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Defining blood-induced microglia  
functions in neurodegeneration through 
multiomic profiling

Andrew S. Mendiola    1,2, Zhaoqi Yan    1,2, Karuna Dixit    1,2, Jeffrey R. Johnson1, 
Mehdi Bouhaddou3,4, Anke Meyer-Franke1, Min-Gyoung Shin1, Yu Yong1,2, 
Ayushi Agrawal    1, Eilidh MacDonald    1,2, Gayathri Muthukumar1, 
Clairice Pearce1,2, Nikhita Arun1,2, Belinda Cabriga1,2, Rosa Meza-Acevedo1,2, 
Maria del Pilar S. Alzamora    1,2, Scott S. Zamvil    5, Alexander R. Pico    1, 
Jae Kyu Ryu    1,2,5, Nevan J. Krogan    1,4,6 & Katerina Akassoglou    1,2,5 

Blood protein extravasation through a disrupted blood–brain barrier 
and innate immune activation are hallmarks of neurological diseases and 
emerging therapeutic targets. However, how blood proteins polarize innate 
immune cells remains largely unknown. Here, we established an unbiased 
blood-innate immunity multiomic and genetic loss-of-function pipeline to 
define the transcriptome and g lo bal p ho sp ho pr oteome of blood-induced 
innate immune polarization and its role in microglia neurotoxicity. Blood 
induced widespread microglial transcriptional changes, including changes 
involving oxidative stress and neurodegenerative genes. Comparative 
functional multiomics showed that blood proteins induce distinct 
receptor-mediated transcriptional programs in microglia and macrophages, 
such as redox, type I interferon and lymphocyte recruitment. Deletion of 
the blood coagulation factor fibrinogen largely reversed blood-induced 
microglia neurodegenerative signatures. Genetic elimination of the 
fibrinogen-binding motif to CD11b in Alzheimer’s disease mice reduced 
microglial lipid metabolism a nd n eu ro de ge ne rative signatures that were 
shared with autoimmune-driven n eu roinflammation in multiple sclerosis 
mice. Our data provide an interactive resource for investigation of the 
immunology of blood proteins that could support therapeutic targeting of 
microglia activation by immune and vascular signals.

Vascular and immune signals are potent activators of the innate immune 
response in a wide range of autoimmune, inflammatory and infec-
tious diseases in the brain and the periphery1–4. Innate immune cells 
integrate environmental signals to rapidly activate target genes and 

perform specialized cellular functions5. Pathogenic activation of micro-
glia contributes to oxidative stress, inflammation and neurodegen-
eration in both Alzheimer’s disease (AD) and multiple sclerosis (MS)6. 
Blood–brain barrier (BBB) disruption is an early pathological feature 
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(Fig. 1b,c, Extended Data Fig. 2 and Supplementary Tables 2 and 3). 
Indeed, the number of genes in the blood-induced microglia gene 
network was reduced by 97%, with significant downregulation of 
52% of the genes, when plasma was derived from Fga−/− mice (Fig. 1f, 
Extended Data Fig. 3 and Supplementary Table 3), suggesting that 
fibrinogen is a key protein in the blood that induces microglia acti-
vation. Through unbiased KEGG pathway analysis of DEGs between 
Fga−/− and WT plasma-stimulated microglia, we identified the 12 top 
pathways induced by fibrinogen, including ROS (for example, Hmox1, 
Cox7a2, Slc25a5), COVID-19 (for example, Ccl12, Rps8, Rpl35) and AD 
(for example, Atp5e, Psmd2, Tubb5) (Fig. 1e,g). Similarly, microglia 
gene expression was reduced in response to plasma from Fggγ390–396A 
mice, in which fibrinogen had been mutated to lack the CD11b–CD18 
binding motif but retained normal clotting function19,23 compared 
with WT plasma (Fig. 1c and Supplementary Table 2). Whereas the 
effect of C3−/− or Alb−/− plasma on microglia was largely similar to that 
of WT plasma (five and three DEGs, respectively), Fga−/− and Fggγ390–396A 
plasma induced major gene expression changes in microglia (348 and 
331 DEGs, respectively) (Fig. 1c, Extended Data Fig. 2 and Supplemen-
tary Table 2). These results are consistent with reduced demyelination 
in the corpus callosum induced by Fga−/− or Fggγ390–396A plasma com-
pared with WT plasma or fibrinogen administration21,24. Collectively, 
these results suggest that there is specificity among blood proteins 
in the induction of microglia transcriptional changes, indicating that 
fibrinogen signaling is a critical regulator in the blood for the induc-
tion of oxidative stress and disease-induced signatures in microglia 
following BBB leakage.

Single-cell RNA-seq reveals distinct fibrin and iC3b gene 
signatures
To determine how innate immune cells polarize in response to 
immune and vascular signals, we first generated single-cell RNA-seq 
(scRNA-seq) profiles from fibrin-, complement iC3b- or LPS-stimulated 
primary microglia (Fig. 2a–e and Extended Data Fig. 4). Gene set 
enrichment analysis (GSEA) of top DEGs identified fibrin-induced 
genes controlling oxidative stress and redox regulation (for example, 
Cybb, Ncf1, Clec4e) and the type 1 interferon (IFN)-stimulated gene 
(ISG) family (for example, Isg15, Ifit3 and Ifit2), which were selec-
tively enriched in cluster 4 ‘Mg-fibrin-cluster’ (Fig. 2f). iC3b-treated 
cells overlapped with fibrin-treated cells (clusters 0, 1, 5 and 6; here 
termed ‘fibrin-iC3b-clusters’) and were characterized by 1,184 coregu-
lated genes, with 111 genes (~9%) overlapping with LPS-induced gene 
response (Fig. 2c,d and Supplementary Table 4). Both fibrin and iC3b 
induced common gene signatures related to pathways of oxidative 
stress (for example, Hmox1, Prdx6 and Txnrd1), phospholipid metabo-
lism (for example, C1qa, Sepp1 and Clec7a) and organization of extra-
cellular matrix (ECM) (for example, Ctsl, Lgals3 and Apoe) (Fig. 2f and 
Supplementary Table 4). As expected, LPS activated gene expression 
programs of the inflammatory response including mitogen-activated 
protein kinase (MAPK) activity in microglia (Fig. 2f and Supplementary 
Table 4). Overall, these results highlight ligand-selective gene circuits 
in microglia.

linked to microglial activation, neurodegeneration and progression in 
MS, AD and other neurological diseases3,7. Upon BBB disruption, toxic 
blood proteins extravasate into the brain, altering the environmental 
milieu7–10. Blood coagulation and complement pathways are key activa-
tors of innate immunity that are coregulated in aging, cancer, and neu-
rological, psychiatric and infectious diseases11–17. The blood coagulation 
protein fibrinogen is converted to insoluble fibrin at sites of vascular 
damage and induces microglia activation and neurodegeneration via 
the CD11b–CD18 integrin receptor (also known as complement recep-
tor 3 (CR3), αMβ2 or Mac-1)3,18–21. CR3 also binds additional structurally 
unrelated ligands with diverse immunomodulatory functions, includ-
ing complement protein iC3b, which regulates synaptic, pathogen and 
debris clearance via phagocytosis1,22. However, how microglia integrate 
extracellular signals at sites of cerebrovascular damage and the speci-
ficity of blood proteins controlling innate immune cell polarization in 
disease remain poorly understood.

We report a blood-induced microglia gene network and show 
that blood proteins elicit distinct receptor-mediated transcriptional 
changes and signaling programs in innate immune cells. We provide 
a transcriptomic and phosphoproteomic atlas of fibrin-, iC3b- and 
lipopolysaccharide (LPS)-selective activation of innate immunity and 
reveal ligand-selective pathways with differential functions in MS and 
AD mice. We identify fibrin–CD11b signaling as causal for neurotoxic 
microglial programming in disease. Moreover, our study provides a 
resource for the investigation of the immunology of blood proteins in 
inflammatory, autoimmune and neurodegenerative diseases.

Results
Blood-induced microglial transcriptomic profiling
To discover the molecular programs controlling microglial and mac-
rophage polarization by blood proteins, we developed an unbiased 
blood-innate immunity multiomic and genetic loss-of-function pipe-
line consisting of deep sequencing of blood-induced transcriptomes, 
functional single-cell and oxidative stress transcriptomics, global 
phosphoproteomics and integration with innate immune signatures 
from AD and MS models (Extended Data Fig. 1). To determine the 
blood-induced transcriptome in microglia, we stereotactically deliv-
ered wild-type (WT) plasma to the brain, followed by RNA sequencing 
(RNA-seq) analysis of sorted microglial cells (Fig. 1a and Supplemen-
tary Table 1). By unbiased analyses of differentially expressed genes 
(DEGs), gene ontology (GO) networks and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways, we showed that WT plasma induced 
widespread microglial transcriptional changes, including changes 
involving genes related to oxidative stress (for example, Hmox1, Romo1, 
Gpx1), disease-associated microglia (DAM) (for example, Cst7, Spp1) 
and the cell cycle (for example, Top2a, Cdkn2d), as well as reactive 
oxygen species (ROS), oxidative phosphorylation, neurodegenera-
tion, AD, glutathione metabolism and COVID-19 pathways (Fig. 1b–e 
and Supplementary Table 2). These changes were largely absent fol-
lowing stimulation with plasma derived from fibrinogen-deficient 
Fga−/− mice but were relatively preserved following stimulation with 
complement 3-deficient (C3−/−) or albumin-deficient (Alb−/−) plasma 

Fig. 1 | Transcriptional profiling of ligand-selective activation of blood-
induced microglial responses in vivo. a, Schematic of experimental design for 
transcriptional profiling of blood-induced microglial responses. b,c, Volcano 
plots of DEGs from RNA-seq analysis of sorted microglia from plasma-injected 
brains. Comparisons between DEGs in microglia of brains injected with WT 
plasma versus aCSF or Fga−/− plasma versus aCSF (b) and Fga−/− plasma versus WT 
plasma, Fggγ390–396A versus WT plasma or Alb−/− versus WT plasma (c) are shown. 
The log2 FC and −log10 adjusted P value cutoffs were log2 FC > 0.5, adjusted  
P < 0.1 with Wald test followed by Benjamini–Hochberg (BH) test correction.  
Top DEGs are shown. Data are from n = 6 Fga−/−, n = 6 WT, n = 6 aCSF and n = 8 Alb−/− 
mice. d, Coexpression GO networks upregulated in microglia by WT plasma. 
Adjusted P value <0.1 by hypergeometric test and BH test correction.  

e, GSEA plots of top upregulated and downregulated pathways in microglia 
from Fga−/− plasma-injected versus WT plasma-injected brains. Adjusted P value 
<0.1 by permutation test with BH test correction. f, Overlay of blood microglia 
GO network with microglial gene expression values from Fga−/− plasma-injected 
mice. Red shading, genes upregulated in microglia by WT plasma; blue shading, 
genes downregulated in microglia by Fga−/− plasma; orange border, *P < 0.1 (Wald 
test followed by BH test correction). g, Coexpression KEGG pathway networks of 
top upregulated and downregulated pathways in microglia from Fga−/− plasma-
injected versus WT plasma-injected brains. Adjusted P < 0.1 by hypergeometric 
distribution and BH test correction. Padjust, adjusted P value. Created with 
BioRender.com.
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Next, we performed a similar analysis on mouse bone-marrow- 
derived macrophages (BMDMs), unstimulated or treated with either 
fibrin, complement iC3b or LPS. Like microglia, BMDMs largely clustered 

into distinct ligand-induced transcriptional states, with clusters 
enriched for fibrin (clusters 1, 2, 5 and 6; termed ‘BMDM-fibrin-clusters’), 
iC3b (cluster 0; termed ‘BMDM-complement-cluster’) and LPS  
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(clusters 4 and 5; termed ‘BMDM-LPS-clusters’) (Fig. 3a–d, Extended 
Data Fig. 4f–i and Supplementary Table 5). Similar to stimulated micro-
glia, GSEA identified fibrin-induced genes Cxcl10, Hmox1, Ifit3, Prdx1, 
Clec4e, Nos2, Il1b and Stat1 linked with oxidative stress, IFN-I response, 
lipid metabolism, and T and B cell recruitment (Fig. 3d,e and Extended 
Data Fig. 4j, Supplementary Table 5). By contrast, GO analysis of the 
BMDM-complement-cluster showed enrichment of pathways for host 
defense response, myeloid cell differentiation, innate immune and 
lymphocyte activation and of related genes (for example, S100a8, 
S100a9, Cxcr4, Glul and Maf) (Fig. 3d,e and Extended Data Fig. 4j). 
Antiviral gene signatures were identified as shared GO terms in both the 
fibrin and iC3b clusters (Fig. 3e and Extended Data Fig. 4l). As expected 
for LPS-primed macrophages5, LPS clusters were enriched in gene 
pathways for MAPK activity, inflammatory cytokine and chemokine 
production, and chemotaxis (for example, Il1b, Il6 and Tnf) (Fig. 3d, 
Extended Data Fig. 4j and Supplementary Table 5). Pseudotime analysis 
showed a two-path transcriptional bifurcation from unstimulated to 
iC3b to the fibrin-induced state (path 1) or unstimulated to fibrin to the 
LPS-induced state (path 2) (Extended Data Fig. 5a,b and Supplementary 
Table 6), suggesting that the CR3 and TLR4 ligands induce distinct acti-
vation pathways. All cell clusters were enriched for monocyte-derived 
macrophage markers (for example, Lyz2, Cd14 and Ctsd) and had low 
expression of monocyte-derived dendritic cell markers (for example, 
Itgax) (Extended Data Fig. 5c), suggesting that undifferentiated or con-
taminating cells were not a major driver of clustering. Together, these 
results show that fibrin polarization primarily promotes prooxidant, 
lipid metabolism and IFN-I responses, whereas complement iC3b and 
LPS induce host defense and classical inflammatory states, respectively.

Phosphoproteomics reveal distinct fibrin and iC3b signaling
Although macrophage signal transduction pathways have been exten-
sively studied for Toll-like receptor ligands25, the downstream signaling 
cascades for CR3 ligand activation have not been characterized. We 
performed unbiased quantitative phosphoproteomics26 using mass 
spectrometry to globally characterize the dynamics of protein phos-
phorylation in response to complement iC3b or fibrin stimulation in 
RAW 264.7 macrophages. Hierarchical clustering analysis of detected 
phosphorylation sites revealed distinct signaling profiles for fibrin and 
iC3b (Extended Data Fig. 6a,b and Supplementary Tables 7 and 8). Fibrin 
initially induced a greater increase in global phosphorylation relative 
to iC3b, as evidenced by a significant increase in the detection and 
abundance of differentially expressed phosphosites (DEPs) 1 h after 
treatment (Extended Data Fig. 6a–c and Supplementary Table 9). iC3b 
stimulation induced a greater number of detected phosphosites at 3 h 
after stimulation (Extended Data Fig. 6a–c and Supplementary Table 9),  
suggesting differential phosphorylation kinetics.

Next, we generated the fibrin and iC3b phosphoproteomic inter-
action networks. Fibrin and iC3b induced unique and dynamic phos-
phorylation events, with few DEPs shared among ligands (Fig. 4a,b and 
Supplementary Tables 8 and 9). Fibrin induced robust phosphoryla-
tion of proteins including integrin-associated focal adhesion adaptor 
protein paxillin (PXN), nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase subunit neutrophil cytosolic factor 2 (NCF2), and 
mitochondria oxidative phosphorylation and metabolic function 
voltage-dependent anion-selective channel protein 1 (VDAC1) (Fig. 4a 
and Supplementary Table 8). Fibrin induced phosphorylation of Cdc42/

Rac-activated serine/threonine protein kinase 2 (PAK2), which links 
Rho GTPases to cytoskeleton reorganization and nuclear signaling, and 
redox regulators SWI/SNF-related matrix-associated actin-dependent 
regulator of chromatin subfamily A member 5 (SMARCA5) and elon-
gation factor 1-delta (EEF1D) (Fig. 4a and Supplementary Table 8). 
Fibrin also induced phosphorylation of IFN regulatory factor 2 binding 
protein 2 (IRF2BP2), which is a transcriptional cofactor inducing VEGF 
expression and angiogenesis. iC3b induced phosphorylation of death 
domain-associated protein (DAXX), secreted phosphoprotein 1 (SPP1, 
also known as osteopontin), ETS variant transcription factor 6 (ETV6) 
and STIP1 homology and U-Box containing protein 1 (STUB1) (Fig. 4a 
and Supplementary Table 8). Fibrin and iC3b induced phosphorylation 
of MAP2K2 (also known as MEK2), NF-κB-activating protein (NKAP) 
and Ran-binding protein 3 (RANBP3) (Fig. 4a and Supplementary 
Table 8). String functional enrichment identified differential pathways 
induced by fibrin including ‘VEGF signaling’, ‘T cell receptor signaling’, 
‘cytoskeleton organization’ and ‘focal adhesion’ and by iC3b including 
‘regulation of RNA metabolic process’, ‘regulation of gene silencing’ 
and ‘cellular response to stress’ (Fig. 4c and Supplementary Table 10). 
Phosphoproteomic GO pathway interaction networks showed that 
fibrin induced dynamic regulation of ‘cytoskeleton organization’ and 
‘positive regulation of catalytic activity’ networks, whereas iC3b led 
to sustained activation of ‘cellular response to stress’ and ‘negative 
regulation of transcription, DNA-templated’ interaction networks 
(Extended Data Fig. 6d and Supplementary Table 10).

The regulation of phosphorylation signaling cascades is largely 
mediated by protein kinases. To predict kinase–substrate relation-
ships, we bioinformatically calculated kinase activities from our 
phosphoproteomics data26. We identified significant activation of 
MAPK1 (also known as extracellular signal-regulated kinase 2, ERK2) 
and serum-glucocorticoid kinase 1 (SGK1) at 1 h after fibrin but not iC3B 
treatment (Fig. 4d and Supplementary Table 11). At 3 h after stimula-
tion, we observed significant activation of casein kinase II (CSNK2A1), 
S6 kinase (RPS5KA1), protein kinase C and D kinases, and pyruvate 
dehydrogenase kinases (PDK1–4) in iC3b-treated samples relative to 
fibrin-treated samples (Fig. 4d and Supplementary Table 11). Together, 
these results show that fibrin and iC3b induce differential phospho-
rylation events and kinase activities, suggesting that blood proteins 
induce distinct signal transduction pathways in innate immune cells.

Next, we validated the top proteins phosphorylated by fibrin in 
BMDMs, primary microglia and brain tissue from AD mice. Paxillin 
binds to the cytoplasmic domain of β2 subunits of integrins includ-
ing CD11b–CD18, and its phosphorylation initiates focal adhesion 
complex formation upon integrin engagement with ECM27. Fibrin 
induced dynamic phosphorylation of paxillin at residue 83 (p-PXN) 
in BMDMs and primary microglia (Fig. 4e,f ), consistent with fibrin 
activation of focal adhesions in platelets28. MEK2 phosphorylates 
ERK1/2, resulting in increased cellular proliferation and migration, 
oxidative stress and inflammation. We tested the effects of fibrin on 
MEK2 phosphorylation and proinflammatory gene activation. Fibrin 
induced robust phosphorylation of MEK2 at residue 394 (p-MEK2) in 
BMDMs and microglia (Fig. 4e,g). Specific MEK2 inhibitor trametinib 
blocked p-MEK2 and reduced expression of fibrin-induced gene Il1b in 
fibrin-treated BMDMs (Extended Data Fig. 6e,f), suggesting that MEK2 
activation mediates fibrin-induced proinflammatory gene expression. 
Similarly, treatment with the therapeutic monoclonal 5B8 antibody, 

Fig. 2 | scRNA-seq analysis of ligand-selective activation of microglia.  
a, UMAP plots of single microglial cells treated with fibrin, iC3b and LPS 
identified by unsupervised clustering analysis (n = 16,196 cells from two 
independent experiments). b, Fractions of cells in each Seurat cluster colored 
based on treatment label. c, UpSet plot showing a matrix layout of DEGs 
specific to a cluster (single filled circle with no vertical lines) and DEGs shared 
between clusters (filled circles connected with vertical lines). Vertical bar plot 
of the unique or overlapping DEGs in clusters (top). Horizontal bar plot of the 

number of upregulated DEGs for a cluster (left). d, Heat map of top ten DEGs per 
single-cell cluster. Example GO molecular function terms and genes for a given 
cluster are shown. Five-hundred cells (maximum) were randomly selected from 
each cluster, as shown in a, for visualization. Gene expression is depicted as 
log-normalized scaled expression. e, List of selected top upregulated ligand-
induced genes. f, GSEA plots of top GO terms for ligand-induced gene signatures. 
Adjusted P < 0.05 by Kolmogorov–Smirnov test with BH test correction.  
Exp., expression; unstim., unstimulated.
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which targets the fibrin-binding site to the CD11b I-domain without 
affecting fibrin polymerization29, blocked p-MEK2 in fibrin-treated 
BMDMs (Fig. 4h), suggesting that fibrin-induced phosphorylation is 

receptor mediated. The cytosolic NADPH oxidase subunit NCF2 trans-
locates to the plasma membrane upon phosphorylation by ERK1/2 and 
phosphatidylinositol-3-kinase, leading to NADPH oxidase activation 
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Fig. 3 | Single-cell RNA-seq analysis of ligand-selective activation of 
macrophages. a, UMAP plots of single BMDMs treated with fibrin, iC3b or LPS 
identified by unsupervised clustering analysis (n = 17,625 cells from six mice 
(fibrin), two mice (iC3b), four mice (LPS) and eight mice (unstimulated)). BMDMs 
are shown colored by treatment, Seurat cluster or both. b, Fraction of cells in 
each Seurat cluster colored based on treatment label. c, Heat map of top ten DEGs 
per single-cell cluster. Example GO molecular function terms and genes for a 
given cluster are shown. Five-hundred cells (maximum) were randomly selected 

from each cluster, as shown in a, for visualization. Gene expression is depicted as 
log-normalized scaled expression. d, List of selected top upregulated ligand-
induced genes. e, Coexpression GO term networks for iC3b (black-filled nodes), 
fibrin (red-filled nodes) and LPS (cyan-filled nodes) from scRNA-seq of BMDMs. 
Upregulated GO terms are shown as colored nodes, and gene coexpression 
overlap is shown as gray edges. P < 0.10 (fibrin and iC3b) and P < 0.01 (LPS) by 
GSEA Kolmogorov–Smirnov test without multiple test correction.
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and ROS production30. Fibrin induced phosphorylation of p-NCF2 in 
BMDMs and primary microglia (Fig. 4e,g), consistent with fibrin acti-
vation of NADPH oxidase and ROS generation20,29,31. NADPH oxidase 
activation has been identified in progressive MS32 and has been impli-
cated in neurodegeneration and cognitive impairment in AD mice10,20. 
To test whether NCF2 was phosphorylated in disease models in vivo, we 
assessed NCF2 expression and activation in the brains of 5XFAD mice, a 
model of AD. p-NCF2 and total NCF2 were higher in 5XFAD than in non-
transgenic (NTG) control mice at 12 months of age (Fig. 4i). Together, 
these results identify fibrin as a CD11b–CD18 ligand coupling integrin 
signaling with NADPH oxidase activation (Extended Data Fig. 7). They 
also reveal the phosphoproteome of fibrin and iC3b and demonstrate 
the specificity of blood proteins in controlling and integrating innate 
immune signaling pathways in disease.

Fibrin drives neurotoxic innate immune programs in MS mice
Oxidative injury is associated with neuronal loss and myelin damage 
and has been proposed as a key contributor to disease pathogenesis 
in MS and AD6,33,34. As both transcriptomic and phosphoproteomic 
analyses identified oxidative stress as a key fibrin-induced pathway, 
we performed an unbiased overlay of the fibrin, iC3b and LPS gene 
signatures (this study) with oxidative stress central nervous system 
(CNS) innate immune signatures that have been defined in a model of 
MS31. Single-cell RNA-seq of oxidative stress producing cells (Tox-seq) 
in an experimental autoimmune encephalomyelitis (EAE) model 
previously identified distinct cell subsets polarized toward oxida-
tive stress (MgV and MpI clusters), whereas others were enriched in 
antigen-presenting and phagocytic genes (MgIII and MpIII clusters)31. 
We found that stimulation by fibrin or LPS but not iC3b recapitulated 
the core oxidative stress signature (for example, Ncf2, Cybb, Sod2 and 
Irg1) expressed by ROS+ microglia and macrophages in EAE (Fig. 5a,b, 
Extended Data Fig. 8a and Supplementary Table 12). Fibrin-stimulated 
cells had the highest expression of prooxidant genes identified in 
oxidative stress-producing populations of microglia (MgV prooxidant 
signature Clec4e, Saa3, Stat1 and Ifitm3) and infiltrating macrophages 
(MpI prooxidant signature Clec4e, Hmox1, Cxcl10 and Lilrb4) from EAE 
(Fig. 5b and Supplementary Table 12). The microglial-shared iC3b–
fibrin gene signature (for example, C1qc, C1qa, Fcrls, Clec7a, Apoe, 
Sepp1) was enriched in the EAE microglia antigen-presenting MgIII 
cluster31 (Fig. 5a,b and Supplementary Table 12). The BMDM iC3b gene 
signature was enriched in the EAE macrophage clusters MpV and MpVI 
(Fig. 5a,b), which were identified as phagocytic subsets based on their 
gene expression programs31. All treatments significantly downregu-
lated the homeostatic microglia gene signature (for example, Cx3cr1, 
Trem2, Bin1 and Cst3)31,35 (Fig. 5b and Extended Data Fig. 8b). The 
fibrin transcriptomic signature is consistent with reduced oxidative 
stress, demyelination, axonal damage and protection from paralysis 
in Fggγ390–396A mice and WT mice treated with fibrin-targeting antibody 
5B8 in EAE19,24,29. These data suggest that fibrin and complement iC3b 
are potent signals in neuroinflammatory lesions that recapitulate 
the polarization of function-specific innate immune responses, with 

fibrin serving as a potent inducer of oxidative stress gene programs 
in microglia and peripheral macrophages.

Fibrin drives neurotoxic microglia programs in AD mice
We next used Tox-seq to analyze the transcriptomes of CD11b+ cells 
labeled for ROS production (as assessed by 2′,7′-dichlorofluorescein 
diacetate (DCFDA)) via scRNA-seq from brains of NTG control or 5XFAD 
mice (Extended Data Fig. 8c–f). Using unbiased clustering analysis 
superimposed with functional ROS characterization, we identified 
four transcriptionally distinct CD11b+ clusters containing ROS+ and 
ROS− cell populations as visualized by UMAP (Fig. 6a,b and Supple-
mentary Table 13). Most ROS+ microglia (50% of cells) from 5XFAD 
mice were found in microglia cluster 4 (cluster Mg4) (Fig. 6b), which 
had enrichment of genes involved in neurodegenerative microglial 
cell activation and iron transport (for example, Apoe, Tyrobp and Fth1)  
(Fig. 6c,d, Extended Data Fig. 8g,h and Supplementary Table 13). By con-
trast, genes known to negatively regulate ROS production, superoxide 
metabolism and maintenance of the microglial homeostatic signature 
were increased in ROS− microglia from 5XFAD mice (for example, Nrros, 
Clk1 and Zeb2, respectively) (Fig. 6c,d). Differential gene expression 
analysis showed few changes in ROS+ compared with ROS− microglia 
from NTG mice (Extended Data Fig. 8i). Functional subcluster analysis 
of both 5XFAD microglia clusters revealed that subcluster 0 had the 
highest single-cell expression of ROS+ microglia (Fig. 6e, Tox-seq cluster 
overlay). Fibrin-induced genes were enriched in subcluster 0 (Fig. 6e, 
fibrin signature overlay). ROS+ microglia were significantly enriched 
for fibrin-induced and iC3b–fibrin-induced genes but not LPS-induced 
genes (Fig. 6f and Supplementary Table 12).

To test whether fibrin is necessary for microglial polarization toward 
neurotoxic phenotypes, we crossed 5XFAD to Fggγ390–396A mice and ana-
lyzed microglia by scRNA-seq. The 5XFAD:Fggγ390–396A mice have reduced 
neurodegeneration and are protected from cognitive impairment20. We 
performed scRNA-seq of CD11b+ cells from 5XFAD:Fggγ390–396A, 5XFAD, 
Fggγ390–396A and NTG littermates (Fig. 7a,b and Extended Data Fig. 9a–d). 
Differential gene expression analysis of DAM clusters 1 and 2 identi-
fied 487 upregulated and 178 downregulated genes in microglia from 
5XFAD:Fggγ390–396A compared with 5XFAD mice (Fig. 7c, Extended Data 
Fig. 9e and Supplementary Tables 14 and 15). In 5XFAD:Fggγ390–396A mice, 
microglia homeostatic genes were among the top upregulated genes 
(for example, Cx3cr1, Siglech, Runx1), whereas fibrin-induced genes (for 
example, Fth1, Rnase4, Mif) and known DAM markers (for example, Cst7, 
Apoe, Tyrobp) were among the top downregulated genes (Fig. 7c and Sup-
plementary Table 15). The neurodegenerative microglia gene signature 
was significantly reduced in 5XFAD:Fggγ390–396A mice, whereas microglial 
homeostatic genes were expressed at control levels (Fig. 7d and Supple-
mentary Table 15). The neurodegenerative signature downregulated in 
5XFAD:Fggγ390–396A mice was related to TREM-2-associated genes36 (Tyrobp, 
CD68, Cst7), iron-binding genes (Fth1, Ftl1) and lipid-binding genes 
(Apoe, Fabp5) (Fig. 7e). To validate these changes in situ, we performed 
immunohistochemistry in brains from 5XFAD and 5XFAD:Fggγ390–396A  
mice using the DAM and oxidative stress markers apolipoprotein E 

Fig. 4 | Phosphoproteomics of fibrin and iC3b signaling in innate immune 
cells. a, Phosphoproteomic interaction networks for fibrin and iC3b. Selected 
phosphopeptides shown with phosphorylation as blue–red scheme and time 
points as rings. Adjusted P < 0.05. b, DEPs between fibrin and iC3b at each time 
point. c, Functional enrichment terms from fibrin or iC3b phosphorylation 
pathways. d, Kinase activities from the phosphoproteomic dataset. Differentially 
regulated kinases between fibrin and iC3b are indicated with black bounding. 
Kinases below the cutoff are in gray. e, Confocal microscopy and quantification 
of p-MEK2, p-PXN and p-NCF2 staining in BMDMs stimulated with fibrin or 
unstimulated (US). f,g, Immunoblot of p-PXN, PXN and GAPDH (f) and p-MEK2, 
MEK1/2, p-NCF2 and GAPDH (g) in primary rat microglia, US or stimulated with 
fibrin; FC compared with control is indicated. h, Microscopy and quantification 
of p-MEK2 staining in BMDMs left US or stimulated for 90 min with fibrin 

alone or in the presence of 5B8 or IgG2b. i, Immunoblot of p-NCF2, NCF2 and 
GAPDH from 12-month-old 5XFAD or NTG mouse cortex. Signal ratios (delta) for 
p-NCF2–GAPDH and NCF2–GAPDH are shown. Data are from n = 2 (fibrin 1 h), 
n = 2 (iC3b 1 h), n = 3 (US 1 h), n = 3 (fibrin 3 h), n = 3 (iC3b 3 h) and n = 3 (US 3 h) 
independent experiments (a–d); n = 3 independent experiments in duplicate 
(e), representative of two independent experiments (f,g); n = 4 independent 
experiments in duplicates (h); or n = 6 (NTG) and n = 5 (5XFAD) mice (i). Statistics: 
two-sided Student’s t test with BH test correction (a and b), FDR < 0.05 by 
hypergeometric test with BH correction (c), P < 0.05 by two-sided z test (d), two-
tailed unpaired t test (e) or one-way ANOVA with Tukey’s multiple comparisons 
test (h). Data are mean ± s.e.m., and nuclei are labeled with DAPI (e and h). Scale 
bars, 10 μm (e); 50 μm (h). US, unstimulated.
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(APOE) and GP91phox, which Tox-seq had identified as highly enriched in 
ROS+ microglia. The frequency of double-positive APOE/GP91phox cells 
surrounding amyloid plaques was reduced in 5XFAD:Fggγ390–396A com-
pared with 5XFAD mice (Fig. 7f), suggesting that Apoe gene expression 

and oxidative-stress-producing DAM around amyloid plaques are fibrin 
dependent. Overall, these results suggest that fibrin–CD11b signaling 
drives key microglia pathways including TyroBP, lipid metabolism and 
oxidative stress responses in neurodegeneration.
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Fibrin microglia signatures shared between AD and MS mice
We next compared the Tox-seq transcriptomic profiles of microglia 
between the 5XFAD and EAE models. The oxidative stress core signa-
ture identified in ROS+ microglia from EAE mice was also present in 
5XFAD mice (Fig. 8a and Supplementary Table 16). Although 67 DEGs 
were shared between EAE and 5XFAD ROS+ microglia (for example, 
Apoe), the majority of genes were specific for either 5XFAD (132 DEGs) 
or EAE (170 DEGs), such as Igf1 and Il1b, respectively (Fig. 8b,c). These 
results are in line with human microglial transcriptomics identifying 
partial overlap between MS and AD37. Pathway analysis of the micro-
glial oxidative stress genes shared among EAE and 5XFAD models 
identified enrichment in pathways related to blood coagulation and 
hemostasis (for example, Plaur, Slc16a3, Eno1), antigen presentation 
(for example, H2-Ab1, H2-K1, Cd74), neutrophil degranulation (for 
example, B2m, Cstb, Bst2) and the tyrosine kinase binding protein 
Tyrobp network (Fig. 8d, Extended Data Fig. 10a and Supplementary 
Table 16). We next overlaid the shared AD and EAE oxidative stress 
signature with the blood-induced microglia profiles (Fig. 8e). The 
WT plasma signature overlapped with the shared oxidative stress 
microglia signature, indicating that the dataset alignment identified 
blood-induced microglia genes both in MS and AD mice. Fga−/− plasma 
largely reduced oxidative stress and disease-associated transcripts to 
control levels (Fig. 8e and Extended Data Fig. 10b,c), suggesting that 
fibrinogen is a key ligand in the blood that activates neurodegenerative 

microglia responses. Taken together, these data suggest a pathogenic 
role for fibrin-induced microglia polarization in neurodegeneration in 
both MS and AD, demonstrating shared and unique drivers of innate 
immune-driven neurotoxicity.

Discussion
We report the first unbiased transcriptome and phosphoproteome 
of blood-induced polarization of innate immunity, revealing the 
selectivity and causal role of blood proteins in mediating neurotoxic 
microglial functions. Traditionally, blood leaks were considered to 
be secondary to inflammation, with largely interchangeable func-
tions once they extravasated into the brain7,38. Through in vivo genetic 
loss-of-function studies combined with unbiased comparative tran-
scriptomics analysis, our study shows the specificity of blood proteins 
in differentially activating receptor-mediated immune responses 
required for pathogenic microglial gene programs in AD and MS mod-
els. Blood-induced prooxidant programming of neurotoxic microglia 
occurs along common molecular pathways across neurodegeneration 
and CNS autoimmunity. Fibrin–CD11b signaling was necessary for 
neurotoxic microglia programs in AD mice consisting of neurodegen-
erative, oxidative stress and lipid metabolism that were shared with 
an MS model. Given that immune, vascular and blood signals are key 
players in aging, neurological and peripheral diseases2,4,39, our dataset 
represents a valuable resource for the study of novel pathways and 

a

b
Fibrin

Core oxidative
stress signature

iC3b Unstim.
Ncf2

Cybb
Sod2

Irg1
Clec4e
Hmox1
Cxcl10
Lilrb4
C1qa
Apoe

Apoc2
Maf

Fibrin iC3b Unstim.
Ncf2

Cybb
Sod2

Irg1
Clec4e

Saa3
Stat1

Ifitm3
Cx3cr1
Trem2

Bin1
Cst3

MpI prooxidant 
signature

MpIV phagocytic
signature

BMDM stimulation

Core oxidative
stress signature

MgV prooxidant 
signature

MgI homeostatic
signature

Example EAE genes Example EAE genes

Microglia stimulation

−1.0
−0.5
0
0.5
1.0

Average expression

Percentage
expressed

0
25
50
75
100

UMAP1

U
M

AP
2

MgI

MgV

MgIII

MgIV

MgII

UMAP1

U
M

AP
2

MpI

MpIVMpIII

MpV
MpVI

MpVII

MpII

Max.

Min.

Expression
EAE

Fibrin signature iC3b signature LPS signature

EAE microglia clusters overlaid with primary microglia ligand-selective signatures

EAE macrophage clusters overlaid with BMDM ligand-selective signatures

Fibrin signature iC3b/fibrin shared signature LPS signature

Max.

Min.

Expression

Healthy
EAE

Microglia clusters

Infiltrating macrophage
clusters

Fig. 5 | Unbiased overlay of ligand-selective gene signatures with innate 
immune cell subsets in EAE. a, UMAP of EAE microglia or macrophage Tox-seq 
clusters31 overlaid with primary microglia (top) or BMDM (bottom) ligand-
activation signatures (this study). Expression is depicted as a log-normalized 
average modular score for each signature. CNS innate immune cell clusters are 

numerically labeled and outlined to depict healthy and EAE samples (gray and 
orange, respectively). b, Dot plot of selected gene markers across the scRNA-seq 
datasets of primary microglia (left panel) and BMDMs (right panel) unstimulated 
or stimulated with fibrin or iC3b. Average gene expression is depicted as scaled 
log-normalized expression. Max., maximum; min., minimum.

http://www.nature.com/natureimmunology


Nature Immunology | Volume 24 | July 2023 | 1173–1187 1182

Resource https://doi.org/10.1038/s41590-023-01522-0

biomarkers and for discovery of drugs that selectively target patho-
genic innate immunity in aging and inflammatory, autoimmune and 
neurodegenerative diseases.

Our study provides a mechanistic link between cerebral vascular 
pathology and neurodegeneration by identifying fibrin–CD11b signal-
ing as an apical inducer of neurotoxic pathways in innate immune cells. 
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Our model proposes that fibrin binding to CD11b–CD18 induces an 
outside-in integrin signaling cascade to initiate focal adhesion complex 
formation, activate MAPK and transactivate NADPH oxidase to induce 
proinflammatory, oxidative stress and IFN-I signaling responses. Fibrin 
also induces phosphorylation of SMARCA5, RANBP3 and NUP98, sug-
gesting regulation of nuclear import, chromatin remodeling and tran-
scription40. Formation of multiprotein adhesion complexes that link 
the ECM to the cytoskeleton, MAPK signaling, oxidative stress and gene 
expression identify fibrin as a mechanoregulator of CD11b–CD18 inte-
grin effector functions in innate immune cells27,41,42. Indeed, increased 
fibrin deposition, paxillin, MAPK and sustained MEK2 activation, and 
NADPH oxidase activity promote oxidative injury and mediate neuro-
degeneration and synaptic dysfunction in both MS and AD6,20,43–47. In 
addition to NADPH oxidase, we identified mitochondrial VDAC1 and 
ApoE as induced by fibrin, suggesting that fibrin-induced oxidative 
stress may be mediated by multiple pathways. We also identified fibrin 
as a potent activator of STATs, ISGs and IFN-I response, which induces 

neuronal dysfunction in AD48 and T cell effector functions in MS and 
autoimmune diseases49. Fibrin could thus be a driver of IFN-I response 
in disease. Together, these results identify fibrin as a key signal required 
for pathogenic polarization of immune cells at sites of vascular damage.

We discovered unique and shared transcriptomic and phospho-
proteomic signatures induced by fibrin and iC3b, indicating that 
ligand-biased CR3 signaling may underlie the pleiotropic functions of 
CR3 in innate immune cell polarization50–52. Our results suggest that lim-
iting fibrin-induced innate immune responses may suppress oxidative 
injury and neurodegeneration, whereas suppressing complement may 
preferentially reduce phagocytosis and antiviral immune responses. 
iC3b-specific signatures could also be relevant to complement diseases 
such as C3 glomerulopathy1. Ligation of CR3 by fibrin and iC3b may 
lead to differential conformational changes in its ectodomain, leading 
to ligand-biased outside-in signaling41. The stoichiometry and spatial 
distribution of fibrin and iC3b may also contribute to biased ligand 
signaling and transactivation of other receptors. Fibrin deposits and 
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complement activation may affect immunopathogenesis of intrac-
erebral hematoma in conditions such as stroke and traumatic brain 
injury, in addition to neurodegenerative diseases53. Future studies will 

be necessary to determine how the cross-talk of the fibrinogen and 
complement pathways orchestrate oxidative injury and phagocytic 
signaling cascades, respectively. As CR3 mediates both protective 
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and damaging immune functions, strategies to target ligand-selective 
activation pathways may have therapeutic benefits8. Fibrin–CD11b 
signaling is required for pathogenic innate immune activation in the 
brain and periphery19,20,23,29,54–56. Fggγ390–396A mice and those treated with 
the fibrin-targeting 5B8 antibody show protection against neurodegen-
eration and cognitive impairment in AD models and against paralysis 
and axonal damage in EAE19–21,24. Protection from neurodegeneration 
upon inhibition of fibrin–CD11b signaling may be due to selective 
suppression of neurotoxic pathways in microglia, such as ApoE, IFN-I 
and oxidative stress pathways identified in this study32,34,49,57. Thus, 
fibrin-targeting immunotherapy could be a therapeutic strategy in AD 
and MS without adverse anticoagulant effects or global suppression 
of innate immunity.

The resource we provide here should be considered with some 
caveats. As in vitro microglia cultures do not fully recapitulate in vivo 
homeostatic signatures58, we also validated the ligand-selective signa-
tures in vivo. Antibody-depleted plasma for fibrin, C3 or other blood 
proteins could complement the genetic depletion used in this study. 
Our phosphoproteomic analysis was performed in RAW 264.7 cells 
owing to their transcriptomic similarity to BMDMs, their use in phos-
phoproteomic studies25,59 and because of the technical demand for 
high cell numbers. We validated fibrin-induced phosphosites identi-
fied in RAW 264.7 cells in BMDMs and primary microglia and in 5XFAD 
mice, suggesting that the phosphorylation events also occur in vivo. 
Future studies in primary cells with additional concentrations and time 
points could be used to assess differential signaling pathways. For our 
comparative transcriptomic analysis, we selected three ligands—fibrin, 
iC3b and LPS—in macrophages and microglia owing to their broad 
and diverse immune roles in vascular, inflammatory and infectious 
disease. We selected fibrin and iC3b to study ligand-biased signaling 
of CD11b–CD18. Future studies could use our platform to compare 
additional complement and coagulation activators in other cell types. 
Another potential limitation was that protein aggregates could induce 
signaling independent of specific ligand-receptor interactions. How-
ever, we found specific receptor-mediated transcriptomic programs 
for blood proteins in vivo and suppression of the neurodegenera-
tive gene signature in 5XFAD:Fggγ390–396A mice, indicating the distinct 
transcriptional programs of blood proteins are not due to aggregate 
protein formation. Although the results of transcriptomic analysis in 
5XFAD:Fggγ390–396A mice support the fibrin-induced microglia response 
being CD11b dependent, they do not exclude direct or indirect effects 
of fibrin on other cellular targets in the brain3. The Trem2 pathway 
was induced in microglia in 5XFAD mice but not in the healthy brain 
by the blood, potentially owing to the difference in pathology as well 
as the age of the mice and the time points in the study. We performed 
Tox-seq analysis in 5XFAD mice, an AD model dependent on immune 
and vascular mechanisms20,60. Future studies could use Tox-seq to 
characterize neurotoxic innate immune responses in other neuro-
degeneration models with different etiologies to discover additional 
pathways related to disease progression.

In summary, we demonstrated that blood-induced polarization of 
innate immunity is causal for the induction of neurotoxic microglial 
programming in disease. By establishing a blood-innate immunity 
multiomic and genetic loss-of-function pipeline, we defined fibrin as 

a unique blood protein required for microglial polarization to oxida-
tive stress and neurodegenerative phenotypes in MS and AD mice. Our 
study uncovers principles of distinct transcriptomic and phosphopro-
teomic events induced by immune and vascular signals and their con-
tributions to immune diversity in autoimmune and neurodegenerative 
disease. Furthermore, we lay the groundwork for future experiments to 
define the spatiotemporal regulation of blood-induced innate immune 
cell polarization, which may enable discovery of selective therapeutic 
strategies in inflammatory, neurological and infectious diseases.
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Methods
Animals
C57BL/6J and B6.SJL-Tg (APPSwFlLon,PSEN1*M146L*L286V) 6799Vas/
Mmjax (5XFAD) mice (034840-JAX) were purchased from the Jack-
son Laboratory ( JAX) and backcrossed in a C57BL/6J background 
for more than 30 generations61. Fga−/− and Fggγ390–396A mice62,63 were 
obtained from J. Degen (University of Cincinnati, OH, USA). 5XFAD 
mice were crossed with Fggγ390–396A mice to generate 5XFAD:Fggγ390–396A 
mice. Male and female mice were used in this study. Sprague–Dawley 
female rats with litters were purchased from Charles River. Animals 
were housed under Institutional Animal Care and Use Committee 
guidelines in a temperature and humidity-controlled facility with a 
12 h light–12 h dark cycle and ad libitum feeding. Animal protocols 
were approved by the Committee of Animal Research at the Univer-
sity of California San Francisco and in accordance with the National 
Institutes of Health guidelines.

Plasma injection for microglia RNA-seq
Citrate plasma from 8–11-week-old C3−/− female (029661, JAX)64 and 
Alb−/− female (025200, JAX)65 mice was obtained from JAX. Citrate 
plasma was isolated from WT C57BL/6J, Fga−/− and Fggγ390–396A mice as 
previously described21. Plasma or artificial cerebrospinal fluid (aCSF) 
control was bilaterally injected (1.5 μl, 0.3 μl min−1) into the corpus cal-
losum of male C57BL/6J mice, as previously described21. Twenty-four 
hours later, two mice were pooled per replicate, and microglia were 
isolated from 1-mm tissue blocks spanning the injection sites. Tissues 
were incubated in lysis buffer (1 mg ml−1 collagenase D (Sigma-Aldrich), 
0.05 mg ml−1 DNase1 (Sigma-Aldrich), 3 μM actinomycin D (ActD) 
diluted in Dulbecco’s phosphate-buffered saline (DPBS) with Ca2+ Mg2+ 
(Thermo Fisher Scientific)) for 30 min at 37 °C. Myelin was depleted 
using a debris removal kit (Miltenyi Biotec) as previously described66. 
Cells were treated with Fc-block in fluorescence-activated cell sorting 
(FACS) buffer (DPBS supplemented with 0.2% bovine serum albumin, 
Thermo Fisher Scientific) for 5 min at 4 °C then incubated with pri-
mary antibodies for 30 min at 4 °C. The following primary antibodies 
from BioLegend were used at 1:200 dilution: CD11b (M1/70) and CD45 
(30-F11). Then, 15,000 to 20,000 CD45lo CD11b+ microglia were FACS 
sorted into tubes containing RLT plus lysis buffer (Qiagen) supple-
mented with 1% 2-mercaptoethanol and 0.25% reagent DX (Qiagen) 
using a FACSAria II with BD FACSDiva v.8 and FlowJo v.10 software 
for analyses. Cells were gated on side scatter area (SSC-A) and for-
ward scatter area (FSC-A) size, and then doublet discrimination was 
performed with FSC-H and FSC-W (height and width) parameters. 
Microglia lysates were frozen and stored at −80 °C until they were 
processed for RNA-seq.

Bulk RNA-seq of microglia
Samples from the plasma injection experiment were processed for 
RNA-seq using an Ovation RNA-seq System V2 low input kit (NuGEN) 
as previously described31. Libraries were equimolar pooled and 
sequenced on a NovaSeq 6000 S4 (Illumnia) with 200 paired-end 
reads to a depth of >50 million reads per library. Paired-end fastq 
files were processed using the Nextflow RNA-seq pipeline67 with next 
flow v.20.12.0-edge in Singularity with default nf-core/rnaseq v.3.0 
parameters and packages. Fastq files were mapped to the GRCm38/
mm10 genome (downloaded from nf-core). Gene analyses were per-
formed in R v.4.2.0 using DeSeq2 v.1.36.0 on the salmon.merged.
gene_counts_scaled file. Reads with fewer than three counts per gene 
across replicates were filtered. Three samples did not pass RNA and 
cDNA library quality control (QC) testing; another was removed owing 
to large deviation on principal component analysis (PCA) and poor 
sequence alignment. No other samples or animals were excluded 
from analyses. For differential gene analysis, the results function 
in DeSeq2 was used with contrast to test between two genotypes 
and treatments of interest. Significance was determined by abs(log2 

fold change (FC)) > 0.5 and adjusted P < 0.1 unless otherwise stated. 
Unbiased KEGG analysis was performed using clusterProfiler with 
default parameters and pvalueCutoff set to 0.1. The blood micro-
glia gene network was generated in Cytoscape v.3.7.2 (ref. 68) using 
upregulated DEGs identified in WT plasma compared with aCSF sam-
ples (Supplementary Table 3). GO pathways were determined using 
functional enrichment analysis in String69 with default parameters 
visualized in Cytoscape.

Cell culture
Primary microglia were prepared from neonatal rats at postnatal day 5 
or from C57BL/6J mice at postnatal days 2–3 as previously described21,31. 
Viability was assessed using trypan blue. Microglia cultures from one lit-
ter were used for each independent experiment. BMDMs were prepared 
from male and female 12–20-week-old mice as previously described21,31 
and used for experiments after 6 or 7 days of differentiation. For BMDM 
scRNA-seq, two male or two female mice were pooled per experiment. 
Individual animals were used for biological replicates unless otherwise 
stated. RAW 264.7 macrophages were obtained from ATCC and cultured 
in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% 
fetal bovine serum (FBS).

scRNA-seq of ligand stimulated cells
Fibrin-coated 24-well culture plates (Corning) were prepared as previ-
ously described29. Then, 10 μg ml−1 iC3b (CompTech; A115) in HEPES 
pH 7.2 buffer was immobilized on culture plates by 1 h incubation at 
37 °C followed by overnight incubation in a 37 °C humidified cham-
ber. For fibrin or iC3b stimulation, BMDMs or primary microglia were 
seeded into fibrin-coated or iC3b-coated wells at 5.0 × 105 cells ml−1. 
Control wells were treated with the same buffer void of fibrin or iC3b. 
For LPS stimulation, BMDMs or microglia were seeded into 24-well 
tissue-culture-treated plates at 5.0 × 105 cells ml−1, allowed to adhere 
overnight, then treated with 100 ng ml−1 LPS (Sigma-Aldrich, O55:B5) 
for the durations indicated in figure legends. Following stimulation, 
adherent cells were lifted with accutase (StemCell Technologies) and 
viable cells were counted by trypan blue, then resuspended in RPMI 
with 5% FBS and used for scRNA-seq.

For scRNA-seq library preparation, BMDMs or primary microglia 
were processed with a Chromium Single Cell 3′ v.2 kit according to the 
manufacturer’s guidelines (10x Genomics). Libraries were balanced 
to achieve a minimum of 75,000 reads per cell and run on two lanes of 
a NovaSeq 6000 (Illumnia) with 150 paired-end reads. Samples were 
demultiplexed, and fastq files were used to align reads to the mm10 
reference assembly (downloaded 2019) and aggregated using the Cell 
Ranger count and aggr packages (10x Genomics).

5XFAD Tox-seq
Samples were prepared for Tox-seq analysis as previously described31 
with the following modifications. Male and female 12-month-old 5XFAD 
and NTG mice were perfused with 4 °C DPBS, and cortical and hip-
pocampal regions were dissected. Tissues were incubated with lysis 
buffer without ActD for 30 min at 37 °C. Using a FACSAria II, live Sytox 
blue− CD11b+ ROS− and live Sytox blue− CD11b+ ROS+ cell populations 
were sorted into tubes containing FACS buffer. Sorted cells were resus-
pended in 4 °C DPBS supplemented with 2% FBS and immediately 
processed for scRNA-seq.

For scRNA-seq library preparation, live Sytox blue− CD11b+ 
ROS− and live Sytox blue− CD11b+ ROS+ sorted cell populations were 
processed using the Chromium Single Cell 3′ v.2 kit following the 
manufacturer’s instructions. Balanced library pools were sequenced 
across three lanes of a HiSeq 4000 system (Illumnia) with a targeted 
sequencing depth of 100,000 reads per cell. Reads were mapped to 
the mm10 genome (downloaded 2019), and samples were combined 
and sequence-depth normalized using Cell Ranger count v.3.0.2 and 
aggr packages, respectively.
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Brain CD11b scRNA-seq
Brains from male and female 6-month-old 5XFAD, 5XFAD:Fggγ390–396A, 
NTG and Fggγ390–396A mice were processed for FACS as described for 
5XFAD Tox-seq analysis. Live Sytox blue– CD11b+ cells from cortical/
hippocampal tissues were sorted into tubes containing DPBS sup-
plemented with 5% FBS at 4 °C and then resuspended in 4 °C DPBS 
supplemented with 2% FBS at 333 cells μl−1 and processed for scRNA-seq 
with the Chromium Single Cell 3′ v.3 kit following manufacturer’s 
instructions. Balanced library pools were run across three lanes of 
Hiseq4000, reads mapped to the mm10 genome and samples com-
bined and sequence-depth normalized using the Cell Ranger count 
v.3.0 and aggr packages, respectively.

scRNA-seq data analysis
The R toolkit Seurat70 was used for QC, clustering analysis and differ-
ential gene expression analysis of scRNA-seq data in R v.4.0.2 unless 
otherwise stated. For scRNA-seq data visualizations, dittoseq package 
v.1 was used to produce UMAPs, dot plots and violin plots71.

For microglia scRNA-seq analysis (Fig. 2), the QC parameters were: 
nFeature_RNA > 1000; nFeature_RNA < 5500; and < 5% and 20% mito-
chondrial and ribosomal genes, respectively. nCount_RNA in the 93rd 
percentile (nCount_RNA < 26,206) was used for downstream analysis. 
Data were normalized and scaled, and a percentage of mitochondrial 
and cell cycle genes were regressed out using Seurat SCTransform. 
Jackstraw was performed with num.replicate of 100. The FindNeigh-
bors and FindClusters functions in Seurat were used with the first eight 
significant principal components (PCs) and a resolution of 0.4, respec-
tively. A total of 16,186 microglial cells passed QC, with an average of 
3,469 genes per cell and 20,228 genes. Consistent with the literature72, 
canonical microglial markers were expressed at varying levels in the 
identified clusters (Extended Data Fig. 3e). Cluster DEGs were deter-
mined by FindAllMarkers with default parameters. Genes that met the 
log2 FC threshold of >0.25 with adjusted P < 0.05 (Benjamini–Hochberg 
correction) were used for downstream analysis.

For BMDM scRNA-seq analysis (Fig. 3), two independent experi-
ments were integrated and corrected for batch effects as previously 
described70. The batch-corrected dataset QC parameters were: nFea-
ture_RNA > 200; nFeature_RNA < 5000; and < 5% and 25% mitochondrial 
and ribosomal genes, respectively. The 17,625 QC-passed BMDMs were 
used with the Seurat integration workflow using default parameters. 
Jackstraw was performed with num.replicate of 100. The RunUMAP, 
FindNeighbors and FindClusters functions were used with the first 
20 significant PCs and a resolution of 0.5. DEGs were determined by 
FindAllMarkers with default parameters. Genes that met the log2 FC 
threshold of 0.25 with adjusted P < 0.05 (Benjamini–Hochberg cor-
rection) were used for downstream analysis. Pseudotime trajectories 
were performed on the UMAP embeddings and Seurat clusters using 
Slingshot v.2.2.1 (ref. 73), where cluster 3 was the predefined start 
point. Associations between gene expression pattern and pseudotime 
were tested for each lineage by fitting a negative binomial generalized 
additive model at 8 knots using tradeSeq v.1.8.0 (ref.74). The estimated 
smoothers for each lineage accounted for batch effects. For each lin-
eage, markers differentially expressed between the average of the 
start and end points of a trajectory were identified. Adjusted P values  
(Benjamini–Hochberg correction) were used to identify the top  
50 genes for each lineage (Supplementary Table 6). To generate the 
heat map, a pseudocount of 1 was added to the raw scRNA-seq counts 
for the top 50 DEGs, the rows were log2 row-normalized and K-means 
clustering was performed on the rows.

For 5XFAD Tox-seq analysis (Fig. 6), the QC parameters were 200–
5,000 nFeature_RNA, <7,500 nCount_RNA, and <5% and 20% mito-
chondrial and ribosomal genes, respectively. Data were normalized 
and scaled, and a percentage of mitochondrial genes were regressed 
out using Seurat SCTransform. Jackstraw was performed with num.
replicate of 100. FindNeighbors and FindClusters Seurat functions 

were used with the first 30 significant PCs and a resolution of 0.6, 
respectively. To remove variation in sex-linked genes, the dataset was 
integrated using the Harmony algorithm75 with runHarmony: group.
by.vars = sex and assay.use = SCT. Clustering analysis was performed 
using Harmony dims = 15 and resolution = 0.4. In accordance with 
previous literature76, all four CD11b+ cell clusters had high expression 
of core microglial genes (Extended Data Fig. 9e and Supplementary 
Table 13). DEGs for each cluster were determined by FindAllMarkers 
with default parameters using MAST statistical test. Genes that met the 
log2 FC threshold of 0.25 with adjusted P < 0.05 (Benjamini–Hochberg 
correction) were used for downstream analyses.

For brain CD11b+ scRNA-seq analysis (Fig. 7), the QC parameters 
were: 1,000–4,000 nFeature_RNA, <12,000 nCount_RNA, <10% mito-
chondrial genes. Batch correction was performed using FindIntegra-
tionAnchors for ‘batch1’ and ‘batch2’. The ScaleData function was 
performed and microglia immediate response genes were regressed out  
using the vars.to.regress function set to c(‘Fos’,‘Egr1’,‘Jun’,‘Junb’,‘Zfp3
6’,‘Jund’,‘H3f3b’, ‘Btg2’,‘Rhob’,‘Fosb’,‘Dusp1’,‘Ier2’,‘Socs3’,‘Ier5’,‘Nfkbia’, 
‘Zfp36l1’,‘Btg1’,‘Ptma’,‘Sgk1’,‘Klf6’). FindNeighbors and FindClusters 
were used with the first 20 significant PCs and a 0.2 resolution, respec-
tively. Differential gene analysis was performed using FindMarkers or 
FindAllMarkers with MAST or Wilcoxon test for p_val_adj < 0.05 and 
avg_log2FC > 0.25.

scRNA-seq signature enrichment
Average expression levels for a given gene list were computed across 
single-cell transcriptomes using the AddModuleScore function in 
Seurat with default parameters. The modular scores of a gene list were 
visualized in UMAP or violin plot. The list of genes used is provided in 
Supplementary Table 12.

Functional enrichment and network analysis of  
scRNA-seq data
Functional enrichment analysis of DEGs was performed in Metascape 
using default parameters77, and significant GO terms were identified by 
false discovery rate (FDR) P < 0.05 unless otherwise stated. Gene net-
work analyses were performed with GSEA with C5.bp.v7.1symbols.gmt 
using default settings. GO terms with P < 0.10 were used for enrichment 
map visualization in Cytoscape v.3.7.2 and unbiasedly clustered using 
the AutoAnnotate v.1.3.2 plugin with default settings. For the microglial 
dataset, cluster gene signatures were determined using ClusterPro-
filer78 and the gseGO function with the following parameters: ont = BP, 
nPerm = 10000, minGSSize = 3, maxGSSize = 800, pvalueCutoff = 0.1, 
OrgDB = org.Mm.eg.db, pAdjustMethod = BH.

Phosphoproteomics sample preparation
RAW 264.7 macrophages (10 × 106 cells, 10 mg of protein per sample) 
were prepared for global phosphorylation protein sample digestion for 
mass spectrometry analysis as previously described79. Macrophages 
were plated on fibrin-coated (final concentration, 12.5 μg ml−1) or 
iC3b-coated (final concentration, 10 μg ml−1) plates for 1 or 3 h. Fibrin 
concentration was based on our previous studies21,29,31. We selected a 
comparable concentration for iC3b based on previous studies using 
similar concentrations for macrophage effector responses and CD11b 
binding80. Under these conditions, in our previous studies, we observed 
phosphorylation at longer time points in primary Schwann cells81. RAW 
cells were used owing to the high protein concentration needed for 
phosphoproteomic analysis, which could not be feasibly obtained from 
primary BMDM cultures using instrumentation at the time of the study.

Mass spectrometry analysis
Samples were analyzed on a Thermo Scientific Orbitrap Fusion mass 
spectrometry system equipped with an Easy nLC 1200 uHPLC system 
interfaced with the mass spectrometer via a Nanoflex II nanoelectro-
spray source as previously described79.
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Mass spectrometry data processing and statistical analysis
Quantitative analysis was performed in R v.4.1.3. Initial QC analyses, 
including interrun clusterings, correlations, PCA, and peptide and pro-
tein counts and intensities were completed with the R package artMS 
v.1.12.0. Two sample outliers in intensities and peptide detections 
were discarded before quantitative analysis: fibrin 1 h (PRIDE sample 
ID FU20180420-23) and iC3b 1 h (PRIDE sample ID FU20180420-05). 
Statistical analyses of phosphorylation changes between stimulated 
and control runs were carried out using peptide ion fragment intensity 
data output from MaxQuant with preprocessing using artMS. Quanti-
fications of phosphorylation based on peptide ions were performed 
with artMS::doSiteConversion and artMS::artmsQuantification with 
default settings using artMS82. All peptides containing the same set 
of phosphorylated sites were grouped and quantified together into 
phosphorylation site groups, and equal median normalization was 
performed across runs to control for differences in sample prepara-
tion. Statistical tests in MSstats compared phosphopeptide intensities 
between stimulated and control conditions for each time point. We 
compared each stimulation condition with its time-matched control 
and compared stimulations with each other (that is, fibrin versus iC3b). 
We used defaults for MSstats for adjusted P values (Student’s t test 
and Benjamini–Hochberg correction), even in cases of n = 2 biologi-
cal replicates. We quantified between 2,000 and 6,000 phosphoryl-
ated peptides per sample, mapping to 300–3,000 different proteins  
per sample.

Kinase activity analysis
FC values from MSstats were reduced to a single FC per site by choosing 
the FC with the lowest P value (noninfinite log2-transformed FC values) 
and used for kinase activity and enrichment analysis. Mus musculus 
phosphorylation sites were converted to their Homo sapiens ortholo-
gous sites. Orthologous pairs of gene identifiers between M. musculus 
and H. sapiens were downloaded from Ensembl using BioMart. Ensembl 
gene identifiers were mapped to UniProt identifiers, and orthologous 
pairs of sequences were aligned using the Needleman–Wunsch global 
alignment algorithm implemented using the Biostrings v.2.62.0 func-
tion pairwiseAlignment with default parameters in R. The resulting 
alignments were used to convert the sequence positions of phospho-
rylations in M. musculus to positions in H. sapiens protein sequences, 
if possible. Kinase activities were estimated using known kinase–sub-
strate relationships83 and inferred as a z score calculated using the 
mean log2 FC of phosphorylated substrates for each kinase in terms of 
standard error (z = (M − u)/s.e.), comparing FCs in phosphosite meas-
urements of the known substrates against the overall distribution of 
FCs across the sample. P values were calculated using two-tailed z test84. 
We collected substrate annotations for 400 kinases with available data. 
Kinases with two or more measured substrates were considered to be 
predicted kinases (Supplementary Table 11).

Network reconstruction and enrichment analysis of 
phosphoproteomics data
Proteins with changes in phosphorylation state were selected based 
on an FDR threshold of 0.05. Protein phosphorylation site pairs signifi-
cant for at least one time point were maintained. After filtering, iC3b 
resulted in 44 phosphoproteins, and fibrin resulted in 68 phosphopro-
teins. The STRING database was queried using Cytoscape. Proteins with 
STRING interaction scores higher than 0.4 were connected by edges 
with widths and opacities reflecting the score level. Phosphorylation 
state changes were visualized using Omics Visualizer85 as two outer 
ring circles representing phosphorylation at 1 h and 3 h. To enhance 
the signal, we included up to ten additional nodes identified by the 
STRING database as functionally related to our phosphoproteins using 
stringApp86. Final results were filtered based on an FDR threshold of 
0.05, and redundant results were removed using a redundancy cutoff 
of 0.5. Two significant GO terms were selected and visualized as node 

fill colors. STRING-provided proteins and unconnected proteins were 
removed for visualization.

Fibrin phosphorylation cell assays
BMDMs were cultured for 18 h in RPMI-1640 supplemented with 1% FBS 
(RPMI 1% FBS). Cells were plated on fibrin-coated dishes for 15-90 min in 
RPMI 1% FBS and then processed for either immunocytochemistry (ICC) 
or immunoblotting. Unstimulated BMDMs served as controls. Primary 
rat microglia were used on day 4 in vitro and plated on fibrin-coated 
dishes for 15–75 min in DMEM supplemented with 2% FBS. Unstimulated 
microglia served as controls.

Pharmacologic inhibition assays
BMDMs were cultured for 18 h in RPMI-1640 supplemented with 
1% serum. For MEK inhibition, cells were preincubated with 20 nM 
trametinib (S2673, Selleckchem) for 2 h and then plated on fibrin-coated 
plates for 90 min for ICC or 6 h for quantitative PCR. Cells unstimulated 
in RPMI 1% FBS for 90 min or 6 h were used as time point zero controls. 
Dimethyl sulfoxide was used as a vehicle control. Fibrin–CD11b block-
ade using 5B8 monoclonal antibody was performed as previously 
described29. In brief, 5B8 or IgG2b isotype control antibodies were 
preincubated (each 50 μg ml−1) in fibrin-coated plates for 90 min at 
37 °C before cell plating. Cells were incubated on fibrin for 90 min and 
processed for ICC. Cells incubated with 5B8 or IgG2b in the absence of 
fibrin served as controls.

Immunohistochemistry and Immunocytochemistry
Brains were processed for immunohistochemistry as described29,31. 
The following antibodies were used: mouse anti-GP91phox (1:150; 
53, BD Biosciences), rabbit anti-IBA1 (1:500; 019-19741, Wako), goat 
anti-APOE (1:50; AB947, MilliporeSigma), and Alexa 647, 488 and Cy3 
(1:500; Jackson ImmunoResearch). Amyloid plaques were labeled 
with 5 mg/mL Methoxy-X04 (Tocris) for 30 min at 23 °C. Confocal 
images were acquired with a Fluoview FV1000 (Olympus) confocal 
microscope and Fluoview software v.3.1b with Olympus x40 and 
0.8 NA water-immersion lens. Images of the CA3 hippocampus and 
periplaque were quantified using NIH ImageJ (v.1.50). Image acqui-
sition and quantification was performed by observers blinded to 
experimental conditions.

ICC was performed as previously described87 with the following 
modifications. Briefly, BMDMs were seeded into 16-well chamber glass 
slides (Nunc) coated with fibrin for various times in a 5% CO2 incubator 
at 37 °C. Cells were allowed to adhere for 15–30 min before time point 
collection. Cells unstimulated in RPMI 1% FBS overnight were used as 
time point zero controls unless otherwise stated. Primary antibodies 
for p-NCF2 (1:500, rabbit polyclonal, PA5-105094, Thermo Fisher Scien-
tific), p-PXN (1:500, rabbit polyclonal, PAB7932, Abnova) and p-MEK2 
(1:500, rabbit polyclonal, 28955-1-AP, Thermo Fisher Scientific) were 
incubated overnight at 4 °C. Actin was stained with Alex Fluor Plus 555 
Phalloidin, and nuclei were visualized with DAPI following the manufac-
turer’s instructions (Thermo Fisher Scientific). Images were acquired 
with an Axioplan II epifluoresence microscope (Zeiss) as previously 
described31, or Z stack images were taken with an LSM880 confocal 
microscope (Zeiss) using a ×63 objective. Image quantification was 
performed as previously described66,87. In ImageJ, a cell mask was cre-
ated using phalloidin staining, then immunoreactivity was measured 
within the mask using the same threshold across images and presented 
as a percentage area.

Immunoblots
Immunoblot analysis was performed as previously described29 with the 
following sample preparation specification. Primary microglia were 
washed in 4 °C DPBS and then incubated in Pierce RIPA lysis buffer sup-
plemented with 1× Halt Protease and phosphatase inhibitors (complete 
RIPA; Thermo Fisher Scientific) for 15 min at 4 °C. For brain samples, 

http://www.nature.com/natureimmunology


Nature Immunology

Resource https://doi.org/10.1038/s41590-023-01522-0

cortices were dissected from PBS-perfused 12-month-old male and 
female mice. Tissues were incubated in complete RIPA for 30 min at 
4 °C. Primary antibodies were: p-NCF2 (1:1000, rabbit polyclonal, PA5-
105094, Thermo Fisher Scientific); NCF2 (1:1000, rabbit polyclonal, 
PA5-37323, Thermo Fisher Scientific), p-PXN (1:1000, rabbit polyclonal, 
PAB7932, Abnova), paxillin (1:1000, rabbit monoclonal, ab32115, 
Abcam), p-MEK2 (1:1000, rabbit polyclonal, 28955-1-AP, Thermo 
Fisher Scientific), MEK1/2 (1:10,000, rabbit monoclonal, ab178876, 
Abcam) and GAPDH (1:10,000, rabbit monoclonal, 2118, Cell Signaling 
Technology). Primary antibodies were visualized with horseradish 
peroxidase-conjugated secondaries (Cell Signaling Technology) and 
ECL reagents. Densitometry was performed using NIH ImageJ (v.1.50), 
with protein values for each band normalized to GAPDH from the  
same membrane.

Quantitative real-time PCR
Quantitative PCR and data analysis were performed as previously 
described31. The following primer sequences were used. Gapdh: for-
ward, caaggccgagaatgggaag; and reverse, ggcctcaccccatttgatgt. Il1b: 
forward, agttgacggaccccaaaag; and reverse, agctggatgctctcatcagg.

Statistical analyses for nonsequencing data
Data are presented as mean ± s.e.m. with overlaid scatter plot. Data 
distribution was assumed to be normal, but this was not formally tested. 
Two-tailed unpaired t test or Mann–Whitney test, one-way analysis 
of variance (ANOVA) and two-way ANOVA tests were performed with 
GraphPad Prism v.9. No statistical method was used to predetermine 
sample sizes, but sample sizes were similar to those used in our pre-
viously published studies29,31. All mice survived until the end of the 
study, and all of the data were analyzed. Mice were randomized and 
blindly coded for group assignment and data collection for immuno-
histochemistry and ICC experiments. For in vivo stereotactic plasma 
injections, mice were randomized and blindly coded for group assign-
ment and data collection. For all scRNA-seq experiments, mice were 
randomized by sex and genotype before sample preparation. All injec-
tions, histological analyses and quantification were done in a blinded 
fashion. Quantification of immunohistochemistry data was performed 
independently by two blinded observers.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The scRNA-seq and bulk RNA-seq datasets are deposited in the Genome 
Expression Omnibus under SuperSeries accession number GSE229376. 
Searchable web resources from this study of the microglia and BMDM 
ligand-activation scRNA-seq data are available at https://toxseq. 
shinyapps.io/ligand_activation/, and the single-cell 5XFAD Tox-seq 
data are available at https://toxseq.shinyapps.io/5xfad_toxseq/. The 
EAE Tox-seq data are available at https://toxseq.shinyapps.io/scrnaseq_
viewer/. The mass spectrometry proteomics data have been deposited 
to the ProteomeXchange Consortium via the PRIDE partner repository 
with the dataset identifier PXD021230. The phosphoproteomic interac-
tion networks have been made available through NDEx at https://doi.
org/10.18119/N9F317 (fibrin network), https://doi.org/10.18119/N91S5X 
(iC3b network), https://doi.org/10.18119/N95K6G (fibrin GO-enriched 
subnetwork) and https://doi.org/10.18119/N9990P (iC3b GO-enriched 
subnetwork). Source data are provided with this paper.
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Extended Data Fig. 1 | Blood-innate immunity multiomics pipeline. a, Blood-innate immunity multiomics pipeline for identification of blood-induced immune 
pathways and in vivo validation studies. b, Gating strategy for blood-induced microglia transcriptomic profiling.
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Extended Data Fig. 2 | RNA-seq analysis of microglia from plasma injected 
brains. a-d, Volcano plots of DEGs from RNA-seq analysis of sorted microglia 
from plasma or aCSF injected brains. Comparisons between DEGs in microglia 
from Alb–/– plasma vs aCSF (a), C3–/– plasma vs aCSF (b), Alb–/– plasma vs WT plasma 

(c) or C3–/– plasma vs WT plasma (d) injected brains are shown. Dots depict 
average log2FC and -log10 adjusted P values (abs(log2 > 0.5, adjusted P value < 0.1 
with Wald test followed by Benjamini-Hochberg multiple test correction). Data 
are from n = 6 Fga–/–, n = 6 WT, n = 6 aCSF, n = 8 Alb–/– mice.
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Extended Data Fig. 3 | Blood-induced microglial gene co-expression network. 
Top, Co-expression gene network of 196 DEGs upregulated in microglia by WT 
plasma compared to aCSF control. Bottom, overlay of blood gene network with 
microglial gene expression values from Fga–/– plasma-treated mice. Red shading, 

genes upregulated in microglia; blue shading, genes downregulated in microglia; 
the orange boarder indicates significance of P < 0.1 (Wald test following by 
Benjamini-Hochberg multiple test correction). Data are from n = 3 biological 
replicates per group, with two mice pooled per replicate.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Quality control for primary microglia scRNA-seq 
and BMDM scRNA-seq datasets. a, b, Violin plots of number genes (a) 
and unique molecular identifiers (UMI, b) per cell post-normalization and 
shown for each biologically independent sample from scRNA-seq of primary 
microglia stimulated with fibrin, iC3b, LPS or left unstimulated. Data are from 
two biologically independent samples of fibrin, two biologically independent 
samples of iC3b, two biologically independent samples of LPS, and one 
biologically independent sample of unstimulated primary microglia. c, Elbow 
plot of top PC used to select for clustering analysis. d, Distribution of cells in 
each biologically independent sample across each seurat clusters. e, Dot plot of 
selected microglial gene markers across each cluster from scRNA-seq dataset 
of primary microglia as shown in Fig. 3a. Average gene expression and cell 
population expression is depicted as log expression and percent, respectively. 

f, g, Violin plots of number genes (f) and UMI (g) per cell post-normalization and 
shown for each biologically independent sample from scRNA-seq of primary 
BMDMs stimulated with fibrin, iC3b, LPS or left unstimulated. Data are from three 
biologically independent samples of fibrin, one biologically independent sample 
of iC3b, two biologically independent samples of LPS and four biologically 
independent samples of unstimulated BMDMs. h, Elbow plot of top PC used 
to select for clustering analysis. i, Distribution of cells in each biologically 
independent sample across each seurat clusters. j, Gene-set enrichment plots 
of top GO terms for a given cluster (adjusted P value < 0.05 with BH correction). 
Violin plots depict minimum, maximum, and median expression, with points 
showing single-cell expression levels (a, b, f, g). Box plots show the 1st to 3rd 
quartiles (25–75% box bounds) with median values indicated and upper and lower 
whiskers extending to 1.5*inter-quartile range (a, b, f, g).
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Extended Data Fig. 5 | Pseudotime trajectory analysis of scRNA-seq BMDM 
profiles. a, UMAP plots of BMDM scRNA-seq profiles colored by treatment (left) 
or cluster (right) as shown in Fig. 3a, overlaid with pseudotime trajectory analysis 
with Slingshot. Black arrows indicate inferred trajectories with unstimulated 
(cluster 3) defined as starting point. b, Heat map of single cell gene expression 

patterns across pseudotime trajectories of top 50 DEGs. c, Dot plot of selected 
macrophage gene markers across each cluster from scRNA-seq datasets of 
primary BMDMs as shown in Fig. 3a. Average gene expression and cell population 
expression is depicted as log expression and percent, respectively.

http://www.nature.com/natureimmunology


Nature Immunology

Resource https://doi.org/10.1038/s41590-023-01522-0

Extended Data Fig. 6 | Network analysis and functional validation of 
phoshoproteomic dataset. a, Log2 intensity of phosphorylated peptides (rows) 
for each biological replicate (columns) across stimulation comparisons at each 
time point. Cells colored white indicate not detected. Unstimulated, US. Data 
from n = 2 (Fibrin 1 h), n = 2 (iC3b 1 h), n = 3 (US 1 h), n = 3 (Fibrin 3 h), n = 3 (iC3b 3 h),  
n = 3 (US 3 h) independent experiments. b, Log2FC of phosphorylated peptides 
between fibrin vs US and iC3b vs US at each timepoint. c, UpSet plot showing a 
matrix layout of DEPs specific to a treatment (single filled circle with no vertical 
lines) or shared between treatment (filled circles connected with vertical 
lines) comparisons. Bar plots of the unique or overlapping DEPs in treatment 
comparison (top) and the number DEPs for each treatment comparison (left). 
Phosphorylation sites considered DEPs (FDR < 0.05 and abs(log2 FC) > 1.5) are 

shown. Student’s t-test with BH correction. d, Phosphoproteomic GO network for 
fibrin or iC3b. Phosphorylation changes (log2 FC) depicted as blue-red scheme 
and timepoint (h) as rings. GO terms indicated by node fill color and protein 
interaction strength as edge thickness and opacity. e, Confocal microscopy of 
p-MEK2 staining in BMDMs left unstimulated or stimulated for 90 min with fibrin 
alone or in the presence of trametinib. Nuclei labeled with DAPI. Scale bar,  
50 μm. Quantification of p-MEK2 for n = 3 independent experiments in duplicates. 
P < 0.05 as determined by two-tailed unpaired t-test. f, Quantitative PCR of Il1b 
expression in BMDMs unstimulated or stimulated for 6 h with fibrin alone or 
in the presence of trametinib. Data are from n = 3 independent experiments 
performed in duplicates. P < 0.05 as determined by one-way ANOVA with Tukey’s 
multiple comparisons test.
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Extended Data Fig. 7 | A model of fibrin-induced signal transduction in 
macrophages. Fibrin binding to CD11b-CD18 leads to the conversion of the 
integrin to the high-affinity extended-open (active) conformation that induces 
signal transduction in macrophages. This outside-in signaling is propagated by 
the formation of focal adhesions through recruitment and phosphorylation of 
scaffold proteins and signaling kinases such as paxillin and focal adhesion kinase 
(FAK) resulting in phosphorylation of PI3K and cytoskeleton organization. In 
parallel, the MAPK cascade MEK2 and ERK1/2 components are phosphorylated 

leading to 1) transactivation of NADPH oxidase complex (NOX2) and 
mitochondria responses to induce ROS release and oxidative stress, 2)  
phosphorylation of SMARCA5, NUP98, and the ERK1/2 nuclear transporter 
RANBP3 to regulate nuclear import, 3) phosphorylation of IRF2B2 regulating IFN 
signaling and 4) transcriptional activation of fibrin-induced genes involved in 
inflammatory, oxidative stress, and IFN-I responses. Phosphorylation (P); fibrin-
induced proteins identified in this study, red filled shapes; fibrin-induced genes 
identified in this study are shown in box. Created with Biorender.com.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Ligand-induced profile overlays with EAE innate 
immune cell signatures, and quality control data related to Fig. 6. a, Dot plot 
of selected gene markers across scRNA-seq datasets of primary microglia or 
BMDMs unstimulated or stimulated with fibrin, iC3b, or LPS. Gene expression 
is depicted as scaled log-normalized expression. b, Violin plot of primary 
microglia overlaid with microglial homeostatic gene signature from healthy 
mice as previously identified31. Treatments in x-axis are rank ordered from 
highest to lowest expression. P < 0.0001 by one-way ANOVA with Tukey’s multiple 
comparison test. c, Flow cytometry plots of live CD11b+ROS– and live CD11b+ROS+ 
cells from brains of 12-month-old 5XFAD and NTG mice. Cell population (%) 
shown inside plot. Data representative of two independent experiments.  
d, Quantification of total live CD11b+ cells and CD11b+ROS+ cells from brains of 
12m 5XFAD and NTG mice. Data from n = 3 mice per genotype shown as mean 
± s.e.m. ROS production assessed via DCFDA (c,d). P < 0.05 as determined by 

two-tailed, unpaired t-test with Welch’s correction. e, f, Violin plots of number 
genes (e) and UMI (f) per cell post-normalization, shown for each biologically 
independent sample for 5XFAD and NTG Tox-seq analysis. Data from n = 3 mice 
per condition. Box plots show the 1st to 3rd quartiles (25–75% box bounds) with 
median values indicated and upper and lower whiskers extending to 1.5*inter-
quartile range. g, UMAP plots as shown in Fig. 6a overlaid with microglial gene 
marker expression. Expression depicted as log-fold change expression.  
h, Heat map of top DEGs per single cell cluster from 5XFAD Tox-seq dataset. 
Gene expression depicted as scaled z-score. i, Volcano plot of DEGs in microglia 
between CD11b+ROS+ compared to CD11b+ROS– cells in NTG mice. Dots depict 
average log2FC and -log10 adjusted P values (log2 > 0.25, adjusted P value < 0.05, 
MAST test with BH correction). Violin plots depict minimum, maximum, and 
median expression, with points showing single-cell expression levels (b, e, f).
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Extended Data Fig. 9 | Quality control for scRNA-seq data related to Fig. 7.  
a, Violin plots of gene counts, UMI counts, and %mito for each biologically 
independent sample. F, female; M, male. b, Violin plots of cell type marker genes 
used to annotate each cluster. c, Cluster ratio per biological replicate. d, UMAP  

plot of all single CD11b+ cells identified by clustering analysis (n = 9,286 cells from 
brains of three 5XFAD, three NTG, four 5XFAD:Fggγ390-396A, and four Fggγ390-396A mice). 
e, UMAP plots of microglial cells subclustering analysis split by genotype.  
Ven diagrams depict percentage of cells per cluster.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Pathway analysis of unique microglia oxidative stress 
gene signatures and gene signature overlays. a, Metascape analysis showing 
the top significant gene pathways shared in ROS+ microglia from EAE (top) and 
5XFAD (bottom) mice. Data correspond to gene signatures in Fig. 8b. P values 
calculated by hypergeometric test without multiple test correction. b, c, Dot plot 

of microglia gene expression from plasma or control injected brains overlaid with 
microglia fibrin and iC3b/fibrin activation signature genes (b) or in vivo DAM 
signature (c). Data points represent the average of n = 3 - 4 biological replicates 
per group. Two mice were pooled per replicate. Significance determined by Wald 
test following by BH test correction.
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Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Single cell transcriptomes were prepared using 10X Genomics Chromium Controller and sequenced using Illumnia Novaseq6000 and 
Hiseq4000. Cells were sorted using BD Biosciences FACSAria II with BD FACSDiva v8 and analyzed with FlowJo software v10. Proteomics was 
performed on a thermo Scientific Orbitrap Fusion mass spectrometry system equipped with an Easy nLC 1200 uHPLC system interfaced with 
the mass spectrometer via a Nanoflex II nanoelectrospray source. BD FACSDiva v8 and FlowJo software v10 were used.

Data analysis Bulk RNA-seq of microglia. To facilitate reproducible RNA-seq data analysis, samples were processed using the open-access Nextflow RNA-seq 
pipeline59 using nextflow v20.12.0-edge in Singularity with default nf-core/rnaseq v3.0 parameters for paired-end FASTQ files. The following 
packages were used: Bioconductor-summarized experiment v1.20.0; bedtools v2.29.2; deseq2 v 1.28.0; dupradar v1.18.0; fastqc v0.11.9; 
picard v2.23.9; preseq v2.0.3; rseqc v3.0.1; salmon v.1.4.0; samtools v1.10; star v2.6.1d; stringtie v2.1.4; subread 2.0.1, trimgalore v0.6.6 and 
ucsc v377. FASTQ files were mapped to GRCm38/mm10 genome (downloaded from nf-core). Gene analyses was performed in R v4.2.0 using 
DeSeq2 v1.36.0 on the salmon.merged.gene_counts_scaled file produced by Nextflow. Reads with fewer than 3 counts per gene across 
replicates were filtered out. One outlier sample from groups Fga–/–, WT, Fggγ390-396A and aCSF were removed from downstream analyses 
due to large deviation on PCA and poor sequence alignment. For differential gene analysis the results function in DeSeq2 was used with 
contrast to test between two genotypes and treatments of interest. The results were then filtered for significance using log2foldchange > 0.5 
and padj < 0.1 unless otherwise stated. KEGG analysis was performed using clusterProfiler v4.4.4 with default parameters and pvalueCutoff 
set to 0.1. The blood microglia gene network was generated and visualized in Cytoscape v3.7.260 using upregulated DEGs identified between 
WT plasma compared to aCSF samples (Supplementary Table 3). GO pathways were determined using functional enrichment analysis in String 
package61 with default parameters visualized in Cytoscape.  
 
scRNA-seq data analysis. The R toolkit Seurat was used for QC, clustering analysis, and differential gene expression analysis of scRNA-seq data 
and performed in R v.4.0.2 unless otherwise stated. For scRNA-seq data visualizations, dittoseq package v1 was used to produce UMAPs, dot 
plots, and violin plots73.  
For microglia scRNA-seq analysis (Fig. 2), QC parameters were: nFeature_RNA > 1000; nFeature_RNA < 5500; < 5% and 20% mitochondrial 
and ribosomal genes, respectively. nCount_RNA in the 93rd percentile (nCount_RNA < 26,206) were used for downstream analysis. Data were 
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normalized, scaled, and percent of mitochondrial and cell cycle genes regressed out following Seurat SCTransform. Jackstraw was performed 
with num.replicate of 100. FindNeighbors and FindClusters functions in Seurat were used with the first 8 significant PCs and a resolution of 0.4 
resolution, respectively. 16,186 microglial cells passed QC with an average of 3,469 genes per cell with 20,228 genes. Consistent with 
literature, canonical microglial markers were expressed at varying levels in the identified clusters (Extended Data Fig. 3e). Cluster DEGs were 
determined by FindAllMarkers with default parameters. Genes that met log2fc.threshold > 0.25 with adjusted P value < 0.05 (Benjamini-
Hochberg correction) were used for downstream analysis. 
For BMDM scRNA-seq analysis (Fig. 3), two independent experiments were integrated and corrected for batch effect as described. Batch-
corrected dataset QC parameters were: nFeature_RNA > 200; nFeature_RNA < 5000; < 5% and 25% mitochondrial and ribosomal genes, 
respectively. 17,625 QC-passed BMDMs were used with Seurat integration workflow using default parameters. Jackstraw was performed with 
num.replicate of 100. RunUMAP, FindNeighbors and FindClusters functions were used with the first 20 significant PCs and a resolution of 0.5. 
DEGs were determined by FindAllMarkers with default parameters. Genes that met log2fc.threshold,0.25 with adjusted P value < 0.05 
(Benjamini-Hochberg correction) were used for downstream analysis. Pseudotime trajectories were performed on the UMAP embeddings and 
Seurat clusters using Slingshot v2.2.175, where cluster 3 was the predefined start point.  Associations between gene expression pattern and 
pseudotime were tested for each lineage by fitting a negative binomial generalized additive model at 8 knots using tradeSeq v1.8.076. The 
estimated smoothers for each lineage accounted for batch effects. For each lineage, markers differentially expressed between the average of 
the start and end points of a trajectory were identified. Adjusted P value (Benjamini-Hochberg correction) was used to identify the top 50 
genes for each lineage (Supplementary Table 6). To generate the heatmap, a pseudocount of 1 was added to the raw single cell RNA-seq 
counts for the top 50 DEGs, the rows were log2 row-normalized and K-means clustering was performed on the rows. 
For the 5XFAD Tox-seq analysis (Fig. 6), QC parameters were 200 – 5,000 nFeature_RNA, < 7,500 nCount_RNA, < 5% and 20% mitochondrial 
and ribosomal genes, respectively. Data were normalized, scaled and percent of mitochondrial genes regressed out following Seurat 
SCTransform. Jackstraw was performed with num.replicate of 100. FindNeighbors and FindClusters Seurat functions were used with the first 
30 significant PCs and a resolution of 0.6 resolution, respectively. To remove variation in sex-linked genes, the dataset was integrated with 
Harmony algorithm with runHarmony: group.by.vars = sex and assay.use = SCT. Clustering analysis was performed using Harmony dims = 15 
and resolution = 0.4. In accordance with prior literature78, all four CD11b+ cell clusters had high expression of core microglial genes 
(Extended Data Fig. 8e and Supplementary Table 13). DEGs for each cluster were determined by FindAllMarkers with default parameters using 
MAST statistical test. Genes that met log2fc.threshold,0.25 with adjusted P value < 0.05 (Benjamini-Hochberg correction) were used for 
downstream analyses.  
For brain CD11b+ scRNA-seq analysis (Fig. 7), QC parameters were: 1,000 – 4,000 nFeature_RNA, < 12,000 nCount_RNA, < 10% mitochondrial 
genes. Batch correction was performed using FindIntegrationAnchors for “batch1” and “batch2”, ScaleData function was performed on 
integrated object regression out known microglia immediate response genes. The vars.to.regress function was set to 
c(‘Fos’,‘Egr1’,‘Jun’,‘Junb’,‘Zfp36’,‘Jund’,‘H3f3b’, ‘Btg2’,‘Rhob’,‘Fosb’,‘Dusp1’,‘Ier2’,‘Socs3’,‘Ier5’,‘Nfkbia’,‘Zfp36l1’,‘Btg1’,‘Ptma’,‘Sgk1’,‘Klf6’). 
FindNeighbors and FindClusters were used with the first 20 significant PCs and a 0.2 resolution, respectively. Differential gene analysis was 
performed using FindMarkers or FindAllMarkers with MAST or Wilcoxon test for p_val_adj < 0.05 and avg_log2FC > 0.25. 
 
 
scRNA-seq signature enrichment. The average expression levels of a given gene list was computed across single-cell transcriptomes using the 
AddModuleScore function in Seurat with default parameters. The modular scores of a gene list (i.e., signature enrichment) were visualized in 
UMAP or violin plot. The list of genes used are provided in Supplementary Table 12. 
 
Functional enrichment and network analysis of scRNA-seq data. For in vitro datasets, functional enrichment analysis of DEGs was performed 
in Metascape using default parameters69, and significant GO terms were identified by FDR P value < 0.05 unless otherwise stated. Gene 
network analyses were performed with GSEA with molecular signatures database biological process for GO (C5.bp.v7.1symbols.gmt) using 
default settings. GO terms with P value < 0.10 were used for Enrichment Map Visualization in Cytoscape v.3.7.2 and were unbiasedly clustered 
using the plugin AutoAnnotate v. 1.3.2 with default settings. For the microglial dataset, cluster gene signatures were determined using 
ClusterProfiler v4.4.4 and gseGO function with the following parameters: ont = BP, nPerm = 10000, minGSSize = 3, maxGSSize = 800, 
pvalueCutoff = 0.1, OrgDB = org.Mm.eg.db, pAdjustMethod = BH. 
  
Mass spectrometry data processing and statistical analysis. Quantitative analysis was performed in the R v.4.1.3. Initial quality control 
analyses, including inter-run clusterings, correlations, principal component analysis (PCA), peptide and protein counts and intensities were 
completed with the R package artMS v1.12.0. Two sample outliers in intensities and peptide detections were discarded prior to quantitative 
analysis: Fibrin 1 h (PRIDE sample ID FU20180420-23) and one iC3b 1 h (PRIDE sample ID FU20180420-05) samples. Statistical analysis of 
phosphorylation changes between stimulated and control runs were computed using peptide ion fragment intensity data output from 
MaxQuant and pre-processed using artMS. Quantifications of phosphorylation based on peptide ions were processed using artMS as a 
wrapper around MSstats86, via functions artMS::doSiteConversion and artMS::artmsQuantification with default settings. All peptides 
containing the same set of phosphorylated sites were grouped and quantified together into phosphorylation site groups and equalize median 
normalization was performed across runs to control for differences in sample preparation. Next, we performed statistical tests in MSstats to 
compare phosphopeptide intensities between stimulated and control conditions for each time point. We compared each stimulation 
condition to its time-matched control and also directly compared stimulations to each other (i.e., Fibrin vs. iC3b). We used defaults for 
MSstats for adjusted P values, even in cases of n = 2 biological replicates. By default, MSstats uses the Student’s t-test for P value calculation 
and the Benjamini–Hochberg method of FDR estimation to adjust P values. On average, we quantified between 2,000-6,000 phosphorylated 
peptides per sample, mapping to 300-3,000 different proteins per sample. 
 
Kinase activity analysis of phosphoproteomics data. Fold changes from MSstats were reduced to a single fold change per site by choosing the 
fold change with the lowest P value (non-infinite log2-transformed fold change values) and used for kinase activity and enrichment analysis. 
Mus musculus phosphorylation sites were converted to their Homo sapiens orthologous sites. Orthologous pairs of gene identifiers between 
M.musculus and H.sapiens were downloaded from Ensembl using the BioMart. Ensembl gene identifiers were mapped to UniProt identifiers 
and orthologous pairs of sequences were aligned using the Needleman-Wunsch global alignment algorithm implemented using Biostrings 
v2.62.0 function pairwiseAlignment with default parameters in R. The resulting alignments were used to convert the sequence positions of 
phosphorylations in M.musculus to positions in H.sapiens protein sequences, if possible. Kinase activities were estimated using known kinase–
substrate relationships and inferred as a z-score calculated using the mean log2FC of phosphorylated substrates for each kinase in terms of 
standard error (z = (M − u)/s.e.), comparing fold changes in phosphosite measurements of the known substrates against the overall distribution 
of fold changes across the sample. P values were calculated using a two-tailed z-test. We collected substrate annotations for 400 kinases with 
available data. Kinases  with 2 or more measured substrates were considered as predicted kinases (Supplementary Table 11). 
 
Network reconstruction and enrichment analysis of phosphoproteomics data. Proteins with changes in phosphorylation state were selected 
based on an FDR threshold of 0.05. To compare phosphorylation status at two time points, 1 h and 3 h, protein-phosphorylation site pairs that 
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were found to be significant at least at one time point were maintained. After filtering, iC3b resulted in 44 phosphoproteins, and fibrin 
resulted in 68 phosphoproteins. To investigate the functional relatedness of proteins, STRING database was queried using the network 
analysis tool Cytoscape.  Proteins with STRING interaction scores higher than 0.4 were connected by edges with widths and opacities 
reflecting the score level. Phosphorylation state changes were visualized using Omics Visualizer as two outer ring circles, with each layer 
representing phosphorylation at 1 h and 3 h. In order to enhance the signal for enrichment analysis, we also included up to ten additional 
nodes (proteins) identified by the STRING database as functionally related to our phosphoproteins using the stringApp. Final results are 
filtered based on an FDR threshold of 0.05 and redundant results were removed using a redundancy cutoff of 0.5. Two significant Gene 
Ontology (GO) Biological Process terms were selected and visualized as node fill colors. STRING-provided proteins and unconnected proteins 
were removed for visualization.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The scRNA-seq and bulk RNA-seq datasets are deposited in the Genome Expression Omnibus under the SuperSeries accession number GSE229376. A searchable 
web resource of the microglia and BMDM ligand-activation scRNA-seq data are available at https://toxseq.shinyapps.io/ligand_activation/ and the single-cell 5XFAD 
Tox-seq data at https://toxseq.shinyapps.io/5xfad_toxseq/. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 
the PRIDE partner repository with the dataset identifier PXD021230. The protein interaction networks have been made available through NDEx at https://
doi:10.18119/N9CK5Z and https://doi:10.18119/N9H89M.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes but sample sizes are similar to our previous publications (Ryu et al., Nat 
Immunol., 19, 1212-1223 (2018); Mendiola et al. Nat Immunol., 21, 513-524 (2020).

Data exclusions From bulk RNA-seq experiment, three samples were removed that did not pass RNA and cDNA library quality control testing. One sample was 
removed due  to large deviation on PCA and poor sequence alignment. For phosphoproteomic data, two sample outliers in intensities and 
peptide detections were discarded prior to quantitative analysis: Fibrin 1 h (PRIDE sample ID FU20180420-23) and one iC3b 1 h (PRIDE sample 
ID FU20180420-05) samples. No samples or animals were excluded from any other analyses.

Replication The number of experimental repeats is detailed at the bottom of each legend for each figure. All attempts at replication following the 
protocols described in the methods were successful.

Randomization Mice were randomized and blindly coded for group assignment and data collection for IHC and ICC experiments. For in vivo stereotactic 
plasma injections, mice were randomized and blindly coded for group assignment and data collection. For all scRNA-seq experiments, mice 
were randomized by sex and genotype prior to sample preparation. 

Blinding Stereotactic surgery was performed blinded to the experimental groups. For IHC experiments, image acquisition and quantification was 
performed by observers blinded to experimental conditions. Images were quantified independently by two blinded observers. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Purified mouse IgG2b isotype control (clone MPC-11, BioXcell). IHC: GP91phox (1:150 dilution; 53, BD Biosciences), rabbit anti-IBA1 

(1:500; 019-19741, Wako), goat anti-APOE (1:50; AB947, MilliporeSigma), p-PXN (1:500, rabbit polyclonal, #PAB7932, Abnova), p-
MEK2 (1:500, rabbit polyclonal, #28955-1-AP, Thermo Fisher Scientific), and Alexa 647, 488 and Cy3 (1:500 dilution; Jackson 
ImmunoResearch). Immunoblots: p-NCF2 (1:1000, rabbit polyclonal, #PA5-105094, Thermo Fisher Scientific), p-PXN (1:1000, rabbit 
polyclonal, #PAB7932, Abnova), paxillin (1:1000, rabbit monoclonal, #ab32115, Abcam), p-MEK2 (1:1000, rabbit polyclonal, 
#28955-1-AP, Thermo Fisher Scientific), MEK1/2 (1:10,000, rabbit monoclonal, #ab178876, Abcam), and GAPDH (1:10,000, rabbit 
monoclonal, #2118, Cell Signaling Technology). FACS: CD11b (M1/70; Biolegend) and CD45 (30-F11; Biolegend).

Validation All antibodies used in this study are from commercial sources and have been validated by the vendors and previous studies done by 
our lab or other labs. IgG2b, CD11b, CD45, GP91phox, IBA1, GAPDH were previously validated in our publications Ryu et al., Nat 
Commun 6, (2015); Ryu et al., Nat Immunol., 19, 1212-1223 (2018); Mendiola et al. Nat Immunol., 21, 513-524 (2020). APOE, 
manufactures information on validation not available but was used in Margeta et al Immunity 55, 1627-1644.e7 (2022); p-MEK2, 
manufactures information on validation not available, p-PAK, manufactures information on validation not available; MEK1/2, 
manufactures information on validation not available but was used in Ben-Addi et al Proc Natl Acad Sci USA 111, E2394-403 (2014); 
p-NCF2, manufactures information on validation not available. Paxillin was validated in KO cell lines (Abcam). 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) RAW 264.7 mouse macrophage cell line was obtained from ATCC and cultured in DMEM supplemented with 10% FBS. 

Authentication RAW 264.7 macrophages were not authenticated

Mycoplasma contamination The cell line was tested and was free from mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used. 

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male and Female C57BL/6J and B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V) 6799Vas/Mmjax (5XFAD) mice were purchased from 
the Jackson Laboratory. Fga–/– and Fgg390-396A mice were obtained from Dr. Jay Degen (University of Cincinnati, OH, USA). 5XFAD 
mice were crossed with Fgg390-396A mice to generate 5XFAD:Fgg390-396A mice. Male and female mice were used in this study. 
Sprague-Dawley female rats with litters were purchased from Charles River. Animals were housed under IACUC guidelines in a 
temperature and humidity-controlled facility with 12 h light–12 h dark cycle and ad libitum feeding. 

Wild animals The study did not involve wild animals

Field-collected samples The study did not involve samples collected from the field

Ethics oversight All animal protocols were approved by the Committee of Animal Research at the University of California, San Francisco, and were in 
accordance with the National Institutes of Health guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Mice were perfused with ice-cold phosphate-buffered saline (PBS) and cortical and hippocampal brain regions were carefully 
dissected from each animal and incubated with 1 mg mL-1 collagenase D (Sigma-Aldrich) and 0.05 mg mL-1 DNase1 (Sigma-
Aldrich) for 30 min at 37C. Myelin was depleted using the debris removal kit as described56. Myelin-cleared cell suspensions 
were treated for 5 min at 4C with Fc-block in BSA staining buffer (BD Biosciences) and then incubated for 30 min at 4C with 
CD11b APC-Cy7 (M1/70) antibodies. For ROS and live cell labeling, cells were incubated with 10 uM 2’,7’-dichlorofluorescein 
diacetate (DCFDA) at 4C for 30 min and then incubated with 1 uM Sytox blue live/dead stain for 5 min at 4C. Using a FACSAria 
II (BD Biosciences), cells were sorting into live Sytox blue–CD11b+ROS– and live Sytox blue–CD11b+ROS+ cell populations 
from 12m 5XFAD and WT mice. Sorted cells were kept on ice until all samples were collected and then resuspended in cold 
PBS supplemented with 2% FBS at 250 cells uL-1 and immediately processed for scRNA-seq

Instrument ARIAII (BD) 

Software BD FACSDiva v8 and FlowJo software v10

Cell population abundance When cells were sorted or enriched, the purity was confirmed by flow 
cytometry and routinely >95 %. 

Gating strategy 5XFAD Tox-seq: Single cells were gated by FSC-A/SSC-A and then doublet discrimination was performed first by FSC-H/FSC-W 
followed by SSC-H/SSC-W. Next, live sytox- CD11b+ cells were gated for, then cells were sorted based on ROS- and ROS+ 
(assessed by DCFDA). 
 
Bulk RNA-seq experiment: Single cells were gated by FSC-A/SSC-A and then doublet discrimination was performed first by 
FSC-H/FSC-W followed by SSC-H/SSC-W. Then, microglia cells were gated by CD45loCD11b+ expression. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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