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Abstract 

Advanced 1H Lung Magnetic Resonance Imaging 

By Xucheng Zhu 

 

Doctor of Philosophy in Bioengineering 

University of California, San Francisco and University of California, Berkeley 

Professor Peder E.Z. Larson, Chair 

 

 Magnetic resonance imaging (MRI) is one of the widely used medical imaging 

modalities, since it can provide both structural and functional assessment in a single 

imaging session. 

 However, two major challenges should be addressed when using MRI for lung imaging. The 

first challenge is the intrinsic low SNR of 1H lung MRI due to the low proton density as well as 

the fast decay of the lung parenchyma signal. And the second challenge is subject motion. To 

achieve high resolution structural image, MRI requires a long scan time, usually a few minutes 

or even longer, which make MRI sensitive to subject motion.  

 To address the first challenge, an ultra-short echo time (UTE) MRI sequence is used to 

capture the lung parenchyma signal before it decays.  

 As for subject motion, two major strategies are widely used. One strategy is fast breath-

holding scan, in which the subjects are asked to hold their breath for a short duration, and the 

fast 3D MR sequence would be used to acquire data within that duration. This dissertation 

proposes a new acquisition scheme based on the standard UTE sequence, which could largely 

increase the encoding efficiency and improve the breath-holding scan images. 
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 The other is free breathing scan with motion correction. The subjects are allowed to breathe 

during the MR acquisition. After the acquisition, the motion corrupted data would go through a 

motion correction step to reconstruct motion free images. In this dissertation, two novel motion 

correction reconstruction strategies are proposed to incorporate the motion modeling and 

compensation into the reconstruction to get high SNR motion corrected 3D and 4D images.  

 When translating the developed techniques to clinical studies, specifically for pediatric and 

neonatal studies, more practical problems need to be considered, such as smaller but finer 

anatomy to image, the different respiratory patterns of the young subjects etc. This dissertation 

proposes a 5-minute free breathing UTE MRI strategy to acquire a 3D high resolution motion 

free lung image for pediatric and neonatal studies. 
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Introduction  

Magnetic resonance imaging (MRI) is one of the widely used medical imaging 

modalities, since it can not only provide high spatial resolution structural information, but 

also functional information. Clinically, MRI has a broad range of applications, such as 

distinguishing and staging tumors1,2, detecting neurodegenerative disorders3,4, as well 

as assessing the structure and the function of the heart5,6, etc.  

 However, to assess lung anatomy, Computed tomography (CT) is still the standard 

imaging technique7,8, which can achieve high spatial resolution images within a few 

seconds. However, ionizing radiation exposure is one of the major concerns with CT , 

especially for neonatal and pediatric patients9–11. MRI would be an alternative to CT for 

neonatal and pediatric pulmonary imaging12,13.  

 Two major challenges should be addressed to use MRI for lung imaging14. One is the 

low SNR of the 1H lung MRI. Due to low proton density of the lung parenchyma, the 

signal intensity in the lung is expected lower than in other organs. In addition, the large 

susceptibility difference between the air and lung tissue results in very short T2*, which 

would further reduce the parenchymal signal. The other is subject motion. To achieve 

high resolution structural image, MRI requires a much longer scan time, usually a few 

minutes or even longer, which could be completed in a few seconds with CT. Under that 

situation, lung MRI scan needs to consider subject motion, such as respiratory motion, 

cardiac motion, and bulk motion etc. 

 This dissertation will focus on developing novel techniques to improve 1H lung MRI. 

First of all, a high scan efficiency image acquisition and reconstruction strategy, called 
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iMoCo-UTE15, is proposed to achieve high SNR motion corrected 3D lung image 

volume. Then, the technique is extended from 3D to 4D, reconstructing 3D respiratory 

motion resolved lung images and the contrast dynamics of 3D dynamic contrast-

enhanced (DCE) MRI acquisition.  

 Further, I propose a 5-min free-breathing lung MRI strategy for pediatric and neonatal 

studies, by using the proposed techniques as well as optimizing the clinical setups.  

 However, the free breathing scan still needs a few minutes even with the optimized 

acquisitions and reconstructions. In the end, I propose a fast UTE acquisition scheme to 

fit a 3D UTE acquisition within single breath-hold, which can achieve moderate 

resolution but high image quality lung volume in 15 seconds.  

 

1.1. Outline 

Chapter 2 provides the background knowledge for this dissertation, covering basic MR 

physics, MR sequence, and signal equation. At the end of the chapter, the generalized 

MRI reconstruction framework, as well as compressed sensing MRI technique are 

introduced that pertain to the rest of the dissertation. 

 Chapters 3 to 6 describe the technical innovations as well as clinical translational 

research related to 1H lung MRI.  

 In Chapter 3, I proposed a high scanning efficiency, motion corrected imaging 

strategy for free-breathing pulmonary MRI by combining a motion compensation 

reconstruction with a UTE acquisition, called iMoCo UTE. The proposed strategy 

showed improvements in the free breathing lung MRI scans, especially in very 

challenging application situations, such as pediatric and neonatal studies. 
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 In Chapter 4, I extended the iMoCo reconstruction from 3D to 4D reconstruction, by 

adding a low-rank constraint in the reconstruction framework, named Motion 

Compensated Low-Rank (MoCoLoR) reconstruction. The proposed method was applied 

to both 3D motion resolved lung MRI and 3D DCE MRI, and showed improvements in 

the final reconstruction. 

 In Chapter 5, I proposed an optimized 5-minute non-sedated neonatal and pediatric 

pulmonary UTE strategy. Multiple technical improvements were implemented including 

the novel acquisition and reconstruction proposed in Chapter 3, customized hardware 

design for pediatric patients, and scan parameters optimization. The lung MR images 

acquired with the proposed strategy were able to capture different abnormalities, 

suggesting the feasibility of MRI for regular clinical pediatric lung imaging in the future. 

 In Chapter 6, a novel acquisition scheme for UTE with a reduced spoiling gradient 

was proposed for shortening the free breathing scans as well as improving breath-

holding scans. The proposed scheme was validated on both phantom and volunteers, 

and the results showed the proposed scheme with a reduced spoiler gradient could 

achieve comparable image quality but saving up to 40% scan time for free breathing 

scan and get better image quality compared to standard UTE for breath-holding scan. 

 In the final chapter, I summarize the work presented in the previous chapters and 

also outline some future research directions related to this dissertation. 
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Chapter 2 MR Physics, Imaging and 

Reconstruction  

Magnetic resonance (MR), also known as nuclear magnetic resonance (NMR), is a 

phenomenon that certain nucleus absorbs and re-emits electromagnetic radiation, was 

first observed by Isidor Isaac Rabi in 1938. In late 1970s, physicists Peter Mansfield and 

Paul Lauterbur first created images of organs and soft tissues by introducing gradient 

magnetic fields to NMR, and they named the technique magnetic resonance imaging 

(MRI)16. Modern physics usually describes NMR via quantum mechanics approach, 

however, in the scope of MRI, it is easier to understand by describing MRI from the 

classical physics point of view17. This chapter would firstly introduce the basic concepts 

in MRI, including resonance, spin relaxation, and spatial encoding. Then, one specific 

MRI sequence called ultra-short echo time (UTE), and generalized reconstruction 

framework are introduced for understanding MR acquisition and reconstruction methods 

described in the following chapters. 

 

2.1. Magnetic Resonance Physics  

2.1.1. Magnetization and Free Precession 

Certain atomic nuclei, such as 1H, 13C, possess an intrinsic angular momentum. And the 

amount of angular momentum is called spin. In the context of MRI, a group of spins are 

usually considered as a whole system, and a macroscopic magnetization is used to 

represent the amount of angular momentums contributed from all the spins in the 
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system. Without an external magnetic field, spins have a randomly distributed angular 

momentums, resulting in a zero bulk magnetization, as shown in Figure 2.1 (a). When 

an external magnetic field is applied to the spins system, the spins would no longer 

distribute randomly, in Figure 2.1 (b). 

 

Figure 2.1 Spins behavior in external magnetic field. Without external magnetic field, spins are randomly 
distributed, and the observed bulk magnetization is 0, as shown in (a). By adding an external magnetic 
field, spins tend to align with the direction of the external field, formulating a non-zero net magnetization 
parallel to the external field, as shown in (b). 

 

 From the classical physics point of view, the spins would tend to align with the 

direction of the applied field to reduce the energy of the system. It turns out the system 

would generate a small non-zero magnetization, and magnetization is given by: 

𝑴" =
$%('/)*),-,./

0123
𝒆5 (2-1) 

Here, 𝑴" represents the bulk magnetization induced by the external field. 𝑁7 are the 

population of spins,	𝑇: is temperature. 𝛾/2𝜋, ℎ, and 𝑘 are gyromagnetic ratio, Planck’s 

constant, and Boltzmann’s constant. 𝐵" is the magnitude of the external field, and 𝒆5 is 
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the direction of the field. According to the equation, bulk magnetization is proportional to 

the strength of the external field. 

 The spins would resonate at a certain frequency	𝜔" in the static 𝑩" field, called 

Larmor frequency. And Larmor frequency is given by: 

𝜔" = 𝛾𝐵" (2-2) 

 When another external oscillating magnetic field named 𝑩C(𝑡), with the appropriate 

Larmor frequency, is applied to the spins system, the bulk magnetization would be tilted 

to the transverse plane. Because the Larmor frequency is typically in the range of 

radiofrequency, this process is termed radiofrequency (RF) excitation, similarly, 𝑩C(𝑡) is 

also called RF pulse. When the magnetization, noted as 𝑴′, is tipped away from 𝒆5 

direction, the magnetization would precess about 𝒆5 with 𝜔". Meanwhile, a RF signal is 

re-emitted from the spins system, which could be captured by NMR or MRI receiver coil 

as the NMR signal. And the signal intensity is proportional to the projection of 

magnetization in the transverse plane, which is perpendicular to 𝒆5. The acquired NMR 

signal is usually represented by a complex value or a 2D vector. 

 

2.1.2. Relaxation 

When 𝑴′ precesses about the 𝒆5 axis, it would experience relaxation process to return 

to the equilibrium state 𝑴". Two different relaxations, T1 relaxation and T2 relaxation, 

are involved, and they could be characterized by two relaxation time, 𝑇C, and 𝑇). To help 

explain the relaxation process, 𝑴′ could be decomposed to [𝑀H,𝑀J,𝑀5], illustrated in 

Figure 2.2 (a).  
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Figure 2.2 Description of magnetization decomposition and T1, T2 relaxation. Magnetization could be 
decomposed to longitudinal component 𝑀5, which experiences T1 relaxation, and transverse components 
𝑀H and 𝑀J, that experience T2 relaxation. T1 and T2 relaxation over time are compared in (b). 

 

 The T1 relaxation is also called the longitudinal relaxation, describes the longitudinal 

magnetization 𝑀5 returns to the equilibrium state. The T2 relaxation is also called the 

transverse relaxation, describes the transverse magnetizations [𝑀H,𝑀J] decay or 

dephase. T1 and T2 relaxations follow the equations below: 

LMN
LO

= −MNQM/
2R

  (2-3) 

LMST
LO

= −MST
2,

  (2-4) 

Here, 𝑇C and 𝑇) are the relaxation times describing the two relaxation processes 

respectively. And there are closed-form solutions for equations (2-3) and (2-4), 

𝑀5(𝑡) = 𝑀" + [𝑀5(0) −𝑀"]𝑒
Q X
YR  (2-5) 

𝑀HJ(𝑡) = 𝑀HJ(0)𝑒
Q X
Y, (2-6) 

 Figure 2.2 (b) shows the T1 and T2 relaxations start with the initial state, 𝑀5(0) = 0. 

Different biological tissues might have different sets of 𝑇C and 𝑇). Therefore, 𝑇C and 𝑇) 

could provide different MR image contrasts to characterize tissue properties. 
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2.1.3. Spatial Encoding and K-space 

According to Equation (2-2), the magnetization precesses at the same frequency in the 

same strength static field, all the spins have the same phase in transverse plane, shown 

in Figure 2.3 (a) .  

 

Figure 2.3 Effect of gradient magnetic field on transverse magnetizations. Without gradient magnetic field 
(a), transverse magnetizations from different locations share the same phase. When an extra gradient 
magnetic field is applied in the x direction, transverse magnetizations with different x locations would have 
different phases due to different precession frequencies. 

  

 If the external field is no longer spatially homogeneous, magnetizations in different 

locations could precess at different frequencies. Assuming a small linear magnetic field, 

named gradient field 𝑮, is added on top of the strong 𝑩" field, shown in Figure 2.3 (b), 

precession frequencies at different locations are given by: 

𝜔 = 𝛾(𝐵" + 𝐺𝑥)  (2-7) 

When a 3D gradient field is applied, it could be extended accordingly to: 

𝜔 = 𝛾(𝐵" + 𝑮 ⋅ 𝒓) (2-8) 
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 Here, the inner product of gradient vector 𝑮 and location vector 𝒓 is used to replace 

the scalar multiplication. By manipulating the gradient field, including changing gradient 

direction and strength, spins in different locations would be differentiated based on their 

phases, which results in the spatial encoding in MRI. Then the total received signal with 

spatial encoding could be represented by the integral of all the transverse 

magnetizations within the volume. 

𝑠(𝑡) ∝ ∭𝑀HJ(𝑥, 𝑦, 𝑧)𝑒Qde/O𝑒Qd' ∫ 𝑮(g)⋅𝒓LgX
/ 𝑑𝑥𝑑𝑦𝑑𝑧                   (2-9) 

Here, 𝒓 = [𝑥, 𝑦, 𝑧]2 represents the 3D location. 𝑀HJ = 𝑀H + 𝑖𝑀J, is the complex-valued 

NMR signal. Because all the spins share the same default phase term 𝑒Qde/O, we can 

move this term out of the integral, and even remove this term. In addition, a new 

variable 𝒌(𝑡) = '
)* ∫ 𝑮(𝜏)𝑑𝜏O

"  is introduced. Then, the signal equation could be simplified 

as below: 

𝑠l(𝑡) = 𝑠(𝑡)𝑒de/O ∝ ∭𝑀HJ(𝑥, 𝑦, 𝑧)𝑒Qd)*𝒌(O)⋅𝒓 𝑑𝑥𝑑𝑦𝑑𝑧               (2-10) 

 The integral term is a 3D continuous Fourier transform of the image volume. Further, 

because 𝒌 is a function about 𝑡, signal without the constant phase term could be 

rewritten as a function of 𝒌, 

𝑠l(𝒌) ∝ 𝐹𝑇[𝑀HJ(𝒓)]  (2-11) 

 Signal could be considered as the spatial frequency domain, always called “k-space” 

in MRI. To image a volume, different gradient pulses are designed to fully sample the 

whole k-space, then the images of the volume could be reconstructed from the full k-

space via inverse Fourier transform. k-space is one of the most important concepts in 

MRI, because it connects the signal acquisition and image formulation. In the next a few 
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chapters, it would be mentioned in both the sequence design and the image 

reconstruction. 

 

2.2. MRI Sequence and Short T2* Components Imaging 

2.2.1. Gradient Echo Acquisition and Spoiling 

Pulse sequence is another core concept in MRI, which consists of a number of RF 

pulses and gradients to sample the k-space. In addition, by changing the shapes and 

magnitudes of the RF and gradient pulses and the timings of them, different contrasts 

images would be generated.  

 One major category of the MRI sequences are called gradient-recalled echo (GRE) 

sequences. The basic unit of a GRE sequence, as plotted in Figure 2.4 (a), consists of 

a RF excitation pulse, and different spatial encoding gradient pulses. The duration of the 

basic unit is called repetition time (TR). For convenience, TR is also used to represent 

the basic unit in the sequence. 

 

Figure 2.4 Illustration of GRE sequences. (a) shows the basic GRE sequence, which includes RF 
excitation, phase encoding and frequency encoding(DAQ) gradients. (b) and (c) respectively illustrate two 
different spoiling strategies, gradient spoiling and RF spoiling in the GRE sequence, modifications on 
basic GRE sequence are highlighted. 
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 To avoid the transverse magnetization coherence interference from previous 

excitations, TR of basic GRE sequence needs to be long enough, which allows 

transverse magnetization decay to nearly zero through T2 relaxation. An alternative is to 

disrupt the transverse magnetizations before the next excitation, named spoiling 

strategies18,19. The spoiling strategies ensure that the steady-state magnetization has 

effectively no transverse magnetization before the next excitation even without a long 

TR. The GRE sequence with spoiling strategies are also called fast or rapid GRE. 

 Two types of spoiling strategies are introduced here. One is gradient spoiling, an 

additional gradient with certain amplitude and direction is added before the next 

excitation to suppress the transverse magnetization, as shown in Figure 4 (b). The other 

is RF spoiling, the phase of the RF pulse is changed from TR to TR, which leads to the 

transverse magnetizations from previous TRs with different phases cancelling each 

other out, as shown in Figure 4 (c). 

 

2.2.2. Ultra-short Echo Time (UTE) Acquisition 

As mentioned in the previous section, magnetization would experience a T2 relaxation 

decay after the RF excitation, and the decay rate is characterized by 𝑇), according to 

Equation (2-6). However, a faster signal decay rate would be observed in the GRE 

sequence, because the local field inhomogeneity would lead to local transverse 

magnetization dephasing, which leads to a faster signal decay on a macroscopic scale. 

A new relaxation time constant 𝑇)∗, shorter than 𝑇), is defined to describe the decay rate 

of GRE sequence. The echo time (TE) represents the time from the center of the RF-
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pulse to the center of the echo, with 𝑇)∗ together could be incorporated in the signal 

equation, reflecting the signal decay during the acquisition. 

𝑠l(𝒌) ∝ 𝐹𝑇[𝑀HJ(𝒓)𝑒
QYo
Y,∗]  (2-12) 

 Usually, the TE of GRE sequence is around or longer than 1ms, because of the slice 

selection rephasing and phase encoding gradients, as shown in Figure 2.5. When 

imaging very short 𝑇), or 𝑇)∗ components with GRE sequence, the signal would 

dramatically decay, especially for 𝑇)∗ ≪ 𝑇𝐸.  

 Ultra-short echo time (UTE) sequence is one of the variants of the GRE sequence. 

UTE sequence can push the TE close to zero by modifying the standard GRE 

sequence. Figure 2.5 shows some differences between UTE and standard GRE 

sequences. Firstly, the selective excitation is replaced by a non-selective hard pulse 

without rephasing gradient. Secondly, instead of having phase encoding gradients, the 

UTE sequence starts frequency encoding and data acquisition immediately at the end of 

RF excitation. By definition, the echo happens right at the end of the RF excitation, 

creating an ultra-short TE, usually at the sub-millisecond level.  

 Components with different 𝑇)∗s acquired by two sequences are illustrated in the right 

column of Figure 2.5. When imaging very short 𝑇)∗ components, such as 0.1 or 0.5ms, 

with standard GRE sequence, the signals have already decayed to close to 0 at 𝑇𝐸C, in 

contrast, with UTE sequence, the signals are preserved at 𝑇𝐸). 
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Figure 2.5 Ultra-short echo time(UTE) sequence for short T2* imaging. Left column shows comparison of 
standard GRE and UTE sequences. Right column shows signal evolution of different 𝑇)∗ components and 
the UTE sequence can preserve the signals from short 𝑇)∗ components. 
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2.2.3. UTE Trajectory 

Because the UTE sequence often uses a non-selective hard pulse for RF excitation, 

UTE sequences are usually designed as a 3D acquisition. To image the 3D volume, a 

3D k-space sampling strategy is needed. In addition, because UTE sequence starts 

acquisition as soon as the end of excitation, k-space sampling in each TR always start 

from the center or the zero frequency point.  

 To fully cover the 3D k-space, two typical acquisition patterns or trajectories are 

used, 3D radial20,21 or 3D conical22,23 trajectory, as plotted in Figure 6. 

 

Figure 2.6 3D UTE trajectory examples. Left shows the center-out radial trajectory acquisition, right 
shows the conical trajectory acquisition. [Adapted from Madelin, Guillaume 2012.24] 
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2.3. MRI Reconstruction 

2.3.1. MRI Signal Equation  

Once the k-space data are acquired, the final step is to reconstruct the image from the 

data. According to Equation (2-11), images could be reconstructed by applying the 

inverse Fourier transform on the k-space as long as the k-space is fully sampled. 

However, more components in the reconstruction need to be considered in practice.  

 Firstly, noise always exists in the acquired data. In MRI, the acquisition noise is 

modeled as a complex-valued additive white Gaussian noise (AWGN)25. Then the signal 

equation could be rewritten as: 

𝑠lr(𝑡) =∭𝑀HJ(𝑥, 𝑦, 𝑧)𝑒Qd)*𝒌(O)⋅𝒓 𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑛(𝑡)            (2-13) 

Here, 𝑠lr(𝑡) represents the acquired data, and 𝑛(𝑡) is the complex AWGN acquisition 

noise. The continuous signal equation should be discretized before the reconstruction.	𝑡 

would be discretized as the index of the time point, at each time point, one point in the 

k-space is sampled. After the signal discretization, the Fourier transform could be 

replaced by the discrete Fourier transform (DFT), represented by linear operator 𝐹.  

 Secondly, the acquisition pattern 𝒌(𝑡), could be also formulated as a linear operator 

𝑃(𝑡) representing sampling in the k-space. 

𝑠lr(𝒌(𝑡)) = 𝑃(𝑡)𝐹𝐼 + 𝑛(𝑡) (2-14) 

 Thirdly, a multi-coil acquisition mode, which is widely used in modern MRI, should be 

considered. The spatially localized coils would have different coil sensitivity maps, which 

can be also modeled as a linear operator and because signals are acquired by each coil 

independently, the noise term should also extend to include a coil dimension. 
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𝑠vlr(𝒌(𝑡)) = 𝑃(𝑡)𝐹𝑆x𝐼 + 𝑛x(𝑡) (2-15) 

 One assumption made on the multi-coil acquisition mode is that the noise at different 

time points as well as different coils are independent and identically distributed (i.i.d). 

However, sometimes noise of different coils are with varied amplitudes and correlated 

with each other, then the i.i.d assumption does not hold. To preserve the assumption, a 

noise pre-whitening step is always required before the reconstruction step26. 

 Figure 2.7 summarizes the signal equation (2-15), including components we 

mentioned above. The next step is to reconstruct the image based on the signal 

equation. 

 

Figure 2.7 Illustration of the MRI signal equation. The image would multiply with different sensitivity maps 
to represent multi-channel MRI acquisition. Then multi-channel images are transformed to k-space via 
discrete Fourier transform (DFT). Sampling k-space data could be modeled as applying a binary mask on 
the k-space. All the operations above could be formulated as linear operators. 
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2.3.2. Generalized MRI Reconstruction Framework 

Once the discrete signal equation (2-15) is established, the reconstruction step could be 

formulated as a least-square optimization problem: 

argmin
�

∑ ��𝑃𝐹𝑆x𝐼 − 𝑑𝑗��
)

)
$
x  (2-16) 

Here, 𝑑x replaces the acquired data 𝑠vlr(𝒌(𝑡)) in Equation (2-15). The problem can be 

easily fit in different trajectory designs and different coil setups. And the problem is a 

linear least squares problem, which can be solved by standard iterative methods such 

as conjugate gradient descent algorithm27. Because most of the MRI reconstruction 

problems can be formulated and solved by following the above framework, the 

framework is called generalized MRI reconstruction framework.  

 Especially, when the framework utilizes multi-channel coils and certain k-space 

undersampling schemes to accelerate the MRI acquisition, it is also known as parallel 

imaging (PI) technique. 

 

2.3.3. Compressed Sensing MRI 

Compressed sensing (CS) MRI is also developed for MRI acquisition acceleration28. CS 

MRI includes a few components. Firstly, a random or pseudo-random sampling scheme 

is required. Then, a sparsifying transform, such as wavelet transform, which can use a 

sparse representation to represent the signals from the original domain, is required. 

Finally, a constrained reconstruction problem is formulated and solved by an iterative 

algorithm.  
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 CS MRI can also be incorporated in the generalized reconstruction framework as 

below. 

argmin
�

∑ ��𝑃𝐹𝑆x𝐼 − 𝑑x��
)

)
$
x + 𝜆:�|Φ(𝐼)|�C                                 (2-17) 

Compared to the (2-16), another l1-norm term with a sparsifying transform, Φ, is added 

into the framework. And 𝜆: is a regularization term. 

 

2.3.4. Beyond Theoretical MRI  

By now, most of the basic MRI concepts related to this dissertation have been 

introduced. However, in the real world, problems are much more complicated than what 

the basic MRI theory can describe. For instance, subject motion is one of the most 

challenging problems in MRI, especially in body MRI. Lots of strategies from different 

aspects are proposed to solve the problem. From the reconstruction aspect, fast 3D 

acquisition strategies with parallel imaging and compressed sensing are proposed. 

From the acquisition aspect, non-Cartesian acquisition strategies, which are robust to 

motion, are proposed. From the hardware aspect, external devices, such as an 

ultrasound system or MRI compatible camera, are designed to monitor and correct 

subject motion. In the rest of this dissertation, I would focus on how to deal with the 

practical problems related to 1H lung MRI. 
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Chapter 3 Iterative Motion Compensation 

Reconstruction Ultra-short TE (iMoCo UTE) for 

High Resolution Free Breathing Pulmonary MRI 

3.1. Introduction 

MRI has the potential to assess pulmonary diseases by providing soft-tissue contrast 

and structural information within the lung29. Unlike X-ray CT, MRI avoids ionizing 

radiation exposure, which would be safer for pediatric subjects30, or patients requiring 

longitudinal follow-up imaging31. However, pulmonary MRI is challenging due to short 

T2*, low proton density of the lung parenchyma32,33 and subject motion, especially 

respiratory motion34. 

 UTE and zero echo time (ZTE)35 type acquisition strategies have been developed to 

preserve short T2* signal in the lung by providing the means to collect images with a 

sub-millisecond echo time (TE). Such sequences use optimized excitation pulses and 

readouts strategies to maximize SNR for pulmonary imaging36; however, most UTE/ZTE 

sequences still take a few minutes or longer, usually 5 to 10 minutes33,37,38,  required to 

obtain sufficient lung parenchyma SNR with high spatial resolution. During the scan, 

there are inevitable motion effects, especially from respiratory motion. In addition, 

longer scan time increases the possibility of irregular motion of the subject, especially 

for pediatric subjects39 and subjects with poor pulmonary function.  

 A variety of respiratory motion compensation strategies have been developed, most 

of which utilize motion tracking for retrospective motion correction or compensation. 
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External respiratory belts are widely used to indirectly track the motion by measuring the 

respiratory-induced abdomen stretching. An alternative way is to use the repeatedly 

acquired k-space center (DC), which is feasible for center-out UTE sequences, 

measuring the signal change caused by respiratory motion38,40–42. To more accurately 

and directly characterize subject motion, low spatial but high temporal resolution 2D/3D 

images could be reconstructed and used as a self-navigator 34,43–45. 

 Most of the motion correction and compensation methods can be classified into three 

categories. 1) Respiratory gating: based on the respiratory motion signal, only data 

acquired within a certain motion state, usually the end expiratory state, is used for 

reconstruction46 . However, gating based methods reduce scan efficiency and prolong 

the scan time. To increase the scan efficiency, the soft-gating method was proposed to 

add non-zero weightings on the data34,47,48, but it reduces the ability to correct motion37; 

2) Motion resolved reconstruction: instead of reconstructing a single motion gated 

image, all acquired data are grouped in different motion states, and spatial correlation of 

the different images are used as the prior information for compressed sensing based 

reconstruction, such as XD Golden-angle RAdial Sparse Parallel reconstruction (XD-

GRASP)49,50, kt- FOCal Underdetermined System Solve (kt-FOCUSS)51; 3) Motion 

compensation (MoCo) reconstruction with image registration: Unlike gating or soft-

gating strategies, motion compensation strategies align all motion states images to the 

same state via image based registration. After registration, all motion states images are 

summed to compose a single image, therefore increasing the data acquisition 

efficiency52. MoCo type strategies have been applied in simultaneous PET/MR 

applications for increase PET image SNR53–57. A more sophisticated way that 
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Batchelor58 first proposed is the generalized matrix description (GMD), to formulate the 

motion deformation as a matrix operator to describe the motion propagation in signal 

space. A few motion compensation reconstruction strategies59–63 based on GMD have 

been proposed and applied to cardiac MRI. 

 In this chapter, I propose a new free breathing motion corrected pulmonary MRI 

strategy, iterative Motion Compensation reconstruction ultra-short TE, called iMoCo 

UTE, to improve high spatial resolution free breathing lung MRI. There are three main 

components of the proposed method: 1) a pseudo random non-Cartesian UTE 

sequence, 2) motion resolved reconstruction and motion estimation, and 3) a novel 

iterative motion compensation (iMoCo) reconstruction with compressed sensing. The 

iMoCo reconstruction iteratively fits the data to a non-rigid motion model, and leverages 

compressed sensing principles to further suppress noise and artifacts. When combined 

with a UTE sequence, the proposed method addresses the challenges in lung MRI of 

intrinsically low SNR and motion by providing a high acquisition efficiency and motion 

robust pulmonary MR images, especially in challenging situations, such as pediatric 

MRI studies. The proposed strategy is evaluated on both healthy volunteers and 

pediatric patients, and compared to other motion correction strategies, such as soft-

gating, motion resolved reconstruction, and image based motion compensation (MoCo) 

strategies. 
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3.2. Methods 

3.2.1. Overview of iMoCo UTE 

The overall workflow of proposed iMoCo UTE is summarized in Figure 3.1.  

 

Figure 3.1 Overview of the iMoCo UTE workflow. (a) After optimized 3D radial UTE data are acquired, the 
center k-space is cropped out for coil sensitivity calibration, then used to estimate the respiratory motion 
signal via the k0 signal or a reconstructed 3D image navigator.  (b) Based on the self-navigator signal, 
data are grouped in different motion states, then motion resolved images with medium spatial resolution 
are reconstructed. (c) All motion states images are registered to the selected reference state image via 
non-rigid image registration, then the deformation fields and the whole dataset are fed in the iterative 
motion compensation reconstruction model. 

 

 Data are acquired with a pseudo randomly sampled 3D radial UTE sequence which 

results in k-space sample ordering being uncorrelated with the respiratory motion. Then, 

data are binned to different motion states according to respiratory tracking signals. 

Respiratory tracking is first determined using a k0/DC navigator signal. Then, additional 

image based navigator is used to remove the data with irregular motion (Figure 3.1 (a)). 

Instead of doing high spatial resolution motion resolved reconstruction, the motion 

resolved data is used first to reconstruct ~1.5 times coarser spatial resolution motion 

resolved images (Figure 3.1 (b)). Motion fields from different motion states to a 

reference state then are estimated via non-rigid registration64 (Figure 3.1 (c)). Finally, 



 23 

the estimated motion fields and a spatial total generalized variation (TGV) sparsity 

constraint65 are added into the iterative motion compensated reconstruction (iMoCo) 

model to reconstruct a single state high resolution motion-free image. 

 

3.2.2. UTE Sequence 

An optimized 3D UTE sequence with slab selection and variable density readout 

acquisition36, which increases the SNR efficiency and reduces aliasing artifacts, was 

used for pulmonary imaging scans. A golden angle ordering acquisition scheme was 

used to randomize undersampling artifacts over time and improve the motion resolved 

reconstruction and motion estimation. All the studies were performed on 3T MRI  clinical 

scanners (GE Healthcare, Waukesha, WI, USA). More specific acquisition parameters 

are listed in the experiment section. 

 

3.2.3. Respiratory Motion Detection and Motion Resolved 

Reconstruction 

A DC based self-navigator was used for initial respiratory motion detection, in which the 

first points of the radial readouts are used as self-navigator signals. The multi-channel 

data were combined via the adaptive navigator strategy66. Then DC signals were filtered 

by low-pass (0.5~1 Hz cut-off frequency) filter to reduce high frequency noise. The DC 

navigator was used as long as no large fluctuation of the DC signal (defined as having a 

signal deviation from base line that was 3 times greater than range of the respiratory 

signal) was observed. If there was a baseline fluctuation of the DC signal, alternatively,  
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a 3D image based navigator, generated by a locally low rank constrained 

reconstruction34, was used to identify and discard bulk motion corrupted data. The 

respiratory motion signal was derived from the DC signal after discarding the irregular 

motion corrupted data and baseline correction.  (The 3D image navigator was not used 

for respiratory motion estimation due to limitations on the spatial (~3mm isotropic) and 

temporal resolution (~300ms) that were not sufficient to capture pediatric respiratory 

motion.) 

 Based on the motion estimates, the acquired data was binned into different 

respiratory motion states for motion resolved reconstruction, a process similar to XD-

GRASP49. Even when data are binned into different motion states, there is inevitable 

residual motion among data within the same motion state. To minimize this effect, a 

large number of motion states, between 8 and 10, was used. This is in contrast to 

standard XD-GRASP, which typically uses 4 to 6 motion states50. However, since the 

full dataset (all spokes) are usually 3 to 4-fold undersampled, if number of motion states 

increases to 8 or higher, the undersampling factor would go up to 30, which would lead 

to strong streaking artifacts and lower SNR even with compressed sensing and parallel 

imaging.  To accommodate the higher undersampling and to reduce the reconstruction 

artifacts, a coarser resolution (~1.5 times the native resolution) was used, which 

maintains a reasonable undersampling factor in this workflow. Since the purpose of the 

binning is for estimating motion between the bins and correct for it, a full resolution 

reconstruction is not necessary. Reducing the resolution has the added benefit of 

reducing the computational load. The reconstruction was done via an XD-GRASP type 

reconstruction solving, 



 25 

argmin
�

∑ �|𝑊(𝐹𝑆d𝑋1 − 𝑑d1)|�)
)$,�

d,1 + 𝜆:�|Φ𝑋|�C + 𝜆O𝑇𝑉O(𝑋)	            (3-1) 

Here, the squared-error data consistency term (left) includes multi-channel sensitivity 

maps 𝑆d(𝑖 = 1,2, …𝑁), motion states sorted multi-channel data 𝑑d1, 𝑊 is sampling 

density compensation weights, 𝐹 is the non-uniform Fourier transform operator, 

implemented via gridding algorithm, and 𝑋1 are the motion-state 3D images, 

parametrized by motion state index 𝑘. A spatial sparsity 3D l1-wavelet term, where	Φ is 

the wavelet transform, and a motion dimension total variation term, 𝑇𝑉O(), are added to 

the reconstruction.  

Following the motion resolved reconstruction, one of the motion states (e.g. typically the 

end expiratory state) was selected as a reference frame. All other motion state images 

were then registered to the reference via Demons non-rigid registration64 (4 pyramid 

levels coarse-to-fine registration and 100 iterations are used in Demons). Estimated 

motion fields were interpolated to match the full resolution image, and used in the 

following motion compensation reconstruction. 

 

3.2.4. Iterative Motion Compensated (iMoCo) Reconstruction 

Once the motion fields were derived, the entire data is used to reconstruct a single 

frame, that is motion corrected. We leverage the relation that 𝑀1𝑋� = 𝑋1, where 𝑀1(𝑘 =

1,2…𝑚) are derived motion fields, 𝑋� is the final reconstructed image, to include our 

motion estimates in the forward model. As described in the GMD model, the motion field 

can be formulated as a linear operator. Although the inverse operator of non-rigid 

deformation is difficult to calculate, the adjoint operator can be simply estimated as 
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reverse deformation from the reference to a certain state image. To further reduce 

streaking artifacts caused by undersampling and residual motion, a spatial total 

generalized variation (TGV) sparsity regularization term is added to the model. Unlike 

TV regularization, TGV relaxes the assumption that image is piecewise constant, which 

would be more suitable for continuous signal changes of tissues65. So the 

reconstruction problem can be reformulated as optimization problem: 

argmin
��

∑ ��𝑊�𝐹𝑆d𝑀1𝑋� − 𝑑d1���
)

)$,�
d,1 + 𝜆:TGV:�𝑋��                          (3-2) 

In the data consistency term (left), 𝐼, 𝑑d1, and 𝐹 are the same notations as the motion 

resolved reconstruction (Eq. 1) with the addition of derived motion fields	𝑀1(𝑘 =

1,2…𝑚). 𝑋� is the final reconstructed, single state high resolution image. The sparse 

penalty term(right) is spatial TGV. The optimization problem is solved by using first 

order primal-dual algorithm67. 

 

3.2.5. Experiments 

All human studies conducted were approved by UCSF Institutional Review Board (IRB). 

Several different types of studies are included in the results and discussions.  

For adult healthy volunteer studies (N=7), scan parameters included: prescribed field of 

view(FOV) = 32 × 32 × 32cm� (64 × 64 × 64cm�, 2-fold oversampling on readout 

direction for radial sequence), flip angle = 4°, 1.25mm or 1mm isotropic resolution, 

readout bandwidth = ±125𝑘𝐻𝑧, 𝑇𝐸 = 70𝜇𝑠, 𝑇𝑅 = 2.7 − 3.1𝑚𝑠, 𝑇𝑅 increased as the 

prescribed FOV was reduced. The total scan time was approximately 5 min to 5 min 30 

s. Number of total acquired spokes of each scan was approximately 100,000.  

 For pediatric patients diagnosed with pulmonary diseases studies (N=4), the FOV 

was prescribed based on the size of the subject (22~26cm), and spatial resolution 
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(isotropic) was kept to 1.1mm or higher (<1mm) due to their smaller anatomical 

structure size. Both 𝑇𝐸 and 𝑇𝑅  (𝑇𝐸 = 80~110𝜇𝑠, 𝑇𝑅 = 3.1~3.7𝑚𝑠) increased compared 

to adult studies due to smaller FOV and excitation slab.  The number of spokes was 

adjusted between 80,000 to 90,000 to keep the total scan time no more than 5 min 30 s. 

Due to varied scan subject size, different receiver coil arrays were used in pediatric 

scans to improve SNR: 8-channel and 32-channel cardiac arrays (GE Healthcare, 

Waukesha, WI, USA), and a 12-channel flexible screen-printed coil array (Inkspace Inc., 

Moraga, CA, USA)68.  

 For the infant patient study (N=1), the following scan parameters were used. FOV 

was 18cm, spatial resolution (isotropic) was 0.9 mm, 𝑇𝐸 = 170𝜇𝑠, 𝑇𝑅 = 4.6𝑚𝑠, the 

number of spokes was 75,000, and total scan time was around 5 min 30 s. 8-channel 

head coil (GE Healthcare, Waukesha, WI, USA) was used in the experiment due to very 

small subject size. 

 

3.2.6. Data Processing and Imaging Reconstruction 

The self-navigator, motion signal processing, and iMoCo reconstruction were 

implemented in MATLAB (Mathworks, Natick, MA). Coil sensitivity maps calibration, 

motion resolved reconstruction and soft-gating reconstructions were carried out by the 

Berkeley Advanced Reconstruction Toolbox (BART)69. All the quantitative 

measurements were also implemented in MATLAB. 
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3.2.7. Image Quality Comparison and Evaluation 

For image quality comparisons, we implemented non-gating, soft-gating, motion 

resolved, and non-rigid motion compensation (MoCo) reconstruction and motion 

correction strategies following the details in previous works34,47,50.  Briefly, the MoCo 

method used the motion resolved reconstruction from XD-GRASP to genereate images 

across motion states, which were then non-rigidly registered using Demons and then 

averaged together.  Hyperparameters used were kept the same in all the 

reconstructions.  

 To quantitatively compare the image quality among different motion correction 

strategies, several image metrics were computed. The sharpness of the lung-liver 

interface or diaphragm was measured via the relative maximum derivative (MD), 

defined as the maximum intensity change between lung-liver interfaces divided by mean 

intensity in the liver.  

 Apparent signal-to-noise ratio (aSNR), defined as the average signal over a small 

region of interest (ROI) divided by standard deviation of area out of the subject, was 

measured. Three representative areas were selected as ROIs: an airway, lung 

parenchyma, and the aortic arch.  Instead of SNR, aSNR was measured in this work 

because the reconstruction methods could introduce spatially varying noise and also 

perform inherent denoising. Images reconstructed with different strategies were spatially 

aligned, so ROIs at the same locations could be manually drawn on all the 

reconstructed images for measurement. 

 Contrast-to-noise ratio (CNR), defined as the contrast difference over noise level, 

was also computed. In lung MRI, it is valuable to distinguish air, lung parenchyma, and 
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vessels. Therefore, CNR between lung parenchyma and air, and between aortic arch 

and air were measured. 

 A paired sample t-test (p<0.05)  method was used for statistical comparison of the 

quantitative measurements MD, aSNR, and CNR. 

 

3.3. Results 

3.3.1. Volunteer Studies Comparison 

Volunteer study results are shown in Figure 3.2. One sagittal slice image from two adult 

volunteer studies with the proposed iMoCo and other motion correction strategies are 

shown in the first rows.  

 The overall image quality of both subjects with iMoCo method is better than motion 

resolved and soft-gating methods, due to higher data usage efficiency and a more 

accurate motion model. The zoomed-in images show that the proposed reconstruction 

has better lung parenchyma contrast and less residual motion compared to the soft-

gating method, and sharper edges of airways and vessels compared to the MoCo 

method. 
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Figure 3.2 Example of volunteer study image results. The same slice images of each subject 
reconstructed with different motion correction and reconstruction strategies are plotted in the first rows, 
and a dashed square targeting at the center area of the lung are zoomed in and plotted in the second 
rows. In both cases, the iMoCo strategy had the sharpest image features and highest apparent SNR. 

 

 To compare the capability to visualize small vessels and airways in the lung, two 

higher spatial resolution(1mm isotropic resolution versus 1.25 mm isotropic resolution in 

Figure 3.2) examples are shown in Figure 3.3.  
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Figure 3.3 Example of high spatial resolution (1mm isotropic) lung images. The proposed iMoCo 
reconstruction is compared to non-gating, motion resolved reconstruction(exhale state), soft-gating and 
motion compensation(MoCo) reconstructions. In each volunteer example, the first row shows the one 
slice from different reconstructed images, and the second row shows the maximum intensity 
projection(MIP) of 30 slices in the AP direction. The area pointed with the arrows in the non-gating 
images are zoomed in. The iMoCo reconstruction was able to delineate the smallest pulmonary vessels. 

 

 One coronal slice from each study is shown in the first row, and a maximum intensity 

projection (MIP) of 30 slices centered at the first row coronal images positions are 

plotted in the second row. Images with the iMoCo reconstruction have the best visual 

image quality, and show lower noise level, sharper vascular structures and more small 

blood vessels compared to other methods.  
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3.3.2. Pediatric Patient Studies 

Pediatric pulmonary MRI studies are much more challenging, especially for non-sedated 

free breathing scans. First of all, it is difficult for children to keep still during a long scan.  

Also, their respiration rates tend to be higher and less regular. In addition, the quiescent 

period after exhalation is much shorter, which might reduce the SNR efficiency and 

image quality of gating and soft-gating based methods37. Pediatric patients with different 

types of lung diseases and of different ages were scanned to show the capability of 

imaging different lung abnormalities with iMoCo UTE.  

 Results of 3 representative pediatric studies with different observed abnormal lung 

structures are shown in Figure 3.4.  An image slice with the abnormality is shown in the 

first row, and a zoomed-in image in the second row. Images carried out by different 

reconstruction algorithms are compared for 3 patients: Patient 1 was a 5-year old 

female who had a severe combined immunodeficiency (SCID) post stem cell transplant 

with several observed lung nodules (red dashed circles); patient 2 was a 4-year old 

male with systemic juvenile idiopathic arthritis and childhood interstitial lung disease 

(chILD) with observed ground-glass opacity (green dashed circle, this opacity was also 

observed on CT); and patient 3 was a 8-year old female with surfactant protein C 

deficiency who had small pneumatoceles (lung cysts, blue arrow).  Images with the 

iMoCo reconstruction had the best depiction of these pathologic features. Particularly in 

patient 3, the pneumatocele has a much sharper boundary and better contrast with 

iMoCo compared to other methods. 
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Figure 3.4 Pediatric patient study examples. Three different patient lung UTE scan (1mm isotropic 
resolution) results with different motion correction and reconstruction strategies are plotted. A lung nodule 
is pointed out (red dashed circle) in patient 1 (5 y/o). A region of ground-glass opacity is shown (green 
dashed circle) in patient 2 (4 y/o). Small pneumatoceles (lung cysts) are pointed out (blue arrow) in 
patient 3 (8 y/o). Abnormality regions of all examples are zoomed in, shown in the second rows. 
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3.3.3. Hyperparameters Selection 

In the proposed iMoCo reconstruction Equation (3-2), there are two tunable 

hyperparameters, one is number of motion states, and the other is the TGV 

regularization weighting. Experiments with different hyperparameters were designed to 

investigate the selection of hyperparameters for the reconstruction. 

iMoCo reconstructions carried out using different numbers of motion states are 

compared in Figure 3.5.  

 In the example, the diaphragm motion range was ~1cm, the motion resolved spatial 

resolution was 1.5mm, and the final resolution was 1.25mm.  As the number of motion 

states increased from 2 to 6, the reconstructions improved, especially close to 

diaphragm (green arrow), however, trivial improvement was observed as the number 

increased from 6 to 8. We also quantitatively evaluated the effects from number of 

motion states on the final motion correction performance. The diaphragm maximum 

derivative (MD) were used to represent the motion correction performance, plotted in 

(b). Higher MD means better motion correction result. As number of states increase 2 to 

6, 4 out of 4 cases show MD increase. As number of states goes larger, the 

improvement is inconsistent among different cases. Therefore, we believe the number 

of states could be estimated by the motion range divided by the motion resolved 

reconstruction resolution (in this example, 1cm / 1.5mm = 6.6). 8 motion states were 

used in all the results in this work. 

 



 35 

 

Figure 3.5 Effect of the number of motion states on the iMoCo reconstruction. An example in a healthy 
volunteer is shown.  A motion resolved reconstruction (8 motion states) is shown in (a), where the 
diaphragm motion from exhale to inhale state is ~1cm. The iMoCo reconstruction with different motion 
states bin numbers are plotted in (b). Diaphragm maximum derivative (MD) are from 4 cases (2 from 
volunteers and 2 from pediatric patients) reconstructed via iMoCo using different number of motion states 
are plotted in (c). 

 

 In Eq. 2, λ§ is the hyperparameter tuned to control spatial TGV regularization term. 

The reconstruction with TGV regularization will reduce the noise, and suppress 

undersampling and residual motion artifacts. Reconstructed images with different λ§ are 
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shown in Figure 3.6, using image data from one of the high resolution studies shown in 

Figure 3. As λ§ increases, the noise and streaking artifacts are reduced. However, as λ§ 

increases to 0.1, the overall images look over-smoothed, especially as some small 

vessels are blurred out, seen in the green circle area in Figure 3.6 (a). MIP of 30 slices  

are shown in (b) to further compare the effect of λ§ on small structures. λ§ = 0.05 shows 

less noisy without sacrificing the small vessels structures. aSNR measurements are 

used to present quantitatively present the effect of λ§, where Figure 3.7 shows the 

aSNR change from airway, lung parenchyma and aortic arch as λ§ increases. Although 

the all the aSNRs increase along λ§, aSNR in airway is expected to be 0, which 

indicates that λ§ goes to 0.1 or higher is over-regularized. Therefore, λ§ was set to 0.05 

for the iMoCo reconstructions. 
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Figure 3.6 Effect of TGV sparse constraint parameter λ on the iMoCo reconstruction. A sagittal and 
coronal slice from a healthy volunteer with different TGV constraint parameter 𝜆, from 0 to 0.1, are shown 
in (a). Maximum Intensity Projection (MIP) of 20 coronal slices of the reconstructed volume with different 
regularization levels are shown in (b), first row shows the MIP images, second shows the zoomed-in 
image of rectangular area in the first image.  
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Figure 3.7 aSNRs comparison with different TGV regularization. aSNRs in three different areas (lung 
parenchyma, aortic arch, and main airway) with different TGV regularization 𝜆: levels from one of the 
cases shown in Figure 3.6. 
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3.3.4. Quantitative Measurement 

For all volunteer (n=7), and pediatric patient (n=4) studies, we quantitatively measured 

the MD on 10 sagittal slices with different motion correction strategies, and normalized 

the MD to the mean liver signal intensity close to the diaphragm. Measurements are 

summarized in Figure 3.8.  

 Images carried out by iMoCo methods show significantly higher MD value compared 

to non-gating, soft-gating ,and MoCo methods. 6 out of 11 subjects had the highest 

diaphragm MD with iMoCo reconstruction.  

 

Figure 3.8 Diaphragm maximum derivative (MD) comparison, where a higher MD corresponds to a 
sharper edge. The MD calculation process is shown in (a). A MD comparison evaluated on 11 subjects (7 
adult volunteers, and 4 pediatric patients) across different methods are plotted in (b). 

 

 We also measured the aSNR and CNR of certain regions in the lung, and the results 

are summarized in Figure 3.9. The aSNR in airways is expected to be close to 0 since 

there is very little 1H density in air, and aSNR in lung parenchyma and aorta 

approximate the SNR level of short and long T2* tissues, respectively, with the 
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reconstruction methods. The aSNR increase in MoCo images can be attributed to the 

lower apparent spatial resolution due to smoothing effects induced by the deformation 

interpolation, which can be observed in the image results in Figure 3.2-Figure 3.4. 

Images with iMoCo reconstruction have higher lung parenchyma and aortic arch aSNR, 

compared to motion resolved and soft-gating reconstructions. In addition, the airway 

aSNR with iMoCo is relatively low, which would benefit distinguishing airways from lung 

parenchyma. In Figure 3.9 (c), iMoCo has significant higher CNR of the lung 

parenchyma and aortic arch, compared to soft-gating and motion resolved 

reconstructions.  
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Figure 3.9 Apparent SNR(aSNR) and contrast-to-noise ratio (CNR) comparison between the 
reconstruction methods. Three different anatomical structures, a major airway, representative lung 
parenchyma ,and the aortic arch were manually annotated for aSNR and CNR measurements. An 
example of anatomical structures used for the measurements are shown in (a). Comparison of aSNR and 
CNR are separately plotted in (b), and (c). The increase in aSNR for the MoCo can be partially attributed 
to a loss of resolution due to smoothing in the reconstruction, which can be observed in Figs. 2-4.  iMoCo 
had significantly higher parenchyma and aorta aSNR and CNR compared to motion-resolved and soft-
gating reconstructions. 

 

 These quantitative measurements indicate that iMoCo method can not only achieve 

higher aSNR, but also reduce respiratory motion artifacts, which would benefit the 

relatively low SNR found in lung MRI. 
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3.3.5. Feasibility of Infant Study 

The significance and feasibility of infant and neonatal lung MRI studies has been 

reported in previous work39,70,71. High spatial resolution and sufficient SNR are required 

to visualize smaller structures of the lungs. Figure 3.10 shows one 5-minute UTE scan 

of an unsedated 10-week-old infant with Pulmonary Interstitial Glycogenosis (PIG) with 

0.9mm isotropic resolution.  

 

Figure 3.10 10-week-old infant study results. (a) One coronal and one axial slice reconstructed with 
different motion correction and reconstruction strategies (with bulk motion rejection) are plotted. Vessels 
(red arrow) and airways (green arrows) are pointed out on the iMoCo images, showing improved 
delineation and contrast compared to other methods. (b) Bulk motion of the infant during the 5-minute 
scan was detected by an image based navigator, so data acquired prior to the bulk movement (red 
dashed rectangle time window) were rejected. (c) Images reconstructed by using iMoCo with and without 
bulk motion rejection are shown, where bulk motion rejection further reduces the motion effects. 
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 Vessel structures (red arrow) and airways (green arrows) are largely improved with 

iMoCo reconstruction compared to other methods. An image based navigator34 was 

also used in this study to capture the bulk motion of the baby, then the data corrupted 

by bulk motion were rejected, shown in (b). Image results with bulk motion rejection 

shows sharper vessels and diaphragm (red arrows) compared to without bulk motion 

rejection, in (c). iMoCo with the same hyperparameters were used for both of the Figure 

3.10 (c) reconstructions. 

 

3.4. Discussion 

In this work, I proposed a new motion correction strategy by combining UTE, motion 

compensation, and a compressed sensing reconstruction to achieve high resolution free 

breathing lung MRI, called iMoCo UTE. Although soft-gating type reconstruction 

strategies have been widely used, they inevitably suffer from the residual motion in the 

reconstruction data. As the desired reconstructed spatial resolution goes higher, fine 

structure cannot be reconstructed due to this residual motion. The other option is to use 

a motion resolved type reconstruction, where all data are binned to different motion 

states then using spatial similarity across different motion states to reduce the 

downsampling artifacts. As the number of bins increases, on one hand, the residual 

motion would reduce, however, on the other hand, a higher undersampling factor in 

each bin would induce undersampling artifacts. iMoCo, aims to model the respiratory 

motion effects, and incorporate spatial motion compensation instead of directly 

weighting data or segmenting data. Through volunteers and pediatric patient studies, 
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iMoCo shows capability to achieve high resolution, high SNR lung images without 

inducing motion artifacts. According to the quantitative comparison, the iMoCo and 

motion resolved reconstructions have the highest MD, and iMoCo and MoCo have 

higher aSNR compared to other methods. In addition, iMoCo is a general motion 

correction and reconstruction framework, so it could be extended to other applications, 

and is compatible with different trajectory designs. 

 

3.4.1. Motion Resolved Reconstruction and Motion Fields 

Estimation 

In iMoCo reconstruction, motion fields estimation largely depends on the motion 

resolved reconstruction as well as registration algorithms. Two experiments are 

designed to compare the final estimated motion fields with different reconstructions and 

registration algorithms.  

 The first experiment is designed to investigate how the regularization terms in the 

motion resolved reconstruction affect the motion estimation that is used for the motion 

compensation. Three different regularization combinations were used in this 

experiment, where the weightings for regularizations were empirically selected based on 

our previous experiments.  All three reconstructions have motion dimension total 

variation regularizations (temporal TV) following the standard XD-GRASP49 

reconstruction. After all reconstructions, the same Demons based non-rigid registration 

was used to estimation the motion field. An example of motion fields comparison in 

shown in Figure 3.11. And the correlation coefficients and mean Euclidean distances 
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among three motion fields indicate the motion fields are very consistent, indicating the 

motion estimation is robust to change of the regularizations, summarized in Table 3.1. 

 

Figure 3.11 Example of motion resolved reconstructions. In the first row are one end expiratory state 
image from the motion resolved reconstructions. In the second row are the estimated motion field in the 
S/I direction between the expiratory to inspiratory state. 

 

Table 3.1 Summary of correlation coefficient and mean Euclidean distance of motion fields with different 
regularizations. 

N = 11 
Temporal &  

spatial TV 

Temporal TV &  

spatial l1-wavelet 

correlation coefficient 0.95±0.02 0.99±0.01 

mean Euclidean distance 

(voxels) 
0.20±0.04 0.07±0.04 
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 The second experiment is to evaluate different registration algorithms including 

Demons, SyN with mean square error (MSE) similarity72, and b-spline registration73, as 

shown in Figure 3.12 . According to the results, Demons based and SyN with MSE 

similarity registration well registered two different motion states images. However, slight 

misalignment could be seen by using b-spline registration. 

 

Figure 3.12 Performance comparison among different registration methods. Three different registration 
methods, Demons, SyN with MSE similarity, and bspline, results are plotted in first row, (a). Difference 
between aligned image and reference image are plotted in second row, (a). Maximum Intensity Projection 
of the difference map between aligned image and reference image are shown in (b). 
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 As mentioned in the results, the number of motion states in motion resolved 

reconstruction determines the intra-bin residual motion, which would significantly affect 

the final reconstruction. However, iMoCo also largely depends on the motion field 

estimation. More motion states might degrade the motion resolved reconstruction 

images, leading to image registration errors.  iMoCo also depends on accurate motion 

field estimation, and errors in the motion field would propagate to final reconstructed 

image causing blurring or ghosting artifacts. 

 Previous UTE lung studies have reconstructed 4-6 motion states in motion resolved 

reconstruction with an approximately 2-fold undersampling rate overall that resulted in 

around 10-fold undersampling rate in each motion state data34,50. For the motion 

resolved reconstruction this work, we increased the number of motion states to reduce 

the intra-bin motion and also used a slightly coarser spatial resolution to reduce the 

undersampling rate.  This was aimed to ensure that the reconstructed image quality 

would not degrade the motion fields estimation and following motion compensated 

reconstruction.  We set the motion resolved reconstruction to 1.5mm isotropic resolution 

to keep the undersampling rate in single motion state under or around 10, as the 

number of motion states was set up to 12, while providing images that could distinguish 

inter-bin motion as small as 1.5mm.  

 The regularization terms and values for the motion-resolved reconstruction in 

Equation (3-1) were chosen empirically based on qualitative evaluation. There also 

maybe room to improve the proposed method through more sophisticated techniques, 

such as locally low rank contraints74, which also could improve the overall iMoCo 

method. 
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 In this work, we used one-to-one image registration between pairs of motion state 

images, and registration error might be further reduced by using group-wise registration. 

All the motion states images could be registered simultaneously, which might improve 

the robustness of registration process by taking advantage of the registration correlation 

among the motion states, and some work has shown promising results in 4D CT 

applications75. 

 

3.4.2. 3D Navigator and Irregular Motion Handling 

In this chapter, the self-navigator signals are simply used for respiratory motion binning. 

By using more sophisticated techniques, a 3D image based navigator could be 

extracted, then used to detect the bulk motion or irregular motion. In this work, data 

contaminated with bulk motion are discarded34,39, which reduces the scan efficiency. We 

could also be able to incorporate bulk motion or even more complicated irregular motion 

into iMoCo reconstruction, which might increase the scan efficiency as well as 

robustness to irregular motion. 

 

3.4.3. Respiration Related Pulmonary Abnormalities 

Some pulmonary abnormalities, such as air trapping, might lead to local intensity 

changes during respiration76. One of the limitations of our studies is that iMoCo 

assumed no signal intensity change over time in the models, which might lead to 

missing the dynamic change of the abnormalities during respiration. In the next chapter, 

I extended the iMoCo reconstruction to a higher dimension reconstruction to overcome 

the drawback. 
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3.5. Conclusion 

In this work, we proposed a new free breathing high resolution pulmonary MRI strategy, 

combining motion compensation, UTE, and compressed sensing, called iMoCo UTE. 

iMoCo UTE has been validated and evaluated via both volunteers and patient studies, 

and shows potential in pediatric and infant pulmonary MRI studies. 
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Chapter 4 Motion Compensated Low-rank 

Constrained (MoCoLoR) Reconstruction for 4D 

MRI 

4.1. Introduction 

As mentioned in the previous chapter, motion, especially respiratory motion, is one of 

the most challenging problems in thoracic as well as abdominal MRI, because of the 

limited encoding speed of MRI. Routine clinical protocols require patients to hold breath 

for single or multiple short durations (10~15 seconds) to reduce motion. However, for 

3D high resolution or 4D, such as dynamic contrast-enhanced, acquisitions, the total 

scan time would increase to a few minutes, which is impossible for patients to sustain 

breath-holds, and even shorter breath holds are challenging for pediatric patients and 

the patients suffering from compromised pulmonary function. Alternatively, external 

devices are used to monitor respiratory motion and trigger acquisition at specific motion 

states to reduce motion artifacts, but it would largely reduce the scan efficiency and 

prolong the total acquisition time. 

 3D non-Cartesian acquisition schemes, such as kooshball20, cones22, Stack-of-

Stars49, etc., have a few advantages over Cartesian schemes in the free breathing 

acquisition situation. Firstly, most of the non-Cartesian acquisition schemes repeatedly 

acquire the center k-space, which could be used as a self-navigator retrospectively 

gating data to certain motion state. In addition, by adding a random or pseudo-random 
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ordering77–79 into the design, non-Cartesian acquisitions would have increased temporal 

sampling incoherence, which would improve the following motion correction steps. 

 To reduce motion artifacts without sacrificing scan efficiency, one widely-used 

strategy is to group data into different motion states based on the motion signal, then 

reconstruct multiple motion states images using compressed sensing and parallel 

imaging, called motion resolved reconstruction. One well-known regularization used in 

the compressed sensing reconstruction is the total variation (TV) norm along the motion 

states dimension, and implementation details are described in XD-GRASP49. An 

alternative to the TV constraint is to reformulate the image series into a spatio-temporal 

matrix, known as Casorati80 matrix, then enforcing low-rank or locally low-rank on the 

Casorati matrix, which has been used in free breathing cardiac MRI, as well as dynamic 

contrast-enhanced (DCE) MRI81–83. 

 However, it has been reported in some computer vision applications that the low-rank 

model breaks down if the images are misaligned84. Similarly, in MRI applications, 

especially under free breathing imaging situation, the low-rank model might also fail 

because of the subject motion induced misalignment. Some recent studies integrate 

motion information in the low-rank constrained reconstruction models, such as motion 

adaptive patch-based low-rank constrained reconstruction85,86, and block low-rank 

sparsity with motion-guidance reconstruction87. The main idea of the above methods is 

to preserve the low-rank property of spatio-temporal matrices by searching the similar 

patches locally from the image series. However, when the problem extends from 2D to 

3D, the patch-based searching strategy might largely increase the computational 

complexity. In addition, all patch-based methods are assuming that the spatial 
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misalignment is only caused by translational motion. However, the assumption might 

not hold when it is applied to the thoracic and abdominal imaging88. 

 In this work, I proposed a new strategy to directly incorporate motion compensation in 

the low-rank constrained reconstruction model, called Motion Compensated Low Rank 

(MoCoLoR) reconstruction. There are two major steps in the MoCoLoR reconstruction 

framework. The first step is a motion survey. Lower quality motion resolved or dynamic 

images are reconstructed for motion field estimation. Secondly, derived motion 

information, such as respiratory motion or bulk motion, are added into the low-rank 

constrained reconstruction framework. We applied the proposed technique to two 

different studies: 3D high resolution motion resolved lung MRI, and 3D DCE abdominal 

MRI. The results showed that the proposed MoCoLoR method could further reduce 

motion artifacts and noise compared to the methods without motion compensation.  

 

4.2. Theory 

4.2.1. MRI Signal Model with Motion 

The general non-Cartesian MRI acquisition can be modeled as below, 

𝑑d(𝒌, 𝑡) = ∫ 𝑆d(𝒓)𝐼(𝒓, 𝑡)exp	(−𝑖2𝜋𝒓𝒌)𝐝𝒓                                (4-1) 

Here, the	𝒓 and 𝒌 are locations in image and k-space domain respectively. 𝑆d(𝑖 =

1,2,…𝑁) represent coil sensitivity maps, 𝐼(𝒓, 𝑡) are motion resolved or time resolved 

images, 𝑑d(𝒌, 𝑡) are k-space data. 



 53 

 For free breathing acquisitions without contrast enhancement, we assume that image 

changes are associated with respiratory motion. Then, acquisition model could be 

extended to incorporating motion information,  

𝑑d(𝒌,𝑚) = ∫ 𝑆d(𝒓)𝐼(𝒓,𝑚)exp	(−𝑖2𝜋𝒓𝒌)𝐝𝒓.                             (4-2) 

 The continuous acquisition could be segmented to finite motion states, indexed by 𝑚. 

Furthermore, all the linear operators could be discretized as matrix multiplications, 

𝑑d(𝒌,𝑚) = 𝑃(𝒌(𝑚))𝐹𝑆d(𝒓)𝐼(𝒓,𝑚) = 𝑬(𝑚)𝐼(𝑚)                          (4-3) 

Here, 𝑃(𝒌(𝑚)) represents non-Cartesian sampling pattern in the k-space at a certain 

motion state 𝑚. 𝐹 represents the Fourier transform. 𝑃(𝒌(𝑚))𝐹𝑆d(𝒓) could be combined 

into a single linear operator 𝑬(𝑚). 

 As for DCE MRI studies, contrast change over time should be included in the signal 

model as well. The continuous acquisition data would be sorted by time, and motion 

states 𝑚 would be also indexed by time. Equation (4-3) could be rewritten to include 

contrast change as below, 

𝑑d(𝒌(𝑡),𝑚(𝑡)) = 𝑃�𝒌(𝑡)�𝐹𝑆d(𝒓)𝐼(𝒓,𝑚(𝑡), 𝑡) = 𝑬(𝑡)𝐼(𝑚(𝑡), 𝑡)           (4-4) 

Here, 𝑚(𝑡) represents the motion state at a certain time 𝑡. And 𝐼(t) is a dynamic image 

series with the 𝑚(𝑡) motion state. To derive and model the subject motion, a motion 

survey step is required before the final reconstruction.  

 Two types of motion, bulk motion and respiratory motion, are considered within the 

scope of free-breathing body MRI. Error! Reference source not found. illustrates how 

to derive the above two types of motion from the continuous 3D radial acquisition. 
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Figure 4.1 Workflow of bulk motion and respiratory motion estimation for 3D radial sequence. For bulk 
motion, data are sorted by acquisition order, and high temporal but low spatial resolution images are 
reconstructed, then rigid registration is applied to derive the bulk motion over time. For respiratory motion, 
data are binned to different respiratory motion states based on the respiratory signal. Then different 
motion states images are reconstructed by constrained motion resolved reconstruction, followed by a 
non-rigid registration to derive respiratory motion. Finally, both the derived bulk and respiratory motion are 
incorporated in the proposed reconstruction. 

 

4.2.2. Bulk Motion Estimation 

Typically, high resolution 3D free-breathing acquisitions take a few minutes, and the 

longer acquisition time would have a larger possibility to induce bulk motion. To capture 

the bulk motion, we applied the time resolved reconstruction on the center k-space to 

generate high temporal resolution coarser spatial resolution image navigator34. Then, a 

frame-by-frame image based rigid registration is applied on the image navigators to 

capture bulk motion.  

argmax
M®¯°±(O,O/)

	MI�𝐼O,𝑀´µ¶1(𝑡, 𝑡")𝐼O/�                                          (4-5) 
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Here, 𝐼O represents the image navigator at certain time point	𝑡, and 𝑡" is the reference 

time point. 𝑀´µ¶1(𝑡, 𝑡") is the rigid transformation from time point 𝑡 to the reference time 

𝑡". And the similarity objective function is mutual information, MI89. 

 

4.2.3. Respiratory Motion Estimation 

Since the center k-space data can be repeatedly acquired in each or every few TRs with 

non-Cartesian acquisition schemes, a self-navigator technique is applied to extract 

respiratory motion information. The multi-channel center k-space data are combined 

with varied 𝛼d via an optimal weighting strategy,  

𝑑(𝟎,𝑚(𝑡)) = ∑ 𝛼d𝑃(𝟎)𝐹𝑆d(𝒓)𝐼(𝒓,𝑚, 𝑡)
$¹º»°
d¼C                                   (4-6) 

 Then, the combined self-navigator signals go through a low-pass filter (cut off 

frequency at 1Hz), and baseline correction, as described in Chapter 4. As for DCE MRI, 

we assume that the self-navigator signal could be modeled as an low frequency 

baseline drift added to the motion signal, which could be removed via baseline 

correction  

𝑑½(𝟎,𝑚(𝑡)) + 𝐶(𝑡) = 𝑑(𝟎,𝑚(𝑡))                                         (4-7) 

 After that, data are then binned to different respiratory motion states, indexed by 𝑚. 

Binned data are used to reconstruct images representing different motion states	𝐼� via 

the motion resolved reconstruction. Since the motion resolved images are usually highly 

undersampled, a regularization term with TV constraint along the motion dimension and 

a reduced reconstruction resolution are used to reduce undersampling artifacts, which 

would benefit the following registration step.  
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argmin
�¿,�∈{C,),…M}

C
)
�|𝑬�𝐼� − 𝑑(𝒌,𝑚)|�)

)
+ 𝜆2Ã�|∇Å𝐼�|�C		                          (4-8) 

 Then, deformations from 𝐼�, 𝑚 ∈ {1,2,…𝑀} to reference state image 𝐼�ÆÇÈ  are 

derived via image based hierarchical Demons non-rigid registration90.  

argmin
MÆÇ3%(�,�ÆÇÈ)

É�𝐼� −𝑀ÊË:7�𝑚,𝑚ÊËÌ�𝐼�ÆÇÈ�É
)

)
                                  (4-9) 

 For DCE images, the pre-contrast data are cropped from the full dynamic dataset 

then go through the motion resolved reconstruction and respiratory motion estimation 

mentioned above. And the full dynamic dataset goes through a time resolved 

reconstruction for rigid bulk motion estimation. The comprehensive motion 

transformation is given by combining the respiratory and bulk motion fields: 

𝑀(𝑡, 𝑡") = 𝑀ÊË:7�𝑚(𝑡),𝑚ÊËÌ�𝑀´µ¶1(𝑡, 𝑡")                              (4-10) 

Then motion fields are restored for the later low-rank constrained reconstruction. 

 

4.2.4. Motion Compensated Low-rank Constrained 

(MoCoLoR) Reconstruction 

As mentioned before, spatial misalignment will break down or degrade the low-rank 

property of the spatio-temporal matrix. Figure 4.2 describes how spatial registration 

affects the low-rank property. A 2D continuous acquired images, (a), are reformulated 

as Casorati matrix, (b), then the Casorati matrix would go through the singular value 

decomposition (SVD), (c). With image registration, images are aligned well, (d). 

Structural information are mainly stored in the first and second components with image 

registration. In contrast, without image registration, structural information spread to 
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higher rank components, (e). Accordingly, the singular values decay faster with than 

without image registration, (f). 

 

Figure 4.2 Effect of image registration on the low-rank property of the spatio-temporal matrix. Free 
breathing acquired images (a) are reformulated as spatio-temporal matrix (b). This matrix is decomposed 
into spatial bases and temporal bases via singular vector decomposition. Line profiles of images series 
with and without image registration are shown in (d), 4 principal spatial bases and singular values are 
shown in (e) and (f). 

 

 Similarly, to improve the low-rank constrained model, motion compensation is 

incorporated into the reconstruction. Then, it could be formulated as an unregularized 

optimization problem: 

argmin
�¿,�∈{C,),…M}

C
)
�|𝑬�𝐼� − 𝑑(𝒌,𝑚)|�)

)
+ 𝜆Í�|𝐌𝐈|�∗	                            (4-11) 

Here, the left term is squared-error data consistency term and the right term is low-rank 

penalty on the motion compensated spatio-temporal matrix, where 𝐈 = [𝐼C, 𝐼), … , 𝐼�] are 

the motion-state 3D images, and 𝐌 = [𝑀C,𝑀), … ,𝑀�] are motion fields corresponding to 
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motion states images, which are derived from the motion estimation step. 𝜆Í is the low-

rank penalty regularization parameter. 

 In (4-11), the 𝐌 operator is a non-invertible transformation, because the spatial 

interpolation step in deformation would decrease the spatial resolution. However, to 

solve the original problem directly, 𝐌Q𝟏 is required, which is not achievable. To avoid  

𝐌Q𝟏 calculation, we can rewrite the problem as below, 

argmin
𝒁,𝑰

C
)
�|𝑬�𝐼� − 𝑑(𝒌,𝑚)|�)

)
+ 𝜆Í�|𝐙|�∗ , 𝑠. 𝑡. 𝐙 = 𝐌𝐈	                 (4-12) 

 Then the problem could be solved via alternating direction method of multipliers 

(ADMM)91. ADMM would split the optimization problem into two subproblems, and 

update the subproblems separately.  

Data consistency subproblem update 

Conjugate gradient descent is used to solve the quadratic programming subproblem, 

𝐼�ÔÕC = argmin
𝐈

C
)
�|𝑬�𝐼� − 𝑑(𝒌,𝑚)|�)

)
+ �|𝐌𝐈 − 𝒁Ô + 𝒀Ô/𝜌|�)

)          (4-13) 

Low-rank constrained subproblem update 

The second step is to update low-rank constraint, 

𝒁ÔÕC = argmin
Ø

𝜆Í�|𝒁|�∗ + �|𝐌𝐈
ÔÕC − 𝒁 + 𝒀Ô/𝜌|�)

)                    (4-14) 

Singular value thresholding (SVT)92 can be easily applied to solve that subproblem. 

Dual variable update 

After updating all the subproblems, the dual variable is updated via gradient ascent, 

𝒀ÔÕC = 𝒀Ô + 𝜌(𝐌𝐈ÔÕC − 𝒁ÔÕC)                                  (4-15) 
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 For DCE MRI, we could reformulate equation (4-10), by sorting data and indexing 

imaging and motion operators by time 𝑡. Then using the same reconstruction algorithm 

(4-13) to (4-15) to solve. 

argmin
𝒁,𝑰

C
)
�|𝑬O𝐼O − 𝑑(𝒌, 𝑡)|�)

)
+ 𝜆Í�|𝐙(𝑡)|�∗ 		𝑠. 𝑡. 𝐙(𝑡) = 𝐌(𝑡)𝐗(𝑡)             (4-16) 

4.2.5. Implementation 

Algorithms are implemented using a high-performance workstation with 256GB 

memory, and Nvidia GeForce Gtx Titan 6GB GPU. Most of the MRI reconstruction 

operations such as coil sensitivity calibration, and NUFFT are implemented with SigPy 

(https://github.com/mikgroup/sigpy.git), which is a python package designed for MRI 

reconstruction. Both rigid and non-rigid registration are carried out by a standard 

registration toolbox ANTs72. 

 

4.3. Methods 

The proposed methods are applied to two different studies. One is 3D motion resolved 

lung MRI, the other is 3D abdominal DCE MRI. Both types of studies acquired data 

under free breathing lasting a few minutes. All the human studies were performed under 

IRB approval. 

 

4.3.1. 3D Free Breathing Lung MRI  

An optimized 3D UTE sequence with a golden angle ordering acquisition scheme was 

used for free breathing lung MRI. The total scan time was approximately 5 min to 5 min 

30 s. 𝑇𝐸 = 70𝜇𝑠, 𝑇𝑅 = 2.7 − 3.1𝑚𝑠 where 𝑇𝑅 increased as the prescribed FOV was 
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reduced, flip angle 4°, bandwidth was 125 kHz, number of total acquired spokes of each 

scan was approximately 100,000. The spatial resolution was reconstructed 1mm 

isotropic. The experiment was run on a 3T MR system (GE Healthcare, Waukesha, WI) 

equipped with an 8-channel cardiac coil. 

 

4.3.2. 3D Abdominal DCE MRI 

A golden angle cones trajectory UTE sequence was used for DCE acquisition. Total 

scan time was 5 minutes 11 seconds, TE=0.1 ms, TR=7.4 ms, flip angle 15 degrees, 

bandwidth was 125 kHz. The number of readout points was 711, and the number of 

interleaves was 41,861. The spatial resolution was reconstructed at 1 × 1 × 1.8 mm3, 

and the matrix size was 288 × 156 × 126. The experiment was run on a 3T MR system 

(GE Healthcare, Waukesha, WI) equipped with a 12-channel coil. DCE MRI 

reconstructions used a 2.8 second (400 readouts per time frame) temporal resolution. 

 

4.3.3. Quantitative Evaluation 

Two quantitative metrics are used in this work to evaluate the performance of the 

proposed MoCoLoR reconstruction. Maximum derivative (MD) of diaphragm is used to 

evaluate the motion correction improvement, where higher MD value represents sharper 

diaphragm structure and indicates better motion correction improvement. Since SNR is 

difficult to measure in in vivo studies, the apparent SNR (aSNR), mean signal intensity 

over background standard deviation is calculated to evaluate reconstructed image 

quality. 
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4.4. Results 

4.4.1. 3D Free Breathing Lung MRI  

For comparison, directly gridding (NUFFT), low-rank constrained reconstruction without 

motion compensation (NMC LoR), and the proposed MoCoLoR reconstruction are 

implemented and applied on the same datasets. 

 30 coronal slices maximum intensity projection (MIP) images reconstructed by 

different methods are shown in Figure 4.3. Due to the high undersampling factor, noise 

and streaking artifacts are obvious on NUFFT reconstructed images, and the low-rank 

constrained reconstruction largely reduces the artifacts and noise. However, the low-

rank constraint blurs some detailed features in areas with large motion, such as the 

diaphragm, because of the spatial misalignment. In contrast, the proposed MoCoLoR 

method reduces artifacts and noise without blurring out the details. Overall, the 

proposed MoCoLoR shows sharper vessels than the other two methods, and the 

improvement of MoCoLoR is obvious in the area with large motion, indicated by the 

arrows. 
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Figure 4.3 Healthy volunteer lung MRI study. Maximum intensity projection of 30 coronal slices 
reconstructed with the three methods are generated to compare performance among different 
reconstructions. 

 

 MD of diaphragm and aSNR of different structures are measured to evaluate the 

performance of different reconstructions, summarized in Table 4.1 and Table 4.2. 

MoCoLoR achieved the highest MD in the inspiration state among the three methods, 

and similar MD in the expiration state compared to the other two methods. As for aSNR, 

MoCoLoR achieves much higher vessel and parenchyma aSNR compared to the other 

two reconstructions, and keeps the airway aSNR close to 0. 

 A comparison of the patient images is shown in Figure 4.4. A small cyst could be 

found in the back of the lung, pointed out by red arrows on the right. With NMC LoR, 

undersampling artifacts are largely suppressed, however, the cyst is blurred and 
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enlarged in the inspiration state. Images carried out by the MoCoLoR shows clear 

contour of the cyst and airway structures. 

 

Table 4.1 Maximum derivative of diaphragm comparison on volunteer lung MRI study. 
 

NUFFT Low-rank MoCoLoR 

Inspiration  0.233±0.013 0.178±0.006 0.275±0.004 

Expiration 0.282±0.006 0.266±0.007 0.272±0.003 

 

Table 4.2 Apparent SNR comparison on volunteer lung MRI study. 
 

NUFFT Low-rank MoCoLoR 

Vessel  6.67 7.04 16.6 

airway 0.47 0.28 0.39 

parenchyma 1.04 1.15 2.57 
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Figure 4.4 Pediatric patient lung MRI study. A pediatric patient was scanned free-breathing with the 3D 
UTE sequence. Motion resolved images reconstructed by the three different methods from expiration 
state to expiration state are shown. A small lung cyst, and main airways are is pointed to by red arrows. 

 

4.4.2. 3D DCE MRI 

Low-rank constrained without motion compensation (NMC-LoR), Low-rank constrained 

with soft-gating (SG-LoR), and proposed MoCoLoR reconstructions are compared on 

the DCE dataset in which there was clear bulk motion of the subject. SG-LoR is 

implemented following the details in previous work93. Two levels of motion 

compensation are used in the MoCoLoR, one is only respiratory motion compensation 

(rMC), the other is both respiratory motion and bulk motion compensation (both MC). 
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Figure 4.5 DCE MRI reconstruction results. DCE images reconstructed by 4 different reconstruction 
strategies are plotted in (a). Images framed by the red rectangle are shown in (b). Line profiles across the 
heart are plotted in (c). The axial plane images are shown in (d). Dynamic signals of thoracic aorta are 
plotted in (e), the signals corrupted by bulk motion are pointed out by orange arrows. 

 



 66 

The results are summarized in Figure 4.5. Dynamic images series covering the contrast 

arrival process are reconstructed by different algorithms, plotted in (a). Single time point 

images framed with red rectangle are highlighted, shown in (b), the images are 

corrupted by bulk motion. With the MoCoLoR with both MC reconstruction, the 

myocardium is well delineated compared to other methods. Line profiles across the 

heart are plotted in (c), showing the myocardium can be clearly differentiated from the 

blood using the MoCoLoR with both MC. The same axial slice of each reconstruction at 

the time point are shown in (d), and the dynamic curve of the thoracic aorta (pointed by 

orange triangle) are plotted in (e). The MoCoLoR with both MC, well preserves the 

contour of aorta and corrects the motion induced signal drop, pointed out by orange 

arrows in (e).  

  



 67 

 

Figure 4.6 Respiratory motion correction comparison on DCE data. Both precontrast (top row) and 
postcontrast (bottom row) images reconstructed with different strategies are compared, airway and 
vessels in the lung (red arrows) and vessels in the liver (green arrows) are pointed out. 

 

 Sagittal images from both precontrast and postcontrast time points that had no  

obvious bulk motion are shown in Figure 4.6 to compare the respiratory motion 

correction performance of different reconstructions. MoCoLoR with respiratory MC and 

with both MC showed clearer vessels in liver and achieved higher MD of the diaphragm 

compared to NMC-LoR and SG-LoR strategies in both precontrast and postcontrast 

images. 
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4.5. Discussion 

In this chapter, I proposed a new reconstruction framework for free breathing low-rank 

constrained high dimensional MRI reconstruction. By incorporating motion 

compensation in the reconstruction, the low-rank property of the spatio-temporal matrix 

is preserved. The proposed reconstruction is applied and evaluated on two different 

applications under free breathing acquisition situation, one is 3D radial motion resolved 

lung MRI, the other is a 3D abdominal DCE MRI. The proposed MoCoLoR improved the 

final reconstruction images compared to the standard low-rank constrained 

reconstruction in motion resolved lung MRI and soft-gating low-rank constrained 

reconstruction in DCE MRI.  

 Compared to motion adaptive low-rank strategies, the proposed method directly 

extracts motion information from the images instead of searching in the local region, 

which would be more robust to undersampling artifacts. In addition, most of motion 

adaptive low-rank strategies consider only translational motion, however, subject motion 

is usually non-rigid, especially in chest and abdomen. In contrast, MoCoLoR is able to 

adapt more sophisticated motion models. 

 In this work, I only used the global low-rank constraint in the reconstruction, but it 

could be extended to use locally low-rank and multi-scale low-rank constrained 

reconstruction to further improve the DCE reconstruction82,93. In addition, the MoCoLoR 

can adapt to other low-rank or model based reconstructions, such as T2 shuffling94, MR 

Fingerprinting95, and magnetization preparation shuffling96, which are also sensitive to 

subject motion. 
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 One of the challenges in the proposed method is computational complexity, 

especially for high temporal resolution DCE reconstruction. A compressed 

representation of low rank model could be used to reduce computation and memory 

usage, which has been well established in the Extreme MRI method97. Similarly, we 

could also estimate the temporal bases by using coarser resolution then only update 

spatial components in the full resolution reconstruction, as proposed in the GRASP-pro 

method98. 

 

4.6. Conclusion 

In this chapter, I proposed a 4D reconstruction method for free breathing MRI by 

incorporating motion compensation in the low-rank constrained reconstruction model, 

called MoCoLoR. The proposed method outperforms the standard low-rank constrained 

reconstruction in both motion resolved lung MRI and abdominal DCE MRI. 
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Chapter 5 5-minute non-sedated neonatal and 

pediatric pulmonary UTE based MRI studies 

5.1. Introduction 

Computed tomography (CT) is the standard and widely used imaging technique for 

assessing lung anatomy, due to short scan time and high spatial resolution. But CT 

inevitably requires radiation exposure for subjects, which is particularly concerning for 

neonatal and pediatric patients70. MRI would be an alternative to CT for neonatal and 

pediatric pulmonary screening, and its flexibility also lends to further tissue 

characterization and testing of cardiac function.  

 However, lots of challenges make neonatal and pediatric pulmonary MRI difficult. 

First of all, low proton density and short T2* properties largely reduce the parenchymal 

signal32. In addition, compared to CT, MRI requires a much longer scan time, which 

makes pulmonary MRI vulnerable to subject motion artifacts, especially from respiratory 

motion47,49. Recently, ultrashort echo time (UTE) acquisition schemes combined with 

motion correction strategies have been applied to pulmonary imaging in adults34,99. UTE 

overcomes the fast signal decay in lung parenchyma and motion correction allows free 

breathing scans. 

 As for neonatal and pediatric MRI, it is more challenging, especially under a non-

sedated free breathing situation. Unlike adults, it is difficult for children to keep still 

during a long scan and their respiration rates tend to be higher and less regular. 

Therefore, a limited scan time and motion robust imaging techniques are required. 



 71 

Additionally, most of the MRI hardware and software are designed with adult anatomy 

and physiology in mind, so these factors should also be optimized to suite the unique 

anatomy and physiology of children70. 

 To overcome the above challenges, a 5-minute UTE based MRI strategy is proposed, 

combining the optimized sequence, specific hardware setups and motion correction 

strategies. This chapter firstly compared the differences between adult and pediatric 

studies from the technical aspects, and then the proposed strategy was described in 

details. Finally, the strategy was applied on several subjects with age range from 

several-week-old newborns to teenagers with different lung abnormalities. 

 

5.2. Methods 

5.2.1. Adult and Neonatal/Pediatric Scan Comparison 

A few differences between adults and pediatric scans are summarized in Figure 5.1. 

Compared to adults, anatomical structures of children and newborns, such as airways, 

vessels are smaller, which require higher imaging resolution, shown in (a). Similarly, 

varied size of receiver coils, in (b), are also used to fit different size of subjects. For 

newborns and children, smaller but denser elements coil arrays, which can provide 

higher local SNR, are used. As for older subjects, like teenagers or adults, larger 

element coil arrays are used because of better penetration depth. In addition, higher 

respiratory rates and different breathing patterns of newborns and children are shown in 

the comparison according to the respiratory signals derived from different 4 subjects, in 

(c). Therefore, the standard lung MRI protocols and motion correction strategies for 

adults might need to be optimized for pediatric or neonatal studies. 
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Figure 5.1 Pulmonary UTE scan comparison among newborns, young children, and adults. Slices from 
both coronal and axial view of three different subjects are shown in (a). Different receive coil arrays are 
selected for different size subjects, in (b). An example of respiratory waveforms comparison shows 
different respiratory rates and patterns between a newborn, young child, pre-teenager, and adult, plotted 
in (c). 

 

5.2.2. Patient Recruitment 

Pediatric and neonatal patients were recruited for MRI, with Institutional Review Board 

approval and parental informed consent. 
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5.2.3. Data Acquisition   

All the studies were run on clinical 3T scanners (GE Healthcare, Waukesha, WI), with 

different coil arrays depending on size of the subjects. All the patients were scanned 

under free breathing situation and without sedation. An SNR optimized 3D UTE 

sequence36 with golden angle ordering was used for all the scans, TE = 0.08~0.1 ms, 

TR = 3.1~3.4ms, flip angle = 4° . For newborns and children patients, image resolution 

was set to 1.1mm isotropic or even higher. All scans acquired ~100,000 radial spokes, 

with total scan time no more than 5.5 minutes. 

 For comparison, patients were also scanned with a T1 weighted (T1w) sequence and 

a T2 weighted (T2w) sequence. The T1w images were acquired with breath holds, TE = 

1ms, TR = 2.1ms, 1.1 × 1.1 × 4mm3 spatial resolution, and total scan time was 12s. 

Axial PROPELLER fast spin echo (FSE) sequence, and single-short fast spin echo 

(SSFSE) sequence with 1.4 × 1.4 × 4mm3 spatial resolution, were used for T2w 

acquisition. The SSFSE T2w sequence was run with prospective navigator for 

respiratory gating, the PROPELLER FSE was run without any gating. The T2w 

sequences usually took 3~4 minutes. 

 

5.2.4. Image Reconstruction and Motion Correction for UTE 

Acquisition 

Two types of reconstructions were used in the clinical studies. One is direct non-uniform 

fast Fourier transform (NUFFT) reconstruction without motion correction, the other is a 

motion corrected reconstruction. The data transfer and reconstruction workflow are 
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illustrated in Figure 5.2 . Direct NUFFT images would be sent back to the scanner 

before the end of the exam for quality control. And the motion corrected reconstruction 

would be run to generate high quality motion free images, then the images are sent 

back to the scanner and picture archiving and communication system (PACS). 

 For the motion corrected reconstruction, a self-navigator strategy was first applied to 

the UTE data for extracting respiratory motion. Self-navigator signals with large drift 

caused by bulk motion were rejected before continuing onto the final reconstruction. 

Then, the iMoCo reconstruction, introduced in Chapter 3, was used to reconstruct the 

3D high SNR motion corrected exhale state images. 

 

Figure 5.2 Clinical workflow of the UTE reconstruction. After the UTE sequence is completed, raw data 
would be transferred to a high performance computing cluster (HPCC) and then go through two 
reconstructions. A fast reconstruction carried out by direct NUFFT algorithm takes total around 10 
minutes (including data transfer time) to send images back to the scanner for quality control. A motion 
corrected reconstruction algorithm would be run for a few hours to get a high quality motion free images, 
which would be sent back to the scanner then to the PACS after the MRI exam. 
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5.3. Results 

The 5-min free breathing UTE scans from seven subjects, including two newborns, 

three young children, and two teenagers, are shown in Figure 5.3 . Newborns were 

scanned with 8-channel head coil array, with less than 1mm isotropic resolution. Young 

children were scanned with the 32-channel cardiac array or 12-channel shown in Figure 

5.1 (b), with 1 to 1.1mm resolution. Teenagers were scanned with 8-channel cardiac 

array, with 1.1 to 1.4mm resolution. With the optimized sequence, parameters, and 

motion correction, images show high SNR and clear small structures (vessels and 

airways) in the lungs. 

 

Figure 5.3 Example images from seven pediatric/neonatal studies. For each case, two slices (coronal and 
axial) from the 3D UTE images are shown, and subjects are sorted to three groups based on their ages. 

 

The comparisons with other sequences are summarized in Figure 5.4. For the SSFSE 

sequence, the prospective respiratory gating with pencil-beam navigator sequence was 

used. The UTE images have higher SNR, and less motion artifacts, compared to the 

GRE and the SSFSE images. The bottom row shows the comparison on a newborn 

subject. The hypointense area, pointed out by red arrows, can be clearly observed in 

the UTE images, which is difficult to differentiate on the T1w or T2w images. 
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Figure 5.4 MRI sequence images comparison in the lungs. Two SSFSE T2w sequences with navigator 
based respiratory gating, one axial 3D GRE breath-hold sequence, and the optimized UTE sequence 
images from one pediatric patient are compared (top two rows). UTE images showed higher SNR 
(dashed red circle) and were more robust to motion (dashed orange circle) compared to other sequences. 
In the bottom row, the axial PROPELLER FSE T2w sequence, the axial 3D GRE sequence, the optimized 
UTE sequence, and a CT scan are compared. The air trapping area (red arrows) shows hypointense in 
both CT and UTE images. 

 

 The UTE images are also compared to standard clinical CT images on three pediatric 

patients, as shown in Figure 5.5. Images in the first row are from an 8 year-old female 

with Surfactant Protein C deficiency and lung disease, where a small lung cyst (pointed 

out by red arrows) is well delineated by the chest CT as well as the 3D UTE. The 

second row shows the images from a 5 year-old female, in which a small lung nodule 

could be distinguished from UTE images (surrounded by orange arrows), comparable to 

CT scan. The third row shows scans from a 4 year-old male with systemic juvenile 
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idiopathic arthritis who has childhood interstitial lung disease. Ground-glass opacity 

observed on the CT is also observed in the UTE images, circled by dashed green line. 

 

Figure 5.5 UTE and CT comparisons. UTE images of three patients with different abnormalities are 
compared to their CT scans. The first row images are from a 8 year-old female with Surfactant Protein C 
deficiency and lung disease, where small lung cyst is pointed out by red arrows. The second row shows a 
5 year-old female both UTE and CT images, where a small lung nodule is surrounded by orange arrows. 
The third row shows scans from 4 year-old male with systemic juvenile idiopathic arthritis who has 
childhood interstitial lung disease, and ground-glass opacity is circled by dashed green line. 

 

 The results of two patients with a 6-month follow-up MRI scan are shown in Figure 

5.6. Images of both patients show consistent image quality of the UTE from two different 

visits, which indicate the reproducibility of the proposed strategy and feasibility for 

longitudinal studies. For patient 1, septal thickening, pointed out by red arrows, are 
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consistently observed on the CT and both UTE scans. For patient 2, similar shape and 

size lung nodule could be observed in CT and the first visit UTE, and the nodule 

appears to be gone in the 6-month follow-up UTE image. 

 

Figure 5.6 Follow-up studies results. Two pediatric patients got their second MRI exam 6 months after 
their first MRI, and the CT scans happened around their first MRI exams. For patient 1, septal thickening 
is pointed out by red arrows.  For patient 2, a lung nodule region is surrounded by orange arrows. 

 

5.4. Discussion 

This chapter discussed the practical considerations in neonatal and pediatric pulmonary 

MRI studies. Imaging parameters, hardware setups, and motion correction strategies 

need to be optimized for neonatal and pediatric studies. The proposed 5-min free 

breathing non-sedated neonatal and pediatric lung UTE is highlighted, and applied to 

patients varied from newborns to teenagers. The optimized UTE outperforms other 

sequences and achieves high image quality for distinguishing different lung 

abnormalities. The results also show the feasibility of 3D UTE for longitudinal follow-up 

studies. 
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 As mentioned before, the clinical workflow of the lung UTE scan needs data transfer 

and a long reconstruction time for motion corrected reconstruction. To add the UTE 

protocol into regular clinical scan, we would put more efforts to shorten the waiting time 

for the high quality reconstruction. In the future, we would leverage parallel and 

distributed computing techniques to speed up the reconstruction100,101, and optimize the 

iterative algorithm to increase the rate of convergence. 

 

5.5. Conclusion 

In this chapter, I proposed an optimized 5-minute non-sedated neonatal and pediatric 

pulmonary UTE strategy considering practical challenges in pediatric MRI. The 

optimized UTE strategy outperforms the standard T1w and T2w sequences in lung MRI, 

and captures abnormalities comparable to chest CT, which has potentials for a broad 

range of clinical applications in pediatrics and neonatology. 
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Chapter 6 Optimizing Trajectory Ordering for 

Fast Radial ultra-short TE (UTE) Acquisition  

6.1. Introduction 

Ultra-short echo time (UTE) MRI exhibits great promises in imaging short T2* 

components, such as bone, lung, etc. To achieve the shortest TE, UTE sequences 

usually start acquisition right after the RF excitation from the center k-space, as 

mentioned in Chapter 2. Center-out radial acquisition is a widely used trajectory for UTE 

acquisition. There are a few benefits using radial trajectory, such as simple gradient 

design, robust to chemical shift and B0 inhomogeneity, etc. One major application of 

UTE sequence is lung MRI. However, 3D UTE acquisition usually takes a few minutes 

to achieve high resolution image, which is impractical to acquire under breath-holding 

condition. To increase the robustness to respiratory motion, random or pseudo-random 

ordering schemes would be applied to UTE design. One of the widely used pseudo-

random ordering schemes is golden angle ordering scheme. The original golden angle 

scheme is designed for 2D radial trajectory or 3D stack-of-stars trajectory. Recently, a 

3D golden angle scheme with two golden ratios is proposed for the 3D koosh ball radial 

trajectory79.  

 Like standard GRE sequences, UTE sequence usually requires a large spoiling 

gradient before each TR to dephase residual transverse magnetization in the 

subsequent TRs. However, spoiling gradients102 prolong the TR and reduce the 

encoding efficiency. An alternative is to use an RF spoiling strategy by changing the 
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phase of RF excitation TR by TR, but it still requires a rewinding gradient to refocus the 

magnetization. Lin103 proposed to combine randomized RF phases with strong spoiler 

gradient to achieve a steady state with very slight fluctuation. In short, even with RF 

spoiling strategy, spoiler gradient and rewinder gradient are still required in the UTE 

sequence. 

 To reduce total acquisition time and increase scan efficiency, reducing or even 

removing spoiler gradient should be considered. Similar idea has been used in zero TE 

(ZTE) sequences104. In ZTE, encoding gradients are adjusted slightly between the 

successive excitations, and a short waiting time is added to the end of acquisition to 

serve as a small spoiler gradient. This scheme could be also applied to the UTE 

acquisition to reduce or remove spoiler gradient. In addition, adding RF spoiling to the 

sequence might further improve the spoiling effects. Roeloffs et al., investigated the 

effect of view ordering on spoiler gradient free 2D radial MRI with randomized RF 

phases105. Compared to the schemes with large angle change, such as the golden 

angle scheme, small incremental angle radial schemes show much lower artifact levels 

in the final images.  

 In this chapter, I firstly theoretically demonstrated the gradient spoiling effects of the 

center-out radial UTE view ordering. Based on that, I proposed a reordered 2D golden 

angle (r2DGA) scheme to smoothly adjust encoding gradients, but still keep the 

robustness to respiratory motion. The proposed r2DGA ordering is compared to the 

sequential and the 3D Golden Angle (3DGA) ordering schemes. I evaluated the 

proposed method in both phantom and free breathing volunteer lung MRI studies. I also 
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applied the proposed scheme to breath-holding scan to increase scan efficiency and 

improve the image quality. 

 

6.2. Theory 

6.2.1. Signal Evolution in Spoiler Gradient Free UTE  

To help describe the refocusing and dephasing phenomena of the transverse 

magnetizations in the UTE sequence, the sequence could be decomposed into three 

components: RF effect, gradient effect, and “other” (including relaxation, diffusion, and 

exchange etc.). According to the Bloch equations106,107, the RF effect on the 

magnetization could be given by: 
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Where [𝑴]Q and [𝑴]Õ are the magnetization before and after the RF pulse, 𝛼 and	Φ are 

flip angle and phase of the RF pulse. 𝑀Õ and 𝑀Q	, representing transverse 

magnetization, can be converted to 𝑀H, and 𝑀J via a unitary transformation108.  

 Gradient effects could be written as a diagonal matrix multiplication. Gradients would 

have a phase accumulation effect on the transverse magnetization. 
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Here, the 𝑮 and 𝒓 represent spatial encoding gradient and spatial location. Similarly, 

relaxation could be modeled as below, 
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Here, 𝑇C and 𝑇) are the longitude and transverse relaxation time, and 𝑇𝑅 is the 

repetition time. As for diffusion, we simplify the model as a Gaussian diffusion model, 

where 𝒌 is the k-space location and is equal to ∫ 𝛾𝑮O
" 𝑡. 
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  We can now ensemble the above components together. 

𝑴ñÕC = 𝑫ñÕC𝑷ñÕC(𝑨ñÕC𝑹ñÕC𝑴ñ + 𝑩ñÕC)                               (6-5) 

 In this study, we used a few assumptions for the gradient spoiling analysis. In the 

context of the UTE sequence, the flip angle is usually set to be very small, so the 

refocused signal only accounts for less than 0.27% of the total signal (for flip angle 

smaller than 6°), which could be ignored in the analysis. In addition, chemical exchange 

effect is also ignored under small flip angle condition, resulting in the following 

simplification of Equation (6-1): 
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 Plugging (6-2,3,6) into (6-5), we get:  
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𝑴ñÕC can be split to two parts, the excitation magnetization term (first row, desired 

signal) , and the previous transverse magnetization term (second row, undesired 

residual signal), both terms share the same phase accumulation and T2 decay in each 

TR, but with different diffusion b-values. Diffusion effects on the previous transverse 

magnetizations depend on the previous accumulated phases as well as the gradient in 

the current TR. 𝒌𝒏 represents the accumulated phase after n TRs, given by: 

𝒌𝒏 = ∑ ∫ 𝛾𝑮(𝑡)𝑑𝑡2ù»úR
2ù»

ñ
d¼"                                             (6-8) 

 According to Equation (6-7), decay of the previous transverse magnetization depends 

on the 𝒌𝒏 sequence. To suppress the previous residual transverse magnetizations, we 

need to maximize |𝒌𝒏| in (6-8) in the following TRs, which would induce a strong 

dephasing effect as well as a large diffusion effect. Therefore, the ordering design plays 

an important role in spoiler gradient free UTE.  

 A 2D center-out radial sequence with 20 radial spokes are simulated to show how 

radial ordering schemes affect the spoiler gradient free sequence. Two ordering 

schemes, sequential and golden angle ordering, are compared in Figure 6.1. Trajectory 

orderings are color-encoded, plotted in (a), and the respective pulse sequence sketches 

are plotted in (b). The accumulated gradient spoiling moments evolutions of each 

excitation, calculated from (6-8), are plotted in (c). The sequential ordering scheme has 

a smooth change of readout direction, which would increase the accumulated gradient 

spoiling moments as well as the diffusion attenuation effect. In contrast, due to large 

readout direction change, the golden angle scheme would refocus residual transverse 

signal in the following excitations causing signal contamination. In addition, larger 

accumulated gradient spoiling moments of the sequential ordering scheme would 
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associate with stronger diffusion effects, which would further attenuate the residual 

transverse signals, shown in (d).  

 

 

Figure 6.1 Effect of 2D radial ordering on gradient spoiling. Sequential and golden angle ordering 
schemes with 20 spokes are plotted in (a). The corresponding sequence sketches are shown in (b). 
Spoiling moments and diffusion effects induced by the encoding gradients of two different ordering 
schemes are plotted in (c) and (d). 
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 A simple digital simulation on a uniform circle phantom are shown in Figure 6.2. The 

same acquisition schemes are used with Figure 6.1 . The 6th TR is selected for 

comparison, the accumulated gradient spoiling moments are plotted in (b), a zoomed-in 

of Figure 6.1 (c). The observed signals in 6th TR of simulation are plotted in (c), and the 

signals are decomposed to signals from different excitations according to (b). With the 

sequential scheme, residual signals are suppressed, the observed signal is well-aligned 

with the desired signal. However, with the golden angle scheme, the observed signal is 

largely corrupted by refocused residual signal.  

 Similarly, for the 3D UTE acquisition, smoothly changing radial readout directions can 

reduce the need for a spoiler gradient. 

 

Figure 6.2 Simulation of gradient spoiling effect with different ordering schemes. The digital phantom, (a), 
is used for simulation. Spoiling moments of all excitations in 6th TR are shown in (b). Signal acquired from 
6th TR are plotted in (c). Dashed red lines show the acquired signal, and signal from the current 
excitation and residual transverse signals are plotted in the same colors as in (b). 
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6.2.2. View Ordering Design for 3D UTE Acquisition 

To maximize the gradient spoiling moments of the spoiler free UTE sequence, the 

encoding gradients should be smoothly changed. Sequential ordering, similar to the 2D 

example above, is one of the candidates fulfilling the requirement. However, sequential 

ordering is not robust to subject motion. In contrast, golden angle ordering is more 

robust to motion than sequential ordering. As for 3D acquisitions, to balance the 

robustness to motion and smoothness of the readout direction changes, I proposed to 

combine a through-plane (z-axis) continuous acquisition with an in-plane golden angle 

acquisition scheme, and named it reordered 2D golden angle scheme. 

 Three different view ordering schemes, sequential ordering, the proposed reordered 

2D golden angle (r2DGA), and 3D golden angle (3DGA) schemes, are used in this 

work.  

 1000 continuously acquired spokes out of the total 100,000 spokes with three 

ordering schemes are plotted in Figure 6.3 (a), and the pseudo-code to generate the 

ordering schemes are listed in (b). Average accumulated spoiling moments of 

transverse magnetization in the following TRs are used to evaluate the accumulated 

spoiling effects, as plotted in (c). Similar to the 2D example, the 3DGA scheme 

generates a small accumulated spoiling moments which might not be enough to 

dephase residual transverse magnetizations without spoiler gradients. In contrast, the 

sequential and r2DGA schemes generate much larger spoiling moments to dephase the 

residual signals. 



 88 

 
Figure 6.3 3D trajectory ordering schemes and spoiling effect analysis. 1000 continuous spokes are 
plotted in (a), sequential acquisition only covers a small part of k-space, however, r2DGA and 3DGA 
schemes sample the k-space more uniformly. Pseudo-code to generate acquisition trajectory schemes 
are summarized in (b). The average accumulated spoiling moments created by different schemes in the 
subsequent TRs are plotted in (c), the sequential and the r2DGA schemes creates much larger spoiling 
moments than the 3DGA in the following TRs. 
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Figure 6.4 Number of spokes per group in the r2DGA ordering design. 1000 spokes distributions with 
different number of spokes per group are plotted in (a), and the accumulated spoiling moments are 
plotted in (b) accordingly. As the number of spokes per group increases, the accumulated spoiling 
moment increases, at the expense of less uniform spatial sampling over time. 
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 There is one tunable parameter in the r2DGA design algorithm, the number of spokes 

per group. 1000 continuous spokes with 6 different number of spokes per group are 

plotted in Figure 4, (a), and the average accumulated spoiling moments are plotted in 

(b) accordingly. As the number of spokes per group increases, the average 

accumulated spoiling moments also increase in the later TRs. Meanwhile, sampling 

pattern with more number of spokes per group are less uniformly distributed, and thus 

are also more sensitive to motion. 

 

6.3. Methods 

6.3.1. MRI Experiments 

All experiments were run on a 3T MR scanner (General Electric, Milwaukee, WI) with 

the 8-channel phased array cardiac coils. An optimized variable density readout center-

out radial UTE sequence was used in all the experiments. The 3DGA ordering 

sequence with constant 4p (4 units) spoiler gradient with the same FOV, spatial 

resolution, and sampling bandwidth as other scans is acquired as the reference for both 

phantom and in vivo studies.  

 

6.3.2. Phantom Study 

A multi-purpose phantom is used in all the experiments. Data were acquired with 1mm 

isotropic resolution, image matrix size 200 × 200 × 200, TE=100μs, readout 

bandwidth=125kHz, TR=2.2ms. The UTE sequences with sequential, 3DGA and 

proposed r2DGA ordering schemes acquired without spoiler gradient are compared. All 
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three sequences are acquired with 100,000 spokes. Phantom is also scanned with 

different scales spoiler gradients with r2DGA trajectory ordering, with shortest TR 

(2.2ms~3.1ms). To fairly compare the acquisition ordering schemes, direct NUFFT with 

density compensation followed by the coil combination reconstruction are used for the 

phantom studies. Apparent SNR (aSNR) of the reconstructed images are measured to 

evaluate the performance of different ordering schemes. 

 

6.3.3. Human Study 

All the volunteer studies conducted were approved by UCSF Institutional Review Board 

(IRB). Two types of acquisitions are designed for human studies, free breathing scan 

and breath-holding scan.  

 For free breathing scans, data were acquired with 1.25mm isotropic spatial 

resolution, image matrix size 256 × 256 × 256, TE=70μs, 100,000 spokes, with around 

2-fold undersampling. Motion corrected image was reconstructed with the self-navigated 

soft-gating reconstruction. The TRs depended on the moments of the spoiler gradient, 

in the range of 1.9 and 3.7ms, and the flip angles were set to 4~6° accordingly to target 

Ernst angle with 1s T1.  

 For breath-holding scans, data were acquired with 2mm isotropic spatial resolution, 

image matrix size reduced to 160 × 160 × 160, TE=70μs, and number of spokes were 

calculated to fit the whole sequence in 15 seconds. 3DGA scheme with 4 units spoiler 

gradient acquired ~6000 spokes, and r2DGA schemes without spoiler gradient acquired 

~10000 spokes in 15 seconds. Because little respiratory motion is assumed in the 
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breath-holding scans, direct NUFFT with density compensation followed by coil 

combination reconstruction are used without any motion correction. 

 

6.4. Results 

6.4.1. Phantom Study 

Single axial slices at the same location from 3DGA with 4 units spoiler gradient, 3DGA 

and r2DGA without spoiler gradient, are shown in Figure 6.5 . Compared to 3DGA 

without spoiler gradient, the r2DGA ordering scheme largely suppresses the unwanted 

residual transverse signals and has a much lower root mean square (RMS) of the 

difference with reference.  

 However, there are still slight artifacts shown on the image without spoiler gradient. 

Therefore, spoiler gradients with varied scales were added to the sequence with the 

r2DGA scheme to investigate the improvement contributed from the extra spoiler 

gradients. Figure 6.6 shows 5 datasets with different scales of spoiler gradients. One 

axial slice of each data are plotted in (a), and line profiles across the comb structure 

(red dashed line) are plotted in (b). By adding a small spoiler gradient, the aSNR largely 

increases. As the moment of spoiler gradient further increases, the aSNRs are slightly 

elevated. However, the scan time largely increases due to the longer TR. From the line 

profiles comparison, it could be observed that by adding a small spoiler gradient the 

comb structure becomes sharper and the background becomes flatter compared to the 

acquisition without a spoiler gradient. 
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Figure 6.5 Phantom study with different ordering schemes. Images acquired with the reference sequence, 
the 3DGA without spoiler gradient, and the r2DGA without spoiler gradient are compared. Compared to 
reference scan, the image acquired with the r2DGA ordering scheme has very light noise-like artifacts, 
3DGA without spoiler gradient shows strong artifacts compared to the other two, and the root mean 
square of difference with reference much higher. 
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Figure 6.6 Phantom study with different spoiler gradients using the r2DGA scheme. In (a), spoiler 
gradients with different spoiling moments are compared, as spoiling moment scale increases, scan time 
and apparent SNR increases. The line profiles (red dashed line plotted in (a)) are compared in (b). 
Without a spoiler gradient, small fluctuating signals (pointed out by red arrows) show up in the 
background.  

 

6.4.2. Volunteer Study 

Images acquired with the 3DGA ordering with 4 units spoiler gradient (reference), the 

r2DGA without spoiler gradient, and the r2DGA with a 1 unit spoiler gradient are shown 

in Figure 6.7.  
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Figure 6.7 Free-breathing volunteer study. One coronal slice of 3D volume with different ordering 
schemes are shown in (a), the image acquired by the r2DGA without spoiler is slightly noisier than the 
reference scan, but reduces the scan time by 40%. Maximum intensity projection (MIP) of 15 coronal 
slices from each volume are plotted in (b), the r2DGA with small spoiling gradient delineates most small 
vessels and has a relatively shorter scan time compared to the reference scan. 
 

 The r2DGA acquisition without the spoiler gradient can save 40% scan time compare 

to reference scan. However, slightly noise-like artifacts show up in the images with the 

spoiler free acquisition, which make small airways difficult to distinguish from 

parenchyma tissue (pointed out by orange arrows). By adding a 1 unit spoiler gradient, 

these artifacts are largely suppressed, and image quality is comparable to reference 

scan. And the scan time is still 20% shorter than the reference. Maximum intensity 

projection (MIP) maps of 15 coronal slices from each acquisition are shown in (b), 

r2DGA with 1 unit spoiler gradient largely reduce the artifacts compared to without 

spoiler gradient acquisition and preserve more fine structures, pointed out by red 

arrows. 
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Figure 6.8 Breath-holding volunteer study. Two acquisition schemes, 3DGA with 4 units spoiler gradient 
and r2DGA without spoiler gradient, were used to acquire breath-holding images in 15 seconds. Both 
inspiration and expiration breath-holding situations are compared. The r2DGA shows less streaking 
artifacts and clearer lung structures than 3DGA scheme because of higher scan efficiency. 

 

 It is more valuable to shorten the TR and increase total number of readouts for 

breath-holding scans. Figure 6.8 shows a 15 seconds breath-holding acquisition with 

two different acquisition schemes. With 4 units spoiler gradient, the 3DGA sequence 

acquires ~6000 spokes in 15 seconds, and has approximately 12-fold undersampling. In 

contrast, the r2DGA acquisition can fit ~10000 spokes within the same duration, 

reducing the undersampling factor to 7.2. Both the coronal and axial slices from the 

same subject under different types of breath-holding, inspiration and expiration are 

compared. Much less streaking artifacts could be seen with the r2DGA spoiler free 

acquisition compared to with the 3DGA. And the small anatomical structures, such as 

vessels, parenchyma, and airways (pointed out by red arrows) are also better 

delineated with the r2DGA spoiler free acquisition. 
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6.5. Discussion 

In this chapter, I analyzed how the 3D center-out radial trajectory ordering affects the 

transverse magnetization spoiling, and proposed a new reordering scheme named 

reordered 2D Golden Angle scheme to reduce or remove the need of spoiler gradient in 

conventional UTE sequence. Compared to the 3D golden angle scheme, the r2DGA 

changes encoding gradient much more smoothly, which would induce larger spoiling 

moments and diffusion effects to suppress the residual transverse magnetization. In 

addition, the r2DGA scheme still samples randomly in two dimensions to keep the 

robustness to subject motion. Number of spokes per group is a tunable parameter in the 

r2DGA design algorithm. By reducing the number of spokes per group, sampling pattern 

would be more uniform in the k-space, however, the induced spoiling moments and 

diffusion effects would decrease. Empirically, the number of spokes per group is set to 

50 targeting at around 100ms per group, and the number of groups is total spokes 

divided by number of spokes per group. 

 In addition to increasing encoding efficiency, there are a few other benefits by using 

the r2DGA spoiler gradient free sequence. Firstly, eddy current effects might be 

reduced by reducing or removing the large spoiling gradients. Secondly, the acoustic 

noise and associated vibrations would also be reduced without the large spoiler 

gradient, since rapid changes of gradient pulses create the majority of acoustic noise in 

MRI.  

 I did not quantify or quantitatively analyze the residual transverse magnetizations 

evolution in this work, since they largely depend on the subject structure as well as T1, 

T2 relaxation property of the subject. In essence, the accumulated spoiling moments of 
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the transverse magnetization could be treated as sampling the k-space at very high 

frequency. We assume signal intensity decreases as the spoiling moment increases 

(high frequency components in the k-space), regardless of the diffusion effect. If the 

subject has repeated high frequency features, without large spoiler gradients, the 

residual transverse magnetizations might still corrupt the signals in the following TRs.  

 In this chapter, the proposed ordering design is one of the options for free breathing 

acquisition. By revisiting the gradient spoiling analysis, the ordering design could be 

formulated as a convex optimization problem, with certain sampling criteria, such as 

uniformity of the sampling scheme. However, as the number of radial spokes increases, 

the computational complexity of the problem grows quickly. Group-wise optimization 

may help reduce the computational complexity. 

 Besides the center-out radial trajectory demonstrated, cones, radial cones, and 

FLORET109 trajectories can be used for UTE acquisition. Because of their curvature in 

k-space compared to the center-out radial trajectory, without spoiler gradient the 

transverse magnetization might be refocused by the following encoding gradient with 

those trajectories.  

 

6.6. Conclusion 

In this chapter, I analyzed how ordering schemes affect transverse magnetization 

spoiling, and proposed a new ordering scheme, named reordered 2D golden angle for 

3D UTE sequence to reduce the need of spoiler gradient and increase the encoding 

efficiency. We evaluated the ordering scheme by comparing to 3D golden angle and 

sequential ordering on both phantom and volunteer study. I applied the proposed 
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ordering on both free breathing and breath-holding lung UTE scans, which largely 

shortened the free breathing UTE scan with high SNR and improved image quality of 

the breath-holding scan. 
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Chapter 7 Summary and Future Research 

Directions 

7.1. Summary of Dissertation 

This dissertation presents novel techniques developed for lung MRI and their 

improvements in clinical pediatric studies. For free breathing scans, one widely used 

motion correction strategy is called gating. However, gating would largely reduce the 

scan efficiency due to throwing away the motion corrupted data. 

 The proposed iMoCo UTE could reconstruct motion free lung images with very high 

efficiency by incorporating motion compensation model in the reconstruction. In 

addition, a spatial total generalized variation (TGV) constraint was added to the 

reconstruction further suppressing the artifacts caused by undersampling and residual 

motion. 

 However, iMoCo reconstruction would only generate single motion state 3D images. 

To reconstruct images of different motion states or images with dynamics, the iMoCo 

model is extended to a 4D reconstruction with a spatio-temporal low-rank constraint. By 

compensating the motion spatially, the low-rank property of the spatio-temporal matrix is 

preserved. The proposed method was demonstrated in in vivo studies for both motion 

resolved reconstruction and dynamic contrast-enhanced reconstruction and showed 

improvements compared to traditional motion correction methods. 

 The iMoCo UTE then was evaluated clinically for pediatric and neonatal lung MRI 

studies. Besides reconstruction and motion correction, MRI receiver coils and scan 
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parameters were optimized for young children and newborns. The results show that 

iMoCo UTE can reconstruct high SNR motion free lung images, and outperforms 

standard T1w and T2w sequences. Most importantly, most of the abnormalities 

observed on CT scans could be also found with iMoCo UTE images, which indicates it 

is promising to use free breathing UTE acquisition for pediatric lung screening. 

 In revisiting the UTE sequence, I observed the large spoiler gradient before each TR 

costs up to 40% of the TR, which decreases the encoding efficiency of the UTE 

sequence. The proposed reordered 2D golden angle ordering scheme reduces the need 

of the spoiler gradients by leveraging the spoiling effect of the readout gradient. When it 

was applied to free breathing lung imaging, total scan time could be shortened by 40% 

with comparable image quality. When it was applied to breath-holding scans, more 

readouts could fit in a single breath hold to reduce undersampling artifacts. 

 

7.2. Future Research Directions 

This section summarizes some new directions related to this dissertation and 

speculates on their applications. 

7.2.1. Model Based Reconstruction with Motion 

Compensation 

In this dissertation, I made many efforts to model body motion and incorporate them in 

the existing reconstruction frameworks. Similarly, motion compensation could be also 

applied to other model based reconstructions. Recently, lots of multi-contrast imaging or 

parameter mapping techniques are developed, such as MR Fingerprinting95, T2 
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shuffling94, and magnetization preparation shuffling96 techniques. Those methods show 

great results in brain or knee applications, but none of them reports applications in the 

body. One major concern is the subject motion. Similar to the low-rank constrained 

reconstruction, spatial misalignment might also lead to failure of the model based 

reconstructions. By compensating the motion during the reconstruction, the assumed 

model would be better preserved, which may improve the final images or quantitative 

mapping. Since most of the model based reconstructions use the similar reconstruction 

formulation as the low-rank constrained reconstruction110, the MoCoLoR reconstruction 

should be easily extended to other model based reconstructions. 

 

7.2.2. ZTE Lung MRI 

Besides UTE, the zero echo time (ZTE) sequence is also a good candidate for lung 

MRI111–113. In addition, compared to UTE, ZTE has much less acoustic noise, which 

might make patients, especially pediatric patients, more comfortable.  

 However, ZTE also has some limitations. Flip angle and allowed maximum receiver 

bandwidth are limited, which might lead to low SNR of the ZTE images. Using better 

hardware setups, such as high SNR receiver coil array, may compensate that 

drawback. 

 Standard ZTE sequence usually provides proton density or modest T1 contrast. By 

adding magnetization preparation pulses, ZTE might also provide other contrast 

images114. As for motion, some methods have been proposed to adapt ZTE acquisition 

to free breathing lung imaging115. Advanced reconstruction and motion correction 

strategies could be also applied to ZTE to improve the SNR and shorten the scan time. 
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7.2.3. Low Field Lung MRI 

Another opportunity for lung MRI is imaging the lung in low field strength MR 

systems116–119. At low field, T2* of lung tissue is expected to be much longer than in the 

higher field. With a shorter T1 and longer T2*, there is more flexibility for pulse 

sequence design for lung MRI. In addition, researchers have reported oxygen enhanced 

(OE) lung MRI is a promising method for imaging certain lung diseases, such as 

asthma, chronic obstructive pulmonary disease (COPD), etc120–123. At lower field 

strengths, T1 is more sensitive to oxygen level change, which may further benefit the 

OE lung MRI. 

 

7.2.4. Low Dose CT Lung Imaging 

This dissertation mostly focuses on how to reduce both scan time as well as motion 

effects in lung MRI. However, as mentioned before, the acquisition time of 3D lung MRI 

is still much longer than the CT. By using low dose CT, which has been widely used for 

lung cancer screening124–127, both radiation exposure and subject motion problems 

could be solved. Recently, deep learning (DL) was introduced to different medical 

imaging research areas. By using DL methods to reconstruct CT images128–131 and 

denoise images after reconstruction132–134, the low dose CT could achieve comparable 

image quality as the standard CT, which is also very promising for pediatric lung 

imaging. 
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