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Abstract

Energy Management in Microgrids for Electricity Access

by

Jonathan Temple Lee

Doctor of Philosophy in Energy and Resources

University of California, Berkeley

Professor Duncan Callaway, Chair

This thesis responds to the related imperatives of transitioning to low-carbon electricity
systems and increasing global access to energy. It shows that microgrids and decentralized
electricity systems are economically and technically capable of providing high levels of elec-
tricity access, and argues that incorporating active participation of electricity “prosumers”
into energy management systems enables more efficient electricity resource management.

Chapter 1 quantifies the tradeoffs between costs and electricity for autonomous solar and
battery systems across sub-Saharan Africa, finding that on average these autonomous sys-
tems can achieve high levels of reliability at a cost of on the order of 10 USD cents per ‘9’
of reliability. Moreover, it shows that these costs could drop to as low as 3 cents per 9 as
battery costs decline, and that decentralized systems are cost-competitive with legacy grids
across much of the continent.

Chapter 2 proposes a load management system to manage electricity consumption in com-
munity microgrids with solar photovoltaics and battery storage while accounting for forecast
uncertainty. It uses stochastic, model-predictive control techniques to set consumption limits
during periods of low solar availability and high-demand. Simulation experiments show the
management technique improves system reliability and consumer benefits from electricity
through fewer interruptions and better electricity availability to high value uses.

Chapter 3 studies optimal pricing and peer-to-peer energy trading systems in microgrids with
100% renewable energy sources. It promotes a utility-maximization framework from which
prices arise from exchanging electricity under scarcity, in contrast to standard marginal-
cost based pricing that breaks down in 100% renewable systems. It further proposes a
negotiation algorithm for peer-to-peer energy transactions and proves its convergence to
optimal exchanges.

Chapter 4 extends the algorithm from Chapter 3 to a more broadly applicable system for
optimizing power exchanges in microgrids and larger power grids in using forward markets
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and real-time controls. This approach, based on a decentralized optimization technique
known as the Alternating Direction Method of Multipliers (ADMM), uses price-based co-
ordination and independent agents in an iterative bidding procedure. Its equilibrium is a
welfare-maximizing dispatch that solves the non-linear and non-convex power flow equa-
tions. This system preserves individual privacy, efficiently incorporates network congestion
and voltage constraints, is highly scalable, and is robust in practice to model error. In addi-
tion to the forward market, the chapter introduces an agent-based feedback control system
that continues to optimize power exchanges in real time.

The thesis concludes with a brief summary and directions for future research.
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Introduction

This thesis is motivated by two closely related imperatives: transitioning to 100% renewable
electricity systems and universal access to electricity. It argues that microgrids, decentralized
electricity systems at the community and household scale, should play a significant role in
responding to these two challenges with resource management systems that jointly address
the efficient production and use of electricity. This dissertation contributes both technoeco-
nomic analysis to support this argument and proposes mechanisms for using decentralized
management and control systems to design and operate clean and accessible electricity net-
works.

Before proceeding, it is important to bring into focus contemporary developments in two
areas of study that are essential to the context of this work. The first is how we define
and understand electricity access, and the second is how advancements in electric power
conversion technology are enabling and necessitating new approaches to managing electric-
ity systems. This thesis focuses on systems that sit at the interface between these social
and physical contexts, particularly how microgrids with renewable energy sources can be de-
signed and automatically controlled to foster increased electricity access. With the exception
of the first chapter, the thesis is primarily devoted to proposing novel approaches and evalu-
ating their technical performance using engineering methods. These studies demonstrate the
technical efficacy of microgrids for providing reliable electricity and show how automatic con-
trollers can further increase the reliability and economic efficiency of decentralized electricity
systems. These contributions should be thought of as a pre-requisite for comprehensive in-
terdisciplinary evaluation and experimentation in the field and not as a substitute for it. As
a whole, this dissertation stops short of a critical analysis of electricity access and leaves out
some important implementation details which connect to both the social and the physical
contexts. These contexts are summarized here to help complete the picture.

Electricity access has historically been understood as a binary: whether one has a formal
connection to a legally recognized electricity system or not. The limitations of this binary
metric became apparent as the costs of solar photovoltaics underwent massive (more than
10x) cost reductions c. 2005-2015, leading to a surge in access to informal decentralized
electricity, while simultaneously the energy access literature increasingly emphasized the
low reliability of many formal electricity systems in the global south. In 2015, the United
Nations adopted 17 Sustainable Development Goals (SDGs) to formalize their development
agenda through 2030, replacing the 8 Millennium Development Goals (MDGs) adopted in
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2000. Whereas energy access itself was not directly one of the MDGs, it was specifically
articulated in SDG #7, “Ensure access to affordable, reliable, sustainable and modern en-
ergy for all.” This followed from the climate crisis moving to the front and center of the
MDG’s environmental sustainability goal and scholars and practitioners demonstrating the
foundational and cross-cutting role of energy in other goals aimed at poverty, education, and
health. Also in 2015, the Energy Sector Management and Assistance Program (ESMAP),
which is governed in part by the World Bank, was established and published the Multi-Tier
Tracking Framework (MTF), titled, “Beyond Connections: Energy Access Redefined,” [12].
This framework uses a concept of tiers to define energy access not as a binary, but as a
spectrum with multiple criteria each for household electricity, commercial and community
electricity, and cooking fuels. This framework not only adds detail and nuance to how ac-
cess is defined through specific affordability, reliability, capacity, legality, safety, and other
criteria, but it includes for what and how energy is used in the rationale. This marks a shift
in the international development community from understanding access as something that
is strictly about energy supply, to a dialectic that includes the use of energy.

This shift can be connected back to several related threads in international development,
common pool resource management, and rural sociology. At a high level, the approach taken
in the ESMAP MTF is consistent with part of what Ribot and Peluso argue for in their 2003
Theory of Access, which is to understand access to a resource as the ability to derive benefits
from it rather than as a system of legal or formal rights to it, and to shift focus away from
the enforcement of access rules to the means of access [99]. At the core of Ribot and Peluso’s
Theory are the social power relationships that shape material access to resources. ESMAP’s
MTF does not address these relationships; however, recent scholarship on electricity access
is beginning to take this more seriously through a growing emphasis on gender relationships
and the study of informal and illegal electricity systems, which can apply pressure for the
UN and World Bank to evolve their frameworks accordingly.

Expanding the study of energy access, particularly electricity access, to a study that in-
cludes the usability of electricity at its core opens up a systems perspective that understands
the supply of a resource and the use of it as existing in feedback with each other. An example
of this is the common pool resource (CPR) literature, which addresses the governance and
management of shared resources at the community to regional scale, and considers these as
coupled “provision” and “appropriation” processes [87]. Most of the classic CPR studies c.
1990-2000 and their successors are squarely oriented towards international development and
human-environmental systems under the threat of ecological collapse, such as forests, fish-
eries, range lands, wildlife habitats, and watersheds. The majority of the global population
with low levels of electricity access live in rural areas that typically depend on CPR systems,
for example the fishing settlements on the islands of Lake Victoria, which became one of the
most active regions for decentralized electricity in East Africa c. 2015-2020. The potential for
dialogue between researchers and practitioners of electricity and development, demographics,
and the underlying natural resource systems in these rural regions is still largely untapped,
but through multiple disciplines studying the same communities, some CPR methods and
perspectives have begun to appear explicitly in the electricity access literature [40]. As this
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perspective is adopted, the study of electricity access shifts away from least-cost methods of
generating electricity to the joint study of the provision and use of the resource.

If we reflect these shifts in the international development community back onto elec-
tricity systems that are not considered to have an access issue, we see a striking parallel:
there is also a movement from strictly supply-side resource management to a system with
active participation by consumers with flexibility to both adjust their electricity use and
also to participate in provisioning electricity. The term “prosumer” has entered the lexicon
of electric power systems, and mechanisms to integrate them and their distributed energy
resources (DERs) into the electricity markets and control systems of existing grids are the
current focus of many applied research and pilot projects around the world. In the emerging
new regime, microgrids made up of prosumers play a central role as partially autonomous
systems responsible for both provisioning and appropriating the electricity resource. This is
contrast to the existing regime, which takes demand as fixed and focuses soley on provision
and minimizing supply-side costs.

The legacy management approach of building for high reliability with inflexible demand
reflects an abundance of electricity in regions with high access, but comes at a cost. This
tradeoff between costs and reliability for decentralized systems with inflexible loads in low-
access regions, specifically across sub-Saharan Africa, is the topic of Chapter 1. The chapter
quantifies the tradeoff and finds that if battery storage costs continue to decline, then much
of the continent can meet inflexible demand and improve reliability with stand-alone systems
at levelized costs of energy on par with retail electricity tariffs and cheaper than diesel fuel.
A similar analysis focusing on the United States finds that up to 7% of households could find
it economically advantageous to disconnect from the grid if they accept slightly less reliable
service [41]. These were both published before increasingly frequent and intense wildfires
began inducing utilities such as California’s Pacific Gas and Electric to implement public
safety power shutoffs that lower reliability while simultaneously raising rates for hardening
the system in response to wildfires. The studies both show that the economics are not one-
sided enough to tip the balance either way towards centralized or stand-alone systems, and
that the demand flexibility plays a significant role in the economics.

As we consider electricity grids with greater emphasis on flexibility from consumers,
it is an open question how much demand flexibility should be used to address periods of
scarcity while still being considered high-access. Beyond the low-hanging fruit of optimizing
loads like electric vehicle charging and heating and cooling systems, additional flexibility
sacrifices some of the benefits of electricity. In high-access regions, the discourse around this
question tends to focus on what consumers will tolerate and how to incentivize participation.
However, as end-use energy in high-access regions is increasingly electrified in response to
the climate emergency, as the electricity supply is increasingly based on variable renewable
energy, and as the physical grid is threatened by climate change and extreme weather, the
dialog may shift to tradeoffs between costs and flexibility under scarcity. In low-access
regions, it is widely taken as given that consumers will not only tolerate mechanisms to
regulate or limit consumption, and that these are in fact best practices if not essential. This
stark contrast highlights global electricity injustice, but also reveals how both high-access
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and low-access regions are grappling with a similar need to engage the demand-side more
actively in managing electricity as a resource system. In this thesis, Chapter 2 develops a
technical approach to address the problem of appropriating electricity under scarcity using
dynamically adjusted load limits in a community microgrid, as do Chapters 3 and 4 with
peer-to-peer transactional systems.

Moving to the physics of electricity, recent advancements in power converters and the
ongoing efforts to standardize and bring these into the mainstream are critical to enable the
transition to renewable and decentralized microgrids. The issue centers around controlling
many different resources in concert to balance the supply and demand of electricity in real
time. The issue is that physical inertia, the backbone of real-time stability of power grids,
is disappearing as we shift to renewable energy. This inertia is provided by the spinning
turbines of generators in thermal power plants, which are mostly fossil-fuel based and need
to be phased out of a a low-carbon electricity system. On an interconnected electricity grid,
the turbines in all of the generators spin synchronously, and by their inherent electromagnetic
physics, act as a stabilizing force on the grid. When the net demand on the system exceeds
the supply, the turbines automatically start slowing down, converting their rotational energy
to electric power that supplies the load. Likewise, when supply exceeds demand, they start
speeding up. This phenomenon buys time, and as a consequence, the rotional speed, or
the frequency, of the grid reflects the imbalance between supply and demand. Devices on
generators detect that the rotational speed of the generator drops and then increase the
power input proportionally, and vice versa. In the 19th century, engineers accomplished
this with a pair of spinning balls on a shaft that would mechanically open a valve as they
slow down and spin more closely to the shaft, which in turn would let more steam into the
generator, thus speeding it up until reaching a new equilibrium. This process, known as
“droop control” and “primary control” is the basis for how grids provide stable electrical
frequency and balance supply and demand for electricity.

Most renewable energy that is expected to power the low-carbon future either does not
have inherent inertia (e.g. solar panels) or has some inertia that is decoupled from the grid
(e.g. wind turbines) and does not act as a stabilizing force. Therefore, the question of
how to maintain stability in low-inertia systems is a critical question facing power systems
engineers. The leading approach at the time of writing is to use power converters to mimic
the droop behavior of generators, which is called synthetic or virtual inertia. This requires
some fast-acting energy storage to act in place of the kinetic energy of the turbine, which can
be in the form of batteries, capacitors, or flywheels, for example. The modern approaches to
designing power converters in this way were proposed c. 2005-2010 and large-scale initiatives
to evaluate these in practice at national and international scales have been underway since
c. 2015.

It turns out that this same fundamental issue has also limited microgrids based on so-
lar photovoltaics and battery storage from being built in a distributed way, meaning with
multiple sources distributed in space. There are some limited ways around this with high-
bandwidth feedback loops, but these tend to require generation sources to be colocated with
wired communication links and are not scalable. Thus, community electrification projects
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in areas with low access tend to have a single generation plant supplying many users or
they use multiple isolated systems. The former approach comes with additional costs in the
distribution network and imposes some limits on adding capacity in response to changing
demand. The latter results in excess capacity going unused. Both of these approaches limit
the net value proposition of community microgrids.

The introduction of power converters that provide synthetic inertia and droop, beyond
meeting a necessary hurdle for transitioning to low-carbon grids, has the potential to be
game-changing in microgrids for electricity access. At minimum, it enables a more modular
system design with lower network costs that will allow electricity grids to grow organically
and adapt more easily to meet changing demands. But it also provides the foundation for
much more granular control of how electricity flows on a network and what resources are
called upon to meet demand, to the point where electricity transfer can be made transac-
tional, and quantities of power and energy can be exchanged between individuals or groups
on the network. The control systems that regulate these flows are called the “secondary” and
“tertiary” controls with respect to the “primary” system described above. The tertiary level
is economic, typically structured as wholesale markets in liberalized systems or cost mini-
mization problems in vertically integrated ones, and the secondary is typically an automatic
rebalancing of the primary system that attempts to track the targets of the tertiary. This
thesis develops transactional and price-based tertiary systems for microgrids in Chapters
3 and 4, which are powerful in that they allows entrepreneurial individuals or community
groups to monetize excess power generation. More generally, the granular ability to control
flow supports a wide range of systems for provisioning and allocating electricity.

In summary, this thesis first evaluates the economics of reliability for stand-alone decen-
tralized systems for energy access in sub-Saharan Africa in Chapter 1, and then proceeds
to develop technical solutions to some of the important problems in energy management for
decentralized systems in Chapters 2-4. The core contribution of Chapter 1 is to characterize
the costs of reliability in detail, but it also shows that with declines in battery costs, highly
reliable, fully decentralized solutions will be competitive with centralized grids. This sup-
ports the emerging consensus that decentralized systems will play, and already are playing,
an important role in expanding electricity access. Chapter 2 address load management un-
der solar power scarcity and forecast uncertainty and shows how a tertiary control system
with dynamic load limits can improve access to electricity. It further compares algorithms
and introduces new approaches with two-stage stochastic programming and approximate
dynamic programming that outperform conventional model predictive control under uncer-
tainty. Chapters 3 and 4 take a more forward-looking perspective towards coordinating
resource supply and demand in 100% renewable energy systems. These propose specific
peer-to-peer transaction systems and contribute theoretically to this area. The theoretical
contributions include showing how optimal power flow for 100% renewable systems can be
cast as a decentralized utility maximization problem instead of a cost minimization, uncov-
ering some limitations of conventional pricing in the presence of battery storage, giving an
iterative linearization of decentralized optimal power flow that solves the nonlinear and non-
convex problem exactly under the condition that it converges, and connecting the economic
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dispatch problem to frequency regulation with a novel online secondary control system. Al-
though these chapters are motivated specifically by microgrids, they are relevant to future
larger scale systems that embrace broader participation by DERs and active demand-side
management.
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Chapter 1

The cost of reliability in decentralized
solar power systems in sub-Saharan
Africa

This chapter was co-authored with Prof. Duncan Callaway, Associate Professor of Energy
and Resources at the University of California, Berkeley. The text was previously published
in Nature Energy in 2018; see [59] for the full citation. The text has been reformatted for
inclusion in this thesis.

Abstract
While there is consensus that both grid extensions and decentralized projects are nec-
essary to approach universal electricity access, existing electrification planning models
that assess the costs of decentralized solar energy systems do not include metrics of
reliability or quantify the impact of reliability on costs. We focus on stand-alone,
household solar systems with battery storage in sub-Saharan Africa (SSA) using the
fraction of demand served (FDS) to measure reliability, and develop a multi-step opti-
mization to efficiently compute the least-cost system with FDS as a design constraint,
taking into account daily variation in solar resources and costs of solar and storage.
We show that the cost of energy is minimized at approximately 90% FDS, that current
costs increase on average USD 0.11/kWh for each additional “9” of reliability, and that
this reliability premium could be as low as USD 0.03/kWh in a plausible future price
scenario.
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1.1 Introduction

The United Nations’ Sustainable Development Goal #7 describes a major global task: “En-
sure access to affordable, reliable, sustainable, and modern energy for all,” [119]. 1.06 billion
people remain without access in 2017, and more than half of them live in sub-Saharan Africa
(SSA), the geographic focus of this analysis [49]. Historically, electrification from central-
ized national and regional electric grids was the only path; now, interest and investment in
decentralized, stand-alone options from solar home systems (SHS) to community mini-grids
is growing [3]. Private capital investment in SHS providers increased from USD 3 million in
2012 to 381 million in 2015-2016, and deployment of solar energy products for electrification
has grown similarly [98]. We use “decentralized” to describe systems that are self-sufficient
and independent of connection to a larger grid. This definition applies in a range of applica-
tions, but here we focus on isolated, household-scale systems. Multiple studies have pointed
to the efficacy of solar-diesel-battery hybrid systems that use diesel generators to increase
reliability [18, 106]; however, recent work exploring future low carbon energy systems points
to increasing reliance on solar-battery systems [15] and high penetrations of SHS [10], which
provides motivation to study SHS at high levels of reliability.

The centralized and decentralized paradigms have advantages and disadvantages. Cen-
tralized grids in SSA utilize economies of scale [3] to achieve lower costs of energy, but
often do not reach rural areas. Even where the grid is present, some households are left
“under the grid” because of high connection costs and long wait times for connections [61].
When existing grid service is unreliable, some consumers use SHS as a backup [75]. Decen-
tralized systems can be flexibly and rapidly deployed to meet basic energy needs in many
geographies and communities, but high costs and the challenges of a variable resource raise
questions about whether they are a viable long-term economical solution for electrification.
Nonetheless, the International Energy Agency predicts that 60% of connections needed for
universal electricity access will come from decentralized [48], but the eventual outcome will
be influenced by cost trends, policy, and regional electrification plans that guide investment.
These electrification plans rely on cost minimization models that compare grid expansions
to decentralized options [79, 77, 78, 126], which are most frequently solar photovoltaics (PV)
with battery storage.

Yet, we currently have limited understanding of the economics of decentralized systems
and their reliability across large spatial scales. Many models assume constant per-unit costs
of energy for classes of decentralized systems [79, 77, 78, 65, 64], whereas others scale system
size by location-specific solar resources but assume constant storage-to-solar capacity ratios
[92, 53] or a single reliability level [108, 19]. We are aware of one analysis that investigates
the cost of reliability for decentralized systems, but the results are isolated to one location
[62]. Ultimately, the centralized vs decentralized debate needs to be answered within the
context of least-cost electricity planning tools. Although such tools have been applied in the
African context [79, 77, 78, 126, 65, 64, 92, 53, 108, 26, 84, 107, 129], their computational
complexity and the lack of available knowledge of decentralized system costs has precluded
integration of decentralized pathways into the models.
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In this study, we investigate how designing decentralized systems for different levels of
reliability affects their cost, how decentralized solar systems compare in cost to national
grids when designed for equivalent reliability, and how changing commodity prices can affect
these relationships. We find evidence that decentralized solar-battery systems are on the
cusp of reaching “grid parity” in both economic and reliability terms in many parts of SSA.
Furthermore, using aggressive forecasted technology costs taken from the literature, we show
that in the future a large fraction of the continent could be served by decentralized systems
with better economics and reliability than the existing grid. We propose a method for
identifying optimal PV and battery capacities for decentralized systems using 11 years of
location-specific daily solar resource data (at one-degree latitude and longitude resolution)
and across a large range of reliabilities (measured in terms of the Fraction of Demand Served,
or FDS). We also rigorously quantify the cost to improve reliability at each location and
show that this “reliability premium” has strong spatial variability, increasing levelized cost
of energy (LCOE) by USD 0.05-0.15/kWh for each order of magnitude improvement in
reliability (e.g. from 99 to 99.9%). These results point to the potential for decentralized
solar systems to provide very high reliability service at costs that are competitive with
existing, often highly unreliable, grid infrastructure. The method we use is computationally
scalable and can be used for rapid analysis of different cost assumptions (an open-source
implementation is available at https://emac.berkeley.edu/reliability). The model
can also be integrated into planning models to capture the trade-offs between a spectrum
of technology pathways ranging from centralized grid options to fully decentralized systems.
We compare our method to existing approximations, and find that simpler methods provide
a good – though not perfect – estimate at FDS below 99%, but that these methods are
inadequate to quantify LCOE variation at higher FDS.

1.2 A framework for the cost of reliability

To quantify reliability, we define and use the Fraction of Demand Served (FDS), which is,
over the analysis period, the sum of all energy delivered divided by the sum of all energy
demanded. An FDS of 1 indicates perfect reliability. FDS is similar to the more common
Average Service Availability Index (ASAI) [13], which describes the fraction of time that
service is available, and can be estimated by the World Bank Enterprise Surveys for many
countries, shown in Figure 1.1 [113]. FDS is effectively the ASAI weighted by demand:
ASAI does not distinguish between outages when demand is high vs. low, but outages
during periods of high demand will have a greater impact on FDS. Note also that FDS
= 1 – ESP, where ESP is the Energy Shortfall Probability used by Lee, Soto, and Modi
[62]. Studies employing the optimization software HOMER [108, 62] use a single year of
measured radiation to construct estimates of FDS; we use eleven years of remote sensing
data to increase the robustness of the estimate. Our approach could alternatively use ASAI
or the System Average Interruption Duration Index (SAIDI) [13], but we use FDS as it
relates more directly to energy demanded instead of time. We only model solar resource

https://emac.berkeley.edu/reliability
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Figure 1.1: Average Service Availability Index (ASAI) for countries in SSA

ASAI for national grids as reported by World Bank Enterprise surveys [113] (see data in Supplementary
Table 1.2). Data are unavailable for blank countries.

driven outages; evidence from the field suggests technical failures are much less significant
than resource outages [36].

We quantify FDS because it has an important impact on the cost and utility of decen-
tralized solar systems, and because there is significant variation in the reliability of grids in
SSA, as illustrated in Figure 1.1. A 2014 simulation for a micro-grid in Mali showed that
as the fraction of demand served approaches 100% there is a log-linear relationship between
reliability and added cost to achieve that reliability, and that the optimal ratio of battery
to photovoltaic capacity changes significantly for different target reliabilities [62]. The opti-
mal battery-to-PV ratio also depends on local weather patterns and demand patterns. For
example, additional battery capacity might be the best choice at a location that has fre-
quent but intermittent cloud cover, but would be ineffective in regions with prolonged rainy
seasons. The software HOMER uses simulation and searches over a large parameter space,
making it adequate for single-location studies [108, 62] but unsuitable for evaluating costs
on continental scales or for use as a sub-problem in a larger optimization.

Our approach preserves the nature of the solar array vs battery bank capacity trade-off
by computing an isoreliability curve (equivalent to a Pareto optimal frontier), i.e., the set of
all system designs that achieve a desired FDS for a particular location. With an isoreliabil-
ity curve, the cost-minimizing capacity of storage and solar given their costs (battery, PV
module, racking, charge controller, etc.) can be found by simple line search. We construct
isoreliability curves through simulation for each location in SSA at 1 degree latitudinal and
longitudinal resolution and for the FDS of interest and store the results. This approach en-
ables modelers to then analyse a large number of cost scenarios with minimal computation,
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enabling detailed optimization at high spatial-temporal resolution and geographic scales,
bridging the gap between detailed local models and wide area studies (see Methods: “Cost
optimization” for how to adjust economic assumptions).

An isoreliability curve depends on hourly consumption patterns; night-time load requires
more storage than daytime load. However, because the curves are constructed per-unit
daily load, they are independent of average load (kWh/day). This independence enables the
method’s scalability. Because location-specific load shape data are not available for the re-
gions we study, and because our solar insolation database provides daily (rather than hourly)
data, we present our results assuming constant load throughout the day (or equivalently, with
a load factor of 1). To test this assumption, we performed sensitivity analyses using differ-
ent load curves: 1) constant load, 2) all load is during 6 PM to 6 AM and constant during
that time, 3) all load is during 6 AM to 6PM and constant during that time, and 4) load
follows a representative profile containing an evening peak that was empirically measured on
a rural micro-grid in Uganda. These tests show that the qualitative results we present here
are robust to other load shapes. Specifically, we find that across FDS, constant load yields
approximately the same costs as a measured load profile from Uganda with a night-time
peak, and that concentrating demand at night raises LCOE by up to USD 0.15/kWh while
concentrating demand during the day lowers LCOE by USD 0.10/kWh (see Supplementary
Note 1.B). We also assume that load is identical every day; incorporation of stochastic load
models into this framework is an open technical challenge.

1.3 Commodity prices and the costs of decentralized

solar electricity

We developed scenarios from electricity access “Tier 5” defined by the World Bank’s Energy
Sector Management Assistance Program (ESMAP) and computed the LCOE across SSA
using the economic assumptions in Table 1.1. This tier is the highest level of access for
household and productive uses of electricity and includes explicit metrics for reliability,
capacity, and consumption [12]. In particular, assuming FDS and ASAI are equivalent
because of constant load, Tier 5 requires FDS of 95% by specifying that service is available
159 out of 168 hours per week. Figure 1.2 shows current LCOE varies by about USD
0.15/kWh across SSA, and that potential future cost reductions are greater in magnitude
than current spatial variation. Lower component costs in the future scenario reduce the
average LCOE, and also lower its coefficient of variation, showing that cost declines have
disproportionate impact on higher cost locations. The future scenario entails aggressive
cost reductions that could plausibly be realized c. 2025, but we do not forecast the exact
time-frame of cost reduction (see Methods). The location of high- and low-cost areas is
similar to earlier work with simplified cost models [108], but we find generally higher costs
in the current scenario and that cost reduction effects outweigh current spatial variation
(Figure 1.2).
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Table 1.1: Economic assumptions. See Methods for discussion and justification

2017 Future (c. 2025)
Solar costs
Modules plus DC Balance of System 1.00 0.50
Charge controller 0.20 0.10
Total $/W 1.20 0.60

Battery costs
Total $/kWh 400 100

Load costs
Inverter 0.30 0.15
Soft costs plus AC Balance of System 1.00 0.50
Total $/W 1.30 0.65

Additional economic assumptions
O&M costs $100/kW peak load/year
Project length 20 years; battery replacement at 10 years
Annual discount rate 10%

Figure 1.2: Levelized cost of energy of Tier 5 decentralized systems in present and future scenarios

Panel a) shows the present LCOE, while panel b) shows a future scenario entailing a 75% reduction in
battery and 50% reduction in solar module and balance of system costs. Tier 5 refers to systems serving
8.2 kWh/day at 95% FDS with 2 kW peak capacity. Please see the Methods for additional economic
assumptions. A nonlinear colour scale is used to better show spatial variation in the future scenario. Data
are presented aggregated by country in tabular form in Supplementary Table 1.3.
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Figure 1.3: Statistical relationship of LCOE and FDS in SSA

The plots show the density of computed LCOE at different FDS for each location in SSA sampled at 1 degree
latitudinal and longitudinal resolution. As in Figure 1.2, panel a) shows present costs, while panel b) shows
a future scenario. Moving to the right approaches perfect reliability and the black line shows the general
trend through a least-squares fit for all locations in SSA to a single regression model given in equation (2).
The regression yields a = −0.11, b = 0.18, c = 0.088 with R2 = 0.61 for the current costs, and a = −0.037,
b = 0.081, c = 0.047 with R2 = 0.57 for the future costs.

To understand the trends in costs incurred to achieve a desired reliability, we show the
density of LCOE across a range of reliabilities using all locations under current and future
cost scenarios (Figure 1.3). The figure indicates three important results: 1) LCOE increases
logarithmically as FDS approaches one, but has a minimum slightly above 90% reliability;
2) reducing component costs has a disproportionate impact on reducing the premium for
high levels of reliability and serves to flatten the LCOE to reliability curve; 3) spatial vari-
ance in LCOE increases at higher reliability. This logarithmic scaling, which was previously
predicted by a probabilistic model that approximates isoreliability curves [16], simplifies
decision-making for sizing reliability and estimating the cost of reliability. The LCOE mini-
mum arises because there are constant fixed costs associated with the system (e.g. inverter
and wiring), but they are spread over fewer kWh consumed as FDS declines. This implies
that it is not economical – on an LCOE basis – to design systems with less than 90% FDS,
given these assumptions; this minimum is approximately stationary in different cost scenar-
ios. Synthesizing Figure 1.1 with Figure 1.3, the current LCOE of decentralized solar varies
approximately USD 0.2/kWh in the range of FDS observed on the grid.

The possible future cost scenario indicates that the reliability premium declines and has
less spatial variability as component costs decline. The decline in variance in LCOE is
greater than what we would expect as a statistical implication of the lower mean LCOE,
so the reduction in component costs causes a disproportionate reduction in the reliability
premium for high cost areas.

We find that the logarithmic growth in LCOE as FDS approaches one, as well as the
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Figure 1.4: Spatial distribution of reliability premium

The premium is given by the coefficient ai in the least-squares fit to a model for each individual location in
SSA, and represents the cost in USD per kWh per additional “9” of FDS at each location i. Note that there
is a small area with high premiums currently, and that future premiums are more uniform in space. Data
are presented aggregated by country in tabular form in Supplementary Table 3.

existence of the reliability minimum, are well-captured by the parameterized relationship for
each location in (1.1) and across locations in (1.2).

LCOEi = −ai
log10(1− FDS)

FDS
+ bi

1

FDS
+ ci (1.1)

LCOE = −a log10(1− FDS)

FDS
+ b

1

FDS
+ c (1.2)

In (1.1), i indicates a particular location sampled at 1 degree latitudinal and longitudi-
nal resolution across SSA. The parameters ai, bi and ci are calculated using least-squares
regression to each location. For high reliabilities, ai gives the reliability premium at location
i: for every “9” of reliability, LCOE increases by approximately ai USD/kWh (Figure 1.4).
The reliability premium is driven by additional storage and solar capacity needed to ensure
capacity during low solar resource (see Supplementary Note 1.A for additional discussion
on the optimal system size), however we did not observe any patterns in the distribution
of outages or component costs across locations (for example storage cost dominating in one
region and solar costs dominating in another). At current costs, most of SSA has a reliabil-
ity premium of USD 0.05-0.15/kWh per 9 of FDS, though with high variation. The future
reliability premium could be as low as USD 0.03/kWh in most of SSA.
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1.4 Alternative methods for estimating LCOE

A motivating hypothesis of this analysis is that we can improve upon methods that estimate
the cost of decentralized solar using a fixed ratio of solar PV capacity to battery storage
capacity. To test this, we check how well mean annual insolation alone predicts our calculated
LCOE (Figure 1.5). Mean insolation explains roughly 80 percent of the variation in LCOE
for FDS of 0.9 (panel a) of Figure 1.5) and further loses its predictive power relative to our
model as FDS increases. Intuitively, this loss in predictive power is because reserve capacity
to account for temporal variation in solar resource is more significant at higher FDS and
starts to determine costs more than mean insolation. This suggests that methods such as
the one we propose are increasingly necessary at high FDS. At lower FDS, one could use
a simple linear model driven by annual insolation. However, that model would need to be
parameterized with output data from a model such as the one presented here, and it could
still incur significant errors, especially at low annual insolation levels (see Figure 1.5).

We also find that the optimal capacity of storage and solar is more variable across loca-
tions at higher FDS, implying that it is especially important to compute the optimal system
design at higher FDS. We calculate the cost penalty from using a sub-optimal system design
by first computing costs holding the ratio of storage to solar capacity fixed as desired FDS
changes. We then compare this cost to the optimal cost at different FDS. The penalty in-
curred for the current cost scenario increases with FDS to around USD 0.10/kWh in many
regions, though the spatial variation is significant (see Supplementary Note 1). We conclude
that, while the inaccuracies of a simple model (based on mean annual insolation and an ap-
proximate storage to solar ratio) may be acceptable for estimating the cost of decentralized
solar systems at FDS below 99%, at higher FDS it is necessary to use an optimization that
accounts for local weather patterns on a daily scale. Referring to Figure 1.1, we see that
many countries in SSA have reliability less than 99%. This is the range in which simpler
estimates of LCOE, based on constant storage to solar ratios, are relatively close to the
estimates from our model. Our more detailed model remains important for several reasons.
First, results from our detailed model are needed to validate simpler ones at different relia-
bilities, and this contributes an understanding of the threshold at which it is appropriate to
use one model versus another. Second, and perhaps more importantly, the model is needed
in cases where reliability higher than current national grids is desired, for example in the
planning of future power systems that have reliability on par with the rest of the world (e.g.
the United States reports ASAI at greater than 99.9% in 2015 [120]).

Decentralized solar LCOE and grid tariff comparison

We now compare the LCOE from decentralized solar to the grid using equivalent perfor-
mance metrics, namely FDS. We computed ASAI for most countries in SSA using the World
Bank Enterprise Surveys [113] (Figure 1.1). These surveys record the frequency and du-
ration of outages reported by businesses, though we note that these numbers are typically
6-7 times higher than those reported by utilities [111]. Treating FDS and ASAI as equiva-
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Figure 1.5: Predictive power of mean insolation on LCOE

Panel a) displays our calculated LCOE and mean insolation at each location for FDS of 0.9, with a least-
squares, linear regression model of LCOE onto mean insolation indicated by the black line, while b) and c)
show the same for FDS of 0.99 and 0.999, respectively. Panel d) shows how the coefficient of determination
for this regression deteriorates at high FDS. At low FDS, mean insolation is a good predictor of the LCOE
calculated by the isoreliability optimization model. At high FDS, temporal variability in the solar resource
starts to drive costs more than the mean insolation, and estimates from mean insolation no longer predict
the results of the isoreliability optimization.

lent under our constant load assumption, we compute the LCOE of a decentralized system
that provides the ASAI reported for the grid. This enables us to compare the cost differ-
ential between decentralized solar LCOE and grid tariffs [114] at approximately equivalent
quality of service (Figure 1.6). Though grid tariffs are often both directly subsidized and
cross-subsidized between customers, and do not accurately reflect the cost of service [64],
comparison to tariffs facilitates understanding where utilities might face competition from
decentralized solar and for understanding how decentralized solar compares to business as
usual. Additionally, the grid reliability may be unacceptably low in some regions; however,
adjusting for reliability provides a more appropriate comparison for countries with reliability
above 90% (see Figure 1.1). Grid tariffs and outage rates are reported in Supplementary
Note 1.C.

Figure 1.6 shows that in some areas, particularly in West and East Africa, the costs of
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Figure 1.6: Cost difference between decentralized solar LCOE and grid tariffs

Panel a) shows the current cost difference, while panel b) shows the difference under a future cost scenario
(as in Figure 1.2 and Figure 1.3). Blank countries are those for which grid tariff or grid reliability data was
unavailable. Under current cost structures (see Supplementary Table 1.2 for grid tariffs [114]), only 0.2%
of the shaded area is cheaper than the grid, and 0.3% is less than USD 0.05/kWh more expensive than the
grid; but under possible cost declines, 28% of the area becomes cheaper than the grid, and 35% is less than
USD 0.05/kWh more expensive than the grid. Data are presented aggregated by country in tabular form in
Supplementary Table 4.

decentralized solar are approaching grid parity at equivalent reliability, and in the future,
could become cheaper than current grid tariffs. A benchmark study for comparing the current
cost of solar against the gri [108] finds that including the estimated cost of grid extension
in addition to grid tariffs results in one third of the population of Africa being most cost-
effectively served by solar, but with the vast majority of those in rural areas. Our results
show a current cost difference much less favourable to solar because we do not estimate a cost
of grid extension; however, we project that future low costs for solar and storage could enable
decentralized systems to threaten the utility business model in many countries, even in urban
areas where grid extension is not necessary. Many of the countries where decentralized solar
is competitive are also those with relatively low rates of electrification, suggesting that they
could be ideal locations for decentralized electricity solutions. In particular, Mali, Liberia,
Uganda and Rwanda all have low electrification rates [112] and relatively low cost difference
between decentralized solar and the grid. Results by country are available in Supplementary
Note 1.D.

There are many factors not analysed here that determine the cost of grid service to
the customer, including subsidy, connection fees, and usage; and there are also complex
factors determining the cost for the utility to extend service. However, this suggests that
particular national utilities could face increasing competition from decentralized solar on the
individual household scale, and that certain countries have grid tariff structures and solar
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resource characteristics that make decentralized solar a competitive option.

1.5 Discussion

Our first major conclusion is that as solar and battery costs decline, decentralized systems
with high reliability meeting ESMAP Tier 5 criteria are likely to become cost-competitive
with the grid in a large portion of SSA. This cost parity with the centralized grid is within
reach both because of declining costs in solar and storage, and also because centralized
systems have significant costs to offset losses (both technical and non-technical) and to build
and maintain transmission and distribution infrastructure. The magnitude of cost declines
are of course strongly dependent on assumptions input to the model; these assumptions can
be explored in an online, open-source version of the model (https://emac.berkeley.edu/
reliability).

Many countries where cost parity is likely also have low rates of electrification. Our
results therefore highlight the risk that the standard aid agency pathway of funding large
grid development projects (which have long lead times and complex regulatory process)
could be stymied by private decisions to build decentralized systems (whose lead times are
extremely low and require little to no government involvement).

Low reliability premiums present an additional challenge to the centralized grid paradigm
– while centralized grid reliability is outside customers’ control, in decentralized systems
customers can influence their reliability with both upfront decisions as well as real-time cur-
tailment decisions. For example, in many parts of our study region, a customer considering
a system with 7900 hours of service per year (90% reliability) could add another 790 hours
of service (to 99% reliability) for less than USD 0.10/kWh. This cost could lower to USD
0.03/kWh if aggressive cost declines in PV batteries are realized. From a planning perspec-
tive, it would be useful to compare these reliability premiums to the grid to direct investment;
however, the premium for the grid is not well understood because of its complexity. This
is an important area for further research. While low reliability premiums for decentralized
systems coincide with low LCOE in parts of East Africa and regions just south of the Sahara
Desert, in general the premium is heterogeneously distributed and does not always coincide
with regions with low LCOE, thus it is important to consider the metrics separately.

There are a few important directions for additional investigation. First, different load
profiles result in different LCOE estimates; we used a constant load profile for our study,
and though we demonstrated that system costs are similar for real customers on a system
in Uganda with a night-time peak demand, other realistic load profiles may lead to different
costs. We report further analysis on the impact of different load profiles in the Supplementary
Note 1.B, where we find that more consumption at night increases the cost of decentralized
systems. We do note, however that our general conclusions about the reliability premium are
robust to load shape. However, large commercial and industrial systems will have high costs
associated with the inverter, and in this case some level of power sharing (to leverage load
diversity) or direct grid connections may be essential. Second, our financial models focus on

https://emac.berkeley.edu/reliability
https://emac.berkeley.edu/reliability
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social cost and as such they do not include overhead for managing payment schemes, such as
pay-as-you-go systems3, which bring energy access within reach in cases where the up-front
costs are too large. These costs will need to be better understood and eventually factored into
analyses such as ours. Third, there is wide variation in reported solar installation costs across
SSA [50]; the drivers for this heterogeneity needs further understanding and incorporation
into planning models. Fourth, further research is needed into how declining costs of solar
and storage will impact grid tariffs; modelling these costs could push grid parity further
into the future. Finally, though preliminary analysis shows that technical failures in modern
SHS are insignificant compared to resource outages in FDS [36], technical failure modes need
significantly more investigation.

In the long run, if the costs we modelled can be paired with rigorous assessments of
the societal benefits to electricity and reliability [17], our work enables aid agencies and
governments to make informed decisions about if, when and where they should rely on
decentralized electrification pathways to meet reliability and development goals. However,
detailed models are no substitute for the input of the end users of electricity, and it may well
be that markets for decentralized solar systems will blossom long before rigorous conclusions
about their benefits can be made. Centralized planning models must take into account the
informal process of energy decentralization that will likely emerge in the coming years and
decades.

1.6 Methods

Solar and load modelling

To model solar production, we use eleven years of daily average insolation incident on a
horizontal surface at each location with a one degree latitudinal and longitudinal resolution.
These data were obtained from the NASA Langley Research Center Atmospheric Science
Data Center Surface meteorological and Solar Energy (SSE) [121] web portal supported by
the NASA LaRC POWER Project. The data span January 1, 1995 to December 31, 2005.
To compute the mix of solar and battery storage necessary to supply power throughout the
day, we model the system dynamics on an hourly time scale, which requires up-sampling the
daily average insolation to hourly average insolation. To do this, we calculate the hourly
extraterrestrial horizontal insolation as a function of day of year and location and scale it so
that the sum of hourly insolation equals the measured daily insolation using the definitions
and solar geometry equations from Chapters 1 and 2 of Duffie and Beckman [31]. This
scaling factor, representing cloud cover and atmospheric attenuations is called the clearness
index, and our method introduces the assumption that this is constant throughout the day,
which in general is not correct [31]; however, given the data available, it is the simplest
assumption and suffices to capture the approximate daily profile and account for seasonal
variation in sunrise and sunset times.
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Computation of isoreliability curves

The isoreliability curves, or the set of solar and storage capacities that meet a specified FDS,
is computed through simulation with an hourly time step. We use the isoreliability curve to
represent the technical constraints imposed by the physics of the system. At a high level,
the approach is to compute these constraints offline through simulation, so that they may
be used in an online cost minimization.

The simulation uses the following dynamics, where Cs and Cb are solar array and battery
storage capacities in units of kW and kWh per kWh of daily load. In and Ln are insolation
and load at hour n, in units of per unit full sun and kW per kWh daily load, respectively.
which are input vectors described above, ∆Pn is the excess power (or deficit if negative)
that is charging or discharged from the battery at hour SOCn, n is the energy stored in
the battery at hour n, Un is the unmet load at hour n, N is the number of hours in the
simulation, and FDS is the Fraction of Demand Served. Note that with an hourly time step,
kW and kWh are interchangeable units.

∆Pn = CsIn − Ln (1.3)

SOCn+1 = max(0,min(Cb, SOCn +∆Pn)) (1.4)

Un = max(SOCn+1 − SOCn −∆Pn, 0)

= max(Ln − CsIn − SOCn, 0) (1.5)

FDSN = 1−
∑N

n=1 Un∑N
n=1 Ln

(1.6)

The simulation dynamics compute the FDS over a time horizon for a particular insolation,
load shape, solar capacity, and battery storage capacity. We can represent these dynamics
as the map (1.7) where I, L ∈ RN and Cs, Cb ∈ R.

FDSN = fN(I, L, Cs, Cb) (1.7)

To construct an isoreliability curve for a given location and load, we iterate across possible
storage capacities and find the solar capacity that yields the target FDS. Finding this solar
capacity can be written as an optimization problem, where Ĉb and Ĉs are a pair of battery
and solar capacities that yield the target FDS over time horizon N , denoted ˆFDSN :

Ĉs = argmin
Cs

|| ˆFDSN − fN(I, L, Cs, Ĉb)|| (1.8)

This problem is convex and can be solved with Newton’s method, yielding a point (Ĉb, Ĉs)
on the isoreliability curve. We denote this isoreliability curve by the set of points CFDS,I,L,
noting that it is parameterized by the Fraction of Demand Served, the insolation profile
(given by the location), and the normalized load profile. We define (1.9) as the function that
gives a solar capacity on the isoreliability curve associated with a battery capacity Cb.

Cs = GFDS,I,L(Cb) (1.9)
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We use a variable step size iteration to select storage capacity points. First, we compute
the minimum storage necessary if there was an effectively infinite solar capacity, and use this
as the minimum storage. Starting with this storage capacity, we compute the solar capacity,
and then increase the storage capacity and repeat. We expand the step size in storage
capacity to compensate for the fact that as storage gets large, it has a diminishing effect on
reducing storage capacity. This reduces the number of iterations while still constructing a
smoothly sampled curve. Finally, we check that the isorelability curve was calculated with
sufficient precision so that it is convex, and that our variable step size yielded sufficiently
many points for the subsequent cost minimization to yield accurate results; if these criteria
are not met, we repeat the process with greater precision in Newton’s method and a smaller
step size in storage capacity. This results in a discretized isoreliability curve for a particular
FDS at a particular location that is stored in a lookup table.

Recall that load is normalized to 1 kWh/day. Thus, points on the isoreliability curve are
solar and storage capacities that serve 1 kWh/day load at a specific FDS. We can see by
inspecting the dynamics above, that if load was scaled by some factor, we would achieve the
same reliability by scaling solar and battery capacity by the same factor. Thus, the points
on the isoreliability curve can be scaled to satisfy and arbitrary average load. The curve is
dependent on the shape of the load profile, but is independent of the average load.

We calculate and store isoreliability curves at each degree longitude and latitude across
SSA. We construct curves for values of FDS: 0.6, 0.8, 0.9, 0.95, 0.975, 0.9875, 0.9938, 0.9969,
0.9984, 0.9992, 0.9996, 0.9998, 0.9999. These numbers result from the sampling expression
(1.10) and is constructed to sample evenly from the logarithm of FDS. As we show in our
results, we find the cost of electricity scales linearly with the logarithm of FDS.

FDSk = 1− 0.1× 2−k, k ∈ {−2,−1, . . . , 10} (1.10)

This pre-processing technique allows the computationally expensive part of the algorithm –
computing the isoreliability curves – to be done offline and stored for future use.

Cost optimization

The minimum cost system design can be computed from an isoreliability curve and the costs
of storage and solar respectively. The specific costs used for different scenarios are described
in the economic assumptions in the next section and listed in Table 1.1. We include the
discounted battery replacement costs in the total price of storage (1.11), where Pb is the
total price of the battery including replacement, r is the discount rate, n is the project term,
T is the battery lifetime, and pb is the battery costs per kWh from Table 1.1.

Pb =
1− (1− r)n

1− (1− r)T
pb (1.11)

The total battery capital cost is denoted Kb as in (1.12).

Kb = CbPb (1.12)
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We also include solar derating; the simulation is performed with being the de-rated
capacity of the solar. Thus the total capital cost of solar Ks is given by (1.13) where ps
and pc are the prices per kW of solar modules plus hardware and the charge controller,
respectively, from Table 1.1, and α is the de-rating factor of 0.85 to account for dirt, wiring
and conversion losses, and panel mismatch.

Ks = Cs

(ps
α

+ pc

)
(1.13)

The total capital cost of the system K is given by (1.14), where L̄ is the average daily
load and Kl are the capital costs per unit peak load (these are the inverter and soft costs
assumed to scale with the peak load), and Lpeak is the system peak load capacity.

K = (Ks +Kb)L̄+KlLpeak (1.14)

Note that Lpeak is not necessarily the peak given by the load profile use to generate the
isoreliability curve; rather it is the peak capacity of the system specified by design. These
differ in the case that a representative load profile is used in the isoreliability curve, such
as an average load profile, but the system is required to meet intermittent atypical peaks
in load. We calculate the Levelized Cost of Energy in (1.15) using the methodology of the
United States National Renewable Energy Laboratory (NREL), where CRF is the Capital
Recovery Factor and O is the fixed annual operations and maintenance costs from Table 1.1.

LCOE =
K × CRF +O × Lpeak

365× L̄× FDS
(1.15)

The CRF is given by (1.16) where r is the annual discount rate, and m is the project term.
We assume no variable operations and maintenance costs.

CRF = r
(1 + r)m

(1 + r)m − 1
(1.16)

Our optimization problem is to minimize LCOE over the decision variables Cs and Cb,
subject to the constraints of the isoreliability curve. The project term, discount rate, average
load, peak load, solar derating, and prices of solar and batteries are all parameters that can
be adjusted independently of the isoreliability curve. This flexible parameterization without
needing to perform additional simulation is what allows this approach to scale as a module
of a higher-level optimization. Note that this problem is equivalent to minimizing the sum
of the solar and battery capital costs (1.17) subject to the isoreliability constraint (1.18).

Ks +Kb = Cs

(ps
α

+ pc

)
+ CbPb (1.17)

(Cb, Cs) ∈ CFDS,I,L (1.18)

For a continuously differentiable isoreliability curve, this problem has an analytical solution
given by (1.19)

∂Cs

∂Cb

= − Pb
ps
α
+ pc

(1.19)
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Given that in the application of this algorithm, the isoreliability curve is discretized with
on the order of one hundred sample points, it is trivial to perform an integer search over the
reliability curve to find the cost minimizing point. We use this integer search rather than
approximating the analytical solution.

Component costs and economic assumptions

For the purposes of describing large scale penetration of decentralized solar technologies,
this study assumes that competition will drive costs to the best practice rates. IRENA
provides the self-reported cost breakdown of solar home systems (SHS) greater than 1 kW
installed across Africa, including a representative “best-practice” scenario that we use to
construct present-day cost estimates [50]. This scenario indicates an installed price of USD
2.3/W installed, excluding the cost of storage, which is broken down into approximately
USD 1/W for solar modules and DC balance of system costs such as racking, wiring, and
circuit protection, USD 0.3/W for the inverter, and USD 1/W for AC balance of system and
soft costs. These estimates are consistent with IRENA’s reported values for grid-tied PV
systems of a similar scale, and we use them as our best estimate of current costs.

Estimating battery costs is more complicated as the choice of technology involves trade-
offs between capital cost, efficiency, lifetime, ease of maintenance, required space, and trans-
portation logistics. IRENA reports in 2016 that most SHS use lead-acid (LA) batteries, but
that lithium-ion (LI) batteries are beginning to appear on the market [50]. Based on these
market trends, and techno-economic analyses from the literature [58, 32, 28] we consider
LI and LA to be the leading battery technology choices for small scale decentralized solar.
Though the use of LI is still in its infancy for SHS applications larger than 1 kW, it appears
that we are approximately at a parity point where a solar developer would be indifferent to
the two technologies if both are available with training and support. Diouf et al [27] stated
in 2015 that because of longer lifetime, deeper depth of discharge, and better performance
at high temperatures, there are cases where LI are more economical. IRENA echoed this
position in 2016 [50]. A simple calculation taking these factors into account with a 2012
LI price of USD 600/kWh and a LA price of USD 120/kWh (this LA price is consistent
with estimates from the literature [106, 50]) shows that at temperatures found in Africa, LI
resulted in a lower cost over its lifetime [2]. In 2017, for example, one could purchase a 13.5
kWh LI Tesla Powerwall for USD 5,500 (resulting in USD 400/kWh) that is warrantied for
10 years with a 100% depth of discharge, indicating that LI is increasingly competitive with
LA.

Given the present approximate lifetime cost parity between LI and LA batteries, and the
expectation that spill-over effects from vehicle electrification will soon make LI the dominant
battery technology [27], we use LI battery models for our analysis. This choice simplifies
comparison between present and future scenarios; and at present, the modelled costs can be
interpreted as roughly equivalent to the costs for LA systems that are more widely available.
We assume the costs of LI batteries are currently USD 400/kWh. We also assume a maximum
power point tracking charge controller will be used with a cost of USD 0.2/W, which is
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similar to those reported [50] and offered internationally by online retailers. We assume that
all significant $/kW costs associated with the battery are captured by the charge controller
and inverter costs.

To calculate the levelized cost of electricity (LCOE), we assume a discount rate of 10%
and a project term of 20 years. Systems may not last 20 years if they are not well maintained,
but we assume best practices. The discount rate is higher than that used by Szabó et al [108],
but consistent with other studies [20, 8], and reflect a perception of high project risk. We
assume battery replacement occurs at 10 years, which is conservative relative to an estimate
of 15 years found in the literature [23]. We use the estimate to reflect uncertainty in the
lifetime in potentially challenging technical environments found in decentralized systems in
SSA, and to reflect the warranty term of 10 years of the Tesla battery. We also assume
replacement at initial costs so as not to embed precise assumptions of the rate of price
decreases into the model. All of these approximations are designed to be conservative,
meaning actual LCOE are likely to be lower than our estimates. This analysis includes a
look ahead at what the costs of decentralized solar could be in the future. The numbers
used are meant to be suggestive, not predictive, but are drawn from market studies that
are based in learning-curve methods. We construct a future scenario based on predictions
for 2025. IRENA predicts that utility-scale PV, including soft costs and balance-of-system
will be reduced by something in the neighbourhood of 50% by 2025 [51]. We suggest that
decentralized costs in Africa might fall by a similar percentage of their current costs; that is,
our future scenario examines a 50% reduction in module, soft costs, and balance of systems
(both AC and DC). We also use the “low-cost” scenario published by researchers at the
(United States) National Renewable Energy Laboratory which predicts a reduction to 25%
of 2015 costs in 2025 [23]. When calculating the trade-off between solar and storage capacity,
we assume that the inverter and soft costs are proportional to the peak power demand of
the system, rather than the solar or storage capacity. The charge controller cost is added to
the cost of solar specific components, because its power rating is dependent on the output
of the solar module. The costs used in the optimization model are shown in Table 1.1. Soft
costs include installation costs but do not include profit or overhead for a business providing
systems. The AC balance of system costs are assumed to be proportional to the peak load
capacity of the system along with the inverter, while the DC balance of system costs are
proportional to the array capacity.

Tiers of access

Additional technical parameters are dictated by the ESMAP Tiers of Access [12]. We analyse
Tier 5, which is considered the highest level of access. Tier 5 requires an average load of 8.2
kWh per day, a peak capacity of 2 kW, and service available for 159 out of 168 hours in a
week, which translates to an FDS of 94.6% [12]. These parameters are used to calculate the
LCOE using the optimization methods described above.
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Empirical grid and electrification metrics

We use the World Bank Enterprise Surveys on Infrastructure to estimate the ASAI for
countries in SSA [113]. These surveys estimate the number of grid outages per month and
the average duration of the outage. From this, we can compute the average number of hours
in a year when the grid power out for each country, and then divide by the number of hours
in a year to give the ASAI. At the time of writing, the years surveyed range from 2006 to
2017 by country

Electricity tariff data is obtained at a national level from the World Bank and is available
for most countries [114]. We use retail rates. Where tiered rate structures are in effect, we
use the rate at 250 kWh per month for ESMAP Tier 5.

National electrification rates are available through the World Bank data tables [112].
Please see the Supplementary Table 1.2 for copies of the tariff, reliability, and electrification
metrics.

Code Availability

Analysis was conducted using MATLAB R2017a. Code is available upon request from
Jonathan Lee at jtlee at berkeley dot edu and at https://github.com/leejt489/so

lar-reliability-cost-matlab. A Python version is also available upon request and at
https://github.com/leejt489/solar-reliability-cost-python. An implementation
of the model is available at https://emac.berkeley.edu/reliability.

Data Availability

All data used in this study with the exception of the sample micro-grid load profile from
Uganda is publicly available and referenced below. The sample micro-grid load profile is
owned by New Sun Road, P.B.C., and can be made available upon reasonable request.
Tables on national electrification rates [112], grid reliability [113], and electricity tariffs [114]
used to generate Figure 1.1 and Figure 1.6 are included in the Supplementary Table 1.2 for
convenience. Solar insolation data is available from the [United States] National Aeronautics
and Space Administration [121], and code to download and analyse this data is available at
the repositories listed above.

1.A Supplementary Note: Optimal system designs

Supplementary Figure 1.7 shows the range of optimal system designs – that is, the lowest cost
capacities of solar and storage that ensure a given FDS – for ESMAP Tier 5 systems across
each location as FDS changes. There is wide variation in the storage to solar ratio at high
FDS, and though solar capacity increases fairly regularly with FDS, storage capacity does
not increase much from 90% to 99% FDS, causing the ratio to decrease in this range of FDS.
At FDS above 99%, storage capacity takes a bimodal distribution, causing the storage to

https://github.com/leejt489/solar-reliability-cost-matlab
https://github.com/leejt489/solar-reliability-cost-matlab
https://github.com/leejt489/solar-reliability-cost-python
https://emac.berkeley.edu/reliability
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Figure 1.7: Statistical relationship between optimal system design and FDS for Tier 5 systems at
current costs

Panel a) shows the density of the optimal solar capacity at different FDS for each location, while panel b)
and c) show the density of optimal storage capacity and the ratio of storage to solar capacity at optimum.

solar ratio to scatter nearly uniformly between 2 and 4 hours from 99.9% to 99.99% FDS. The
key results from Supplementary Figure 1.7 are that optimal system design is more variable
at higher levels of reliability, which implies that considering how the optimal system design
changes with location is especially important at high levels of reliability, and is consistent
with Figure 1.5 of the main text and Supplementary Figure 1.8. We find also that the
optimal storage to solar ratio is mostly confined to between 2 and 4 kWh of storage for every
kW of solar, though this range is dependent on the shape of daily electricity load profile (see
Supplemental Information). We note that this recommends a higher storage capacity than
is reported by Levin and Thomas in a survey of installed SHS, who find most SHS use a
ratio in the range of 1 to 2 kWh of storage per kW solar [64].

When repeating this analysis for the possible future cost scenario with factor of 4 re-
ductions in battery costs and factor of 2 reductions in solar costs, there is a shift to higher
storage capacity deployment. This shift in optimal system design as costs change will be
important to include in multi-year planning tools that forecast changing prices of materials;
i.e. it is not appropriate to assume that future systems will employ the same capacities of
solar and storage. These results are also of practical importance to project developers and
system designers in industry who must select the optimal system design to be built.

We have shown that there is wide variation in optimal system design at high FDS. We
now examine the impact of choosing a suboptimal system design on costs to support the
use of our more detailed model. To do this, we draw on the approach used by Szabó et
al [108], where we calculate the optimal system design at each location for 95% FDS given
current costs. We then hold that storage to solar ratio fixed, and calculate the solar capacity
and resulting LCOE necessary to achieve different FDS using the fixed ratio. Thus, we
can calculate the difference in cost between the optimal choice and the fixed ratio solution
for each location (Supplementary Figure 1.8). The additional cost, or penalty for the sub-
optimal solution, increases with FDS, and the spatial variation is significant. At FDS at
or exceeding 99.9%, there is a cost penalty around USD 0.10/kWh in many regions if a
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Figure 1.8: Additional cost incurred if holding the storage to solar ratio fixed

Panels a), b), c), d) show the difference for FDS of 0.9, 0.99, 0.999, and 0.9999, respectively.

suboptimal system design is used. From these results we conclude that it is appropriate to
use a simple model for estimating the cost of decentralized systems at FDS below 99%, but
at higher FDS, it is necessary to use an optimization that accounts for local weather patterns
on a daily scale.

1.B Supplementary Note: Sensitivity to daily load

profile shape

As mentioned in the main text, the isoreliability curve is dependent upon the shape of the
daily electric load profile: the shape of the load profile is part of the simulation to ensure that
a particular system satisfies the target FDS. In the analysis presented in the main text, we
use the simple assumption of a constant load profile. Ideally, we would have large datasets
of electricity consumption across locations in SSA, but this is not available. Therefore, to
test the robustness of our results we compare different load profiles. We find that having
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Figure 1.9: Daily load profile shapes

more demand at night increases LCOE due to additional storage capacity required, but that
the logarithmic scaling and cost of incremental FDS are unchanged.

We compare four different load profiles: constant, day-heavy, night-heavy, and an empir-
ical sample from a microgrid in Uganda shared by New Sun Road, Public Benefit Corpora-
tion. The shapes of the different load profiles are shown in Supplementary Supplementary
Figure 1.9.

We compare the relationship between FDS and LCOE for different load profiles in Sup-
plementary Figure 1.10. Demand concentrated during the day causes lower LCOE for the
same FDS, while demand concentrated at night causes higher LCOE; however, the shape of
the reliability premium and variance around the best-fit line are approximately the same in
all cases. From this we conclude that changes in the daily load profile shift the LCOE by an
amount that is independent of FDS.

It is also interesting to note that the constant demand assumption yields very similar
results to the empirical load profile, which has a spike in the evening and low demand in the
pre-dawn hours. This supports the use of the constant demand assumption in our analysis.
In Supplementary Figure 1.10, we see a difference of approximately USD 0.25/kWh between
the day-heavy and night-heavy scenarios. This can roughly be interpreted as an upper bound
on the benefits that could be realized by shifting load from the night to the day through
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Figure 1.10: Statistical relationship of LCOE and FDS for different load profiles

The plots show the density of computed LCOE at different FDS for each location in SSA sampled at 1
degree, as in Figure 1.3 of the main text. Panels a), b), c), and d) show the relationship for the constant,
measured representative, day heavy, and night heavy load profiles of Supplementary Figure 1.3, respectively.
Note that panel a) is identical to Figure 1.3, panel a), of the main text on a different vertical axis.

demand-response type programs. It is important to observe in Supplementary Figure 1.10
that the constant and sample measured demand have approximately identical costs. This is
because the sample demand has an evening peak that is approximately balanced out by low
consumption late at night, resulting in approximately the same amount of battery capacity
necessary as the constant case. This similarity in results validates the assumption of constant
demand used in the main text. It is also important to point out that the inverter capacity
is specified by the ESMAP Tier 5 requirements3, and is not dependent on the shape of the
load profile.

We see in Supplementary Figure 1.11 that the demand profile affects the optimal storage
to solar ratio. Unsurprisingly, having more demand at night requires more storage capacity
relative to solar. In the case where all demand is at night, the optimal ratio is in the range
of 3 to 5 hours of storage.
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Figure 1.11: Statistical relationship between optimal storage to solar ratio and FDS for different
load profiles for Tier 5 systems at current cost

Panels a), b), c), and d) show the relationship for the constant, measured representative, day heavy, and
night heavy load profiles of Supplementary Figure 1.9, respectively. Note that panel a) is identical to panel
c) of Supplementary Figure 1.7.

1.C Supplementary Note: Electricity tariff,

reliability, and electrification data

The data used in the main text for the electricity tariffs, reliability, and electrification are
shown in Supplementary Table 1.2. Electricity tariff data was made available through a
World Bank report [114], and at the time of writing can be accessed online at http://da
tabank.worldbank.org/data/download/avpfa/avpfa-tariff.xlsx. For comparison
to ESMAP Tier 5 systems, the tariff at 250 kWh per month was used as it corresponds
to approximately 8 kWh per day, which is closest to the ESMAP Tier 5 requirement of
8.2 kWh per day of consumption. Reliability data was computed from the World Bank
Enterprise Infrastructure Surveys [113], which at the time of writing can be viewed at http:
//www.enterprisesurveys.org/data/exploretopics/infrastructure#sub-sahar

an-africa. The outage time is computed from the number of ooutages per month and
the average duration. Electrification rates were recorded by the Sustainable Energy for All

http://databank.worldbank.org/data/download/avpfa/avpfa-tariff.xlsx
http://databank.worldbank.org/data/download/avpfa/avpfa-tariff.xlsx
http://www.enterprisesurveys.org/data/exploretopics/infrastructure#sub-saharan-africa
http://www.enterprisesurveys.org/data/exploretopics/infrastructure#sub-saharan-africa
http://www.enterprisesurveys.org/data/exploretopics/infrastructure#sub-saharan-africa
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(SE4All) initiative and made available at the time of writing by the World Bank [112] at
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS.

Table 1.2: Tariff, reliability, and electrification data by country

Country Retail
price
@ 100
kWh /
month

Retail
price
@ 250
kWh /
month

Monthly
outages

Average
outage
dura-
tion

ASAI Electrif-
ication
Rate

Angola 0.04 0.04 4.7 13.5 8.7% 33%
Benin 0.3 0.29 28 3.7 14.2% 29%
Botswana 0.1 0.09 4.1 2.7 1.5% 53%
Burkina Faso 0.31 0.32 9.8 3.3 4.4% 18%
Burundi 0.07 0.13 16.6 4.8 10.9% 5%
Cameroon 0.1 0.16 7.6 8.7 9.1% 62%
Cape Verde 0.55 0.54 3.2 9.2 4.0% 96%
C.A.R. 29 8.1 32.2% 3%
Chad 0.18 0.21 19.6 8.8 23.6% 4%
Comoros 0.36 0.36 69%
Congo DRC 12.3 5.6 9.4% 18%
Congo 42%
Côte d’Ivoire 0.27 0.2 3.5 5.5 2.6% 62%
Djibouti 42%
Equatorial Guinea 66%
Eritrea 0.5 2.8 0.2% 32%
Ethiopia 0.02 0.03 8.2 5.8 6.5% 25%
Gabon 0.25 0.25 4.6 5.4 3.4% 89%
Gambia 0.23 0.23 21 6.9 19.8% 45%
Ghana 0.12 0.12 8.4 7.8 9.0% 72%
Guinea 0.03 0.03 4.5 3.2 2.0% 26%
Guinea-Bissau 5.2 17.9 12.8% 21%
Kenya 0.23 0.27 6.3 5.6 4.8% 20%
Lesotho 0.11 0.11 2.2 6.6 2.0% 17%
Liberia 0.51 0.51 1.7 4.7 1.1% 10%
Madagascar 0.17 0.17 6.7 1.9 1.7% 13%
Malawi 0.08 0.08 6.7 4.3 3.9% 12%
Mali 0.27 0.28 4.2 5.1 2.9% 26%
Mauritania 0.13 0.12 1.2 3.2 0.5% 29%
Mauritius 0.15 0.19 1.2 3.2 0.5% 100%
Mozambique 0.11 0.09 1.6 4.3 0.9% 40%

https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
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Namibia 0.18 0.15 0.6 5.8 0.5% 32%
Niger 0.17 0.18 18.5 1.6 4.1% 15%
Nigeria 0.14 0.1 32.8 11.6 52.1% 45%
Rwanda 0.23 0.23 4 4.3 2.4% 27%
Sao Tome & Principe 0.1 0.14 59%
Senegal 0.24 0.27 6 1.8 1.5% 61%
Seychelles 0.11 0.11 98%
Sierra Leone 0.19 0.21 13.7 10.2 19.1% 14%
Somalia 15%
South Africa 0.1 0.1 0.9 4.5 0.6% 86%
South Sudan 1.5 4.7 1.0% 1%
Sudan 3.4 2.5 1.2% 40%
Swaziland 0.09 0.09 3.7 3.7 1.9% 65%
Tanzania 0.12 0.2 8.9 6.3 7.7% 30%
Togo 0.24 0.24 5.5 2.1 1.6% 27%
Uganda 0.22 0.23 6.3 10.1 8.7% 19%
Zambia 0.1 0.08 5.2 2.8 2.0% 28%
Zimbabwe 0.07 0.1 4.5 5.2 3.2% 52%

1.D Supplementary Note: Cost of reliability results

by country

The results by country for the costs of Tier 5 solar systems (Figure 1.2 of the main text), the
reliability premium (Figure 1.4 of the main text), and the difference between decentralized
solar and the grid (Figure 1.6 of the main text) are presented in Supplementary Table 1.3,
Supplementary Table 3, and Supplementary Table 4, respectively. To be clear, by “results
by country” we mean the mean and standard deviation of the values falling with a country’s
borders sampled at 1-degree latitude by 1-degree longitude. The spatial variation can be seen
in the figures in the main text. Note that Cape Verde, Comoros, Sao Tome and Principe,
Mauritius, Swaziland, and Togo are omitted because there is no point on the 1-degree latitude
by 1-degree longitude sample grid that falls within those countries’ borders. Note also that
in the case of Nigeria, the high cost of decentralized solar is because the grid reliability is
so low (48%), and that designing a decentralized solar system for FDS below 90% results in
increasing costs, as shown in Figure 1.3 of the main text.

Table 1.3: Mean and standard deviation of LCOE for all locations sampled in each country under
the current and future economic assumptions
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Country Current
decen-
tralized
Tier 5
LCOE
(mean)

Current
decen-
tralized
Tier 5
LCOE
(std)

Future
decen-
tralized
Tier 5
LCOE
(mean)

Future
decen-
tralized
Tier 5
LCOE
(std)

Angola 0.437 0.021 0.182 0.010
Benin 0.433 0.018 0.181 0.009
Botswana 0.433 0.017 0.181 0.008
Burkina Faso 0.419 0.009 0.174 0.004
Burundi 0.448 0.009 0.189 0.004
Cameroon 0.451 0.036 0.189 0.015
C.A.R. 0.431 0.014 0.180 0.007
Chad 0.406 0.009 0.168 0.004
Congo DRC 0.488 0.009 0.205 0.005
Congo 0.460 0.024 0.193 0.010
Côte d’Ivoire 0.446 0.015 0.187 0.007
Djibouti 0.406 0.007 0.168 0.003
Equatorial Guinea 0.494 0.025 0.209 0.008
Eritrea 0.411 0.011 0.171 0.005
Ethiopia 0.421 0.015 0.175 0.007
Gabon 0.492 0.015 0.207 0.005
Gambia 0.423 0.002 0.176 0.001
Ghana 0.445 0.007 0.187 0.004
Guinea 0.435 0.018 0.181 0.008
Guinea-Bissau 0.441 0.016 0.184 0.007
Kenya 0.420 0.013 0.175 0.006
Lesotho 0.481 0.029 0.201 0.012
Liberia 0.496 0.040 0.207 0.013
Madagascar 0.441 0.025 0.184 0.012
Malawi 0.440 0.015 0.184 0.007
Mali 0.426 0.010 0.178 0.005
Mauritania 0.434 0.011 0.182 0.005
Mozambique 0.453 0.023 0.190 0.010
Namibia 0.428 0.018 0.179 0.008
Niger 0.408 0.010 0.170 0.005
Nigeria 0.453 0.050 0.189 0.020
Rwanda 0.452 0.000 0.191 0.000
Senegal 0.420 0.012 0.175 0.006
Seychelles 0.436 0.005 0.183 0.002
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Sierra Leone 0.499 0.023 0.209 0.008
Somalia 0.402 0.012 0.166 0.006
South Africa 0.487 0.036 0.205 0.016
South Sudan 0.440 0.015 0.184 0.007
Sudan 0.409 0.010 0.170 0.005
Tanzania 0.433 0.025 0.181 0.011
Uganda 0.422 0.008 0.176 0.004
Zambia 0.426 0.005 0.177 0.002
Zimbabwe 0.441 0.021 0.184 0.010



35

Chapter 2

Non-intrusive load management under
forecast uncertainty in energy
constrained microgrids

This chapter was co-authored with Sean Anderson, then an engineer with New Sun Road,
P.B.C., and subsequently a doctoral student at the University of California, Santa Barbara;
Dr. Claudio Vergara, Chief Architect at ZOLA Electric; and Prof. Duncan Callaway, Asso-
ciate Professor of Energy and Resources at the University of California, Berkeley. The text
was previously published in Electric Power Systems Research in 2021. See [60] for the full
citation. The text has been reformatted for inclusion in this thesis.

Abstract
This paper addresses the problem of managing load under energy scarcity in islanded
microgrids with multiple customers and distributed solar generation and battery stor-
age. We explore an understudied, practical approach of scheduling customer-specific
load limits that does not require direct control of appliances or a market environment.
We frame this as a stochastic, model-predictive control problem with forecasts of so-
lar resource and electricity demand, and develop alternative solutions with two-stage
stochastic programming and approximate dynamic programming. We test the effi-
cacy of the alternative solutions against heuristic and deterministic controllers in an
environment simulating the customers’ responses to load limits. We show that using
forecasts to schedule limits can significantly improve power availability and the cus-
tomers’ benefits from consumption, even without the controller having a full model of
the customers’ responses.
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2.1 Introduction

Without measures for microgrid operators to manage load or communicate scarcity, cus-
tomers in energy-constrained microgrids will experience suboptimal interruptions. For ex-
ample, in an islanded microgrid with multiple customers sharing limited photovoltaic gener-
ation and battery storage capacity, high daytime loads on cloudy days might lead to evening
interruptions of low-power / high-value loads such as lighting. This problem could exacer-
bate inequity across customers, for example, if some are only able to consume electricity in
evening hours when interruptions are more prevalent.

We seek to improve the allocation of energy services in time by establishing dynamic
load limits based on forecasts that allow customers to consume energy over a time window
in quantities up to, but not in excess of, the limit. This control problem is related to other
flavors of microgrid Energy Management Systems (EMS) and connected methodologically to
recent work on Stochastic Unit Commitment (SUC). The classic unit commitment problem
schedules generators to minimize startup, shutdown, and variable fuel costs while meeting
an estimate of inflexible load. The stochastic extension typically minimizes a measure of the
expectation of costs over a set of uncertain scenarios while satisfying constraints [110, 127,
101, 88].

Solutions to the stochastic microgrid EMS problem in the literature typically employ
the same scenario approach as its SUC counterpart, but in different contexts with varying
models of physical systems, points of control, and objectives. Generally, the microgrid has
local intermittent renewable generation and energy storage, can be either grid-connected
or islanded, may contain dispatchable generation, and may have controllable loads. If the
microgrid is grid-connected, the main grid is treated as an unconstrained resource, but with
a time-varying price entering the optimization problem [90, 105, 97]. In islanded or off-
grid microgrids, dispatchable generation or flexible load [103] is used to balance supply and
demand.

Our system of interest can be classified as an islanded EMS where supply-demand balance
is met by flexible demand and storage dispatch, and lost load is assigned a cost in the
EMS optimization problem. Prior related studies assume load is directly controllable [86,
91], or that customers respond to a pricing signal [122, 97]. Direct load control and time-
varying prices are promising pathways; however, they have some limitations. Direct load
control requires ubiquitous remotely controllable appliances and is intrusive to customers,
particularly if very large demand shifts are required during periods of scarcity. Time-varying
pricing requires carefully designed price formation rules and sufficiently responsive load.

In contrast, load limits require only broadcasting a limit to customers and the ability to
disconnect load at the meter if the limit is exceeded. Although this approach is more blunt
than direct load control or pricing, it is simple and inexpensive to implement. In the simplest
case, the load limit can be sent to the customer directly via a mobile interface, in which case
they would manually adjust their consumption. More sophisticated smart appliances could
automate the adjustment for the customer, but are not required. In either case, using the
total load limit preserves privacy and a degree of customer autonomy without distributed
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automation or a structured market. Load limits are advocated in [74], although that study
works within the context of market-based solutions.

In the framework we present in this paper, an operator is held accountable implicitly for
unreliable service and chooses load limits that maximize a simplified value metric of each
customer’s energy consumption. We show that this choice can be formulated mathemati-
cally as a sequential decision problem, which is well-known to have significant computational
complexity [11]. This complexity is intensified by non-convexities in the model of demand
subjected to load limits.

We develop two approximations and reformulations to reduce the complexity of the prob-
lem. The first uses two-stage stochastic programming with assumptions about the forecast
to cast the problem as a less complex mixed integer quadratic program (MIQP). The second
uses approximate dynamic programming in conjunction with two-stage stochastic program-
ming to reduce the problem to a sequence of smaller MIQPs. We compare the performance
of the approaches in simulation against a baseline model with no control, a heuristic, and a
predictive controller that uses only the mean forecast.

The paper contributes a framework for developing stochastic, predictive models for con-
trolling load through consumption limits under forecast uncertainty. The framework is novel
in separating the decisions of the customer to respond to load limits from those of the op-
erator to set them, providing a mechanism for evaluating controller performance in the face
of model mismatch. We show how stochastic forecasts can be combined with approximate
models of the customer response into an optimal decision model that can be solved with
out-of-the-box numerical solvers. Our computational experiment results show significant
benefits from using forecasts in a receding-horizon control framework, but more modest
and variable benefits from using stochastic formulations in place of deterministic forecasts,
with the conclusion that model mismatch limits the additional benefit from stochastic ap-
proaches. The paper provides a mathematical and computational foundation for exploring
different formulations of value and mechanisms to allocate scarce electricity supply.

2.2 Decision problem

We develop a method to set customer-specific load limits in a microgrid where multiple
customers share distributed solar and battery storage with limited capacity. The load limit
sets a maximum amount of energy that a customer can consume over a window of time. We
assume a receding-horizon control (RHC) framework where a microgrid controller acts on
behalf of the operator to compute both load limits and power injection setpoints at a fixed
time interval, and then transmits these to customers, metering devices, and the distributed
energy resources (DERs), as depicted in Figure 2.1.

The essential states are the state of charge of each battery belonging to each customer
and the status of the loads and activities that each customer requires electricity for. The
evolution of these states are affected by both the decisions of the microgrid controller and
the customer. We assume the microgrid controller cannot control individual loads directly,
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Figure 2.1: Receding horizon control system

but that customers can be sent a load limit that is enforced at their meter. We also assume
the controller has no knowledge of the customer’s decision model, activities, or individual
loads, so its decision is to set an upper bound on uncertain consumption. However, we
assume the controller is given an exogenously determined forecast of solar power potential
and electricity demand in the absence of consumption. We treat these forecasted variables
as stochastic, which given the dynamic nature of the system, presents the controller with a
sequential decision problem under uncertainty.

In the following subsections, we present first a relatively simple model of the customer’s
decision to adjust consumption given a load limit. The purpose of this model is both to cap-
ture model uncertainty from the controller’s limited information and to define performance
metrics for evaluating the control strategy from the perspective of the customer. We then
formulate the controller’s decision model to set load limits and propose specific approximate
methods to make the problem tractable. This is the core contribution of the paper. Lastly,
we briefly define a simple feedback controller to compute power injection setpoints to balance
state-of-charge between batteries. The purpose of this component is mainly to facilitate sim-
ulating power-sharing among DERs and to provide a placeholder for future work to integrate
the load-limiting control with optimal power flow models.
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Customer decision and consumption model

We assume customers use their loads to conduct a set of activities that they schedule stochas-
tically around a daily pattern. For example, lights are more likely to be used at night for
several hours at a time, and microwaves around meal times for a few minutes. Based on as-
sumptions about appliance ownership and usage patterns which are qualitatively consistent
with our field experience, we randomly generate a schedule of activities for each customer
that they would carry out if not subjected to limits. Customers derive a value when activities
are completed without interruption, but incur an interruption cost otherwise. A customer
can cancel an activity before it begins with zero cost but also zero gain.

When a customer is sent a load limit, we assume they cancel or interrupt activities and
disconnect the associated loads to maximize their value of completing activities minus any
interruption costs from activities already in progress. We introduce this model to emulate
behavior to the first order and capture model error in the controller when evaluating per-
formance. We considered models of thermostatically controlled loads but determined this
complexity did not provide additional insight, and recommend future work to comprehen-
sively examine the effects of different types of shiftable and state-dependent loads.

Formally, we assume an activity a has a start time T s
a , time to complete T c

a , completion
value va, interruption cost ca, and a power consumption Pa when its associated load is on.
The activity has two states: its remaining time to completion tra and its status σa. The status
evolves as a finite state machine with states: {0 = queued, 1 = in progress, 2 = completed,
3 = interrupted while in progress, 4 = cancelled before commencing}. We omit the formal
transition rules as they are intuitive. Activities are initialized to tra = T c

a and σa = 0. When
the start time is reached, σa → 1 and tra decrements as time passes. Unless the activity is
interrupted by either the customer or loss of power in the microgrid, σa → 2 when tra reaches
zero. Statuses 2, 3, and 4 are terminal and the customer receives va for σa = 2 and pays ca
for σa = 3.

At a time t, when the customer is faced with a load limit of average power l over ∆T
in the future, the sets of relevant activities are those that are already in progress A1 :=
{a |σa = 1}, and those that are queued but will start within the time window A0 := {a |σa =
0 ∧ T s

a < t + ∆T}. For each a ∈ A0 ∪ A1, the customer chooses either ua = 0 to cancel
(for a ∈ A0) or interrupt (for a ∈ A1) the activity, or ua = 1 to proceed as planned. The
energy consumed by each activity over the time window is Pa min(tra,∆T ) for a ∈ A1 and
Pa min(tra,∆T −max(T s

a − t, 0)) for a ∈ A0. For activities that will not be completed within
the window, we assume the customer expects no load limit in the next window and effectively
receives the completed value for activities still in progress. This allows us to represent their
decision u = {ua} as an integer linear program to maximize their utility:

max
u

∑
a∈A0∪A1

uava +
∑
a∈A1

uaca (2.1)

s.t.
∑
a∈A0

Pa min(tra,∆T −max(T s
a − t, 0)) +

∑
a∈A1

Pa min(tra,∆T ) ≤ l∆T (2.2)
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Operator load-limit decision model with forecasts

We assume the microgrid uses RHC with fixed time-step ∆Tc over a horizon T . The controller
decides on an action ut to take on behalf of the operator at time t, based on the current state
xt and a probabilistic forecastWt of exogenous disturbances wt. In our problem, xt is a vector
of the stored energy Estor

n,t in each customer n’s battery, ut is the vector of load limits ln,t,
and wt is the solar generation potential P g

n,t and electricity demand P l
n,t for each customer.

We assumeWt is a finite set of S scenarios consisting of distributed generation and demand
values at each time over the horizon for each customer. Each scenario has a probability
of occurrence ps, which we assume to be uniformly 1

S
, but could be given explicitly by the

forecast algorithm or tuned to hedge against particular outcomes. We assume the scenarios
can be derived from historical measurements, but do not present algorithms for doing so in
this paper. The dynamics f are given by:

Estor
n,t+1 = Estor

n,t + P c
n,t∆Tc , 0 ≤ Estor

n,t ≤ Emax
n (2.3)

where P c
n,t is the average net charge power into each customer’s battery. P c

n,t is determined
implicitly by the controller’s action, the state variables and disturbances across all cus-
tomers, and constraints defined subsequently, such as the capacity of each battery Emax

n and
conservation of energy.

A critical detail in RHC is that the operator makes the next decision after observing a
realization of the forecast wt, the new state xt+1, and given a new forecastWt+1; however, to
make the optimal decision ut at time t, they have to compute what decision they would make
at the next time-step given all possible outcomes, and so on over the horizon. This requires
assuming how the forecast will be updated as realizations are observed, which we denote
with the function g. The proper definition of g is ambiguous without additional information
about the forecasting process, but has implications for the decision model; we discuss this
in detail after stating the decision model in its general form.

The objective is to maximize the expected benefit of using electricity in the current time
period plus the expected future benefit in subsequent time periods. This multi-stage decision
problem can be represented mathematically in general with (2.4)-(2.8), where u′

t denotes
hypothetical actions to take at the present time t and τ ∈ [t, t + T − 1] denotes time-steps
over the horizon. Note that the variables defined for τ > t are predicted future trajectories.
Similarly f and g are models and do not necessarily match the physical or simulated system
dynamics exactly. Qt determines the expected benefit over the forecast horizon for any state
and action, and is defined recursively as a sum of the expected present benefits b and the
future benefits Vt+1 given the new state and new forecast. Vτ is the maximum value from
time τ assuming the operator acts optimally given state xτ and forecast Wτ .

ut =argmax
u′
t

Qt(xt, u
′
t,Wt) (2.4)

Qτ (xτ , uτ ,Wτ ) =EWτ [b(xτ , uτ , wτ ) + Vτ+1(xτ+1,Wτ+1)] (2.5)

Vτ (xτ ,Wτ ) =max
uτ

Qτ (xτ , uτ ,Wτ ) (2.6)
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xτ+1 =f(xτ , uτ , wτ ) (2.7)

Wτ+1 =g(Wτ , xτ , uτ , wτ ) (2.8)

Vt+T (x,W) ≡0 (2.9)

We assume for simplicity with (2.9) that the future benefit at the end of the horizon is
zero regardless of the final battery state, but this can be replaced with any linear or quadratic
function. We define the benefit b as a quadratic function of the actually used load power
P u averaged over a time-step. P u is not directly controllable, but is a stochastic variable
influenced nonlinearly by the load limit l, whose realization depends on the customer decision
and information not available to the controller. To formulate the controller’s decision, we
model it as (2.11), which is an overestimate of consumption because the customer is unlikely
to be able to adjust exactly to the limit.

b(xt, ut, wt) =
1

N

∑
n

(
P u
n,t −

1

2P l,max
n

P u
n,t

2

)
(2.10)

P u
n,t =min(ln,t, P

l
n,t) (2.11)

The appropriate choice of b in different contexts is an important topic that requires
careful study beyond the scope of this paper. We select the quadratic form for the common
case where there is diminishing marginal value of consumption. In contrast, a linear function
would value all consumption equally and effectively not steer the operator to take any actions
to “keep the lights on” by reducing the usage of a few high power loads, which is our
qualitative objective. We show in the results that using this form yields desired behavior
despite b not representing any direct value. Eq. (2.10) can be modified in several ways while
preserving the same structure: it can be shaped for different rates of diminishing marginal
value, and weighted differently for particular customers over times of day. These parameters
can be functions of past load limits or consumption. Note also that b is increasing up to the
maximum possible load, P l,max

n , which is the power rating of their meter.
To specify g, one must assume whether each scenario represents a single trajectory, or a

Markov process where the possible values at each moment in time are independent of prior
values. The former implies up to S possible trajectories and final states, while the latter
implies ST , effectively leading to two different scenario trees after time t + 1, illustrated
in Figure 2.2. Assuming for the illustration that the scenarios are unique over the first
time-step, the two interpretations respectively imply that the operator assumes either, after
observing wt, that 1) they will know with certainty what trajectory they are on and then
act optimally with perfect information, or 2) they will again face an uncertain forecast with
no gained information.

Both interpretations are approximations of the optimal decision because the forecast
itself is an approximation of reality via a finite number of scenarios.1 Here, we focus not

1We refer the reader to [11, Ch. 6] for additional discussion showing how the trajectory interpretation
can in fact be cast as an approximate solution to the Markov interpretation.
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Figure 2.2: Alternative interpretations of a 2-scenario forecast with a single battery over a horizon
of three time-periods.

on which is correct – it depends entirely on the details of the forecasting algorithm – but
develop solutions for both and compare their performance in simulation. We show that due
to having fewer trajectories, the trajectory interpretation can be computed with two-stage
stochastic programming, while the Markov interpretation requires additional approximate
dynamic programming techniques to solve.

Two-stage stochastic programming solution with trajectory forecast

The key insight and distinction of our model from others is that the operator cannot directly
control load, but can only indirectly influence it via a non-convex, piecewise-linear constraint
as in (2.11). Otherwise, the problem employs the standard two-stage stochastic model by
assuming each scenario is a distinct trajectory [86, 90, 97]:

Qt(xt, ut,Wt) =
∑
s

ps

(
b(xt, ut, wt,s) +

T−1∑
τ=t+1

b(xτ,s, uτ,s, wτ,s)
)

(2.12)

where the single recourse decision uτ,s for each scenario s is a trajectory with a corresponding
state xτ,s from time t+1. The optimization problem includes the constraints eqs. (2.13-2.26)
with variables specifed by customer n, scenario s, and over time τ as in (2.12). Estor

n,t,s is
fixed at the initial condition Estor

n,t for each scenario. Pw is wasted solar (i.e. curtailed when
batteries are full), and P is net flow into the network. P c,max

n is the maximum charge power
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of a battery, assumed for simplicity to be the same as discharge power.

P c
n,τ,s = P g

n,τ,s − Pw
n,τ,s − P u

n,τ,s − Pn,τ,s (2.13)

Estor
n,τ+1,s = Estor

n,τ,s + P c
n,τ,s∆Tc (2.14)

0 =
∑
n

Pn,τ,s (2.15)

0 ≤ Pw
n,τ,s ≤ P g

n,τ,s (2.16)

0 ≤ P u
n,τ,s ≤ P l

n,τ,s (2.17)

−P c,max
n ≤ P c

n,τ,s ≤ P c,max
n (2.18)

−Pmax
n ≤ Pn,τ,s ≤ Pmax

n (2.19)

∀n ∈ [1, N ], ∀τ ∈ [t, t+ T − 1], ∀s ∈ [1, S]

0 ≤ Estor
n,τ,s ≤ Emax

n (2.20)

∀n ∈ [1, N ], ∀τ ∈ [t+ 1, t+ T ], ∀s ∈ [1, S]

To cast the problem in a generic form for standard numerical optimization solvers, we replace
(2.11) with the equivalent set (2.21)-(2.26) using binary variables qn,s and the constant
Mn := maxs P

l
n,t,s [9]. These constraints, along with (2.17), give two disjoint cases for

whether or not the load limit is binding in scenario s: qn,s = 1 =⇒ P u
n,t,s = ln,t, and

qn,s = 0 =⇒ P u
n,t,s = P l

n,t,s. Note that the constraints only include the decision ln,t at the
first time-step, and that only one decision is made for all scenarios, reflecting that the action
must be taken before a scenario is realized. In contrast, the operator assumes they will be
taking actions with certainty for τ ≥ t + 1, meaning they can set a load limit exactly to
the desired consumption in that scenario. In the case where the optimal load limit is the
maximum over the forecast, i.e. ln,t = Mn, then any ln,t ≥ Mn is optimal, so the controller
selects no load limit with ln,t =∞.

qn,s ∈ {0, 1} (2.21)

P u
n,t,s ≤ ln,t (2.22)

ln,t ≤ P u
n,t,s + (1− qn,s)Mn (2.23)

ln,t ≤ P l
n,t,s + (1− qn,s)Mn (2.24)

P l
n,t,s ≤ P u

n,t,s + qn,sMn (2.25)

P l
n,t,s ≤ ln,t + qn,sMn (2.26)

This is a mixed integer quadratic program (MIQP) with NS binary variables, and
O(NST ) continous variables and constraints. This scaling in dimension is not to be confused
with the complexity of solving the MIQP, which itself scales nonlinearly with the number of
variables and constraints.
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Approximate dynamic programming solution with Markov forecast

If the forecast is considered Markov, Eqs. (2.4)-(2.8) can be solved with backwards recursion,
which in practice requires computing and storing values of Vτ (x) for each possible x. Com-
puting this if each of N batteries is approximated with X discrete state-of-charge regions
requires (X + 1)N samples, which is intractable. We address this by employing state-space
aggregation, approximating the state by the sum of energy stored in all batteries x̂τ and
sampling it uniformly at X + 1 points indexed by i. We denote samples of the aggregated
state and value function x̃(i) and Ṽτ (i). The continous and sampled forms are related by
piecewise linear interpolation in (2.31)-(2.32), with weights ri satisfying SOS2 constraints
defined for each scenario in (2.36)-(2.42).2

x̂τ :=
∑
n

Estor
n,τ (2.27)

x̂max :=
∑
n

Emax
n (2.28)

x̂τ+1 =x̂τ +
∑
n

P c
n,τ (2.29)

x̃(i) =
i

X
x̂max ∀i ∈ {0, 1, . . . , X} (2.30)

x̂τ =
∑
i

rix̃(i) (2.31)

V̂τ (x̂τ ) :=
∑
i

riṼτ (i) (2.32)

Given the above, we can now define the optimization problem with objective (2.33) for
computing the value function Ṽτ (i) at a sample of the state space i at time τ , given values
of the next step value function at all samples of the state space Ṽτ+1(j) ∀j, and forecast
scenarios wτ,s:

Ṽτ (i) = max
u′

∑
s

ps(b(x̃(i), u
′, wτ , s) + V̂τ+1,s) (2.33)

The constraints are the same as the previous two-stage stochastic formulation ∀s ∈ [1, S] and
∀n ∈ [1, N ], except that only one time-step τ is considered (the load limit constraints (2.22)-
(2.26) are defined for time τ), the individual state-of-charge dynamics (2.14) are replaced
with the aggregate dynamics (2.34) and likewise for battery capacity (2.35), and the SOS2
constraints are included:

x̂τ+1,s = x̃(i) + ∆Tc

∑
n

P c
n,s (2.34)

2SOS2 refers to “special ordered sets of type 2” constraints [9], which have a structure that can be
exploited for better performance by some solvers.
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0 ≤ x̂τ+1,s ≤ x̂max (2.35)

x̂τ+1,s =
∑
j

rs,jx̃(j) (2.36)

V̂τ+1,s =
∑
j

rs,jṼτ+1,s(j) (2.37)∑
j

rs,j = 1 (2.38)∑
j

ys,j ≤ 2 (2.39)

ys,j ∈ {0, 1} (2.40)

0 ≤ rs,j ≤ ys,j ∀j ∈ [0, X] (2.41)

ys,j + ys,k ≤ 1 ∀j ∈ [0, X − 2], ∀k ∈ [j + 2, X] (2.42)

In general, b should be redefined on the aggregated state space, but our form in (2.10)
does not directly depend on state, so we use the same b. Note that (2.33)-(2.42) define an
optimization problem only over one time-step. The solution process consists of starting at
time τ = t + T − 1 with Ṽτ+1(j) = Ṽt+T (j) ≡ 0, solving the above problem to determine
Ṽτ (i) for each i ∈ {0, X}, repeating for τ = τ − 1, and stopping after solving for τ = t + 1.
This entails solving (X+1)(T −1) MIQPs, each with a dimension on the order of NS. Once
Ṽt+1 has been determined, we solve the problem again, but only given the initial state xt to
determine the optimal action ut to take at time t using Ṽt+1 as an approximation of Vt+1.

Alternative deterministic solutions

The two controllers of primary interest are described above, but we also define three alter-
native controllers for use in the computational experiments. The first trivially sets no load
limit, the second sets limits according to the piecewise-linear feedback rule (2.43), using only
the aggregated state of charge (2.27)-(2.28) and no forecasts, and the third uses a single
forecast, computed as the mean over all scenarios, without considering uncertainty. The
single forecast formulation is actually equivalent to the stochastic trajectory forecast with
S = 1, making the binary variables extraneous and reducing the problem to a QP.

ln,t =


0.01P l,max

n 0 ≤ x̂t < 0.1x̂max

0.05P l,max
n 0.1x̂max ≤ x̂t < 0.2x̂max

0.1P l,max
n 0.2x̂max ≤ x̂t < 0.3x̂max

∞ 0.3x̂max ≤ x̂t

(2.43)

Power dispatch model

In a microgrid with DERs, a dispatch mechanism is required to maintain power balance
and coordinate the charge power of each individual batteries. We model solar generation
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and batteries interfaced with grid-forming converters, where each group n tracks a setpoint
P inj,∗
n,t of power to inject into the network and the total imbalance is shared by an automatic

generation control described below. The primary control objective here, given assumptions
to ignore network constraints, is to keep states of charge equally balanced to each other to
prevent losing instantaneous power capacity if some were to become drained before others.
This is an open research area, but we achieve sufficient balancing with a simple, centralized,
proportional feedback controller with gain K = 2 and ∆Tc the time-step between control
action:

P inj,∗
n,t =

1

K∆Tc

(
Estor

n,t −
1

N

∑
n

Estor
n,t

)
(2.44)

Integrating more sophisticated predictive power dispatch models with load-limiting to
account for network constraints and losses is an important area for future work that becomes
increasingly relevant in larger microgrids.

2.3 Microgrid simulation model

To evaluate controller performance, we develop a simulation model of a distributed microgrid
to capture interruption events and the evolution of battery states. We use a quasi-static
simulation of the steady-state behavior of the the primary and secondary controls of the DER
power converters, which govern power sharing and the availability of supply. We introduced
grid frequency ∆ft as a state variable in the simulation model to maintain instantaneous
power balance. The DERs act as synchronous interconnected areas that maintain power
balance using classic droop and automatic generation control subject to constraints on the
solar availability and battery charge [39]. We assume the charge and discharge capacity is
constrained by the battery inverter rating P c,max

n , the free capacity of the battery, and a linear
power derating when the battery state-of-charge is within 10% of its limits. These dynamic
constraints are captured respectively by the three terms in the min functions defining the
maximum charge P c,+

n,t and discharge P c,−
n,t :

P c,+
n,t = min

(
P c,max
n ,

Emax
n − Estor

n,t

∆Ts

,
P c,max
n (Emax

n − Estor
n,t )

0.9Estor
n,t

)
P c,−
n,t = min

(
P c,max
n ,

Estor
n,t

∆Ts

,
P c,max
n · Estor

n,t

0.1

)
(2.45)

The net injection P inj
n,t of each “area” n of DERs tracks the setpoint P inj,∗

n,t with a frequency
response stiffness βn subject to the charge and solar generation capacity constraints as well
as conservation of energy given the loads P u

n,t:

P inj
n,t = min(P g

n,t + P c,−
n,t ,max(−P c,+

n,t , P
inj,∗
n,t − βn∆ft))
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0 =
∑
n

P inj
n,t − P u

n,t (2.46)

We set the stiffness of area n as proportional to the total inverter capacity: βn = β(P c,max
n +

P g,max
n ) where P g,max

n is the PV inverter capacity, and we choose β = 4. The above system
has either a unique solution for ∆ft or no solution; in the latter case, a blackout is implied.
In the event of a blackout, meters disconnect all load (thus interrupting customer activities)
until the aggregate state of charge reaches 10%, and the DERs come back online automati-
cally. When there is no blackout, the solar generation, curtailment, and battery charge are
recovered from ∆ft and P inj

n,t by minimizing curtailment, and the battery stored energy is
updated incremented by P c

n,t∆Ts.
As shown in Fig. 2.1, the control system sets limits for each customer and a power

injection setpoint for each DER every ∆Tc = 4 hours. Within that window, the DERs,
loads, meters, and customer activity states are simulated on a ∆Ts = 2 minute time-step.
We assume the customer updates their activity schedule whenever they receive a new limit
and that individual meters enforce load limits by disconnecting load if the limit is exceeded.

2.4 Computational experiments

We conducted two computational experiments with multiple trials to assess the efficacy and
computational tractability of the proposed algorithms using the experimental methodology
and terminology proposed in [57]. All modelling code and data are available on GitHub,
including the complete implementation of the models above, all experimental parameters,
and additional data visualization.3 We ran the experiments on a personal computer using
an Intel i7-7600U CPU Dual Core, 2.80 GHz CPU with 16 GB of memory. We used CVX
version 2.1, build 1127, with MATLAB 2018a to develop the optimization problems with
Gurobi 9.0.1 as the solver [43, 42]. In the simulation and timing results, we used MATLAB
compiled binaries and the Gurobi API directly instead of CVX to improve performance.

In each trial, we simulate a microgrid of N customers by randomly distributing 300
W PV units and 2 kWh battery units with 1.2 kW charge power. We set the total solar
capacity to produce the average unconstrained demand of 330 W, which was computed by
simulating users’ activities, and 3 kWh of total battery capacity per kW of PV. This results
in and average 1.5 kWp PV and 4.5 kWh of storage per user, but variable distributed, and
ensures energy scarcity. Each customer is assumed to have a maximum possible load of
P l,max
n = 10 kW. Customers are assumed for simplicity to have the same activities and loads

with parameters given in Table 2.1, but multiple types are supported in the simulation. The
tables dictating the probability of a customer scheduling an activity to start in each hour of
the day are not shown for space reasons, but are available in the repository.

We used satellite-measured solar irradiance from a location on Lake Victoria, Uganda,
spanning 2004 to 2019 at one minute resolution, to generate irradiance forecasts and real-

3Code: https://github.com/Energy-MAC/pscc2020-load-limiting.

https://github.com/Energy-MAC/pscc2020-load-limiting
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Table 2.1: Activity parameters (time in minutes)

Activity Watts Min Max Compl. Int.
Time Time Val. Cost

Electronics 1 50 5 15 0.5 1
Electronics 2 75 30 180 4 2
TV 50 30 240 1 5
Lighting 1 300 5 260 2 10
Lighting 2 450 5 30 2 6
Microwave 650 2 10 2 5
Hair dryer 1800 2 17 2 5
Clothes Washer 500 30 60 3 5
Clothes Dryer 2500 45 60 3 5
Dishwasher 1200 60 90 3 5

izations [24]. This region has active development of energy-scarce, isolated microgrids and
exhibits daily variation in irradiance. In each experimental trial, we randomly select one
year to use as realization, and draw S times with replacement from the remaining fifteen
years for forecasts. We created sample load forecasts by simulating the customer load model
with random activity schedules S times.

Controller Efficacy

In this experiment, we use N = 7 customers and S = 15 forecast scenarios with 48 hour
horizons and simulate the RHC for 28 days. These, and the parameters defined in previous
sections, comprise the experiment parameters. For each trial, we draw a random start
day, random DER configuration, random customer activity schedule, and random forecasts
and realizations as confounding variables. For these confounding variables, we compare
each of the five controllers as independent variables: no load limit, proportional feedback,
deterministic forecast, the two-stage model, and the approximate dynamic programming
model. For each of these, we simulate the RHC and define three key performance metrics
on the outputs: the value of the quadratic objective function (2.10) applied to realized
consumption averaged over the 4 hour decision interval, the net customer utility dervied
from their successful completion and interruption of the loads, and the per unit average
service availability index (ASAI), which is the fraction of time power was available averaged
across customers (ASAI [13]). The objective values and customer utility are average per
user per 4 hour time-step. These results are shown in Fig. 2.3, where the bar height is the
median and the range shows the 5th and 95th percentile values across trials. We conducted
150 trials, observing that the coefficients of variation across trials for the performance metrics
stabilize by 100 trials.

The predictive controllers significantly improve customer utility and power availability,
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Figure 2.3: Key performance metrics across trials.

but they do not improve the quadratic objective measure they explicitly maximize. We
expect this is due to model mismatch where the controller assumes customers adjust load
exactly to the limits, but they in fact reduce load below the limits. This is consistent with
Fig. 2.4, which shows that the predictive controllers overestimate the objective even when
accounting for forecast uncertainty. As expected, the no control case has the highest mean
load because there is no curtailment. The objective values correspond closely to the mean
load and are only slightly lower because the quadratic term is small, especially at normally
low load, which leads us to conclude that the greater consumption drives the higher objective
value.

The key result is that despite the model mismatch, optimizing for the simple quadratic
value of consumption produces an outcome that allows customers to respond to scarcity with
lower interruption costs and greater utility. This may not be the outcome in some cases,
for example if customers have very high-value and high-power, daytime loads, but if this is
known to the microgrid operator, this can be addressed with weights in the benefit function.
Further, gains on the feedback controller could be tuned to give better performance in
particular cases, although it would likely be challenging to set gains that are effective across
a wide variety of cases.

Among the predictive controllers, the two stochastic approaches yield similar results to
each other; however, Fig. 2.3 shows they tend towards slightly higher utility and minimally
higher ASAI than the deterministic. The deterministic overestimates the objective relative
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Figure 2.4: Objective ex post and ex ante values with mean load.

to the 2-stage, which also overestimates relative to the ADP formulation if the forecast values
are independent in time. This can be shown theoretically and is supported empirically in
Fig. 2.4. In supplemental figures provided in the GitHub repository, we show that the
stochastic approaches impose load limits more of the time but at higher and less restrictive
levels when they are imposed, resulting in reductions in interruption costs. Essentially, they
perform some effective hedging, but the benefits are small and the deterministic approach
provides satisfactory performance.

Computational Tractability

To test computational performance, we varied the number of customers N ∈ {5, 15}, the
number of scenarios S ∈ {5, 15}, and the time-steps in the forecast T ∈ {12, 24, 36}, and
recorded the time for each formulation of the decision algorithm to converge to a solution.
Table 2.2 shows the median time over 20 trials with random forecasts and initial states. We
observed that for larger products of NS approaching the range of 300, the solver does not
reliably converge within an hour, so we do not show results for problems of this size. We
observed that for these problems that do not converge, approximate solutions are reached
relatively quickly, but that thousands of successive iterations in the branch-and-bound algo-
rithm continue with minimal improvements.

The results show that the approximate dynamic program generally takes longer to solve,
but that the two-stage solution exhibits poor scaling with the forecast horizon. Both formu-
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Table 2.2: Timing results (seconds)

N S T Time: Det. Time: 2 Stage Time: DP
5 5 12 0.01 0.01 0.97
5 5 24 0.01 0.02 1.9
5 5 36 0.01 0.03 2.6
5 15 12 0.01 0.03 5
5 15 24 0.01 0.06 9.3
5 15 36 0.01 0.09 13
15 5 12 0.01 0.04 1.7
15 5 24 0.01 0.07 3.5
15 5 36 0.02 0.11 4.7
15 15 12 0.01 0.11 30
15 15 24 0.01 0.24 47
15 15 36 0.02 0.39 61

lations are tractable for a real-time control scheme for products of NS up to around 100 with
a forecast horizon of 24-36 hours. The tractability for larger products of NS requires more
research into solver customization, appropriate solution tolerance, and convex relaxations.

2.5 Conclusions

This paper develops a mathematical framework for managing electricity consumption in
energy-constrained microgrids by scheduling load limits to improve the availability and value
of electricity service. We propose two techniques for incorporating stochastic forecasts into
the decision to schedule load limits, and show how these can be modelled as mixed-integer
programs. We find that both improve metrics of the value of electricity service and are
tractable with an out-of-the-box MIQP solver for microgrids on the order of 15 customers, but
that a deterministic approach, using only a single forecast, yields comparable performance
improvements in our particular test case but with much lower computational complexity.
Our modelling approach and simulation environment contribute a foundation for exploring
different formulations of value and mechanisms to allocate scarce electricity supply.
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Chapter 3

Pricing and energy trading in
peer-to-peer zero marginal-cost
microgrids

Abstract
Efforts to utilize 100% renewable energy in community microgrids require new ap-
proaches to energy markets and transactions to efficiently address periods of scarce
energy supply. In this paper we contribute to the promising approach of peer-to-peer
(P2P) energy trading in two main ways: analysis of a centralized, welfare-maximizing
economic dispatch that characterizes optimal price and allocations, and a novel P2P
system for negotiating energy trades that yields physically feasible and at least weakly
Pareto-optimal outcomes. Our main results are 1) that optimal pricing is insufficient
to induce agents with batteries to take optimal actions, 2) a novel P2P algorithm to
addresses this while keeping private information, 3) a formal proof that this algorithm
converges to the centralized solution in the case of two agents negotiating for a single
period, and 4) numerical simulations of the P2P algorithm performance with up to 10
agents and 24 periods that show it converges on average to total welfare within 0.1%
of the social optimum in on the order of 10s to 100s of iterations, increasing with the
number of agents, time periods, and total storage capacity.

Nomenclature

Sets and indices

C Set of agents/consumers indexed by n.
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U Subset of agents that propose quantities (q-agents), indexed by k.

X Subset of q-agents that have exited the negotiation.

Y Subset of q-agents that are still negotiating.

V Subset of agents that respond with price (π-agents), indexed by v.

T Set of time periods, indexed by t.

B Set of batteries, indexed by i.

G Set of generators, indexed by g.

Variables

dn,t Local power consumption of agent n at time t.

psg,t PV power production from generation g at time t.

pbi,t Discharge power from battery i at time t.

si,t State of charge of battery i at time t.

λy
x,t Dual variable of constraint y, where x ∈ {n, i, g}.

qk,t Proposed quantity by q-agent k to receive from the π-agent at time t.

q′k,t Projection of qk,t to the feasible quantity set by the π-agent at time t.

β Auxiliary variable used to project qk,t → q′k,t.

αn Binary state, true iff agent n prefers current offer to no trade at all.

ok,t Binary state, true iff a proposed quantity from q-agent k at time t is “oscillating”, i.e.,
not monotonically increasing or decreasing over 3 iterations.

ηk Binary state, true iff q-agent k requests to settle.

Parameters

P̄ s
g,t Max. PV power from generation g at time t.

P̄ b
i,t Max. rate of charge/discharge of battery i at time t.

S̄b
i,t Max. energy capacity of battery i at time t.

δ
(0)
k Initial size of step-limiting constraint on a q-agent k.

γ Shrinking rate of step-limiting constraint∈(0, 1).
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Notation: The utility functions of the agents with respect to their local demand are denoted
by Un(dn), marginal utility ∂Un/∂dn by, gn(dn), and its inverse g−1

n (dn):=hn(πn). Bold
symbols represent a vector or a collection of points, e.g., qk ≡ {qk,t}t∈T . The power and
energy units are kW and kWh, and ∆T is the time step duration in hours. The symbols ¬,
∨, and ∧ denote logical negation, OR, and AND respectively.

3.1 Introduction

Due to declining technology costs and a drive to reduce carbon emissions, 100% renewable
electricity grids systems are receiving increasing attention. California’s 2018 Senate Bill 100,
for example, sets a large-scale 100% renewables target for 2045. At community scales, 100%
renewable microgrids for resilience and energy access in rural areas have become competi-
tive with hybrid solutions with fuel-based generators, and can be preferable in cases where
emissions, fuel logistics, or generator maintenance are strong concerns.

Novel pricing mechanisms for 100% renewable systems are not yet well-developed, but we
contend they will become increasingly important for policy-makers and practitioners. For
example, extending the current paradigm where load serving entities procure electricity at
the lowest cost to meet inflexible demand, implies that zero (short-run) energy costs would
lead to a zero (short-run) price [104]. However, Fripp et al [47] have shown by including
demand-side participation in a capacity expansion model for Hawaii that dynamic electricity
pricing to consumers results in non-zero prices and is increasingly important for maximizing
welfare in 100% renewable systems.

In this paper we contribute a general theoretical analysis of pricing in 100% renewable plus
storage systems, characterizing optimal price dynamics and the challenges energy storage
presents for standard bidding mechanisms. We focus on zero marginal cost renewables,
with a solar generation case in simulations.We then propose an approach for community
microgrids where individual “prosumers” with solar and storage could interact informally
in a “peer-to-peer” (P2P) system to negotiate energy trades and form dynamic electricity
prices and allocations that approximate optimal outcomes.

In the next two paragraphs we briefly review the relevant literature in this space, arguing
specifically that the case of peer-to-peer trading in 100% renewable plus storage systems
requires more analysis and innovation. P2P systems are valuable for grid resiliency, renew-
ables integration, electricity access in less developed regions, and individual participation in
electricity systems [55, 44, 102, 116, 115]. Early work proposed centrally coordinated en-
ergy trading between distributed energy resources (DERs) where the generation and battery
storage are fully controllable [72, 22]. In [76], the authors lay the foundation for defining
the physical and virtual layers required for a pooling-based system, but the paper does not
develop bidding strategies for agents and assumes the microgrid remains connected to the
main grid; [85] describes stochastic P2P methods to match prosumers with consumers and
share profit, however no storage is considered in the model; similarly, [93, 83, 118, 117] pro-
pose ADMM-based methods to determine dispatch and/or pricing in P2P settings without
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storage; [5] proposes a cooperative coalition scheme, based on energy reduction that can
achieve savings for their participants, but the method requires a pricing scheme that varies
if the demand surpasses a given threshold to encourage power reduction and;[54] describes a
P2P architecture accounting for network charges, but does not consider the temporal aspects
of storage, while [130] uses comfort constraints for the next time step as a limited approach
to address this.

Energy storage is fundamental to 100% renewable systems, and some papers do incorpo-
rate it into P2P algorithms. For example, [94] proposes a game-theoretic model, while a few
papers define specific rules for battery charge/discharge cycles based on the traded quantity
at each time step [68, 66]. An additional group of algorithms consider storage and either
exchange shadow prices, employ ADMM-based bilateral trading mechanisms or additional
cost-sharing methods [45, 124, 67, 63, 1, 69]. However, none of these address the context of
scarce, zero marginal-cost renewables coupled with storage.

We address the gap in the literature with a novel P2P approach that can describe informal
interactions between prosumers negotiating trades for electricity in a finite time horizon
setting. We assume P2P agents individually derive private utility from energy use, and
iterate on price and quantity bids with their peers until convergence. In contrast to a
centralized approach, the P2P approach maintains the privacy of individual utility functions
and addresses the complexity of bidding storage while converging to the centralized solution
in special cases. The main contributions are:

(1) In Section 3.2, to characterize the optimal price and explain the challenge of coordinating
storage through centralized pricing, we formulate a centralized optimization model and
highlight several non-trivial observations, such as optimal prices not uniquely determining
battery dispatch decisions.

(2) In Section 3.3, we define a novel P2P system with minimal prescriptive rules through
which agents with private information exchange offers to arrive at a trade, and the-
oretically prove convergence for 2-agents with a single time period. In the proposed
algorithm, each agent can easily manage storage and state of charge constraints in its
private decision.

(3) In Section 3.4, we find that the P2P approach converges to a solution in all of 1200
general cases that were simulated, with welfare outcomes on average within 0.1% of the
centralized while maintaining the privacy of utility functions, with a worst-case divergence
of 8% that can arise from longer time horizons and relatively large storage capacities.

3.2 Centralized Welfare Maximization Approach

In this section, we define a model for optimal energy dispatch over a finite time horizon,
analyze the solution for relevant insights into P2P electricity markets, and illustrate its
dependence on energy storage through example. The model applies a utility maximization
framework. For analysis of the optimal dispatch, we take the perspective of a benevolent
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central operator and assume knowledge of the individual utility functions. In practice this
could be the perspective of a DER aggregator or a distribution system operator; however, it
is difficult to know utility functions in practice, and this issue is a fundamental motivation
for exploring peer-to-peer markets in the first place. We use a deterministic approach, where
decisions are made off of a single, expected forecast of solar generation without hedging for
uncertainty, and note this can be suboptimal to stochastic approaches. We also present an
idealized battery model for simplicity, but show in Appendix 3.A that the key insights still
hold when we incorporate constant charge and discharge inefficiencies, self-discharge, and
asymmetric power constraints. We also assume the battery is not required to achieve a final
state-of-charge, but the model can easily include this constraint without loss of generality
as long as the final state-of-charge is feasible. This model provides a baseline for comparing
decentralized approaches, and could be extended to other DERs such as electric vehicles in
the context where the generation is zero marginal-cost and energy constraints are relevant.
In the case where the DERs introduce additional costs or utility functions, such as fuel costs
or non-concave utility functions, the theoretical results may not hold.

The key theoretical insight we provide is that in the presence of energy storage, the
dispatch cannot be controlled by price alone. Specifically, we show that if individuals act
independently to maximize their utility in the presence of an optimal price, there is no
guarantee that their corresponding target power injections will be feasible and satisfy power
balance. This highlights that ensuring feasibility is an important requirement of decentralized
mechanisms. We describe why this is not trivial in the presence of storage, and also derive
equations describing the optimal power and price trajectories.

Utility maximization model

The model (3.1) is similar in structure to a standard discrete-time, centralized energy man-
agement system. The central constraint is matching supply and demand on the time scale of
hours, while we assume that droop-like control of power converters is necessary and sufficient
to adjust any power imbalance in the short-term.1 We include operational constraints on en-
ergy storage, but not the network constraints,2 and assume strictly concave utility functions
Un,t.

min
p,d,s

−
∑
t∈T

∑
n∈C

Un,t(dn,t) (3.1a)

s.t. πt :
∑
n∈C

dn,t =
∑
i∈B

pbi,t +
∑
g∈G

psg,t, ∀t ∈ T (3.1b)

1This technology has been extensively studied, and while important questions remain for large system
stability with high penetrations of converter-interfaced generation, a variety of techniques have been validated
for microgrids, see e.g. [100].

2The model can be extended to include linearized power flow and line loading constraints, which would
add some complexity without affecting the main results; however, full AC power flow equations would destroy
the constraint linearity (and convexity) that the analysis relies on.
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λs
g,t : 0 ≤ psg,t ≤ P̄ s

g,t, ∀g ∈ G,∀t ∈ T (3.1c)

λd,−
n,t : −dn,t ≤ 0, ∀n ∈ C,∀t ∈ T (3.1d)

λb
i,t : −P̄ b

i,t ≤ pbi,t ≤ P̄ b
i,t, ∀i ∈ B,∀t ∈ T (3.1e)

λc
i,t : 0 ≤ si,t ≤ S̄i,t, ∀i ∈ B, ∀t ∈ T (3.1f)

si,t = si,t−1 − pbi,t∆T, ∀i ∈ B,∀t ∈ T . (3.1g)

This allows battery constraints to be time-varying but typically P̄ b and S̄ are static. The
dual variables of the respective constraints are indicated before the colon. For compactness,
we use a single variable to represent the difference in upper and lower bound duals, λ :=
λ+ − λ−. The initial state of charge si,0 is a parameter. We eliminate the constraint (3.1g)
and decision variables si,t by solving for it as si,t = si,0 −∆T

∑
τ≤t p

b
i,τ and substituting this

into (3.1f).

Theoretical analysis

Firstly, note that all constraints in (3.1) are affine, thereby satisfying the linearity constraint
qualification (LCQ). This implies that for a locally optimal primal solution, there exists a
set of dual variables satisfying the Karush-Kuhn-Tucker (KKT) conditions. Secondly, as all
Un,t are concave, the problem is convex. Any point satisfying the KKT conditions is thus
globally optimal and strong duality holds.

Remark 1 (Dual decomposition into private decisions): The Lagrangian dual of the central-
ized problem (3.1) is separable and equivalent to the sums of Lagrangian duals for constrained
individual welfare maximization for a price equal to πt. This allows interpretation of πt as
the electricity price. Assuming the utility functions are concave, the Lagrangian dual problem
gives the optimal price and total welfare.

The Lagrangian of (3.1) can be written as:

L(d, ps, pb, π, λ) =
∑
t∈T

∑
n∈C

(
− Un,t(dn,t)+(πt − λd,−

n,t ) dn,t

)
+
∑
g∈G

(
(λs

g,t − πt)p
s
g,t + λs,+

g,t P̄
s
g,t

)
+
∑
i∈B

(
(λb

i,t − πt)p
b
i,t

+ λc
i,t

(
si,0 −∆T

∑
τ≤t

pbi,τ

)
− (λb,+

i,t + λb,−
i,t )P̄

b
i,t − λc,+

i,t S̄i,t

)
. (3.2)

We define individual utility/profit-maximization problems for each of the consumers, PV,
and battery operators for an electricity price as in (3.3)-(3.5).

Wn(π) := min
dn≥0

∑
t

−Un,t(dn,t) + πt dn,t (3.3)
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Wg(π) := min
psg

∑
t

−πt p
s
g,t s.t. (3.1c) (3.4)

Wi(π) := min
pbi

∑
t

−πt p
b
i,t s.t. (3.1e)− (3.1g) (3.5)

Denoting their Lagrangians by Ln, Lg, Li, one can show that

L(d, ps, pb, π, λ) =
∑
n∈C

Ln(dn, π) +
∑
i∈G

Lg(p
s
g, λ

s
g, π)

∑
i∈B

Li(p
b
i , λ

b
i , λ

c
i , π). (3.6)

As Wg and Wi are linear programs, strong duality holds for these subproblems, and the
Lagrangian dual problem is

max
π,λ

inf
d,ps,pb

L(d, ps, pb, π, λ)

=max
π

∑
n∈C

Wn(π) +
∑
g∈G

Wg(π) +
∑
i∈B

Wi(π). (3.7)

By strong duality (3.7) gives the optimal objective value with its maximizer π⋆ equal to
the optimal price. However, as we establish later, the optimal pbi for (3.5) is not necessarily
unique, meaning that broadcasting an optimal price to individual agents does not necessarily
satisfy constraint (3.1b) and clear the market; i.e., primal feasibility is not guaranteed.

Remark 2 For all t ∈ T , the following relations hold true at optimum and characterize the
optimal price

π⋆
t = ∂Un,t(d

⋆
n,t)/∂dn,t + λ⋆,d,−

n,t , ∀n ∈ C (3.8a)

= λ⋆,b
i,t −∆T

∑
τ≥t

λ⋆,c
i,τ , ∀i ∈ B (3.8b)

= λ⋆,s
g,t , ∀g ∈ G. (3.8c)

Each of the equalities follow from the stationarity conditions of (3.1). We interpret the
dual variable π⋆

t as the price by Remark 1 and note from (3.8b) that it depends on the
cumulative future shadow prices of the storage capacity constraint. Eq. (3.8a) requires Un,t

to be differentiable for equality but can be replaced by the subdifferential of Un,t otherwise.

Remark 3 If at time t, a utility function for at least one customer is differentiable and
strictly increasing on R+, then at optimum, the price is strictly positive and solar production
is at its maximum.

This follows from Remark 2 and the properties of strictly increasing functions:

∃n ∋ ∂Un,t(d
⋆
n,t)/∂dn,t > 0 ∀dn,t ⇒ π⋆

t > 0⇒ λ⋆,s
g,t > 0.

By complementary slackness, λ⋆,s
g,t > 0 ⇒ p⋆,st = P̄ s

t . This is intuitive as it is better to
supply any benefiting consumer than curtailing available solar. This also implies that solar
generation can be removed as a decision variable and set to the available resource in this
case.
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Remark 4 The optimal price evolves as

π⋆
t+1 − π⋆

t = λ⋆,b
i,t+1 − λ⋆,b

i,t +∆Tλ⋆,c
i,t . (3.9)

This follows from Remark 2 by expanding the expression π⋆
t+1−π⋆

t . This captures the price

trajectory, from which price volatility can be analyzed. Note that both λ⋆,b
i,t , λ

⋆,c
i,t can be less

than 0. We will use (3.9) for our analysis in Remark 5.

Remark 5 (Non-uniqueness of decentralized battery dispatch): There are non-trivial opti-
mal prices π⋆ such that the optimal individual battery dispatch Wi(π

⋆) is not-unique.

This can be observed in a simple example. Suppose T =5, ∆T =1, P̄ b
i,t≡3, S̄i,t=10, s0,i=5,

and π⋆ = [1, 1, 2, 3, 1]. One can verify that pbi = [−0.5,−0.5, 3, 3, 0], pbi = [0,−1, 3, 3, 0], and
pbi =[−1,−1, 3, 3, 1] are all optimal solutions with a net cost of −14. Here, equal prices imply
there is no change in cost to shift energy from one period to another and the constraints allow
this shift. More formally, if an optimal solution is not on any of the constraint boundaries
(3.1e)-(3.1f) at t and t+1, then it will not be unique because not being on the boundary
implies 1) that λ⋆,b

i,t , λ
⋆,b
i,t+1, λ

⋆,c
i,t , and λ⋆,c

i,t+1 are all 0, so π⋆
t+1=π⋆

t by (3.9), therefore p′,bi,t=p⋆,bi,t+ε

and p′,bi,t+1 = p⋆,bi,t+1 − ε have equivalent net cost ∀ε without affecting the solution at other
times; and 2) that this perturbation is feasible for sufficiently small |ε|> 0. Note that this
condition is overly restrictive and not necessary for non-uniqueness; in particular energy
may be shifted between non-consecutive time periods, and only particular combinations of
constraints between the time periods need to be non-binding rather than all constraints.
Equal prices between time periods may indicate non-uniqueness, but the optimal solution
may still be unique if the constraints do not allow a perturbation to remain feasible. In
Appendix 3.A, we show that this applies with a variation in the optimal price profile even
when battery inefficiencies and self-discharge are considered.

The consequence of Remark 5 is that in general, an optimal price is not sufficient
to yield individual battery dispatch decisions with the optimal quantity, meaning that a
system operator cannot control dispatch outcomes solely by broadcasting a price signal or
adequately forecast the decentralized response to price. Even when all utility functions are
strictly concave so that the solution to the centralized problem is unique and corresponds
to an optimal price π⋆, there are (likely common) conditions whereby an individual battery
operator’s decision in response to π⋆ does not satisfy the constraint (3.1b). Intuitively, if the
price is constant between two successive periods, a battery operator would be indifferent to
selling more energy in one period versus the next, so their dispatch is not unique and there
is no guarantee that the dispatch will meet demand.

The previous observation implies that extending standard centralized market mechanisms
to systems with energy storage faces limitations. If a centralized energy market limits entities
with storage to submitting a single curve of price and quantity for each time-period, it is
likely to result in suboptimal outcomes to the utility maximization problem and even in
infeasibility. Although not shown here, we expect this result extends to load that can be
shifted without cost, and to storage models with constant charge or discharge inefficiences.
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Figure 3.1: Optimal profiles for the centralized approach with 10 agents, P̄ b
i = 10, and demand

elasticity ∈ [−3,−2] for all agents. Note: The plots for S̄tot=15, 300 kWh overlap in (b), (c), (d).

P2P approaches where agents explicitly agree on quantity are a potential opportunity for
addressing this challenge.

Example optimal trajectories and the effects of storage

To show how the PV profile and storage capacity affect the optimal trajectories of (3.1),
we simulate scenarios with total storage capacity varying S̄tot ∈ {1, 5, 15, 300} kWh and
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Figure 3.2: The standard convergent cobweb model.

distributed evenly to batteries collocated with consumers. We sample hourly load and PV
profiles from the 2017 Pecan Street data set [95] over a random 66 hour interval and construct
example utility functions by assuming a quasi-constant price-elasticity demand function and
centering it at the observed load with a constructed time-varying price profile3 (see Ap-
pendix 3.B). We model 10 consumers and randomly select elasticities ∈ [−3, −2].

Figure 3.1 shows the optimal trajectories for each storage scenario. The solar output
is identical across scenarios (a). As the storage capacity is increased, the consumption
shifts to evening peaks from daytime peaks coincident with solar (b). Increasing storage
reduces the swing between high and low price periods (c). The instances when the price
changes, correspond to when the battery constraints are binding, as predicted by (3.9),
which also explains how higher storage capacities lead to a flat price by reducing λ⋆,c

i,t to a
negligible value. A flatter price means the conditions of Remark 5 are less likely to be met,
highlighting the increasing need to coordinate battery dispatch as capacity increases. In
contrast, a smaller capacity induces cyclical price fluctuations through peak-to-peak cycling.
This also illustrates how the marginal value of storage in arbitraging high and low price
periods depends on the existing capacity. These phenomena are explained analytically by
the model; extending the model to derive optimal investment and planning decisions is a
promising area for future work.

3.3 Peer-to-peer Negotiation

In this section we analyze how a decentralized, peer-to-peer energy market can arrive at a
near-optimal dispatch solution using an intuitive negotiation approach. We model a process
of exchanging price and quantity offers after the classic “cobweb” model of dynamic markets

30.10/kWh between 21:00-11:00, 0.15/kWh between 11:00-16:00, and 0.30/kWh between 16:00-21:00.
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Figure 3.3: Convergent trajectory under the dynamic step-limiting constraint where the standard
cobweb model would diverge.

[52] and observe that classical results show the process can diverge. We therefore, consider
an additional dynamic step-limiting constraint on the process to ensure convergence, which
could be thought of as a behavioral tendency of agents or an explicit rule to be imposed by a
bidding platform. We assume agents are matched a priori and that offers are synchronized
so as to simplify the analysis and presentation, but posit that the process can be generalized
to capture more informal interaction between agents.

As a starting point, consider an interaction between two agents who are “prosumers” with
private solar and storage systems and who individually derive private value from energy use.
Most likely, there exists a trade that makes both agents better off. An intuitive way for the
agents to find such a trade is for one to start by proposing a quantity (either positive or
negative) and for the other to respond with a price. The first agent would likely reassess the
quantity they would seek at that price, propose a new quantity, and so on. This iterative
process is described by the cobweb model illustrated in Fig. 3.2. The equilibrium is the
intersection of supply and demand curves arising from the utility functions. This is the
optimum of the utility maximization model but the process converges to this point if and
only if the magnitude of the slope of the demand curve exceeds that of the supply curve at
the equilibrium [52].

We modify the cobweb model to ensure convergence even when this condition is not met
by including a step-limiting constraint, illustrated in Fig. 3.3. This constraint assumes (or
enforces) that agents will not adjust their quantity offers by more than some threshold each
iteration, and that this threshold shrinks if the quantity is “oscillating.” We generalize to
consider multiple agents proposing quantities (called q-agents) to agents who respond with
price (called π-agents). The agents exchange vectors of quantity and price for each period
over a finite time horizon. To simplify the analysis, we assume a single π-agent interacts with
multiple q-agents. In practice, there would likely be multiple π-agents, and q-agents would
select one or more π-agents to negotiate with, based on their expectation of the outcome of
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the negotiation, but this matching problem is beyond the scope of this paper.
We present formal decision models for the q-agents and the π-agents, and define an itera-

tive process that guarantees physically feasible and at least weakly Pareto-optimal outcomes
(i.e., no agents are worse off). We prove theoretically that the process converges to within a
tolerance of the centralized solution for the 2-agent, single time step case, and demonstrate
convergence using simulations for the general case in the next section. These results show
that an informal, decentralized, peer-to-peer negotiation process is capable of approximating
the centralized welfare maximization problem, and offers a specific approach that could be
implemented on a software platform and evaluated in practice. In addition, and contrary to
the centralized approach, this negotiation process does not require full information exchange
between agents, since private utility functions are hidden and only trading of quantities and
prices are required for the execution of the algorithm.

We denote the set of π-agents with V and q-agents with U , such that C = U ∪ V and
U ∩ V = ∅. We index the q-agents by k ∈ U and the single π-agent as v, V = {v}. The
q-agents may exit the process early, which we track by partitioning U into exited agents X
and negotiating agents Y , and updating these dynamically. All constraints are implicitly
defined ∀t ∈ T .

Optimization problem for the π-agent

The π-agent receives a set of requested quantities q={qk} from each k∈Y (positive means
k receives energy), with qk = {qk,t}, which may not be feasible. The π-agent first projects
q to a feasible q′ by keeping reference to a quantity q̂ known to be feasible to all agents; q′

is restricted to lie on the line connecting q and q̂ defined by (3.10d), where β=0 yields the
requested q and β=1 the known feasible q̂. Thus, minimizing β≥0 selects the closest point
to q satisfying the constraints:

min
dv ,pb

v ,sv ,q
′,β

β (3.10a)

s.t. dv,t +
∑
k∈Y

q′k,t +
∑
k∈X

qk,t = psv,t + pbv,t (3.10b)

0 ≤ β ≤ 1 (3.10c)

q′k,t = β q̂k,t + (1− β) qk,t (3.10d)

and constraints (3.1d)− (3.1g). (3.10e)

We maintain that q̂ is feasible for all agents. Before any agents exit, X =∅ and q̂ = 0 is
feasible, so we initialize with q̂=0 and update q̂ as agents exit at feasible points. As shown
below, q is necessarily feasible for each q-agent, and their constraints are convex, so any
point connecting two feasible points is feasible, and in particular q′. It is also possible to
include additional constraints in this optimization problem, for example, to ensure power flow
feasibility. Extending this model to include a network feasibility validation as constraints
over q′k,t is a promising direction for future work.
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Next, the π-agent solves their utility maximization problem to obtain π={πt} and their
utility from these proposed trades. A key assumption is that they set π at their marginal
utility; i.e., they bid according to a competitive market strategy and cannot exercise market
power. This is likely to hold in practice if there are sufficiently many π-agents the q-agents
can access; however, we recommend a more careful analysis of market power in the scope of
a “many-to-many” extension to this work. The maximization problem is:

min
dv ,pb

v ,sv
−
∑
t∈T

Uv,t(dv,t) (3.11a)

s.t. πt : dv,t +
∑
k∈Y

q′k,t +
∑
k∈X

qk,t = psv,t + pbv,t (3.11b)

and constraints (3.1d)− (3.1g). (3.11c)

As in the centralized model, the price is given directly by the stationarity condition with
λd,−
v =0:

πt = ∂Uv,t(d
⋆
v,t)/∂dv,t.

Lastly, the π-agent checks whether its utility from this potential trade is at least as high as
its optimal utility from no trade (specifically solving the same problem with q′=0), and sets
a binary variable αv true if so, and false otherwise. This αv signals whether v would prefer
q′ to no trade. We denote the entire decision as Pπ

v : (q, q̂) 7→(q′,π, αv).

Optimization problem for q-agents

The k-th q-agent makes the decision Pq
k : (π, q′

k, δk) 7→ (qk, αk, ηk), where αk carries the
analogous meaning to αv, ηk signals whether they are “satisfied”, q′

k is the subset of q′ for
k, and δk is the step-limiting constraint restricting the q-agent to select something close to
the offer q′. The decision is:

min
dk,qk,p

b
k,sk

∑
t∈T

−Uk,t(dk,t) + πtqk,t (3.12a)

s.t. dk,t − psk,t − pbk,t − qk,t = 0 (3.12b)∣∣qk,t − q′k,t
∣∣ ≤ δk,t (3.12c)

and constraints (3.1d)− (3.1g). (3.12d)

Agent k requests to finalize the trade and exit if their (not necessarily unique) optimal qk is
close enough to the offer q′

k, where the distance is determined by a small ε:

ηk =

{
True if |qk,t − q′k,t| ≤ γ ε
False otherwise.

(3.13)

The exit condition includes the constant γ ∈ (0, 1) to simplify the statement of Theorem 6,
but could be modified with an update to the bound in the theorem. An alternative criterion
based on whether the utilities from these offers are close enough could also be used but would
affect the bound.
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Iterative Algorithm

Algorithm 1: Bounded cobweb iteration for a single π-agent and multiple q-agents.

Result: Energy trades (π⋆
k, q

⋆
k) for each agent k∈C.

Initialization: Define the π-agent v∈C and the parameters γ∈(0, 1), ε>0, initial
step-limit δ(0)>γε and max iterations M ;

Set i←1, (q(1), q̂)←(0, 0), {δ(1)k,t}←δ(0), X ←{0}, and Y←C \ {v} ;
while Y ̸=∅ and i≤M do

(q′,(i),π(i), αv)←Pπ
v (q

(i), q̂);
for k∈Y do

(q
(i+1)
k , αk, ηk)←Pq

k(π
(i), q

′,(i)
k , δ

(i)
k );

o
(i)
k ←f o(q

(i+1)
k , q

(i)
k , q

(i−1)
k );

if ηk then δ
(i+1)
k ←δ

(i)
k else δ

(i+1)
k ←f δ(δ

(i)
k ,o

(i)
k );

end
if αj ∀j∈Y∪{v} then

q̂←q′,(i);
for k∈Y where ηk do

Y←Y\{k}, X ←X∪{k}, (π⋆
k, q

⋆
k)←(π(i), q

′,(i)
k )

end

end
i← i+ 1

end

The negotiation algorithm is presented in Algorithm 1. At each iteration, q-agents submit
their energy quantity requests to the π-agent based on the last price and quantity offered
by the π-agent. The q-agents are allowed to exit only when all agents have declared (π, q′)
preferable to no trade through α (i.e., αk =True ∀ k ∈ U), guaranteeing that trades are at
least weak-Pareto improvements. Importantly, the step-limit δ is shrunk by γ∈ (0, 1) if the
quantity is “oscillating” (see Fig. 3.2), defined by the binary state o(i) as the quantity not
monotonically increasing or decreasing over 3 iterations, with o(1) =1 and update maps f o

and f δ:

f o : o
(i)
k,t=¬(q

(i+1)
k,t >q

(i)
k,t>q

(i−1)
k,t ∨ q

(i+1)
k,t <q

(i)
k,t<q

(i−1)
k,t ),

f δ : δ
(i+1)
k,t = (1− o

(i)
k,t) δ

(i)
k,t + o

(i)
k,t γδ

(i)
k,t.

This shrinking step-limit prevents the divergent case of the cobweb model [52].

Optimality of the two-agent, single time step case

In this subsection we prove that Algorithm 1 converges within an ε tolerance in finite it-
erations to the socially optimal quantity in the case of only two agents with single time
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horizon. We ignore storage in this case, as it can equivalently be treated as solar production
for T = {1}, and drop the time index t for brevity. We assume the the solar production is
greater than zero for at least one agent, and that each agent’s marginal utility of consumption
∂Un(dn)/∂dn is strictly monotonically decreasing on [0,∞) and decreasing asymptotically to
zero.

Note that q = dk−psk =−dv+psv, and the unconstrained demand and supply curves are
defined as gk≡∂Uk(q)/∂dk and gv≡∂Uv(q)/∂dv. Thus, gk is monotonically decreasing and
gv is monotonically increasing. Without the step-limiting constraint (3.12c), the problem Pq

k

for the q-agent has a closed form solution:

q† = g−1
k (min(gk(−psk), π)) ≡ hk(π), (3.14)

where g−1
k denotes the inverse of g with domain (0, gk(−psk)]. With the step-limiting con-

straint, the solution is

q =


q† if |q† − q′| ≤ δ

q′ + δ if q† > q′ + δ
q′ − δ if q† < q′ − δ.

(3.15)

The projection step reduces to q′ =min(psv, q), and the π-agent’s price is given by π =
gv(q

′).
The optimal quantity of the centralized problem q⋆ is the unique fixed point of the

iteration if q⋆ < psv or if q⋆ = psv and gk(p
s
v) = gv(p

s
v). Indeed, note that −psk ≤ q⋆ ≤ psv by

the constraints, and that hk(π
⋆)≡ q⋆. If q(i) = q⋆, then q′ = q⋆ and π(i) = gv(q

⋆)= π⋆−λ⋆,d,−
s

by (3.8a). When q⋆ < psv or gk(p
s
v) = gv(p

s
v), then we have λ⋆,d,−

s = 0 and π(i) = π⋆, and
hence q† = q⋆ with q(i+1) = q⋆. Otherwise, λ⋆,d,−

s > 0 and π(i) < π⋆, so q† > q⋆ by the strict
monotonicity of hk, and q(i+1)>q⋆, so it is not a fixed point. In other words, the fixed point
is the intersection of the curves gv and gk, as shown in Fig. 3.2. Since both curves are strictly
monotonic, this fixed point is unique. If they do not intersect on [−psk, psv], then q⋆ is only a
fixed point if it is −psk.

Lemma 1 (Movement towards equilibrium) At any iteration i, if q⋆ < psv, then q′ ≤
q⋆⇔q(i+1)≥q′ and q′≥q⋆⇔q(i+1)≤q′. Moreover, q′≤q⋆⇔q(i+1)≥q(i) and q′≥q⋆⇔q(i+1)≤
q(i).

Proof: We prove this by showing the forward direction of the first set of statements q′ ≤
q⋆⇒q(i+1)≥q′ and q′≥q⋆⇒q(i+1)≤q′. Each of these statements implies the converse of the
other is true, establishing the reverse direction. We use the same approach for the second
set of statements.

Let π=gv(q
′). If q⋆<psv, then gv(q

⋆)=π⋆ and if q′≤q⋆⇒π≤π⋆⇒hk(π)≥hk(π
⋆)⇒q†≥q⋆

because gv is monotonically increasing and hk is monotonically decreasing. Thus, q†≥ q⋆≥
q′⇒ q(i+1) =min(q†, q′ + δ)⇒ q(i+1)≥ q′. By the same logic, q′≥ q⋆⇒ q(i+1)≤ q′. Moreover,
q′≤q⋆<pvs⇒q′=q(i); therefore, q(i+1)≥q′⇒q(i+1)≥q(i). Finally, because q′=min(psv, q

(i))≤
q(i), and by showing that q′≥q⋆⇔q(i+1)≤q′, it follows that q′≥q⋆⇒q(i+1)≤q(i). □
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Lemma 2 (Entry to the oscillatory mode) If the system is not in the oscillatory mode
at iteration i, then ∃ l>0 such that if the algorithm does not terminate at iteration s<i+l,
it will be in the oscillatory mode at i+l.

Proof: First, consider the case q⋆ < psv. We will show the case when q(i) < q⋆, since the
other case is analogous. By Lemma 1, q(i+1) moves towards the equilibrium and δ(i+1) is not
reduced when moving in the same direction. Thus, for some j>i, q(j)≥q⋆ (with q(j−1)≤q⋆);
hence, by Lemma 1, q(j+1)≤q(j) and we enter the oscillatory mode at j + 1= i+l.

Second, we consider the case of q⋆=psv. Observe that when eventually q(j)≥psv, it will be
projected back to q′=min(q(j), psv)=psv to ensure feasibility for the π-agent. Then, since there
is no intersection of marginal utility curves in the interior, it implies that gk(q

′)≥gv(q
′)=π(j),

and hence, the q-agent again requests q(j+1)≥psv, that gets projected back to q′=psv. Thus,
since repeated values of q are received, it will enter the oscillatory mode (and eventually
converge to psv). □

Lemma 3 (Boundedness of distance from the equilibrium) Assume q⋆<psv and sup-
pose the system is in the oscillatory mode at iteration i. Then, |q′−q⋆|<γ−1δ(i).

Proof: Let q′,(i−1) denote the offer from the π-agent at the previous iteration. We first
prove the case when q′ ≥ q⋆ by contradiction. To this end, assume q′−q⋆ ≥ γ−1δ(i). This
implies q(i)−q⋆≥γ−1δ(i) because q(i)≥q′ by q′=min(q(i), psv). This in turn implies q′,(i−1)≥q⋆

by the step-limiting constraint (3.12c) at the previous iteration (observe δ(i−1) ≤ γ−1δ(i)).
Then, q′,(i−1)≥ q⋆⇒ q(i)≤ q′,(i−1)≤ q(i−1) by Lemma 1. For the system to be oscillating with
q(i)≤ q(i−1), either q(i+1)>q(i) (which contradicts q′≥ q⋆ by Lemma 1), or we have equality
at q(i−1)= q(i) or q(i)= q(i+1) (which implies q⋆= q′, by the unique fixed point, contradicting
q′−q⋆≥γ−1δ(i)).

We show the second case, q′<q⋆, directly. We have q(i+1)>q′ by Lemma 1 and q(i)= q′

because q⋆≤psv. Thus, the oscillating mode implies q(i)≤ q(i−1). It holds that q′,(i−1)≥ q⋆: if
q(i−1) >psv, then q′,(i−1) = psv ≥ q⋆. Alternatively, if q(i−1)≤ psv, then q′,(i−1) = q(i−1)≥ q(i) and
q(i−1)≥q⋆ by Lemma 1. This implies q(i)≥q⋆−δ(i−1) by the step-limiting constraint at i−1.
Since q′=q(i) and δ(i−1)≤γ−1δ(i), this proves the lemma. □

Lemma 4 (Arbitrarily small δ) For any tolerance ε > 0, there exists K indicating the
number of finite iterations, such that δ(K)≤ε.

Proof: Letm(i) denote the cumulative number of times the system has been in the oscillatory
mode at iteration i, with m(1) = 0 and m(i+1) =m(i) + o(i). Thus δ(i) = δ(0)γm(i)

. Following
Lemma 2, for any m> 0, if m(i)=m, there exists l > 0 such that m(i+l) =m + 1. Thus, we
can make m(i) arbitrarily large with sufficient iterations, and therefore, δ(i)=δ(0)γm(i)

can be
made arbitrarily small. □

Lemma 5 (Termination) If the algorithm terminates at iteration i due to the stopping
criterion, then |q′,(i)−q⋆| < ε.
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Figure 3.4: Trial procedure flowchart.

Proof: We will prove the case when q⋆ < psv: First, consider the case when q(i−1) < q⋆

(and hence q′,(i−1) = q(i−1)), then it follows from Lemma 1 that q(i) ≥ q(i−1). There are
two cases, if (i) q(i) ≥ q⋆, then q⋆ < q′,(i) ≤ q(i) and it follows directly that |q′,(i)− q⋆| ≤
|q′,(i)−q′,(i−1)| ≤ γε < ε, since the algorithm terminated at iteration i. Alternatively, if (ii)
q(i)≤ q⋆, we have q′,(i) = q(i) From (3.15) and the intersection of gk and gv, it must be true
that q(i) = q(i−1)+ δ(i−1), and thus |q(i)− q(i−1)| = δ(i−1) ≤ γε. Now, we have two cases:
(a) if the system was oscillating, we have that q′,(i−2) > q⋆ and so q′,(i−2) > q′,(i−1) from
Lemma 1. It is also true that δ(i−1) = γδ(i−2) and that |q′,(i−1)−q′,(i−2)| ≤ δ(i−2), therefore,
|q′,(i)−q⋆| ≤ |q′,(i)−q′,(i−2)| ≤ (1 − γ)δ(i−2) = (1−γ)γ−1δ(i−1) ≤ (1−γ)γ−1γε = (1−γ)ε < ε.
Or (b), if the system was not oscillating, this implies that δ(i−1)=δ(i−2), and from the same
argument as before satisfying that |q(i)−q(i−1)|≤γε. This is a contradiction, since that would
also imply that |q′,(i−1)−q′,(i−2)|≤δ(i−2)=δ(i−1)≤γε, hence terminating before i. Second, for
the case when q(i−1)>q⋆, the proof is equivalent to the first case, but considering the special
instance that if q(i−1)>psv, then q′,(i−1)=psv, but is still larger than q⋆ so the same idea holds
by invoking Lemma 1.

Finally, we address the case when q⋆=psv. As described in Lemma 2, the algorithm will
get stuck at q′= psv for more than two iterations, terminating the algorithm. Since psv = q⋆,
then |q′,(i)−q′,(i−1)|= |q′,(i)−q⋆|=0<ε. □

Theorem 6 (Optimality of Algorithm 1) For 2 agents with strictly concave utility func-
tions, T = 1, and with sufficiently large max iterations M , Algorithm 1 returns a quantity
within ε of the centralized optimum q⋆.

Proof: By Lemma 4, if we set M≥K, then the algorithm will terminate due to the stopping
criterion in at most K iterations, and by Lemma 5, the quantity is within ε of q⋆. □

In Fig. 3.3 we depict a case that converges to the centralized solution via the step-
limiting constraint. This case otherwise diverges based on the classic result [52] without the
step-limiting constraint. This theoretical analysis provides the foundation for extending the
algorithm to multiple agents |C|>2 with finite time horizon T >1. We explore the behavior
of the algorithm numerically for such cases in the next section.
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3.4 Computational Experiments and Simulations

To provide additional insight into the algorithm performance, we perform two simulation-
based computational experiments following the methodology and nomenclature in [57]. The
simulation flowchart for both experiments are summarized in Fig. 3.4. The first, examines
how the two algorithm parameters γ, δ(0) affect the rate of convergence. The second, tests
convergence for the unproven cases for |C|> 2 and T > 1, and studies the effect of battery
energy and power capacity on convergence and explores welfare differences between the
centralized and P2P approaches.4 In all experiments we use hourly load and PV profiles
from Pecan Street [95], and constant price elasticity utility functions fit to the baseline load
with elasticities random on [−1.5,−0.5] as in section 3.2.

Effect of parameters γ and δ(0) on convergence

In this experiment, we study the convergence rate for the 2-agent, single period case. We
systematically vary γ ∈ {0.05, 0.1, . . . , 0.95}, δ(0) ∈ {0.1, 0.2, . . . , 2} kWh as independent
variables, generating 380 unique pairs of (γ, δ(0)). For each pair, we execute 100 trials with
randomly generated confounding variables (the two load profiles, hour of the year, price
elasticities, and solar power between zero and twice the load) and compute the iterations to
convergence. We use a stopping tolerance ε = 10−3 for all trials.

The results in Fig. 3.5 show that γ has a strong effect on the convergence rate and exhibits
a minimum for γ ∈ [0.3, 0.5] that is consistent across the different ranges of δ(0), and that
the algorithm converges in on the order of 10-20 iterations on average for γ in the middle
range. We found that δ(0) was not very significant in influencing the number of iterations
except for causing an increase at especially small values, suggesting the parameter ought to
be set to a relatively large value. A possible intuition behind the effect of γ is that especially
small values shrink the box too quickly away from the equilibrium, while large values do not
shrink rapidly enough.

Performance for unproven cases

To study the performance in the general (multi-agent) case, we vary the total battery capacity
S̄tot ∈{15, 25, 40, 80, 300} kWh and the maximum rate of charge/discharge of the battery P̄ b

i

∈{1, 2, 4, 8} kW as independent variables, yielding 20 distinct pairs.
Similar to section 3.4, for each pair (S̄tot, P̄

b
i ) we execute 60 trials (60 × 20= 1200 sim-

ulations), randomly selecting PV and load profiles, price elasticities, an hour of the year,
T ∈ {1, 12, 24} hours, and number of agents N ∈ [2, 10]. A battery capacity fraction is as-
signed uniformly to each agent (and then normalized) from the total battery capacity. The
PV profiles are scaled so the total PV energy equals the total baseline load energy, and
(γ, δ(0))=(0.5, 0.5).

4The experiment parameters, data files, and MATLAB code to reproduce the experiments can all be
found at https://github.com/Energy-MAC/TSG-P2P-Pricing.
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Figure 3.5: Effect of γ on the number of iterations to convergence. The solid lines show the mean
over all trials where δ(0) lies in the interval specified in the legend. The dashed lines show the
maximum.

Convergence performance

All of the 1200 treatments converge to a solution. The average iterations required to con-
vergence is 112.5, with a standard deviation of 257.3 and a median of 61. We observe that
larger time horizons with more agents require more iterations for the algorithm to converge.

Effect of battery parameters

The effect of battery capacity on convergence is illustrated via boxplots in Fig. 3.6, depicting
the distribution of the number of iterations for convergence against battery capacity (with
outliers omitted). In general, a higher battery capacity requires more iterations to converge.
The intuition being that with higher battery availability, the flexibility for each agent to
adapt to successive trades increases, thus requiring more iterations. This highlights the
importance of storage in a P2P setting and the effect on the implementation of energy
trading algorithms. In contrast, the maximum charge/discharge rate of the battery does not
significantly affect the number of iterations. This is expected, because given the demand
profiles, a maximum rate of 1 kW is usually enough to achieve a trade.

Welfare comparison

In order to compare the total welfare of all agents for the centralized and the iterative P2P
algorithm, we classify the trials by grouping the time horizon. The statistics of welfare
difference percentages ∆Wp and absolute welfare differences ∆W are presented in Table 3.1.
We note that most of the entries for ∆Wp are lower than 0.1%, i.e., in the range of numerical
tolerance used for MATLAB based optimizers. These results indicate that in most cases
the centralized welfare is close to that of the proposed algorithm. However, there exist cases
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Figure 3.6: Number of iterations to converge with varying battery capacity.

Table 3.1: Welfare difference statistics for different time horizons.

T 1 12 24

#Simulations 300 420 476

Mean [%] 0.023 0.001 0.072

∆Wp Std [%] 0.079 0.004 0.706

Max [%] 0.558 0.034 7.758

Mean [$] 0.004 0.002 0.319

∆W Std [$] 0.015 0.007 3.338

Max [$] 0.086 0.057 36.717

Table 3.2: Welfare difference statistics for the special instance considered in Section 3.4.

Wno [$] Wcentr [$] WP2P [$] ∆W [$] ∆Wp [%]

ag-1 11.923 19.804 14.292 5.512 27.833

ag-2 6.617 16.785 9.079 7.706 45.910

ag-3 2.784 2.933 3.516 −0.583 −19.877
ag-4 202.124 202.906 202.920 −0.014 −0.007
ag-5 164.184 229.159 203.345 25.814 11.265

π-ag 1.633 1.711 3.429 −1.718 −100.409
Total 389.265 473.298 436.581 36.717 7.758

when T > 1, for which although the algorithm converges, the welfare is significantly different
from the centralized solution.

Special instance

In this section we explore one instance where there is a considerable mismatch (∆W =$36.71)
between the welfare values obtained from the two approaches. This occurs for T =24, N=6,
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Figure 3.7: Centralized and P2P algorithm price profiles for the special instance of considerable
difference in welfare.

and low total battery capacity of S̄tot = 15 kWh. The key difference is that the prices for
the agents in the algorithm are significantly different than those obtained in the centralized
solution, as observed in Fig. 3.7.

This simulation converges in 59 iterations, when agent-1 (ag-1) exits the algorithm. How-
ever, at iteration 32, agent-2 exits based on its stopping criteria, while the remaining agents
continue trading, before exiting at iterations 59, 58, 58, and 55 respectively with similar
price profiles, as indicated in Fig. 3.7. The consumption profiles and hence the individual
welfare of each agent are thus significantly different from the centralized solution. Table 3.2
summarizes the total welfare (consumption + trading) of each agent using the centralized
and P2P algorithm. The welfare for the no-trading case Wno, is also presented for compari-
son. A closer inspection reveals that while that agent-3 and the π-agent are better off in the
P2P case, agents 1, 2, and 5 are well placed in the centralized case. Furthermore, for this
particular simulation, exiting earlier is not optimal for agent-2, although the price is lower
than the other q-agents.

Summary

The simulation results in this section highlight the main contributions of this work:

(1) The P2P algorithm achieves similar welfare results as the centralized approach in most
of the cases (Table 3.1), with the caveat that an early exit by some agents may introduce
sub-optimality, in which case different agents end up as winners and losers relative to the
social optimum (Table 3.2), but all agents are better off than no trading.

(2) More flexibility for the agents via larger storage or longer time horizons increases the
number of iterations (Fig. 3.6).

(3) The expected number of iterations is minimized by setting the shrinking rate of the
step-size γ around 0.4 (Fig. 3.5).

(4) Real-time prices in a zero marginal-cost system arise from the marginal utility of con-
sumption under scarcity.
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3.5 Conclusions

In this paper, we address the question of optimal pricing and mechanisms for achieving opti-
mal dispatch in microgrids with scarce, zero marginal-cost energy resources. We contribute
a novel analysis of a centralized economic dispatch with welfare maximization that uses a
Lagrangian dual decomposition to state the equilibirum optimal price conditions and show a
previously unstated result that although optimal prices can induce unique and optimal con-
sumption profiles and generator output, they do not yield unique or power-balanced battery
dispatch decisions except in particular circumstances. Next, we propose a P2P algorithm
where agents keep utility functions private and iteratively interact by exchanging price and
quantity offers to arrive at mutually agreeable and weakly Pareto-optimal trades. We the-
oretically prove this outcome converges to the social optimum within a specified tolerance
for the 2-agent case, and show via numerical experiments that the P2P algorithm converges
in the multi-agent case, but we do not derive specific bounds. Although we find that the
P2P algorithm obtains total welfare on average within 0.1% of the centralized solution for a
wide range of parameters, significant differences in welfare and allocation can arise for longer
time horizons and larger numbers of agents. We also find from simulations that the number
of iterations for the P2P algorithm to converge increases with the total storage capacity,
and that the P2P algorithm shrinking parameter γ impacts the number of iterations, and
should be set to the neighborhood of 0.3-0.5 to minimize iterations in contexts similar to our
simulations, while the initial maximum step-size δ(0) is not significant.

The proposed P2P algorithm was designed to resemble an informal decentralized trad-
ing process where prices arise from the value of electricity consumption under scarcity. We
envision it is feasible to implement such an interaction in practice via a software platform
that defines the rules and aids in the iteration, or even with informal negotiation between
neighbors in a community. However, there are several limitations that need to be addressed
for this approach to be useful in practice. First, we do not study the impact of strategic
gaming between agents, which could be significant in small markets, nor the equity of out-
comes. Conducting this analysis likely requires removing the assumption that π-agents offer
prices equal to their dual variables and considering their profit maximizing strategy, given
expectations of q-agents’ demand curves. Second, our analysis only considers strictly concave
utility functions. This is a common assumption, but may not capture the discrete nature
of decisions to use particular loads at small time-scales. We expect it will be difficult for
researchers to derive useful theoretical insights with non-concave utility functions, but the
construction of realistic utility functions and consumption decision models for use in simula-
tion would be of tremendous value to this and related work. Third, we do not include network
constraints or validate power flow. While it is relatively straightforward to validate whether
a particular negotiated dispatch is feasible given a network model, the impact of binding
constraints on pricing and negotiation is non-trivial and warrants further study. Fourth,
a system for matching agents into smaller negotiation pools based on expected outcomes
may be necessary to handle large numbers of agents, e.g., hundreds. Here, a challenge is to
design suitable exit strategies for satisfied agents without compromising the inviolability of
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agreements, and should also account for network constraints in creating market power (see
[54]). This introduces significant complexity, where methods to certify optimality or bound
the outcome are important theoretical directions for future work. Lastly, we suggest the
inclusion of uncertainty via scenarios in a stochastic programming framework to deal with
uncertainty in solar forecasts and load estimation. The inclusion of power flow feasibility
and network validation in the P2P algorithm, and extensions to a broader class of DERs are
next steps in this research.

3.A Appendix: Non-ideal battery modeling

In this appendix, we extend the analysis in Section 3.2 to a more realistic model of the
battery and show that the results hold when battery inefficiencies and asymmetric charge
and discharge power constraints are accounted for. We emphasize that we assume a linear
model and the results may not hold for nonlinear models. However, agents may use decision
models of varying complexity in practice, so understanding the implications of simplified
models remains highly relevant.

The extended model replaces the net battery discharge pbi,t with its positive discharge and

charge components pb,+i,t and pb,−i,t . We allow different discharge and charge power constraints

P b,+
i,t > 0 and P b,−

i,t > 0 and assume that power is converted to and from the stored energy
with charge efficiency σ−

i ∈ (0, 1] and discharge efficiency σ+
i ∈ (0, 1], and that a battery

self-discharges at a rate (1−θi) proportional to the state-of-charge, with θi ∈ [0, 1). Thus,
with the extended model, the problem formulation can be stated as:

min
p,d,s

−
∑
t∈T

∑
n∈C

Un,t(dn,t) (3.16a)

s.t. πt :
∑
n∈C

dn,t =
∑
i∈B

(pb,+i,t − pb,−i,t ) +
∑
g∈G

psg,t, ∀t ∈ T (3.16b)

λs
g,t : 0 ≤ psg,t ≤ P̄ s

g,t, ∀g ∈ G,∀t ∈ T (3.16c)

λd,−
n,t : −dn,t ≤ 0, ∀n ∈ C, ∀t ∈ T (3.16d)

λb,+
i,t : 0 ≤ pb,+i,t ≤ P̄ b,+

i,t , ∀i ∈ B,∀t ∈ T (3.16e)

λb,−
i,t : 0 ≤ pb,−i,t ≤ P̄ b,−

i,t , ∀i ∈ B,∀t ∈ T (3.16f)

pb,+i,t p
b,−
i,t = 0, ∀i ∈ B,∀t ∈ T (3.16g)

λc
i,t : 0 ≤ si,t ≤ S̄i,t, ∀i ∈ B,∀t ∈ T (3.16h)

si,t = θ si,t−1 + σ−
i pb,−i,t − (σ+

i )
−1pb,+i,t ∆T, ∀i ∈ B,∀t ∈ T . (3.16i)

In the following, we show a technical detail needed to extend Remark 1, state the modified
forms of Remark 2 and Remark 4, and show a modified example with discussion for
Remark 5. Remark 3 does not depend on the battery model and is unaffected.



75

For Remark 1, the analogous versions of (3.3)-(3.7) follow mechanically in the same way
as the main text in Section 3.2. However, the complementarity constraint (3.16g) implies that
Wi(π) is now nonlinear, and thus strong duality does not necessarily hold, so an additional
technical step is needed. We define a relaxed problem W ′

i (π) that drops the complementarity
constraint to become a linear program. Under the assumption that πt≥ 0, ∀t, which holds
in particular for π⋆ by Remark 2, we show below that the problems have equal optimal
objectives W ′

i (π) = Wi(π). Therefore, we can substitute W ′
i (π) for Wi(π) into (3.7), and

again rely on strong duality in W ′
i (π) to establish π⋆ as the optimal price.

To show that W ′
i (π) =Wi(π) if πt ≥ 0, ∀t, we take (p′,b,+i , p′,b,−i ) to be any any optimal

solution to W ′
i (π), and compute a particular corresponding solution (p⋆,b,+i , p⋆,b,−i ). We verify

below that (p⋆,b,+i , p⋆,b,−i ) is both feasible for the original problem and optimal for the relaxed
problem, and therefore it is optimal for the original problem and each problem’s optimal
objectives are equal. The alternative solution is defined specifically to be the solution that has
equal net charge/discharge as (p′,b,+i , p′,b,−i ) while satisfying the complementarity constraint:

p⋆,b,+i,t = σ+
i max((σ+

i )
−1 p′,b,+i,t −σ−

i p′,b,−i,t , 0) (3.17a)

p⋆,b,−i,t = (σ−
i )

−1max(σ−
i p′,b,−i,t −(σ+

i )
−1 p′,b,+i,t , 0). (3.17b)

By construction, (σ−
i )

−1 p⋆,b,+i,t −σ−
i p⋆,b,−i,t =(σ−

i )
−1 p′,b,+i,t −σ−

i p′,b,−i,t , and thus the stored energy
trajectory is identical and (3.16h)-(3.16i) are satisfied. The power constraints (3.16e)-(3.16f)
are satisfied because 0≤p⋆,b,+i,t ≤p′,b,+i,t and 0≤p⋆,b,−i,t ≤p′,b,−i,t . The complementarity constraint
(3.16g) can be checked by inspection of the different cases of the max functions. Finally,
p⋆,b,+i,t −p

⋆,b,−
i,t ≥p′,b,+i,t −p

′,b,−
i,t , ∀t, so if πt≥0, then −

∑
t πt(p

⋆,b,+
i,t −p⋆,b,−i,t )≤−

∑
t πt(p

′,b,+
i,t −p′,b,−i,t )

and (p⋆,b,+, p⋆,b,−) is optimal for the relaxed problem. □
As an aside, note that if σ+

i σ
−
i < 1 and πt > 0,∀t, then the relaxation is exact. This

is because (p⋆,b,+, p⋆,b,−) ̸= (p′,b,+, p′,b,−) implies
∑

t πt(p
⋆,b,+
i,t − p⋆,b,−i,t ) >

∑
t πt(p

′,b,+
i,t − p′,b,−i,t ),

which is a contradiction, therefore (p⋆,b,+i , p⋆,b,−i )=(p′,b,+i , p′,b,−i ).
The analogous form of Remark 2 follows from the stationarity conditions of (3.16), and

is

π⋆
t = ∂Un,t(d

⋆
n,t)/∂dn,t + λ⋆,d,−

n,t , ∀n ∈ C (3.18a)

= λ⋆,b,+
i,t −∆T (σ+

i )
−1
∑
τ≥t

θτ−tλ⋆,c
i,τ , ∀i ∈ B (3.18b)

= −λ⋆,b,−
i,t −∆T σ−

i

∑
τ≥t

θτ−tλ⋆,c
i,τ , ∀i ∈ B (3.18c)

= λ⋆,s
g,t , ∀g ∈ G. (3.18d)

Remark 4 again follows from Remark 2, and takes the form

θ π⋆
t+1 − π⋆

t = θ λ⋆,b,+
i,t+1 − λ⋆,b,+

i,t +∆T (σ+
i )

−1 λ⋆,c
i,t (3.19a)

= λ⋆,b,−
i,t − θ λ⋆,b,−

i,t+1 +∆T σ−
i λ⋆,c

i,t . (3.19b)
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These dynamics imply that the equilibrium optimal price, and equivalently the marginal
value of consumption at optimum, will evolve depending on the battery inefficiencies and
which battery constraints are active at the optimum.

For Remark 5, consider again the example from the main text with T = 5, ∆T = 1,
P̄ b,+
i,t ≡ 3, S̄i,t = 10, s0,i = 5. Take σ+

i = 0.95, σ−
i = 0.9, θi = 0.98, P̄ b,−

i,t ≡ 2, and a modified
price π⋆ = [1, 1.0204, 2, 3, 1.2680]. Analogous to the example in the main text, solutions
pb = [−0.9587,−0.9587, 3, 3, 0], pb = [0,−1.8983, 3, 3, 0], and pb = [−1.5863,−1.5863, 3, 3, 1]
are all optimal solutions with net benefit −13.063.

In this example, π2 was constructed by noting that if an optimal dispatch has the battery
charging and unconstrained in power and stored energy at both t = 1 and t = 2, then by
(3.19a), πt+1 = θ−1πt; i.e., the equilibrium price trajectory must have these dynamics when
the storage is charging between successive periods and is not constrained. It then follows by
the same principle as described in the main text that charge power can be feasibly shifted
from one period to another without affecting the cost, thus the storage dispatch is not unique.
Here π5 was chosen as π5 = (σ+σ−)−1 θ−4 to show equilibrium conditions where a higher
future price exactly compensates for the lost energy from charging. Additional discussion
about the impact of storage inefficiencies on optimal pricing can be found in [46].

3.B Appendix: Constant price-elasticity utility

functions

Here we describe the procedure used for developing sample utility functions from data,
assuming constant price-elasticities, which is one of two common simple assumptions in
pricing theory (the other being a linear demand curve / quadratic utility function). We
emphasize that this was chosen for example purposes only, and that all of the analysis
only assumes that utility functions are strictly concave, and would apply to logarithmic or
quadratic utility functions as well.

Let the marginal utility of consumption be denoted by g(d) = ∂U(d)/∂d. As described
in the main text, the equilibrium price is equal to the marginal utility of consumption, i.e.,
π⋆ = g(d⋆). Then the demand function of price is given by h (as the inverse of g), where
d = h(π) := g−1(π). The price-elasticity, which we denote as r(π) is defined as the ratio of
the percentage change in quantity to the percentage change in price, and in general depends
on the price

r(π) =
dh(π)

dπ

π

h(π)
. (3.20)

A constant price-elasticity implies r(π) ≡ r̂. The general family of demand functions with
this property has the form h(π) = aπr̂ for some constant a. This can be fit to an empir-
ical price and consumption pair (π0, d0) by setting h(π0) = d0 and obtaining a = d0 π

−r̂
0 .
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Inverting this to marginal utility and integrating to utility, one obtains

g(d) = π0

(
d

d0

) 1
r̂

, (3.21a)

U(d) =
r̂ π0 d

1
r̂
+1

(r̂ + 1) d
1
r̂
0

+ c. (3.21b)

However, general downward-sloping demand curves imply r < 0, thus limd→0+ g(d) =∞
and limd→0+ U(d) = −∞ which can be problematic for optimization solvers and is also an
unrealistic extreme in practice. Thus, we modify the function to have “quasi-constant” price
elasticity, by shifting the marginal utility curve to the left by a small δ > 0 and compensating
the exponent for the shift so that r(π0) = r̂. We also choose a c such that U(0) = 0. The
resulting marginal utility and utility functions are

g(d) = π0

(
d+ δ

d0 + δ

) 1
r′

, (3.22a)

U(d) =
r′ π0

(
(d+ δ)

1
r′+1 − δ

1
r′+1
)

(r′ + 1)(d0 + δ)
1
r′

, (3.22b)

r′ = r̂

(
1 +

δ

d0

)−1

. (3.22c)
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Chapter 4

Decentralized optimal power dispatch
and secondary control with
agent-based ADMM

Abstract
In this chapter, we extend and modify the peer-to-peer (P2P) negotiation system intro-
duced in Chapter 3 to include electricity network constraints and handle more general
agent utility functions that are concave, but not necessarily strongly concave. To do
this, we use the Alternating Direction Method of Multipliers (ADMM) to state a de-
centralized optimal power flow problem that can be cast as a mechanism for optimal
P2P energy exchange. Unlike existing work on P2P systems that use the power flow
formulations that are valid only for radial networks, the approach we propose applies
to general networks, and uses an unconventional iterative linearization technique to
generate locally optimal solutions to the full AC power flow problem. Additionally,
we develop a novel approach for economically optimal secondary control that solves
the optimal power flow problem in real-time using agents in the loop, contributing to
the growing body of work on online decentralized optimal secondary control in power
systems with increasing converter interfaced generation.

4.1 Introduction

Motivation and contributions

Chapter 3 studied pricing and peer-to-peer energy trading in 100% renewable power systems
with storage. It contributed a characterization of the optimal price that shows battery
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storage dispatch is not necessarily unique, and a novel peer-to-peer negotiation algorithm
that was shown to converge to near the social optimum when agents have strongly concave
utility functions. However, the analysis left several important areas to future work that
we address in this chapter. The first is the behavior of the algorithm with concave, but
not strongly concave, utility functions. The second is a model of the power network and
associated line loading and voltage drop constraints. The third is an algorithm for “many-
to-many” matching of agents. The previous chapter also highlighted the importance of a need
for analysis of strategic price-manipulation behavior and the effects of forecast uncertainty;
these are not addressed here.

Following the publication of Chapter 3, we observed through numerical simulation that
the P2P algorithm proposed in Chapter 3 in fact does not necessarily converge in the one-
to-many case when agents have piecewise-linear concave utility functions (i.e. non-smooth
and not strongly concave). To address this we reviewed potential modifications to the al-
gorithm against well-known decentralized optimization techniques using the optimal price
and quantity analysis of Section 3.2. Using the understanding of average power quantities
as the primal variable and price as a dual variable, we considered the classic dual ascent,
primal-dual subgradient, and proximal point methods.

It can be shown that the dual ascent algorithm, which can be viewed as a centralized
price adjustment process that increments the price up if there is a net shortage and down if
there is a net surplus, converges to the optimal price and also gives the optimal social welfare
by strong duality. However, in general for non-strictly convex functions, and in particular for
batteries as highlighted in Section 3.2, for a given dual variable, the corresponding optimal
primal variable is not necessarily unique. Moreover, it does not necessarily satisfy the equality
constraint associated with the dual variable, which in this case is power balance, or “clearing
the market”. The dual ascent algorithm can still be made to converge in this case by a
diminishing step-size is used; that is, the price increment is scaled smaller and smaller at
each iteration k by an amount that converges as 1

k
to zero. However the problem persists

that even if the optimal price is obtained, it does not necessarily induce agents with storage
to inject power quantities that net out to a feasible dispatch. For this reason, we considered
the dual-ascent algorithm insufficient to yield an optimal dispatch; however, a modified
approach that includes shrinking step-limiting constraints on the primal quantities as in the
P2P algorithm of Chapter 3 could prove fruitful. Note that the centralized price adjustment
process in the dual-ascent algorithm can be viewed analogously to the π-agent in the P2P
bidding algorithm, as both return a price in response to a vector of quantities. In the
P2P algorithm, the π-agent uses local resources to satisfy the imbalance of the aggregated
quantities and sets a price equal to the marginal opportunity cost of satisfying the imbalance.
In dual ascent, the price is simply incremented up or down by the imbalance amount until
convergence.

The primal-dual subgradient algorithm addresses the problem of the primal problem not
necessarily converging to a feasible solution by updating the primal quantities according
to a subgradient step rule. The challenge here is that the quantity given by the gradient
step is not necessarily feasible, and thus the subgradient does not necessarily exist at the
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next iteration. This can potentially be addressed with projected primal-dual subgradient
algorithms; however, the development of an appropriate decentralized projection method
requires further research.

In contrast, proximal point methods, and in particular the Alternating Direction Method
of Multipliers (ADMM), addresses both of these concerns and has robust convergence proper-
ties [89, 14]. This method essentially uses a price update similar to dual-ascent, but includes
a quadratic regularization penalty on the primal problem that penalizes the distance of the
primal variable from a reference point. It can be proven that this reference point converges to
the optimum. This algorithm is very popular for decentralized optimization for multi-agent
systems and is likewise popular in the P2P and decentralized optimal power flow literature.
In general, ADMM is not quite fully decentralized, as it includes centralized steps for up-
dating price and computing a reference point, although we will show how these steps can
be carried out with only neighbor-to-neighbor communication in power networks in certain
formulations. Despite not being fully P2P, we find it satisfies many of the motivations for
pursuing P2P negotiation highlighted in Chapter 3: it is scalable, does not require any cen-
tralized knowledge of private utility functions or DER characteristics, lends itself to a market
implementation for 100% renewable systems with storage, and gives flexibility for prosumers
to participate in the bidding as little or much as they wish, with the caveat that they may
still face price volatility, which is always a possibility in real-time markets to the extent
that pricing is not centrally controlled. Therefore, we use ADMM to develop an agent-based
bidding system for coordinating DER dispatch and give network-aware formulations for DC
power flow and both linear and non-linear / non-convex AC power flow. Although this
is developed for the context of 100% renewable microgrids, it has applications to general
decentralized optimal power flow.

This type of economic bidding is categorized of as “tertiary control” in power systems
control, which is generally conducted as a forward market in liberalized electricity systems,
but at the scale of large power plants. Primary and secondary control are responsible for
the stability and rebalancing of the system in real-time, respectively. We find that not only
does the solution of ADMM yield injection setpoints for the secondary control of DERs, but
that an analogous ADMM algorithm can be executed online in real time as a novel form
of secondary control, enabling an economic re-balancing. We derive this for the DC power
flow model, and contributes to the growing body of work on feedback control systems that
exploit the physics of the grid to solve optimal power flow problems in real time.

In summary, the contributions of the paper are:

(1) An algorithm for a forward bidding system in agent-based smart grids based on ADMM
with robust convergence properties that is scalable, privacy preserving, and plug-and-
play. Although the use of ADMM in this context to achieve these features is not novel,
we contribute a novel variation that yields a feasible power dispatch at every iteration.
Moreover, the algorithm gives a potentially powerful approach for finding local optima
of the general non-linear and non-convex AC optimal power flow problem.
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(2) An online ADMM algorithm that exploits the physics of the electricity network to yield
a novel economic secondary control system. This applies to both agent-based microgrids
with controllable converter-interfaced DERs and more generally to power systems with
droop-controlled generation and storage.

Literature review

In this section, we provide a brief overview of ADMM, review the relevant literature on
applications of ADMM to P2P energy and decentralized optimal power flow as well as on
online algorithms for optimal control. We note some of the limitations of similar approaches
and differentiate our approach throughout, and conclude with a summary of the gaps and
the contributions to address them herein.

The Alternating Direction Method of Multipliers (ADMM) is a popular iterative al-
gorithm for decentralized optimization and has attracted substantial attention for general
decentralized optimization, and specifically for optimal power flow problems and control of
distributed energy resources [82, 56, 80]. Like all iterative algorithms, ADMM starts with
a candidate solution to the problem and applies a procedure repeatedly until it converges
to a solution. Our contribution is twofold: first to present the application of the algorithm
to agent-based control of distributed energy resources in more detail than can typically be
written in a short journal article, including to show how the algorithm can be applied to
power flow models of varying complexity; and second to elaborate how the algorithm could
be implemented in a real-time market framework, including a discussion of how the algo-
rithm suggests a payment structure, market timing, and warm-starting in a receding horizon
framework.

The contemporary canonical reference for ADMM is [14], which at the time of this thesis
has more than 17,000 citations on Google Scholar. Of particular relevance in [14] is the
application of the model to “consensus” and “sharing” problems. ADMM applies very gen-
erally to optimization problems with some separable structure, but it is especially powerful
for multi-agent systems where the objective is to minimize the sum of individual agents’
private cost functions subject to constraints that couple some of the agents’ variables. This
applies directly to optimal power flow problems, where the cost functions are generator costs,
or agents’ utility functions in our context, and the coupling constraints are the power flow
equations. Consensus ADMM creates local targets and a global reference of the same coupling
variable, e.g. power injection or voltage, and uses an iteration that converges to consensus,
meaning the local targets and global reference are equal in the limit. The iteration involves
a local update step, where each agent updates their local target based on a price and a
reference point, a global update step, where a new reference point is computed by projecting
the local target onto a feasible set, and a dual variable or price update, which increments
a dual variable that can be interpreted as a price based on the difference between the local
target and global reference. The local updates can be solved in parallel, and are typically
subproblems with much smaller dimension than the full optimization problem, which makes
the approach powerful for large scale systems. The global update often, but not always,
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consist of a simple average of all the local targets that correspond to it. Thus, each iteration
can often be solved relatively quickly, especially in parallel computing environments typically
found for multi-agent systems. The algorithm has proven convergence properties [14], and
converges asymptotically on order O( 1

M
), where M is the number of iterations [73].

Many authors point to the simplicity of the algorithm and its robust convergence as its
primary strengths, noting that it often performs well in practice for non-convex problems [14,
109]. Its primary weakness is slow convergence (in terms of number of iterations) to optimal
solutions with high accuracy, but many authors also note that it can yield approximately
optimal solutions that are “good enough” in on the order of tens of iterations (e.g. [14,
80]). Another potentially significant limitation is that the convergence guarantees for the
classical algorithm assume synchronization, which can be challenging to enforce in large
scale systems. Although many authors state that in practice asynchronous ADMM typically
converges, theoretical convergence guarantees are an active area of research.

As noted in the previous section and in Chapter 3, ADMM is a popular approach for
coordinating dispatch in P2P microgrids and more generally for decentralized optimal power
flow (OPF). Of the many references focusing on P2P systems, [82] and [70] are relatively early
ones in the space (2017 and 2016 respectively) and stand out as especially general. Reference
[96] is contemporary in 2016 and uses ADMM for DER optimization, which although not
specifically aimed at P2P systems, employs the same methodology. Many of the other
references can be understood as variations of the same approach. References [63, 81, 83, 69]
pay particular attention to how the centralized update of ADMM can be solved with bilateral
or neighbor-to-neighbor communication, with [81] also providing an excellent computation
analysis. References [83, 117] make additional assumptions on cost functions being quadratic
or strongly convex that allow them to derive analytic update equations and a provably
convergent accelerated iteration, respectively. Other works, e.g. [1, 45], apply ADMM more
specifically to energy sharing communities in grid-connected microgrids, where the presence
of the external grid is fundamental to the feasibility of the approach. Our work can be
differentiated from these approaches in two primary ways.

First, these approaches all use either the DC power flow model or the DistFlow model
(see [7]) and its second-order cone (SOCP) relaxation (see [35]). The DistFlow model ne-
glects voltage phase angle and is only valid for radial networks. In meshed networks, an
additional non-convex constraint called the cycle constraint is needed to state the more gen-
eral BranchFlow model [35]. Whereas the SOCP relaxation is provably exact for some cases
of radial networks [38], and widely believed to typically be exact in practice even without
theoretical guarantees, the same does not hold for meshed networks. Our approach instead
uses a dynamic linearization based on current and voltage phasors in rectangular coordinates
that is updated every iteration of the algorithm. This is not guaranteed to converge, but if
it does, it will converge to a local optimum satisfying the non-linear AC optimal power flow
problem. We developed this approach independently, but have since observed that it is very
similar to an algorithm developed for transmission systems with quadratic cost generators
in the 2015 paper [71]. We have not yet carried out numerical experiments to validate its
convergence in practice in agent-based microgrids, but [71] observes excellent convergence
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performance and recovery from infeasible iterations. Although this iterative linearization is
highlighted here, we also give a solution to the DC power flow problem and show how any
static power flow linearization can be used instead of the iterative linearization. Both of
these are guaranteed to converge, but except in the trivial case, the solution will only solve
the linearized power flow equations and not the non-linear ones.

The second differentiating characteristic of this work with respect to the P2P literature
is to use a variation of consensus ADMM that produces a solution to AC optimal power
flow at every iteration. This is made possible by stating the coupling variables in ADMM as
voltage and current, which are related by linear constraints. We also show how this gives an
analytic global update that is related to edge-Laplacian of the graph representing the power
network, which establishes a theoretical connection to an area of graph theory studying
“edge agreement” dyanamics [128] and may prove useful in developing convergence bounds
for ADMM specifically in power networks (e.g. [73] employs a graph-theoretic proof using
the edge-Laplacian).

Work on ADMM for decentralized optimal power flow in transmission networks focuses
on decomposing the problem by “areas” instead of nodes and is a given a relatively detailed
treatment in the comprehensive review of decentralized and distributed optimization in power
networks [80]. These works predate the P2P literature by some 5-10 years. References [56,
34] are foundational and demonstrate the scalability and performance of the approach. The
review [80] also highlights sensitivity of the convergence rate to the penalty parameter,
and points to the importance of this design parameter, which we do not address here. As
noted above, [71] uses a very similar approach to ours where the power flow constraints
are given in terms of voltage and current phasors, and a successive convex approximation
is used at every iteration. However, they do not derive analytic solutions to the global
update step, leaving it instead as an optimization problem. Our work gives an analytic
solution with the edge-Laplacian, which involves a pre-computed matrix inversion and has
the potential to significantly reduce the computation time of each iteration of the algorithm,
thus contributing to the broader decentralized optimal power flow literature.

Our work also contributes the literature on online algorithms solving optimal power flow
in real-time using feedback control and the closely related study of economically optimal
primary and secondary frequency control. The review [80] includes a survey of this active
area of research, with notable works include [30, 4, 21, 37, 25] and related publications by
their authors. The approach taken in these papers is to solve the optimization problems
analytically using the Karush-Kuhn Tucker (KKT) conditions, which yields an equation for
the optimal operating point. Then, the control system is reverse-engineered so that this
optimal point is the unique stable equilibrium of the closed-loop system. Typically, this
yields a control rule that, once parameterized, can be executed with local feedback only.
One of the important areas for future work highlighted by the authors of [80] is that the
analysis restricted to quadratic cost functions. In this paper, we use ADMM to develop an
approach that is effective for arbitrary convex cost functions or concave utility functions.
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4.2 Agent models, notation, and basic

graph-theoretic concepts

In this section we introduce the agent models, the specific notation that we use to represent
the agents and power network, and state some basic graph theoretic concepts that we use.
Most of the notation is introduced throughout the following subsections, but we introduce a
couple standard choices here that are used throughout.

The symbol I represents the identity matrix and 1 the vector of all ones in dimensions
conforming to the context. The superscript xT denotes the transpose of x. ||x||p denotes the
p-norm of x. We use subscripts to index variables that are elements of a set and superscripts
to name them. The braces {} denote a set either consisting explicitly of the elements inside,
or implicitly over all variables if an index is used. That is, {x} refers to a set consisting
solely of x, but {xn} refers to the set of all x indexed by n, which should be clear from the
context. The functions Re(x) and Im(x) denote the real and imaginary parts of a complex
number x, and conj(x) denotes the complex conjugate of x.

Agent models

In this section, we introduce models for agents associated with distributed energy resources
(DERs) and electric loads, and their respective utility functions and constraints. We first
define an abstract generic agent, and then show concrete instances for specific DERs and
loads. The concrete agent models themselves are not the focus of this chapter. Rather, the
purpose of defining the models here are 1) to to make the agent concept more concrete for the
reader, and 2) to illustrate how agents could be implemented in practice in a programming
language with abstract classes and inheritance. The models themselves follow closely from
those used in Chapters 2 and 3, with the exception of loads and an extension to both grid-
connected and islanded microgrids. Here, a piecewise linear utility function is used for loads,
whereas in Chapter 2 both quadratic approximations and a discrete choice / mixed integer
model were used, and in Chapter 3 a strictly concave load utility function was used. This is
done to relax the strictly concave assumption, but to avoid using non-convex integer models.
These choices are discussed further below.

As in the previous chapter, the context is motivated by the scenario of 100% renewable
systems composed of microgrids and interconnected microgrids on the kW to MW scale.
We model a microgrid composed of three types of local resources – solar photovoltaics,
batteries, and loads – plus a fourth type of resource that is an interconnection to the broader
“macrogrid”. We associate an agent with each individual resource.1 An individual resource

1Note that this differs from the previous chapter, which associated an agent with a person or entity
deriving value from the resource. There are several reasons for this change. One is to be able to state
simpler models for each agent that only consider one resource type, each of which has distinct characteristics.
Moreover, in many cases, the physical resource will be connected to a (communication) networked device, such
as a power converter, smart meter, or controller. Assigning one agent per resource simplifies communication
in these cases, as it necessitates only a one-to-one link, and even allows a potential implementation for the
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can be an aggregate of resources of the same type that act as a single unit; i.e. an array of
solar panels, a bank of batteries, or a group of loads.

As in the previous chapter we assume agents choose quantity to maximize their net
value over a look-ahead time horizon, subject to the constraints of their resource. This
choice is formulated as an optimization problem called the agent’s decision model and the
net value is the objective. We assume that the agents are rational, or more accurately
that they are a computer program that solves the decision model deterministically. For
load agents, the value is a function that models benefits derived from the activities and
services enabled by electricity consumption. For interconnection agents, the value is a net
price paid/received for power consumed/supplied to the macrogrid. This price is exogenous.
Solar and battery agents do not have intrinsic value or costs in this model. Once trading
is introduced, they have exchange value, and naturally the energy stored in batteries has a
future exchange value, but this arises entirely from the value of energy to the loads and/or
the macrogrid. Load, solar, and interconnection agents make or receive forecasts of demand,
irradiance, and grid price, respectively, over the time horizons, and this information is used
to parameterize their decision model. In general, these forecasts are assumed to be based
on external information, such as weather forecasts or user input on their preferences, and
potentially on past observations as well.

Also as in the previous chapter, the quantity is average net power over the time interval,
but in this case it is the net power consumption instead of supplied, which is simply a
sign change. The average power is equivalent to energy when scaled by the length of the
time interval, so we use the terms interchangeably. This notably neglects the instantaneous
peak power over the interval, which is very relevant for physical constraints on resources
and power lines in the grid. An expanding time horizon that starts with shorter intervals
(i.e. 15 minutes or less) closer to the present, mitigating this modeling error somewhat, but
addressing instantaneous flows directly remains an area for further development.

Before stating the agent models mathematically, it is important to reflect on the per-
spective taken here, which is fundamentally utilitarian, treats electricity as a commodity
with private value, and neglects shared value to the extent that it is not captured by the
exchange of electricity for payments. There is a vast landscape of critical questions that
need to be addressed around the relationships between agents and the entities they are as-
sumed to act on behalf of, the overarching governance of the system itself, and its complex
interactions with society. Foremost among these are the extent to which the agents are
able to represent individual preferences, the equity of outcomes and distribution of energy
access, and understanding how social norms around shared infrastructure both affect and
are affected by the physical infrastructure itself. This work is not meant to argue that a
utilitarian approach is ethical, moral, or leads to sustainable infrastructure that serves the
purpose of society. Nevertheless, it does show how such an approach provides a mechanism

agent to run as a program on the microprocessor of the device itself. From a perspective of abstraction,
this also allows additional types of resources and corresponding agents to be added to the framework, for
example fuel cells, gas generators, wind turbines, etc., without changing the fundamental architecture.
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for efficiently managing a very complex infrastructure system that is being asked to rapidly
evolve to become more resilient, provide more access to the global population, incorporate
more renewable and distributed renewable energy, and support the increasing electrification
of end-use energy. We advocate that the critical infrastructure study should be carried out
in conversation with the practical demands of the electricity grid.

General agent model

The generic decision model for agent n can be stated mathematically as

Vn(xn, wn, ϕn) = −min
p,zn
− Un(zn, xn, wn, ϕn) (4.1a)

s.t. (p, zn) ∈ Cn(xn, wn, ϕn) (4.1b)

Vn is a “value function” that reflects the maximum value an agent can derive, given a time-
varying state variable xn, an exogenous, time-varying forecast wn, and time-invariant (static)
parameters of the system ϕn. Examples of the state xn are the battery state of charge for
a battery agent, the cumulative energy consumed for certain types of loads, or the internal
state of a controllable load such as a thermostat. Solar agents and interconnection agents do
not have a state. Examples of exogenous forecasts wn are the solar irradiance, consumption
or value of loads, or the macrogrid electricity price. In this formulation, the forecasts are
assumed to be deterministic for simplicity, but it can also be formulated stochastically, in
which case the value function can be the expected value (see Chapter 2). Examples of
ϕn are battery capacity (both in terms of stored energy and charge and discharge rates),
battery efficiencies, solar panel capacity and orientation, etc. charge and discharge capacity
the static parameters of the system. The subscripts n are used to signify that these variables
are parameters specifically for the n’th agent’s value function; another agent m can have
parameters drawn from a different space with difference dimensions.

The variables zn and p are the agents’ decision variables. These are defined so that p is
the power withdrawal from system and zn are the set of remaining decision variables, which
may also include the power. The decision variables are separated in this way so that p can be
isolated and analyzed as the variable that couples agents together through the microgrid (this
analysis is the focus of the remaining sections of the chapter following the agent models).
The variable zn is given the subscript n to signify that it is drawn from a space particular
to agent n, whereas p does not have a subscript because it is drawn from the same space for
all agents. zn and p are coupled by the constraint set Cn, which represent the union of the
physical resource constraints with any additional constraints necessary to define auxiliary
decision variables in zn. Cn can depend on the state, forecasts, and static parameters; for
example, the feasible charge or discharge power of a battery over the time horizon depends
on its initial state of charge, or the maximum power that a solar array can generate depends
on the irradiance. p should be understood as a vector of power over the time horizon. The
other variables are more general sets, but their elements should be understood implicitly
as vectors or scalar values from the context. We do not explicitly denote the temporal
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dimension except where it is particularly relevant to prevent the notation from being overly
complex.

Un is the agent’s utility function, which is their intrinsic value derived from power con-
sumption, and can also depend on the state, forecast, and static parameters. It is important
to note that Un is written in a way that does not explicitly depend on p, but it still depends
on p implicitly through the constraint (p, zn) ∈ Cn. For example, we can (and will in some
cases) trivially define pn as a variable in zn, and include the constraint p = pn in Cn so that
utility function depends on power. p is the vector over the time horizon of average power
consumption, Un is the intrinsic utility of power consumption, and Cn are the physical re-
source constraints. Both Un and Cn can depend on the state and the exogenous parameters,
but do not necessarily in all cases. The two negative signs in (4.1a) are used to convert
the maximization problem to an equivalent minimization problem, adopting the standard
convention in convex optimization theory.

It is also critical to stress that Un is the intrinsic value of power, absent a mechanism
for exchange within the microgrid. Therefore, the battery and solar agents have 0 valued
utility functions because they function only to generate and store the resource and do not
have intrinsic value.2 If fuel-based generators were included, they would have a (negative)
utility function in the form of the fuel costs and associated costs for emissions.3 Only the
load agents and the interconnection agents have non-zero valued utility functions, which arise
from the value of electricity use and the cost/revenue of importing/exporting electricity from
the macrogrid.

In Section 4.3, we will analyze the exchange of electricity with a modified decision model
assuming that average power can be bought or sold for a price over a network. To define
this, let π be the vector of prices over time and P > 0 be the maximum power transfer
between the agent and the network, which is generally the rating of their connection to the
network. Then, the agent’s decision model with exchange can be written as

V π
n (π, P , xn, wn, ϕn) = −min

p,zn
− Un(zn, xn, wn, ϕn) + πTp (4.2a)

s.t. (p, zn) ∈ Cn(xn, wn, ϕn) (4.2b)

|p| ≤ P (4.2c)

where V π
n is the “net” value function given price π.

We will also use an augmented decision model with exchange that includes a penalty on
the distance of the chosen power consumption from a power withdrawal reference point p̂.

V π,ρ
n (p̂, π, P , xn, wn, ϕn) = −min

p,zn
− Un(zn, xn, wn, ϕn) + πTp+

ρ

2
||p− p̂||22 (4.3a)

2It is likely that people derive an intrinsic value from having solar or battery systems. This is effectively
ignored here, but technically it can be included as constant value without changing the model statement.
Even if we posit that generating solar power as an altruistic act having some value, there is a strong argument
that the value is derived from avoided emissions or the electricity uses that it enables; it is hard to argue
that generating solar power that is never used has intrinsic value.

3Batteries could also easily be modeled to have a degradation cost that is a function of their power
throughput, but this is neglected for simplicity here.
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s.t. (p, zn) ∈ Cn(xn, wn, ϕn) (4.3b)

|p| ≤ P (4.3c)

The relevant quantity here for bidding systems will be the optimal power, not the value
itself. We denote this decision as a function Pn:

Pn(p̂, π, ρ, P , xn, wn, ϕn) = argmin
p|zn

− Un(zn, xn, wn, ϕn) + πTp+
ρ

2
||p− p̂||22 (4.4a)

s.t. (p, zn) ∈ Cn(xn, wn, ϕn)

|p| ≤ P (4.4b)

where the notation p|zn means that the optimal value of p is returned by argmin but that
zn is also a decision variable. Note that if Un is convex (but not necessarily strictly convex)
in zn and Cn(xn, wn, ϕn) is a convex set, then (4.4) has a unique solution and P is indeed a
function.

The agent model is stated in terms of real power p only. It could be augmented to
include reactive power, which would in practice typically appear in the constraints on power
injection, which are generally more correctly stated in terms of apparent power but this is
not done for simplicity.

The specifics of this abstract model for each agent type are given in the following sub-
sections. To simplify notation, the subscript n is dropped for the remainder of the section;
all variables and functions are implicitly associated to an agent n.

Solar agent model

The solar agent’s model is relatively simple. It is stateless and has zero intrinsic value. The
exogenous parameter is a forecast of maximum power point solar production, P

s
, and the

constraint set is simply that the power produced (i.e. the negative of that consumed) must
be less than this value at each time. This is summarized as

x := {} (4.5a)

w := {P s} (4.5b)

ϕ := {} (4.5c)

z := {} (4.5d)

U(z, x, w, ϕ) ≡ 0 (4.5e)

C(x,wϕ) := {(p, z) : −P s ≤ p ≤ 0} (4.5f)

Note that z is superfluous in this case because the utility function is constant (specifically
equal to zero) and the private constraints are simple.
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Battery agent model

Like the solar agent, the battery agent has zero intrinsic value. However, it does have a
state, which is its stored energy, and it has a more complex constraint set that includes
intertermporal constraints. In order to capture charging and discharging efficiencies to the
first order, the model from Section 3.A is used, neglecting self-discharge and changing the
sign convention of the notation. This model introduces auxiliary decision variables e, p+ and
p− to denote the stored energy, charge power, and discharge power, which are all vectors
over time. The charge and discharge efficiencies σ+ ∈ (0, 1] and σ− ∈ (0, 1] are constant
and fixed. The maximum charge and discharge powers, P and P , and the maximum and
minimum stored energy E and E can either be time varying or time variant; however, if
they are time varying, or if it is possible for initial stored energy, denoted e0, to be outside
of [E,E], then special attention must be paid to potential infeasibility cases that are not
addressed in this chapter. Let ∆Tt denote the length of the time step at time t. This
allows for the time step to be non-uniform; setting the time periods be longer when they are
farther into the future is a useful technique for capturing longer time horizons. The timing
information is assumed to be global and not part of any of the agents’ parameters.

The decision model for a battery agent is defined by

x := {eo} (4.6a)

w := {} (4.6b)

ϕ := {E,E, P , P , σ−, σ+} (4.6c)

z = {p+, p−, e} (4.6d)

U(p, x, w, ϕ) ≡ 0 (4.6e)

C(x,w, ϕ) := {(p, z) : p = p+ − p−, z ∈ Cz} (4.6f)

with the private constraints Cz defined as the intersection of the following convex constraints:

Cz := Cc(e0) ∩ Ce(E,E) ∩ Cp−(P ) ∩ Cp+(P ) (4.7a)

Cc(e0) := {z : et = et−1 + (σ+p+t −
1

σ−p
−
t )∆Tt = 0 ∀t} (4.7b)

Ce(E,E) := {z : E ≤ e ≤ E} (4.7c)

Cp−(P ) := {z : 0 ≤ p− ≤ P} (4.7d)

Cp+(P ) := {z : 0 ≤ p+ ≤ P} (4.7e)

There is an additional non-convex technical constraint, that p+
T
p− = 0, enforcing that a

battery cannot simultaneously charge and discharge. Following the analysis in Section 3.A,
this constraint can be relaxed and then recovered when prices are positive, so it is relaxed
here to maintain convexity. As shown in the previous chapter, negative prices should not
arise in equilibrium as solar and battery generation can be freely curtailed; however negative
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prices might arise during bidding iterations, and thus this condition should be checked in
practice, and additional modifications may be necessary.

Load agent model

The load agent model plays the important role of defining the utility functions that define
the value of energy and drive the optimal allocation. It also attempts to model human prefer-
ences, which are notoriously difficult, even impossible by many philosophies, to quantify. The
approach taken here is to use a relatively simple model that captures some salient features
of electricity use that can be represented mathematically to varying degrees of complexity.
This section first compares two distinct approaches to load modeling in an optimization
framework, then states a flexible model that can be used to approximate utility functions.

The most common approach in load modelling is to model different types of loads by
having particular constraints, and potentially also having some marginal utility. This typi-
cally includes some must-run or inflexible loads that do not respond to price and some loads
that have inherent energy storage that gives them flexibility as to when they consume as
long as some total consumption is met. At the household level, examples of the former are
lighting, cooking, or watching television; examples of the latter are an electric vehicle that
must charge completely before it is needed in the morning, or a water heater or refrigera-
tor that must keep its temperature in some allowable range. This approach is logical from
the perspective of the legacy grid that meets inflexible demand, essentially leveraging some
flexibility in the loads to reduce supply-side costs, but it has the potential to fall short in
100% renewable systems where electricity supply faces variable constraints. Particularly,
during times of extreme shortage, modeling loads with hard constraints can lead to infea-
sible scenarios if there is simply not enough energy to satisfy the constraints, and leads to
the question of which critical loads to satisfy under extreme scarcity. This could lead to a
convergence failure, or cause users’ agents to bid for astronomically high energy prices to
satisfy the hard constraints.

Rather than taking this approach of hard constraints, all loads are considered to be
flexible and to have a particular value. Critical loads should be given a very high value
commensurate with a maximum willingness to pay that reflects their high priority.

The total load for an agent is composed of multiple individual loads. The l’th load
has a marginal value of energy, or maximum price that the user is willing to pay, denoted
νl, and the load agent receives (or makes) a forecast of the load P l. In the simplest case
from the user’s perspective, their entire load is represented as a single load, and they are
required to enter one value ν1 reflecting their willingness to pay for electricity. This could
be recommended to the user based on their expected consumption and monthly budget for
electricity consumption, and adjusted up or down by them.4 Advanced users could optionally

4For a residential user, a recommendation system could estimate their monthly consumption based
on households with similar characteristics, calculate by simulation a typical monthly cost and associated
reliability for high, medium, and low willingness to pay values, and have the user select an option.
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define different willingness-to-pay for different load circuits, or differentiate their willingness-
to-pay by time of day.

x := {} (4.8a)

w := {P l} (4.8b)

ϕ := {νl} (4.8c)

z := {pl} (4.8d)

U(z, x, w, ϕ) :=
∑
l

νT
l pl (4.8e)

C(x,w, ϕ) := {(p, {pl}) : p =
∑
l

pl, 0 ≤ pl ≤ P l, ∀l} (4.8f)

This model is limited, and most notably does not include shiftable loads or loads with
energy storage. There is ample research modelling these loads that can be drawn on to
expand this model; the main issue that arises is that many of these models either require
integer variables or use convex formulations that are not necessarily feasible, which introduces
additional complexity.

Interconnection agent model

Lastly, we give a simple interconnection agent that can represent the point of common
coupling of a microgrid with an external grid. This allows the methods used here to apply to
both islanded and grid connected systems. πg denotes the forecasted grid price for electricity,
and P ≤ 0 and P ≥ 0 denote constraints on the power transfer. The private variable pg is
defined to represent the power exported to the external grid. Using a similar technique for
splitting the battery into charge and discharge components, this model could be extended
to have asymmetric import and export prices. The interconnection agent model is thus:

x := {} (4.9a)

w := {πg} (4.9b)

ϕ := {P , P} (4.9c)

z := {pg} (4.9d)

U(z, x, w, ϕ) := πgTpg (4.9e)

C(x,w, ϕ) := {(p, z) : p = pg, P ≤ pg ≤ P} (4.9f)

Power network model and graph theoretic concepts

This section introduces graph theoretic notation and some non-restrictive assumptions to
impose a structure that is useful for describing and analyzing the electrical network.
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Let the network be be represented as a graph. A graph consists of a set of nodes N and
a set of edges L. We define the number of nodes and lines in the graph to be be N := |N |
and L := |L|, respectively. Electrically, the nodes correspond to “buses” and the edges
correspond to “lines”, i.e. power lines, or conductors. We will use the terms interchangeably.
Some texts also use the term “vertex” in place of a node. Each line l ∈ L connects an
unordered pair of nodes (i, j) ∈ N . We will denote this l : i↔ j.

The above describes an undirected representation of the network. We will also use a di-
rected representation of the same network, where each l is given a unique arbitrary direction.
For a line l, the direction is defined by ordering the pair of nodes (i, j). This directed line is
denoted l : i→ j. In this ordering, the first node i is called the “sending” node, and node j
is called the “receiving” node. We use → and ↔ to distinguish whether we are referring to
the directed or undirected represtenation of the line connecting i and j. Both directed and
undirected representations of the graph will prove useful mathematically for representing the
network constraints. We use the term “the directed graph” and “the undirected graph” to
refer to the directed and undirected representations of the same network.

We assume that the undirected graph is connected, which means there is a path of
undirected lines connecting every node in the graph to every other node. This is equivalent
to the directed graph being weakly connected. This is a trivial assumption: if it did not
hold, the graph could be represented as two or more distinct networks, i.e. distinct grids,
that are all completely isolated from each other and could be analyzed separately. We also
assume that each agent n is associated with a physical resource (DER) that is located at a
unique node i in the network. This is also trivial to impose from a physical perspective: it
is simply that each DER cannot be in two places at once. We assume for simplicity that the
network is single phase, or is the single phase equivalent of a balanced three phase network.
Extensions to unbalanced three phase networks is an area for future work, where intuitively
the essence of the main results should still hold, but with different equations accounting for
the phase imbalance.

Let Ni denote the open undirected neighborhood of a node i, i.e. all the nodes connected
by a single undirected line to i. Technically speaking, this is different from the closed
neighborhood, which also includes node i itself, but whenever only the term “neighborhood”
is used here, it is meant to refer to the open neighborhood. Let Li be called the incident
lines of i, defined as the set of all undirected lines that connect i to another node. Let N s

i be
called the sending neighborhood of i, which is defined as all the nodes j in the neighborhood
of i for which i is the sending node of the directed line connecting them. Let the associated
lines, that is all lines such that i is a sending node of l be called the the sending lines of
i, denoted Ls

i . Let the receiving neighborhood N r
i and the receiving lines Lr

i of node i be
defined analogously. Let Ni, N

s
i , N

r
i and Li, L

s
i , L

r
i denote the cardinality of these sets,

that is, the number of nodes or lines in each. It is clear that these subsets form a partition
of the neighborhood and incident lines of i, that is N s

i ∪ N r
i = Ni and N s

i ∩ N r
i = ∅, and

Ls
i ∪ Lr

i = Li and Ls
i ∩ Lr

i = ∅.
These neighborhoods and incident line sets have associated matrices called adjacency and

incidence matrices. Let Js and Jr be matrices in {0, 1}N×N that are defined as Js
ij = 1 iff



93

there is a directed line connecting i → j and Jr
ij = 1 iff there is a directed line connecting

j → i. Thus the undirected adjacency matrix is Ju = Js + Jr and the directed adjacency
matrix is Jd = Js−Jr. Similarly, let Hs and Hr be matrices in {0, 1}N×L with Hs

il = 1 iff i is
the sending node of line l and Hr

jl = 1 iff j is the receiving node of line l. Thus Hu = Hs+Hr

and Hd = Hs − Hr are the undirected and directed incidence matrices, respectively. Let

J
()
i

T
and H

()
i

T
denote the i’th row of the respective J () and H() matrix with () being the

appropriate superscript s, r, u, or d. It can be seen by definition that the neighborhood,
sending neighborhood, and receiving neighborhood of i are equal to the set of indices of the
nonzero elements of Ju

i , J
s
i and Jr

i respectively. Likewise the incident, sending, and receiving
lines of i are equal to the indices of the nonzero elements of Hu

i , H
s
i and Hr

i .
Let the neighborhood of each node be ordered arbitrarily and let Ni(m) denote the m’th

neighbor of i. Let ej denote the j’th standard basis vector in RN and let Ei be a matrix in
{0, 1}N×Ni with eNi(m) as the m’th column. Thus ET

i J
() selects columns of the respective

adjacency matrix corresponding to nodes that are in the neighborhood of i. Likewise ET
i H

()

selects the columns of the respective incidence matrix corresponding to lines incident to i.
The edge Laplacian of the directed graph will be relevant in the AC power flow problem.

For a reference on the edge Laplacian and its properties, see [128]. The edge Laplacian can

be defined in terms of the incidence matrix as HdTHd and is an L× L matrix. It is closely

related to the well-studied nodal Laplacian which is an N × N matrix equal to HdHdT.
The nodal Laplacian can also be stated as the degree matrix minus Ju, where the degree
matrix is a diagonal matrix with Ni in the i’th diagonal entry. This is stated by the identity

HdHdT = diag(Ju1)− Ju.
Some important properties of the edge and nodal Laplacians can be shown from well-

known results in linear algebra. All real symmetric matrices in the form of XXT or XTX are
positive semidefinite, meaning that all of its eigenvalues are greater than or equal to zero, and
that the nonzero eigenvalues of XXT and XTX are identical. This can be derived directly
from the singular value decomposition of X. This implies a well-known fact in graph theory
that the nodal and edge Laplacians share non-zero eigenvalues, and that all these eigenvalues
are non-negative. It is also clear from the definition of the nodal Laplacian in terms of the
degree and undirected adjacency matrices that the nodal Laplacian times the unit vector
is always equal to the zero vector for any graph, thus zero is always an eigenvalue of the
nodal Laplacian. If the graph is connected, which we assume, then the zero eigenvalue is not
repeated. Thus, for any connected graph, zero is an eigenvalue with multiplicity L−N + 1
in the edge Laplacian. L − N + 1 is also equal to the number of cycles in the undirected
network, and thus each cycle is associated with a zero eigenvalue in the edge Laplacian.
The smallest non-zero eigenvalue in the edge and nodal Laplacian is called the algebraic
connectivity, which decreases with the number of vertices for random graphs.

Let the electrical impedance of each line l : i ↔ j be denoted Zl := Zij = Zji, which
is represented by a phasor described by a complex number. The corresponding admittance
phasor is Yl :=

1
Zl

:= Yij = Yji. Let Z be a diagonal L×L matrix with the impedance of line
l on the l’th diagonal. The nodal admittance matrix Y is a weighted nodal laplacian, given
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by Y = HdZ−1HdT. This is not to be confused with the diagonal matrix of line admittances
Z−1. Let B := Im(Y ) be the susceptance matrix used in DC power flow models.

For the admittance and impedances to be properly defined as multiplicative inverses of
each other, they must be nonzero. Let |Y |∞ ≫ 0 and |Z|∞ ≫ 0 be real numbers denoting
admittances and impedances with very large magnitudes and arbitrary phase, and 0 <
|Y |0 ≪ 1 and 0 < |Z|0 ≪ 1 be their very small counterparts so that |Y |∞ = 1

|Z|0 . This will
be used as a placeholder value to represent lines with approximately 0 impedance.

Note that the graphical representation of a network is not unique. For example, a line
could be “cut in half” and replaced by two lines in series, each with half of the impedance, and
represent the same electrical network. We will say that a graph is an electrically equivalent
representation of another if they both describe Kirchoff’s Voltage Law and Kirchoff’s Current
Law holds at the nodes of interest of the same electrical network in the limit of |Y |∞ →∞
and |Z|∞ →∞.

We do not assume that the network is radial, and allow it to be meshed. This means the
associated graph is not necessarily a tree, and that it may contain cycles.

The next set of assumptions are not trivial in the way that the assumption of the graph
being connected is, but they can be made without loss of generality. Without loss of gen-
erality means here that if they are not satisfied for a given graph, there is a an electrically
equivalent graph that does satisfy the assumption. Thus, throughout the chapter, everything
is written in terms of the electrically equivalent graph satisfying the assumptions. These as-
sumptions and the procedures to construct electrically equivalent graphs are described in
the next two paragraphs.

First, assume that there are no parallel lines; i.e. there is at most one l : i↔ j. It follows
that if the direction of l is defined as and if l : i → j, then there is no l : j → j. If it is
not true, the equivalent graph satisfying these assumption is easily produced by adding the
admittances of all parallel lines, and replacing these parallel lines with a single line with its
admittance being this sum. This is just the basic procedure of reducing parallel lines taught
in introductory circuit classes.

Next, assume that at most one resource is located at a node i, and that if a node i has
a resource located it, then it has exactly one neighbor j. The equivalent graph satisfying
these two conditions can be obtained by introducing additional nodes and lines. Specifically,
suppose there are more than one DERs located at a node j. For each m of these nodes, add
an additional node i to the graph and a line l : i → j connecting i to j with admittance
Yl := |Y |∞, and locate m at the new node i. Thus, each of these new nodes i has no more
than one resource, and it has exactly one neighbor j. In the case that a single resource is
located at node j, but that j has more than one neighbor, the same procedure of adding
a node i and moving the resource to node i results in node i having exactly one neighbor
j. Applying the procedure across all such nodes produces an electrically equivalent graph
satisfying the assumption. The introduction of lines with very large admittance |Y |∞ is
actually a quite faithful physical representation of the series elements connecting the DERs
to the network, because in practice, there will be some conductor with very small impedance
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that makes the connection. The main issue to be aware of is that numerically, including a
very large number can result in ill-conditioned numerical operations; thus care needs to be
used in implementation to make sure that it is appropriately divided out before executing
numerical operations. This will be addressed in the derivations that follow.

This assumption allows us to partition N into the set of nodes that have exactly one
resource connected to them and those that have no resources connected to them. We call
these the agent nodes, denoted NA, and the internal nodes, N I , respectively. These sets
will be useful in defining the ADMM update equations.

We also assume that there all loads or resources have an agent associated with them. This
implies that there is no withdrawal or injection into the network at the internal nodes N I .
This assumption is more or less without loss of generality. Relaxing it simply means that
the homogeneous linear flow conservation constraints at these nodes would be replaced with
affine constraints. In the section on online control we will relax this and have uncontrollable
and controllable nodes.

4.3 Economic power dispatch with ADMM

In this section we first state the general ADMM algorithm and the specific consensus-type
ADMM algorithm commonly used for multi-agent systems. We next show how ADMM can
be applied to solve the economic power dispatch problem with two network-aware models
of the power flow constraints. The first is a lossless line model neglecting voltage drop that
is equivalent to the commonly used DC power flow model. With this model, we show that
the algorithm is guaranteed to converge to the optimum and requires only synchronized
neighbor-to-neighbor communication. The second is the general non-linear and non-convex
AC power flow model. In this case we state the solution in non-convex form, and show
how an iterative linearization can be used efficiently to solve the non-convex problem by
solving convex subproblems at each iteration. In comparison to the lossless line model
neglecting voltage drop, the iterations are not carried out with only neighbor-to-neighbor
communication, but require information from all nodes mapped through an inverse of the
diagonally-modified edge Laplacian of the network. Finally, we conclude with a high-level
discussion of the practical implementation of a system based on ADMM, including potential
market and transaction structures.

General ADMM and consensus ADMM for multi-agent systems

Optimization problems of the form for ADMM can be written as:

min
u,v

f(u) + g(v) (4.10a)

s.t. Au+Bv = c (4.10b)

u ∈ Cu (4.10c)
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v ∈ Cv (4.10d)

We will call u the local variables and v the global variables for reasons that will be apparent
when we state the consensus ADMM. A and B are matrices defining an affine constraint
with constant c, and f and g are the cost functions of the local and global variables.

The algorithm uses the augmented Lagrangian of the problem with scalar parameter
ρ > 0 and a dual variable y associated with the constraint Au+Bv = c:

Lρ(u, v, y) := f(u) + g(v) + yT(Au+Bv − c) +
ρ

2
||Au+Bv − c||22 (4.11)

The algorithm can be stated concisely in three lines, with k representing the iteration
count:

uk+1 = argmin
u
Lρ(u, v

k, yk) : u ∈ Cu (4.12a)

vk+1 = argmin
v
Lρ(u

k+1, v, yk) : v ∈ Cv (4.12b)

yk+1 = yk + ρ(Auk+1 +Bvk+1 − c) (4.12c)

Essentially, it performs alternating updates of the local and global variables u and v, and
then updates the dual variable y, effectively integrating the constraint violation. In this
statement, it is assumed that the local and global updates are feasible. The state of the
iteration is stored jointly in vk and yk. Initial values of y0 = 0 and v0 = 0 can be used, or
the iteration can be “warm-started” at some other initial point.

It can be shown that if f and g are closed and convex functions, if Cu and Cv are closed and
convex sets, and with the additional technical condition that the unaugmented Lagrangian
has a saddle point, then as k → ∞, Auk + Bvk → c and f(uk) + g(vk) converges to the
optimal cost [14]. With additional technical assumptions, then uk and vk also converge to
points that solve (4.10) [33]. Infeasibility can be detected using an approach described in [6].
The convergence analysis can be proven from first principles [14], or more generally because
the algorithm is a specific case of proximal methods [33, 89].

If u, v, and c are vectors of complex numbers, f and g must be real valued functions with
complex arguments. The iteration is equivalent if the transpose operator is generalized to the
conjugate transpose, the term yT(Au+Bv−c) in (4.11) is replaced with Re(yT(Au+Bv−c)),
and the norm is appropriately defined using the conjugate transpose. In this case y is also
a complex number. This follows directly from stating the problem in terms of the real and
imaginary components of u and v, and assigning the real part of y to the constraint on the
real part of Au+Bv − c = 0, and likewise for the imaginary part.

ADMM is especially powerful for multi-agent systems in the case where the the cost
function to be optimized is a sum of individual cost functions, and the agents’ constraints
can be separated into individual private constraints and coupling constraints that connect
the agents. The individual cost functions can be private as well. In this case, one can
generally define the global variable v to correspond to the variables that are involved in the
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coupling constraints and the set of remaining private decision variables as the local variable
u. With this definition, the local update can be executed in parallel for each agent with
respect to the price y and the global variable v from the previous iteration.

To define the consensus ADMM for multi-agent systems, let n indicate the n’th of N
agents, un be their local decision variables, and fn be their local cost function. The total
cost f is the sum of all fn. Partition the local variables un into private variables, denoted zn,
and “local targets” of the variables involved in the coupling, denoted v′n. Let each agents’
private constraint be denoted Cun, which depends on both zn and v′n. Define the “global
reference” of the local targets so they correspond one-to-one with v′n, and denote these vn.
Let all the vn be stacked in a vector v. The coupling constraints that connect the agents
can now be defined as only a constraint on v, which is denoted Cv. The linear constraint
relating the local to global variables is now simply that vn = v′n. The objective of the global
variables is zero, g(z) ≡ 0. The optimization problem (4.10) can be stated as:

min
{v′n,zn,vn}

∑
n

fn(v
′
n, zn) (4.13a)

s.t. v′n − vn = 0 ∀n (4.13b)

(v′n, zn) ∈ Cun ∀n (4.13c)

v ∈ Cv (4.13d)

In this special form of ADMM, the iteration drives the global copies and the local variables
to consensus, i.e., satisfying vn−v′n = 0, while enforcing the coupling constraint in the global
update at each iteration. Essentially, in the local update, each agent acts like its target
variables v′n are free, but the “price” yn and the 2-norm penalty term drive their decisions
to an equilibrium with v′n

k → vn
k as k →∞. To generalize the model a little bit, note that

we can arbitrarily weight each of the constraints vn − v′n = 0 by restating it as Wn(vn − v′n),
where Wn is any diagonal matrix with nonzero weights on the diagonal, because Wn is non-
singular and therefore Wn(vn − v′n) = 0 if and only if vn − v′n = 0. The ADMM iteration
equations for the weighted consensus algorithm are written as:

v′n
k+1

= argmin
v′n|zn

fn(v
′
n, zn) + ykn

T
vn +

ρ

2
||Wn(v

′
n − vkn)||22 ∀n (4.14a)

s.t. (v′n, zn) ∈ Cun
vk+1 = argmin

v

∑
n

−ykn
T
vn +

ρ

2
||Wn(v

′
n
k+1 − vn)||22 (4.14b)

s.t. v ∈ Cv

yk+1
n = ykn + ρWn(v

′
n
k+1 − vk+1

n ) (4.14c)

The key feature here is that the local update for u can be updated in parallel and that
the private constraints and cost functions need not be shared with any other agents or with a
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central operator, thus preserving privacy. From a complexity perspective, the iteration also
decomposes the problem into simpler subproblems that can be easier to solve or analyze.
There is also some discretion as to whether the coupling constraints are placed in the global
constraint set Cv or in the local constraint set Cun. For example, assume that a coupling
constraint depends only on a variable that is shared by n and m. Naturally, this constraint
could be in the global constraint set Cv. However, one can also define a duplicate copy of
the variable, and distribute one copy to agent n and another to agent m, distribute the
constraint to one or both of them, and add the constraint that the two copies must be equal
to Cv. This yields an equivalent solution. This can be useful to do in a context where the
global update needs to be relatively simple, or if the global constraint set can be decomposed
into the intersection of constraints involving only a few agents each, which will be the case
in the power flow problem.

If we further assume that the global coupling constraint Cv is a linear equality constraint,
i.e., that it can be written as Gv = 0 for some matrix G, then the global update can be
solved analytically and takes the form of a linear mapping. In fact, this assumption can
always be met by using the approach of distributing multiple copies of the same variable to
each agent that is described in the previous paragraph. To obtain the solution in this case,
let µk+1 be the dual vector associated with the constraint Gv = 0, and let G := [G1, . . . , Gn]
so that Gv =

∑
n Gnvn. Then the Karush-Kuhn-Tucker conditions for (4.14) are:

vk+1
n = v′n

k+1
+ ρ−1W−2

n (ykn −GT
nµ

k+1) ∀n (4.15a)∑
n

Gnv
k+1
n = 0 (4.15b)

By multiplying both sides of (4.15a) by Gn, summing over n, and then applying (4.15b)
to eliminate the vk+1

n variables, we obtain a a solution for µk+1 in terms of intermediate
variables G̃, ξk, and ηk:

G̃ : =
∑
n

GnW
−2
n GT

n (4.16a)

ξk : =
∑
n

GnW
−2
n v′n

k+1
(4.16b)

ηk : = G̃†ξk (4.16c)

µk+1 = ρηk + G̃†
∑
n

Gny
k
n (4.16d)

where ()† denotes the pseudo-inverse of a matrix in the case that G̃ is not invertible.5 The
additional vectors ξk and ηk are introduced to illustrate the components of the update. ξ is
defined as the “error” vector for the local targets v′n with respect to the global constraints

5In the application to optimal power flow in this chapter, the matrix will be invertible, and the solution
for µ is unique, but the more general statement is given here.
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G and weighted by W 2, and η is defined by applying G̃† to the error, which can be thought
of as a vector that projects v′ onto the feasible space of the coupling constraints. Applying
this to (4.14), we get equations for the weighted consensus iteration for the case when the
global update is linear:

v′n
k+1

= argmin
v′n|zn

fn(v
′
n, zn) + ykn

T
v′n +

ρ

2
||W (v′n − vkn)||22 (4.17a)

s.t. (v′n, zn) ∈ Cun
ξk : =

∑
n

GnW
−2
n v′n

k+1
(4.17b)

ηk : = G̃†ξk (4.17c)

µk+1 = ρηk + G̃†
∑
n

Gny
k
n (4.17d)

vk+1
n = v′n

k+1 −GT
nη

k + ρ−1W−2
n (ykn −GT

n

∑
m

Gmy
k
m) (4.17e)

yk+1
n = ykn + ρWn(v

′
n
k+1 − vk+1

n ) (4.17f)

It is often the case that the iteration is not weighted and W is the identity matrix I.
In this case, (4.15a) implies that yk + ρ(v′n

k+1 − vk+1
n ) = GTµk+1, which in turn implies

yk = GT
nµ

k+1 and allows (4.17f) and (4.17d) to be simplified further. If we also assume that
G̃ is full column rank, then G̃†G̃ = I and (4.17e) can also be simplified. Thus the unweighted
iteration with W = I can be stated as:

v′n
k+1

= argmin
v′n|zn

fn(v
′
n, zn) + ykn

T
v′n +

ρ

2
||v′n − vkn||22 (4.18a)

s.t. (v′n, zn) ∈ Cun
ξk : =

∑
n

Gnv
′
n
k+1

(4.18b)

ηk : = G̃†ξk (4.18c)

vk+1
n = v′n

k+1 −GT
nη

k (4.18d)

µk+1 = µk + ρηk (4.18e)

yk+1
n = GT

nµ
k+1 (4.18f)

Note that in this case the algorithm state is described entirely by µ, which can be seen
as a kind of integration of the effective error term. The remaining variables ξ, η, vn, and y
can all be defined in terms of µ, and thus are not strictly necessary to define the algorithm.
However, ξ, η, vn, and y, have useful interpretations as the constraint error, the effective
constraint error, the projection of the local target variables onto the global constraint set
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(and also the reference point for each local update), and a price signal, respectively, so they
are defined explicitly. In the case of the weighted algorithm with W ̸= I, then the state is
most compactly described by the price y instead of µ.

Note also that the updated value of each global coupling variable vk+1
n only depends on

ηk, does not depend on any of the price variables, and can be computed in parallel for each n
once η is obtained. The constraint violation ξk can also be computed in parallel as a running
sum. The only step that is not directly parallelizable for large scale systems is computing
the effective error ηk.

Application of ADMM to optimal energy allocation

Case 1: Lossless lines ignoring voltage drop

Recall the general utility-based model for the generic agent decision from Section 4.2. To
simplify notation, the utility functions Un and the constraints Cn are assumed to depend
implicitly on xn, wn, ϕn from here on out, and are only written in terms of (pn, zn).

We drop the temporal dimension from the notation to avoid clutter. All equations and
inequalities can be interpreted as over all time steps. We can safely do this because the only
intertemporal coupling that arises is within the private constraints of agents, specifically the
batteries. Because of the intertemporal coupling, the equilibrium values in different time
periods will depend on each other, but all of the algorithm steps except for the agent’s local
update are separable in time. Thus the algorithm can be analyzed for a single time period,
keeping in mind that the intent is for it to be run over multiple time periods in a horizon
simultaneously and synchronously.

Let pij denote the power flow from node i to j. By the assumption of lossless lines,
pij = −pji. Assume that agent n is at node i. Let P l be the maximum power transfer on
line l.

The agent-based, welfare-maximizing power dispatch problem with lossless lines ignoring
voltage drop can be stated as:

p∗ =argmin
{pn}

−
∑
n

Un(zn) (4.19a)

s.t. (pn, zn) ∈ Cn, ∀n (4.19b)

pij + pn = 0 ∀i ∈ NA (4.19c)∑
j∈Ni

pij = 0 ∀i ∈ N I (4.19d)

pij ≤ P l ∀i ∈ NA, ∀j ∈ Ni, l : i↔ j (4.19e)

Note that this model includes line loading constraints to model congestion, but does not
include voltage constraints. Mathematically, the power flow constraints are equivalent to the
DC power flow model: with a change of variable pij := Bijθij, where Bij is the susceptance
on line l : i ↔ j and θij is the voltage phase angle difference, we get the DC power flow
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model directly. This model is a linear approximation of the full AC power flow model. It
is generally considered to be a good approximation only for high voltage transmission – not
microgrids – but it allows line flow constraints and network congestion to be incorporated
into the framework to a first order. It is used here as a stepping stone to full linearized power
flow incorporating voltage drop and also as a computationally less expensive approach.

We will show that by using consensus ADMM, this problem can be solved with synchro-
nized peer-to-peer communication. That is, the “global” updates in each iteration depend
only on information from neighboring nodes in the network.

To set up the consensus ADMM iteration, we define the coupling variables as the power
transfer between nodes. For every node i define the local targets as p′ij for all j ∈ Ni and
the global reference as pij. As a result, there are two distinct variables pij and pji describing
the same power transfer across line l : i ↔ j. We associated pij with node i and pji with
node j. To be “consistent”, each must be equal to the negative of the other. We define the
global constraints to enforce this consistency, that is, that pij = −pji for all lines l. By the
nature of consensus ADMM, the global variables are consistent at every iteration. The local
targets are not necessarily consistent at every iteration, but converge to consistency because
they converge to their global counterparts.

To define these consistency constraints using a matrix G, let each set of power transfers
{pij} from node i to each of its neighbors be represented as a vector pi. This is not to be
confused with the power injection at node i. Let the neighbors be ordered arbitrarily so that
the m’th neighbor of i, denoted Ni(m), is node j, and likewise the m’th element of pi is pij.
The same applies to the corresponding global variables p′i. To represent the constraint set
pij + pji = 0, ∀l : i ↔ j, G must be constructed with a row for each line, and the same
number in each of the two columns corresponding to pij and pji. This is achieved by:

G : = [G1 . . . Gi] (4.20a)

Gi : = [G]lm =

{
1 if l : i↔ Ni(m)

0 otherwise
(4.20b)

= diag(Hu
i )H

uTEi (4.20c)

Gi can either be defined element-wise or in terms of the undirected incidence matrix Hu and
the matrix Ei which selects lines in the incidence matrix that are connected to i. It can be
seen by carrying out the matrix multiplication that GiG

T
i is a diagonal matrix with a 1 on

the l’th diagonal iff l ∈ Li, where Li is the set of all lines incident to i. When summing Gi

over i, each line l will pick up a 1 for each of its sending and receiving nodes, so

G̃ :=
∑
i

GiG
T
i = 2I (4.21a)

G̃† = G̃−1 =
1

2
I (4.21b)

With this in hand, we can write the global variable and price updates for ADMM at
iteration k, assuming the local variables p′i have been obtained at all nodes i. Let ξ, η, and µ
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denote the constraint violation, averaged error, and integral error, and π the price on power
transfer. By substituting these variables into (4.18) it can be seen that the global updates
simplify to updates for each line l : i↔ j and their associated nodes i and j. These can be
written, for all l : i↔ j, as:

ξkl = p′ij
k+1

+ p′ji
k+1

(4.22a)

ηkl =
1

2
ξkl =

1

2
(p′ij

k+1
+ p′ji

k+1
) (4.22b)

µl
k+1 = µk + ρηkl = µk +

ρ

2
(p′ij

k+1
+ p′ji

k+1
) (4.22c)

pij
k+1 = p′k+1

ij − ηkl =
1

2
(p′k+1

ij − p′k+1
ji ) (4.22d)

pji
k+1 = p′k+1

ji − ηkl =
1

2
(p′k+1

ji − p′k+1
ij ) (4.22e)

πij
k+1 = µk

l (4.22f)

πji
k+1 = µk

l (4.22g)

Thus, the “global” update can actually be decomposed as an update for each line, which
only involves information exchange with its sending and receiving nodes. This means that
information exchange can be entirely peer-to-peer and does not need to be centralized. The
key nuance to this is that the iteration must still be synchronized across all nodes for the
convergence guarantee of ADMM, although asynchronous ADMM shows promising results
in practice.

The local updates can be stated separately for nodes with agents and those without.
For all internal nodes i ∈ N I , their local problem does not include decision variables and
utility functions for any DERs because they don’t have any. We will use their local problem
to satisfy power transfer constraints |pij| ≤ P l. Thus the local update at an internal node
i ∈ N I can be written as:

{p′ij}
k+1

= argmin
{p′ij}

∑
j∈Ni

πk
ij

T
p′ij +

ρ

2
||p′ij − pkij||22 (4.23)

s.t. |pij| ≤ P l∑
j∈Ni

p′ij = 0

This problem returns a set of power transfers, one for each neighbor j, and can be thought
of as a simple projection.

For the agent nodes i ∈ NA, the local problem includes the line flow to their single
neighboring node as well as the private decision of the agent. Let the agent connected be n,
and their neighboring node be j connected by line l. The local problem is:

p′ij
k+1

= argmin
p′ij |pn,zn

−Un(zn) + πk
ij

T
p′ij +

ρ

2
||p′ij − pkij||22 (4.24a)
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s.t. (pn, zn) ∈ Cn
p′n + p′ij = 0

|p′ij| ≤ P l

By substituting −p′n for p′ij, this clearly equivalent to the agent’s augmented decision model
P defined in (4.4). Thus the local update at agent nodes can be written compactly as

p′ij
k+1

= −P(−pijk,−πij
k, ρ, P l) (4.25)

Now, we can state the full set of equations that define the ADMM update. We solve and
substitute for ξ, η, and µ variables to keep the equations relatively compact. The update
equations at each iteration k are:

p′ij
k+1

= −Pρ(−pijk,−πij
k, P l) ∀i ∈ NA (4.26a)

{p′ij}
k+1

= argmin
{p′ij}

∑
j∈Ni

πij
kTp′ij +

ρ

2
||p′ij − pkij||22 ∀i ∈ N I (4.26b)

s.t. |pij| ≤ P l∑
j∈Ni

p′ij = 0

pij
k+1 =

1

2
(p′ij

k+1 − p′ji
k+1

) ∀i ∈ N , j ∈ Ni (4.26c)

πji
k+1 = πij

k +
ρ

2
(p′ij

k+1
+ p′ji

k+1
) ∀i ∈ N , j ∈ Ni (4.26d)

The local update involves solving a private decision at the agent nodes and a simple pro-
jection at the internal nodes, and the global update is decomposed into simple summations.
Key featues are:

• All of the “for all” equations can be solved in parallel in both the local and global update

• The global update for the reference power transfer pij at each node i depends only on its
target power and its neighbor’s target power transfer. The same holds for the price, with
the additional dependency on the previous price.

• At each iteration πij = πji, so the prices are symmetric and only one price need be
computed and stored for each line.

• At each iteration pij = −pij and |pij| ≤ P . Thus the global reference power transfers are
feasible with respect to line loading at every iteration.

• The only network information required can be embedded in a messaging framework for
each agent to communicate with its neighboring node along with a clock to synchronize
the iterations.

The iteration can proceed until a stopping criteria is met, which is generally defined in
terms of two residuals [14], or it can continue indefinitely in a real time setting.
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Case 2: Linear and non-linear AC power flow with voltage
constraints

This section extends the previous DC power flow model to linearized and full non-linear
AC power flow. The section begins with the global update step and its solution, which is
constructed so that it applies to both linearized and non-linear AC power flow. Then, the
respective local updates for each of the linearized and non-linear models and the associated
ADMM iterations are given. It is important to note that because non-linear AC power flow
is non-convex, the standard convergence guarantee of ADMM does not hold for this model.

We define the coupling variables to be the voltage phasors at each node and the current
phasors on each line. The linear (and invertible) constraint relating voltage to current is
represented as a constraint in the global update, meaning that at every iteration of ADMM,
the global reference voltage and current phasors satisfy Ohm’s Law and map to a set of power
flows that satisfy the AC power flow equations. The non-linear equation relating voltage
and current to power, which is necessary because the resource agent’s decision models are
defined in terms of power, are included in the local update problem for each agent node. This
equation is non-convex. Additionally, the local problem for all nodes includes the constraint
on the minimum voltage magnitude, which is non-convex. We propose linearizing these
constraint at each iteration and show that this linearization can be computed with trivial
effort. As a consequence, if the iteration converges to a solution, then both the local targets
and global references satisfy the full AC power flow equations and are a local minimum.
The linearization of the voltage magnitude constraint is a convex restriction, so the voltage
constraints are satsifed at every iteration by both the local targets and global reference
variables. Likewise the line loading constraints, which we define in terms of current, are also
satisfied at every iteration by both the local targets and global references.

We point out that including voltage drop and voltage constraints in the problem substan-
tially changes the complexity of the global update. Whereas in the DC power flow model,
the global update can be carried out with only neighbor-to-neighbor communication, the
inclusion of the voltage magnitude necessitates that the global update use information from
all nodes. It will be shown that the global update for voltage magnitude uses a linear map-
ping that involves the inverse of a modified edge Laplacian of the network. It is possible to
side-step this by defining the coupling variables in a different way, as is done in [82], but this
sacrifices having power flow solutions satisfying Ohm’s law at every iteration and the features
of the linearization described above. In radial networks were the DistFlow model is valid
and its SOCP power flow relaxation is valid, this alternate approach may be advantageous;
however, it is does not apply directly to meshed networks.

Global variable and price update

To derive the model, we first analyze and solve the global update, which follows the form of
the consensus update used previously.
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To solve the global update step, let the coupling variables be the complex nodal voltages
and the current transferred across each line. Let Vi be the voltage at node n, and Iij be the
current on line l : i ↔ j flowing from i to j. These variables are phasors represented by
complex numbers in rectangular coordinates. As in the previous section, where the coupling
variables was the power flow on each line, we define two coupling variables for the current,
Iij and Iji. By assuming the π model for power lines with no shunt admittance, Iij + Iij = 0
by conservation of flow. Including Ohm’s Law relating voltage and current by the impedance
Zij, the constraints that must be satisfied by the global update are:

Vi − Vj − ZlIij = 0 ∀l : i→ j (4.27a)

Iij + Iji = 0 ∀l : i↔ j (4.27b)

Note that (4.27a) defined with respect to the directed line l : i → j and that a constraint
for Vj −Vi−ZlIji = 0 for the same line is not explicitly defined because would be redundant
and is satisfied implicitly by the intersection of constraints (4.27). The constraints hold for
both the real and imaginary parts of each variable.

As in the prior section, this can be written in terms of a matrix G with a particular
structure, with m denoting the m’th neighbor of i:

G : =
[
G1 . . . GN

]
(4.28a)

Gi : =

[
GV

i

GI
i

]
:=

[
GV V

i GV I
i

0 GII
i

]
(4.28b)

GV V
i : = [GV V ]lm =


1 if l : n→ Ni(m)

−1 if l : Ni(m)→ i

0 otherwise

(4.28c)

GV I
i : = [GV I ]lm =

{
−Zl if l : i→ Ni(m)

0 otherwise
(4.28d)

GII
i : = [GV ]lm =

{
1 if l : n↔ Ni(m)

0 otherwise
(4.28e)

GV
i , the upper block of Gi, enforces constraint (4.27a). G

I
i , the lower block, enforces (4.27b).

Note that GII
i is identical to the matrix used in the DC power flow case, defined by (4.20b),

because the constraints have an identical structure representing flow conservation. Also as
in the prior section, these constraints can be written in terms of standard basis vectors and
the components of the incidence matrix H, with the addition of the diagonal matrix of line
impedances Z. Let |Z|2 := Z × conj(Z) denote the impedance magnitude squared.[

GV
i

GI
i

]
=

[
Hd

i
T −diag(Hs

i )ZH
uTEi

0 diag(Hu
i )ZH

uTEi

]
(4.29)
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It follows that

G̃ : =
∑
i

GiG
T
i =

[
HdTHd + |Z|2 −|Z|2
−|Z|2 2|Z|2

]
(4.30)

The ADMM iterations require computing the inverse (or pseudo-inverse) of G̃. This can be
done analytically using the Schur complement if it is well-defined and invertible, in which

case G̃ is also invertible. For a block matrix X :=

[
A B
C D

]
, with D invertible and each block

having conforming dimensions, the Schur complement of D in X is written as X/D and
defined as A−BD−1C. If the Schur complement is invertible, then there is a formula for the
inverse of the block matrix involving the Schur complement’s inverse. In the following para-
graphs, we give the Schur complement, show that it is invertible, and qualitatively discuss
the meaning of the inverse and conditions necessary for its stable numerical computation.
After this is established, we will give the formula for G̃−1 and the following global update
equations for ADMM.

Let M be the Schur complement of the lower-right block 2|Z|2 of G̃:

M : = G̃/(2|Z|2) = HdTHd +
1

2
|Z|2 (4.31)

The formula for G−1 depends on the M−1, the inverse of the Schur complement. It is
straightforward to show that M is invertible. This is because it is the sum of a symmetric

positive semi-definite matrix (the directed edge Laplacian HdTHd) and a symmetric positive
definite matrix 1

2
|Z|2. By Weyl’s inequalities, the smallest eigenvalue of the sum of two

symmetric matrices is bounded below by the sum of the smallest eigenvalues of summands.

In this case, the smallest eigenvalue of HdTHd is bounded below by 0: it is 0 if the network
is meshed (contains any cycles), or is the (positive) algebraic connectivity of the network if
it is radial (contains no cycles / is a tree). The smallest eigenvalue of 1

2
|Z|2 is minl

1
2
|Zl|2,

which is clearly given by the smallest line impedance magnitude, which is strictly positive.
Thus, the smallest eigenvalue of M is bounded below by the sum of a nonnegative and a
strictly positive number, which is strictly positive, so it is positive definite and invertible.

To compute M−1 numerically, it is important to consider also how close the smallest
eigenvalue ofM is to zero. If it is very close to zero, then the matrix is approximately singular,
and numerical algorithms can fail to produce accurate inverses. This is especially important
in the case of meshed networks because the lower bound on the smallest eigenvalue is given by
the smallest line impedance, and we used a procedure to add nodes and lines with very small
impedance |Z|0. Moreover, there is no guarantee against having a small line impedance in an
arbitrary network, so potential issues with small impedance lines are important to address.
Without proof and using only an intuitive argument, we conjecture that as long as there are
no cycles in the network where all lines in the cycle have approximately zero impedance, then
the matrix M is well-conditioned; i.e. the smallest eigenvalue is not very close to zero. To see
this, recall from the preliminaries that each 0 eigenvalue in the edge Laplacian corresponds
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to an undirected cycle in the network. Each of these has an eigenvector with 1 or −1 as its
l’th element for every line l in the cycle, where the sign is given by the direction of the line
as it appears in the undirected cycle. Call this eigenvector λ for some cycle. If all lines in
the cycle have the same small impedance magnitude |Z|0, then it is trivial to see that v is
also an eigenvector of M with eigenvalue 1

2
|Z|0. Thus, we have shown that if all lines in a

cycle have very small impedance, then M will be ill-conditioned for computing the inverse.
It is much more complex to describe the smallest eigenvalue when all lines in a cycle have
different impedances, because in this case v is no longer an eigenvector of M , but some
numerical examples show roughly that the size of each eigenvalue associated with a cycle
scales with the largest impedance in the cycle. Therefore, as long as all lines in the cycle
are not close to zero, M−1 can be computed numerically. This is why we require the “no
short-circuit” assumption.

With the Schur complement M and its inverse M−1, the inverse of G̃ can be computed
directly as:

G̃−1 =

[
M−1 1

2
M−1

1
2
M−1 1

2
Z−2 + 1

4
|M |−1

]
(4.32)

Before stating the complete analytic solution to the global update in terms of M−1, we
solve for the error ξ and effective error η as used in (4.18):

ξ :=

[
ξV

ξI

]
:=

[∑
i G

V
i

[
Vi Ii

]T∑
i G

I
i

[
Vi Ii

]T
]
=

[∑
i(H

d)Ti Vi − diag(Hs
i )Z(H

u)TEiIi∑
i diag(H

u
i )(H

u)TEiIi

]
(4.33)

The l’th elements are simply:

ξVl = V ′
i − V ′

j − ZijI
′
ij (4.34a)

ξIl = I ′ij + I ′ji (4.34b)

The effective error can now be computed using M−1 and the formula (4.32):

η : =

[
ηV

ηI

]
:= ηG̃−1ξ =

[
M−1

(
ξV + 1

2
ξI
)

1
2

(
M−1(ξV + 1

2
ξI) + |Z|−2ξI

)] (4.35)

With η and ξ computed, the rest of the global update follows mechanically by converting
GT

i into a summation operation over the lines l. Written altogether, the global update
equations are:

ξVl
k
= V ′

i
k+1 − V ′

j
k+1 − ZijI

′
ij
k+1

(4.36a)

ξIl
k
= I ′ij

k+1
+ I ′ji

k+1
(4.36b)

ηVl
k
= M−1

(
ξV +

1

2
ξI
)

(4.36c)
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ηIl
k
=

1

2

(
M−1(ξV +

1

2
ξI) + |Z|−2ξI

)
(4.36d)

Vi
k+1 = V ′

i
k+1 −

∑
l:Ls

i

ηVl
k −

∑
l:Lr

i

ηVl
k

 (4.36e)

I ′ij
k+1

= I ′ij − ηIl:i↔j +
∑
l:Ls

i

Zlη
v (4.36f)

µV
l

k+1
= µV

l

k
+ ρηVl

k
(4.36g)

µI
l

k+1
= µI

l

k
+ ρηIl

k
(4.36h)

πV
i

k+1
=
∑
l:Ls

i

µV
l

k+1 −
∑
l:Lr

i

µV
l

k+1
(4.36i)

πI
ij

k+1
= µI

l

k+1 −

{
µV
l
k+1

if l : i→ j

0 if l : j → i
(4.36j)

The mapping M−1, which describes how the error on one line relates to the “effective
error” on another, is the central part of the complexity of the global update. Unlike G, G̃,
and M , which are sparse L × L matrices, M−1 is a dense L × L matrix. Entries close to
the diagonal represent lines that are close together in the network, and thus their values
are relatively large and tend to get smaller away from the diagonal, but do not go to zero.
It is not present in the updates for the lossless power flow model of the previous section
because that model neglects voltage magnitude, which is the nodal “state” from a network
flow perspective, and thus the error on all lines are independent and the analogous mapping
is simply the identity scaled by a constant. In power flow models that incorporate voltage
drop into the problem, the error on all lines has an affect on the other. A potential extension
to this formulation could use a simpler approximation for M−1, for example a low-rank
approximation following from its eigendecomposition (spectral decomposition), or a sparse
approximation. With a sparse approximation, the approximate effective error η would not
depend on error from all other lines, only the most significant ones. The close relationship
between M to the edge Laplacian, and the fact that the nonzero eigenvalues of the edge
Laplacian are identical to those of the nodal Laplacian, point to an avenue for studying
spectral decomposition techniques.

Local update

This section gives the local update equations. As with the previous model of lossless lines,
the local update can be partitioned into update equations for agent nodes and for internal
nodes. In this model, the local update includes the nonlinear power flow equations and
constraints on voltage magnitude. These equations are non-convex and do not have an
analytic inverse, and are typically solved iteratively using a procedure such as the Newton-
Raphson or Gauss-Siedel methods over the entire network. Alternatively, linearizations or
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convex relaxations of the constraints are used to solve the problem with specific algorithms
for linear and convex problems. There are no known algorithms to solve the optimal power
flow problem that are guaranteed to converge in general. In some cases, such as for radial
networks, convex relaxations can be structured so that they can be guaranteed to be exact.

Here, we propose an approach that performs a linearization at each local update. This is
similar to [71]. We show that this linearization can be performed efficiently by the decom-
position structure of ADMM and yields a local update optimization problem that is convex
with dimension on the order of the number of lines incident to each node. Before stating the
non-linear and linearized subproblems, we introduce some notation and set up the model.

Let Sij be the phasor representing the complex power flow on line l : i → j. It is given
from the voltage and current as:

Sij = Vi × conj(Iij) (4.37)

To write the equation for real power flow, let the vectors uV
i and uI

ij represent the real
and imaginary parts of Vi and Iij as their coordinates in R2. The real power flow, pij, which
is the real part of the complex number Sij, is:

pij = uI
ij

T
uV
i (4.38a)

uV
i : =

[
Re(Vi)
Im(Vi)

]
(4.38b)

uI
ij : =

[
Re(Iij)
Im(Iij)

]
(4.38c)

where Re and Im denote the real and imaginary parts of a complex number.
In this model, we will define the line-loading and injection constraints in terms of the

magnitude of current instead of apparent power. This is done mainly for convenience, but
it does have a physical justification in that the circuit protection that enforces line limit
constraints, especially on lower voltage systems, is typically rated in terms of current. In
any case, it is not a significant assumption because constraints on apparent power can be
defined with an analogous formulation, and in the case that the voltages are close to nominal
values, the constraint in terms of apparent power and current are approximately equivalent.
The result is that there is no need to define reactive power explicitly in the model. There are
still implicit reactive power flows, but its interaction with the constraints are fully described
by the currents and voltages.

At an internal node i, the non-convex local update is:

(ui
V ′
, {uI

ij

′})
k+1

= argmin
uV
n

′,{uI
ij

′}|pn,zn

[
Re(πV

n
k
) Im(πV

n
k
)
]
u′
n
V
+

ρ

2
||uV

n

′ − uV
n

k||22

+
∑
m∈Nn

[
Re(πI

ij
k
) Im(πI

ij
k
)
]
uI
ij +

ρ

2
||uI

ij

′ − uI
ij

k||22

s.t.
∑
j∈Ni

uI
ij

′
= 0 (4.39a)
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||uI
ij||22 ≤ Iij, ∀m ∈ Nn (4.39b)

||uV
i

′||22 ≤ |Vn|2 (4.39c)

− ||uV
i

′||22 ≤ −|Vn|2 (4.39d)

The only non-convex constraint is the lower bound on voltage magnitude in rectangular
coordinates (4.39d). Note that this problem is separable with respect to the voltage and
current variables.

At an agent node n, recall that by construction an agent has only one line l connecting to
a neighbor j. Thus, we can define the power withdrawal by agent n as pn = −pnj = −uI

ij
T
uV
n

in terms of the voltage and current flow to neighbor j. The non-convex local update is:

(uV
n

′
, uI

nj

′
)k+1 = argmin

uV
n

′,uI
nj

′|pn,zn
−Un(zn) (4.40a)

+
[
Re(πV

n
k
) Im(πV

n
k
)
]
u′
n
V
+

ρ

2
||uV

n

′ − uV
n

k||22

+
[
Re(πI

nj
k
) Im(πI

nj
k
)
]
uI
nj

′
+

ρ

2
||uI

nj

′ − uI
nj

k||22
s.t. (pn, zn) ∈ Cn (4.40b)

pn + uI
nj

′T
uV
n

′
= 0 (4.40c)

||uI
nj||22 ≤ Inj (4.40d)

||uV
n

′||22 ≤ |Vn|2 (4.40e)

− ||uV
n

′||22 ≤ −|Vn|2 (4.40f)

Here, (4.40c) and (4.40f) are both non-convex constraints.
These problems could be left in non-convex forms and solved with an appropriate non-

convex solver. Even if they are solved exactly, there is still no guarantee that the ADMM
iteration will converge, as the convergence result is only for convex problems. It is also likely
that solving the non-convex problem exactly at each stage is not necessary because it will
be overwritten at the next iterate. Thus, we propose instead to linearize the non-convex
constraints using a first-order Taylor approximation around the the global reference of the
coupling variables. The intuition behind this is that because the ADMM iterations include
the quadratic penalty on the distance from the global copy, that if we take the global copy as
the linearization point, the solution will stay near the linearization point, making the linear
approximation a good approximation. The constraints are re-linearized every iteration, which
it turns out is not computationally intensive. Because of the re-linearization, it follows that
if the algorithm converges to a fixed point, then it satisfies the full AC power flow equations,
and is at least a local optimum of the non-linear and non-convex optimal AC power flow
problem with voltage and line loading constraints.

To compute the linearization, we use the gradient of uI
ij
′T
uV
i
′
at the point (uV

i , u
I
ij). The

gradient is simply
[
uI
ij
T

uV
i
T
]
. Thus, the linear Taylor approximation for pij with respect
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to (uV
i
′
, uI

ij
′
) around the point (uV

i , u
I
ij) is:

p′ij ≈ uI
ij

T
(uV

i

′ − uV
i ) + uV

i

T
(uI

ij

′ − uI
ij) + uI

ij

T
uV
i

= uI
ij

T
uV
i

′
+ uV

i

T
uI
ij

′ − uI
ij

T
uV
i (4.41)

Similarly, the linear approximation of voltage magnitude squared is

||uV
i

′||22 ≈ 2uV
i

T
(uV

i

′ − uV
i ) + ||uV

i ||22
= 2uV

i

T
uV
i

′ − ||uV
i ||22 (4.42)

Both of these linearizations can be computed trivially at any operating point because
the gradient is given directly by the global references. We only linearize the non-convex
constraints. The other non-linear convex quadratic inequality constraints are left in their
original form so as not to introduce additional unnecessary approximations. However, it
may be advantageous from a computational perspective to linearize them as well so that the
problem has only linear constraints.

The linearized convex local update at internal nodes i ∈ N I is:

(ui
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, {uI
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k+1
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+
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∑
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= 0 (4.43a)

||uI
ij||22 ≤ Iij, ∀m ∈ Nn (4.43b)

||uV
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′||22 ≤ |Vn|2 (4.43c)

− 2uV
i
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′ ≤ ||uV
i

k||22 − |Vn|2 (4.43d)

The linearized convex local update at agent nodes n ∈ NA is:
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T
uI
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′ − uI
nj

T
uV
n = 0 (4.44c)

||uI
nj||22 ≤ Inj (4.44d)
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||uV
n

′||22 ≤ |Vn|2 (4.44e)

− ||uV
n

′||22 ≤ −|Vn|2 (4.44f)

Together with the global update, these local updates define the ADMM iteration for
non-convex non-linear AC power flow. The key features are:

• As for general consensus ADMM, the local updates can be computed in parallel without
sharing private information.

• The voltage phasors given by the global reference update completely define an AC power
flow solution at every iteration.

• If the iterations converge, then the local target power injections give a solution to the AC
power flow problem.

• The global update cannot be solved entireley in parallel. It is first necessary to map the
error on each line through a dense matrix.

As an alternative to this approach, a static linearization or a convex relaxation that is
not updated every iteration could be used to approximate AC power flow. These would be
guaranteed to converge, but not necessarily to a solution of the AC power flow problem.

Discussion

The preceding section shows how the ADMM algorithm can be used to find the optimal
power dispatch through agent-based decisions with coordination. At each iteration of the
algorithm, agents receive a price signal and a reference quantity, and then update their
quantity. As the process repeats, the prices and quantities converge asymptotically to an
equilibrium. This can be thought of as a bidding system and leads to potential new markets
for electricity incorporating DERs. Here we share some perspective on important consid-
erations for implementing a system based on this algorithm in real electricity networks:
monetary transactions associated with the bidding, synchronization of bidding, and bidding
over horizons with multiple time periods.

The variable π that results from the iteration gives an efficient per unit price for electricity,
which could be used as the basis for new electricity markets. In the lossless line formulation
ignoring voltage drop, the price for power injection is defined at each agent node. This can
be used as a price for agents participating in the market. At internal nodes, the prices are
defined for power transfer on each line. While these are not directly presented to agents, they
can be used to analyze congestion. In the full AC power flow formulation, the price is not
directly defined in terms of power, but in terms of voltage at each node and current on each
line. These prices also have two dimensions as they are phasors, which is a mathematical
convention that is not intuitive to general market participants without a power systems
engineering background. However, these complex prices can be translated to prices on real
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and reactive power for any given voltage and current phasors, so this is not a blocking issue for
structuring transactions. On the other hand, it also opens up a new avenue to consider pricing
directly in terms of these voltage and current phasors, and to explore whether using phasor
measurement units (PMUs) for electricity metering presents any advantages for efficient
market design.

ADMM relies on the quadratic penalty term with parameter ρ as part of the cost function.
How does this fit into a material transaction? We offer two approaches for exploration. One
is to leave it out of any real monetary transaction and require that agents include this penalty
in their decision – essentially programming the rule directly into the agent. Enforcing this
would require both a set of standards and specifications along with a system to validate
that the software agents conform to these. As any movement to use this kind of system
would require large-scale institutional coordination among utilities, industry, government,
and consumer advocates, developing this enforcement infrastructure is possible to consider.
A second more decentralized approach is to make the penalty a real bidding cost that agents
pay each time they update their bid; i.e. at each iteration. Two advantages to this are that
it does not require additional rules and standards, and that it generates surplus revenue for
the system. On the other hand, it imposes additional costs on the participants. Clearly,
either of these options demand much more study, but we point out a couple of observations
here about the second option of including the cost.

First, although these payments would generate surplus revenue for the system, it should
not be confused with a per-unit tax or charge, especially in that it does not affect the
equilibrium price and quantity. Second, at each iteration of the bidding, the agent always
has the option to pay zero penalty by not changing their quantity from the reference. Thus,
any penalty they pay at each iteration for adjusting their bid is less than their payoff from
the new bid. However, this does not say definitively how their cumulative penalties over all
iterations compare to their payoff from the final price and quantity. If these costs are large,
then there would be a large payment to the system that might be unfair or could cause
individuals to opt not to participate. Third, the payment depends strongly on ρ, but this
parameter also affects how long the bidding takes to converge, so it cannot be adjusted in
isolation solely to control this payment amount. Additional mathematical analysis on the
cumulative payment would help to clarify how large these costs are and how they depend
on ρ. Especially in the case that they are large, mechanisms to re-distribute excess surplus
will be important.

The classic ADMM algorithm is synchronous, meaning that all agents update their bids
before each iteration is complete. In practice, with large numbers of agents, perfect syn-
chrony is unrealistic. Even if the algorithm is structured to be nominally synchronous, there
will inevitably be communication failures or computational delays that prevent agents from
submitting their updates reliably on time, and it necessitates choosing a regular interval for
the iterations that may need to be overly long to nominally allow all agents to compute an
update. Designing the iteration to be partially asynchronous, where only a subset of agents
update their bids in a period of time, or fully asynchronous and event-driven, where the
global variables are updated in response to each agent’s update will facilitate deployment in
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real systems and may even improve the algorithm’s convergence time. When the algorithm
is asynchronous, the convergence analysis becomes more complicated, but approaches pro-
posed in [125, 131] and more general methods described in [123] are promising foundations
for an asynchronous approach.

Lastly, we bring the multi-period time horizon back into focus. The iteration presented
in this chapter did not have an explicit temporal dimension, rather we treated it implicitly
as happening across all time periods in a horizon simultaneously. There are a few important
details and opportunities about this. First, all of the bidding described in this section is
looking ahead into the future, so the agents’ models are based on forecasts, which are made
explicit in the definition of the agent models.6 Second, the ADMM global and price updates
for each time period are independent; the time periods are only coupled through agents’
decision models, and specifically battery agents or load agents with time-shiftable loads.
So a battery will choose their quantity for all time periods simultaneously, but the price
and reference quantities are adjusted in parallel for each time period. In an asynchronous
architecture, agents would not need to update quantities for all time periods simultaneously,
which could reduce the information processing burden by only having agents’ publish updates
where there are significant changes. Lastly, there is a strong justification for using time
periods of different lengths with periods growing longer the further out they are in the time
horizon. For example, the first 1 to 2 hours could be discretized into 5 to 15 minute periods,
the next 4 to 8 hours in 30 minute to 1 hour periods, the next 12 to 36 hours in 2 to 4 hour
periods, and so on until the horizon extends at least several days and up to a week. This
gives granularity in the short run while approximating the long run and limiting the number
of time periods in the decision models. Using this approach, the markets can be extended
even to monthly or annual scales to capture long term demand forecasts and the seasonality
of renewables and guide investment decisions. It is important to keep in mind that the
quantities are averaged over each period and thus obscure fluctuations within periods; i.e.
the average price over a day may be very different from the peak price. Therefore, future
prices will not accurately capture the charging and discharging constraints of storage within
the period, but it does give an approximation of the relative value of energy in one period
vs another.

As time moves forward, the longer periods move up in the horizon and get discretized
into smaller periods. For example, at 1 AM, the 2 hour period from 9 AM to 11 AM
would become 4 new 30 minute periods, and at 7 AM, these 30 minute periods would be
discreteized into 15 minute periods. The exact parameterization of when to increase the
resolution and to what granularity should be designed to balance the benefits of increasing
resolution against the additional complexity of having more periods. The key idea is that
as a future period approaches real time, the period reduces to the order of minutes so the

6Briefly on the effect of forecast uncertainty, we can say that the decomposition still applies with respect
to maximizing expected value, and if each agents’ forecasts are independent, then each agent can separately
optimize under their own uncertainty and collectively maximize total welfare. However, when forecasts are
not independent, the decentralized approach either requires shared information about forecast covariance,
or it will be suboptimal.
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prices approximate real-time pricing. When a period is discretized, there is an opportunity
to “warm-start” the bidding by taking whatever the price and reference quantities were for
the longer period and using it as the intial point for each of the smaller periods that come
from the discretization. This means that it may only take a few bidding iterations for the
dispatch to converge to a new optimum with increased resolution. Similarly, as time moves
forward and the system begins to consider a new period, such as several days ahead, the
prices and reference quantities can be be warm-started to something like the prior last period
or some other simple heuristic like an autoregressive moving average that gives an estimate
of the equilibrium.

When the future period moves to real time, the bidding closes and control is handed off
from the tertiary layer to the secondary. The prices are fixed and the quantities become
reference injection or withdrawal setpoints at each node for the secondary control system. It
is not necessary that the bidding has converged exactly to an equilibrium; there will generally
be an imbalance between supply and demand that is handled by the primary and secondary
controls. There is an opportunity to keep the quadratic penalty term with parameter ρ in
play as a penalty on the tracking error; i.e. penalizing each agent from deviating from their
forward commitment. Conceptually, this is in line with the idea of explicitly charging the
cost penalty discussed above. The next section focuses on the real time system rather than
the forward market through a novel secondary control that continues to include a type of
bidding that incorporates economic information while re-balancing the system and stabilizing
voltage and frequency.

4.4 Economic secondary control with online ADMM

In this section we use ADMM to derive a secondary control system that solves the optimal
power flow problem in real time. This is closely connected in spirit to foundational papers
[30, 21, 37] and other works that have derived feedback controllers that use the system
dynamics to solve an optimization problem in real time. However, these specific papers rely
on quadratic or strongly convex cost functions to derive the feedback controller, which limits
their applicability to more general DER participation in smart grids. The key difference with
the approach here is not that the optimization problem seeks to maximize utility instead of
cost, but that it applies to more general concave utility functions (or equivalently convex
cost functions) that are not required to be quadratic or even differentiable. The result is a
novel approach to secondary control that converges to the optimal power flow solution.

The technique used here is first to state the optimal power flow problem and transform
it into a form for consensus ADMM. However, unlike in the previous section, the coupling
constraints will be enforced in the global update, and these constraints are exactly the
power flow equations. Instead of being solved computationally, these constraints are solved
physically. Next, the solution to the global update is derived analytically in terms of the price,
network parameters, and local target variables. Lastly, the feedback control system is reverse-
engineered so that it converges in steady state to the solution to the global update problem.
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Thus, the global update is solved by the physical system rather than computationally, and
the ADMM iterations proceed in real time. The real time iteration consists of each agent
solving for their local target, then control system setpoints and/or gains are updated, then
the system runs for a period of time until it reaches steady state, then the price is updated,
and the iteration repeats. In practice, these iterations could proceed on the order of tens of
seconds to minutes.

This online algorithm complements the preceding section. The ADMM-based bidding
described previously can run as a forward market; however, due to changing conditions,
forecast inaccuracy, model error, or incomplete convergence, its solution will not in general
satisfy the power flow equations exactly, and some feedback control will be necessary to
maintain stability in real time. The traditional function of secondary control is to re-balance
the system after disturbances to try and stay close to the solution of the optimal power
flow problem. The novel online secondary control algorithm proposed here performs this re-
balancing in a way that allows market participation to continue in real time, thus responding
to the changing state of the system in an economically optimal way.

We apply this approach using only the DC power flow model for simplicity and to illus-
trate the concept. The extension to full power flow is left for future work.

Optimal control as consensus ADMM

The optimization problem we are trying to solve is simply maximizing the sum of all in-
dividual utility functions subject to the DC power flow constraints. Before proceeding, it
is important to specify what is controllable in this context. We assume that all batteries
and solar resources have a controllable power output, but that the loads do not. How the
resources are controlled does not come into play directly until the next section, but we will
assume they are controlled with active power vs. frequency droop. We assume the loads
are not controllable mostly to establish that the approach does not require all loads to be
continuously controllable – in practice most loads can only be turned on or off – but also
because we assume that by this point the electricity user or their smart load agent has al-
ready adjusted their planned consumption as much as they are willing in response to the
forward price and that additional real-time control would be a nuisance. We also assume the
microgrid is islanded, so there is no interconnection agent.

Assume that the n’th agent is at node i, and that they are numbered so that n = i. Let
p denote the vector of power injections at all controllable nodes, and pu be vector of power
injections at all other nodes. Similarly let θ be the vector of voltage phase angles at each
controllable node and θu the angle at all other nodes. Let the nodes be ordered so that all
controllable nodes appear before uncontrollable nodes in the ordering. Let B be the nodal
susceptance matrix, the imaginary part of the nodal admittance matrix. Let θ be the voltage
phase angle at each node, and partitioned analagously to p into the angle at controllable and
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uncontrollable nodes θc and θu. The DC power flow equations are:[
p
pu

]
=

[
Bcc Bcu

Buc Buu

] [
θ
θu

]
(4.45)

The block form of B is given so that we may compute the reduced power flow equations
using the Kron reduction. See [29] for a detailed discussion of the Kron reduction that
includes these reduced power flow equations and a proof that it is well-defined for the nodal
admittance matrix. The Kron reduction uses the reduced matrix Bred and the accompanying
matrix Bac to define the reduced DC power flow equations:

Bac : = −BcuBuu−1 (4.46a)

Bred : = Bcc +BacBuc (4.46b)

p = Bredθ −Bacpu (4.46c)

These equations give the controllable power injection in terms of the angle at the controllable
nodes and the power injection at uncontrollable nodes; the angle at uncontrollable notes has
already been solved for in this form and does not appear in the equations. To connect the
power flow to the agent’s consumption, let p′ denote the target power consumption for each
controllable resource, with p′ = −p. Thus, we can state the optimization problem as

min
p′,p,θ

∑
n

−Un(zn) (4.47a)

s.t. (p′n, zn) ∈ Cn (4.47b)

p′ + p = 0 (4.47c)

p = Bredθ −Bacpu (4.47d)

This is conveniently in the form for consensus ADMM, with p′ as the local target, and p
as the global coupling variable. Unlike in the previous section, the coupling constraint (i.e.
the reduced DC power flow equations) is stated in terms of the global variables. This is
because we are developing an online approach that will exploit the fact that the physics of
the system solve the coupling constraint, whereas in the previous section it was advantageous
for computational simplicity to state the coupling constraint in terms of the local update.

The ADMM iterations to solve (4.47) are:

pk+1
n

′
= argmin

p′n|zn
−Un(zn) + πp′n +

ρ

2
(p′n − pkn)

2 (4.48a)

s.t. (p′n, zn) ∈ Cn (4.48b)

pk+1 = argmin
p|θ

−πTp+
ρ

2
||p′ − p||22 (4.48c)

s.t. p = Bredθ −Bacpu (4.48d)
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πk+1 = πk + ρ(pk+1
n

′ − pk+1) (4.48e)

The global update can be solved analytically:

pk+1 = Bred

(
1

ρ
π + p′

k+1
+Bacpu

)
−Bacpu (4.49)

In the next section, we show how a droop control system with appropriate biases can be
designed so that the power p converges to this value in steady state.

Before proceeding, we note one limitation of the model (4.47), which is that it does
not include line loading constraints or model congestion, unlike the models of the previous
section. If these inequality constraints are included, we can no longer solve the global update
analytically.

Reverse engineered secondary control

In this section, we show how appropriate biases can be set so that the power injections
converge to the solution of the global update in steady state, assuming the controllable
nodes use active power / frequency droop. We first derive the steady-state power injections
in the time domain. We then set the steady-state value equal to (4.49), which yields a
formula for optimal biases.

The active power / frequency droop equations are:

θ̇ = −K(p− p̂) (4.50a)

= −KBredθ +K(p̂+Bacpu) (4.50b)

where K ≻ 0 is a positive-definite diagonal matrix of droop gains, p̂ is the power bias, and
θ̇ is the angular frequency. It is critical that all droop gains are positive for the system to
be stable. The angular frequency is implicitly defined as the shift relative to the nominal
synchronous frequency, i.e. 50 Hz in most of the world or 60 Hz in North America, and the
angles themselves are likewise in this reference frame. The second equation follows from
substituting the DC power flow equations.

In order to write the solution in the time domain, it is necessary to first analyze the matrix
KBred. First, the system is exponentially stable if and only if KBred is positive definite (i.e.
iff all eigenvalues of KBred are strictly greater than zero). We can see directly that this is
not the case, because Bred is a weighted nodal Laplacian,7 and thus has 0 as an eigenvalue,
with 1 as the associated eigenvector. Therefore 0 is also an eigenvalue of KBred, with 1 as
the associated eigenvector. However, it can be shown that KBred is positive semi-definite,
and that the eigenvalue 0 is not repeated. This is because, for two symmetric matrices X
and Y , if X is positive definite, then XY has the same number of positive, negative, and

7It is proved in [29] that the Kron reduction of the admittance matrix is also a nodal Laplacian, and
thus has all the same structural properties of a generic admittance matrix
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zero eigenvalues as Y . This fact follows from the identity λ(XY ) = λ(
√
XY
√
X), where

λ() denotes the function yielding the set of eigenvalues of a matrix, and Sylvester’s Law of
Inertia. Thus, because Bred has no negative eigenvalues, a 0 eigenvalue with multiplicity 1,
and all the remaining eigenvalues positive, the eigenvalues ofKBred have the same properties.
Given this, we can diagonalize KBred as follows:

KBred = Y DY −1 (4.51)

D : =

[
0 0
0 Λ

]
(4.52)

Y : =
[
y1 . . . yN

]
(4.53)

y1 = 1 (4.54)

where Λ is a diagonal matrix of strictly positive eigenvalues. Each yn is an eigenvector of
KB.

With this diagonalization, we can proceed to write the solutions for θ and p over time.
Assume that p̂ and pu are constant inputs over the time horizon. The solutions for θ and p
over time, denoted θ(t) and p(t) are:

θ(t) = exp (−KBredt)θ(0) +

∫ t

0

exp (−KBred(t− τ))K(p̂+Bacpu)dτ

= Y exp (−Dt)Y −1θ(0) + Y

(∫ t

0

exp (−D(t− τ))dτ

)
Y −1K(p̂+Bacpu) (4.55a)

p(t) = Bredθ(t)−Bacpu

= BredY exp (−Dt)Y −1θ(0)

+BredY

(∫ t

0

exp (−D(t− τ))dτ

)
Y −1K(p̂+Bacpu)−Bacpu (4.55b)

Note also that BredY = K−1Y D by the definition of the diagonalization of KBred. By
making this substitution, solving the integral, and expanding the matrix exponential, we get

p(t) = K−1Y D

[
1 0
0 exp (−Λt)

]
Y −1θ(0)

+K−1Y D

[
t 0
0 (I − exp (−Λt))Λ−1

]
Y −1K(p̂+Bacpu)−Bacpu

= K−1Y

[
0 0
0 Λ

] [
1 0
0 exp (−Λt)

]
Y −1θ(0)

+K−1Y

[
0 0
0 Λ

] [
t 0
0 (I − exp (−Λt))Λ−1

]
Y −1K(p̂+Bacpu)−Bacpu

= K−1Y

[
0 0
0 Λ exp (−Λt)

]
Y −1θ(0)
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+K−1Y

[
0 0
0 I − exp (−Λt)

]
Y −1K(p̂+Bacpu)−Bacpu (4.56)

Finally, the steady-state solution is obtained by taking the limit as t → ∞. Because
Λ ≻ 0, all the exponential terms decay to 0. Let the steady state solution be denoted simply
by p:

p = K−1Y

[
0 0
0 I

]
Y −1K(p̂+Bacpu)−Bacpu (4.57)

Our objective is for p to solve the global update equations. So we set p equal to pk+1

using equation (4.49):

Bred(ρ−1πk + p′
k+1

+Bacpu)−Bacpu = K−1Y

[
0 0
0 I

]
Y −1K (p̂+Bacpu)−Bacpu (4.58)

=⇒ KBred(ρ−1πk + p′
k+1

+Bacpu) = Y

[
0 0
0 I

]
Y −1K (p̂+Bacpu) (4.59)

=⇒ Y DY −1(ρ−1πk + p′
k+1

+Bacpu) = Y

[
0 0
0 I

]
Y −1K (p̂+Bacpu) (4.60)

This equation is satisfied by:

p̂ = K−1Y DY −1(ρ−1πk + p′
k+1

+Bacpu)−Bacpu

= Bred(ρ−1πk + p′
k+1

+Bacpu)−Bacpu (4.61)

Thus, if the bias for droop control is set by this formula, the steady-state power injections
solve the global update.

To understand the information exchange required to compute these biases, consider the
formula for a particular node n:

p̂n = Bred
n (ρ−1πk + p′

k+1
+Bac

n pu)−Bacpu (4.62)

= (ρ−1πk
n + p′n

k+1
+Bac

n pu)
∑
j∈Nn

Im(Ynj)

+
∑
j∈Nn

Im(Ynj)(ρ
−1πk

j + p′j
k+1

+Bac
n pu)−Bac

n pu (4.63)

where Bred
n and Bac

n are the n’th rows of Bred and Bred. Therefore, the only external informa-
tion required to set the bias is the price and target power at neighboring nodes in the reduced
network Bred, the power injection at neighboring nodes in the accompanying network Bac,
and the line admittance between these neighbors. The update can be computed with only
information from its neighbors, so it can be accomplished with peer-to-peer communication.
Contrast this against conventional secondary control, where generator biases are adjusted
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by the centrally computed Area Control Error (ACE). Once the biases are obtained, the
feedback control is done locally.

Note that the power injections at the uncontrollable nodes pu may not in fact in be
constant, in which case the steady-state power injections will not be exactly the desired
solution to the global update equations.

It is also important to consider how long the system will take to converge to steady-
state, and whether this is practical. This is controlled by the smallest non-zero eigenvalue
of KBred, which is bounded below by the smallest eigenvalue of K. Because K is diagonal,
its entries kn are the eigenvalues. A typical value for K for fossil-fuel generators is in the
neighborhood of 0.05 in per unit generator capacity notation, meaning a 5% increase in
frequency corresponds to shedding the entire unit’s capacity. This decays completely on the
order of 1 minute. Converter interfaced generation is capable of responding much faster, so
convergence on the order of seconds or tens of seconds is possible.

All of the above describes one step in the online ADMM iteration to “compute” the new
global reference by physically steering the system to a new state. Once the system converges
to this state, the price is updated as:

πk+1
n = πk

n + ρ(p′n
k+1 − pk+1

n ) (4.64)

and the iteration repeats. The next iteration proceeds by updating the local targets p′n given
the state of the DERs and their associated utility functions, computing the biases p̂n using
formula (4.61), waiting for the system to converge to a new pn, and then updating the price
by (4.64).

Discussion

The online ADMM algorithm is a novel approach to secondary control that rebalances the
system in an economically optimal way. The forward bidding described in the previous
section, also referred to as the tertiary layer, will generally not yield power injection setpoints
that are perfectly balanced because of forecast error and model uncertainty. The power
converters are built to automatically correct the imbalance between supply and demand by
using droop control. Droop control adjusts the frequency of each DER proportionally to how
much the DER’s power injection deviates from its bias, which we denote p̂. This stabilizes
frequency and balances the supply and demand, or the injections and withdrawals, on the
network. However, in doing so, the power injection of each generator deviates from its bias
and the frequency deviates from the nominal value of 50 Hz or 60 Hz. The secondary control
recomputes the biases iteratively, which we call rebalancing, until eventually the bias and the
injections are equal and the frequency is restored to zero. Classic secondary control drives the
system to a point that minimizes the Area Control Error (ACE), which is a composite of the
deviation between the target injection from the tertiary layer and the frequency deviation.
By using the online ADMM algorithm, the rebalancing instead moves the system towards
the economically optimal operating point.
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The economic information is captured by the agents’ utility functions. For batteries,
the utility functions capture the future value of stored energy, which is given by the prices
in the forward markets of the tertiary layer. To achieve this, the battery agents must
be simultaneously participating in the secondary control system and the tertiary bidding
system, and there is information exchange between the two. The current state of charge of
the battery is used in the agent’s decision model in the tertiary system, and the future prices
from the tertiary bidding system are used in the agent’s decision model in the secondary
system. In a synchronized implementation, it is possible that the secondary control action
to adjust the real time biases of the DERs system could be synchronized with the bidding;
i.e. both the real time biases and the forward bids could be updated something like every
15 or 30 seconds. As in the previous section, an asynchronous implementation is likely to
be more flexible and robust, but further theoretical work to characterize the convergence of
asynchronous approaches is needed.

The concept of warm starting discussed in Section 4.3 is useful to further clarify the
interface between the tertiary and secondary layer. Suppose the smallest period in tertiary
bidding layer is 5 minutes, starting at 9:00 AM. At 9:00 AM, the current state of the bidding
layer, which are the prices and reference withdrawals, become the (negative of) the initial
price and global reference in the online ADMM secondary control. This is a form of warm
starting, as these initial values should be close to the economic equilibrium. Suppose the
power injections take 15 seconds to converge to steady state. This means 20 ADMM itera-
tions can take place before 9:05 AM when it starts over with a new price and global reference.
Simulation experiments are needed to validate whether this is sufficient to converge to an
economic equilibrium.

Lastly, we note that more study of the frequency deviations associated with this approach
is necessary. While an increasing number of loads do not require strict regulation to 50 Hz or
60 Hz, many still do. Moreover, many protection systems, including automatic disconnection
of DERs, are triggered by frequency deviations. The approach described here stabilizes fre-
quency and does converge to an economic equilibrium that also has zero frequency deviation,
but it remains to be studied how much frequency deviates before it converges and whether
this is acceptable.
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Conclusion

This thesis shows how energy management systems focusing on the value of electricity can
improve access to electricity in low-carbon and zero-carbon microgrids. Chapter 1 conducts
a high-level economic analysis of the costs of decentralized solar plus battery systems with-
out exploring adjusting consumption in response to scarcity. The following chapters focus
on managing electricity consumption and developing systems that improve the value of elec-
tricity as a constrained resource. Altogether, this work shows the efficacy of decentralized
systems for increasing energy access while proposing ways to improve the technical opera-
tional systems for allocating electricity. It concludes here with three critical questions for
researchers to shape how we approach designing accessible electricity systems.

Question 1: What are the human interfaces to enable active prosumer participation in
energy management systems?

A critique of Chapters 2-4 is that they assume to varying degrees that individuals think
about their electricity consumption rationally, with detailed knowledge of how much energy
their appliances consume, and have quantified notions of value from electricity use, which
is clearly not the case in reality. Although each of the chapters is careful to show that the
systems themselves can still function to provide reliable electricity without these strong as-
sumptions, the argument that they improve access through better value and more efficient
use than the status quo requires a different level of individual engagement than exists today.
Technology will be fundamental in this transition, specifically educational systems to make
technical knowledge of electricity more accessible to people, such as to understand units of
electricity and how much their activities and appliances consume, and also systems to collect
and learn user’s preferences so that agents can participate in transactional systems on their
behalf. The fields of human-computer interaction, behavioral economics, and psychology can
contribute here, and the emerging “smart-home” industry is an arena where real-life expe-
rience can validate design principles in practice. We should not, however, expect principles
from households in one geography to necessarily hold in another, nor to necessarily hold in
commercial and industrial settings.

Question 2: What are the equity and justice implications of decentralization?
This thesis argues for grid decentralization on its engineering and economic efficiency

merits, but decentralization can have both positive and negative impacts on equity and
justice. In the positive direction, decentralized systems provide an alternative means for
those who are excluded from the status quo of electricity systems to gain access. In rural



124

regions throughout the global south, decentralized solar home systems and microgrids have
brought unprecedented electricity access to millions of people. Decentralized systems also
allow communities and individuals to own and control their electricity supplies, allowing
them to use more renewable energy, lower their costs of energy, and increase their resilience
to extreme weather and disruptions in the electricity system. One can also view decentralized
and locally generated electricity as a form of restorative justice against the extractive legacy
of fossil fuels. On the other hand, increasing decentralization is likely to lead to more
variable and unequal access to electricity by potentially undermining societies’ commitment
to providing equal access to centralized grid infrastructure. Whether this potential for more
variable access is equitable or just is subjective, but it is difficult to argue that increasing
inequality is consistent with widely accepted social ideals such as those in the Sustainable
Development Goals. Beyond the question of the distribution of access, we need to ask
seriously how fragmenting electricity grids into smaller units affects the cohesion of society
and debates over the role of electricity grids and infrastructure more generally as a common
resource regulated by economic principles versus a public good.

Question 3: How would the management systems described here change pathways to uni-
versal access?

This is partly answered by question two, as equity and justice are a critical part of path-
ways to universal access, but there are other technical elements to this as well. International
institutions rely on large scale electricity planning models on the time scales of years to
decades to build and compare scenarios that achieve universal access, typically based on
cost-minimization. Static models typically advise which regions are more cost effectively
served by extending centralized grids vs decentralized solutions, and those with a dynamic
component simulate expanding centralized grids while simultaneously deploying decentral-
ized solutions. The maps of where to build when and the corresponding investment strategy
advise electrification policy. If we incorporate the various operational regimes described in
Chapters 2-4 into planning models of the kind addressed by Chapter 1, it might show, hy-
pothetically, that a pathway that includes investing widely in decentralized solutions and
incrementally expanding and interconnecting them with smaller scale networks may provide
more access more quickly and efficiently.
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[106] Sándor Szabó et al. “Energy solutions in rural Africa: mapping electrification costs
of distributed solar and diesel generation versus grid extension”. In: Environmental
Research Letters 6.3 (July 2011), p. 034002. issn: 1748-9326. doi: 10.1088/1748-93
26/6/3/034002. url: http://stacks.iop.org/1748-9326/6/i=3/a=034002?key
=crossref.89590e74fed5b2bdbff442f147cb9d62.
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