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ABSTRACT OF THE THESIS

Advancing the neurophysiological understanding of stress, a study based on recorded
Electroencephalography (EEG) data in real-world classroom

by

Siwen Wang

Master of Science in Bioengineering

University of California San Diego, 2022

Professor Tzyy-Ping Jung, Chair
Professor Gert Cauwenberghs, Co-Chair

Stress has been a prevalent part of modern life, particularly during the time of the

pandemic. While short-term stress may cause little harm to productivity, if left untreated for

a long period of time, it could eventually lead to anxiety and depression, which significantly

decrease the quality of life. Such a problem is even more severe among students. A recent survey

conducted in 2020 with 15,346 graduate and professional students had shown that 32% of them

screened positive for major depressive disorder [4]. This study, which took place in a real-world

classroom, aims to uncover some of the neuronal mechanisms behind stress among young adults

with their recorded EEG data. Such understanding could provide the theoretical foundation for

x



stress reduction and prevention techniques such as real-time stress detection and non-invasive

neurostimulation. This thesis is structured into four chapters. In the first chapter, the author

introduced the importance of the problem, the experiment design, and the dataset. In the next

chapter, the author began the stress analysis by studying the power spectral density of the 30

EEG electrodes. Results showed that most theta (4-8Hz) and alpha (8-13Hz) frequency bands in

the frontal, central, and right parietal regions showed statistical significance among the elevated

and normal stress groups. While the power spectra information is helpful for understanding

stress, it is important to remember that EEG signals are mixtures of source activities, which

makes the underlying source activities and locations unknown. Thus, in chapter three, the author

decomposed the EEG data into independent sources using Independent Component Analysis

(ICA) and analyzed the effect of stress in terms of cortical source activities. The results showed

that some sources responded to stress while others did not. One limitation of this study was

that each source was analyzed individually. Thus, in the final chapter, the author focused on

exploring the interactions between regions (i.e. effective connectivity) under stress. The results

showed that the information inflow and outflow near the central region were statistically different

between the elevated stress and normal stress groups.
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Chapter 1

Introduction

1.1 Background

Stress has been a prevalent part of modern life, particularly in the time of a global

pandemic. According to a survey conducted by American Psychological Association (APA)

in 2020, nearly 80% of people reported the pandemic being a significant source of stress in

their life. While stress itself can be temporary, several studies [5] [6] have shown that it is

highly correlated to depression, which can significantly decrease the quality of life [7]. The

problem of stress, anxiety, and depression is even more prevalent in graduate students. According

to a study done by Harvard University in 2018 [8], 18% of graduate students experienced

moderate or severe symptoms of depression and anxiety - more than three times the average

population. Unfortunately, this number rose even higher due to the pandemic. A recent survey

done in 2020 with 15,346 graduate and professional students had shown that 32% of graduate

and professional students screened positive for major depressive disorder, while 39% screened

positive for generalized anxiety disorder [4].

Despite stress being so prevalent and having an impact on almost everyone’s life, the

neuronal mechanism underlying it is still not fully understood. Past study has shown several

brain regions are associated with stress regulation [9], but the direction of neuronal network

interaction under stress remains largely unexplored. Several neurotechnologies with different

spatial and temporal resolutions to study neural activities are available as shown in Fig. 1.1.
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Electroencephalography (EEG) is often preferred in non-clinical neuroscience research and

modern Brain-Computer interface (BCI) applications due to its non-invasiveness. Recent advance

in EEG sensor technology has enabled dry and non-contact recording to become a reality, which

makes EEG a convenient and practical technique for mobile imaging [10]. With that said, EEG

is an ideal candidate for this experiment that took place in a real-world classroom during classes.

Figure 1.1. Minimally Invasive Neurotechologies with spatial and
temporal resolution (Image from “Silicon Integrated High-Density

Electrocortical Interfaces,” Proceedings of the IEEE, vol.105 (1), pp.
11-33, 2017. [1])

1.2 Research objective and Motivation

The objective of my thesis research, broadly speaking, is to advance the current neu-

rophysiological understanding of stress using recorded EEG data. To be more specific, this

consists of three parts: in the first part, I focus on analyzing the impact of stress by studying
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the frequency power information of all recording electrodes between elevated stress and nor-

mal stress groups. This gives the readers a comprehensive picture of how stress could alter

regional cortical activities reflected by the increase in power in certain frequency bands. Such

understanding is also informative for feature selection in traditional machine learning models; in

part two, I focus on the activation of different cortical regions with versus without stress. This

gives a better understanding of the cortical locations where stress could impact and alter the

neuronal activation pattern; in the last chapter, I investigate the effective connectivity between

cortical regions that are affected by stress. This gives a better understanding of the dependency

of activation regions as well the direction of network propagation due to stress. With a better

understanding of the neural mechanism under stress, not only could we build machine learning

models to detect stress and offer personal health recommendations, but we could also come up

with novel therapy methods based on neurostimulation.

1.3 Experimental Design & Dataset

1.3.1 Participants

Eighteen graduates (24±1.2 years old, 10 male and 8 female) from the National Chiao

Tung University, Taiwan were recruited to participate in this study during the first semester of

the 2014-2015 school year [11].

1.3.2 Depression, Anxiety, and Stress Scales

The Depression, Anxiety, and Stress Scales (DASS) survey was used in this study to

access the depression, anxiety, and stress level of each participants. A shortened 21-question

version was used in this study instead of the original 42-question version [12]. Fig. 1.2 shows

a few sample questions from the survey, and score were calculated in the end to determine the

severity of each condition.
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Figure 1.2. DASS-21 Survey sample questions

1.3.3 Data Collection

The experiment took place in a real-world classroom while class is in session. The signal

acquisition was carried out using a Compumedics Neuroscan system, with sampling rate 1000

Hz. Thirty sensors were placed on the head using a 32-channel Quik-Cap. Prior to each data

collection session, the participates were asked to fill out the DASS survey for stress, anxiety

and depression assessment. After the survey had been completed, a 5-minute eye open resting

session was taken as the baseline. Data was continuously being recorded when class is in session,

and several stressful events such as pop quiz were purposefully presented to the participates to

alter the cognitive state. The events were also time locked for later data analysis. Each class

session lasted around 60 minutes, and in the end of the class, another 5-minute eye-open resting

session was taken. DASS survey was also repeated to assess any possible stress level elevation

due to the designed stressors. Fig. 1.3 shows a graphical representation of the events of each

data recording session.
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Figure 1.3. Data recording session with events label and corresponding
length

Figure 1.4. Data recording in session

1.3.4 Dataset and preprocessing pipeline

While there are many interesting data analysis studies that can be carried around the

topic of stress, anxiety, and depression, this paper focuses only on stress in the resting state.

Thus, only the recordings from the first 5-minute eye-open resting session, that is the period

labeled as [1] in Fig. 1.3, are used. Here on and after, when a dataset is mentioned, it refers

to the recordings of the first 5-minute eye-open resting session. A total of 90 recordings (19

elevated stress, 71 normal stress) are used in subsequent analysis. Similar to any other data
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collected in the real world, EEG data also require pre-processing for noise removal. First, a

band-pass filter between 1 Hz and 45 Hz was implemented to reduce high-frequency artifacts

and some eye activity. The data were re-referenced to the average of the left and right Mastoids

channels. Next, a group of poorly recorded channels was identified and removed using EEGLab

clean rawdata function. The selection was made based on the contact quality with the scalp and

the correlation between neighboring electrodes. Next, artifact subspace reconstruction (ASR)

[13] was implemented to remove high amplitude artifacts, so as to further reduce the effect of

the eye and muscle movement artifacts. Finally, Independent Component Analysis (ICA) was

implemented, and non-cortical individual components (ICs) were automatically rejected using

the EEGLab IC automatic labeling tool. The threshold for rejection was set to be 20%, that is

an IC is automatically rejected if the probability of it being a brain component falls under 20%.

More detailed explanations about ICA will be covered in chapter three.

Figure 1.5. Pre-Processing Pipeline
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Chapter 2

Stress analysis using frequency power
information of recording electrodes

2.1 Introduction

In this chapter, the author analyzed the effects of stress represented by the frequency and

power information of the 30 EEG electrodes. Usually, EEG activities are categorized into five

bands representing different frequency ranges. They are the delta bands representing 0.5-4Hz,

theta bands representing 4-8Hz, alpha bands representing 8-13Hz, beta bands representing

13-30Hz, and gamma bands representing 30Hz and above. The central goal of this chapter is to

identify the channels (electrodes) and frequency bands where there is a significant difference

between the elevated stress and normal stress groups. Such findings could help us to better

understand the brain state under stress. Furthermore, it could also provide a basis for feature

selection in machine learning algorithms and be applied to real-time BCI applications such as

stress detection.

2.2 Method

2.2.1 Fourier Transform

Fourier Transform, a method to decompose any time series into a set of sinusoids that

are characterized by its frequency and amplitude, is commonly used in the field of science and
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engineering [14]. This concept may sound foreign to some people, but in fact, all of us are

performing this “transformation” every time we listen. Our brain makes sense of sound, waves

generated by the movement of air molecules, by decomposing it into distinct frequencies and

amplitudes which gives rise to pitch and loudness. This provides an excellent example of how

information could be better understood by looking at the same wave from a different perspective,

i.e. the frequency domain. This exact same idea applies to EEG data analysis. Though

it is possible to identify characteristic waveforms such as eye blink and muscle movement

in EEG recordings by visual inspection, for the complex tasks such as stress detection and

characterization, it is much better off to analyze the data in the frequency domain. There are two

major methods to compute the frequency and power distribution (i.e. power spectrum density)

of time series: the Welch method [15] and the wavelet transform [16]. Each method has some

advantages and disadvantages and is often selected based on the application. Here, the author

chose the Welch method for its simplicity and fit. Fig.2.1 shows the script the author used for

power spectrum density (PSD) computation.

Figure 2.1. Matlab script for PSD calculation
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2.2.2 Statistical Analysis - Two-sample Independent t-test

Statistical testing is another important concept and analysis in science. It is often

conducted after the result has been obtained to verify if it has any significance, as compared

to the observation is just due to random chance. There is no precise definition of statistical

significance. However, it is usually agreed in the scientific community that a p-value less than

0.05 is sufficient to reject the null hypothesis [17] A null hypothesis states that there is no

statistical relationship or significance between the observed samples [18]. In other words, the

results are just by random chance. Here, the null hypothesis would be that the elevated and

normal stress groups have the same PSD distribution in all frequency bands. To decide whether

to accept or reject this hypothesis, a p-value is computed for every frequency band. Each p-value

tells us the probability of the null hypothesis being true for that given frequency. As mentioned

before, it is generally accepted that to claim statistical significance, p-value must be less than

0.05. That is to say, there is less than 5% chance the results are from chance alone. The author

follows the standard p-value cutoff in this paper.

2.3 Result and Discussion

Fig. 2.2 to Fig. 2.7 show the PSD profile with the statistical testing results for all 30

EEG electrodes grouped by their placement location. For those who are unfamiliar with the

EEG electrodes labels, please refer to Fig. 2.8 for the approximate location where each electrode

locates on the scalp surface. There are several interesting findings looking at the plots. First, one

can observe that the theta (4-8Hz) and alpha (8-13Hz) frequency bands are most common among

all the channels that have any frequency range that is statistically significant. Next, looking

at each figure grouped by their spatial location, one can find that all channels located in the

frontal, central and right temporal region have some frequency range that is statistically different

between the elevated and normal stress groups. Whereas in left temporal channels, no frequency

reached statistical significance. Two of the three channels (OZ, O2) in the occipital region have
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reached statistical significance in a very narrow frequency band, 10Hz, and 9-10Hz respectively.

Three of the five channels (PZ, P4, T6) in the parietal region reached statistical significance in

some frequency bands, from 4-11Hz, 6-10Hz, and 10Hz respectively. Several pieces of evidence

could be used to make sense of the results. First, we will try to explain from a neurophysiology

perspective. In a typical brain anatomy graph, the cerebral hemispheres (the largest part of the

brain) are often divided into four lobes: frontal, temporal, parietal and occipital as shown in

Fig. 2.9. Each lobe is believed to be responsible for different functions and behaviors. For

example, the frontal lobe is well-known for its involvement in language and motor function.

Recent research has also shown that it is involved in various cognitive processes such as memory,

task planning, attention as well as emotion and personality [19]. Stress is an emotional response,

so it logically makes sense that we observe some differences in the frontal channels between

the elevated and normal stress groups. It is likely that stress has altered the activation pattern of

neurons in the frontal lobe, for instance, more neurons fire at a higher rate, which contributes

to the difference in power we measure. A similar explanation could also explain why little

statistical difference is observed in the occipital channels, that is, the occipital region is mostly

responsible for vision processing. This intuitive makes sense that it is unlikely that stress will

alter the processing of visual stimuli, thus little to no difference is observed in this region. Next,

we will change direction and talk about a well-known bio-marker called frontal alpha asymmetry

(FAA). In 1978, at the Society for Psychophysiological Research annual meeting, Richard David

presented a novel finding that positive and negative experiences are associated with different

asymmetrical frontal brain activity. [20]. In the experiment, participants were asked to watch

portions of a TV program and indicate how much they liked the content, while EEG being

recorded from the frontal and lateral regions. The results show that a positively rated scene is

associated with greater relative left-hemispheric alpha activation in the frontal region, while

right-hemispheric alpha activation in the frontal region associates with negatively rated scenes.

Moreover, such difference is not observed in lateral channels [21]. Since this study has published,

thousands of groups across the globe have started to explore this novel biomarker and its potential
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applications. As of today (10/18/2022), there are more than 69,000 articles published related to

FAA. Some studies show that FAA is a promising bio-marker that is significantly correlated with

Major Depressive Disorder (MDD) [22]. The study by Mennella’s group has also shown that

by applying neurofeedback to reduce left frontal activity results in a decrease in negative affect

and anxiety [23]. However, there are also studies that claim that it is still unclear if FAA is a

reliable bio-marker, particularly for the diagnosis of depression [24] [25]. Combined with the

results observed here, that is, all frontal channels have some frequency range that is statistically

different across the elevated and normal stress group, it is certainly possible that this is due to

the level of activation difference of the right and left hemispheres in frontal regions. Though this

is a possible explanation, the author has also computed FAA on the classroom dataset and found

no apparent association between FAA score and stress level.

2.4 Conclusion

In this chapter, I analyzed the effects of stress represented by the power spectrum

information of all 30 recording electrodes. Fourier transform is used to convert recorded signals

from the time domain to the frequency domain, then statistical testing is implemented to obtain

results unique to one group. As the results show, all channels located in the frontal, central

and right temporal regions have mostly theta and alpha frequency bands that are statistically

different between the elevated and normal stress groups. Less difference is observed in the

occipital and parietal regions, and no difference is observed in the left temporal region. The

author hypothesize that the difference in activation across regions is due to the different functions

of cerebral hemispheres lobes. As neuroscience research has shown that frontal regions are

mainly responsible for the cognitive process such as emotion, whereas other regions may not

play a major role when the brain is under stress.

This concludes chapter two, and in the next chapter, we will study stress from the

perspective of independent sources.
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Figure 2.2. Frontal channels power spectrum density (PSD) shaded
error bar plot with t-test result: upper and lower boundary represented

+1 & -1 standard deviation respectively, black markers indicate
statistical significance
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Figure 2.3. Central channels power spectrum density (PSD) shaded
error bar plot with t-test result: upper and lower boundary represented

+1 & -1 standard deviation respectively, black markers indicate
statistical significance

Figure 2.4. Left temporal channels power spectrum density (PSD)
shaded error bar plot with t-test result: upper and lower boundary

represented +1 & -1 standard deviation respectively, black markers
indicate statistical significance
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Figure 2.5. Right temporal channels power spectrum density (PSD)
shaded error bar plot with t-test result: upper and lower boundary

represented +1 & -1 standard deviation respectively, black markers
indicate statistical significance

Figure 2.6. Occipital channels power spectrum density (PSD) shaded
error bar plot with t-test result: upper and lower boundary represented

+1 & -1 standard deviation respectively, black markers indicate
statistical significance
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Figure 2.7. Parietal channels power spectrum density (PSD) shaded
error bar plot with t-test result: upper and lower boundary represented

+1 & -1 standard deviation respectively, black markers indicate
statistical significance

Figure 2.8. Electrode placements of 32 channels according to the
international 10–20 system. (Figure from ”Fusion of

electroencephalographic dynamics and musical contents for estimating
emotional responses in music listening” [2])

15



Figure 2.9. Brain Anatomy (Image from:
https://qbi.uq.edu.au/brain/brain-anatomy/lobes-brain)

Figure 2.10. The effect of activity increase in left and right frontal
regions (IMotions, 2017)
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Chapter 3

Stress analysis using frequency power
information of independent components

3.1 Introduction

In this chapter, I explored the effects of stress in terms of cortical region activation. There

are two central questions I wish to answer in this chapter: Do cortical regions activate differently

under elevated stress state as compare to normal stress state? If yes, where are those regions

that express this difference? To identify those regions, first, independent component analysis

(ICA) and dipole fitting were carried out on all subjects to identify each cortical source and

its corresponding location. Next, the independent components were clustered into 10 clusters

using dipole locations as criteria. After this was finished, Fourier Transform was applied to

transform each component into frequency domain. As mentioned in chapter two, such technique

is common in EEG data analysis to transform complex time series into organized spectra power

information that is much easier to gain insight of. Then, the mean and standard deviation of the

spectra power of all components in a given cluster was computed and visualized. Furthermore,

statistical testing was carried out in each frequency bin on every cluster to identify the region of

difference across the elevated and normal stress groups. The results showed that some sources

respond to stress while others do not. We also identified the source that contributed to the channel

domain observations made in the last chapter.

17



3.2 Methods

3.2.1 Independent Component Analysis

It is often in the researchers’ best interest to identify the underlying neural source when

a stimulus such as stress has taken place. While the scalp channel recordings are useful in

telling the differences in amplitude and frequency across different activities, they cannot localize

the brain regions that are affected or responsible for processing the stimuli. The scalp channel

recordings can be seen as the superposition of many activities happening simultaneously across

different parts of the brain. Thus, we cannot directly use the channel data to identify each

underlying sources of activity. Instead, independent component analysis (ICA) [26] has been

widely used for the purpose of blind source separation [27]. By using a statistical approach,

ICA can decompose event-related potential (ERP) data as recorded using EEG into a maximum

number of components equal to the number of sensors. A formal mathematical definition of ICA

and psychological interpretation can be found in Bell [28] and Onton’s [29] work. As mentioned

in the experimental design section, ICA is applied on every dataset such that non-cortical sources

are removed. In the preprocessing stage, the cutoff confidence threshold for IC removal is set

up to be 20%. This is a rather relaxed cutoff boundary because one does not want to remove

any cortical components at this early stage. There are roughly 2200 ICs after this soft cutoff,

down from about 2700 ICs at the beginning. Despite the automatic IC labeling tool in EEGLAB

being an excellent tool for providing recommendations for what each IC represents, it is not

a substitution for visual inspection. To ensure that the ICs only contain cortical components,

which is critical later on to obtain an accurate clustering result, visual inspection is carried out

in addition to the automatic labeling algorithm. However, 2200 ICs have greatly exceeded the

viable range for visual inspection, thus in the second prepossessing stage, I have decided to set up

a much stricter IC removal threshold of 80%. This keeps the components only if they are labeled

as a brain with a confidence measure greater than 80%. This further reduces the total ICs down

to around 800, which is a much more viable range to work with for visual inspection. It is also
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important to note that there is a time and accuracy trade-off for using a stricter cutoff confidence

measure compare to a relaxed one. On the one hand, as the confidence measure cutoff increases,

it is more likely to retain only the brain components. This helps to reduce the time needed for

visual inspection in later stages. On the other hand, a strict cutoff may remove components that

are coming from the brain. This could remove some useful information, decreasing the clustering

result’s truthfulness.

3.2.2 Dipole Location & Orientation

After ICA is finished, the next stage is dipole fitting. One common problem researchers

encounter when comparing individual components across subjects is that there is no easy method

for comparison. All ICs differ with each other in some ways such as power spectra, scalp maps

and so on. Depending on the application, one could choose any reasonable metric mentioned

above to compute the distance or similarity between pairs of ICs and form clusters. Here, since

the goal is to identify the cortical regions that are affected by stress. This naturally makes dipole

fitting a ideal method to use. Dipole fitting, in simple terms, is a method to estimate the location

and direction of neuronal propagation for any given source activity (i.e. individual components).

This estimation is rather challenging since one is trying to solve an ”inverse” problem, that is,

given the observed electrical potential data (i.e. EEG), reconstruct the physiological source

[30] (Figure 3.1). “Fortunately, the problem of finding the location of a single equivalent dipole

generating a given dipolar scalp map is well-posed, given a sufficiently accurate electrical

”forward problem” head model that specifies the resistance between each scalp electrode location

and each possible (brain) source location” [31]. Here, the boundary element model (BEM)

supported by the EEGLAB Dipfit function is used. Moreover, the residual variance threshold

is set up to be 15% as suggested by Delorme’s work [32]. Residual variance here measures

how well the dipole fitting result explains the scalp map, the higher the percentage, the worse

the fitting. Examples of good and bad dipole fitting results are shown in Figure 3.2 and Figure

3.3. It is also worth to note that for simplicity, single-dipole model is used. One could attempt
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using higher dipole models for fitting, but this approach would introduce ambiguity in the

clustering stage as multiple dipole locations exist for one scalp map. For each component, the

corresponding dipole fitting result consists of two parts representing the dipole location and

orientation. The dipole location, as represented by a 3-dimensional array, represents the cortical

location where the source is generated. While the dipole orientation, also a 3-D array, represents

the direction of neural information flow.

Figure 3.1. Dipole Fitting: an inverse problem

3.2.3 K-means Clustering

After dipole fitting is completed, the data is ready to be clustered. It is the researcher’s

choice to choose which parameters to use as clustering criteria. Power spectra, scalp map, dipole

location and dipole orientation are all valid choices to use for clustering. Again, since the goal is

to identify the cortical regions that are affected by stress, it is natural to use dipole locations as

the criteria for clustering.

There are various types of clustering algorithms that are available to use. For example,

there are distance-based methods such as K-means clustering [33], density-based methods such

as DBSCAN [34] and Hierarchical-based methods. Each method can be used to handle different

data, and for the purpose of dipole location clustering, distance-based method (i.e. K-means
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Figure 3.2. A ”good” dipole fitting result: residual variance <15%

Figure 3.3. A ”bad” dipole fitting result: residual variance >15%

clustering) fits the best. The detailed algorithm for K-means clustering can be found in this

paper [35]. For those who are familiar with this method, one of the drawbacks about K-means

clustering is that it requires K, the number of clusters, to be specified before the algorithm is
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applied. One of the popular ways to determine the “optimal” number of clusters is using the

“elbow” method [36]. Distortion is calculated using different K values, and the value of the point

where distortion starts to decrease linearly is the “optimal” number of clusters one should use

(Figure 3.4). Following this approach, the “optimal” number of clusters is found to be five, and

Figure 3.4. An example for using elbow methods in K-means clustering
(Dangeti, 2022)

the average of the topoplots roughly represents the frontal, parietal, occipital, left temporal and

right temporal lobe as shown in Figure 3.5. However, despite five clusters being the theoretical

optimal number of clusters to use, one can clearly see that for practical reasons, there are not

enough resolution to examine the exact cortical location where stress has affected. Thus, a larger

K needs to be tested. After several different K implementations, I found that K equals to 10

gives a reasonable clustering results with adequate spatial resolution (Figure 3.6). In the last

stage, Fourier Transform is applied on every component to transform them from time domain to

frequency domain. T-test is then carried out for each cluster to identify all the frequency ranges

that are statistically different across the elevated stress and normal stress groups. The results are
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shown in Figure 3.7.

Figure 3.5. 5-means Clustering Result

3.3 Discussion

Looking at Fig. 3.7, one can observe that most sources do not respond to stress except

cluster 9. Then connecting back to the results obtained in chapter one, that is, statistical

significance is observed in frontal, central and right temporal channels in delta and alpha bands,

we now identified the source that contributed to that observation. Cluster 9, as Fig 3.6 shows, is a

source that is very deep in the brain which projects toward the central and frontal areas. Thus, the

channels along the direction of source propagation will pick up the most signal, which explains

why most significance is observed in frontal and central channels.

3.4 Conclusion

In this chapter, I explored the difference in cortical region activation between the elevated

and normal stress groups. To identify those regions, first, ICA and dipole fitting are carried out

on all subjects to localize each cortical source. Next, the ICs are clustered into 10 clusters using
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Figure 3.6. 10-means Clustering Result: (number of subjects, number
of ICs in the cluster)

their corresponding dipole locations as criteria. Then, Fourier Transform is applied to transform

each component into frequency domain. In the last step, the mean and standard deviation of

the spectra power of all components in a given cluster is computed and visualized. Moreover,

statistical test is carried out in each frequency bin on every cluster to identify the region of

difference across the elevated and normal stress groups. The result shows that some sources

respond to stress while others do not. In this case, source nine is the only source that responds to

stress stimuli. Findings in this chapter helps to explain the observation made in chapter 2 from

the channel domain perspective.
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Figure 3.7. Shaded Error Bar plot with T-test results: upper and lower
boundary represented +1 & -1 standard deviation respectively
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Chapter 4

Effective connectivity and direction of
network propagation of cortical regions
under stress

4.1 Introduction

Understanding the functional and structural connectivity of the human brain network is

an important goal of neuroscience and medicine. The U.S. National Institutes of Health launched

the Human Connectome Project in 2009 with its central goal of mapping the human brain and

connecting its structure to function and behavior. Since the project first launched, hundreds of

papers have been published to advance the understanding of brain connectivity under various

medical conditions such as Alzheimer [37], depression [38] and epilepsy [39]. However, less

work is being done to understand how the brain networks react to emotional stimuli such as stress.

The human brain Connectivity analysis usually falls into three categories: structural, functional,

and effective [40]. Structural connectivity, as its name suggests, is a study to identify the

anatomical links between different parts of the brain. This study focuses on understanding what

brain structures are capable of influencing each other via direct or indirect axonal connections.

Functional connectivity refers to the symmetrical correlations between brain regions under a task

or stimuli. Here, the focus is to understand the functionally related regions by measuring the

correlation of activity through imaging techniques such as functional magnetic resonance imaging
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(fMRI). In contrast to the symmetric nature of functional connectivity, effective connectivity

denotes the asymmetric or causal dependencies between brain regions. The task here is to

identify the brain regions that are causally influencing other regions during information flow.

This usually involves searching for the direction of information flow between structures [41].

In this chapter, I aim to explore the effective connectivity of brain structures under stress

by applying Granger-causal methods (a common method for effective connectivity measure) to

the recorded EEG data.

4.2 Methods

4.2.1 Granger Causality & Source Information Flow Toolbox (SIFT)

Granger Causality, a method developed by Clive Granger in 1960s, has been widely used

in economics to determine if one time series could be used to predict another. The theory states

that if a signal x1 Granger-causes x2, then past values of x1 should contain information that

helps predict x2 above and beyond the information contained in past values of x2 alone [42].

One can intuitively see that such information could be rather useful in economic applications

such as stock market forecasting. Moreover, by applying Fourier Transform, it is possible to

examine Granger Causality in the frequency domain [43]. This is exactly what this chapter will

use to compute effective connectivity, by examining Granger Causality in frequency domain.

Several toolboxes that offer various forms of Granger Causality are available to use as shown in

Table 4.1. All of the toolboxes listed in the table offer free-to-use licenses and are integrated

with Matlab. Here, the author chose SIFT due to its integration with EEGLab.

The main contributor of SIFT, Tim Mullen, has published a user manual for running

SIFT [41]. Furthermore, one of EEGLab’s main contributors, Makoto Miyakoshi, has made a

website (https://sccn.ucsd.edu/wiki/How to run SIFT simulation) that is up-to-date (last updated

8/20/2022) documenting the steps to run SIFT. Both are excellent resources for researchers who

would like to use SIFT in their research, and here, the author closely followed each step listed in
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the user manual and website. Note that the detailed mathematical explanation of each step will

be omitted in this chapter, but it is documented in the manual for anyone who is interested. In an

overview, there are three steps to compute effective connectivity using SIFT. Before running the

first step in SIFT, the user must prepare the data for model fitting. The data must be properly

”cleaned” and downsampled to 100-120Hz using the Matlab command pop resample(EEG, 100,

0.8, 0.4) [44]. Non-cortical ICs should also be removed to reduce the size of the final connectivity

tensor. A reasonable brain label probability cutoff threshold is 70% or above as suggested by

Miyakoshi, here, the author used a stricter cutoff of 80%. Dipole fitting should also be done

using the DIPFIT plugin in EEGLab. After all of the pre-processing steps have been properly

carried out, SIFT can be started. First, SIFT requires the user to pre-process the data using

its function in the drop-down menu. However, since in the pre-step, the data has already been

properly “cleaned”, there is no need to carry out any additional pre-processing. As shown in

Fig. 4.1, the parameters are left as default. Next, the data undergoes model fitting and validation

as shown in Fig. 4.2 and Fig. 4.7. In the model fitting stage, there are several parameters the

researcher can manipulate depending on the goal. First, several algorithms are available to fit

the model, the most common ones are ARFIT and Vieira-Morf. According to Mullen’s SIFT

user manual, ARFIT is usually faster in terms of running time while Vieira-Morf has a slightly

better coefficient estimate. This is a trade-off decision the researcher can make, here, the author

chose to use ARFIT. The more important parameter a researcher should consider is the window

length. In this classroom resting-state recording, there is no event or stimuli designed to alter the

subject’s cognitive state in the middle of the experiment. Thus, time resolution can be omitted in

the connectivity tensor. In this case, a window length of 300, the entire length of the recording,

is used. For other applications, if the experiment has been designed to induce cognitive state

transition in the middle of the recording, a smaller window length may be ideal to capture this

potential change in connectivity between regions. An important and useful note the author

wishes to make is that the running time for model fitting will significantly increase when window

length and stepsize is small. This can easily take days of continuous fitting if the resolution is
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Table 4.1. A list of toolboxes that offer effective connectivity analysis for neural data

Toolbox Name Primary Author Release Website

Multivariate Granger Causality (MVGC) Toolbox Lionel Barnett 1.3 https://users.sussex.ac.uk/∼lionelb/MVGC/html/mvgchelp.html
Time Series Analysis (TSA) Toolbox Alois Schloegl 4.6 https://pub.ist.ac.at/∼schloegl/matlab/tsa/
eConnectome Bin He 2.0 https://www.nitrc.org/projects/econnectome
Brain-System for Multivariate AutoRegressive Timeseries (BSMART) Jie Cui - https://brain-smart.org/
Source Information Flow Toolbox (SIFT) Tim Mullen 1.52 https://github.com/sccn/sift

set to be too high. Next, after clicking fitting, a warning window may appear similar to the one

shown in Fig. 4.3. A detailed explanation of this warning is addressed in Miyakoshi’s github

(https://github.com/sccn/groupSIFT) under “SIFT tips”. The researcher can read that section to

decide whether the warning can be ignored. After clicking ok, two graphs should appear after

model fitting has been completed as shown in Fig. 4.4 and Fig. 4.5. In this case, the author

chose to use the result returned from the elbow method with optimal model order 9. After the

optimal model order is determined, simply input this number into the model fit box to start model

fitting as shown in Fig. 4.6. The final step in the model fitting stage is to validate the fitted

model. This step makes sure that the model is a good approximation such that connectivity can

be estimated within an acceptable error range (Fig. 4.7). This concludes the second step, model

fitting and validation. The last step in SIFT is to perform connectivity analysis using Granger

Causal method (Fig.4.8). Plot setting and connectivity result are shown in Fig. 4.9 and Fig. 4.10

respectively.

4.2.2 GroupSIFT

While it is certainly interesting to analyze the effective connectivity tensor of the individ-

ual subject under stress, in order to generalize this finding, group-level analysis must be sought

out. However, as the author has mentioned in chapter three, it is usually challenging to compare

ICs across subjects since no two subjects share the same IC. The same challenge persists here:

despite having the connectivity tensor for all the subjects, there is no easy way to compare

each tensor since it only captures the unique dipoles one subject has. However, one potential

solution the author adopted here is to transform all the unique dipoles into their corresponding

spatial regions (Fig. 4.11). By doing this, it provides a common ground for comparison since
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Figure 4.1. SIFT pre-processing parameter settings

all subjects share the same spatial region. This transformed the original problem into a much

better-defined problem, and now the goal is to identify if there is such a region that is unique

in terms of information outflow and inflow to the elevated stress group. GroupSIFT, designed

for group-level analysis for SIFT results, conveniently provides the function to transform from

dipole to dipole connectivity to cortical region connectivity. Here, the author will provide rather

detailed steps and explanations for carrying out GroupSIFT connectivity analysis so that future

researchers can use it as a reference for their own study. A more concise guideline for running

GroupSIFT can be found here (https://github.com/sccn/groupSIFT). As a side note, GroupSIFT

is currently only available to download from the link above, and one must manually place the

unzipped folder inside the plugins folder under the EEGLab path. There are five steps in carrying

out GroupSIFT analysis, and they are batch process, model validation, dipole connectivity to

30

https://github.com/sccn/groupSIFT


Figure 4.2. SIFT model order estimation parameter settings

Figure 4.3. SIFT model order estimation warning

spatial connectivity transformation, statistical test, show result, and export for the movie. In the

first step batch process, as the name suggests, it provides a convenient feature to batch process

31



Figure 4.4. SIFT model fitting result elbow method

Figure 4.5. SIFT model fitting result min method

multiple files for running SIFT. Again, as a reminder, all files must go through SIFT first before

doing the “dipole to spatial region” transformation. Fig. 4.12 shows the parameters to set for

running batch process. One thing to note is that depending on the goal of the study, one may

choose not to check mark the single-window analysis option, and an explanation for this has
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Figure 4.6. SIFT Model Fit parameter settings

Figure 4.7. SIFT model validation parameter settings and result
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Figure 4.8. SIFT connectivity parameter setting

already been given in the previous section. Moreover, it is highly recommended that one follows

the instruction between %, that is to comment out certain lines to prevent pop-up windows. Once

the parameters are set, simply click on the button and select the files for running SIFT. Next,

select the function “validate AR model” from the GroupSIFT dropdown menu. Select all the

files that have finished running through SIFT. A result similar to Fig. 4.13 should show up. Now

the files are ready for the third step, “transformation”. As shown in Fig. 4.18, there are several

parameters one can set. There are two connectivity metrics one can choose from, and below that,

there are two parameters one can set to define the smoothing width and minimum percentage

of subjects with non-zero dipole density respectively. For smoothing width, it is recommended

to use the default value 20 mm for EEG data, and 8 mm for fMRI data. Then for the minimum

percentage option, it is highly dependent on the data one is using. The idea here is that one wants
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Figure 4.9. SIFT connectivity plot parameter setting

to focus only on the regions that have the majority of the subjects that contribute non-zero dipole

density. Thus, by setting up this percentage of subjects threshold, one can filter out the regions

that do not include many dipoles. For datasets with highly overlapped dipole location across

subjects, the threshold could be set to a higher value without losing much information. While for

datasets with low overlapped dipole locations across subjects, the threshold should be set to a

lower value to retain information. One can always experiment with this parameter by clicking

on the “compute upper bound for estimation” button and selecting the dataset to perform this

transformation. In this case, 70% is a good threshold since 90.9% dipole density is accounted

for, which means little information is lost. Fig. 4.15 shows the result of the transformation with

each location and its corresponding dipole density. If one is satisfied with the result, input a

filename in the box below and click the “Select All .set files and START” button. Note that this
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Figure 4.10. SIFT connectivity result (x-axis: Frequency; y-axis:
information flow)

transformation must be performed separately for each condition, in this case, the elevated stress

group and normal stress group are processed separately. After the transformation is finished, the

next step is statistical testing, and the parameter settings are shown in Fig. 4.16. Here, the author

used subtraction to compute significance, that is subtracting the normal stress condition from

the elevated stress condition. Another way to view this is to treat the normal condition as the

baseline period where we are trying to determine how the elevated stress differs from it. Note

that by default, p value is set to 0.01, one may want to use the standard cutoff 0.05 as the author

did here. After the parameters are set, simply click on the “start process” button, and two .mat

files should be returned once the process finishes. The last step is to view the results, and settings

are shown in Fig. 4.17.

4.3 Results and Discussion

The final connectivity matrix obtained from group level study is shown in Fig. 4.19. There

are six pairs of regions that are unique in terms of information flow among the elevated stress
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Figure 4.11. Computation of source-level connectivity (Figure from
“Neural activation and connectivity during cued eye blinks in Chronic

Tic Disorders” [3]).

Figure 4.12. GroupSIFT batch process

group. Among the six pairs of unique regions, one pair (indicated by a yellow dot) represents

decreased information flow in delta bands from the left lingual region to the left precuneus region
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Figure 4.13. GroupSIFT model validation result

Figure 4.14. Convert to Group Anatomical ROI parameter setting

as shown in Fig. 4.20. While the rest five pairs of regions all indicate increased information

flow in certain frequency bands as compared to the normal stress condition. To further elaborate,

they are the right precentral to left calcarine region with significance found in alpha and low

beta bands (Fig. 4.21); right postcentral to left lingual region with significance found in the
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Figure 4.15. Convert to Group Anatomical ROI Result

Figure 4.16. Compute T-stats and P-value parameter setting
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Figure 4.17. View Result Parameter Setting

Figure 4.18. Convert to Group Anatomical ROI parameter setting

majority of the beta bands (Fig. 4.22); right postcentral to left calcarine region with significance

found in alpha and low beta bands (Fig. 4.23); right precuneus to left inferior parietal region

with significance found in theta and alpha bands (Fig. 4.24); and right supplemental parietal to

the right postcentral region with significance found in gamma bands (4.25). Very little literature

is available that analyzes the effective connectivity difference under stress on a whole brain scale.

Most work in the field mainly focuses on functional connectivity of stress on a smaller regional
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scale or task. Chang’s work [45] has primarily focused on the functional connectivity difference

under stress in amygdalar subregions. Their results show that the connectivity pattern is mainly

altered in centromedial subregions under stress. Nair’s work [46] focused on the effect of stress

on task-related functional connectivity, which later showed by the experiment results that stress

has no significant effect on functional connectivity during verbal problem-solving. Interestingly,

Chang published another article [47] in 2019 that studied the hippocampal connectivity of the

after-effect of acute social stress using fMRI data. Their results showed that stress altered the

information flows in the thalamus-hippocampus-insula/midbrain circuit. Now, going back to the

results we obtained in this chapter using the classroom stress data, the author wishes to point

out a few observations and possible explanations. First, looking at the five pairs of regions that

have increased information flow, one can observe that regions near the central brain are the most

common. The right postcentral region is observed to have increased information outflow both

to the left calcarine region and the left inferior parietal region as shown in Fig. 4.22 and Fig.

4.23. Moreover, the same region is also shown to have increased information inflow from the

right supplemental parietal region (Fig. 4.25). The right precentral region is also shown have

increased information outflow to the left calcarine region (Fig. 4.21). Connecting back to the

results we observed in chapters two and three, that is, central regions of the brain are found to

have distinct power spectra information compared across groups. This observation in power

difference might be the effect of a difference in information flow near central regions as observed

in this chapter.

4.4 Conclusion

In this chapter, we studied the effective connectivity by applying Granger Causality

analysis using the SIFT plugin in EEGLab. Later, we discussed that it was challenging to

conduct group-level connectivity analysis due to each subject’s unique dipole locations. Then an

alternative method for comparison is adopted, that is by transforming all the dipole locations
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Figure 4.19. Overall connectivity matrix under stress, calculated using
Elevated stress - Normal Stress, the yellow dot indicates decreased

information flow, others indicate increased information flow

into their corresponding spatial regions. By doing this “transformation”, a connectivity matrix

that was based on common cortical locations was formed. Then GroupSIFT was introduced in

great detail describing the steps to carry out this group-level connectivity analysis. In the end, we

found that there are six pairs of regions, most near the central brain, that had unique information
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Figure 4.20. Decreased Information flow: from left Lingual to left
precuneus. Red lines indicate the frequencies that reached statistical

significance

Figure 4.21. Increased Information flow: from right precentral to left
calcarine. Red lines indicate the frequencies that reached statistical

significance

Figure 4.22. Increased Information flow: from right postcentral to left
lingual. Red lines indicate the frequencies that reached statistical

significance
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Figure 4.23. Increased Information flow: from right postcentral to left
calcarine. Red lines indicate the frequencies that reached statistical

significance

Figure 4.24. Increased Information flow: from right precuneus to left
inferior parietal. Red lines indicate the frequencies that reached

statistical significance

Figure 4.25. Increased Information flow: from right supplemental
parietal to right postcentral. Red lines indicate the frequencies that

reached statistical significance
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flow in certain frequency bands among the elevated stress group. Finally, connecting back to the

results in chapters two and three, the author makes the hypothesis that the difference in power

spectra observed in the central region may be the result of the difference in information flow near

the central region of the brain.
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