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Abstract
Diabetes mellitus is the leading cause of end-stage renal disease (ESRD) in the U.S. and many
countries globally. The role of improved glycemic control in ameliorating the exceedingly high
mortality risk of diabetic dialysis patients is unclear. The treatment of diabetes in ESRD patients is
challenging, given changes in glucose homeostasis, the unclear accuracy of glycemic control
metrics, and the altered pharmacokinetics of glucose-lowering drugs by kidney dysfunction, the
uremic milieu, and dialysis therapy. Up to one-third of diabetic dialysis patients may experience
spontaneous resolution of hyperglycemia with hemoglobin A1c (HbA1c) levels <6%, a
phenomenon known as “Burnt-Out Diabetes,” which remains with unclear biologic plausibility
and undetermined clinical implications. Conventional methods of glycemic control assessment are
confounded by the laboratory abnormalities and comorbidities associated with ESRD. Similar to
more recent approaches in the general population, there is concern that glucose normalization may
be harmful in ESRD patients. There is uncertainty surrounding the optimal glycemic target in this
population, although recent epidemiologic data suggest that HbA1c ranges of 6% to 8%, as well as
7 to 9%, are associated with increased survival rates among diabetic dialysis patients. Lastly,
many glucose-lowering drugs and their active metabolites are renally metabolized and excreted,
and hence, require dose adjustment or avoidance in dialysis patients.
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Diabetes mellitus is the leading cause of chronic kidney disease (CKD) in the U.S.,
accounting for approximately 44% and 38% of incident and prevalent cases of end-stage
renal disease (ESRD), respectively.1 While the total number of new patients with ESRD due
to diabetes continues to rise (i.e., 49,603 new cases in 2011), there has been a plateau in the
incidence rate over the past decade (i.e., 159 new cases per million in 2011). Over the past
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decade, the mortality rates for diabetic dialysis patients have also declined (i.e., 90 vs. 71
deaths per 1000 patient-years of at-risk time in 2000 vs. 2011, respectively). However,
diabetic dialysis patients continue to have poor survival (i.e., 34% over 5 years), worse than
those with ESRD due to hypertension and glomerular disease. Thus, there is a compelling
need to determine if improved glycemic control with well-managed diabetic
pharmacotherapies may ameliorate this exceedingly high mortality risk, or even perhaps be
associated with adverse outcomes. In this review, we will discuss: 1) alterations in glucose
homeostasis conferred by the uremic milieu; 2) the strengths and limitations of diagnostic
tools used to evaluate intermediate- and long-term glycemic control in dialysis patients; 3)
existing literature on glycemic targets and outcomes in the dialysis population; and 4) the
safety and effectiveness of various diabetic pharmacotherapy regimens in diabetic dialysis
patients.

Effects of Kidney Dysfunction and Dialysis on Glucose Homeostasis
Maintenance dialysis patients, with or without diabetes, may experience both hyper- and
hypoglycemia through multifactorial mechanisms relating to kidney dysfunction, the uremic
environment, and dialysis.2–5

Hyperglycemia
In CKD patients without overt diabetes, including those on dialysis, hyperglycemia and
impaired glucose tolerance may ensue as a result of increased insulin resistance and
decreased insulin secretion.3,4,6 The pathogenesis and exact site of insulin resistance in
dialysis patients has not been fully elucidated4; however, uremic toxins are thought to be
contributory, as insulin sensitivity improves with dialysis.7–10 Secondary
hyperparathyroidism and vitamin D deficiency may impair insulin secretion, and vitamin D
repletion has been shown to improve insulin secretion independent of its effects on
parathyroid hormone levels.4,11,12 While limited data suggest that peritoneal dialysis (PD)
confers improved insulin sensitivity compared to hemodialysis,13 PD may result in
significantly greater dialysate glucose exposure, particularly if higher glucose dialysate
concentrations are required to achieve ultrafiltration goals. For example, dialysis solutions
used by PD patients contain glucose concentrations ranging from 1360 to 3860 mg/dL,14

and the glucose load delivered by PD may confer as much as 10 to 30% of a patient’s total
caloric intake.15

Hypoglycemia and the “Burnt-Out Diabetes” Phenomenon
In diabetic dialysis patients, spontaneous resolution of hyperglycemia and the apparent
normalization of glycated hemoglobin (hemoglobin A1c [HbA1c]) levels, independent of
treatment, is commonly observed and referred to as “Burnt-Out Diabetes.”2–5 In one study
of 23,618 diabetic dialysis patients from a large U.S. dialysis organization, up to one-third
were observed to have HbA1c levels <6% (Figure 1).16 Frequent hypoglycemic episodes
may result in the discontinuation of insulin and oral anti-diabetic medications in dialysis
patients.3–5,16

Multiple factors may contribute to this condition. First, malnutrition, protein-energy
wasting, and diabetic gastroparesis are frequently observed complications in dialysis
patients, which heighten the risk of hypoglycemia.2–4,17 Second, the clearance and
degradation of exogenous insulin is reduced in kidney dysfunction, which results in
prolongation of insulin half-life.18 Third, there is a decline in the hepatic clearance of insulin
in kidney dysfunction, which may improve after initiation of dialysis.6 Fourth, decreased
nephron mass and kidney function also lead to a reduction in renal gluconeogenesis.19,20

Finally, the accumulation of some uremic toxins, such as guanidino compounds, may act
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similar to biguanide agents used for the treatment of type 2 diabetes, thus mitigating or even
“curing” diabetes.21–23 At this time, the biologic plausibility of burnt-out diabetes as a
distinct clinical condition is debatable, and its clinical significance remains unclear.

Monitoring of Glycemic Control in Dialysis Patients
Laboratory abnormalities and comorbidities associated with the uremic state may impact the
accuracy of various methods used for assessing intermediate- and long-term glycemic
control, including glycated hemoglobin (HbA1c), fructoasmine, and glycated albumin
(Table 1). Despite these limitations, the Kidney Disease Quality Outcomes Initiative
(KDOQI) and Kidney Disease Improving Global Outcomes (KDIGO) clinical practice
guidelines recommend routine measurement of long-term glycemic control using HbA1c, in
combination with home blood glucose monitoring, as a cornerstone of diabetes management
in CKD and ESRD patients.

Glycated Hemoglobin (HbA1c)
HbA1c is formed by a non-enzymatic reaction between glucose and hemoglobin’s beta
chain.24 It measures the concentration of circulating glucose over a 120-day exposure
period, and it is the index upon which current standard therapeutic targets for glycemic
control are based in the general population.25–27 The glycation rate of hemoglobin is
influenced by various factors, including: 1) length of glucose exposure, 2) glucose
concentration, 3) hemoglobin level, 4) pH, and 5) temperature.3 Hence, numerous ESRD-
related factors may result in aberrant HbA1c levels (Table 1). Spuriously elevated HbA1c
levels may be observed in the context of elevated blood urea nitrogen (BUN) levels and
metabolic acidosis.28,29 Exposure to high urea concentrations promotes formation of
carbamylated hemoglobin, which cannot be distinguished from glycated hemoglobin in
certain assays (e.g., electric charge-based assays).4,29 In contrast, boronate-agarose affinity
chromatography and thiobarbituric acid methods provide more robust measurement of
HbA1c in dialysis patients.30–32

Conversely, both spuriously and truly low HbA1c levels may be observed in the context of
anemia, blood transfusions, and conditions associated with shortened erythrocyte life span
(e.g., hemoglobinopathies, erythrocyte fragility due to uremia, erythrocyte lysis due to the
dialysis procedure), which may consequently lead to underestimation of long-term glucose
control and undertreatment of hyperglycemia.3–5 The frequent utilization of erythropoietin-
stimulating agents in dialysis patients also falsely lower HbA1c levels by accelerating
erythropoiesis and increasing the proportion of young circulating erythrocytes that have
limited time for hemoglobin glycosylation.33 To address these limitations, various equations
accounting for hemoglobin and other laboratory covariates have been developed to better
characterize the HbA1c and blood glucose relationship in hemodialysis and PD patients.34,35

Fructosamine
Fructosamine is a metric of intermediate-term glycemic control (i.e., 7 to 14 days) and is a
measure of the ketoamines formed by the nonenzymatic glycation of serum proteins.36

While fructosamine may be a more accurate glycemic control metric in anemic dialysis
patients, it may also be confounded by a number of conditions, particularly dysproteinemias
(Table 1).3,4 Hence, falsely low fructosamine levels may be observed in PD patients with
protein losses in the peritoneal dialysate and in patients with hypoalbuminemia due to
protein-energy wasting. Some, but not all, studies have shown that fructosamine is a more
accurate measure of glycemic control than HbA1c. In a prospective study of 100 diabetic
hemodialysis patients, fructosamine was observed to be a more potent predictor of
hospitalization and infections compared to HbA1c.37 In a more recent study of 503 incident
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hemodialysis patients from the CHOICE cohort, a doubling of fructosamine levels was
associated with a two-fold higher risk of all-cause and cardiovascular mortality.38

Glycated Albumin
Whereas fructosamine is a measure of all glycated serum proteins, glycated albumin is
formed by a non-enzymatic reaction between glucose and albumin.3,4,39 Glycated albumin
measures short-term glucose control (i.e., 7 to 14 days), is robust in anemia and conditions
of shortened erythrocyte lifespan, but may be confounded by similar pathologic conditions
as fructosamine (Table 1). Several studies comparing the interrelationship between blood
glucose, glycated albumin, and HbA1c in diabetic dialysis patients vs. control patients
without kidney disease have reported a correlation between blood glucose and glycated
albumin levels in these two groups.40–43 However, for any glucose level, HbA1c was lower
in dialysis patients vs. control patients, raising the concern that HbA1c underestimates
glycemic levels compared to glycated albumin in uremic states.

Elevated glycated albumin levels have also been associated with adverse cardiovascular
surrogates (e.g., increased arterial stiffness, vascular calcification)3,44,45 and hard outcomes.
In a prospective study of 444 diabetic dialysis patients by Freedman et al., glycated albumin
was observed to be a more potent predictor of death risk compared to HbA1c and glucose
levels.46 For every 5% increase in glycated albumin level, there was a 14% higher risk of
all-cause death, whereas no associations between HbA1c, glucose level, and mortality were
observed. These findings stand in contrast to a number of other studies that have observed
an incremental increase in mortality risk with higher HbA1c.14,16,47–58 The discrepant
findings in the Freedman et al. study may have been due to lack of cumulative glycemic
exposure assessment (i.e., lack of time-dependent or time-averaged exposure analysis); an
infrequent number of HbA1c measures compared to glycated albumin; and a sparse number
of events resulting in limited power.42 Nonetheless, this important study has prompted
interest in glycated albumin as a novel metric of glycemic control and outcomes in dialysis
patients. Further studies are needed prior to the adoption of glycated albumin and
fructosamine as routinely-used intermediate-term glycemic control metrics in diabetic
dialysis patients.

Glycemic Control and Outcomes
In the general population, the landmark Diabetes Control and Complications Trial (DCCT)
and the follow-up Epidemiology of Diabetes Interventions and Complications (EDIC)
studies demonstrated that intensive vs. standard glycemic control reduces microvascular
complications and cardiovascular disease, respectively, in type 1 diabetic patients.59,60 In
the United Kingdom Prospective Diabetes Study (UKPDS), intensive treatment was
observed to reduce microvascular complications among type 2 diabetic patients61,62; in the
10-year post-trial follow-up study, a reduction in myocardial infarction and all-cause death
was also observed in the intensive treatment group despite an attenuation in glycemic
differences between the intensive and standard treatment groups over time.63

More recently, three randomized controlled trials - ADVANCE, ACCORD, and Veterans
Affairs Diabetes Trial (VADT) – sought to examine the impact of tight glycemic control on
macrovascular outcomes in type 2 diabetic patients.64–66 Neither ADVANCE nor VADT
showed an improvement in cardiovascular outcomes, while ACCORD, which consisted of
patients with underlying cardiovascular disease, reported that intensive treatment was
associated with higher cardiovascular mortality risk. There are several explanations for these
discrepant findings between the earlier DCCT/EDIC and UKPDS studies and the more
recent ADVANCE, ACCORD, and VADT trials, which include: 1) lower cardiovascular
risk profiles among the DCCT/EDIC and UKPDS cohorts; 2) comparatively less intensive
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glycemic control in the DCCT/EDIC and UKPDS studies (i.e., in the earlier UKPDS study,
intensive glycemic control was analogous to conventional glycemic control in the
ADVANCE, ACCORD, and VADT trials); and 3) longer follow-up with which to observe
hard outcomes in the DCCT/EDIC and UKPDS studies.67

These recent data have prompted concern that attempts to normalize glycemic control in
populations with high underlying cardiovascular risk may be harmful. This has contributed
to the uncertainty surrounding the optimal glycemic target in dialysis patients, in whom
there are higher risks of cardiovascular morbidity and mortality. A number of observational
studies examining the association between degree of glycemic control and mortality in
dialysis patients have shown mixed findings (Table 2). From 1993 to 2006, several studies
of small cohort size (<250 patients/study) largely observed that higher HbA1c levels were
associated with increased mortality in hemodialysis and PD patients.47,50,51,56,58

In a study of 24,875 Fresenius Medical Care diabetic hemodialysis patients by Williams et
al., there was no association between HbA1c level and mortality after 1 year.68 However,
these data were limited by its short-term follow-up; lack of repeated HbA1c measures and
time-dependent survival models; and residual confounding by malnutrition, inflammation,
anemia, and comorbidities.

In a subsequent study of 23,618 DaVita Inc. diabetic hemodialysis patients followed for up
to 3 years by Kalantar-Zadeh et al., lower time-varying HbA1c levels were initially
associated with increased mortality in unadjusted analyses.16 However, in subsequent
analyses that adjusted for case-mix and malnutrition-inflammation markers and hemoglobin
level, higher time-varying HbA1c levels were incrementally associated with higher mortality
risk. Using an analogous design with time-varying HbA1c levels, comprehensive adjustment
for confounders, and more extended follow-up (i.e., up to three years) Williams et al. then
showed that extremes of glycemia (HbA1c<6.5% and >11%) were associated with increased
death risk in the Fresenius hemodialysis cohort.55

More recently, data from 9201 hemodialysis patients from the U.S. Dialysis Outcomes and
Practice Pattern Study (DOPPS) cohort showed a U-shaped association between HbA1c
levels and death risk (i.e., HbA1c <6% and ≥9% were each associated with increased
mortality risk).52 These findings were corroborated by an even larger study by Ricks et al. of
54,757 DaVita hemodialysis patients among whom HbA1c levels <6% and >8% were
associated with increased mortality (Figure 2).53 Despite extensive adjustment for
confounders, lower HbA1c may have been a marker of illness and/or malnutrition in these
latter observational studies.

Hence, these data might suggest that targeting a moderate HbA1c range is associated with
greater survival in dialysis patients with lower comorbidity burden and favorable nutritional
status, whereas targeting lower HbA1c levels may exacerbate mortality risk in dialysis
patients with underlying illness and malnutrition.

At this time, KDOQI and KDIGO clinical practice guidelines recommend that the HbA1c
target should be raised to >7% in patients with comorbidities, limited life expectancy, and
those at risk for hypoglycemia, the latter of which include patients with advanced CKD,
including those receiving dialysis.69 However, in the opinion of some of the coauthors of
this review,70 the most reasonable target range for diabetic dialysis patients should be
limited to 6 to 8% or 7% to 9%, given higher mortality risks observed with HbA1c<6% and
the potential implications of burnt-out diabetes and the high death risk associated with
hypoglycemia in these patients.53,70 Large clinical trials are needed to determine whether
intensive vs. moderate vs. liberal glycemic control optimizes morbidity and mortality in
dialysis patients.
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Treatment of Diabetes in the Dialysis Population
Insulin

Whereas endogenously secreted insulin is degraded by the liver, exogenous insulin is
primarily excreted by the kidneys.18 After being freely filtered by the glomerulus, insulin is
reabsorbed principally by the proximal tubule and to a lesser degree by peritubular
endothelial cells, where it is degraded into peptide fragments. While there are no absolute
guidelines regarding dose adjustments for insulin based on estimated glomerular filtration
rate (eGFR), experts recommend an insulin dose reduction of 50% when eGFR is <10ml/
min/1.73m2.18,71 Upon initiation of dialysis, peripheral insulin resistance may improve,
further reducing insulin requirements.7–9

PD patients have the option of insulin administration via a subcutaneous (SC) or
intraperitoneal (IP) route. IP insulin administration stimulates endogenous insulin secretion
and inhibits hepatic gluconeogenesis and ketogenesis,72 but may also necessitate higher
insulin doses due to losses into the dialysate and adsorption to the plastic surface of dialysis
solution delivery systems.73 In a meta-analysis of three trials in diabetic PD patients, IP vs.
SC insulin administration was associated with two-fold higher insulin requirements and a
greater degree of optimal glycemic control.74 However, IP insulin regimens may also carry
the risk of 1) bacterial contamination during their injection into dialysate bags,75 2)
peritoneal fibroblastic proliferation,76 and 3) hepatic subcapsular steatonecrosis.77 Further
study of the safety and effectiveness of long-term IP vs. SC insulin regimens in PD patients
is needed.

Oral Agents
The armamentarium of therapeutic agents used for the treatment of diabetes has expanded
over the past decade (Table 3). However, the pharmaocokinetic properties of many of these
drugs are altered in kidney dysfunction and may thus require dose adjustment or avoidance
in dialysis patients.18,78

Sulfonylureas (SUs) stimulate insulin secretion by binding to a receptor on the pancreatic
beta cells that is a component of the ATP-dependent potassium channel.18 The older first
generation SUs (e.g., acetohexamide, chlorpropamide, tolazamide, tolbutamide) are rarely
used and should not be used in dialysis patients, given their long half-life and risk of
hypoglycemia among this population. Among the newer, second generation SUs, short-
acting glipizide is the preferred agent in dialysis patients, as it is largely metabolized by the
liver, has inactive or weakly active metabolites that are excreted in the urine, and has a
lower risk of hypoglycemia compared to other SUs (e.g., glyburide, glimepiride).18,78 Most
clinicians, however, avoid the use of SUs in the elderly and in dialysis patients, due to the
hypoglycemia risk.

Meglitinides include repaglinide and nateglinide, which are structurally different that SUs
but similarly stimulate insulin secretion by regulating ATP-dependent potassium channels
on pancreatic beta cells.79 Repaglinide is the preferred agent in dialysis patients, as it is
completely metabolized by the liver, has inactive or weakly active metabolites that are
excreted in the urine, and has lower risk of hypoglycemia compared with other agents.18,78

Nateglinide, while also hepatically metabolized, has renally-excreted active metabolites that
may result in hypoglycemia in dialysis patients.

Biguanides consist of metformin, phenformin, and buformin which inhibit hepatic
gluconeogenesis, decrease intestinal glucose absorption, and improve peripheral insulin
sensitivity.80 Phenformin was removed from the U.S. market due to its high frequency of
severe lactic acidosis, but it is still available in other countries; buformin is also only
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available outside of the U.S. Ninety-percent of metformin is renally excreted,81 and
accumulation in kidney dysfunction causes type B (nonhypoxic) lactic acidosis due to 1)
enhanced conversion of glucose to lactate in the small intestine, and 2) inhibition of hepatic
gluconeogenesis by lactate, pyruvate, and alanine.82,83 The mortality rate of metformin-
associated lactic acidosis is as high as 50%. Hence, U.S. FDA guidelines advise against
metformin use when the creatinine in men and women is ≥1.5mg/dL and ≥1.4 mg/dL,
respectively.18 While some experts have recommended metformin dose reduction (i.e., 50%
reduction, or half of maximal dose) when the eGFR is 30–45ml/min/1.73m2,84 the most
recent KDIGO guidelines recommend that metformin use should be reevaluated at this range
of eGFR, and discontinued when eGFR is <30ml/min/1.73m2 and hence should not be used
in dialysis patients.69

Thiazolidinediones (TZDs) bind to the peroxisome proliferator-activated receptor-gamma
(PPAR-γ) receptor and improves peripheral insulin sensitivity and suppresses hepatic
gluconeogenesis.18 TZDs are wholly metabolized in the liver, and neither the parent drug
nor its major metabolites are renally excreted. TZDs may promote edema and congestive
heart failure via PPAR-γ-mediated stimulation of distal tubular sodium channels and sodium
reabsorption, but this risk may be irrelevant in oliguric and anuric dialysis patients.85–87

TZDs may also decrease bone formation and increase bone loss and fracture risk, which may
bear consequence in patients with underlying CKD-mineral bone disease.88 However, TZDs
may also favorably impact health by improving lipid (e.g., triglyceride, HDL) and
adiponectin levels; reducing visceral adiposity; decreasing inflammation; and reducing
muscle catabolism and protein-energy wasting.89–91

In the general population, observational data and meta-analyses suggest that TZD safety and
effectiveness may be dependent on the specific agent used. Whereas studies of rosiglitazone
have shown an increased risk of cardiovascular events,92 studies of pioglitazone have
demonstrated a reduced risk of cardiovascular morbidity and mortality.93

To date, two rigorous studies examining TZDs and mortality in the dialysis population have
shown mixed findings. In a study of 5290 incident dialysis patients with diabetes from the
ArMORR cohort, Brunelli et al. showed that TZD use was associated with lower all-cause
mortality among insulin-free patients, but not in those who were insulin-requiring.89 This
was irrespective of the type of TZD agent used, and findings were robust in a number of
sensitivity analyses that accounted for confounding by indication, severity of disease,
reverse causation, and time-varying exposure status. On the basis of these data, it was
posited that the benefits of TZDs on peripheral insulin sensitivity may be annulled among
those exposed to exogenous insulin. In contrast, Ramirez et al. showed that rosiglitazone use
was associated with increased all-cause and cardiovascular mortality among 2393 diabetic
hemodialysis patients from the U.S. DOPPS cohort, irrespective of insulin use.87 However,
similar associations were not observed among those who received pioglitazone, and
emerging data suggest that pioglitazone is associated with improved survival in dialysis
patients.94

Dipeptidyl Peptidase-4 Inhibitors (DPP-4 inhibitors) are incretin system compounds and
include linagliptin, sitagliptin, and saxagliptin;18,78 several additional agents in this class
have been approved in recent years or are in development. DPP-4 is an enzyme expressed on
the surface of various types of cells and deactivates glucagon-like peptide-1 (GLP-1), an
incretin hormone which stimulates glucose-dependent insulin secretion. By increasing
GLP-1 availability, DPP-4 inhibitors promote insulin release and reduce postprandial
glucose levels. Linagliptin is minimally excreted in the urine, but it has not been well
studied in the dialysis population. Sitagliptin is largely excreted in the urine, and the
recommended dose in dialysis patients is 25 mg orally per day. Saxagliptin and its primary

Rhee et al. Page 7

Semin Dial. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



active metabolite are cleared by hemodialysis and thus should be administered using a
reduced dose (2.5 mg orally once a day) after dialysis.

Exenatide and liraglutide are GLP-1 analogues that not only facilitate insulin secretion, but
also decrease glucagon secretion, delay gastric empying, and promote early satiety and
weight loss.18 Exenatide is an injectable, renally-excreted drug and not recommended in
patients with an eGFR<30/ml/min/1.73m2. Although liraglutide is not metabolized or
eliminated by the kidney, there are few data of its use in dialysis patients, and manufacturers
caution against administration in mild to severe kidney dysfunction.69

Pramlintide is an analogue of amylin, a pancreatic beta cell hormone that delays gastric
emptying, increases satiety, and suppresses postprandial rises in glucagon levels.78 It is co-
secreted with insulin, primarily renally metabolized and excreted, and has not been studied
in dialysis patients.

Alpha-glucosidase inhibitors function by delaying gastrointestinal glucose absorption and
reducing postprandial blood glucose peaks.18,69,78 Gastrointestinal side effects (e.g.,
abdominal pain, diarrhea, flatulence) has rendered its use infrequent in the general diabetic
population. While <2% of acarbose and its active metabolites are renally excreted, its use in
dialysis patients is not recommended given inadequate study in this population. Miglitol is
renally excreted, and administration is also not advised in patients with kidney dysfunction.

The sodium-glucose cotransporter 2 (SGLT2) inhibitors include canagliflozin and
dapagliflozin and are a new line of diabetic medications that modestly lower elevated blood
glucose and HbA1c levels by inhibiting reabsorption of the filtered glucose load and hence
promote the renal excretion of glucose.95 In animal studies, SGL2 inhibitors have also been
shown to reduce albuminuria.96 At this time, there is a lack of long-term safety and
effectiveness data supporting their use in the general type 2 diabetic population, and their
use is contraindicated in dialysis patients.

Conclusion
There have been substantial advances in our understanding of the unique glycemic milieu,
limitations of contemporary glucose-monitoring methods, and the complex
pharmacokinetics of glucose-lowering therapeutic agents in dialysis patients. However,
many unanswered questions remain: What is the target range of glycemic control in diabetic
dialysis patients? Is diabetes management in diabetic dialysis patients as important as it is in
diabetics without advanced CKD, and what is the relative relevance of optimizing
hyperglycemia in the context of other diabetic comorbidities among dialysis patients? Does
burnt-out diabetes have clinical significance?

Based on existing observational data, intensive glycemic control does not appear to be
associated with improved outcomes in dialysis patients who are prone to hypoglycemia and
the burnt-out diabetes phenomenon. However, there remains substantial uncertainty with
regards to 1) the optimal method for glycemic monitoring in dialysis patients, 2) the impact
of these respective methods on glycemic control and hard outcomes in this population, 3)
ideal glycemic targets that confer improved morbidity and mortality, and 4) the comparative
safety and effectiveness of various glucose-lowering drugs in dialysis patients.

At this time, the critical next steps in closing these knowledge gaps will be to define 1) an
accurate and broadly applicable glycemic metric in CKD, 2) the optimal glycemic target
ranges in this population (and whether this differs from the general population), and 3)
whether our understanding of the natural course of the burnt-out diabetes phenomenon can
be used to ameliorate diabetic complications prior to end-organ damage. Given the high
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mortality rate among this population, there is compelling need for further investigation of
how to optimally manage diabetes in dialysis patients.
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Figure 1.
Approximately one-third of diabetic dialysis patients have an average HbA1c<6%, referred
to as “Burnt-Out Diabetes” (data based on Ricks et al., Diabetes 61(30): 708–715, 2012).53
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Figure 2.
The optimal target hemoglobin A1c (HbA1c) range for diabetic dialysis patients appears to
be different from the general population, e.g. 6% to 8% or 7% to 9% (data based on Ricks et
al., Diabetes 61(30): 708–715, 2012).53
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Table 2

Observational Studies of Glycemic Control and Mortality in Dialysis Patients

Author Study Cohort (Country) Period of exposure definition Results

Tzamaloukas (1993)47 226 dialysis (PD and HD) patients
with type 1 and 2 DM
(USA)

Glycemic control during the 1st

six months of study
• Good glycemic control

(50% of glucose
measurements within
acceptable range, or HbA1c
5–10%) associated with
lower mortality vs. poor
glycemic control (HbA1c
<10%)

• Study limitations included
lack of adjustment for
confounders

Wu (1997)56 137 HD patients with type 2 DM
(Taiwan)

Pre-dialysis glycemic control
within six months prior to
starting HD

• Good glycemic control
(HbA1c 5–10%) associated
with lower all-cause
mortality vs. poor glycemic
control (A1c >10%)

Yu (1997)58 60 PD patients with type 2 DM
(Taiwan)

Pre-dialysis glycemic control
within 6 months before starting
HD (measured monthly)

• Good glycemic control (A1c
all 5–10%) associated with
lower all-cause mortality vs.
poor glycemic control (A1c
>10% at least once)

Morioka (2001)50 150 incident HD patients with type
1 and 2 DM
(Japan)

HbA1c before HD initiation • Higher HbA1c associated
with increased mortality

McMurray (2002)97 83 dialysis (HD and PD) patients
with type 1 and 2 DM
(USA)

Nonrandomized interventional
trial of intensive education/care
vs. control

• Study group with decline in
HbA1c from 6.9% to 6.3%;
no change in HbA1c in
control group

• Tight control improved
QOL, but no improvement
in survival

Oomichi (2006)51 114 HD patients with type 1 and 2
DM
(Japan)

Mean HbA1c during the 3
month period prior to study
entry

• Higher Hb A1c (>8%)
associated with increased
mortality vs. HbA1c <6.5%

Williams (2006)68 24,875 HD patients with type 1
and 2 DM
(USA – Fresenius)

Baseline HbA1c during the 3
month period prior to study
entry

• No association between
HbA1c and survival

• Study limitations included
short-term follow-up, lack
of repeated measured for
HbA1c, and residual
confounding by
malnutrition, inflammation,
and anemia

Kalantar-Zadeh (2007)16 23,618 HD patients with DM
(USA – DaVita)

Time-dependent HbA1c • Higher HbA1c
incrementally associated
with increased mortality

Okada (2007)98 78 HD patients with type 2 DM
(Japan)

Mean HbA1c during 1 year
period after HD initiation AND
Mean HbA1c over 3 months
prior to study entry

• No association between
HbA1c and all-cause
mortality
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Author Study Cohort (Country) Period of exposure definition Results

Ishimura (2009)49 122 HD patients with type 1 and 2
DM
(Japan)

Mean A1c of 3 values
measured during 3 months prior
to study entry

• Higher HbA1c associated
with increased mortality

Dreschsler (2009)48 1255 HD patients with type 2 DM
(Germany)

Baseline HbA1c • HbA1c >8% and >6–8%
associated with increased
sudden cardiac death and
all-cause mortality vs. ≤6%

Williams (2010)55 24,875 HD patients with type 1
and 2 DM
(USA – Fresenius)

Time dependent HbA1c • Time-dependent
HbA1c<6.5% and >11%
associated with increased
mortality risk

Shurraw (2010)99 1454 HD patients type 1 and 2 DM
(Canada)

Monthly HbA1c averaged over
3 months pre- and post-HD
initiation

• No association between
HbA1c and mortality risk

Shima (2010)100 245 HD patients with type 1 and 2
DM
(Japan)

Time averaged HbA1c
(measured monthly)

• No association between
HbA1c and mortality risk

Duong (2011)14 2798 PD patients with DM
(USA – DaVita)

Baseline and time-averaged
HbA1c

• Time-averaged HbA1c
levels >8% incrementally
associated with increased
mortality risk

Sturm (2011)54 78 dialysis (PD and HD) patients
with type 1 and 2 DM

Time-varying HbA1c
(measured every 3 months)

• Lower HbA1c levels <7%
associated with decreased
mortality risk

Ricks (2012)53 54,757 HD patients with DM
(USA – DaVita)

Baseline and time-averaged
HbA1c

• Time-averaged HbA1c>8%
and <6% associated with
increased mortality risk

Ramirez (2012)52 9201 HD patients with type 1 and
2 DM
(USA DOPPS only)

Mean HbA1c during 1st eight
months after study entry

• HbA1c <6% and ≥9%
associated with increased
all-cause mortality risk

Yoo (2012)57 140 PD patients with DM
(Korea)

Averaged monthly or quarterly
HbA1c levels during 1st year
after PD initiation

• All-cause and CV mortality
higher in highest vs. lowest
HbA1c tertile

Kim (2013)101 347 HD patients with DM
(USA)

Baseline HbA1c • HbA1c <6% associated with
increased all-cause mortality
risk

Abbreviations: PD, peritoneal dialysis; HD, hemodialysis; DM, diabetes; HbA1c, hemoglobin A1c; QOL, quality of life; DOPPS, Dialysis
Outcomes and Practice Patterns Study; CV, cardiovascular
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