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ARTICLE

AmpliconReconstructor integrates NGS and optical
mapping to resolve the complex structures of focal
amplifications
Jens Luebeck1,2, Ceyda Coruh3, Siavash R. Dehkordi2, Joshua T. Lange4,5, Kristen M. Turner5,

Viraj Deshpande 2, Dave A. Pai6, Chao Zhang 1, Utkrisht Rajkumar2, Julie A. Law 3,

Paul S. Mischel 5,7,8 & Vineet Bafna2✉

Oncogene amplification, a major driver of cancer pathogenicity, is often mediated through

focal amplification of genomic segments. Recent results implicate extrachromosomal DNA

(ecDNA) as the primary driver of focal copy number amplification (fCNA) - enabling gene

amplification, rapid tumor evolution, and the rewiring of regulatory circuitry. Resolving an

fCNA’s structure is a first step in deciphering the mechanisms of its genesis and the fCNA’s

subsequent biological consequences. We introduce a computational method, AmpliconRe-

constructor (AR), for integrating optical mapping (OM) of long DNA fragments (>150 kb)

with next-generation sequencing (NGS) to resolve fCNAs at single-nucleotide resolution. AR

uses an NGS-derived breakpoint graph alongside OM scaffolds to produce high-fidelity

reconstructions. After validating its performance through multiple simulation strategies, AR

reconstructed fCNAs in seven cancer cell lines to reveal the complex architecture of ecDNA,

a breakage-fusion-bridge and other complex rearrangements. By reconstructing the rear-

rangement signatures associated with an fCNA’s generative mechanism, AR enables a more

thorough understanding of the origins of fCNAs.
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Oncogene amplification is a major driver of cancer patho-
genicity1–5. Genomic signatures of oncogene amplification
include somatic focal copy number amplifications (fCNAs)

of relatively short (typically <10 Mbp) genomic regions5,6. Multiple
mechanisms cause fCNAs including, but not limited to, extra-
chromosomal DNA (ecDNA) formation5,7,8, chromothripsis9,
tandem duplications10,11, and breakage–fusion–bridge (BFB)
cycles12–14. EcDNA, in particular, enables tumors to achieve far
higher oncogene genomic copy numbers and maintain far greater
levels of intratumor genetic heterogeneity than previously antici-
pated, due to their non-chromosomal mechanism of inheritance—
enabling tumors to evolve rapidly5,15,16. In addition, the very high
DNA template level generated by ecDNA-based amplification,
coupled to its highly accessible chromatin architecture, permits
massive oncogene transcription17–19.

While ecDNA elements are a common form of fCNA5, other
mechanisms can also result in amplification with different func-
tional consequences6. Accurate identification and reconstruction
of the fCNA structure not only describes the rearranged genomic
landscape, but also represents a first step in identifying the gen-
erative mechanism—to ultimately gain understanding about an
fCNA’s biological consequence. Reconstruction of fCNA archi-
tecture involves determining the order and orientation of the
genomic segments that constitute the amplicon. There are many
methods to detect single genomic breakpoints from sequencing
data, using a variety of different sequencing technologies20–24.
However, fewer methods are available to handle the more difficult
problem of ordering and orienting multiple genomic segments
joined by breakpoints into high-confidence copy number-aware
scaffolds, which are subsequently joined to enable complete
reconstructions of complex rearrangements6,25. This problem
represents the key algorithmic challenge addressed by our work.

A previous method for characterizing the identity of focally
amplified genomic regions, AmpliconArchitect (AA), generates
an accurate breakpoint graph from next-generation sequencing
(NGS) data6. The graph encodes the genomic segments involved
in fCNAs, their copy numbers, and breakpoint edges connecting
the segments. Unambiguous reconstruction of fCNA architecture
requires extracting paths and cycles from the breakpoint graph, to
reveal the true structure of the underlying rearranged genome.
However, in practice, path/cycle extraction is often confounded
by duplications of large genomic regions inside an amplicon
(Supplementary Fig. 1a), imperfections in the graph arising from
errors in estimation of segment copy numbers, erroneous and/or
missing breakpoints.

We hypothesized that an approach combining the strengths of
NGS with long-range genome mapping data would enable larger
and more unambiguous reconstructions of fCNA architectures.
We utilized optical mapping (OM) data, which provides single-
molecule information about the approximate locations of
fluorescently-labeled sequence motifs on long fragments of
DNA26. Importantly, optical mapping has orthogonal sources of
error to DNA sequencing27,28. Primary sources of error to con-
sider include missing OM labels, uncertainty about the exact
location of the label on the imaged molecule, and possible
molecular chimerism. The median molecule (map) length used in
assembly across all samples present in this study is 244 kbp
(molecule N50 340 kbp), while the median segment length in
breakpoint graphs in this study is 100 kbp, highlighting that OM
data can span multiple junctions in breakpoint graphs derived
from focal amplifications (Supplementary Data 1). The integrated
NGS data and OM data provide an orthogonal pairing of short-
and long-range information about genomic structural variation.

We present a computational method for reconstructing large
complex fCNAs, AmpliconReconstructor (AR). AR takes a
breakpoint graph and long-range OM data as inputs. We utilize

Bionano (Bionano Genomics, Inc., San Diego, CA) whole-
genome imaging to generate single-molecule optical maps,
which are de novo assembled into OM contigs (contig N50 72.8
Mbp). AR produces an ordering and orientation of graph seg-
ments, with fine-structure information from the breakpoint graph
embedded into the large-scale reconstructions. As output, AR
reports large-scale reconstructions of fCNA amplicons. We
demonstrate the large-scale and fine-scale accuracy of AR using
simulated OM data derived from seven cancer cell lines6,21

(CAKI-2, GBM39, NCI-H460, HCC827, HK301, K562, and
T47D). Finally, we validate the fCNA reconstructions using
cytogenetics.

Results
Overview of AR. We formulated the problem of fCNA recon-
struction in multiple parts. First, alignment of genomic segments
with optical map contigs. Second, the reconstruction of a genomic
scaffold using OM data as a backbone. Third, the identification of
the maximal simple paths in a graph where each node is an OM
scaffold, for which the path is not a subsequence of another
maximal simple path. AR separates these computational tasks
into four primary modules (Fig. 1a, b). To address the first pro-
blem, we designed an OM alignment module, SegAligner, for
aligning reference segments to assembled OM contigs generated
by either the Bionano Irys or Bionano Saphyr instruments
(Supplementary Fig. 1b–d, Methods—“Optical map contig
alignments with SegAligner”). SegAligner is critical as it can score
placements of short genomic segments onto an OM contig, which
was not possible with other aligners. To address the second
problem, we introduce two modules. First, a scaffolding module,
which takes a collection of breakpoint graph segments aligned to
OM contigs as input and creates scaffolds represented by directed
acyclic graphs (DAGs) (Fig. 1c–e, Methods—“Reconstructing
amplicon paths with AR”). The second module for scaffolding
with AR involves a novel scaffold-path imputation technique
(Fig. 1f–h, Methods—“Imputing paths in the scaffold with AR”)
to connect breakpoint graph segments that may individually be
too small to be informatively labeled and aligned with optical
mapping (Fig. 1f). We address the final problem with a path-
finding module, which links scaffolds and searches for paths in a
copy number (CN)-aware manner, to identify possible recon-
structions of the amplicon. AR outputs a collection of sequence
resolved paths supported by the linked scaffolds. We imple-
mented a visualization utility, CycleViz, to show the integrated
OM- and NGS-derived breakpoint graph data (Supplementary
Fig. 2). AR is implemented in Python, and SegAligner is imple-
mented in C++. Both tools are available publicly at https://
github.com/jluebeck/AmpliconReconstructor.

AR accurately reconstructs simulated amplicons. We utilized
multiple simulation strategies to measure the performance of AR
(Supplementary Fig. 3). We used 85 non-trivial breakpoint graph
paths reported by AmpliconArchitect from 25 cancer cell lines6 as
a ground-truth set of amplicon structures, and a separate simu-
lation of 20 de novo simulated circular ecDNA structures. We
first present the results of the 85 breakpoint graph paths. These
paths included cyclic (37 paths) and non-cyclic paths (48 paths)
with lengths varying from 260 kbp to 2.8 Mbp (median 1.1 Mbp)
and the number of graph segments varying from 3 to 47 (mean
17.5 segments; Supplementary Data 2). These paths were used as
a reference from which we simulated OM molecules (Methods
—“Simulation of amplicons to measure AR performance”).
Simulated molecules were assembled into contigs using the Bio-
nano Assembler29,30.
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For each of the 85 simulated amplicons, we ran AR on the
corresponding breakpoint graph and the de novo assembled
contigs, and examined four different variables that could affect
the performance of AR. First, we tested AR performance using
SegAligner for OM alignment, versus AR using other OM
alignment tools to replace SegAligner. Second, we evaluated the
performance of AR across a range of amplicon copy numbers.
Third, we measured performance with false edges present in the
breakpoint graph. Finally, we generated and tested mixtures of
three similar amplicons from the same samples, simulated with
different amplicon copy numbers, to measure the effects of
potential amplicon heterogeneity on AR performance.

We measured the accuracy of AR by computing precision and
recall across the four simulation conditions. As precision and
recall could be quantified in multiple ways when comparing
ground-truth and reconstructed simulation paths, leading to
different understandings of performance, we described three
ways of measuring the similarity of the paths (Length (bp),
Nseg, Breakpoint; Methods—“Measuring AR simulation

performance”), based on the longest common substring (LCS)
between ground-truth and reconstructed path sequences. We
report the Length (bp) measurement in the analysis described
here, while results with other measurements are presented in
Supplementary Data 2 and Supplementary Fig. 4.

AR using SegAligner achieved a mean F1 score (harmonic
mean of the precision and recall) of 0.88 for the highest copy
number level (CN 20) and 0.68 for the lowest copy number level
(CN 2) (Fig. 1i, Supplementary Fig. 4, Supplementary Data 2). In
contrast, when OMBlast31 or Bionano RefAligner29,32 were used
in place of SegAligner, we noticed a decrease in both precision
and recall. For RefAligner and OMBlast, respectively, we report
mean F1 scores of 0.52, 0.43 for CN 20, and 0.42, 0.41 for CN 2.
When imputation was omitted from AR, the mean F1 score for
CN 20 decreased from 0.88 to 0.70. We observed similarly
consistent trends using other methods of measuring precision and
recall—Nseg and Breakpoint (Supplementary Fig. 4). Large
duplications inside a rearranged amplicon represent a challenging
case to reconstruct. We identified 60 duplications of one or more

c

S2+S1+S5+ S4-

S1+ S2+ S3+

S4+ S5+

S5+ S4-

OM Contig 1

S2+S1+

S5+

S3+

S4-

S4-S2+S1+S5+ S4- S6+

b

S5+

f

S7-

S8-

Reconstructed path: S8-, S5+, S1+, S2+, S4-, S6+

Contig 1 scaffold Contig 2 scaffoldContig 3 scaffold

g

e

Breakpoint
graph

OM contigs

Reference 
genome CMAPs

h

iScaffolding

Imputation

Pathfinding

Breakpoint
graph

a
Sample of 

interest

WGS & 
alignment

Amplicon
Architect

Optical 
mapping & 
assembly

0
0.

25 0.
5

0.
75 1

0

0.
25

0.
5

0.
75

1

P
ro

po
rt

io
n 

of
 s

am
pl

es

Imputation

No imputation

Amplicon CN

20 10 5 2

SegAligner
Scaffolding

Imputation

Pathfinding

Alignments

Reconstructed 

amplicons

AmpliconReconstructor

0

0.
25

0.
5

0.
75

1

P
ro

po
rt

io
n 

of
 s

am
pl

es
Cumulative recall

Cumulative precision

S3

S5

S2

S4

Segment 1

Segment N

d

Fig. 1 AmpliconReconstructor (AR) overview. a Workflow to produce the necessary inputs for AR. AR accepts OM data in the consensus map (CMAP)
format. b High-level overview of the AR method, where the inputs and outputs are shown outside the gray box representing the AR wrapper. The green
loop-back arrow on the SegAligner module represents the identification of reference segments not encoded in the breakpoint graph. c A breakpoint graph
with N segments. d In silico digestion of breakpoint graph segments (orientation given by +/−) from (c) to produce graph OM segments. e Alignment of
graph OM segments to OM contigs produces a scaffold of segment-contig alignments. f AR uses the structure of the breakpoint graph to identify paths
between scaffold alignment endpoints which are also paths in the breakpoint graph. AR generates composite optical maps from combined path segments
to score each candidate path against the gap in the scaffold. g AR identifies a candidate path with maximum score out of the possible imputed paths
between two alignments. h AR links individual scaffolds sharing overlap between graph segments. The resulting graph has two types of edges, allowed
(gray) and forbidden (red). i Cumulative precision and recall curves based on simulated OM data for AR using SegAligner, calculated with the Length (bp)
LCS metric. Line color indicates the copy number (CN) of the simulated amplicon. Source data are provided as a Source data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18099-z ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4374 | https://doi.org/10.1038/s41467-020-18099-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


graph segments (mean length 281 kbp) in the simulated
amplicons, and we report that AR resolved 75% (45) of these
duplications. We saw some cases of ‘assembly failure,’ where no
paths differing from the reference genome involving the amplicon
segments were assembled. Figure 1i shows cumulative precision
and recall values for AR using SegAligner (with and without
imputation), and with assembly failures filtered. We additionally
reported simulation F1 scores with and without filtering for
assembly failure (Supplementary Data 2).

To understand the reasons for loss of performance on a small
number of simulation cases, we examined the results from the CN
20 simulation where individual reconstructions showed either
precision or recall <0.6. We manually examined the results from
the 85 total cases and found that of 13 amplicons with precision
below this threshold, nine cases showed signs of assembly failure,
while three had incorrect reconstructions likely on account of
graph complexity. The remaining case showed an issue with
incorrect scaffold linking. Of 14 amplicons having recall below
the threshold, nine cases showed signs of assembly failure, while
five had highly segmented breakpoint graphs making it difficult
for AR to identify anchoring alignments around the breakpoints,
leading to an incomplete reconstruction.

False edges in the breakpoint graph increase the possible
number of path imputations that AR considers, potentially
leading to erroneous scaffolds. On simulated CN 20 amplicons,
we added additional false edges between existing graph segments.
We tested three scenarios with the proportion of additional false
edges ranging from 0, 50, and 100% of the number of true graph
edges. The three scenarios resulted in nearly identical mean
F1 scores of 0.881, 0.880, 0.881 across the 85 amplicon
simulations (Supplementary Data 2, Supplementary Fig. 5a),
highlighting the robustness of the path imputation method.

To understand how AR performed when faced with amplicon
heterogeneity, we designed a simulation study involving 123
combinations of breakpoint graph paths where each combination
was derived from paths found in a single sample, generated at
varying copy number mixtures. We simulated amplicons from
heterogeneous mixtures with (1) a single dominant amplicon
(CNs 20-2-2); (2) a linear mixture of CNs (CNs 20-15-10); (3)
equally abundant amplicons (CNs 20-20-20). We report mean
F1 scores of 0.92, 0.89, and 0.91, respectively, for the three cases
(Supplementary Data 2). To explain the increase in performance
of the mixture simulations as compared to the single amplicon
simulations, we hypothesize that the greater total number of
molecules improved the assembly process. Regardless, the high
similarity between the precision and recall in each mixture case
(Supplementary Fig. 5b) indicates AR can reconstruct an accurate
amplicon path even in the context of heterogeneity.

Last, we designed a simulation strategy not reliant on prior
AA-generated paths. Instead, we generated 20 de novo simulated
rearranged circular amplicons (median size 2.0 Mbp, mean
segments 9.3) and replaced the hg19 reference used to generate
background molecules with a simulated tumor genome generated
with SCNVSim33. AR’s performance on these cases achieved a
mean F1 score of 0.860 (0.731 when assembly failures included,
Supplementary Data 2). The distributions of F1 scores for the 20
de novo cases and the 85 AA-derived cases were not statistically
different between the 85 AA-derived amplicons and the 20 de
novo simulated amplicons (two-tailed Mann–Whitney U-test,
p-value= 0.1996, test statistic= 631.0). Based on these results, we
found AR to be robust, and to outperform other methods for
resolving fCNA architecture.

AR reconstructs ecDNA in multiple forms. Three cell lines in
our study were previously reported to contain ecDNA5—GBM39,

NCI-H460, and HK301. We previously analyzed17 glioblastoma
multiforme (GBM) cell line GBM39 using a preliminary version
of AR with Bionano RefAligner29,32 and manual merging of
graph segments. Re-analysis reproduced an unambiguous 1.26
Mbp EGFRvIII-containing circular ecDNA identical to the pre-
viously published structure17 (Supplementary Fig. 6). The entire
amplicon was captured by a single non-circular OM contig, with
circularity confirmed by an overlapping breakpoint graph seg-
ment aligned to both ends of the contig.

Prior studies of ecDNA have documented their integration into
chromosomes over time, linearizing and appearing as homo-
geneously staining regions (HSRs), often in non-native
locations5,7,15. In a previous study5, The GBM cell line HK301
had been cytogenetically determined to have circular ecDNA;
however, we observed from FISH (fluorescence in situ hybridiza-
tion) data that the sample’s ecDNA had become HSR-like at the
time of this study (Fig. 2a). AA reported a breakpoint graph
supporting amplification of both EGFRvIII and EGFR wild-type
(Fig. 2c), however, an unambiguous reconstruction from the
graph alone was not possible. The AR reconstruction of the
HK301 fCNA indicated a complex cyclic structure supported by
three contigs (Fig. 2d), which explained 98.1% of the amplified
genomic regions. The graph segments came predominantly from
chr7, but also included two small regions (2890 bp, 4591 bp) from
chr6 (Fig. 2c, d). We noted a ~20 kbp deletion inside EGFR,
showing a lower CN than the surrounding region, but which was
still amplified over the baseline regions of chr7. This indicates
heterogeneity of EGFR wild-type/vIII mutation status. Despite the
heterogenous status of this allele, AR reconstructed the EGFRvIII
version—which is the dominant form of the amplicon (Fig. 2d).

The lung cancer cell line NCI-H460 has previously been
documented to bear MYC amplification34, and our cytogenetic
analysis showed evidence for both its HSR-like and ecDNA
amplification (Fig. 2e, f). Despite the heterogeneous nature of the
amplicon’s integration status, AA generated a breakpoint graph
for a contiguous 2.15Mbp region of chr8 (Fig. 2g). AR
reconstructed a single 4.10 Mbp structure supported by five OM
contigs (Fig. 2h). This structure contained all amplified segments
from the breakpoint graph and explained the relative ratios of
breakpoint graph segment copy numbers. For example, segment
chr8:129,404,278–129,591,422 appeared four times,
chr8:128,690,200–129,404,277 (carrying MYC & PVT1) appeared
twice, chr8:129,591,423–129,911,811 appeared twice, and
chr8:129,911,812–130,640,594 appeared once, making the ratios
consistent with the estimated graph segment copy numbers (46,
25, 25, 12, respectively; Fig. 2g). The status of the long non-coding
RNA PVT1 (a known regulator of MYC)35 on this amplicon is
heterogeneous, as one copy of PVT1 does not contain break-
points, while the other shows a disrupted copy of PVT1. AR also
identified a self-inversion at the end of the amplicon (black
arrows in Fig. 2h), suggestive of an alternating forward-backward
orientation (segmental tandem aggregation with inversion) of the
amplicon in the agglomerated ecDNA.

We previously documented a circular amplicon containing an
integrated human papillomavirus-16 (HPV16) genome6, and we
hypothesized that AR could help resolve the location of viral
insertion in the host genome. We simulated a 1Mbp circular
amplicon with the 7.9 kbp HPV16 genome randomly inserted.
AR was able to reconstruct the circular ecDNA structure and
identified the integration point of human papillomavirus-16
(Supplementary Fig. 7) despite the viral genome having no OM
labeling sites, suggesting that AR would serve as useful method
for validating the existence of genomic oncovirus integrations
suggested by NGS data.

In summary, AR reconstructed paths that were consistent with
the expected ratios between amplified segment copy numbers and
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graph structures in GBM39, HK301, and NCI-H460, explaining
99.9%, 98.1%, and 100% of the amplified genomic content in the
breakpoint graphs for each cell line, respectively. Furthermore,
the AR reconstructions of ecDNA in HSR-like form lend
additional evidence to the agglomerative model of ecDNA
integration (Fig. 2b)8,36,37.

AR reconstructs a rearranged Philadelphia chromosome in
K562. The classical model of the BCR-ABL1 fusion involves a
reciprocal translocation of the q arms of chromosomes 9 and 22

(Philadelphia chromosome)38. However, this mechanism alone
does not explain the copy number amplification of BCR-ABL1
fusion commonly observed in chronic myeloid leukemia (CML),
highlighting a need for methods to better understand the genesis of
the BCR-ABL1 amplification39,40. To reconstruct the fine structure
of a Philadelphia chromosome, we used the CML cell line K562
where a BCR-ABL1 fusion had previously been reported41.

The AA-reconstructed breakpoint graph for the BCR-ABL1
fCNA in K562 contains 8.5 Mbp of amplified genomic segments
(Fig. 3a). The graph shows signatures of complex rearrangements
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alongside the BCR-ABL1 fusion, which AA predicted to have a
copy number of 17 (Fig. 3a). We generated both Bionano Irys and
Bionano Saphyr OM data for K562 cells and observed consistent
results in the independent reconstructions of amplicons from
both sources (Supplementary Fig. 8a, b). Using the breakpoint

graph and OM contigs, AR reconstructed a complex linear
structure that chained together 1.7 Mbp from chr22 (containing
BCR), 548 kbp of chr9 (containing ABL1), and multiple regions
from chr13 (732 kbp; including a disrupted copy of GPC5)
(Fig. 3b). In Fig. 3b, we show one possible scaffolding of the given
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regions, whose structure was reproduced in both Saphyr and Irys
datasets. AR also reported junctions between segments in the
breakpoint graph where NGS-derived breakpoint edges were not
reported, as indicated by the missing half-height gray bars
between adjacent genomic segments in the genome tracks of
Fig. 3b. While AR explains many of the amplified segments in this
amplicon, we note that there is additional copy number variation
in this amplicon it does not explain. For instance, the BCR and
ABL-containing segments have an elevated CN over the segments
on chr13.

We performed FISH experiments using combinations of
probes for BCR, ABL1, GPC5, and chr22 centromere probe
CEP22. The FISH images confirmed the co-localization of the
BCR-ABL1 fusion and GPC5 on a common HSR-like structure
(Fig. 3c) and validated the status of the BCR-ABL1 fusion as being
located on chr22 (Supplementary Fig. 9).

In addition to the reconstruction reported in Fig. 3b, AR
identified other scaffolds, indicating that the genomic structure
surrounding the BCR-ABL1 translocation may be varied across
the multiple copies (Supplementary Figs. 8c, d and 10a-f). In
particular, the genomic segment bearing CLTCL1 appears in both
forward and reverse directions (Supplementary Fig. 10b, c). Other
amplified regions of chr13 include a self-inversion at the 3′ end of
GPC5 (Supplementary Figs. 8c, d and 10e). A scaffold from the
Irys-based reconstruction indicated a secondary reconstruction
could be joined with the BCR-ABL1 reconstruction (Supplemen-
tary Fig. 8d; overlap of segment 20). From the AR reconstructions
of the BCR-ABL1 amplicon and the co-existence of BCR, ABL1,
and GPC5 in overlapping locations, as shown by FISH (Fig. 3c
‘Zoom’), AR enabled us to hypothesize a potential sequence of
events by which the fCNA formed. The AR reconstructions
support the formation of the BCR-ABL1 translocation (Supple-
mentary Fig. 10g;i–ii) followed by incorporation of chr13 regions
(Supplementary Fig. 10g;iii-iv), which subsequently undergo
rearrangement (Supplementary Fig. 10g;v), and ultimately a
series of inverted repeats, possibly mediated through dicentrism
(Supplementary Fig. 10g;vi). These results are consistent with
previous reports using cytogenetic approaches to observe the
presence of additional chromosomal segments besides chr9 and
chr22 involved in the Philadelphia chromosome30,31.

AR enabled the reconstruction of a BFB. The BFB mechanism
of genomic amplification involves the loss of telomeres and
subsequent fusion of two sister chromatids12,13. In subsequent
cellular division, the asymmetric breaking of the fused chromo-
some structure results in one daughter cell acquiring additional
pieces of the previously fused chromosome. The structure of
various BFBs have been analyzed using cytogenetic techniques14

and by computational models that predict BFB presence from
copy number counts42,43. Both methods are imprecise, to a
degree, and may fail to capture the fine structure of the BFB or
handle imprecise copy number counts and/or additional struc-
tural variants (SVs) inside the BFB. We deployed AR on the
HCC827 lung cancer cell line where AA and cytogenetics sug-
gested a chr7 BFB, though an unambiguous structure was not
identifiable5,6.

We observed a banded pattern of EGFR and CEP7 (a chr7
centromeric D7Z1 repeat) in a DNA FISH experiment on
HCC827 cells, suggestive of a BFB mechanism (Fig. 4a). AA
generated a breakpoint graph of a 4.2 Mbp amplified region of
chr7 containing EGFR (Fig. 4b). The amplified BFB segments in
the AA output ranged in size from 217 to 1176 kbp. AR enabled
the reconstruction of 16 unique OM scaffolds which, when
combined, enabled the reconstruction of the BFB structure
(Fig. 4c, d). The five most informative single scaffolds ranged in

size from 750 kbp to 2.3 Mbp, containing multiple junctions
which validate the order and orientation of the BFB breakpoint
graph segments, resulting in a 9.4 Mbp amplicon, hereafter
referred to as a BFB repeat unit. The BFB repeat unit was
amplified across the chromosome (Fig. 4a, e, f). AR also revealed
a region outside the AA amplicon, near the centromere of chr7,
which explained the observed EGFR and CEP7 repeat (F). In
segment B, we observed a 600 bp deletion across the entire BFB
repeat unit and an 11 kbp inversion. The latter is labeled
throughout Fig. 4 with a black asterisk and only appears when
segment B is duplicated and inverted, suggesting that the SV
arose midway through the formation of the BFB. While some
BFBs may result in double-minute amplicons7, AR suggested, and
FISH analysis confirmed that the HCC827 BFB does not contain
a circular extrachromosomal version of the BFB cycle.

When the AR scaffolds were combined with the copy number
data present in the breakpoint graph, we could manually identify
a complete BFB structure consistent with the theoretical model of
BFB formation44. A putative sequence of BFB cycles and
additional structural variation results in the final BFB structure
is shown in Fig. 4f (also Supplementary Fig. 11a, b). Without AR,
the copy number information and the theoretical model together
could not have reconstructed this BFB, as it contains hetero-
geneous interior structural variants. We further validated the BFB
patterning in HCC827 cells with multi-FISH for segments A, C,
and D from the BFB, using FISH (Fig. 4e, Supplementary
Fig. 11c). Together, these results show the ability of AR to enable
the resolution of a BFB-driven fCNA, even in the presence of
additional structural heterogeneity.

In addition to the EGFR-bearing amplicon, AA detected five
other amplicons containing MYC and NCOA2, among other
oncogenes. The graphs were complex (Supplementary Fig. 12a)
and in many cases AA did not identify discordant edges between
distinctly amplified regions. Given the dearth of breakpoint edges,
we combined the amplicon breakpoint graphs for all six HCC827
amplicons and ran AR on the combined graph, containing
555 segments. AR identified 206 contigs having alignments to one
or more graph segments. AR reconstructed multiple possible
scaffolds and captured overlapping subsets of amplicon regions
from different graphs, suggestive of possible amplicon hetero-
geneity. One scaffold showed NCOA2 located on a native region
of chr8, while another showed NCOA2 joined to MYC through a
segment of chr21 (Supplementary Fig. 12b, c).

Additional focal amplifications reconstructed by AR. In breast
cancer cell line T47D, where the AA breakpoint graph suggested
amplification of a 634 kbp region, AR reconstructed a 430 kbp
segmental tandem duplication, containing oncogene GSE1 (Sup-
plementary Fig. 13a, b). This highlighted the ability of AR to also
reconstruct classes of ultra-large, albeit less-complex SVs.

In renal cancer cell line, CAKI-2, AA generated a breakpoint
graph spanning 12.0 Mbp, joining regions from chr3 and chr12
(Supplementary Fig. 13c, d). Despite the lower overall copy
number of this amplicon (~5), AR still reconstructed a 13.1 Mbp
amplicon explaining 99.9% of the amplified genomic content in
the AA-detected fCNA. Both amplicons for CAKI-2 and T47D
appear to be intrachromosomal events given the AR results.

Across the focal amplifications we studied in seven cancer cell
lines, we report 64 individual amplified breakpoints detected by
both AA and validated by AR (Supplementary Data 3). We also
report a summary of all reconstruction findings and a list of
reconstructed paths in Supplementary Data 4. Taken together,
our data demonstrate the power of AR to combine NGS and OM
data to elucidate a variety of complex fCNAs commonly found in
cancer—enabling a deeper understanding of the fundamental
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mechanisms that give rise to fCNAs and promote cancer
pathogenesis.

Integration points of focal amplifications. Low-frequency
breakpoint edges, such as the ones indicating integration points
may not appear in the NGS breakpoint graph and may not be
seen in assembled OM contigs. Using alignments of single-
molecule optical maps, generated by the Bionano RefAligner
molecule alignment pipeline, we gathered molecules with split
alignments joining a partial alignment inside the amplicon region
with a partial alignment outside the amplicon region. For H460,
K562, CAKI-2, HCC827, and T47D, OM coverage was deep
(>100, Supplementary Data 1) allowing us to cluster split align-
ments into OM-derived breakpoint clusters suggestive of low-
frequency integration points. Requiring that each breakpoint
cluster have 10 or more molecules suggesting the same junction
(within 25 kbp on either side), we identified four integration point
candidates (Supplementary Data 3).

Visualized with MapOptics45, H460 showed a single integra-
tion point between amplicon region chr8:129410000 and non-
amplicon region chr12:7660000 (Supplementary Fig. 14a).
K562 showed two integration points. The first joined amplicon

region chr13:81120000 and non-amplicon region chr1:142890000
(Supplementary Fig. 14b). The second joined amplicon region
chr13:93260000 and non-amplicon region chr1:142890000 (Sup-
plementary Fig. 14c). The proximity of these two integration
points suggests a left and right boundary for the integration of the
K562 BCR-ABL1 amplicon. CAKI-2 showed one integration
point joining amplicon region chr12:88300000 and non-amplicon
region chr6:168380000 (Supplementary Fig. 14d).

HCC827 and T47D did not show any such integration points
with 10+ molecules of support, which is consistent with the
finding that these were chromosomally derived focal amplifica-
tions (BFB and segmental tandem duplication, respectively).

AR provides a reconstruction improvement over AA. AA can
identify some putative paths and cycles in the breakpoint graph
only using NGS data. We demonstrated that for complex
amplicons, AR provides an improvement to the fraction of the
amplified genomic segments in the heaviest reconstruction path
or cycle compared to the heaviest path or cycle generated by AA
(Supplementary Fig. 15a). OM data may suggest additional
amplicon junctions not observed in NGS. The segment junctions
observed in the AR output was equal to (GBM39, T47D) or larger
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than (CAKI-2, H460, HCC827, HK301, and K562) the number of
junctions suggested by the AA breakpoint graph alone (Supple-
mentary Fig. 15b).

Dixon et al.21 used an integrative approach to detect
structural variation and associated breakpoints using a combi-
nation of NGS, OM data and other sequencing modalities. We
identified four cell lines shared between our studies for which
Dixon et al. reported breakpoints identified by their integrative
approach. We observed that in regions analyzed by AR, more
breakpoints were detected with AR than with the integrative
approach, though there were some breakpoints indicated by
Dixon et al. which were not observed by AR (Supplementary
Fig. 15c). In those cases, the majority of breakpoints not
observed by AR joined amplicon regions to regions outside the
amplicon (CAKI-2: 2 of 3 non-AR breakpoints, H460: 1 of 1
non-AR breakpoints, K562: 11 of 16 non-AR breakpoints). In
H460, the one breakpoint not observed by AR was the
integration point we later detected, suggesting that these are
lower frequency breakpoints perhaps related to integration.

Discussion
Revealing the architecture of fCNAs, particularly at a large scale, is
critical to understanding the functional consequences. For instance,
rearrangements present in fCNAs frequently increase oncogene
copy number46, disrupt gene structure47, and lead to dysregulation
of chromatin17–19. Accurate reconstruction of fCNA architecture
can provide insights into the mechanisms of formation, leading to
an improved understanding of the biological consequences of fCNA
that would not be available solely from methods characterizing
individual breakpoints. AR does not yet automatically produce a
prediction of the biological mechanism of amplification. Thus, the
AR reconstructions still require some manual interpretation based
on the visualized results.

While previous methods have characterized complex structural
variation using both OM and NGS data21,48, these methods have
typically focused on individual variants and breakpoints42. OM
tends to detect larger SVs than NGS alone and is less affected by
mapping issues on low-complexity breakpoints21,24. We have
demonstrated that NGS data, when incorporated with OM can be
used to resolve fine-mapped breakpoints suggested by OM.
Indeed, some of the individual junctions reported by AR in these
cell lines were already known21 (Supplementary Fig. 15c). How-
ever, AR represents a robust, comprehensive algorithmic
approach to reconstructing the fine-scale and large-scale structure
of an fCNA through the propagation of NGS-derived breakpoint
information into larger scaffolds.

Many variables affect the ability to resolve fCNA. Importantly,
the complexity and structure of the fCNA, as well as the length of
the reads or genome maps. Further compounding the difficulty of
fCNA reconstruction, we note that different sequencing mod-
alities do not overlap perfectly in the breakpoints they detect21,24.
Based on our findings, we suggest the resolution of chained
breakpoints should be spanned by long-range sequencing data
with length sufficient to anchor the chain on both ends. We
attribute much of the success of AR for resolving fCNAs to the
long molecule length (244 kbp median) in comparison with the
length of amplified genomic segments in the breakpoint graph
(100 kbp median).

The paths reconstructed by AR represent possible reconstruc-
tions of an fCNA, and may contain multiple similar explanations
for the fCNA architecture. This may be in part due to amplicon
heterogeneity, limitations of the optical map assembly process, or
errors in linking scaffolds across overlapping graph segments.
Despite the integrative nature of AR’s inputs, breakpoints may
still be missed in the amplicon. One traditionally difficult case to

reconstruct involves nested duplication of genomic segments
inside an amplicon. Unless a significant fraction of reads or
genomic maps have a length greater than the duplicated element,
the duplication status may not always be accurately resolved,
leading to ambiguity. Multiple tandem duplications can also give
rise to a cyclic breakpoint graph structure. However, in that case
the same breakpoint would be reused repeatedly, and evidence
points against that possibility5,6,46. Instead, ecDNA-derived
mechanisms provide a simpler and arguably more correct inter-
pretation of cyclic graph structures, as validated by cytogenetics
and comparison to Circle-seq experiments46,47.

Genomic structural heterogeneity is problematic for any gen-
ome reconstruction, including focal amplifications. Despite the
change in topology between linear HSR-like and circular ecDNA
fCNAs, the breakpoint graphs between both circular and linear
forms of the same samples are highly similar6, suggesting ecDNA
genomic structure is often not altered during reintegration. While
we analyzed data from cancer cell lines, sequencing data collected
from patients may introduce more sources of complex genomic
structural heterogeneity. Assembled OM contigs may fail to
capture rare instances of structural heterogeneity in the genome.
However, previous results suggest that focal amplifications con-
ferring a fitness advantage to cancer cells are clonally
amplified5,49, allowing for accurate reconstruction of the domi-
nant structure.

AR produced a high-confidence reconstruction of the K562
BCR-ABL1 focal amplification yet copy number variance in this
amplicon not explained by AR may be due to structural hetero-
geneity across the many copies of the amplicon. Additional copy
number changes in K562 near BCR and ABL1 which are not
directly explained by the amplicon through edges identified by
NGS reveal limitations to our current method, or possible inac-
curacies. Such cases may indicate additional amplicon segments
outside the regions reconstructed by AR, suggesting that the true
amplicon structure may extend beyond the regions we have
captured. Despite the presence of the AR-supported and FISH-
validated HSR-like status of the BCR-ABL1 translocation in K562,
there does not exist a completely validated model that explains
the increased copy number of BCR-ABL1 in one single location.
We cannot rule out the possibility that the BCR-ABL1 amplifi-
cation in K562 is mediated through an ecDNA stage50, given the
transient nature of the emergence and retreat of ecDNA15 and the
highly rearranged genomic landscape surrounding BCR-ABL1.

We have not yet adapted AR to accept data generated by other
long-range sequencing modalities, breakpoint graphs generated
by other tools or to accept breakpoint graphs derived from non-
amplified rearrangements. Recent advances in other long-range
sequencing technologies51 highlight the need to adapt the AR
algorithm. With modified protocols, nanopore reads may routi-
nely surpass 150 kbp in length—sufficient to frequently chain
multiple breakpoints in fCNA. We plan to address this in future
methods development. Other sequencing modalities involving
NGS with modified sample preparation, such techniques based on
Hi–C and linked reads, have shown the ability to reveal additional
genomic breakpoints without an additional sequencing
instrument21,24. While de novo breakpoint graph construction is
not a part of the AR algorithm, we acknowledge that such tech-
niques would be valuable to adapt for breakpoint graph
generation.

Methods to accurately characterize fCNAs will enable better
classifications of cancer subtypes and their associated prognoses.
The accurate, multi-megabase scale, complex fCNAs reconstructed
by AR not only describe fine structural features of fCNA archi-
tecture, but also reveal mechanistic signatures of fCNA formation,
allowing for future interrogation of the relationship between fCNA
architecture and the biological consequences of their structure.
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Methods
Cell culture. NCI-H460, K562, and HCC827 cells were obtained from ATCC and
cultured in RPMI-1640 media supplemented with 10% FBS. HK301 cells were
cultured as neural spheres in DMEM/F12 media supplemented with B27, EGF
(20 ng/ml), FGF (20 ng/ml), and heparin (1 ug/ml). All cells were incubated under
standard conditions.

Metaphase chromosome spreads. Metaphase cells were enriched by treating cells
with Karyomax (Gibco) at a final concentration of 0.1 µg ml−1. Cells were collected,
washed in PBS, and resuspended in 75 mM KCl for ~15 min at 37 °C. Cells were
fixed by addition of an equal volume of Carnoy’s fixative (3:1 methanol:glacial
acetic acid). Cells were washed three additional times in Carnoy’s fixative and
dropped onto humidified glass slides.

FISH. Metaphase spreads were equilibrated in 2x SSC (30mM sodium citrate,
300mM NaCl, pH 7) for ~5min. They were dehydrated using successive washes of
75, 85, and 100% ethanol for 2 min each and allowed to dry. FISH probes were
diluted in hybridization buffer (Empire Genomics) and added to metaphase spreads
on slides, along with 22-mm2 coverslips. Samples were denatured at 70–75 °C for
30 s–2 min. Probe hybridization was performed at 37 °C for around 3 h or overnight
in a humid and dark chamber. Samples were washed successively in 0.4x SSC and 2x
SSC with 0.1% Tween-20. Samples were incubated with DAPI (0.1 µg ml−1 in 2x
SSC) for 10min, then washed with 2x SSC and briefly rinsed with H2O. Samples
were mounted with Prolong Gold, #1.5 coverslips, and sealed with nail polish.

Microscopy. Confocal microscopy was performed on a Leica SP8 Confocal
microscope with white light laser and Lightning deconvolution. Fluorescent
microscope images were acquired using an Olympus BX43 microscope with a
QiClick cooled camera. Images were subsequently analyzed in ImageJ52 (using the
Bio-Formats plugin53), to perform cropping, add scale bars and perform global
adjustments to image brightness.

Acquisition of WGS data. We previously published5,6 WGS data on SRA for six of
the seven cancer cell lines (GBM39, NCI-H460, HCC827, HK301, K562, T47D)
analyzed here. For CAKI-2, we used WGS data published by the Cancer Cell Line
Encyclopedia on SRA. A list of SRA accession numbers used is available in Sup-
plementary Data 1.

Breakpoint graph generation. WGS data was aligned to hg19 with BWA-MEM54

(version 0.7.17-r1188, default parameters), sorted and PCR-duplicate filtered with
SAMtools (version 0.1.19-96b5f2294a)55, and the resulting alignments along with
SNV calls produced by Freebayes56 (version v1.3.1-17-gaa2ace8) were supplied as
input to the Canvas57 CNV caller (version 1.39.0.1598). The alignments and CNV
seeds were filtered using AmpliconArchitect’s amplified_intervals.py module. Seeds
exceeding 40 kbp with copy number 5 were subsequently analyzed with Ampli-
conArchitect. AmpliconArchitect outputs a breakpoint graph encoding segmented
CN calls and the discordant reads connecting the segments. We note that in most
cases identical amplicon regions are identified when CNV caller ReadDepth58 is
used for seeding instead.

We standardized the breakpoint graph generation process into a workflow
called PrepareAA, available on GitHub: https://github.com/jluebeck/PrepareAA.
We used the default parameters specified by PrepareAA in this analysis. To
produce in silico digestions of breakpoint graph segments into reference optical
maps, we used the generate_cmap.py utility in AR. This method for in silico
digestion can produce labeling patterns for the Bionano Saphyr DLE-1 labeling
pattern, while many previous methods for in silico digestion do not.

OM data generation. High molecular weight (HMW) DNA was extracted from
GBM39, HCC827, HK301, and K562 cells using the Bionano Prep Blood and Cell
Culture DNA Isolation Kit (Bionano Genomics #80004), with minor modifications
to recover good quality HMW gDNA. As detailed below, the Nick, Label, Repair,
and Stain (NLRS) and Direct Label and Stain (DLS) reactions were carried out for
the Bionano Irys and Saphyr platforms, respectively. To generate the Irys data,
DNA was nicked using Nt.BspQI nicking endonuclease (NEB), followed by
labeling, repairing, and staining, using the Bionano Prep NLRS DNA Labeling Kit
(Bionano Genomics #80001) along with recommended NEB reagents. To generate
the Saphyr data, DNA was labeled with DLE-1 enzyme, followed by proteinase
digestion and a membrane clean-up step, using the Bionano Prep DLS DNA
Labeling Kit (#80005). BspQI-labeled DNA was loaded onto the Irys Chip (Bio-
nano Genomics #20249) and the run conditions were manually optimized on the
Irys system (Bionano Genomics #30047) to ensure efficient DNA loading into the
nanochannels. DLS-labeled DNA was loaded onto a Saphyr Chip (Bionano
Genomics #20319), and run conditions were automatically optimized on the
Saphyr system (Bionano Genomics #60239) using the Saphyr Instrument Control
Software to maximize DNA loading. Raw images generated by Irys were processed
into BNX files using the Bionano software AutoDetect26. Images from the Saphyr
system were processed into digital BNX files via the Saphyr Instrument Control
Software. For Irys data, molecules ≥150 kilobase pairs (kbp) were assembled into

consensus genome maps using the Bionano Assembler29,30 (version 5122), using
default parameters; for Saphyr data, molecules ≥150 kbp were assembled into maps
using Bionano Access (version 1.2.1)29. Bionano Genomics separately provided
Saphyr OM data for cell lines K562, T47D, NCI-H460, and CAKI-2. The methods
by which OM data was generated for those four cell lines were previously pub-
lished21. All Bionano software utilized alongside this study is available from the
Bionano Genomics, Inc. website (https://bionanogenomics.com/support/software-
downloads/) under the Bionano Genomics, Inc. software license (https://
bionanogenomics.com/company/legal-notices/).

Optical map contig alignments with SegAligner. SegAligner uses a dynamic
programming (DP) approach to optical map alignment, with a recursion similar to
previously proposed DP algorithms for OM alignment59,60. SegAligner scores OM
alignments in a manner accounting for collapsed pairs of labels in the assembled
OM contig and uses an E-value approach to compute alignment significance as
method of controlling false alignments. We define label collapse as the phenom-
enon where two nearby labels on an OM contig or map are measured as a single
label due to limitations of imaging61.

SegAligner supports alignment of in silico digested segments of the reference
genome (including entire chromosomes of the reference genome) and assembled
optical map contigs. SegAligner supports models of error for data from both the
Bionano Irys and Bionano Saphyr instruments, and we parameterize our methods
for them separately (Supplementary Data 5). SegAligner also supports multiple
modes of alignment including semi-global, fitting, and overlap alignment.

To motivate the notion of an OM alignment, we first define the concept of an
OM matching region. Similar to Valouev et al.60, a matching region is defined as
the region between and including two labels on a map. For example, j and i in
Supplementary Fig. 1b constitute a matching region with size j – i and one
unmatched label in-between. The alignment score for two matching regions
depends on the size discrepancy of the matching regions and the number of
unmatched labels in each matching region.

We define the following variables:

– b is a sorted list of real numbers corresponding to the positions of labels on the
optical map contig in base-pair units.

– x is a sorted list of real numbers corresponding to the positions of labels on a
single in silico reference segment in base-pair units.

– P is a matrix storing backtracking references
– U is a set storing reference segment label to contig label pairings which have

already been used in previous iterations of the alignment process.
– d is the width of the band to consider for a banded alignment (default 6).
– M is a map which relates each label, j on a genomic segment, x, to the

estimated probabilities for the left neighbor and right neighbor of j, that j and a
neighbor would be observed as a single label (i.e., label collapse).

Next, we define S j½ �½q� as the best score of aligning a subsequence of the first j
labels on b with a subsequence of the first q labels on segment x, where j and q are
included in the subsequences. Given two labels on the assembled contig i, j, and
two labels on the reference genome segment p, q where i < j, and p < q, The DP
recurrence used by SegAligner is

S j½ � q½ � ¼ max
max 0;j�dð Þ ≤ i<j
max 0;q�dð Þ≤ p<q

� � S i½ � p½ � þ Score i; j; p; qð Þf g; ð1Þ

where the function Score is the SegAligner scoring function for two OM matching
regions.

The function Score is defined in Algorithm 1 and contains four main terms. First,
fn which is defined as the number of potentially unmatched contig labels between i
and j scaled by the missing label score, c. Second, eref is the number of potentially
unmatched reference labels between p and q, after accounting for labels which are too
close together to be measured distinctly. Third, fp is the number of potentially
unmatched reference labels scaled by the missing label score. Last, Δ measures the
absolute difference in length between j – i and q – p, which is scaled non-linearly (k).
Together these penalty terms are combined and subtracted from a base matching
score, 2c. Parameters c and k in this model were identified through a coarse grid
search using data where correct OM contig-reference alignments were already known.

Algorithm 1 SegAligner scoring function

function Score(b, x, i, j, p, q, M):
fn = c*(j - (i + 1))
eref = M(p, q)
fp = c*eref

Δ =(abs((b[j] - b[i]) - (x[q] - x[p])))k

return 2c - (fn + fp + Δ)

A backtracking matrix, P is used to record the decision made in filling each cell
S j½ �½q�. The DP Algorithm has complexity Oðmnd2Þ where m= |b|, n= |x| and d is
the width of the band. Backtracking is performed in OðmÞ steps by backtracking
through the coordinates stored in P. We find a most-likely path by initializing the
backtracking at argmaxj;qS j½ � q½ � or S bj j � 1½ � xj j � 1½ � for fitting alignment. Values
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used to parameterize the scoring function and label collapse map generation
function given below are provided in Supplementary Data 5.

As multiple regions of a long OM query might match similar regions of the
reference, we extend the DP by masking out the best alignment path from the DP
scoring matrix and recomputing the next best alignment. SegAligner uses a set (U)
to keep track of the pairings of segment labels (q) and reference labels (j) which
form each significant high-scoring alignment. After a highest scoring alignment is
found, the label pairings (j, q) are added to U. Subsequent alignments of that
segment cannot reuse any pairings in U. This limits the creation of many nearly
identical local alignments which differ by small indels, only one of which (the
highest scoring) is useful from a practical standpoint. We also placed a threshold
on the number of times a single segment can be aligned to a single contig, so that
low-complexity segments do not cause the aligner to stall (default 12).

Labels within ~2000 bp on an OM molecule may be read as a single label due to
limitations of imaging, with increasing probability for smaller label-to-label
intervals (Supplementary Fig. 1c). SegAligner captures that behavior in its scoring
method, by precomputing the number of expected labels appearing in a collapsed
label-set, given the reference.

To compute probabilities of label collapse, we assume a model in which the
probability that a label at position r has merged with its right neighbor at position s
is given by

P r ! sð Þ ¼ min 1;
s� rð Þt
wt

� �� �
: ð2Þ

The map M, encoding the expected number of uncollapsed labels between two
points on an in silico reference segment, is generated iteratively, by evaluating the
following sum. Mðp; qÞ represents the sum of probabilities for each label between,
but not including p and q that the label has collapsed with a neighbor. The sum of
probabilities for [0,1] binary random variables to equal 1 naturally gives the
expected value of the sum of the binary random variables.

M p; qð Þ ¼P
p<k<q

1�min 1; x k½ ��x k�1½ �ð Þt
wt

� �� �
1�min 1; x kþ1½ ��x k½ �ð Þt

wt

� �� �
; if x½q� � x½p�≥ η

0; otherwise
:

8<
:

ð3Þ
A genomic segment may appear multiple times in an optical map contig. Values

for w, t, and η are parameterized separately depending on the Bionano instrument
used (Supplementary Data 5). We selected default parameters separately for
Bionano Irys and Bionano Saphyr instruments based on the tendency for the newer
Saphyr instrument to have less directional uncertainty and a lower rate of label
collapse. We selected default values for each instrument through a coarse grid-
search strategy and manual examination of data with known alignments.

Identifying significant high-scoring alignments. To compute statistically sig-
nificant alignments, SegAligner uses a strategy similar to BLAST62. For each
reference segment, r, SegAligner constructs a distribution of alignment scores
representing the highest scoring alignments of r to all contigs (Supplementary
Fig. 1b). As this distribution may contain true alignments between r and one or
more contigs, violating the random pairing assumption of the E-value model,
SegAligner removes the highest 25 values from the distribution. From the
remaining distribution of scores, we define a set of high-scoring segment pairs
(HSPs) which are the distribution of scores from the 85th percentile and up, from
which SegAligner estimates parameters in the E-value model. We note that this
region of the HSP scoring distribution tends to behave linearly (Supplementary
Fig. 1c), allowing for a linear regression approach to parameter estimation.

SegAligner assigns an empirical E-value for each element in the sorted
distribution of HSP alignment scores based on its rank (highest scoring having E-
value 1). SegAligner then performs a local linear regression to estimate unknown
variables in the E-value model. Generally, the E-value model is given by

E ¼ Kmnre
�λS ð4Þ

which implies

log Eð Þ ¼ log Kmnrð Þ � λS ð5Þ
where m is the size of the combined collection of contig labels, nr is the number of
labels on the reference segment, and S is the alignment score. As K and λ are
unknown and represent the intercept and slope, respectively, SegAligner
determines them from the empirical distribution of scores and E values using linear
regression.

With all parameters known, the number of random high-scoring alignments, a,
with score ≥S is given by a Poisson distribution

P að Þ ¼ e�EEa

a!
: ð6Þ

This implies that finding at least one HSP for a given value of E is

P ¼ 1� e�E: ð7Þ

Thus, the score-cutoff S*r corresponding to a given probability, P, for segment
r, is

S*r ¼
� log � logð1�PÞ

Kmnr

� �
λ

ð8Þ

SegAligner assigns to each reference segment a score which corresponds to the
p-value cutoff for alignment significance. Default p-values are 10−4 for semi-global
alignment, 10−6 for overlapping alignment, and 10−9 for detection of new genomic
reference segments aligning to contigs where the reference segment is not specified
in the provided breakpoint graph segments (detection mode). The need for
different p-value thresholds between the different modes of alignment is based on
the different sizes of the search spaces possible in the different modes. Searching for
alignments between contig and entire reference is the largest search space to
consider and thus it gets to smallest p-value threshold in order to stringently
control false discovery. The default p-values for each mode were assigned based on
empirical testing of OM data with known alignments. SegAligner also computes
the mean and median of segment-contig label pair alignment scores for each
alignment exceeding the significance thresholds. Statistically significant scoring
alignments failing mean and median thresholds (Supplementary Data 2) are
filtered out. By default, AR attempts to align graph segments with at least 10 (Irys)
or 12 (Saphyr) labels in the segment. The need for different length thresholds is
motivated by the different in labeling density between Irys and Saphyr. However,
the fitting mode of alignment only requires two endpoint labels, and so it is used in
the path imputation step in AR.

Identifying unaligned amplicon contig regions with AR. AR coordinates the
alignment of in silico digested breakpoint graph segments to optical map contigs
using SegAligner (Fig. 1b). Alternately, AR can take as input XMAP-formatted
alignments produced by other alignment tools. If OM contigs with alignments to
graph segments contain unaligned regions with between 20 and 500 unmatched
labels, and 200 kbp to 5 Mbp in length, those regions are extracted and searched
against the reference genome. The module ARAlignDetect calls SegAligner in the
detection mode, which then aligns the extracted unaligned region of the contig(s)
to the specified reference genome. If significant alignments are found between
unaligned regions of the contig and chromosomal segments in the reference, those
segments are extracted, and their identity is added to the collection breakpoint
graph segments. Finally, a new breakpoint graph is output containing the newly
detected segments.

Reconstructing amplicon paths with AR. Optical map alignments of segments
with contigs are converted into a scaffold, which we define as a collection of
alignments where the genomic distance between each pair of alignment endpoints
is known. AR represents the scaffolded alignments as a directed acyclic graph
(DAG), where the nodes are an abstract representation of each OM alignment.
Directed edges connect adjacent alignment endpoints. Overlapping alignments are
connected by special directed edges referred to as forbidden edges (Fig. 1h). Two
nodes are only connected by a non-forbidden edge if the right endpoint of the
source node has one or fewer labels of overlap with the left endpoint of the
destination node. Each contig with at least one alignment to a graph segment will
comprise an individual scaffold.

Imputing paths in the scaffold with AR. Some segments in the breakpoint graph
may be too short to be uniquely aligned to an OM contig. AR attempts to impute
corrected paths in the scaffold using the structure of the breakpoint graph. For
every non-forbidden edge in the scaffold graph with a gap size <400 kbp, AR
identifies breakpoint graph nodes corresponding to the source and destination
endpoints, which we will denote as s, and t. AR then uses a constrained depth-first
search (DFS) strategy to identify paths in the breakpoint graph between s and t.
Finding all possible paths between two nodes may produce infinitely many solu-
tions should a cycle exist between the two nodes, so the recursion is constrained to
terminate if certain conditions are reached. The constraints used in the search
procedure are:

1. The multiplicity of the segments in the candidate path must always remain
less than or equal to the copy number of the segment as specified in the
breakpoint graph.

2. If a candidate path reaches the destination vertex, its length in base-pair
units must not be more than minð25000; 10000LpÞ shorter than the distance
between the source and destination vertices as expected given the scaffold
backbone, where Lp is the length of the path in number of segments.

3. During path construction, the length of a candidate path must not exceed
minð25000; 10000LpÞ beyond the of the expected distance given the scaffold
backbone.

4. The number of valid candidate paths connecting source to destination must
not exceed 210.

5. The path may not form a trivial cycle from ultra-short breakpoint graph
segments <100-bp long. Such cycles appearing in an NGS-derived
breakpoint graph we assumed to be erroneous or artifactual.
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As constraint #4 may cause failure of the DFS whereby a tractable number
of paths is not found, AR implements a constrained BFS search as a fallback
option, which is used when the DFS fails for that reason. By parsimony, shorter
paths between two nodes are more likely to be correct, thus AR applies the
same set of criteria for the BFS search, with the threshold in constraint #4
increased to 216.

All valid candidate imputation paths discovered by AR are scored by a fitting
alignment procedure using SegAligner. To score a candidate path, the ordered path
segments, as well as the first and last labels on the source and destination
endpoints, are converted to a compound CMAP composed of the concatenated
CMAPs of the individual segments. A fitting alignment is performed between the
compound CMAP and the region of the contig between the alignment endpoints,
using SegAligner. The path with the alignment score which most improves the
junction score is kept. If no valid candidate path improves the score of the junction,
it remains unimputed. The scaffold is then updated to contain the imputed
breakpoint graph path.

Identifying linked scaffold paths with AR. Given the collection of scaffold DAGs,
AR first searches for paths in the individual DAGs which represent heaviest paths
in the scaffold DAG, where the weight of a path is the sum of the lengths of its
segments in base pairs. AR stores the heaviest path(s) for each scaffold prior to
performing scaffold linking.

AR leverages the two independent sources of information encoded in the
breakpoint graph and OM contigs to link individual scaffolds. As the breakpoint
graph segments are not detected to contain interior breakpoints, two endpoint
alignments of the same breakpoint graph segment may be linked across two
contigs. AR searches for prefix paths and suffix paths in each DAG. From the
collection of prefixes and suffixes, AR searches for overlap between scaffolds
generated from different contigs. Given that a contig can be assembled in either
direction, overlapping reverse oriented suffixes or prefixes can also be matched. AR
exhaustively finds sub-paths hitting either end of a scaffold DAG, which have
overlap with other endpoint sub-paths, where the endpoint sequence of the scaffold
may be assembled in either direction.

Finding reconstructions in the linked scaffold graph. Given the graph of linked
scaffolds, AR searches for paths in the graph which conform to the ratio of esti-
mated copy numbers between the graph’s amplified segments. AR starts by
searching for all paths in the graph which begin at endpoint nodes in the individual
scaffolds. AR then uses a greedy approach to identify the longest unique paths
which conform to the copy number restrictions. From the candidate paths, AR
checks each path segment’s multiplicity against the copy numbers encoded in the
breakpoint graph in a ratio-dependent manner.

AR iterates over all the segment multiplicities in the reconstructed path, and at
each multiplicity level determines the maximum estimated genomic copy number
of path segments with that multiplicity. If a path segment has a multiplicity that is
greater than the genomic copy number of that segment divided by the maximum
copy number of all segments with multiplicities less than the given segment, then
the path violates the copy number ratio check. AR allows each segment in the
reconstructed path to exceed by 1 copy, the copy number expected, given the ratio
between breakpoint graph copy numbers and segment multiplicity. If np is the
multiplicity of segment n in the candidate path, P, and ng is the copy number of
graph segment n in the breakpoint graph, then np must satisfy

np ≤ max c;
ng
mg

 !
þ 1;8n 2 P ð9Þ

where

mg ¼ max ig; 8i 2 P; ip ¼¼ c
� �

ð10Þ

c 2 Z ð11Þ

np > c > 0: ð12Þ
If a candidate path passes the copy number ratio check, it undergoes a pairwise

comparison with other paths passing this criterion, to check for path uniqueness. A
path is unique if it does not represent a subsequence of a previously identified
unique path. Furthermore, no rotation of the path sequence may be a subsequence
of a previously identified unique path. AR assess subsequence paths by computing
a longest common substring between a candidate path and a previously identified
unique path (Algorithm 2). As the paths are first sorted by total alignment score
prior to the iterative approach, this method is a greedy algorithm which prioritizes
long, heavy paths as being more likely to be identified as unique non-subsequence
paths. AR categorizes paths as being cyclic if the first and last scaffold graph node
in the path are the same, and the path length is >2, as this distinguishes cyclic paths
from paths which appear cyclic such as singleton paths or paths which represent
segmental tandem duplications. Paths reported by AR are output in the
AmpliconArchitect-cycles file format.

Algorithm 2 Greedy filtering of subsequence paths

Function FilterSubsequencePaths(sorted_paths):
kept = empty array
for P in sorted_paths do:

isSubsequence = False
for J in kept do:

for R in the set of all rotations of path P:
if R is a subsequence of J then:

isSubsequence = True

if not isSubsequence then:

append P to kept
return kept

Simulation of amplicons to measure AR performance. We used OMSim63

(version 1.0) to simulate Bionano Irys OM data from the hg19 reference as well as
from 85 non-trivial paths (i.e., not directly consistent with the reference genome) in
AA-generated breakpoint graphs from 25 cancer samples and 20 de novo simulated
ecDNA structures, including both cyclic and non-cyclic breakpoint graph paths
(Supplementary Fig. 3). OM molecules were simulated at 40× baseline coverage for
each chromosome arm in hg19. The combined hg19 maps from all arms were
assembled into a set of OM contigs using Bionano Assembler (version 5122). A
similar process was performed using high-confidence breakpoint graph paths,
which were converted to FASTA format and used for map simulation. For each
simulated path, molecules were simulated at a range of copy numbers, and
simulated molecules from the chromosome arm(s) (downsampled to the appro-
priate CN) from which the path segments came were combined and de novo
assembled into OM contigs with Bionano Assembler. The resulting contigs from
each amplicon simulation were combined with the previously simulated reference
contigs and used as input to AR. For combination sets of three amplicons from the
same sample, a similar downsampling and combination strategy was used, where
molecules from each of the three amplicon simulations was separately down-
sampled based on the copy number settings of the mixture then combined. As
heterogeneous combinations of amplicons may occur at different ratios, we selected
three sets of copy numbers for this combination simulation cases: 20-20-20, 20-15-
10, and 20-2-2.

In the simulation of the 20 de novo circular amplicons, a simulated tumor
reference was generated from hg19 using SCNVSim (version 1.3.1) and simulated
amplicon structures were generated using ecSimulator (version 1.0, https://github.
com/jluebeck/ecSimulator). OM molecules were generated at baseline 40× coverage
and amplicon copy number of 20. The human papillomavirus-16 integration
example was performed at the same coverage and copy numbers as the other
simulated amplicons.

Measuring AR simulation performance. We computed the longest common
substring (LCS) between the AR paths and the ground-truth path and considered
only the path having the LCS between AR and AA paths when computing precision
and recall. We define the LCS here using the identities of the breakpoint graph
segments and their orientations. We pre-filtered some possible assembly error
reflected in the paths by removing ends of reconstructed paths which were trivial
reconstructions of the reference genome and which were not supported by the AA
path. To measure the accuracy of AR-reconstructed paths against the ground-truth
simulated paths, we developed a set of three measurements which were used in
calculating performance and recall.

(1) Length (bp): Reports the length of a breakpoint graph path in base-
pair units.

(2) Nsegs: Reports the length of a breakpoint graph path in terms of the number
of graph segments (unbiased toward genomic length).

(3) Breakpoint: Reports the length of a breakpoint graph in terms of the number
of breakpoint graph segment junctions in the path.

We define precision and recall as follows, where M is the path measurement
function (Length (bp), Nsegs, or Breakpoint), LCS is the longest common substring
function, PAA is the sequence of segments in the AA path, and PAR is the sequence
of segments in the reconstructed AR path:

Precision:
M LCS PAA; PARð Þð Þ

M PARð Þ ð13Þ

Recall:
M LCS PAA; PARð Þð Þ

MðPAAÞ
: ð14Þ

To summarize the precision and recall metrics in a single value, we computed a
mean F1 score across all the simulated amplicons for a given set of simulation
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conditions as

mean F1 ¼
P

i 2 precisioni*recalli
precisioniþrecalli

� �
n

: ð15Þ

Reconstructed path visualizations. We developed a visualization utility, CycleViz
(https://github.com/jluebeck/CycleViz), which produces circular and linear visua-
lizations of AR or AA-reconstructed amplicons (Supplementary Fig. 2a, b), to
create topologically correct visualizations of AR reconstructions. CycleViz accepts
inputs including the path files reported by AR (in the AA-cycles format) as well as
the path OM alignment files (optional) and produces visualizations which show the
reconstructed path, in silico digestion of the path segments and the alignments of
the digested segments with assembled OM contigs. For circular and linear visua-
lizations, CycleViz places path segments in the visualization based on the length of
the segments and their position in the path. For circular visualization layouts, the
relative positions are converted to polar coordinates and a circular layout is formed.
We also developed a web-based visualization utility, ScaffoldGraphViewer, for
visualizing JSON-encoded scaffold graphs generated by AR using CytoscapeJS64

(Supplementary Fig. 2c). The ScaffoldGraphViewer web utility can be accessed at
https://jluebeck.github.io/ScaffoldGraphViewer/.

Statistics and reproducibility. We have provided instructions for using AR and
commands for generating the results from the GBM39 cell line as an example on the
AR GitHub page. The python package SciPy65 was used to perform statistical tests in
this study. All FISH experiments involved the analysis of at least three independent
images and representative results are shown in the figures present in the study.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The AA-generated breakpoint graphs for the cell lines in this study are available on
figshare with the identifier 10.6084/m9.figshare.11691798 (https://figshare.com/articles/
AA_breakpoint_graphs/11691798). The FISH data that support the findings of this study
are available on figshare with the identifier 10.6084/m9.figshare.11691774 (https://
figshare.com/articles/FISH/11691774). Assembled Bionano contigs that support the
findings of this study have been deposited in GenBank with Bioproject codes
PRJNA602907 and PRJNA506071. The SRA experiment IDs associated with WGS data
for cell lines appearing in this paper are SRX2666689 (CAKI-2), SRX2006441 (GBM39),
SRX2006457 (H460), SRX3769666 & SRX3769671 (HCC827), SRX2006453 (HK301),
SRX2006506 (K562), and SRX2006468 (T47D). The remaining data are available in the
Article, Supplementary Information or available from the authors upon reasonable
request. Source data are provided with this paper.

Code availability
The following tools are available online: PrepareAA: https://github.com/jluebeck/
PrepareAA. AmpliconReconstructor (& SegAligner): https://github.com/jluebeck/
AmpliconReconstructor. CycleViz: https://github.com/jluebeck/CycleViz.
ScaffoldGraphViewer: https://github.com/jluebeck/ScaffoldGraphViewer.
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