.

If we group
(
ĉ† ĉ

)
as a row vector, just as α̂†, then we have the matrix form

(
ĉ† ĉ

)
=
(
â† â

)(V U
U V

)
, (4.4)

which is unitary transformation of the fermionic creation and annihilation operators from Proposition 3. There-

fore {ĉ†i , ĉi}
Nb
i=1 indeed satisfy the CAR, |Ψ〉 ∈ SHFB is a quasi-particle vacuum, and Wick’s theorem is applicable.

Due to the symmetry of eigenvalues according to Proposition 3, the existence of a positive gap ∆g :=
εNb+1 − εNb is equivalent to the statement that H does not have a zero eigenvalue. Then the generalized
density matrix can be compactly written using a matrix function as

R = 1(−∞,0)(H ),

where 1(−∞,0)(·) is the indicator function on (−∞, 0).
In the case when H has zero eigenvalues or if the energy gap ∆g is small, we need to employ the finite

temperature formulation. Let β = T−1 be the inverse temperature (the Boltzmann constant is taken to be 1),
then the generalized density matrix should be weighted by the Fermi-Dirac distribution as

R = fβ(H ) :=
1

eβH + 1
.

In the finite temperature formulation, R is the minimizer of the Helmholtz free energy, defined as

F = E − 1

β
S. (4.5)

Here

S = −
2Nb∑
i=1

[fi log fi + (1− fi) log(1− fi)] (4.6)

is the entropy, and fi = (1 + eβεi)−1 is the Fermi-Dirac distribution.
When solving HFB equations self-consistently, we should note that there are in fact “two chemical potentials”.

One chemical potential is used to separate the wanted and unwanted eigenpairs. This chemical potential is always
set to 0 due to Proposition 3. The other chemical potential, or the “true” chemical potential denoted by µ, is
used to control the number of electrons so that Eq. (3.20) is satisfied. These two chemical potentials coincide in
standard Hartree-Fock type of calculations, and can be identified directly after a single step of diagonalization.
In HFB, the number of electrons cannot be exactly controlled even if we fully diagonalize the system as in
Eq. (4.1). This is because the total number operator N̂ does not commute with Ĥ. Hence the constraint on
the number of electrons can only be satisfied by dynamic adjustment of the chemical potential µ. For clarity,
we summarize the differences between HF and HFB in Table 1, when diagonalization type methods are used.
The reason why HFB is not suitable for iterative solver is that the number of eigenpairs to compute is always
Nb, i.e. half of the eigenpairs. In this regime, Krylov type iterative solvers are not efficient.

4.2. Spin symmetry

In the previous discussion, each site p refers to a general spin orbital. In practice p is often resolved into

a spatial index i, and a spin index σ ∈ {↑, ↓}. We denote by Ñb = Nb/2 the number of spatial orbitals. We
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HF HFB
Matrix size Nb 2Nb

Number of eigenpairs to compute N Nb
Number of “holes” N Nb

Number of “particles” Nb −N Nb
Fixed number of particles Yes No

Directly obtain µ after diagonalization Yes No
Good for iterative methods Yes No

Table 1. Comparison between parameters for solving Hartree-Fock theory and Hartree-Fock-
Bogoliubov theory based on a diagonalization procedure.

further assume that partitioned according to the spin index, h is a 2× 2 block diagonal matrix as

h =

(
h↑ 0
0 h↓

)
. (4.7)

In other words, we assume that there is no spin-orbit coupling effect in h. The pairing field can be expressed
generally in the matrix block form as

∆ =

(
∆↑↑ ∆↑↓
∆↓↑ ∆↓↓

)
. (4.8)

Define the grouped creation operator α̂† = (â†↑, â
†
↓, â↑, â↓), and let α̂ be the corresponding annihilation operator,

then the corresponding quasi-particle Hamiltonian takes the form

H =


h↑ 0 ∆↑↑ ∆↑↓
0 h↓ ∆↓↑ ∆↓↓
−∆↑↑ −∆↑↓ −h↑ 0

−∆↓↑ −∆↓↓ 0 −h↓

 . (4.9)

The pairing field ∆ can be generally decomposed as

∆ =

3∑
α=0

χα ⊗∆α =

(
−∆1 + i∆2 ∆0 + ∆3

−∆0 + ∆3 ∆1 + i∆2

)
, (4.10)

where

χ0 =

(
0 1
−1 0

)
, χ1 =

(
−1 0
0 1

)
, χ2 =

(
i 0
0 i

)
, χ3 =

(
0 1
1 0

)
. (4.11)

The matrices {χα} are related to the Pauli matrices, and its convention follows that in [57]. Since ∆ should be
an anti-symmetric matrix, we have

∆0 = ∆>0 , ∆1 = −∆>1 , ∆2 = −∆>2 , ∆3 = −∆>3 . (4.12)

When only ∆0 is present, it is called the spin-singlet coupling regime, and the total spin satisfies Sz = 0.
This is the most common regime, as is found in conventional superconductors, iron-based superconductors
etc. Correspondingly, when ∆0 vanishes and only ∆1,∆2,∆3 are present, it is called the spin-triplet coupling
regime, and the total spin satisfies Sz = 1. The spin-triplet coupling is less common, and has been found in
3He superfluid as well as certain heavy-fermion superconductors [57].

In order to reduce the dimension of H , following the structure in (4.9), ∆ needs to be either a block-diagonal
matrix, or a block-off-diagonal matrix.
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∆ is a block-off-diagonal matrix. In this case, only ∆0,∆3 can be present. The quasi-particle Hamilton-
ian (4.9) is then block diagonalized in terms of the following two Hermitian matrix blocks.

H↑↓ :=

(
h↑ ∆0 + ∆3

∆0 −∆3 −h↓

)
, H↓↑ :=

(
h↓ −∆0 + ∆3

−∆0 −∆3 −h↑

)
. (4.13)

Define J =

(
0 IÑb
IÑb 0

)
, then we have the relation

H↓↑ = −JH ↑↓J.

This suggests that for an eigenpair of H↑↓,

H↑↓

(
u
v

)
= λ

(
u
v

)
, λ ∈ R, (4.14)

we have

H↓↑

(
v
u

)
= −λ

(
v
u

)
. (4.15)

Therefore the negative eigenvalues of H↑↓ can be mapped to the positive eigenvalues of H↓↑, and vice versa.
This is in fact a direct corollary of Proposition 3. In order to solve HFB, we only need to diagonalize H↑↓ as

H↑↓

(
U↑↓ V ↓↑
V↑↓ U↓↑

)
=

(
U↑↓ V ↓↑
V↑↓ U↓↑

)(
Λ+
↑↓ 0

0 −Λ+
↓↑

)
(4.16)

where Λ+
↑↓ and Λ+

↓↑ are the diagonal matrices formed by the positive eigenvalues of H↑↓ and H↓↑. Note

that in general, the number of negative eigenpairs contained in Λ+
↓↑ may not be equal to Ñb. Accordingly,

U↑↓, V↑↓, U↓↑, V↓↑ are not necessarily square matrices. The positive eigenpairs of H↑↓ can be mapped to the
negative eigenpairs of H↓↑. Hence, the total number of negative eigenpairs of H remains Nb. Each block has
the same dimension. The density matrix associated with H is constructed as

R =


V ↓↑V

>
↓↑ 0 0 V ↓↑U

>
↓↑

0 V ↑↓V
>
↑↓ V ↑↓U

>
↑↓ 0

0 U↑↓V
>
↑↓ U↑↓U

>
↑↓ 0

U↓↑V
>
↓↑ 0 0 U↓↑U

>
↓↑

 (4.17)

Then the density matrix is

ρ =

(
V ↓↑V

>
↓↑ 0

0 V ↑↓V
>
↑↓

)
.

Due to the orthogonality of the eigenvectors of H↑↓, the relation

I − ρ =

(
U↑↓U

>
↑↓ 0

0 U↓↑U
>
↓↑

)
is indeed satisfied. We may define the spin-up matrix ρ↑ = V ↓↑V

>
↓↑, the spin-down density matrix ρ↓ = V ↑↓V

>
↑↓,

and the pair matrix κ↑↓ = V ↓↑U
>
↓↑. The (spin) reduced density matrix is

P =

(
ρ↑ κ↑↓
κ†↑↓ I − ρ↓,

)
. (4.18)
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The total number of electrons should satisfy

N = Tr[ρ↑] + Tr[ρ↓]. (4.19)

In particular, the number of electrons cannot be evaluated as Tr[P ] as in standard Hartree-Fock calculations.
∆ is a block-diagonal matrix. In this case, the quasi-particle Hamiltonian (4.9) can be decomposed into

the two following Hermitian matrices:

H↑↑ :=

(
h↑ −∆1 + i∆2

−∆†1 − i∆†2 −h↑

)
and H↓↓ :=

(
h↓ ∆1 + i∆2

∆†1 − i∆†2 −h↓

)
(4.20)

Unlike the block-diagonal case, H↑↑ and H↓↓ may not be directly related. However, these two matrices them-
selves can be diagonalized into the following two forms

H↑↑

(
U↑↑ V ↑↑
V↑↑ U↑↑

)
=

(
U↑↑ V ↑↑
V↑↑ U↑↑

)(
Λ↑ 0
0 −Λ↑

)
(4.21)

and

H↓↓

(
U↓↓ V ↓↓
V↓↓ U↓↓

)
=

(
U↓↓ V ↓↓
V↓↓ U↓↓

)(
Λ↓ 0
0 −Λ↓

)
(4.22)

By Proposition 3, each eigenvalue problem has Ñb positive eigenvalues and Ñb negative eigenvalues, respectively,

and all the blocks of eigenvector matrices have the same size Ñb. The reduced density matrices P↑ and P↓ can
also be constructed separately,

P↑ =

(
ρ↑ κ↑↑
κ†↑↑ I − ρ↑

)
and P↓ =

(
ρ↓ κ↓↓
κ†↓↓ I − ρ↓

)
. (4.23)

Here we defined ρ↑ = V ↑↑V
>
↑↑, κ↑↑= = V ↑↑U

>
↑↑ and ρ↓ = V ↓↓V

>
↓↓, κ↓↓= = V ↓↓U

>
↓↓. The total number of electrons

is still defined as N = Tr[ρ↑] + Tr[ρ↓].

5. Pole expansion and selected inversion method for solving large-scale
HFB calculations

When the number of sites Nb becomes large (e.g. Nb & 104), the direct diagonalization of the quasi-particle
Hamiltonian H can be prohibitively expensive. On the other hand, if H is a sparse matrix, we do not need
to evaluate all entries of the generalized density matrix R, which is generically a dense matrix. This is because
in each step of the SCF iteration, in order to update H , we only need to evaluate the nonzero entries of h,∆.
Hence when h0 is a sparse matrix and Vijkl is a sparse 4-tensor (such as in the case of the Hubbard-type models),
then h,∆ are also sparse matrices.

Define the sparsity pattern of h,∆ as Sh = {(p, q)|hpq 6= 0}, S∆ = {(p, q)|∆pq 6= 0}, which can be obtained
by evaluating Eq. (3.15), (3.16), respectively. Then {Sh,S∆} defines the sparsity pattern of H . We assume
that the sparsity pattern of H does not change along the SCF iteration. Then to solve HFB equations self-
consistently, it is sufficient to evaluate {ρpq|(p, q) ∈ Sh} and {κpq|(p, q) ∈ S∆} during each iteration. This is
guaranteed by Proposition 4.

Proposition 4. Let R be the generalized density matrix of H0 with sparsity pattern {Sh,S∆}, then generically
the evaluation of H [R] only requires the entries of R restricted to the same sparsity pattern {Sh,S∆}.

Proof. Assume the statement is not true. Since h only depends only on ρ, and ∆ only depends on κ, respectively,
we first consider the evaluation of h[ρ]. Then there exists a pair of indices (k, l) /∈ Sh such that ρkl is needed
to evaluate some nonzero entry hij . From Eq. (3.15), this requires Vikjl 6= 0. From the symmetry property
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of V , we have Vkilj = Vikjl 6= 0. Since ρ is generically a dense matrix, the sum
∑
ij Vkiljρji is generically

nonzero, and hence hkl is generically nonzero. This contradicts the assumption that (k, l) /∈ Sh. Similarly for κ,
if (k, l) /∈ S∆ such that κkl is needed in order to evaluate some nonzero entry ∆ij , then by Eq. (3.16) we have
Vijkl 6= 0. This means Vklij = Vijkl 6= 0. Then

∑
kl Vklijκij and therefore ∆kl are generically nonzero, which is

a contradiction. �

Proposition 4 allows us to use the pole expansion and selected inversion method (PEXSI) [35, 37] to solve
HFB efficiently for large systems. PEXSI is a reduced scaling algorithm, its computational cost is at most
O(N2

b ), and is uniformly applicable to gapped and gapless systems. Consider a gapped system for simplicity,
and we would like to choose a contour C encircling only the negative part of the spectrum of H . Then by
Cauchy’s contour integral formula

R =
1

2πi

∮
C
(z −H )−1 dz. (5.1)

After proper discretization of C using a quadrature, we have

R ≈
Npoles∑
l=1

ωl(zl −H )−1 :=

Npoles∑
l=1

ωlGl. (5.2)

Here Gl is a quasi-particle Green’s function, and can be computed via a matrix inversion. More generally, when
finite temperature is under consideration (for gapped and gapless systems), the contour C can be chosen to be
a dumbbell shaped contour encircling the entire spectrum of H , while avoiding the poles of the Fermi-Dirac
function. These poles are defined as xk = (2k+ 1)iπ/β, k ∈ Z, which are called the Matsubara poles [44]. After
discretizing the contour, the pole expansion still takes the form (5.2). Fig. 5.1 (a) and (b) illustrate schematically
the choice of the contour and its discretization with and without a gap. The discretization points (poles) {zl}
can be chosen to be distributed symmetrically with respect to the real axis, which allows us to only evaluate
half of the quasi-particle Green’s functions. This step can be performed using any rational approximation for
the Fermi-Dirac function. In particular, the pole expansion in [38] only scales as log(β∆E/ε), where ∆E is the
spectral radius of H , and ε is the target accuracy. The pre-constant of the logarithmic scaling factor can be
further optimized to be numerically near-optimal [41] for approximating Fermi-Dirac functions.

(a) (b)

Figure 5.1. Schematic illustration of the contour and its discretization for solving BCS when
the quasi-particle Hamiltonian (a) has a relatively large gap; (b) has a small gap or no gap.
The yellow points along the imaginary axis indicate the Matsubara poles. The eigenvalues of
the quasi-Hamiltonian are always symmetric with respect to the origin.



16 TITLE WILL BE SET BY THE PUBLISHER

Assuming {zl, ωl} are given, according to Proposition 4, we need to evaluate the matrix entries of R corre-
sponding to the sparsity pattern {Sh,S∆}, called the selected elements of R. This can be performed efficiently
using the selected inversion method [12,21,22,30,37,39,50], as stated in Proposition 5.

Proposition 5 (Erisman and Tinney [12]). For a matrix A ∈ CN×N , let A = LU be its LU factorization, and
L,U are invertible matrices. For any 1 ≤ k < N , define

CL = {i|Li,k 6= 0}, CU = {j|Uk,j 6= 0}. (5.3)

Then all entries {A−1
i,k |i ∈ CU}, {A

−1
k,j |j ∈ CL}, and A−1

k,k can be computed using only {Lj,k|j ∈ CL}, {Uk,i|i ∈ CU}
and {A−1

i,j |(L+ U)j,i 6= 0, i, j ≥ k}.

Therefore in order to evaluate the selected elements of R, we only need to evaluate the selected elements of Gl
according to the sparsity pattern of the LU factorization of H . This can lead to significant savings in terms of the
computational cost. For a d-dimensional lattice system with nearest neighbor interaction (satisfied by Hubbard-

type Hamiltonians), the cost for evaluating the selected elements of R scales as O
(
N

max{3(d−1)/d,1}
b

)
[37, 39].

In particular, the cost for d = 2 and d = 3 is O(N1.5
b ) and O(N2

b ), respectively (and we always consider d ≤ 3).
When using the PEXSI method, we should in fact distinguish the cases when H is real symmetric or

Hermitian. This is because in the real symmetric case, zl − H is a complex symmetric matrix. Then its
LU factorization can be simplified using the complex symmetric LDL> factorization, and correspondingly the
symmetric version of selected inversion can be used [21]. When H is Hermitian, the matrix zl −H is neither
Hermitian nor complex symmetric, but only a structurally symmetric matrix. In such a case, the general
LU factorization should be used (e.g. using SuperLU DIST [34]), and correspondingly the selected inversion
method for general asymmetric matrices should be used [22]. When H can be block diagonalized, e.g. in
the case of spin-singlet and spin-triplet couplings, we may apply PEXSI to each of the sub-matrices of size
Nb × Nb, and the overall density matrix and pair matrix can be constructed accordingly. This makes PEXSI
more favorable compared to diagonalization methods for large systems. A pseudocode summarizing the solution
of HFB equations is described in Algorithm

1.

Algorithm 1 Solve a general Hartree-Fock-Bogoliubov problem

Input: h0, V , ρ0, κ0, ε, ` = 0
Output: ρ, κ, E
Compute h,∆ by Eq. (3.15),(3.16), and form H .
while δE < ε do

while True do
Compute the generalized density matrix R by diagonalization or PEXSI.
Update chemical potential µ in h (using e.g. Newton’s method or bisection).
if |Tr[ρ↑] + Tr[ρ↓]−N | < ε then

Break
end if

end while
Compute the total energy E(`+1) by (3.13).
Compute h,∆ by Eq. (3.15),(3.16), which gives H [R]
Update H using mixing methods.
Compute the energy difference δE = |E(`+1) − E(`)|.
`← `+ 1

end while
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For finite temperature calculations, we may also need to evaluate the Helmholtz free energy at the end of
the calculation. This can be performed using PEXSI as well. First we reformulate the entropy as

S =
∑
i

{
fi log(1 + eβεi) + (1− fi) log(1 + e−βεi)

}
=
∑
i

{
fiβεi + fi log(1 + e−βεi) + (1− fi) log(1 + e−βεi)

}
=β
∑
i

fiεi +
∑
i

log(1 + e−βεi).

(5.4)

Since E :=
∑
i fiEi is the total energy at finite temperature, the Helmholtz free energy F can be expressed as

a matrix function of H as

F = E − 1

β
S = − 1

β

∑
i

log(1 + e−βεi) = − 1

β
Tr log(1 + e−βH ). (5.5)

The function log(1+e−βz) is analytic in the complex plane, other than at the Matsubara poles. Therefore using
the contour integral formulation, one can use the same poles as those used for computing the charge density to
evaluate the Helmholtz free energy, but with different weights. We refer readers to [35,36] for more details.

6. Numerical experiments

In this section, we use the 2D Hubbard-Hofstadter model to illustrate the performance of the PEXSI solver
for performing large scale HFB calculations. The Hubbard-Hofstadter model extends the classical Hubbard
model in the presence of a perpendicular magnetic field. The attractive Hubbard-Hofstadter model is one of the
simplest models exhibiting a nontrivial pairing order, and has a rich ground state phase diagram [19, 52]. The
model can be realized in cold atom experiments, which has been used to verify the numerical results [1, 9, 26].

6.1. Model setup

Consider a rectangular box containing a lattice of size Nx × Ny. In the Hubbard-Hofstadter model, the
non-interacting part of the Hamiltonian is written as

Ĥ0 = −
Nx∑
i=1

Ny∑
j=1

∑
σ∈{↑,↓}

[
txâ
†
i,j,σâi+1,j,σ + tσy (i)â†i,j,σâi,j+1,σ

]
+ h.c.. (6.1)

Here (i, j) is the label of the sites in the lattice. We set the hopping along the x-direction to be tx = 1. Here
i+1, j+1 should be interpreted in the sense of periodic boundary conditions. The hopping along the y-direction
depends on both the spatial and spin indices as

tσy (`) = eisσ2πα`. (6.2)

Here s↑ = 1, s↓ = −1. The parameter α = p/q is a rational number, and p and q are coprimes, and α encodes

the strength of the magnetic field through the Peierls substitution [31]. The hopping satisfies t↑y(`) = t↓y(`). The

energy spectrum of Ĥ0 plotted against α exhibits the celebrated pattern of the Hofstadter butterfly [18].
Here we first consider the a relatively large α (α = 1/3 and 1/2) to demonstrate the accuracy of the method,

and will consider smaller values of α (i.e. large supercells) later. The interacting part only includes the on-site
attractive interaction as

Ĥ1 = −U
Ny∑
i=1

Ny∑
j=1

n̂i,j,↑n̂i,j,↓. (6.3)
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The total Hamiltonian is then

Ĥ = Ĥ0 + Ĥ1. (6.4)

Using the matrix notation, the non-interacting part can be rewritten as

h0
↑ = txINx ⊗ hNy×Ny + hNx×Nx ⊗ t↑y
h0
↓ = txINx ⊗ hNy×Ny + hNx×Nx ⊗ t↓y

(6.5)

where

hN×N =



0 −1 −1
−1 0 −1

−1
. . .

. . .

. . . 0 −1
−1 −1 0


N×N

. (6.6)

Hence h0
↑ = h0

↓. With some abuse of the notation, we use i, j as general site indices below. The spatial-spin

index can be identified with the spin-orbital index according to )

p← (i, σ1), q ← (j, σ2), r ← (k, σ3), s← (l, σ4).

The interacting term is a highly sparse matrix and can be constructed from antisymmetrizing

Ṽijkl,σ1σ2σ3σ4
=

{
−U, i = j = k = l, σ1 = σ3 =↑, σ2 = σ4 =↓,
0, otherwise

(6.7)

We consider study the singlet coupling in the Hubbard-Hofstadter model. The HFB energy functional can
be simplified as

EHFB[ρ, κ] := Tr(h0
↑ρ↑ + h0

↓ρ↓)− µTr(ρ↑ + ρ↓)− U
∑
i

ρii,↑ρii,↓ + U
∑
i

κii,↑↓κii,↑↓ (6.8)

According to Eq. (3.15) and (3.16), the corresponding matrix blocks of the quasi-particle Hamiltonian are
expressed as

h[ρ] =

(
h0
↑ − µIÑb − Udiag(ρ↓) 0

0 h0
↓ − µIÑb − Udiag(ρ↑)

)
(6.9)

and

∆[κ] =

(
0 −Udiag(κ↑↓)

−Udiag(κ↓↑) 0

)
(6.10)

This is a spin-singlet Hamiltonian, and H only depends on the diagonals of the density matrix and the pair
matrix, respectively. Since ∆ is a block-off-diagonal matrix, H can be equivalently reduced to the Nb × Nb
system

H↑↓[ρ, κ] =

(
h0
↑ − µIÑb − Udiag(ρ↓) −Udiag(κ↑↓)

−Udiag(κ†↑↓) −h0
↓ + µIÑb + Udiag(ρ>↑ )

)
(6.11)

After the solution, we define the following mean pairing potential (with some abuse of notation, denoted by ∆
when the context is clear) as the order parameter to characterize the superconducting phase.

∆ =
U

Ñb

∑
i

κii,↑↓.
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6.2. Computational details

Although the periodic boundary condition of the Hubbard-Hofstadter model along the x direction allows
us to consider a quasi-1D domain with Nx � Ny, in order to demonstrate the numerical performance of the

method, in this paper we always consider a square lattice with Nx = Ny =

√
Ñb. The ground state under the

canonical ensemble (NVT, i.e. the average number of electrons N is fixed) and grand canonical ensemble (µVT,
i.e. the chemical potential µ is fixed) are investigated separately in the following context. In all calculations,
we use a small finite temperature 0.00095 (corresponding to 300K in the atomic unit). All experiments are
performed on the Cori Haswell supercomputer at NERSC, and each node has 32 cores (2 Intel Xeon Processor
E5-2698 v3) and 128 GB DDR4 2133 MHz memory.

Solvers. We compare the PEXSI solver2 with the dense eigensolver pzheevd in ScaLAPACK [5], and other
eigensolvers such as ELPA [40] can be used as well. SuperLU DIST [34] is used for performing the sparse LU
factorization, and ParMETIS [24, 25] is used to reorder the matrix. The default choice of the number of poles
Npoles is 60, using the contour integral formulation in [38]. For each pole, the nonzero entries of the quasi-
Hamiltonian matrix are distributed across a two-dimensional processor grid of size Nr ×Nc. Therefore, PEXSI
employs Npoles ×Nr ×Nc cores in total. Npoles = 60 is used in most experiments. As a fair comparison, in the
dense solver, all the entries of the quasi-Hamiltonian are distributed in 8Nr × 8Nc processors with the block
cyclic data distribution.

Self-consistency. We set the initial density matrix to be zero and the initial pair matrix to be an identity
matrix. The self-consistent equation is solved using the direct inversion of the iterative subspace (DIIS) method
[45, 46], which extrapolates the previous up to 7 steps of the quasi-Hamiltonian. Our convergence criterion is
set to be the relative energy difference between two steps (in our calculations E(`) always has a non-vanishing
amplitude)

|E(`) − E(`−1)|
|E(`)|

< 10−9. (6.12)

Chemical potential. In the canonical ensemble, the chemical potential is adjusted to meet the requirement
of the average electron of numbers in each step of the self-consistent iterations. Consider the function ν(µ) =
Tr[ρ↑(µ)] + Tr[ρ↓(µ)]. Unlike the original HF model where the function ν(µ) is a piecewise constant function,
this function in the HFB model is most likely a smooth function as shown in Fig. 6.1.
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Figure 6.1. Number of electrons as a function of the chemical potential at self-consistency.
Nx = 12, Ny = 12, U = 5.0, α = 1/3.

Here we use Newton’s method to solve the scalar equation

ν(µ) = N (6.13)

2http://www.pexsi.org

http://www.pexsi.org
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Figure 6.2. Difference between the function νexact(µ) and νPEXSI(µ) for Npoles=20, 30, 40,
50. νexact(µ): the exact function. νPEXSI(µ): the approximated function by PEXSI. Nx = 12,
Ny = 12, N = 144, U = 5.0. The exact values of the function is shown in Fig.6.1

within each step of the self-consistent field iteration. The initial guess is set to be zero. Newton’s method may
fail when ν(µ) is not continuously differentiable or the initial guess is not close to the exact solution enough.
When the Newton’s method fails, the expensive bisection method can be applied (though we have not observed
such cases in our experiments).

To reduce its iteration number, we employed the chemical potential from the last step as the initial guess
after the first iteration. The convergence criterion is (ν(µ)−N)/N < 10−13. One can also use a looser criterion
during the self-consistent loop to save the computational cost.

6.3. Accuracy

The overall error of solving HFB equations by PEXSI is from three aspects: 1) approximation of the pole
expansion in PEXSI. This is the main error of solving HFB equations caused by the eigensolver PEXSI. The
inaccurate generalized density matrix leads to deviation of chemical potential, and further affects the accuracy of
total energy. 2) solving chemical potential to meet the particle number by the combination of Newton’s method
and bisection method. 3) self-consistent error. Both 2) and 3) are shared between PEXSI and diagonalization
methods, and can be systematically reduced to become negligible. The selected inversion is a numerically exact
fast algorithm for evaluating selected elements of Green’s functions. Hence, we concern about the error due to
the pole expansion only. We first investigate the accuracy of the function ν(µ). In each iteration of the self-
consistency loop, ν(µ) is evaluated at multiple points to adjust the particle number. The accurate evaluation
of ν(µ) is crucial for solving the HFB equations. From Fig. 6.2, the approximation error uniformly decreases
as one increases the number of poles.

We consider the NVT system, and measure the error in terms of the total energy and pairing field. The exact
results are obtained by ScaLAPACK. The error of the pairing field is measured in l2 norm. We measure the
error with respect to different choices of the number of poles (from 20 to 80) and different system sizes (24× 24
sites to 96× 96 sites). With 20 poles, the energy error and pairing field error are on the order of 100 and 10−2

, respectively, as shown in Fig. 6.3. The relative error of energy consistently decreases to 10−10 as more poles
are used for all systems, and the error of pairing field can be reduced to 10−9. Fig. 6.3 also shows that the
accuracy of PEXSI is not sensitive to the system size. In most calculations below, we set Npoles = 60.

6.4. Efficiency and scalability

We measure the efficiency of PEXSI in terms of the cost for calculating one step of the self-consistent iteration
for µVT systems. The efficiency and scalability are investigated by two separated sets of experiments. In the
first set, the total number of processors is fixed to be 64 for ScaLAPACK and 60 for PEXSI respectively. The
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Figure 6.3. Errors of energy (left) and order parameter (right) by PEXSI with respect to the
number of poles. U = 5.0.

exact diagonalization are performed for small systems with 16× 16 to 80× 80 sites. For PEXSI, we calculated
the systems with 16×16 to 96×96 sites. The comparison of the wall clock time of the two methods is presented
in Fig. 6.4. The cost of exact diagonalization scales asymptotically as O(N3

b ). In our experiments, the scaling
is observed to be O(N2.94

b ). On the other hand, the asymptotic scaling of the cost of PEXSI is O(N1.5
b ) for

2D systems, and the numerically observed scaling is O(N1.27
b ). As shown in Fig. 6.4, PEXSI is superior to the

exact diagonalization even for a small system. The crossover occurs when the system size has around 576 sites.
PEXSI is already about 279 times faster than the exact diagonalization for a modestly large 80× 80 system.

To demonstrate the strong scaling, we fix the system size as 240 × 240 for the exact diagonalization, and
1200× 1200 for the pole expansion method. The number of processors is raised from 1600 to 14400, and from
2304 to 17280 for ScaLAPACK and PEXSI, respectively. From Fig.6.4, we observed PEXSI is significantly faster
than ScaLAPACK, even though PEXSI is solving for a system that is 25 times larger. We further quantify the
strong scaling by

η(np) =
np0×WT (np0)

np×WT (np)
, np0� np (6.14)

with WT (np) is the wall clock time when np processors are employed. We observed that the parallel efficiency
of ScaLAPACK significantly drops down when the number of processors is greater than 10, 000. For example,
in ScaLAPACK,

η(14400) ≈ 1600×WT (1600)

14400×WT (14400)
= 0.65.

While, in PEXSI,

η(17280) ≈ 2304×WT (2304)

17280×WT (17280)
= 0.83.

Therefore PEXSI has a better parallel efficiency, therefore is more suitable for large scale parallel computation.

6.5. Phase diagram

We plot the phase diagram of the system with a 180 × 180 square lattice in terms of the filling factor
n = N/Nb and U at α = 1/3. In terms of the order parameter ∆, the mean-field phase diagram of the 2D
Hubbard-Hofstadter model has two phases [19]: the quantum spin Hall insulator (QSHI) state and the staggered
flux (SF) state. We calculated the pairing order parameter of 37× 26 grids in the box with the filling factor n
from 2/3 to 1, and interaction magnitude U from 1.0 to 6.0. The phase diagram is presented in Fig. 6.5. When
n = 1.0, the system is always in the SF state with a non-vanishing ∆. When n = 2/3, the system can transit
from from the QSHI state to the SF state, and the phase transition occurs at U ≈ 3.0. In the cases where
n ∈ (2/3, 1), the order parameter gradually increases with respect to n. Our phase diagram result calculated
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Figure 6.4. Computational complexity (left) and parallel efficiency (right) of PEXSI and
ScaLAPACK for solving HFB equations. Each wall clock time is averaged over 20 experiments.
Left: wall clock time vs number of sites. α = 1/3, U = 2.0 and µ = −1.0. 64 processors are
employed by ScaLAPACK, while 60 processors are employed by PEXSI. The slope for PEXSI
is fit using the last 4 points. The slope of ScaLAPACK is fit using 5 points. Right: wall clock
time vs number of processors. α = 1/3, U = 2.0, µ = −1.0. The system size is 240 × 240 for
ScaLAPACK, and 1200× 1200 for PEXSI.

from a finite sized system in real space agrees with that in existing works using both momentum space and real
space representations [20,51,53].
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Figure 6.5. Phase diagram of 2D Hubbard-Hofstadter model. α = 1/3. 60 poles. The color
bar encodes the order paramter ∆.

6.6. Small α factor

The magnitude of the magnetic field B is directly related to the α factor according to the relation

B =
αΦ0

a2
. (6.15)

Here Φ0 = 2.0678×10−15 Wb is called superconducting magnetic flux quantum, and a is the lattice spacing. For
example, if α is 1/3 and a is 4× 10−10m, the magnetic field has to be about 4308 T, which is much larger than
the strongest magnetic field generated in any laboratory setting so far (around 1200 T) [43]. Therefore in order
to simulate the Hubbard-Hofstadter model (and related quantum systems) in the presence of an experimentally
achievable magnetic field, we need to be able to simulate with a small α factor. Since tσy (·) should be periodic
function, the Hubbard-Hofstadter model with a small α factor need to be simulated with a large lattice.
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To demonstrate the capability of the PEXSI accelerated HFB solver, we set α = 1/480. Then with the same
lattice spacing, the corresponding magnetic field is just about 27 T. The corresponding lattice has 1440×1440 ∼
2×106 sites. We simulate the µV T ensemble with µ = −1 and U = 2.0. Figure. 6.6 shows the spatial distribution
of the pairing potential. Six complete pair-density wave (PDW) periods are observed. In each period, there are
multiple pair-density waves with shorter wavelength [20].
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Figure 6.6. Distribution of pairing potential (left) and its zoom-in (right).

7. Conclusion

We present the Hartree-Fock-Bogoliubov (HFB) theory from a numerical perspective, and focuses on the
numerical solution of HFB equations for general finite sized quantum systems. When certain spin symmetries
(singlet or triplet) are present, the quasi-particle Hamiltonian, which is a matrix of size 2Nb×2Nb can be reduced
to two matrices of size Nb×Nb. We propose that the pole expansion and selected inversion (PEXSI) method can
be well suited for solving large scale HFB equations efficiently, when the quasi-particle Hamiltonian is sparse.
The accuracy and efficiency are investigated by the Hubbard-Hofstadter model. We solved a large-scale HFB
equations with a relatively weak magnetic field, which attainable in the laboratory setting. Due to the wide
use of HFB equations, we expect our solver could be useful for studying a number of physical phenoemena such
as the Majorana corner in a large scale Hubbard-Hofstadter model [53]. It may also be useful as a mean-field
subroutine in quantum embedding methods for treating strongly correlated systems, such as dynamical mean-
field theory (DMFT) [13] and density matrix embedding theory (DMET) [27]. Such large scale calculations are
necessary for understanding e.g. the superconductivity behavior of twisted bilayer graphene (TBG) with magic
angles [7].
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