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ARTICLE OPEN

Multivariate prediction of dementia in Parkinson’s disease
Thanaphong Phongpreecha 1,2,3, Brenna Cholerton 2✉, Ignacio F. Mata 4, Cyrus P. Zabetian 5,6, Kathleen L. Poston 7,
Nima Aghaeepour1,3,8, Lu Tian3, Joseph F. Quinn9,10, Kathryn A. Chung9,10, Amie L. Hiller9,10, Shu-Ching Hu5,6, Karen L. Edwards11 and
Thomas J. Montine2

Cognitive impairment in Parkinson’s disease (PD) is pervasive with potentially devastating effects. Identification of those at risk for
cognitive decline is vital to identify and implement appropriate interventions. Robust multivariate approaches, including fixed-
effect, mixed-effect, and multitask learning models, were used to study associations between biological, clinical, and cognitive
factors and for predicting cognitive status longitudinally in a well-characterized prevalent PD cohort (n= 827). Age, disease
duration, sex, and GBA status were the primary biological factors associated with cognitive status and progression to dementia.
Specific cognitive tests were better predictors of subsequent cognitive status for cognitively unimpaired and dementia groups.
However, these models could not accurately predict future mild cognitive impairment (PD-MCI). Data collected from a large PD
cohort thus revealed the primary biological and cognitive factors associated with dementia, and provide clinicians with data to aid
in the identification of risk for dementia. Sex differences and their potential relationship to genetic status are also discussed.
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INTRODUCTION
Cognitive impairment in Parkinson’s disease (PD) is pervasive with
multiple negative effects1. The trajectory of cognitive decline in
PD can vary considerably, however, with some individuals quickly
developing cognitive symptoms that interfere with functional
activities and others maintaining steady but mild symptoms over
many years2. Because cognitive impairment can begin insidiously,
such problems can go unrecognized and in the absence of
appropriate behavioral, social, and medical interventions may
interfere with patient safety and independence3. A current
important question in PD research is thus whether those who
are at risk for impending cognitive decline can be identified in
order to implement appropriate interventions, optimize medical
management, and enhance autonomy.
There is now abundant genetic and phenotypic data to support

substantial clinical and biological heterogeneity in cognitive
decline in people with PD, and this complexity challenges
traditional methodological approaches2,4. There are thus many
potential interactions between processes that underlie cognition
and other biological systems among individuals that may
introduce error. Conventional statistical approaches may thus
result in poor reproducibility. Such methods are chosen by the
researcher a priori and are used to test one or a few variables at a
time, often with an overemphasis on P values and an inability to
adequately address the potential impact of heterogeneity. Given
these issues, the resulting conclusions may lack important clinical
meaning and generalizability. In order to address the problems
introduced by univariate statistical methods, multivariate models
are used with increasing frequency in the study of cognitive
diseases5.
Here, we utilized multivariate models, including fixed-effect,

mixed-effect, and multitask learning models, to examine the

interplay among cognition, genetics, and clinical features in the
Pacific Udall Center (PUC), a large, deeply annotated cohort of
participants with PD. Using the first two modeling methods, we
sought to (i) identify cognitive diagnosis outcomes in this
longitudinal prevalent PD cohort, (ii) determine biological factors
related to cognitive diagnosis and dementia prediction, and (iii)
establish any associations between genetic factors and specific
cognitive test performance. Finally, using the multitask models, we
sought to identify associations between cognitive test perfor-
mance patterns and subsequent dementia.

RESULTS
Overview
Fixed-effect, mixed-effect, and multitask learning models were
implemented to analyze detailed cognitive and biological data
from 827 participants with PD (514 with longitudinal data)
enrolled in the PUC. Age, education, sex, disease duration (time
since initial onset of PD motor symptoms), total levodopa
equivalent daily dose (LEDD; calculated as described by Tomlinson
et al.6), the 15-item Geriatric Depression Scale (GDS-15)7, and site
were the included covariates. To determine whether the inclusion
of younger participants influenced the results, analyses were
repeated both for the entire sample and excluding participants
under 50. Given that there were not substantial differences noted
in the results, the following results are presented using the entire
study sample. Baseline cohort characteristics are provided in Table 1.
Longitudinal change in cognitive status (no cognitive impairment
[NCI], mild cognitive impairment [PD-MCI], dementia [PDD]) across
visits is depicted in Fig. 1.
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Table 1. Baseline characteristics of the Pacific Udall Center cohort.

NCI n = 208 PD-MCI n = 459 PDD n = 160 Overall Pa pairwise

Age at visit, years

Mean (sd) 64.4 (8.3) 68.1 (8.9) 72.7 (9.3) <0.0001

Range 40.3–83.9 36.2–90.1 48.9–91.8 NCI < PD-MCI/PDD, PD-MCI < PDD

Education, years

Mean (sd) 16.3 (2.4) 15.9 (2.5) 15.4 (2.8) 0.002

Range 12–20 8–20 8–20 NCI > PDD

Sex

n (%) male 97 (46.6%) 330 (71.9%) 140 (87.5%) <0.0001 NCI < PD-MCI/PDD, PD-
MCI < PDD

Disease duration, years

Mean (sd) 7.6 (5.2) 8.7 (6.3) 11.9 (7.7) <0.0001

Range 0–30 0–41 1–43 NCI < PDD, PD-MCI < PDD

Length of follow-up, years (n= 514)

Mean (sd) 4.0 (2.1) 3.7 (2.0) 2.7 (1.3) <0.0001

Range 1–8 1–8 1–7 NCI < PDD, PD-MCI < PDD

MDS-UPDRS

Mean (sd) 21.0 (10.4) 27.0 (12.1) 36.3 (14.0) <0.0001

Range 3–64 0–66 5–87 NCI < PD-MCI/PDD, PD-MCI < PDD

Modified Hoehn & Yahr

Median 2 2 2.5 0.0001

Range (1–4) (1–5) (1–5) NCI < PD-MCI/PDD, PD-MCI < PDD

GDS-15

Mean (sd) 5.4 (1.4) 5.9 (1.7) 6.8 (1.9) <0.0001

Range 1–11 2–13 4–12 NCI < PD-MCI/PDD, PD-MCI < PDD

LEDD

Mean (sd) 511.6 (455.2) 613.9 (497.6) 769.5 (560.2) <0.0001

Range 0–2792 0–3375 0–3156 NCI < PDD, PD-MCI < PDD

APOE

n (%) ε4 allele 43 (21.4%) 107 (23.7%) 32 (20.7%) 0.659

GBA <0.001

n (%) carrier 15 (7.5%) 44 (9.7%) 34 (21.8%) NCI < PDD, PD-MCI < PDD

MAPT

n (%) H1 haplotype 50 (37.3%) 132 (33.5%) 42 (30.0%) 0.44

MoCA

Mean (sd) 27.5 (1.9) 24.6 (2.5) 19.2 (4.3) <0.0001

Range 22–30 17–30 7–29 NCI > PD-MCI/PDD, PD- MCI > PDD

HVLT-R total recall

Mean (sd) 27.3 (3.5) 21.1 (4.6) 14.2 (4.5) <0.0001

Range 15–35 7–34 5–30 NCI > PD-MCI/PDD, PD-MCI > PDD

HVLT-R delayed recall

Mean (sd) 9.9 (2.1) 6.6 (3.2) 3.1 (2.9) <0.0001

Range 0–12 0–12 0–11 NCI > PD-MCI/PDD, PD- MCI > PDD

HVLT-R RDI

Mean (sd) 10.9 (1.2) 9.3 (2.2) 7.2 (2.5) <0.0001

Range 3–12 0–12 −2–12 NCI > PD-MCI/PDD, PD-MCI > PDD

Trailmaking Test, Part Ab

Mean (sd) 29.1 (12.7) 40.4 (20.0) 72.6 (36.7) <0.0001

Range 13–130 15–150 23–150 NCI < PD-MCI/PDD, PD-MCI < PDD

Trailmaking Test, Part Bb

Mean (sd) 67.9 (31.6) 120.7 (64.9) 238.8 (75.1) <0.0001

Range 28–300 29–300 70–300 NCI < PD-MCI/PDD, PD-MCI < PDD

Trailmaking Part B – Part Ab

Mean (sd) 38.8 (27.2) 80.1 (56.7) 166.9 (65.8) <0.0001
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Effects of biological factors on cognitive status
In the entire sample, a mixed-effect model developed using only
biological factors was found to have satisfactory prediction of
cognitive status across all visits (average area under the receiver
operating characteristic curve [AUC]= 0.71, Fig. 2a). Predictions of
both PD-NCI and PDD (AUC= 0.76 and 0.77, respectively) were
more accurate than PD-MCI (AUC= 0.61). Of note, this model
using only biological factors performed worse than the model

using only cognitive test performance (a major component in
making a cognitive diagnosis) (average AUC= 0.9; Fig. 2b). In the
final model, which included all covariates, all biological factors
were significantly associated with cognitive status except for
microtubule-associated protein tau (MAPT) and apolipoprotein E
(APOE) genotype (Table 2). Notably, the increase in odds ratios of
both being male and having a glucocerebrosidase gene (GBA)
variant were approximately equivalent to an additional 15 years of
PD duration in terms of PDD risk in this cohort.
In the longitudinal cohort (excluding participants with PDD at

baseline), survival analyses showed a significantly shorter duration
between PD symptom onset and diagnosis of PDD in GBA mutation
carriers compared to non-mutation carriers (Fig. 3a). Faster progres-
sion to PDD was also observed in males compared to females (Fig.
3b). Male participants with a GBA variant were starkly more at risk of
acquiring PDD, and earlier, than female participants with no GBA
variant (Fig. 3c). APOE ε4 did not exhibit a significant effect on time to
PDD (Fig. 3d). The significance of these observations remains
unchanged even if the time scale was changed to age at visit or to
months since the first visit (Supplementary Fig. 1).
In analyses that were restricted to participants with longitudinal

data who were nondemented at their first visit but were diagnosed
with PDD at any subsequent visit (n= 97), age at PD onset was also
a significant factor in the rate of progression to PDD (Supplemen-
tary Table 1). Number of years from PD onset until PDD and age at
PDD are shown in Supplementary Fig. 2; no correlation was noted
(R≪ 0.1, results not shown). Later PD symptom onset was
associated with faster progression to PDD (Supplementary Fig. 2).

Effects of genetic factors on cognitive test performance
Analysis of the fitted mixed-effect model indicated the strongest effect
on individual cognitive tests was from GBA, which was significantly
associated with all tests except phonemic verbal fluency and Hopkins
Verbal Learning Test-Revised (HVLT-R) Delayed Recall after Bonferroni

Table 1 continued

NCI n = 208 PD-MCI n = 459 PDD n = 160 Overall Pa pairwise

Range 2–272 7–272 30–264 NCI < PD-MCI/PDD, PD-MCI < PDD

Digit symbol

Mean (sd) 50.6 (10.2) 38.9 (10.5) 24.2 (10.7) <0.0001

Range 18–82 2–70 0–54 NCI > PD-MCI/PDD, PD-MCI > PDD

Letter number sequencing

Mean (sd) 11.0 (2.4) 8.7 (2.4) 5.6 (2.5) <0.0001

Range 3–18 0–18 0–12 NCI > PD-MCI/PDD, PD-MCI > PDD

Phonemic verbal fluency

Mean (sd) 48.3 (11.7) 38.6 (11.5) 26.9 (9.9) <0.0001

Range 22–93 8–84 8–53 NCI > PD-MCI/PDD, PD-MCI > PDD

Semantic verbal fluency

Mean (sd) 23.3 (4.9) 18.5 (5.2) 11.6 (4.6) <0.0001

Range 13–37 5–37 1–22 NCI > PD-MCI/PDD, PD-MCI > PDD

Judgment of line orientation

Mean (sd) 13.0 (1.8) 11.8 (2.4) 9.8 (3.2) <0.0001

Range 6–15 0–15 0–15 NCI > PD-MCI/PDD, PD-MCI > PDD

APOE apolipoprotein E gene, GBA glucocerebrosidase gene, GDS-15 15-item Geriatric Depression Scale, HVLT-R Hopkins Verbal Learning Test-Revised, LEDD
levodopa equivalent daily dose, MAPT microtubule-associated protein tau gene, MDS-UPDRS Unified Parkinson’s Disease Rating Scale, Movement Disorders
Society revision, MoCA Montreal Cognitive Assessment, NCI not cognitively impaired, PDD Parkinson’s disease dementia, PD-MCI Parkinson’s disease mild
cognitive impairment, RDI recognition discriminability index, sd standard deviation.
aOverall (pairwise) comparisons based on one-way ANOVA (Scheffe’s test) for continuous variables, Kruskal–Wallis (Dunn’s test) for ordinal variables, or chi-
square for dichotomous variables.
bLower score= better performance.

Fig. 1 Changes in cognitive status across visits. The number inside
each node represents the number of people with the corresponding
cognitive status indicated by its color. The nodes with dashed line
represent people with only data from the first visit. The links
represents the group participants who continued to the next visit.
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correction (Table 3). Both APOE and MAPT did not exhibit significant
effects after correction. However, analysis using a sex-specific cohort
(females only) suggested a significant effect of APOE ε4 with lower
performance on semantic verbal fluency (Supplementary Table 2). In
addition, GBA effects on visuospatial and verbal learning tasks could be
sex-specific (Supplementary Table 3). It should be noted that a
generalizable predictive model could not be developed for this
purpose due to large random effects between individuals (as evidenced
by the relatively large standard errors of the random intercept for each
test; Table 3).

Prediction of future cognitive diagnosis by cognitive test
performance
Multitask models were employed for future cognitive status
prediction, where each task predicted cognitive status of a specific
year in the future based only on the data from the first visit
(limited to five years since the first visit due to reduced numbers
of visits beyond this point). The model could accurately separate
PD-NCI from PDD up to four years into the future (Fig. 4a).
However, the model could not accurately differentiate PD-MCI
from other diagnoses in any year. Analysis of the model
components indicated that cognitive tests are the most important
features in the prediction of future cognitive status. Specifically,
HVLT-R Total Recall and Digit Symbol scores were the most
indicative of PD-NCI, whereas the Montreal Cognitive Assessment
(MoCA), semantic verbal fluency, Digit Symbol, and Trailmaking
Test B minus Trailmaking Test A (TMT B-A) were the most
indicative of PDD (Fig. 4b). Other factors including sex, GBA status,
and PD duration and severity also affected some tasks at a lower
scale. This suggests that although biological factors are significant,
cognitive test scores are stronger predictors of subsequent

dementia. This is consistent with the mixed-effect analysis above
which demonstrated that cognitive status is more strongly
associated with combined cognitive test performance than the
combination of biological factors at each visit (Fig. 2).

DISCUSSION
In the current study, we evaluated features related to patterns of
cognitive progression in a large PD cohort. Age, disease duration,
sex, and GBA status were the primary biological factors associated
with cognitive status. Survival analyses demonstrated the
importance of sex, GBA, and age of PD onset in the progression
to PDD in this prevalent cohort. GBA carriers had worse
performance across most cognitive measures, and potential sex-
specific differences on specific cognitive tasks were noted in
relation to APOE and GBA. Importantly, when all variables were
included in the model, we found that although performance on
specific cognitive tests best predicted subsequent cognitive status
in the cohort for PD-NCI and PDD, this model could not accurately
predict future PD-MCI.
The size of the PUC cohort, breadth of data collected, and

longitudinal design permitted implementation of robust multi-
variate approaches to address important questions related to
cognitive progression in people with PD. Increasingly, such
methods are employed across disciplines to address shortcomings
associated with traditional statistical approaches. While to date
the use of machine learning approaches is limited in PD research,
such methods have been used to predict disease progression in
the Michael J Fox Foundation Parkinson’s Progression Markers
Initiative (PPMI)8. Only one recent study included cognitive
outcome in the PPMI cohort, and found that initial MoCA score,

Fig. 2 Biological factors satisfactorily predict cognitive status. Cross-validated area under receiver operating characteristic (AUC) of the
mixed-effect model prediction based only on biological factors (a) compared to the AUC of the mixed-effect model prediction based solely on
cognitive tests (b). Error bars represent standard deviations (sd).

Table 2. Association of biological factors with cognitive status in the full longitudinal PUC cohort.

Coef. (OR)a 95% CI (OR) P

Age 0.18 (1.20) 0.15 (1.16) 0.22 (1.24) 2.64 × 10−26

Disease duration 0.15 (1.16) 0.11 (1.12) 0.19 (1.21) 5.13 × 10−14

Sex 2.92 (18.54) 2.30 (9.97) 3.54 (34.47) 2.80 × 10−20

APOE 0.23 (1.26) −0.39 (0.68) 0.85 (2.34) 0.47

GBA 2.72 (15.18) 1.94 (6.96) 3.50 (33.11) 1.00 × 10−11

MAPT −0.21 (0.81) −0.80 (0.45) 0.38 (1.46) 0.48

APOE apolipoprotein E gene, CI confidence interval, GBA glucocerebrosidase gene, GDS-15 15-item Geriatric Depression Scale, LEDD levodopa equivalent daily
dose, MAPT microtubule-associated protein tau gene, OR odds ratios, PUC Pacific Udall Center.
aModels adjusted for LEDD, GDS-15, site and years of education.

T. Phongpreecha et al.

4

npj Parkinson’s Disease (2020)    20 Published in partnership with the Parkinson’s Foundation



sleep symptoms, auditory working memory, and anxiety symp-
toms were the primary factors related to subsequent worsening
global cognition. Unlike the current study, age, sex, and disease
duration were not related to subsequent decline in global
cognition9. However, PPMI enrolls participants with de novo PD,
thus participants were only evaluated during the earliest stages of
the disease when cognitive decline may be minimal. Further, the
sample size was smaller and length of follow-up shorter than in
the current analyses. Importantly, neuropsychological testing in
this study included only the MoCA, compared to the depth and
breadth of testing available in our cohort. Finally, genetic factors
that may directly influence PD phenotypes were not included. For
example, GBA variants have been associated with the above traits
(anxiety10, auditory working memory11, sleep symptoms12). These
phenotypic features may thus serve as a proxy for certain
underlying biological traits in some participants. In the current
study, we clearly demonstrate the important role of GBA in
cognitive presentation and progression in PD, consistent with a
previous longitudinal study by our group using traditional
statistical methods13.
Although we, and now several others, have reported increased

cross-sectional risk for dementia in people with PD who inherited
an APOE ε4 allele14–16, our results here showed only a trend to an
increased rate of progression to dementia in this group. These
results mirror those for AD, where APOE ε4 is a strong and
extensively replicated genetic risk factor; however, the impact of
APOE ε4 on clinical progression to MCI or AD dementia in
multivariate analyses is not clear. Indeed, some reported a
significant impact of APOE ε4 on clinical progression to MCI or
AD dementia, while others did not17–20. These studies show that
the impact of APOE ε4 on clinical progression is complex, and
several observed significant interactions with being female. Our
results most closely match those from the Alzheimer’s Disease
Neuroimaging Initiative, Australian Imaging, Biomarker and Life-
style Study, and Harvard Aging Brain Study, which showed that

APOE ε4 itself is not a major factor in clinical progression18.
Although not a strong predictor of progression to PDD in our
cohort, inheritance of an APOE ε4 allele was not benign; women
with PD who had an APOE ε4 allele were at greater risk for decline
in semantic verbal fluency. As we have previously shown, reduced
semantic verbal fluency is associated with shortened time to PDD
among females only21. In the AD literature, impaired semantic
verbal fluency is associated with dementia diagnosis as well as
with AD biomarkers in preclinical disease22,23, and there is some
evidence that females with AD dementia may perform worse than
males on semantic verbal fluency tasks24. Further, APOE ε4 may
play a role in influencing semantic verbal fluency performance in
amnestic mild cognitive impairment25. Taken together, these
results tentatively suggest that APOE ε4 may have a greater impact
on cognitive phenotype in females with PDD, although additional
research is necessary. Finally, it is important to consider cohort
characteristics among these many observational studies that may
underlie some of the apparent discrepancies. Indeed, our cohort
likely has under-sampled early PDD and this may undermine our
ability to associate progression to PDD with APOE ε4. With this
limitation in mind, our longitudinal results from people with PD
align with most results from AD and highlight a possible but weak
effect on the rate of progression to dementia, possible domain-
specific effects, and potentially stronger impact on women.
Consistent with our previous cross-sectional reports26,27, we also

found no association between the MAPT H1 haplotype and
specific cognitive test performance, dementia diagnosis, or
cognitive decline during follow-up. Previous reports on MAPT
and cognition are mixed, with one group reporting faster decline
in MMSE scores and greater dementia risk in PD patients with the
H1 haplotype28 and another showing a greater association
between the H1 haplotype and PD diagnosis among those with
dementia29. However, many others have shown no association
between cognitive test performance, cognitive diagnosis, or rate
of cognitive decline and the H1 haplotype, and the current study

Fig. 3 Survival analyses indicate significant longitudinal differences between participants of different sex and selected genes. Survival
analyses to an endpoint of PDD for participants categorized by GBA variant (a), sex (b), combination of both (c), and APOE ε4 allele (d) by the
number of years since the diagnosis of PD. P value obtained from log rank tests indicated significant effect of sex, GBA variant, and the
combination of both.
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provides additional evidence that the MAPT H1 haplotype may not
play a primary role in cognitive decline in PD30–32.
The results from the current study extend our understanding of

sex differences and cognitive decline in PD, particularly in
association with genetic profile. As we and others have shown,
male sex is associated with a higher likelihood of cognitive
impairment and with faster progression of cognitive symptoms in
PD21. Here, we demonstrate an additive relationship for GBA and
sex in influencing the rate of progression to dementia, such thatTa
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Fig. 4 Multitask model indicates current test performances could
imply future cognitive status. The area under receiver operating
characteristic curve (AUC) of the multitask model prediction on
unseen data with each task predicting the participants’ cognitive
status at nth years after the first visit using only their first visit and
biological data (a). The median (Q2), the first and third quantile (Q1
and Q3), and the minimum and maximums (Q1−1.5IQR and Q3+
1.5IQR) are at the center line, bounds, and the whiskers of the box
plots. The heatmap depicting the magnitude of components from
PD-NCI and PDD classification models, highlighting the importance
of many of the cognitive tests in the prediction of future cognitive
status. The positive components in each model are associated with
higher probability of that model’s diagnosis (b).
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male GBA carriers progressed most quickly, while female GBA
carriers had a similar rate of progression to that of male non-GBA
carriers. Predictably, GBA carrier status was associated with worse
performance in multiple domains for both males and females
(global function, divided attention, working memory, and proces-
sing speed)11,33. However, while the previously reported associa-
tion between GBA and lower visuospatial function in PD is
replicated, in secondary analyses the association was only
significant for males. Reduced visuospatial function has been
implicated in conversion to dementia in PD34,35. Performance on
the Judgment of Line Orientation task is most frequently
correlated with lesions in the right posterior parietal-occipital
regions36, areas where GBA carriers have demonstrated reduced
synaptic activity and nigrostriatal DAT density37. Thus, the greater
degree of cognitive decline in males with PD may be in part
related to GBA-influenced lesions in these regions or in the
pathways that serve these regions. Additional work in this area is
needed to determine if GBA influences lesion location in brain
differentially for males and females.
Overall, our multivariate approach showed that the prediction

of placement into the cognitively unimpaired and PDD groups is
quite high using all available variables, particularly specific
cognitive measures. Our models could not, however, accurately
predict PD-MCI. The identification of meaningful cognitive
subtypes in PD-MCI has proven difficult given the heterogeneity
of the disease38. Variability in PD-MCI is common, with a 24%
average rate of reversion over 1–6 years of follow-up reported in a
recent meta-analysis2. Medication effects, motor subtypes, anxiety,
depression, fluctuations in attention, hallucination, delusions, and
myriad other disease-related factors may impact cognitive
function for those on the path to PDD, leading to diagnostic
instability and difficulty predicting rate of cognitive decline2.
The primary limitation of the current study was that, due to

enrollment of participants with prevalent PD, we were unable to
follow the natural history of cognitive impairment from disease
onset to dementia. As a result, those diagnosed with PDD early in
the disease are likely under-sampled, leading to an inflated time to
dementia when compared to what others have reported39–41.
However, the goal of the current study was not to provide
expected annual incidence rates of PDD, as these have been well-
described previously. Rather, the goal was to identify important
biological and cognitive factors that predict cognitive diagnosis;
by enrolling a prevalent sample we were able to study the full
cognitive diagnostic range even cross-sectionally at the initial
visits, something that is not possible in an incident PD cohort42.
Thus, although we provide survival analysis models to demon-
strate the differences in time to PDD according to various
biological factors, the absolute time values should not be taken to
represent time to incident PDD in the entire PD population.
Possible additional contributors to this finding of longer time to
PDD in the cohort include (a) our measurement of disease onset
from first motor symptoms vs. time of PD diagnosis, and (b) a
substantially larger cohort than the previously mentioned studies,
potentially leading to wider variability in PD phenotype. Future
results from incident studies including larger samples will be
informative. Further sampling limitations of the study include that
our participants were generally highly educated, and thus may not
be representative of the larger population with PD. Finally, due to
the limitations of the data collected, we were not able to include
potentially important variables in the analyses, such as the
possible mediating effects of antidepressants and sedatives,
vascular risk, and detailed sleep and anxiety features.
Cognitive impairment in PD is pervasive and distressing, and

identification of factors associated with cognitive decline in PD
may allow earlier intervention. Traditional statistical methods
aimed at the identification of factors associated with cognitive
progression may produce biased or spurious results. Our robust
multivariate approaches to data collected from a large sample of

participants with prevalent PD and varying levels of cognitive
function reveal that the primary biological factors associated with
PDD are male sex, GBA status, age, and disease duration, while
performance on tasks measuring executive functions, semantic
verbal fluency, and recall were the best predictors of subsequent
PDD. PD-MCI was much more unstable and difficult to predict with
either biological or cognitive variables. These results provide
clinicians with data to aid in the identification of risk for PDD, and
thus to implement important behavioral, social, and cognitive
interventions to maximize quality of life in people with PD. Future
work to better identify predictors of variability versus stability for
those with PD-MCI will be important in the ongoing pursuit of
optimally characterizing and introducing effective interventions
for this sizable group of cognitively impaired individuals with PD.

METHODS
Participants
Participants were enrolled in the PUC, a Morris K. Udall Center of Excellence
in Parkinson’s Disease Research, which collects detailed longitudinal data
from three sites: Stanford University, University of Washington/Veterans
Affairs Puget Sound Health Care System, and Oregon Health Sciences
University/Veterans Affairs Portland Health Care System. All participants
met the United Kingdom Parkinson’s Disease Society Brain Bank diagnostic
criteria for PD (UKPDBB); atypical parkinsonism syndromes were excluded.
Participants were excluded from these analyses if they met UKPDBB criteria
at their initial visit but did not meet criteria by their final visit and/or were
determined to have parkinsonism related to other factors, or if there was
not enough information to determine UKPDBB status (n= 19). Participants
with an unknown/other cognitive diagnosis (n= 4) or those who were
diagnosed with PDD but later reverted to PD-NCI or PD-MCI (n= 5;
unexpected events likely due to factors such as anxiety, depression, illness,
or medication effects) were excluded. There were no exclusions based on
age at visit or age at symptom onset. Participants from all sites who
completed at least one visit and who were assigned a cognitive diagnosis
of PD-NCI, PD-MCI, or PDD were included (n= 827). Longitudinal analyses
included participants with at least one follow-up examination (n= 514).
Time between follow-up visits for most participants was 1–2 years; a
smaller proportion had longer intervals (Supplementary Fig. 3).

Ethical compliance
The institutional review boards at Stanford University, University of
Washington/Veterans Affairs Puget Sound Health Care System, and Oregon
Health Sciences University/Veterans Affairs Portland Health Care System
provided formal approval for the study procedures. All participants (or a
legally authorized representative) provided written informed consent.

Consensus diagnosis
Participants were assigned motor and cognitive diagnoses during
diagnostic consensus conferences attended by at least two movement
disorders specialists and a neuropsychologist. Cognitive diagnoses were
made according to published criteria43,44 as previously described45, and
were based on data from neuropsychological testing (Supplementary
Table 4) (comparing raw test scores to demographically corrected
normative values), participant history, and clinical interview.

Cognitive variables
The core cognitive variables included in the current analyses are those
common to all sites: (1) global (MoCA46); (2) learning & memory (HVLT-R47);
(3) attention/working memory (Letter-Number Sequencing from the
Wechsler Adult Intelligence Scale – III48, Digit Symbol subtest from the
Wechsler Adult Intelligence Scale-Revised49, Trailmaking Test, parts A and
B50); (4) verbal fluency (animals and letters F-A-S50); and (5) visuospatial
(Benton Judgment of Line Orientation51). Trailmaking Test B - A scores
were used to minimize the effects of motor disability. Participants
completed additional neuropsychological tests at each site to permit
cognitive diagnosis using Movement Disorders Society PD-MCI Level II
criteria (Supplementary Table 4). Raw test scores were used for the
purposes of the analyses. Analyses including z-scores based on comparison
to demographically corrected normative values were run separately; given
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that these did not produce substantially different results as compared to
the raw scores, the results are not shown.

Clinical variables and covariates
A movement disorder specialist assessed severity of motor symptoms
using Part III of the Movement Disorder Society revision of the Unified
Parkinson Disease Rating Scale (MDS-UPDRS)52 and the Modified Hoehn
and Yahr scale53. Age, education, sex, disease duration (time since initial
onset of PD motor symptoms), total LEDD, and GDS-15 were included as
covariates. Site differences were seen at baseline with regard to education,
motor severity, and cognitive severity/status (Supplementary Table 5), and
thus site was also included as a covariate. Differences in time between
visits for participants was accounted for by including age in all analytic
models.

Genetic variables
Genomic DNA was extracted from peripheral blood or saliva samples using
standard methods. Participants were genotyped for APOE rs429358 and
rs7412 (which define the ε2, ε3, and ε4 alleles) and MAPT rs1800547 (which
differentiates H1 and H2 haplotypes) using commercially available assays
TaqMan assays (Applied Biosystems)27. APOE genotype was encoded as
either having at least one ε4 allele or none. Sequencing of the entire GBA
coding region was performed to detect the presence of all known
pathogenic mutations and the E326K polymorphism (rs2230288). “Patho-
genic” mutations were defined as previously described11. GBA mutations
and the E326K polymorphism were combined as a single group in
dominant model analyses given our previous demonstration that both are
associated with a higher risk of dementia and specific cognitive
impairments11,13.

Data preprocessing
Missing data points (2% of the total observed features) were imputed
using Restricted Boltzmann machine.

Linear fixed-effect and mixed-effect models
Ordinal mixed-effect regression with logit link54 were used to study the
longitudinal association between biological factors and cognitive status. A
linear mixed-effect regression55 was used to study the longitudinal
association between biological factors and cognitive test performance.
For both analyses, random intercepts were used to account for correlation
within a participant. To examine the model performance in predicting
cognitive status, the distribution of the reported AUC for each diagnosis
(PD-NCI, PD-MCI, and PDD) was obtained from 100 iterations of two-
layered cross-validations; in each iteration 25% of the data were held out
for testing the model performance as unseen data and the inner cross-
validation layer used the rest of the data for model fitting and
optimization. While the prediction performance is objectively evaluated
via cross-validation, a final model was fit and interpreted based on the
entire data set, with potential confounders included as covariates. The two-
sided P values from Wald tests of the coefficients were reported. For
analysis of the progression rate based only on biological factors (cross-
sectional data), a simple linear fixed-effect regression model was used.

Generalized multitask models
Multitask models were used to predict future cognitive status based on
data from the year of the first visit, i.e., each of the tasks predicted cognitive
status for n (0–5) years in the future. Multitask learning aims to improve the
generalization performance by exploiting the intrinsic relatedness and
learning multiple related tasks simultaneously. A specific type of multitask
learning, temporal grouped LASSO (TGL)56, was employed. With logistic
loss, the TGL cost function is shown below as Eq. (1)

min
Xt

i¼1

Xni

j¼1

log 1þ exp �Yi;j W
T
i Xi;j þ ci

� �� �� �

þ θ1kWk2F þ θ2kWHk2F þ θ3kWk2;1
(1)

where Xi;j denotes sample j of the ith task, Yi;j is the corresponding ground
truth of the sample, Wi and ci are the model weights and biases for task i,
θ1, θ2, and θ3 are regularization parameters controlling ‘2-norm penalty,
temporal smoothness, and group sparsity for joint feature selection,
respectively (optimized during cross-validation), H is a matrix of temporal

smoothness prior, where H 2 Rt ´ ðt�1Þ and Hij ¼ 1 if i ¼ j; Hij =−1 if
i ¼ j þ 1, and Hij = 0 otherwise, jj:jjF represents a Frobenius norm, and
jj:jj2;1 is

Pd
i¼1 sqrtð

Pt
j¼1ð:Þ2ijÞ. Therefore, the first term measures empirical

error of the model, the second penalizes overfitting (by penalizing large
weights), the third term encourages temporal smooth transition (by
penalizing large weight differences in the subsequent visit), i.e. assuming
that most decline from PD-NCI to PDD transitions through PD-MCI, and the
last term promotes the model to select the a feature subset from all d
features that is important over all t tasks (by penalizing features that are not
strong in all tasks). Through this knowledge sharing between tasks, TGL has
previously shown superior performance for prognosis prediction compared
to traditional machine learning algorithms57.
The TGL model was implemented in MATLAB through Malsar package58.

The model, originally built for binary classification, was modified to handle
ordinal classes according to a published protocol59. Specifically, two sparse
regression models were built: one predicted the probability of PD-NCI and
the other predicted the probability of PDD; the probability of PD-MCI was
calculated as one minus these two predicted probabilities. The distribution
of AUCs (PD-MCI vs. others; PDD vs. others) based on predicted
probabilities across validations was obtained using a cross-validation
scheme similar to the mixed-effect regression models. The final model was
obtained by averaging the weights from all models predicting the
probability of either being a certain cognitive status or not across cross-
validation iterations.

Survival analyses
Diagnosis of PDD was used as the endpoint in survival analyses. A Cox
proportional hazards (Cox PH) regression with frailty, a type of mixed-effect
survival model, was used to study the association between baseline covariates
and time to PDD. The model was clustered by participants to account for
correlated groups of observations and the log-rank test was performed to
obtain the two-sided P value for each covariate. The survival curve in different
subgroups was then generated using the fitted Cox PH model.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study and scripts for data analysis are
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required. Such agreements would need to be completed by the researcher (and their
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CODE AVAILABILITY
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languages. Python was used in data visualization, data cleaning and preprocessing,
interface with MATLAB, and noSQL result storage. Multi-task learning was done using
MATLAB. R was used for survival analysis and multi-level modeling. In survival
analysis, the core packages used include survival and survminer. In multilevel
modeling, the core packages used include lmerTest, vcrpart, and stats. The source
code for reproducing the results shown in this study can be found at: https://github.
com/tpjoe/Predicting-Dementia-in-Parkinson-s-Disease-Patients.
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