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Abstract

Phillip L. Geissler made important contributions to the statistical mechanics of biological poly-

mers, heterogeneous materials, and chemical dynamics in aqueous environments. He devised ana-

lytical and computational methods that revealed the underlying organization of complex systems

at the frontiers of biology, chemistry, and materials science. In this retrospective, we celebrate his

work at these frontiers.
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I. PREFACE

Phillip Geissler was a valued member of the editorial board for Annual Reviews of Physical

Chemistry since 2012. We were looking forward to seeing him again at the 2022 editorial

board meeting, especially after two years of virtual meetings due to COVID-19. It was

devastating to hear that Phill had been taken from us this summer. Phill was a champion

of young faculty and a fount of good advice. His perennial good judgment strengthened

Annual Reviews of Physical Chemistry and the editorial board will miss him dearly.

Speaking personally, Phill and I shared a birthday week, which gave us at least one excuse

annually to celebrate (or more likely commiserate!) together. We ribbed each other about

the relative merits of not only “Team Quantum” vs. “Team StatMech,” but also Cal vs.

Stanford. He chuckled at my attempts to learn the guitar, but he assured me (with a twinkle

in his eye) that I should take his bemusement as encouragement. I was delighted (but not

at all surprised, since Phill was much loved) that many past Geissler group members were

excited to take on the task of writing a summary of Phill’s many contributions to theoretical

chemistry. Phill was an amazing theorist, a generous mentor, and a gifted teacher (for both

undergraduates and graduate students). I think this chapter captures the breadth and depth

of Phill’s contributions much better than I ever could and thank the authors for their work

and dedication. I will miss Phill and our field is poorer for his loss.

-Todd Martinez

II. INTRODUCTION BY THE GEISSLER GROUP

One of the challenges we faced with this retrospective on the work of Phill Geissler is

the sneaking suspicion that however much we polished the manuscript, Phill might consider

the work to be a promising first draft on the way to a solid second. Phill was a scholar

and a leading figure in the field of statistical mechanics, but he was also a wordsmith and

a poet. He chose his words carefully, not content to convey results when he could also

convey the ideas and concepts that underpinned them. He delighted in choosing talk titles

that were both playful and deep. His talks, speaker introductions, and annual state-of-the-

group meetings could at times rise to the level of oratory. So it is natural to introduce this

retrospective with Phill’s summary that
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The Geissler Research Group focuses on the statistical mechanics of biologi-

cal polymers, of heterogeneous materials, and of chemical dynamics in aqueous

environments. Although these topics are physically diverse, they are unified by

features of disorder and strong non-covalent interactions among many molecules.

As such, they are amenable to similar approaches and can sometimes be under-

stood in common terms. Exploiting this connection, the group devises analytical

and computational methods to reveal the underlying organization of complex

systems at the frontiers of biology, chemistry, and material science.

In this volume we explore Phill’s work at these frontiers. We cover water (Sec. III);

biophysical systems (Sec. IV); self-assembly (Sec. V); nanomaterials (Sec. VI); and model-

and algorithm development (Sec. VII). In each section, the overarching themes of Phill’s

work are evident: his ability to choose important and rewarding problems; his focus on

the fundamentals and on “identifying the essential microscopic variables whose fluctuations

cannot be ignored”; his fascination with the subtle as well as the simple; and the inspiration

he took from experiment and the collaborations with experimentalists that were central to

his career.

Phill was a brilliant and creative scientist. He had high standards, and demanded the

same from his group. He was also genuine and humble, generous with his advice and

encouragement, and he liked a good laugh. We cannot summarize his work as he would

have done, but it is our privilege to try. This retrospective is our tribute to Phill, our

teacher, mentor, and friend.

III. WATER

Water, especially in its liquid state, remains a surprising and intricate puzzle for physical

chemistry. In Phill’s own words, “water is a famously unusual liquid” [1], an eccentricity

inherited from its strongly directional interactions and complex, but persistent, hydrogen

bond structure [2]. Phill’s work on water brought to the study of aqueous solutions the

same insight, creativity, and interdisciplinary perspective that he applied to his work more

broadly. Judicious use of transition path sampling, targeted minimal models, and clear

statistical mechanical analysis of complicated experimental measurements all permeate his

work in this domain.
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renders the surface tension of a lattice gas below the roughening
transition temperature anisotropic, introducing the possibility of
strong lattice artifacts. In this case of a nanometer-scale cubic
probe volume in bulk liquid, correspondence with the continuum
estimate suggests that such artifacts are not substantial.
The parameterization of Eq. 1 that we have advocated, which

does capture capillary fluctuations at the liquid–vapor interface,
significantly improves agreement between atomistic simulations
and the conventional lattice gas. Plotted in Fig. 1C, the T >TR
lattice gas result for PvðNÞmanifests low-density fluctuations that
are dramatically more probable than for the lattice gas with
T <TR. Agreement with atomistic simulations nonetheless re-
mains very poor, signaling a critical role for short-wavelength
modes even in the exponential tail of PvðNÞ.
The success achieved by the full coarse-grained model of Eq. 5

is thus not a transparent consequence of the limiting behaviors
motivating its form. Instead, a subtle cooperation of interfacial
fluctuations and thermodynamics, together with Gaussian den-
sity statistics at the molecular scale, underlies the equation’s
accurate prediction for PvðNÞ across the entire range of N.
LCW-inspired models based on the T <TR lattice gas are

much more difficult to reconcile with atomistic simulations.
When parameterized with T <TR, the unadorned form of Eq. 5
accurately predicts PvðNÞ only near its peak, failing dramatically
at low N, where interfacial fluctuations figure prominently (Fig.
S1). Ref. 13 outlines two strategies to address this shortcoming.
Smearing out discrete interfaces with a numerical interpolation
scheme improves predictions substantially but still fails to
achieve quantitative accuracy in the extreme tail of PvðNÞ.
Adding as well an estimate of unbalanced attractive forces pro-
duces near quantitative agreement (13). These elaborations,
however, require introducing interaction potentials and adjust-
able parameters that are not clearly specified by experimental
measurements (13). Our results show that greater accuracy can
be achieved much more simply, by using lattice gas parameters
that properly represent the statistics of capillary fluctuations.

Density Fluctuations at a Liquid–Vapor Interface. The interplay of
physical factors determining hydrophobic solvation can resolve
much differently in spatially heterogeneous environments. To ex-
plore basic effects of such nonuniformity, we have examined mi-
croscopic density fluctuations at the interface between air and
water. Specifically, we consider a cubic probe volume that straddles
the plane of a macroscopic phase boundary (i.e., the Gibbs dividing
surface between liquid and vapor). The overall shape of PvðNÞ in
this case is similar to the bulk result, featuring Gaussian statistics
near the peak and a more slowly decaying low-density tail. In this
case, however, the thermodynamic cost of evacuation is much
lower than in bulk, despite a similar value of hNi.
The LCW-inspired lattice model of Eq. 5 again matches at-

omistic simulation results very well, both near the mean of PvðNÞ
and far into the probability distribution’s low-density wing. Our
reduced description is therefore a promising tool for assessing
hydrophobic solvation near the liquid’s boundary.
Although the shape of PvðNÞ that we have determined for the

interfacial environment resembles that of bulk liquid, the underlying
structural fluctuations are quite different. This difference is made
clear by considering the simple lattice gas (in its higher-temperature
parameterization), whose prediction is also plotted in Fig. 2B. In
contrast to our bulk liquid results, neglecting short-wavelength
density fluctuations in this case effects only a modest suppression of
extreme low-density excursions; the shape and scale of PvðNÞ are in
fact captured well by the lattice gas with T >TR. Correspondingly, a
calculation based entirely on short-wavelength fluctuations, with a
static, flat interface, fails to capture the shape of PvðNÞ even near
the probability distribution’s peak (Fig. S1).
The long-wavelength density component thus dominates the

response of the LCW-inspired model in this spatially heteroge-

neous scenario, highlighting the key importance of capillary
fluctuations at the air–water interface. Evacuation of a probe
volume can be inexpensively achieved near a preexisting interface
by simply deforming the probe’s shape. Refs. 2 and 21 have also
pointed to interfacial deformation as a mechanism for extreme
density fluctuations near ideal hydrophobic surfaces and hydro-
phobic biological molecules.
The statistics of finer scale density variations have nonnegligible

quantitative impact on the predictions of Eq. 1 (e.g., reducing the
cavitation free energy by roughly 5 kBTÞ but do not qualitatively
shape the solvent response as in the bulk case. Underscoring the
role of surface shape fluctuations, the lower-temperature param-
eterization of the lattice gas, which lacks capillary waves, fails
profoundly to describe occupation statistics for the interfacial
probe volume, as shown in Fig. S1.

Association of a Hydrophobic Solute with the Interface. The occupa-
tion statistics discussed above hint at thermodynamic driving forces
that govern solvation of nonpolar species in interfacial environ-
ments. To make this connection explicit, we have computed the
excess chemical potential μexðzÞ of a spherical hydrophobe as a
function of the hydrophobe’s perpendicular displacement z from
the air–water interface (with z→∞ indicating bulk vapor and
z→ −∞ bulk liquid). Such interfacial free-energy profiles have

A

B

Fig. 2. Density fluctuations within a cubic probe volume that straddles the
interface between liquid water and its vapor. The probe volume, of size 12 Å ×
12 Å × 12 Å, is centered slightly within the liquid phase, 3.67 Å below the Gibbs
dividing surface. (A) Cross-sectional snapshot from an atomistic MD simulation,
showing the probe volume v in blue. (B) Probability distribution PvðNÞ of the
number of water molecules whose center lies in v. Results are shown for at-
omistic simulations, for the LCW-inspired coarse-grained model of Eq. 5 at co-
existence, and for the conventional lattice gas of Eq. 1 at coexistence. Lattice
models were simulated with T > TR parameters ðe=T = 1.35, δ= 1.84 Å) that yield
both the correct surface tension and capillary wave scaling.

Vaikuntanathan et al. PNAS | Published online March 8, 2016 | E2227
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FIG. 1. Phill’s work on liquid water focused on the subtle fluctuations that dictated kinetics,

solvation, and ion-specific effects. His approach was deeply influenced by transition path sampling

and the limitations of local reaction coordinates, as illustrated by the Geissler test in which the

quality of reaction coordinate is examined by estimating the committor distribution from the

top of the free energy barrier (a); a good reaction coordinate has a distribution that is peaked

at pA = 0.5, meaning half of all trajectories react. Solvation and surface specific effects were

probed with a variety of spectroscopic methods, illustrated in (b), and Phill’s approach to both

hydrophobicity and ion solvation were heavily influenced by Lum-Chandler-Weeks theory, which

yielded quantitatively accurate lattice models, depicted schematically in (c).

Phill’s longest-running research project was water: In one of his first papers as a Ph.D.

student in David Chandler’s group at Berkeley, Phill applied the recently developed tran-

sition path sampling method [3], described in Sec. VII, to understand the dissociation of a

Na+Cl− ion pair. At the time, estimates of the dissociation rate based on transition state

theory were an order of magnitude too small. Phill’s work diagnosed the issue by showing

that an ionic separation distance was insufficient as an order parameter to describe the ki-

netics of the process. Sampling trajectories, on the other hand, enabled him to identify the

neglected, rare solvent fluctuations that ultimately dictated the rate of dissociation. Phill

always insisted on careful consideration of appropriate order parameters and the first figure

of this early paper was an image he would go on to draw for students time and time again

to illustrate the dangers of a bad reaction coordinate (Fig. 1 a). His paper also introduced

a diagnostic that became a standard test in the Geissler group and beyond: “committor

analysis” proceeds by sampling trajectories from the top of a free energy barrier to ensure
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that the order parameter truly discriminates between metastable basins (Fig. 1 a). This

analysis was affectionately dubbed the “Geissler test” in the Geissler group.

Technical innovations in path sampling enabled a more complete understanding of the

complex and collective fluctuations that drove rare processes in aqueous solutions, and ap-

preciating the importance of rare solvent fluctuations for dynamics in the condensed phase

became a central theme of Phill’s work. Much of his subsequent thesis work focused on the

dynamics of proton transfer in liquid water, a fundamental problem that underlies acid-base

chemistry. Working with Michele Parrinello’s group in two separate trips to the Max Planck

Institute in Stuttgart, Germany, Phill combined transition path sampling methods with

Car-Parrinello molecular dynamics to study proton transfer, initially in a protonated water

trimer [4], a system he had previously studied using empirical models [5]. This work culmi-

nated in a landmark paper published in the journal Science in which Phill and collaborators

from the Chandler and Parrinello groups demonstrated that autoionization in liquid water

is driven not only by rare fluctuations in the solvent electric field that cleave an oxygen-

hydrogen, but also by coincident reorganization of the hydrogen-bond wire, an event that

prohibits recombination [6]. By harvesting reactive trajectories, this paper clearly demon-

strated the fundamental inadequacy of a local order parameter for autoionization. These

calculations highlight many of the features that would go on to influence Phill’s perspective

on liquid water, namely the importance of the hydrogen-bond network, the influence of rare

electric field fluctuations for ion solvation [7], and the necessity of carefully attending to the

collective fluctuations that dictate kinetics in aqueous solutions.

The central importance of water’s hydrogen bonding network and its implications for

spectroscopic measurements re-emerged in Phill’s collaborations with Andrei Tokmakoff

and Rich Saykally. Phill often joked about his disdain for quantum mechanics, though it is

somehow not surprising that he made critical contributions to the theory and interpretation

of the vibrational spectra of water. In the early 2000s, experimentalists were developing so-

phisticated nonlinear optical methods to probe liquid motions on sub-picosecond time scales,

and they turned their attention to water. Badger’s Rule, an empirical law from steady-state

spectroscopy, states that the frequency of the OH stretch shifts to the red with increasing

hydrogen bond strength. Phill’s work on infrared photon echo and two-dimensional spectro-

scopies showed how time-dependent frequency shifts of the OH stretch probe the evolution

of molecular structure in water [2, 8, 9]. While some features in those spectra had simple
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molecular descriptions, others did not. Phill showed that they were related to collective

rearrangements of the liquid that result when molecules “switch allegiances” between their

hydrogen bond partners. The short lifetime of a putative broken hydrogen bond in liquid

water at ambient temperatures shows that these bonds are broken, but only fleetingly [2].

When working with his group, Phill loved to examine dynamical trajectories of the models

being developed. An appreciation for the complexity of molecular relaxation clearly moti-

vated his thinking about the interpretation of spectroscopic measurements. For example,

while many had interpreted Raman spectra of liquid water to indicate that two distinct

classes of hydrogen bonds existed, dynamical trajectories of model systems led Phill to con-

clude that any attempt to distinguish between two such classes was ultimately arbitrary [10].

Moreover, while the existence of an isosbestic point in the Raman and IR spectra of liquid

water had been interpreted as evidence of two interconverting species, Phill provided an ele-

gant and minimal argument that this interpretation was wrong [11], and that the isosbestic

point was simply an indication of an order parameter that was insensitive to changes in the

temperature over the range probed by the experiment. In fact, he showed that isosbestic

points can arise even in a thermal distribution of harmonic oscillators [11], and Monte Carlo

simulations of water demonstrate that the OH bond distance in water is nearly tempera-

ture independent at the isosbestic point of the Raman spectrum, despite the fact that the

distribution has only one dominant state [10].

The implications of a robust hydrogen bond network for ion solvation [12] and interfacial

properties subsequently became a major thrust of Phill’s work on water. Simulations of air-

water interfaces were a crucial tool to inform his thinking, in part due to the subtlety of the

indirect information reported by surface measurements such as sum frequency generation

(SFG) [13, 14]. Phill and coworkers sought to elucidate the microscopic origin of hyperpo-

larizability of the air-water interface by stripping down the measures of orientational bias to

just OH and OD bond vectors, a vast simplification compared to existing approaches. By

reducing the complexity, it became possible to diagnose the effects of various ions on the

SFG spectra, ruling out local effects on solvation structure which were largely spherically

symmetric and hence undetectable with SFG. In recent work, Phill showed that ice-like local

structure exists at air-water interfaces, yet another manifestion of interfacial effects on the

hydrogen bond network [15]. Many aspects of this problem continued to occupy his work,

including several studies exploring ion-specific effects as codified by the Hofmeister series.
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Phill’s work on solvation was heavily influenced by the seminal work by Ka Lum, David

Chandler and John Weeks [16], which showed how the forces driving hydrophobic assembly

can be quantitatively captured in terms of a framework that resolves the fluctuations on

both short and long length scales (Fig. 1). While the eponymous LCW theory was indeed

a remarkable advance, the resulting theoretical framework still required a fitting parameter

with an unclear physical meaning. In part motivated by his work on ion solvation, Phill

and his co-workers recognized that the LCW framework did not completely account for the

effect of the low energy capillary modes. By including the physics of rough capillary waves

in the LCW framework they were able to construct a quantitatively accurate theory for

hydrophobic solvation without the aid of any fitting parameters [17, 18]. The theory only

took as input the physics of short length scale fluctuations, as parameterized by the oxygen-

oxygen two-point correlations in the bulk, and the physics of long length scale fluctuations

as parameterized by the surface tension of water. With just these inputs, this LCW-inspired

theory predicted the free energies of hydrophobic solvation across a large range of sizes and

shapes.

Phill strove to understand ion solvation in a similar vein, that is, to faithfully account for

solvent fluctuations and their modification by the solute. Phill’s clear statistical mechanical

analysis of ion solvation resulted in insights that challenged the prevailing understanding

in the field. Consider for example the driving forces that govern the relative stability of

ions at the liquid-vapor interface. A conventional accounting of the driving forces would

lead us to expect an entropically favored force driving the ion from the bulk to the free

interface, and an energetic (or enthalpic) driving force that keeps the ions solvated. Phill

correctly recognized that this accounting missed contributions from low-energy fluctuations

that populate the interface [19–21]. The effects of these fluctuations, commonly referred to

as “capillary wave fluctuations,” are most pronounced on long length scales. Phill and his

co-workers provided detailed and clear statistical mechanical analysis to show how these low-

energy, long-wavelength modes modify the driving forces for ion solvation in counterintuitive

ways. In particular, they make it entropically unfavorable for an ion to migrate to the

interface. Their statistical mechanical analysis also showed that enthalpic forces drive ion

solvation at interfaces. Phill and his coworkers were able to obtain analytical expressions

for these forces and the resultant free energies by constructing a lattice-based model [22].

The softness of the air-water interface, essentially its ability to “wrap around” small
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ions and make their local environments similar to those of bulk, is a feature inherently

beyond the scope of approaches rooted in simple dielectric continuum theory. Several of

Phill’s later works therefore focused on ways to go beyond dielectric continuum theory

(DCT) and, more generally, linear-response approximations. In particular, the origin of

“charge asymmetry”, that is, the difference in solvation behavior of solutes that only differ

in the sign of their charge, was a problem that Phill was determined to frame in terms of

solvent fluctuations. Inspired by similar ambiguities encountered in trying to assign water

molecules to “bulk” or “interface” when computing SFG spectra [13, 23], Phill was keen

to emphasize that ion adsorption to the air-water interface cannot be understood simply

by considering contributions to the electrostatic potential felt by a solute that arise from

the macroscopic interface. Through careful analysis, Phill showed that for small solutes,

nonlinear contributions from local solvent rearrangements dominate the solvation process

[24]. While the problems with DCT at the air-water interface are relatively easy to assess,

developing a theoretical framework à la LCW is significantly more challenging. Nonetheless,

Phill took strides toward such a field-theoretical perspective in the context of bulk ion

solvation by considering symmetry constraints placed on a water molecule’s quadrupole in

relation to its dipole [25]. The resulting field theory incorporated charge asymmetry as an

emergent phenomenon, while preserving the simplicity of DCT. The approach was typical

of Phill: To first consider the problem in all of its technical complexity, and then, with a

few clearly stated approximations, arrive at a simple result.

Although Phill endeavored to go beyond DCT, his later work also clarified instances where

it reasonably describes water’s polarization fluctuations. For example, Phill used DCT to

understand how computed solvation free energies tend toward the thermodynamic limit

[26]. Not only did this ensure that his analyses and theories were based on sound physical

principles, but he was also able to conclude that water behaves like a simple dielectric

medium down to nanometer length scales.His final contributions were to use this approach to

help understand water’s dielectric response under confinement [27], and in forthcoming work,

to show that even in regions close to the interface, polarization fluctuations are consistent

with DCT, all the way down to microscopic probe volumes.
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IV. BIOPHYSICS

Biological systems feature a rich interplay of molecular and macroscopic events happening

from femtoseconds to millions of years. Phill was fascinated by the coupling of such dis-

parate scales and driven to understand such behavior in intuitive physical terms. To explain

incredibly complex biological phenomena, Phill masterfully crafted surprisingly simple phe-

nomenological models. He frequently pressed to use fewer assumptions, simpler functional

forms, fewer fitting parameters, less “magic”—the only “magic” should be the beauty of the

emergent phenomenon. Not only aesthetically pleasing, this philosophy led to coarse-grained

models whose computational tractability was key to probing length and time scales relevant

to experiment. By judiciously combining this approach with atomistically detailed mod-

els, Phill and his group uncovered the microscopic events essential for triggering collective

responses in myriad biological systems.

Phill’s first forays into biophysics took inspiration from his research on water. With his

postdoctoral advisor Eugene Shakhnovich, Phill studied the role of solvent interactions in

the mechanical behavior of random heteropolymers, simple models for proteins (Fig. 2(a)).

Using linear-response theory applied to a random energy model of surface monomer con-

formations, he showed the importance of fluctuations in tempering the predominance of

“solvophilic” monomers (those with strong affinity for solvent) at the surface [28]. He also

used replica mean-field theory to show that when such random heteropolymers are stretched,

the variation in solvophilicity along the polymer produces partially unfolded “necklacelike”

structures (with compact solvophobic stretches and extended solvophilic stretches) at in-

termediate pulling forces, thus broadening the otherwise-sharp coil-globule transition, with

important implications for mechanical strength [29, 30].

Work on minimal polymer models under mechanical stress naturally led Phill to exper-

iments from Carlos Bustamante’s group showing that DNA, when pulled along its axis,

abruptly extends or “overstretches” by about 70% at a force of about 65 pN [39]. Notably,

the kinetics of overstretching vary by conditions. At low temperatures or high salt concen-

trations, overstretching and the subsequent shortening of the molecule occur in a reversible

way, with force-extension curves superposing. But at high temperatures or low salt con-

centrations, the stretching-shortening cycle is hysteretic [40]. Two competing pictures of

this process had been put forward in the literature. One hypothesis assumed that extended
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FIG. 2. Phill highlighted the importance of fluctuations in biological phenomena, such as in his

studies of (a) random heteropolymer structures [28–30], (b) nonequilibrium dynamics of DNA

stretching [31–33], and (c) conformational rearrangements of protein side-chains in crowded envi-

ronments [34–38].

DNA was melted, with the base pairing between DNA strands disrupted [41]. A second

picture argued that the mechanics and thermodynamics of overstretching could only be ex-

plained if there existed a base-paired, elongated state of the molecule called S-DNA [42].

Phill and his group developed a simplified lattice model of DNA under tension, in which

base pairs adopted discrete states [31–33] (Fig. 2(b)). Dynamical simulations reproduced

the condition-dependent hysteresis seen in experiment, but only if the model included the

possibility of forming S-DNA. Otherwise, overstretching within the model always involved

base-pair disruption and the hysteresis associated with the slow reattachment of the two

DNA strands. This work showed that the nonequilibrium dynamics of single-biomolecule

manipulation studies could discriminate between competing microscopic theories of the re-

sulting structural transitions, in this case providing clear support for the S-DNA hypothesis.

Subsequent experiments provided direct evidence for the existence of S-DNA [43, 44].

Phill continued to be interested in modeling the mechanics and dynamics of DNA as

it has important implications for cellular processes (such as chromosomal compaction and

segregation, viral packaging, and transcriptional regulation) that involve sharply bending

DNA in a controlled fashion [45]. The wormlike chain model predicts that DNA reacts to

bending stresses by deforming uniformly along its contour. However, when applied forces be-

come very large, or equivalently during large thermal fluctuations, this deformation may be

concentrated in localized excitations that render short stretches of the chain (“melts”) very

pliable. Phill and his group developed coarse-grained DNA models incorporating such melts
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and showed their significant impact on mechanical properties that are sensitive to rare fluc-

tuations, as probed by several experimental approaches: threading through nanopores [46];

cyclization kinetics [47]; FRET [48]; and SAXS [49].

DNA was not the only biological polymer whose dynamics Phill sought to better under-

stand. With coworkers, he extended early lattice protein models to investigate the folding

dynamics of hundreds of thousands of heteropolymer sequences that folded to a well-ordered

globular structure using a Gō-like model [50] with heterogeneous contact energies [51]. The

appearance order of the native state’s close contacts during folding remained remarkably

invariant to the removal of nonnative interactions, although the folding time scales shifted,

particularly for the slower-folding sequences. This insensitivity in the folding mechanism

to nonnative interactions has been verified in subsequent simulations on both lattice poly-

mers [52] and all-atom MD simulations of actual fast-folding proteins [53, 54]. Further work

by Phill and collaborators demonstrated that heterogeneity among the contact interactions

grants unique dynamical properties to the folding trajectories [55].

Once proteins have folded to their native state, their conformational fluctuations are

greatly diminished, leading to the general perception of a relatively static native fold. How-

ever, substantial side-chain rearrangements remain sterically accessible [56], prompting Phill

and coworkers to probe these more subtle side-chain dynamics using Monte Carlo (MC) sim-

ulations of side-chain rotations on a natively folded and fixed backbone (Fig. 2(c)) [34]. This

simplified model enabled the quantification of side-chain entropy within the native state. By

observing the range of side-chain fluctuations across a series of well-folded globular proteins,

the entropic contribution available to regulate the free energy of ligand binding or protein-

protein interactions from this reservoir was found to be sizable [34]. These results supported

accumulating evidence from NMR order parameters attesting to the importance of side-chain

entropy in regulating protein thermodynamics [57] and were able to explain the different

binding entropies between calmodulin and a series of ligands that had been previously mea-

sured by isothermal calorimetry [57]. Recent work has provided more direct experimental

evidence of this regulation in action by measuring differences in the conformational hetero-

geneity of side-chains upon ligand binding across several hundred crystallographic datasets

of paired unbound and ligand-bound structures [58].

To investigate the native-state fluctuations further, Phill and coworkers constructed

Markov State Models (MSMs) from extensive MD simulations, which confirmed the presence
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of side-chain dynamics in protein cores and provided evidence of long time scale backbone

dynamics [37]. Exciting functional phenomena were also observed, including the transient

formation of cryptic binding pockets and allosteric communication between distant parts

of the protein [36]. Both the MSM models and the earlier MC simulations showed that

allosteric signals can be transmitted across long distances even in the absence of signifi-

cant backbone motion [35, 36]. Subsequent work built on this foundation has focused on

understanding and exploiting protein conformational heterogeneity in areas ranging from

COVID-19 to Alzheimer’s disease, in one case uncovering hidden allosteric sites in TEM-1

beta-lactamase, an important antibiotic target [59].

Proteins not only fold into native states, but also into assemblies of misfolded struc-

tures, such as the filamentous aggregates of Aβ-peptides that are a hallmark of Alzheimer’s

disease. Understanding the molecular pathway of peptide assembly and fibril growth is of

great biomedical importance but has proven computationally challenging due to the long

time scales involved. By extracting free energy and diffusion profiles from extensive all-

atom simulations, Phill and coworkers highlighted the importance of solvation entropy and

collective water rearrangements on the molecular pathways of Aβ-amyloid fibril growth by

elongation, fragmentation [60], and surface-activated secondary nucleation [61].

Phill’s interest in the rich behavior that emerges from fluctuations in complex systems

found a natural home in studying the principles underpinning assembly and organization of

collections of diverse biomolecules. Phill applied characteristically simple models to explain

puzzling results from the lab of his friend and longstanding collaborator, Dan Fletcher:

in in vitro reconstitutions involving lipid membranes and actin filaments, actin filaments

polymerized on the surface of deformable lipid vesicles resulted in the formation of long

filopodia-like structures [62, 63]. This was unexpected in two ways: first, polymerization

of individual actin filaments cannot generate sufficient forces to deform planar membranes

into tubes, and second, filaments beyond a certain length were expected to buckle under the

restoring force of the membrane. Models from Phill’s group, together with experiments from

Dan Fletcher’s lab, demonstrated that a deforming membrane could couple multiple actin

filaments that together could overcome the barrier to tube formation [62] and that filaments

contained within a membrane tube do not experience conventional Euler buckling because

of how the restoring force is applied [63]. Later in vitro experiments with curved actin

filaments and the side-binding protein Arp2/3 revealed a bias to bind to the outside of the
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filament curve, rather than the inside [64]. The bending energy associated with the filament

was insufficient to explain the results, so Phill devised a fluctuation-based ‘gating’ model

that captured the bias. This view of biological materials as active, based on their assembly

and disassembly dynamics in a thermally driven environment, provides a framework that

continues to be relevant to biophysical problems today [65].

Lipid membranes not only exhibit large length scale fluctuations resembling that of elastic

sheets (Fig. 3(a)) but also variations at the molecular scale (Fig. 3(b)). Understanding

how phenomena at these disparate scales are coupled intrigued Phill and inspired him to

devise novel theories and computational methods. For example, by solely accounting for

hydrophobic forces of association and the requirement of high equatorial density, he and

his group created a deceptively simple model that recapitulates the elasticity and fluidity

of natural membranes [66]. In another example, Phill and his group formulated a theory to

explain another set of experiments conducted by Dan Fletcher and coworkers that showed

membrane curvature can be driven by protein–protein crowding [67].

A membrane’s physical properties can also be specifically altered through the exchange of

individual lipids between membranes (Fig. 3(b)). A detailed understanding of lipid-exchange

dynamics had remained elusive, in part due to discrepancies between experiments and pre-

vious molecular simulations. Phill often reminded his students of the perils of presupposing

a reaction coordinate to investigate dynamical events and how a poor choice could obscure

the rate-limiting free energy barrier. So, Phill and his group took an alternative approach to

that of previous computational studies and harvested natural, unbiased trajectories of lipid

insertion. Using committor analysis (aka the “Geissler Test” in Fig. 1(a)), they revealed

that the breakage of hydrophobic lipid–membrane contacts limits the rate of passive lipid

transport, resolving the earlier discrepancies between experiment and simulation [69]. Im-

portantly, knowledge of the reaction coordinate enabled the construction of a Smoluchowski

equation for the rate of lipid exchange to model length and time scales probed in experiment

[69]; allowed for systematic investigation of the membrane physicochemical properties that

impact lipid transport rates [70]; and provided a foundation to understand the catalytic

function of lipid-transfer proteins [75].

Working on lipid membranes naturally sparked Phill’s interest in the biological processes

embedded within their milieu. Many processes, ranging from cell-cell communication to

photosynthesis, require specific arrangements of membrane proteins. Phill, often in close
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FIG. 3. Phill’s work on biological membranes and the processes embedded within their milieu

bridged macroscopic and molecular phenomena by combining simple coarse-grained models with

atomistically detailed simulations: (a) Micron scale membrane interfaces were modeled as an elastic

mesh decorated by proteins [68], whereas (b) the exchange of individual lipids between membranes

necessitated atomistic simulation [69, 70]. The influence of thylakoid’s mesoscale vertical structure

on protein organization was captured with (c) lattice models [71], whereas organization within the

plane was recapitulated with (d) a nanoscale coarse-grained model [72]. (e) Optimal molecular

environments for positioning light-harvesting sites within protein scaffolds were investigated with

atomistic models [73, 74].

collaboration with experimentalists, sought to uncover general physical principles respon-

sible for such spatial organizations. For example, through Monte Carlo simulations of a

deformable, fluid membrane interface decorated with proteins defined by their heights and

binding potentials (Fig. 3(a)), Phill and his group recapitulated the size-dependent segre-

gation of proteins at membrane interfaces observed in reconstituted experiments conducted

in Dan Fletcher’s lab. Moreover, the simulations demonstrated how the interplay of pro-

tein height, lateral crowding, binding affinity, and thermal membrane height fluctuations
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collectively contribute to the formation of characteristic patterns of intracellular signaling

[68].

Motivated to uncover the physical driving forces underlying the organization of photo-

synthetic proteins in thylakoid membranes, Phill and his group devised minimal models

amenable to thorough analytical and computational investigation (Fig. 3(c and d)). Their

model of protein organization within appressed membranes of thylakoid disks included just

two particle types, representing photosystem II (PSII) supercomplexes and light-harvesting

complex II (LHCII) trimers, with simple shapes and short range inter-particle interactions,

chosen based on structural studies. The elegant simplicity by which the model reproduced

experimental observations, including extended PSII arrays that had eluded previous com-

putational studies [72], has made it an ideal starting point for the development of more

detailed models [76–78]. Furthermore, these simulations revealed the existence of a physio-

logically relevant phase transition between a disordered PSII-LHCII fluid and dense PSII-

LHCII crystal [79] (Fig. 3(d)). This led Phill and his group to explore if the thylakoid’s

mesoscale vertical structure modulates such phase behavior through a minimally detailed

lattice model of stacked discs that captured the alternating attractive and repulsive forces

acting between vertically aligned membranes. Combining computer simulations with mean-

field analysis, they found that a modulated phase with long-range order would form under

certain conditions [71] (Fig. 3(c)). Phill was keenly aware of the biological implications

of phase transitions [72]. In the context of photosynthesis, he highlighted how proximity

to phase coexistence could facilitate significant collective reorganization to alter thylakoid

function in response to subtle environmental changes [71, 79].

In parallel to investigating natural photosynthetic proteins, Phill alongside experimen-

tal collaborators Matt Francis and Naomi Ginsberg found artificial light-harvesting sys-

tems fruitful for deconvolving how individual molecular components concertedly impact

energy-transfer dynamics. Recapitulating experimental results, simple lattice models of

self-assembling mosaic virus capsid proteins illustrated how they could be used as a scaffold

to arrange chromophores in geometries optimal for energy transfer [80, 81], and atomistic

simulations elucidated how each chromophore’s protein and solvent environment could be

tuned to extend photoexcitation lifetimes [73, 74]. Such studies illustrate the tact with which

Phill combined experimentally grounded coarse-grained simulations with atomistic models

to provide holistic pictures of processes spanning disparate length and time scales.
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FIG. 4. Phill’s approach to self-assembly was motivated by the gap in our understanding between

(a) synthesis driven by covalent chemistry and (b) nanoscale organization controlled by weak

interactions.

V. SELF-ASSEMBLY

Phill was fascinated by nanoscale self-assembly, the spontaneous organization of small

molecules, nanoparticles, or biological complexes into ordered structures [82]. Self-assembly

was fertile ground for one of his favorite strategies, “identifying the essential microscopic

variables whose fluctuations cannot be ignored”. He explored the thermal fluctuations that

drive Brownian motion and make self-assembly possible, with structural order emerging from

thermal disorder. He thought about design strategies for reliably assembling collections of

weakly interacting components in the face of thermal buffeting [83, 84]. He created models

to show how the outcome of assembly could depend crucially on thermal fluctuations of den-

sity, conformation, or solvent [85–87]. He thought about driven and non-driven systems in

similar terms, seeking to understand pattern formation in a unified way [88, 89], and thought

about how nonequilibrium controls could be imposed to direct assembly in simulation and

experiment [85, 86, 88].

Phill’s work on self-assembly began with a desire to understand the dynamical pathways

that result in the self-assembly of ordered structures, and to reveal guiding principles that

allow for greater experimental control of these pathways. He approached this problem with

an awareness of the contrast between our rudimentary understanding of assembly and our

extensive empirical understanding of covalent chemistry and polymerization (Fig. 4). In the

early 2000s, the multi-step covalent synthesis of small molecules had become routine, driven

by a detailed understanding of the reactions mediated by strong, highly directional covalent

forces. The rules governing molecular self-assembly were less clear, and Phill focused his
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attention on the key role played by thermal fluctuations. These give rise to Brownian motion,

the means by which nanoscale components encounter each other, but they also disrupt the

weak, noncovalent forces by which nanoparticles associate. Consequently, intermolecular

forces must achieve a balance: they must be strong and directional enough to stabilize

a target structure, but weak enough to allow thermal fluctuations to disrupt non-optimal

contacts and so correct errors. Phill’s thinking was inspired in part by model studies done

in David Chandler’s group [90].

Phill explored the general principles of assembly through specific case studies. Many of

these were inspired by experiment, and were done in collaboration with experimentalists.

These studies typically tested the hypothesis that the thermally mediated fluctuations of

a few key microscopic variables dictated the essence of the self-assembly seen in the labo-

ratory. Phill and his group would represent these variables within a simplified, statistical

mechanical model of the laboratory experiment, and simulate the model on the computer.

Often they would observe striking agreement between simulation and experiment, validating

the hypothesis.

Phill’s first study of this kind was undertaken with longtime collaborators and friends

Eran Rabani and David Reichman, and focused on understanding experiments in Louis Brus’

laboratory [85]. There, nanoparticles self-assembled on a substrate as their solvent dried,

forming a range of intricate structures. Prior work had identified the key role of solvent from

a mean-field perspective [91], but Phill and his collaborators hypothesized the importance

of solvent fluctuations. They designed a lattice model of nanoparticle self-assembly in which

the solvent was represented in a coarse-grained but explicit way, using Ising-like degrees of

freedom. In simulations, different rates of drying led either to spinodal-like or nucleation-

like evaporation of the solvent, in each case inducing the formation of distinctly different

self-assembled structures. These structures closely resembled the experimental assemblies

(Fig. 5(a)), validating the hypothesis and identifying a key means of control for this type of

self-assembly. This perspective has had lasting impact, and has provided a unified view of

a collection of experiments involving a broad range of specific materials [92, 93].

In a second study involving self-assembly mediated by drying, Phill and his group sought

to explain the formation of hollow polygons formed by magnetic cobalt nanoparticles in

Paul Alivisatos’ laboratory. Similar magnetic nanoparticles had previously been seen to

self-assemble into chains and loops of a single-nanoparticle width; the formation of hollow,
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faceted structures several nanoparticles wide was a puzzle. Phill and his group developed

a coarse-grained model that described nanoparticles as dipolar spheres bearing short range

van der Waals forces and long range dipolar forces [86]. Within the model, nanoparticle

density fluctuations during drying led to the formation of nanoparticle aggregates. The

long range, anisotropic nanoparticle interactions caused aggregates to adopt hollow, faceted

shapes, strikingly similar to those seen in experiment (Fig. 5(b)).

Phill turned his attention to experiments in which the key fluctuations were those of

the nanoparticles themselves. Jonathan Trent and Chad Paavola at NASA Ames had con-

ducted self-assembly experiments with protein complexes called rosettasomes. They found

rosettasomes to self-assemble, under identical conditions, into filamentous structures and

planar structures. Such polymorphism is peculiar because the kinetics of formation of one-

dimensional structures is generally different to that of two- or three-dimensional structures;

to have both self-assemble at the same time is unusual. Phill and his group hypothesized

that this polymorphism resulted from the ability of the rosettasome to adopt different con-

formations as assembly proceeded [87]. Simulations of patchy nanoparticles showed that

conformational fluctuations could indeed drive polymorphism of one- and two-dimensional

assemblies (Fig. 5(c)).

Phill’s work on self-assembly also confronted a computational issue: how can we effi-

ciently simulate the self-assembly of components from solution? The most accurate classical

approach, all-atom Newtonian dynamics with explicit solvent, is in general too expensive,

requiring the evolution of millions of atoms over minutes or hours. An alternative approach

is to represent the solvent implicitly, and evolve the nanoscale components using overdamped

Langevin dynamics. This approach captures several important features of the all-atom ap-

proach, but underestimates the rate at which tightly bound collections of particles diffuse.

Collective motion of this nature can cause kinetic trapping and enable hierarchical assem-

bly, and so it is important to represent it accurately. To address this problem, Phill and

his group developed a collective-move Monte Carlo algorithm for nanoscale components in

solution [83, 94]. In effect a coarse-grained dynamics, the algorithm omits some fine details

of real motion but captures two of its important features, moving nanoscale components

locally according to the forces they experience and collectively in a way that approximates

realistic diffusion. The algorithm has been used by other groups to study self-assembly, and

incorporated into code for simulating DNA nanostructures [95].
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FIG. 5. Phill’s approach to science often focused on identifying the microscopic variables whose

fluctuations cannot be ignored. Doing so within models of self-assembly produced striking agree-

ment between simulation and experiment for a variety of systems. Here the key fluctuations are

those of (a) solvent, in a model of nanoparticles on a surface [85]; (b) nanoparticle density, in a

model of magnetic nanoparticles [86]; and (c) nanoparticle conformation, in a model of protein

complexes [87].

Phill continued to seek inspiration from experiment, and he and his group developed the

theoretical underpinnings of one of the first experimental demonstrations of dense packings

of polyhedral shapes on the nanoscale. Nanoparticle structures formed via solvent evapora-

tion are often rendered imperfect by the nonequilibrium nature of the evaporation process,

as Phill had shown previously, or by kinetic traps caused by strong particle interactions.

However, experiments done in Peidong Yang’s lab showed that gravitational sedimentation

of polyhedral nanocrystals results in the self-assembly of highly ordered superlattices. These

structures resemble the densest possible packings of mathematically perfect hard polyhedra.

Phill and his group showed that the polymer chains present in solution are key for the self-
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assembly of uniform hard packings: they adsorb onto nanoparticle surfaces and provide a

repulsive force that effectively cancels the attractive forces between nanoparticles, allowing

them to behave like hard shapes [96]. At high concentration the polymer chains induce de-

pletion forces that lead to the formation of surprisingly complex, open lattices of polyhedra.

Phill’s rationalization of intriguing experimental results in terms of an interplay of driving

forces and competing interactions is a hallmark of his work on self-assembly. He and his

coworkers would later draw on similar ideas to understand nanoparticle surfactant assembly

and jamming at the oil-water interface [97].

Studying biological systems provided inspiration for the design of synthetic ones. Bi-

ological assemblies are driven by patchy interactions whose geometry encodes the target

structure. Typical nanoparticle interactions lack the specificity of biological components,

and their assemblies are less complex. Phill was fascinated by the idea of creating experi-

mental pathways to complex self-assembly, particularly without the need for sophisticated

building blocks. He and his group demonstrated that assemblies with intricate spatial and

compositional structures, of varying dimensionality, could be generated from a small num-

ber of simple spherical component types that assemble hierarchically into effective patchy

nanoparticles [84]. The assembly strategy suggested in that paper has received much atten-

tion and has inspired experimentalists to build similarly patchy building blocks [98].

Phill continued to think about the nonequilibrium controls that can be used to direct

assembly and pattern formation. Working with the group of George Whitesides, Phill’s group

demonstrated that the mechanical agitation of macroscopic particles leads to unexpected

self-assembly behavior that cannot be explained by equilibrium fluctuations. Instead, the

mechanical parameters of shaking devices induce mobility differences between particles that

lead to effective attractive interactions [88]. While the experiments were macroscopic, the

paper showed that the same principles could be used to understand the driven self-assembly

of microscopic particles in solution. Indeed, similar physics is seen in colloidal mixtures

in which two species of particle are driven in opposite directions, forming lanes parallel

to the direction of driving [99]. Simulations by others showed that lanes result from the

enhanced diffusion of particles when surrounded by particles of the opposite species. Phill

and his coworkers showed that such enhanced diffusion is a geometric effect that results from

rectification of particles’ Brownian fluctuations [89]. Simple scaling arguments reveal the

dependence of this enhancement on the strength of the drive, providing guidance for control
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of the phenomenon.

Much of Phill’s work on self-assembly focused on understanding the rules by which

nanoscale components can avoid kinetic traps and self-assemble into thermodynamically

stable structures. His fascination with biological assembly led him to examples in which,

instead, the thermodynamic structure was not useful and the functional assemblies were

kinetically trapped. Electron tomography studies of the β-carboxysome, a focus of David

Savage’s lab at Berkeley, showed that it self-assembled into a surprisingly uniform icosa-

hedral structure with a narrow distribution of sizes [100]. Phill found this observation

fascinating because the carboxysome, unlike simple small viruses, consists of proteins as-

sembling around a condensed cargo that could in principle grow without bound. He and his

coworkers introduced a minimal model that showed that the equilibrium structure would

indeed never consist of an encapsulated cargo of finite size [101]. They built a model that

captured the essential mechanics and dynamics of carboxysome assembly, and showed that

finite-size encapsulation was possible in the form of a kinetically trapped, nonequilibrium

structure. Moreover, the kinetics of assembly could be tuned to produce structures of dif-

ferent sizes, with a dispersion controlled by the mismatch between the rate of growth of the

carboxysome cargo and its protein shell.

Phill also studied the behavior of active particles. These are energy-consuming units such

as bacteria that are capable of self-propulsion. Active particles can phase separate in the

absence of attractive interactions, driven by a feedback effect whereby particles accumulate

where they slow and slow where they accumulate [103]. Phill and his coworkers demonstrated

that self-assembling active systems bear a closer resemblance to self-assembling passive sys-

tems than previously appreciated [102]. In particular, active particles in three dimensions

can achieve three-phase coexistence of solid, liquid, and gas, similar to the triple point of a

substance such as water. Three-dimensional active systems also exhibit metastable liquid-

gas coexistence above a triple point, and Phill and coworkers used tools from large-deviation

theory to argue that such metastability is a generic feature of equilibrium and nonequilibrium

systems. This work recalls Phill’s ability to identify common physics in seemingly disparate

systems, providing insight into self-assembly and nonequilibrium statistical mechanics more

broadly.

Phill’s work on self-assembly focused on the fundamentals and was mindful of the appli-

cations. He sought to identify the basic physics of molecular scale organization, motivated
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FIG. 6. Phill appreciated the beauty of self-assembly. Clockwise from top: models of emergent

patchy particles [84]; shaken plastic beads [88]; faceted nanocrystals [96]; the carboxysome [101];

and active particles [102].

by an understanding of the importance of self-assembly to biology and materials science.

But Phill also appreciated the intrinsic beauty of self-assembly, and encouraged his group

members to highlight this beauty in their work (Fig. 6).

VI. NANOMATERIALS

Phill was fascinated by the chemistry of nanomaterials, which he described as lying on “a

scale between macroscopic and microscopic where things work differently.” It is here where

“more than a few, less than a lot” of molecules contribute to emergent behavior and mate-

rial properties that are scientifically intriguing and technologically promising [108]. Driven

by Phill’s deep understanding of both macroscopic thermodynamics and microscopic fluc-

tuations, his group contributed to a range of nanoscale problems, including structural and

compositional transformations of nanocrystals [104, 106, 107, 109–111], formation of nano-

24



time

etchant concentration

r

(a)

(b)

(c)

(d)

FIG. 7. Phill explored the boundary between the macroscopic and the microscopic in his work

on nanomaterials. He created molecularly detailed models to elucidate (a) pressure-induced phase

transitions in core/shell nanocrystals [104] and (b) interactions between nanorods mediated by

organic ligands and solvent [105]. He also devised minimal models which captured the emergent

dynamics of (c) nanocrystal etching [106] and (d) cation-exchange reactions [107].

materials [105, 112], and new computational methods and models to study phenomena on

the nanoscale [113–115]. Phill’s work on nanomaterials was profoundly impacted by Paul

Alivisatos’ research group: their precise physical measurements and high-resolution charac-

terization of nanomaterial transformations offered an ideal complement to Phill’s approach

to understanding nanoscale systems.

One of Phill’s earliest investigations of nanomaterials was inspired by high-pressure ex-

periments performed in the Alivisatos group, which probed solid-solid phase transformations

in nanocrystals. These experiments showed strongly size-dependent transformation hystere-

sis, and suggested the possibility of kinetically trapping nanocrystals in metastable crystal

structures. To investigate the rare nucleation events at the heart of these nanocrystal trans-

formations, Phill and his collaborators developed a transition path sampling algorithm that

used an ideal gas to apply pressure on single nanocrystals [114]. Simulations using this
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algorithm revealed the microscopic mechanism underlying nanocrystal transformations and

rationalized the experimentally observed transition kinetics. In related work, Phill’s group in

collaboration with the Alivisatos lab investigated the thermodynamics and kinetics of struc-

tural transformations in core-shell nanocrystals [104, 113]. They showed that by combining

structurally related materials with different transition pressures in a core-shell geometry,

new crystal structures, inaccessible in the bulk, could be kinetically trapped under high

pressure and stabilized by tuning the thickness of the nanocrystal shell. Phill’s work on

nanocrystal transformations is a prominent example of how his group combined method

development and model development to address intriguing experimental questions at the

forefront of nanoscience.

Inspired by work with the Alivisatos group on the self-assembly of colloidal nanorods [116],

and echoing concurrent work on the self-assembly of rosettasomes [87] described in Sec. V,

Phill became interested in the possibility that the self-assembly of nanoparticles could be

influenced by structural changes within their ligand shells. He and his group used molecular

dynamics simulations to study how passivating ligands order on nanorods in solution and

how that affects the interaction between the particles. This work predicted that even in

relatively good solvents, the ligands could transition from a mobile disordered state to a

less mobile one where the ligands were packed together and orientationally ordered with one

another, simultaneously changing the rod-rod interaction from repulsive to attractive [105].

Subsequent work showed that, as a consequence, interactions between nanoscale surfaces

can depend sensitively and nonlinearly on temperature, facet dimensions and ligand cover-

age [112]. In later years, Phill continued to explore this problem with his group, working to

develop and parameterise a simple phase-field model [117] that could be used to study the

interplay between ligand ordering and nanoparticle assembly.

When Eran Rabani moved to a faculty position at Berkeley, he and Phill became inter-

ested in explaining other experiments from the Alivisatos lab in which nanocrystals dissolved,

or were “etched,” in an oxidant-rich solution. On their way to complete dissolution, these

nanocrystals adopted different shapes depending on the concentration of etchant. To under-

stand these shape transformations, Phill and coworkers took inspiration from their previous

work on evaporation-induced nanoparticle assembly (described in Sec. V) and employed a

lattice model to describe nanocrystal dissolution. Here the process of etching was repre-

sented simply by a chemical potential difference driving the removal of occupied sites at the
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nanocrystal surface, and coordination number determined the rates of material removal at

different surface locations. Consistent with experiments, kinetic Monte Carlo simulations of

the lattice model exhibited different shape transformations as the driving force was varied.

A detailed analysis of the simulated etching trajectories revealed that different regimes of

shape transformation corresponded to which types of surface atoms etched at an appreciable

rate. The driving force could be tuned, for example, to a value such that surface sites with

coordination number 6 or lower were all removed with approximately the same rate, while

those with coordination number 7 or higher were removed much more slowly. This etching

dynamics promoted the formation of different geometrical facets on the nanocrystal surface

at different values of the driving force (a mechanism dubbed “step-recession.”) The resulting

shape transformations matched closely with those observed in experiments [106, 109].

Phill had also long been intrigued by another set of experiments from the Alivisatos lab in

which ions of one species are replaced by those of another in a nanocrystal [118, 119]. These

cation-exchange experiments produce a diverse array of heterostructures on the way to com-

plete replacement. Initial attempts to understand these reactions via computer simulation

using detailed molecular models suffered from small trajectory sample sizes and an inabil-

ity to access the relevant time scales. Taking a different tack, Phill worked with long-time

friend and collaborator Christoph Dellago to develop a simplified lattice model that focused

on a key feature of cation-exchange reactions: the elastic strain that attends a mixture of

different-sized ions. Computer simulations of the model yielded exchange trajectories fea-

turing heterostructured intermediates, including striped nanocrystals resembling those seen

in experiments [107]. Informed by the bulk equilibrium behavior of the elastic model—for

which he and his group developed successful theories [110, 111]—Phill explained the origin

of these structures. The strong, nonequilibrium driving force for cation exchange creates

effective, transient boundary conditions, mimicking those of a bulk system at equilibrium in

which spatially modulated structures are thermodynamically stable. Through their investi-

gations of cation exchange, Phill and his group highlighted the rich pattern formation that

arises from the interplay of kinetics, geometry, and elasticity at the nanoscale.
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VII. MINIMAL MODELS AND METHODS FOR PROBING COMPLEX PHE-

NOMENA

Phill often described his work as “curiosity-driven”, and he did not limit himself to any

particular method or scale. As we have emphasized in other sections, Phill appreciated

the importance of dynamical trajectories and considered them revelatory for the physical

processes he studied. When Phill joined the research group of David Chandler as a Ph.D.

student in the fall of 1996, the group was intensively working on a new computational ap-

proach to study rare events—such as phase transitions, chemical reactions, and biomolecular

reorganizations—characterized by widely separated time scales. Phill participated in Chan-

dler group brainstorming sessions as transition path sampling (TPS) was being developed.

TPS is a Monte Carlo method in which “moves” in trajectory space are used to generate an

ensemble of reactive trajectories. Importantly, unlike most rare-event methods, the proce-

dure requires no prior knowledge of the reaction mechanism in the form of a transition state

or a reaction coordinate [3, 120–122]. With characteristic insight, Phill pointed out how to

leverage the analogy between time correlation functions and the reversible work required to

transform ensembles of trajectories [123, 124].

By harvesting ensembles of reactive trajectories with TPS, mechanistic details could be

explored, all while preserving the full complexity of every fluctuation. While Phill was able to

derive significant physical insight from collections of reactive trajectories, actually collecting

these trajectories required significant methodological innovation to make TPS tractable. For

example, to study the microscopic mechanism for proton transfer in the protonated water

trimer [4, 5, 125], Phill came up with a smart way to perturb the points from which a

trial trajectory is launched so that linear and angular momenta were conserved. Phill’s

simulations showed that the proton transfer is driven by the rearrangement of the oxygen

ring rather than by the proton coordinate, a non-obvious reaction coordinate, as discussed

in Sec. III. To identify the relevant degrees of freedom for this process, Phill invented an

ingenious way to test candidate reaction coordinates based on the calculation of committor

distributions, as discussed in Sec. III and Fig. 1 (a).

Transition path sampling became a core tool within the Geissler group and a distinctive

part of its philosophy. Indeed, the development of trajectory sampling algorithms remained

a focus throughout Phill’s career, always combining imaginative ideas with mathematical
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phase space point, ¬0. The statistical weight for the rare trajectories connecting
A and B is hA(¬0)Ω[¬ (t)]hB(¬t ), where Ω[¬ (t)] is the unconstrained distribution
functional for trajectories. For deterministic trajectories,

Ω[¬ (t)] = Ω(¬0)
Y

0<t 0∑t
±[¬t 0 ° ¬t 0 (¬0)], 1.

whereΩ(¬0) is the unconstrained distribution of initial phase space points,¬0. Tran-
sition path sampling is done by carrying out a random walk in trajectory space,
biased to be the importance sampling for the distribution hA(¬0)Ω[¬ (t)]hB(¬t ).
Figure 3 illustrates how it is done in a practical and simple fashion.
In this perspective, stable or long-lived statesA andBmust bewell characterized

at the outset. This characterization can be difficult, as we discuss below. Never-
theless, we see that nothing need be presupposed about the dynamical pathways

Figure 3 Illustration of “shooting moves,” generating a random walk in trajectory
space for Newtonian trajectories connecting regions A and B. For example, trajectory
2 is generated by changing trajectory 1 by a small amount. This change can be accom-
plished, for example, by first choosing a time slice point ø lying between 0 and t. At this
time slice, themomentum of trajectory 1 can be altered by some small randomly chosen
amount. The resulting newmomentum can be used along with the configuration of tra-
jectory 1 at time ø as the initial conditions for a new trajectory created by propagating
forward from that phase space point for t°ø steps and backward from that phase space
point for ø steps. Because regions A and B remain connected, this second path will be
accepted as the new trajectory, provided the value of Ω(¬0) for the new trajectory com-
pares favorably with that for the first trajectory. Specifically, the probability to attempt
a step from a trajectory ¬ (t) = (¬0, ¬1, . . . , ¬t ) to ¬ 0(t) = (¬ 0

0, ¬
0
1, . . . , ¬

0
t ) is the joint

probability for choosing time slice ø and assigning a momentum change ± at that time
slice, w(¬ , ø, ±). The acceptance probability for that trial step is min[1, w(¬ , ø, ±)
hA(¬ 0

0) Ω(¬ 0
0) hB(¬ 0

t )/hA(¬0)Ω(¬0)hB(¬t )w(¬ 0, ø,°±)]. By the same type of procedure,
trajectory 3 is generated from trajectory 2. This time, however, the new path does not
connect A and B, and it is rejected. This sequence of acceptances and rejections ensures
that the correct path ensemble is sampled—namely, the ensemble that isweighted by the
distribution hA(¬0)Ω(¬0)hB(¬t ). There is great flexibility in the choice of random walk
steps. This flexibility can be exploited in efforts to improve the efficiency of transition
path sampling. In practice, shooting moves are only one of several moves employed in
transition path sampling. References (2, 10, 62) describe other useful moves.
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h-MgO to rocksalt transformation7 in a model of faceted
CdSe nanocrystals at the bulk transition pressure of 2.5 GPa.
Starting from a trajectory displaying a transformation mecha-
nism previously suggested by Tolbert and Alivisatos,1 the
simulation quickly finds its way to the primary mechanism,
which involves the sliding of parallel !100" planes.

The paper is organized in the following way. In Sec. II
we review the details of the ideal gas pressure bath and re-
write the algorithm in a way suitable for further analytical
treatment. Section III contains the proof of detailed balance
for this algorithm. Based on this result, we present an effi-
cient transition path sampling algorithm for nanoparticle and
pressure bath in Sec. IV. A discussion of our simulation re-
sults on CdSe nanocrystals is given in Sec. V.

II. IDEAL GAS PRESSURE BATH

Our pressure bath consists of particles that do not inter-
act with each other, but interact with atoms in the nanopar-
ticle by a repulsive soft sphere potential of the form

u!r" = #!$!r/""−12 − !rcut/""−12% if r # rcut

0 if r $ rcut.
& !1"

We set !=1 kJ/mol and choose " large enough to prevent
gas particles from penetrating the nanoparticle !for CdSe
nanocrystals a value of 3 Å is sufficient"; we cut the poten-
tial at a value of rcut=2". To compute the forces between gas
and crystal, we use the cell list method22 with cells of side-
length lcell=rcut+0.1 Å.

The gas particles fill a thin atmosphere around the nano-
crystal. Using the cell list method, it is convenient to define
this atmosphere as consisting of all cells that can hold pos-
sible interaction partners of crystal atoms. Thus, the outer
boundary of the ideal gas atmosphere consists of flat rectan-
gular parts. Gas particles that leave this atmosphere are no
longer considered while new particles are introduced on the
surface of the atmosphere with the correct statistics for an
ideal gas at pressure P and temperature T. The equations of
motion of all particles are integrated using the velocity Verlet
algorithm.22 Note that the stochastic treatment of the pres-
sure bath bears some resemblance to an existing method for
modeling solvent dynamics.23

The following algorithm differs in some details from the
one presented in an earlier paper,19 which for subtle reasons
does not precisely satisfy detailed balance !for a discussion
of this issue, see Sec. III D". However, we have verified that
results obtained using the old version7,19 remain unchanged
when using the correctly balanced algorithm enumerated be-
low and depicted in Fig. 1.

!1" Propagate the positions of the crystal atoms for one
time step !first step of the velocity Verlet algorithm".

!2" Check if the boundaries of the atmosphere must change
due to movement of crystal atoms. Remove cells and
gas particles therein that are no longer needed.

!3" Propagate the positions of the gas atoms for one time
step !first step of the velocity Verlet algorithm". Note
that for this step forces obtained with the crystal atoms
in their original position, i.e., before step 1, are used.

Remove all gas particles that have left the atmosphere.
Place nin gas particles on the surface of the atmosphere,
with positions drawn from a uniform distribution. nin
!“in” for “inject”" is a number drawn from a Poisson
distribution with an average of

n̄in = !2%mkBT"−1/2AP&t , !2"

where m is the mass of the gas particles, kB is the Bolt-
zmann constant, T and P are the desired temperature
and pressure, A is the total surface area of the atmo-
sphere, and &t is the time step. Let nx denote the local
unit normal to the surface pointing into the system. The

FIG. 1. Illustration of the ideal gas algorithm. !1" Propagate crystal atoms
!blue". !2" If necessary, remove cells and gas particles therein that are no
longer needed !red". !3" Propagate gas atoms and remove those !red" that
leave the atmosphere. Put new gas particles !green" on the surface and
propagate them into the atmosphere; remove those !red" that end up outside.
!4" If necessary, add new cells and fill them with gas particles !green".

154718-2 Grünwald, Dellago, and Geissler J. Chem. Phys. 127, 154718 !2007"

234104-4 T. R. Gingrich and P. L. Geissler J. Chem. Phys. 142, 234104 (2015)

A. Guiding forces

We first consider e↵ecting correlations with guiding
forces, i.e., artificial contributions to the e↵ective potential
that tend to lead the trial trajectory toward the reference. This
strategy is equivalent to using steered molecular dynamics31

to generate new trajectories. The trial trajectory x̃(t) is grown
with the equation of motion

x̃t+1 = x̃t + ⇠̃t + k(xt � x̃t). (13)

We denote ⇠̃t as the trial trajectory noise at time step t, also
drawn from a Gaussian with mean zero and variance �2. The
linear spring constant k adjusts the strength of correlation be-
tween reference and trial trajectories. The probability that this
guided dynamics generates a particular trial from the reference
is given by

Pgen[x(t)! x̃(t)] / exp
2666664�

tobs�1X

t=0

(x̃t+1 � x̃t � k(xt � x̃t))2
2�2

3777775 .
(14)

The entropy production associated with the trial move depends
also on the probability of generating the reverse TPS move,
growing the reference trajectory with extra forces pulling it
close to the trial. It is straightforward to compute ! from
Eq. (2),

! = � k
�2

tobs�1X

t=0

(xt � x̃t)(xt+1 + x̃t+1 � xt � x̃t). (15)

In this approach, ! can be physically interpreted as the di↵er-
ence between two work values: that expended by the artificial
force to guide the trial trajectory, versus the work that would
be required to conversely guide the reference. The resulting
distribution of entropy production, obtained from numerical
sampling, is shown in Fig. 1(a).

Since ! is given by a sum over all tobs time steps, P(!)
adopts a large deviation form as in Eq. (10), and h!i / tobs.
These scaling properties are demonstrated numerically in
Fig. 2(a) and analytically in Appendix A. In the Appendix, we
re-express ! in terms of the ⇠ and ⇠̃ variables, which can be
integrated over to yield

h!i = 2
(k � 2)2

⇥(2 � k) ktobs � 1 + (k � 1)2tobs
⇤
. (16)

Indeed, for 0 < k < 2, this expression gives the anticipated
long time scaling with tobs,

h!i ⇠ 2ktobs

2 � k
. (17)

As seen in Fig. 1(a), the negative-! tail of P(!), which gives
rise to MCMC acceptances, becomes correspondingly small
for large tobs.

B. Guiding choices

In both Secs. III B and IV A, we showed that time-
extensive entropy production arises generically when we do
not use natural (forward) dynamics to generate a trajectory.
Dynamical biases can alternatively be achieved by prefer-
entially selecting among di↵erent examples of natural dy-
namics. At a high level, conventional TPS13 is just such an
approach, constructing biased trajectory ensembles through
selection rather than artificial forces. Can this strategy be used
e↵ectively to impose resemblance between reference and trial
trajectories?

We consider a scheme very similar in spirit to the STePS
algorithm.15 Like configurational-bias MC sampling of a poly-
mer,32 the STePS procedure generates a long trajectory by
piecing together short segments, as illustrated in Fig. 1(b). To
generate a new segment, one starts at the end of the previous

FIG. 1. Three guidance schemes for generating a trial trajectory that maintains proximity to a reference trajectory. For the specific case of a one-dimensional
random walker, upper panels illustrate the consequences of (a) artificial corralling forces, (b) preferential selection of short trial branches, and (c) correlated noise
histories. Bottom panels show the corresponding distributions of trajectory space entropy production !. The intensity of red shading reflects the probability that
trial moves are rejected. For cases (a) and (b), the average entropy production is nonzero and grows with trajectory length tobs. With an appropriately designed
noise guidance scheme (c), symmetric selection of noise variables results in identically zero entropy production for all trajectory lengths.
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Figure S4: A schematic depiction of the stitching fusion move.

The resulting Metropolis acceptance criterion for wedge insertion is

acc(� ! �0) = min


1,

zsK
3

2
e���H

�
. (S11)

In the acceptance probability for wedge monomer deletion, acc(�0 ! �), the second argument

of the min function is inverted.

S1.6 Vertex fusion/fission

The insertion moves described above represent events in which shell monomers arrive from

bulk solution and bind to the growing sheet. A separate move is required to allow for binding

between monomers that already belong to the sheet. In the triangulated sheet description, such

an event fuses one or more existing vertices, so we term them “fusion” moves (and “fission” in

reverse). At each sweep we attempt a fusion move with probability Nfusek
0
fuse⌧ , where Nfuse is

the number of vertices eligible for fusion events. The reverse moves, i.e., fission, are attempted

with probability Nfissk
0
fuse⌧ , where Nfiss is the number of eligible fission events. In each case

one of the eligible moves is selected at random and then proposed as detailed below.

Some fusion moves act to close gaps between monomers that already share a common ver-

8

(a) (b)

(c) (d)

FIG. 8. Phill’s work on method development was imbued a philosophy of doing things “the right

way”, with precision and rigor: (a) schematic depiction of a shooting move in TPS from Ref. [121];

(b) and (d) schematic depictions of complex MCMC proposal moves from Refs. [101, 114], re-

spectively; (c) an example correlated trajectory generated with the noise guidance algorithm from

Ref. [126].

rigor. For instance, he developed an efficient TPS scheme to study pressure-induced phase

transitions in nanoparticles immersed in an ideal-gas pressure bath [114]. In other work, Phill

invented the method of precision shooting based on the linearized time evolution of small

perturbations to control the acceptance rate in TPS simulations of long diffusive processes

[115]. He returned to this problem later and designed ways to control the correlations

between pathways by applying noise guidance to the generation of trajectories [126]. More

recently, Phill helped to apply machine learning to enhance TPS simulations by generating

uncorrelated shooting points with normalizing flows [127, 128]. Phill always grounded his

many creative contributions to the path sampling literature in the fundamentals of statistical

mechanics, carefully deriving new methods from basic principles.
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Phill would often remark that he found the simplicity of maintaining detailed balance

in transition path sampling beautiful, because the algorithm proscribes that a trajectory is

accepted if, and only if, it is reactive. Acceptance criteria for complicated Markov Chain

Monte Carlo (MCMC) moves can be subtle and many practitioners neglect the crucial “gen-

eration probabilities” that arise when a move is not statistically reversible. The simplest

MCMC proposals, however, lead to slow relaxation and were often inappropriate for the

physical systems that Phill studied. Moreover, Phill relished in working through complex

MCMC procedures to obtain the correct acceptance probabilities. Exotic moves can be

found tucked away in many of his papers [101, 114], and a handful are dedicated to es-

tablishing detailed balance for sufficiently complicated move sets [83, 94, 129]. Ensuring

that everything was handled properly, even when it did not necessarily make a difference in

typical simulations [114], embodies the careful method development that he engaged in.

Mapping complicated phase behavior onto a lattice model was a particular passion of

Phill’s, and Ising models appeared in his work on hydrophobic solvation [17, 18], nonequilib-

rium solvation [7], drying-mediated self-assembly [85], cation exchange in nanocrystals [107,

110, 111], and thylakoid membranes [71]. Minimal models also provided Phill and his group

with a lens to examine the dynamics of molecular systems driven away from equilibrium.

Nonequilibrium biological processes are often characterized by dynamical heterogeneity.

This heterogeneity is apparent in a range of processes over many scales, from dynamical

instability observed in microtubule growth to heterogeneity in cell growth rates. The latter

is thought to enable a mode of antibiotic resistance in certain bacterial cells as slowly grow-

ing cells can have a higher probability of survival in the presence of antibiotics. Dynamical

heterogeneity implies that these cells can then switch to the fast growth rate mode when

conditions are more favorable [130, 131]. Phill and co-workers used the statistical mechanics

apparatus developed in the context of path sampling to understand the basis for such phe-

nomenology. By focusing on the so-called large deviation rate function, which plays a role

formally analogous to that played by a free energy in equilibrium statistical mechanics, they

revealed how dynamical heterogeneity and dynamical phase transitions can emerge due to

the presence of seemingly minor heterogeneities in the kinetic rates. This work resulted in a

minimal but analytically solvable model for dynamical phase transitions and heterogeneity.

Phill and his group later adapted these ideas to probe efficiency fluctuations in a minimal

model of a nanoscale Carnot cycle [132]. Phill had a deep understanding of nonequilibrium
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fluctuation theorems and mapped out the implications of an asymmetric external driving

protocol for the statistics of the fluctuating efficiency in this nanomachine.

VIII. THE TRAJECTORY FROM HERE

We hope that presenting Phill’s collected contributions in a single volume sheds light on

the underlying themes that informed his scientific work. Dynamical trajectories shaped his

understanding of physical systems, and his research continually emphasized the necessity

of accounting for the collective fluctuations characteristic of the nanoscale. He sought to

explain experimental observations in exceedingly complex systems by devising models that

captured the essential fluctuations and nothing more. His approach to research, like his

approach to teaching, was guided by an appreciation for clarity, simplicity, and elegance.

While the physical systems he studied were not constrained by disciplinary boundaries, he

found a common language to explain complex processes from ion solvation to biological self-

organization. Phill will remain to us a model of a scientist, the one who showed us the ropes,

and a friend whom we will miss immensely. We hope that this perspective remembering his

brilliant and too-short career will light the path as we navigate the unknown and rugged

landscapes “at the frontiers of biology, chemistry, and materials science.”
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