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Abstract

Linearity, Shift-Invariance and Resolution Improvement for Quantitative Magnetic
Particle Imaging

by

Kuan Lu
Joint Doctor of Philosophy

with University of California, San Francisco in Bioengineering

University of California, Berkeley

Professor Steven Conolly, Chair

Magnetic Particle Imaging (MPI) is an emerging tracer imaging modality that utilizes
safe, low-frequency magnetic fields and an existing, human-safe, superparamagnetic iron
oxide (SPIO) nanoparticle tracer. MPI already shows high contrast and high sensitivity
in small animal imaging. The technique exploits the nonlinear magnetization response
of SPIO nanoparticles to time-varying magnetic fields at very low frequencies (VLF).
Hence, for medical imaging, MPI only detects a signal from the tracers and not from the
diamagnetic biological tissue. Moreover, since tissue is completely transparent to VLF
magnetic fields, there is no depth attenuation of the MPI signal. Thus, the physics of
MPI shows that it has the ideal contrast for tracer imaging, and is ideally suited for
clinical applications such as angiography, cancer imaging, inflammation imaging, and in
vivo stem cell therapy tracking.

The fundamental advantages of MPI as a tracer imaging modality are its superb tracer
sensitivity, ideal image contrast, and safety of the tracer and modality. Our lab has already
shown experimentally that MPI can detect a minuscule sample of 10 nanogram (100 nM)
of tracer in a prototype scanner. In principle, there is another 2 orders of magnitude
achievable improvement before the sensitivity reaches the physical limit of the technique.
MPI is currently shown to have 200x higher net signal-to-noise ratio (SNR) than magnetic
resonance imaging (MRI), and this sensitivity is approaching that of the nuclear medicine,
such as positron emission tomography (PET) and single-photon emission computerized
tomography (SPECT). Moreover, because MPI tracer is not radioactive, the dose-limited
sensitivity can easily exceed PET and SPECT and e�ectively be more sensitive. MPI
has ideal image contrast because the contrast is positive, quantitative, has no tissue
background, and independent of depth. Lastly, MPI has ideal tracer and modality safety.
MPI tracers, notably SPIO nanoparticles, have been shown to be much safer for patients
with chronic kidney disease than currently available tracers (iodine and gadolinium) used
in planar X-ray imaging, X-ray computed tomography (CT), and MRI. In addition, MPI
uses no ionizing radiation, and thus is safer than X-ray, CT, PET and SPECT.
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MPI is still a young technology in the medical imaging field. With 10 years of develop-
ment since the first introduction of the technique in 2005, the current state of MPI research
is very much like MRI in the 1980s. There remain many open challenges to be addressed,
which makes this field very exciting. In this thesis, we will investigate and address three
major challenges in MPI that are crucial for the preclinical and clinical adoption. These
challenges are: 1) Restoration of MPI’s linearity and shift-invariance (LSI), which are
hallmarks of almost all clinically relevant imaging modalities; 2) Achieving isotropic reso-
lution,which is an indispensable characteristic for any diagnostic and quantitative imaging
technique; and 3) Understanding the source of the background image haze and eliminate
it, which is essential for further improving image resolution, contrast and conspicuity.

We begin by investigating the LSI properties in MPI. In MPI, high-pass filters designed
to remove unavoidable direct feedthrough interference also remove information crucial to
ensuring LSI in MPI scans. We present a complete theoretical and experimental descrip-
tion of the image artifacts from filtering, and propose and validate a robust algorithm
to completely restore the lost information for the x-space MPI method. We provide the
theoretical, simulated, and experimental proof that our algorithm indeed restores the LSI
properties of MPI, which is indispensable for quantification and diagnostic utility.

We then detailed an investigation into one of MPI’s unique resolution challenge: MPI’s
point spread function (PSF) is highly dependent on the scanning parameters, and every
experimental MPI scan ever created lacks desirable isotropic resolution, which leads to
ambiguous and inaccurate diagnosis. In this thesis, we generalized a tensor imaging
theory for multidimensional x-space MPI to explore the physical source of this anisotropy,
presented a multichannel hardware and scanning trajectory to remove anisotropy, and
designed and constructed two orthogonal excitation and detector coils to enable isotropic
resolution. We experimentally verified the resolution improvement with the new hardware
and reconstruction, and showed that isotropic resolution enabled accurate diagnosis of
stenosis in small human arterial phantoms.

Lastly, we investigated on MPI’s reduced image contrast due to significant background
image haze. We have found that the image haze comes from the undesirable rotation of
the nanoparticle magnetic moment in response to the applied field outside of the scanning
region. Consequently, the native PSF contains a hazy component that falls o� as 1/Gr,
where G is the gradient field strength, and r is the radially symmetric spatial coordinate.
This haze resembles the haze seen in CT images reconstructed with non-filtered backpro-
jection. We propose that we can reshape the MPI PSF with k-space equalization filter that
dehazes the image without any noise amplification. We demonstrate experimentally that
equalization dramatically increases image conspicuity and enables the first quantitative
measurements of lumen size in a sub-millimeter diameter blood vessel phantom.

In conclusion, this thesis work has proposed significant advancement in imaging the-
ory, hardware and algorithm for MPI that ensures LSI properties, and improves image
resolution, contrast and conspicuity. Taken together, these are major contributions to the
fundamental imaging science of MPI. LSI and sharp isotropic resolution is essential for
quantitative imaging, and could foster clinical adoption of MPI.
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Preface

When I first joined the Conolly lab, the field of Magnetic Particle Imaging has only been
established for 4 years, started by an excellent 2005 Nature paper by Gleich et al at
Philips. Our lab was intrigued by the great clinical potential of MPI as a highly sensitive
and safer alternative for tracer and molecular imaging, but at the same time, we were
faced with many open challenges of this technique. Some of these challenges are so unique
that there are no parallels in the medical imaging field.

We were also caught in a worldview switch in terms of how do we view the MPI
imaging physics. The original Philips paper views the MPI as a nonlinear harmonic
imaging technique. The authors record the harmonic response of the particles to the single
frequency drive field. To reconstruct the input particle distribution from the detected
signal spectrum, one needs the a prior information of the "system functions", which is a
verbose matrix of all the harmonic signatures from a point source placed at every location
within the imaging field of view (FOV). Using algebraic reconstruction techniques, the
authors then invert their library of "system functions" to produce an image. The "system
functions" are acquired for every study in a calibration procedure through the FOV using
the same tracer per study. This reconstruction is ill-posed because the "system functions"
have poor condition number and are susceptible to system noise, change of tracers and
the microenvironment of the tracers.

Coming from a linear systems background, our lab did not understand this approach.
In 2009, our lab proposed to use linear and shift-invariant (LSI) theory to analyze MPI,
which is what we called "x-space" theory. We proposed that MPI could be actually viewed
as a real time sensitive point method, where as we raster the field free point across the
FOV in a controlled manner, we know that the instantaneous signal induced in the receiver
coil must be from the response of the particles from the location the FFP scans across at
the same time. With this temporal-spatial correlation determined by the FFP trajectory,
we could directly reconstruct our temporal signal and grid them onto the imaging FOV
and thus form an image. Moreover, the x-space worldview characterizes MPI to be an LSI
system, with powerful implications that helps us to define SNR, resolution, LSI and other
important discussions for the first time. With this powerful and elegent x-space imaging
theory, we went on trying to improve the performance of MPI system.

We first encountered the direct feedthrough challenge in MPI. In MPI, the excita-
tion and detection occur simultaneously because the particle responds to the external
excitation instantaneously. Thus, there is no temporal separation of the excitation and
received signal. The excitation signal then inevitatbly feeds through the receiver coil and
contaminates the recevied signal at the fundamental frequency. The contamination is
unfortunately more than 10 million times stronger than the particle signal. Therefore,
we need to apply intense hardware and software filtering to remove the fundamental fre-
quency entirely to prevent the contamination to saturate the dynamic range of the A/D
converter. The loss of the fundamental frequency breaks the LSI of the MPI system, and
the artifact this filtering introduces has not been previously investigated. We speculate
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that one motivation for the Philips group to treat MPI as a nonlinear black-box and
develop the "system functions" method is that they believed the lost signal was unrecov-
erable. The feasibility of x-space theory to treat MPI as a LSI system then hinges upon
the understanding of the nature of this lost fundamental signal and ability to recover it.

Chapter 1 describes this challenge, and analyzes the image contribution from each
harmonic, and concludes that the signal loss due to filtering of direct feedthrough is only
a DC o�set in the image. I propose a simple continuity algorithm to completely recover
the lost image content. I also provide a theoretical and experimental demonstration
of the e�cacy of the solution in detail, and I prove that with this simple DC recovery
algorithm, we can restore the linearity and shift-invariance of MPI, a crucial characteristic
for quantitative imaging.

Chapter 2 expands on Chapter 1, and unifies the two existing MPI imaging theory:
the "system functions" method and the "x-space" method. It turns out that the x-space
harmonic image basis set I developed in Chapter 1, which is meant to investigate im-
age contribution from each harmonic frequencies, has a much further implication than
intended. Using this basis set, I found out that a simple Chebyshev transform connects
the image (x-space) domain and the temporal frequency domain, and the x-space method
and the theoretical form of the system functions method are indeed two sides of the same
coin.

As we restored the LSI property of MPI, it enabled us to use MPI to image blood
vessels diseases or cell tracking in vivo. However, one limiting factor of MPI’s adoption
clinically would be its inadequate resolution. Previously, MPI has achieved 2-3 mm res-
olution with a high gradient field strength (3.5 T/m). This resolution is less than ideal
for many applications needing to resolve fine structures, like capillaries or small organ
structures. Additionally, MPI resolution is anisotropic and is highly dependent of the
scanning parameters. Moreover, MPI’s PSF drops o� as slowly as 1/Gr, which introduces
a lot of background haze that compromises resolution as well as image contrast. I decided
to break this resolution challenge down into two steps: first, to address the physics of
the anisotropy and arrive at a solution to reshape the PSF into isotropic; and second, to
address the haze problem, to understand and achieve the best achievable resolution given
a scanner and tracer.

Chapter 3 details the physical investigation of the source of anisotropy in MPI and
proposes a multichannel method to restore isotropic resolution. I generalize a tensor
imaging theory for multidimensional x-space MPI to explore the physical source of this
anisotropy, present a multichannel scanning trajectory to remove anisotropy, and design
and construct two orthogonal excitation and receiver coils to enable isotropic resolution.
The resolution improvement is experimentally verified.

Chapter 4 analyzes the physical origin of the haze and talks about the rationale of
generating an equalization filter in k-space, and how the equalization filter would dehaze
the image and improve both resolution and contrast, without any noise amplification.
Experimentally, I’ve shown that together with multichannel acquisition, equalization filter
dramatially increase image quality and enable the first quantitative measurements of
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lumen area in a sub-millimeter diameter blood vessel phantom.



1

Chapter 1

Linearity and Shift Invariance for
Quantitative Magnetic Particle
Imaging

Linearity and Shift-Invariance (LSI) are hallmarks of almost all clinically relevant
imaging techniques – including ultrasound, CT, nuclear medicine, and MRI [1]. LSI sys-
tems guarantee that the image pixel intensity is linearly proportional to the amount of
tracer located at that pixel, and that the imaging system’s blur is independent of the
spatial location of the input (shift-invariance). Therefore, LSI is a crucial and indispens-
able characteristic for quantification and diagnostic ultility. For example, because X-ray
CT is LSI, the reconstructed CT image of tissue attenuation coe�cient maps can pro-
vide reliable and quantitative lumen diameter measurements for cardiovascular diagnosis.
Similarly, MRI is LSI and therefore can provide quantitative estimates of tumor volume
for cancer diagnosis.

In MPI, high-pass filters designed to remove unavoidable direct feedthrough interfer-
ence removes information crucial to ensuring LSI in MPI scans. In this chapter, we present
a complete theoretical and experimental description of the image artifacts from filtering
and conclude that this high-pass temporal filtering removes only a DC component of an
MPI scan, which is recoverable. We then propose and validate a robust baseline recovery
algorithm to completely restore the lost information for the x-space MPI method. We
provide the theoretical, simulated, and experimental proof that our baseline recovery al-
gorithm indeed restores the LSI properties of MPI system, a crucial step toward making
MPI a quantitative tracer imaging modality.

1.1 MPI Overview
Magnetic Particle Imaging (MPI) detects the magnetic signature of superparamagnetic

nanoparticles in a confluence of static and dynamic magnetic fields (see Fig. 1.1). The
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static magnetic field, or selection field, is a very strong magnetic field gradient (typically
stronger than 2.5 T/m), producing a localized region where the static magnetic field is
zero (known as the field-free-point or FFP) at the midpoint between the magnets. This
static gradient field e�ectively saturates all nanoparticles outside of the FFP and provides
spatial encoding in MPI. We then apply one or more homogeneous oscillating magnetic
fields, called a drive or excitation field, to measure the mass of the nanoparticles within the
FFP. These oscillating fields have amplitudes in the range of 10-40 mTpp, and frequency
around 20 kHz, and they rapidly translate the instantaneous FFP across a small region,
called the partial field of view (pFOV). When the FFP moves across a SPIO particle,
it causes the magnetization of the SPIOs to saturate, inducing a voltage signal in the
receive coil that is rich in harmonics of the fundamental drive frequency, and thus can
be isolated from the strong fundamental frequencies using frequency-domain techniques.
On top of the drive fields, the FFP is then scanned either mechanically or electronically
(10-100 Hz, much slower than the drive frequency) to cover the entire imaging subject,
and the harmonic response is recorded for each FFP location, to create a full 3D scan of
SPIO distribution.

The basic principle of signal generation in MPI relies on the nonlinear magnetization
response M (H) of the ensemble superparamagnetic particles to an applied magnetic field
H (see Fig. 1.2), described by the Langevin curve. When applying a single frequency
sinusoidal drive field Hs(t) of su�cient amplitude, the magnetization response M(t) of
the particles is saturated due to the intense nonlinear M-H curve, and induces a signal
with rich spectrum of higher harmonics than the fundamental frequency of the drive field.
Because of this temporal-frequency separation between the excitation and received signal,
we can isolate the signal spectrum that is only from the particles.

Currently, there are two methods to reconstruct the MPI image from the received,
high-pass filtered, MPI signal: the system function method [2,3] and the x-space method
[4,5]. The system function method employs a large system matrix that describes the spa-
tial dependence of signal harmonics from a point source input for every pixel within the
imaging bore. This large matrix is estimated either by acquiring a time-consuming cali-
bration scan of experimental impulse responses at every desired location [3] or through a
full Langevin nanoparticle model simulation [2]. System function reconstruction typically
involves inverting the system matrix estimate, which may require regularization to deal
with poor conditioning. The matrix inversion process can be computationally intense, and
if deconvolution is employed, it can amplify noise in the image [6]. Moreover, the system
matrix estimate is often acquired from nanoparticles in water, which may not match the
viscosity of blood, a thixotropic fluid [7]. Further, blood viscosity is known to decrease
by about 35% [8] from larger vessels (0.5 mm in diameter) to capillaries (40 microns in
diameter) due to the Fåhræus–Lindqvist e�ect. Such modeling errors could create image
reconstruction artifacts in the system matrix method when applied in vivo.

The x-space method does not rely on an estimate of the system matrix, but instead
reconstructs the MPI image using only the instantaneous MPI signal and FFP velocity
through space. As a result, the x-space image reconstruction algorithm is computationally
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NdFeB Gradient
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Magnetic Shield
Water Cooled
Excitation Coil

Receive Coil

Figure 1.1: Overview of MPI instrument. The NdFeB magnet pole piece generates a
strong magnetic field gradient, and produces a field free point (FFP) in the middle of
the imaging bore. The excitation coil generates an oscillating field that solicitate a signal
from the particles located at the FFP.

TEM of SPIOs

Langevin Curve

Excitation Field Received Particle Signal

FFP

Saturated
(a)

(b)
(c)

Figure 1.2: SPIO signal is rich in harmonics generated by the nonlinear magnetic sat-
uration. (a) Excitation field is a sinusoid with a single frequency. (b) The Langevin
function accurately describes the magnetization of an ensemble of magnetic nanoparti-
cles in response to an applied magnetic field. (c) Nonlinear particle response generates a
harmonic-rich particle signal.
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fast and well-conditioned, and reconstructs the native undeconvolved MPI image, whose
resolution is defined only by the strength of the magnetic field gradient and the magnetic
properties of the nanoparticle tracer.

For the rest of this thesis, we use the x-space method to reconstruct all of the experi-
mental MPI data.

1.2 Direct Feedthrough Filtering Destroys Linearity
and Shift-Invariance

One crucial practical consideration in MPI is the e�ect of suppressing direct feedthrough
interference, an unavoidable phenomenon in current MPI techniques. Because the exci-
tation and signal reception occur simultaneously in MPI, significant direct feedthrough
interference is induced in the receive coil by the excitation field at its fundamental ex-
citation frequency (Fig. 1.3). To reject this direct feedthrough interference, nearly all
MPI scanners rely on high-pass filters, which pass only higher-order harmonic frequency
signals to the pre-amplifier and A/D converter. Of course, these high-pass filters also
unavoidably remove the nanoparticle response’s first harmonic information, which also
destroys the LSI properties of MPI. The impact of the loss of first harmonic information
has never been fully analyzed in MPI.
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Figure 1.3: Simultaneous excitation and reception in MPI leads to direct feedthrough
interference, which contaminates the received signal at the fundamental drive frequency.
Aggressive filtering removes the direct feedthrough interference, however it also removes
part of the nanoparticle signal. It is necessary to recover the lost signal to enable artifact-
free MPI images. (a) Simplified block diagram of the MPI system. Excitation and recep-
tion occur simultaneously. (b) Frequency spectrum of the signal detected in the receive
coil. Sinusoidal excitation leads to harmonics in the nanoparticle signal spectrum. A
high-pass filter is applied to remove the fundamental feedthrough signal.

The MPI x-space analysis relies on three assumptions:

1. Uniqueness: the instantaneous position of the FFP in the bore is unique at all times.
This is always valid given the modest (e.g., 10%) homogeneity specifications of the
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FFP magnet and the excitation magnets.

2. Adiabaticity: the nanoparticles respond adiabatically (i.e., instantaneously) to the
applied magnetic field. This is not always valid, as analyzed by Weizenecker et
al. [9], Reeves et al. [10], Goodwill et al. [11], Croft et al. [12], and Ferguson et
al. [13].

3. Complete MPI Signal Recoverability: the x-space reconstruction requires the com-
plete MPI signal, including the lost first harmonic information. Hence, x-space
reconstruction requires that the lost first harmonic information is recoverable via
robust methods.

The practical implications of the assumption that the lost first harmonic information is
fully recoverable have never been analyzed. Here, we prove for the first time that the
lost first harmonic information corresponds to o�sets of the constant (or DC) component
of the MPI image. We propose a robust algorithm to restore the lost DC information
in conjunction with x-space MPI. Finally, we provide the first theory, simulation and
experimental evidence that our proposed algorithm does indeed restore the LSI properties
of the MPI images. This DC recovery method may also improve system function method,
since the loss of DC information is common to all MPI methods.

1.3 Theory
In this section, we prove that the direct feedthrough filtering in MPI causes a loss of

a constant (or DC) information in an unmodified x-space reconstruction. This insight
informs the robust and fast algorithm that we propose below to restore this lost DC
information.

1.3.1 1D X-space Theory: Brief Review
MPI requires a strong magnetic field gradient for spatial encoding and selectively

saturating the sample at all locations except near the FFP. Applying a strong magnetic
gradient ≠µ

0

G [T/m] across the sample, the particles within the sample experience a
magnetic gradient field

H(x) = ≠Gx (1.1)
To elicit a nanoparticle signal, we apply a spatially homogenous and temporally sinusoidal
magnetic field to the sample. Without loss of generality, we model the excitation field as
a 1D cosine function with peak amplitude Bex [T] and frequency f

0

[Hz]

Hs(t) = Bex

µ
0

cos (2fif
0

t) (1.2)
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Solving H(x) + Hs(t) = 0, we obtain the instantaneous Field Free Point (FFP), xs(t) [m]

xs(t) = G≠1Hs(t) = W

2 cos (2fif
0

t) , (1.3)

where we have defined W = 2Bex/(µ
0

G) [m]. This equation shows that the FFP trajectory
sinusoidally scans across a region of width W , which we refer to as the “partial Field-of-
View” (pFOV).

The particle signal is picked up by an inductive coil. The 1D MPI signal equation in
volts can be derived using the Reciprocity Theorem and the three assumptions above [4].
Assuming the receiver coil has a sensitivity map of ≠B

1

[T/A] and the input particle
distribution is fl(x) [particles/m], we obtain the following convolution relation:

s(t) = “ẋs(t)fl (x) ú L̇ (Gx/Hsat)
------
x=xs(t)

(1.4)

where “ , B
1

mG/Hsat, m [Am2] is the magnetic moment of the magnetic nanoparticle,
Hsat [A/m] is the amplitude of the magnetic field it takes to half saturate the nanoparticle
tracer, ẋs(t) [m/s] is the instantaneous FFP speed, and L refers to the Langevin function
that characterizes SPIO magnetization.

We can analytically convert the time-domain signal equation directly into a native MPI
image, fl̂(x), using the x-space reconstruction method [4]. This only requires normalizing
the received signal by the instantaneous velocity, followed by gridding to the instantaneous
position of the FFP (Fig. 1.5):

fl̂ (xs(t)) = s(t)
“ẋs(t)

= fl (xs(t)) ú L̇ [Gxs(t)/Hsat] (1.5)

Note that the x-space reconstruction only requires a single point-wise division and gridding
operation, which can be performed in real time. As we described above, the noise source
in MPI is currently dominated by the direct feedthrough interference, which decreases
together with the FFP velocity. Thus, theoretically, dividing the signal by the velocity
should not amplify the direct interfering noise. For these reasons, x-space reconstruction
method is computationally e�cient and well-conditioned.

The analysis above shows that the resulting MPI image is simply the nanoparticle
density convolved with the native MPI point spread function (PSF), which is clearly
identified as h(x) , L̇ [Gx/Hsat] (Fig. 1.4a-c). In the case of 2D or 3D excitation field,
MPI can still be written as the multi-dimensional nanoparticle distribution convolved with
a multi-dimensional PSF, as shown in Goodwill et al. [5]. This convolution relationship
proves that MPI is a linear and shift-invariant imaging system. However, this result
assumes that the complete MPI signal is available for reconstruction into a LSI image.
In contrast, the first harmonic information is unavailable in practice due to the direct
feedthrough high-pass filtering operation. We now analyze this challenge.
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1.3.2 MPI Harmonic Image Basis Set
To understand how filtering a�ects the MPI image, it is powerful to assess the in-

dividual contribution each temporal harmonic signal makes to an MPI image. Building
on insightful results from Rahmer et al. [2] on the harmonic decomposition of unfiltered
particle signals, we apply here for the first time the x-space reconstruction algorithm to
each harmonic, and we prove that filtering out the first harmonic information corresponds
to losing a constant, or DC, component of the MPI image.
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(d) FFP Trajectory (e) Ideal Particle Signal with No Feedthrough (g) Harmonics in Fourier Domain

(f) Harmonic Image Basis Set Decomposition
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Figure 1.4: Illustration of 1D MPI imaging process, x-space reconstruction and harmonic
decomposition of the MPI signal in the time and image domains. (a)-(c) MPI is in-
trinsically LSI – the native image can be written as a convolution of the input SPIO
distribution and a point spread function (PSF). (d) Basic sinusoidal scanning sequence
in 1D. (e) Theoretical time domain nanoparticle signal assuming no direct feedthrough.
(f) Application of the x-space reconstruction to each harmonic signal expands the native
image into the MPI harmonic image basis set, which is composed of Chebyshev polyno-
mials of the second kind. (g) The Fourier representation of the time domain signal. Note
that the phase is 90¶ across all the harmonics from the inductive detector.

We begin with Fourier analysis of the received particle signal s(t). For periodic cos-
inusoidal excitation expressed in Eqn. 1.2, the received signal is composed of a series of
sinusoidal harmonics of the excitation. Rahmer et al. decomposed the received particle
signal into a Fourier Series [2]:

s(t) =
Œÿ

n=1

Sn sin (2nfif
0

t) (1.6)

where Sn is the Fourier coe�cients of the nth order harmonic signal.
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We now apply the x-space reconstruction method to both sides of Eqn. 1.6 to derive
an analytic decomposition of the MPI image. Because the x-space reconstruction is a
linear operation, we can apply it to each term in the series and thereby isolate the spatial
contribution from each harmonic. From the FFP trajectory in Eqn. 1.3, we can make the
substitutions ẋs(t) = ≠fif

0

W sin (2fif
0

t) and 2fif
0

t = arccos (2x/W ) to obtain:

fl̂(x) = s(t)
“ẋs(t)

-----
t=1/(2fif0) arccos(2x/W )

= –
Œÿ

n=1

Sn
sin (2nfif

0

t)
sin (2fif

0

t)

-----
t=1/(2fif0) arccos(2x/W )

= –
Œÿ

n=1

Sn
sin (n arccos (2x/W ))
sin (arccos (2x/W ))

= –
Œÿ

n=1

SnUn≠1

32x

W

4
(1.7)

where – is a constant that only depends on the scanning parameters and particle proper-
ties, with the analytical form – , ≠Hsat

B1mGfif0W . Hence, the nth harmonic signal corresponds
to a weighted version of a simple Chebyshev polynomial of the second kind, Un≠1

(x). In
fact, this result implies that the set of Chebyshev polynomials constitutes a complete and
natural MPI harmonic image basis set [2]. Therefore, Eqn. 8 motivates a straightforward
analysis of the lost harmonic signals due to temporal filtering.

For reference, the first five Chebyshev polynomials are listed in Table 1.1. Most

Harmonic MPI harmonic image basis set Shape
sin(1Ê

0

t) 1 constant
sin(2Ê

0

t) 2x linear slope
sin(3Ê

0

t) 4x2 ≠ 1 parabola
sin(4Ê

0

t) 8x3 ≠ 4x cubic
sin(5Ê

0

t) 16x4 ≠ 12x2 + 1 quartic
... ... ...

Table 1.1: Relationship between the time domain harmonic signal and the MPI harmonic
image basis set.

pertinent to this paper, the first harmonic basis image is simply a constant in space.
The second harmonic reconstructs to a linear slope in space, and the third harmonic
corresponds to the quadratic basis function in space. Figure 1.4 illustrates an example
of decomposing an MPI native image from a simple nanoparticle distribution onto the
MPI harmonic image basis set. This image decomposition highlights the fundamental
transform in MPI between image space and harmonic space, and it allows a thorough
analysis of the spatial frequency contents of all MPI harmonics.
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1.3.3 Loss of Image Baseline and Shift Variance due to High
Pass Filtering

Equation 1.7 provides deep and definitive insight into the precise spatial information
lost due to filtering out the first temporal harmonic signal in MPI. Mathematically, the
high-pass filter removes the first harmonic, which removes a constant from our image:

fl̂lost(x) = –S
1

U
0

(2x/W ) = –S
1

(1.8)
This artifact is confirmed in Figure 1.5, where we see that filtering out the fundamental
frequency component of MPI signal indeed leads to a loss of a constant in the image. All
the rest of odd harmonics (third, fifth, etc.) also contain DC content for the MPI image
so we conclude that losing the first harmonic information is precisely equivalent to having
an unknown constant or DC o�set in the uncompensated x-space MPI image. This insight
will inform our first harmonic recovery algorithm below.
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(b) FFP velocity

(d) Reconstructed x-space image
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Ideal Image
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Figure 1.5: Filtering out the fundamental frequency component of the particle signal leads
to a constant o�set artifact in the MPI image. (a), (c), and (d) show the two-step x-space
reconstruction from signal in time domain to MPI image in spatial domain. (b) A plot of
the FFP velocity.

A crucial question is whether this loss of a constant value due to high-pass filtering
destroys linearity or shift invariance. It is straightforward to prove that linearity is not
destroyed by the loss of DC information, since each of the higher order Sn remains linear
in fl̂(x).

However, the loss of the first harmonic does destroy the shift-invariance of an uncom-
pensated x-space image reconstruction. To see this, note that the first harmonic image
(and in fact every individual harmonic image) is shift variant. For example, consider the
lost first harmonic term, S

1

, adapted from [2]:

S
1

= —

W
2̂

≠ W
2

fl̂(x)
Û

1 ≠
32x

W

4
2

dx (1.9)
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Here, — = ≠4B
1

mGf
0

/Hsat, a constant dependent on scanning parameters and particle
properties. This equation reveals that S

1

varies when fl̂(x) is shifted due to the space-
variant velocity term,

Ò
1 ≠ (2x/W )2, which is unity at x = 0, but it is zero at the edges

of the pFOV, x = ±W/2. This implies that a simple shift of the input image would alter
the DC value of an MPI image reconstructed by x-space image reconstruction without
the first harmonic information, in clear violation of LSI systems properties.

The fact that the DC loss leads to non-LSI properties is confirmed by simulation and
experiments. We simulated shifting a simple impulse input in a single FOV, and observed
a significantly di�erent DC loss in the image (Fig. 1.6). Moreover, this artifact becomes
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Figure 1.6: The DC o�set lost due to filtering changes when the impulse input of particle
distribution is shifted within the FOV, demonstrating that MPI is non-LSI after filtering.
The simulated image of an impulse of particles located (a) toward the edge of the FOV,
and (b) at the center of the FOV.

far more complex and non-linear in a partial-FOV image reconstruction. As illustrated
both in experiments and simulation (see Figs. 1.7 and 1.8), if we do not recover the
lost DC information, our image reconstruction is not quantitative. Hence it is absolutely
critical that this artifact be removed.

An apparent paradox arises: how can x-space reconstruction using all the harmonic
signals be shift invariant while each harmonic image is shift variant? This paradox
is resolved by the fact that the sum of all the harmonic basis images (including the
unavailable first harmonic term) does indeed cancel the shift-variant velocity weighting
term, revealing a linear and shift-invariant MPI image (see Appendix A for a rigorous
proof). This reassures that the x-space theory remains valid, and it indicates that one
should be able to restore LSI properties by simply restoring the lost first harmonic image.

Since there is no practical way to filter out direct feedthrough without also rejecting
the first harmonic MPI signal, we must instead devise an algorithm to restore the lost
DC information using a priori information. It is fortunate that the image artifacts from
filtering are restricted to the DC components of the MPI image, since there exist many
robust signal processing methods to restore baseline or DC components of an image using
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continuity algorithms. In Section 1.4 we present a fast and robust continuity algorithm
that recovers the lost DC o�set and thereby restores the quantitative LSI properties of
the x-space MPI technique.

1.3.4 Partial Field of View MPI Scanning and Lost Baseline
Information

Clinical MPI must obey human safety limits on SAR and magnetostimulation [14,15].
Within the typical operation frequency range of MPI, magnetostimulation has been shown
to be the dominant safety concern [16]. For example, if we are to image a torso (r =
20 cm) using a full body MPI scanner with 5 T/m gradient, it would require a 1 Tpp
excitation field strength to cover the entire sample. However, magnetostimulation limits
excitation field amplitudes of ¥ 8 mTpp at 25 kHz [16] to avoid stimulating the human
subjects, which would only cover a partial field of view (pFOV) of about 3 mm. To
address this magnetostimulation challenge while covering a large FOV, the Philips group
introduced the ’focus field’ approach [17–19], where they rapidly scan small sub-regions
and slowly translate the center of the sub-region to cover the entire FOV. Each sub-
region (or ’station’) is reconstructed individually by system matrix inversion. The full
FOV is then reconstructed by averaging the sub-regions together. Here we also address
the magnetostimulation safety limit with a similar pFOV scanning scheme, but we instead
use a modified x-space image reconstruction algorithm.

We now understand that high-pass filtering distorts only the global DC value. This
situation is more complex for pFOV scanning. Figures 1.7 and 1.8 shows the pFOV scan
data from both experiments and simulation. We can see that the high-pass filter shifts
each pFOV by an unknown DC o�set that we will denote by ”i. If we fail to correct the
DC o�sets, it is apparent that the naively reconstructed MPI image is highly distorted
and non-quantitative (for an example of a unrecovered image, see the experimental data
in Fig. 1.8). To restore the desired native MPI image, we must estimate each of the ”i

robustly and then fully recover the desired MPI image over the entire FOV. This method
is described below.

1.4 Continuity Algorithm to Restore Lost Baseline
Information and LSI Properties in MPI

Consider a single MPI scan reconstructed with the x-space method from the high-
pass MPI signal with no first harmonic information. This image will manifest the correct
slope, quadratic term, and higher-order terms, but it will have an incorrect DC value.
Fortunately, we know that the MPI image should be zero outside the FOV where no
particles exist, so it is straightforward to o�set the entire image so that the average value
of the reconstructed image outside the FOV is zero. Essentially we are enforcing continuity
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Figure 1.8: Experimental data of MPI images reconstructed without and with DC re-
covery. The data was acquired from an impulse input of the particles on Berkeley FFL
projection scanner. The reconstructed image without DC recovery has a very di�erent
shape from the ideal image and does not have any quantitative value. In contrast, the
reconstructed image with DC recovery e�ectively restores all the lost signal and matches
well with the ideal MPI image shown in the simulation (Fig. 1.7).
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to the known zero boundary condition. This a priori information allows us to robustly
recover the lost DC information.

We can extend this continuity algorithm to pFOV scanning provided our FFP scanning
trajectory satisfies two conditions:

1. Overlapping pFOVs: The pFOV scans must have non-zero overlap to ensure conti-
nuity of the overall full-FOV reconstruction.

2. Known boundary conditions: To have a robust recovery of the global baseline o�set,
we must have some a priori knowledge of the particle concentration at one reference
location. For example, we need a location that is known to contain no tracer (such as a
location outside the patient), or a fiducial with known concentration. This is akin to the
FOV requirement to prevent aliasing in CT and MRI.

Figure 1.7 illustrates the operation of our DC or baseline recovery algorithm. For illus-
trative purposes, we will describe the algorithm working from left to right, but symmetric
continuity algorithms are also feasible.

We first simply shift the leftmost pFOV sub-image so that the region outside the
patient has zero average signal. Mathematically, this is identical to picking the first DC
shift estimate, ”

1

, as the negative of the sample mean of the leftmost pFOV.
The rest of the constant o�sets can be estimated iteratively by maximizing the con-

tinuity of successive pFOV scans over the overlapping regions. Mathematically, we pick
the DC shift estimates, ”̂i, to be the sample mean of the di�erence between the successive
pFOVs, where the averaging takes place only over the two regions’ overlap zone.

This recovery algorithm is real-time since o�sets can be directly calculated with lin-
ear computational complexity. In Appendix B, we prove that this algorithm provides
statistically unbiased estimates of the real o�sets, and a complete restoration of the lin-
earity and shift invariance of MPI system. In the following sections, we demonstrate with
experiments and simulation that with this modified x-space reconstruction, MPI images
demonstrate linearity and shift invariance.

1.5 Methods
1.5.1 Simulations

We implemented a numerical simulation of the MPI imaging process, including mag-
netic field simulation, Langevin nanoparticle modeling, FFP trajectory generation, signal
detection, direct feedthrough interference computation and filtering (MATLAB, Natick,
MA). X-space reconstruction was implemented in the simulator to reconstruct the native
MPI images. The simulated MPI signals and images were then decomposed into harmonic
basis sets, and compared with the analytic forms. Specific harmonic images of interest
included the first and second harmonic images.
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1.5.2 Phantom Imaging

(a) (b)

Figure 1.9: MPI scanners. (a) Berkeley FFL projection MPI scanner, with a gradient
strength of 2.25 T/m along x and z axes. (b) Latest Berkeley 3D x-space MPI scanner,
with a gradient strength of 7 T/m in the x axis and 3.5 T/m in y and z axes.
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Figure 1.10: Experimental demonstration of MPI’s linearity after recovery and stitching.
The peak intensity of the corresponding MPI image is linearly proportional to the input
particle quantity, showing a near-perfect correlation coe�cient (R2 = 0.999). The amount
of iron tested ranges from 28 µg to 280 µg, with a step size of 28 µg. An image of 1 cm
by 1 cm is taken and reconstructed for each sample, and the peak value of each impulse
response is plotted.

The imaging experiments were performed on the Berkeley field free line (FFL) projec-
tion MPI scanner (Fig. 1.9(a)) [20] and 3D FFP MPI scanner (Fig. 1.9(b)). The gradient
strength of FFL scanner is 2.25 T/m along x and z axes, yielding an imaging resolution
of 3.9 mm in z axis and 7.6 mm in x axis with the contrast agent Resovist [20]. The 3D
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FFP MPI scanner has a gradient strength of 7 T/m in the x axis, and 3.5 T/m in y and
z axes, yielding an image resolution of 2.5 mm in all axes with Resovist. Both scanners
excite along the z axis at 22 kHz. Along with a triangular slow-shifting magnetic field
in x axis, the excitation field covers each pFOV in a Cartesian trajectory [21], while the
additional slow-shifting magnetic fields in z axis (as well as y axis in the case of Berkeley
3D FFP MPI scanner) slowly translate the pFOV to cover the entire imaging sample [5].

To test the linearity of the system, we acquired a series of images on the Berkeley FFL
scanner, each containing a single point source tracer with iron quantity ranging from 28
µg to 280 µg Fe, with a step size of 28 µg for a total of 10 measurements. An image of 1
cm by 1 cm is taken and reconstructed for each sample, and we measure the peak image
intensity of each impulse response.

To test linearity and shift invariance simultaneously, we constructed an acrylic phan-
tom containing multiple line sources of di�erent concentrations (Fig. 1.11(a)) and imaged
it using the FFL scanner. The phantom measures 10 cm by 2 cm and contains four laser-
cut channels. Each channel has a width of 1.5 mm, a thickness of 3 mm and a length of
1 cm. The channels are spaced at 3 cm intervals and filled with exponentially decreasing
concentrations of Resovist tracer: 50, 25, 12.5 and 6.25 millimoles Fe/L. The phantom
was imaged with a 2D FOV of 6 cm ◊ 12 cm in the horizontal xz imaging plane, with
a scan time of 39 seconds. The FFL scanner has a pFOV of about 6 cm ◊ 2.5 cm. The
total scan was completed with a pFOV overlap ratio of 75%.

We also constructed two laser-cut acrylic “carotid artery” phantoms imitating two
models of carotid arteries with and without a stenosis model (Fig. 1.12a). We scanned
this phantom on a 3D FFP MPI scanner. The channel representing the common carotid
artery is 4.5 mm wide, and the branching channels representing the external and internal
carotid arteries have a width of 3 mm. Both are approximately 75% the size of a typical
human carotid artery. In one of the phantoms, we created a stenosis where the internal
carotid artery is half occluded. The phantom is filled with 20-fold diluted Resovist at 25
millimoles Fe/L concentration. The phantom was imaged with a full 3D FOV at a spatial
coverage of 4.5 cm ◊ 4.5 cm ◊ 6.2 cm, and a scan time of 141 seconds. The pFOV size
was around 4.5 cm ◊ 4.5 cm ◊ 1.3 cm. The overlap ratio between two successive pFOVs
was 80%.

1.5.3 X-space Reconstruction and Recovery Algorithm Imple-
mentation

The received particle signals of the imaging phantoms are reconstructed using the
two-step x-space reconstruction algorithm [4,22]: the signal is first velocity compensated
and then gridded to the instantaneous FFP position to form the MPI image of each pFOV
scans. Due to relaxation e�ects and other non-interference noise sources in MPI scanners,
the particle signal is non-zero at the edges of the pFOVs, where the FFP velocity is zero.
To avoid the noise amplification at the two edges, we only reconstruct the central 95% of
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each pFOV. Experimentally, the data loss and the noise gain are negligible with a small
amount of edge pFOV discarded.

The baseline or DC recovery continuity enforcement algorithm was implemented as
described in Section 1.4 using MATLAB (Mathworks, Natick, MA). The computational
time required for complete DC baseline recovery was minimal, on the order of milliseconds
per line-scan using standard computing hardware (2x Intel Xeon E5645 CPUs, each with
6 cores, 2.4 GHz, 144 GB RAM, 64-bit Windows Server 2008 R2). Finally, we averaged
the DC recovered pFOV scans to assemble a final MPI image.

1.6 Results
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Figure 1.11: Experimental demonstration of MPI’s linearity and shift invariance after
recovery and stitching. (a) Linearity and shift invariance phantom. The phantom is
injected with diluted Resovist, with iron concentration of 50, 25, 12.5, and 6.25 millimoles
Fe/L in each channel from left to right respectively. (b) The undeconvolved native image is
reconstructed after recovery and stitching. (c) The center line of the reconstructed image
shows that the signal intensity is linearly proportional to the particle concentration, and
the PSF shape and resolution is the same regardless of location.

Figure 1.10 shows the results of the linearity test. As demonstrated in this figure, MPI
image is linear with respect to iron quantity with a near-perfect correlation coe�cient
(R2 = 0.999) after we recover the DC o�sets and stitch the pFOVs. The detection limit



17

depends on the tracer type and has considerable room for improvement as we improve
the system sensitivity and address interference sources in our system.

Figure 1.11 shows the result of the linearity and shift-invariance phantom. The recon-
structed image following baseline recovery faithfully reflects the exponentially decreasing
iron concentration within the channels. The center line of the reconstructed image shows
that the signal intensity is linearly proportional to the particle concentration, and the
PSF is the same regardless of location, verifying the linearity and shift invariance of the
system.
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Figure 1.12: MPI shows promise as a quantitative angiographic imaging modality. (a,c)
The carotid artery phantom is filled with 20x diluted Resovist (25 millimoles Fe/L). The
phantoms represent the internal carotid artery with (a) no occlusion and (c) half occlusion.
(b,d) Reconstructed native MPI images with baseline recovery, followed by mild Wiener
deconvolution with a simulated 2D PSF, and displayed at 10% leveling. The occlusion in
the phantom is very well captured in the MPI images in (d).

Figure 1.12 shows the carotid angiographic phantoms, and the reconstructed MPI
images with baseline recovery and mild Wiener deconvolution. The occlusion in the
vessel is clearly depicted by the reduced brightness, as well as the narrowing. These
images are quantitative as the baseline recovery algorithm ensures the linearity and shift
invariance of MPI system. This experiment demonstrates the tremendous potential of
MPI for angiographic imaging.

1.7 Discussion
1.7.1 Tradeo�s Between Speed and Absolute Quantitation in

MPI
Linearity and shift invariance (LSI) are crucial properties for quantitative imaging. In

fact, almost all existing medical imaging modalities are modeled as LSI systems, including
Ultrasound, CT, PET/SPECT and MRI. Linearity in MPI means that each pixel value
is linearly related to the true nanoparticle concentration at that pixel. Shift-invariance
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means the MPI scanning process blurs the image of the nanoparticle concentration iden-
tically at every location in the image. Applications of quantitative MPI could include
tracking and quantitating stem cells, or inflammation. As human MPI systems are devel-
oped, LSI qualities will also be crucial for clinicians to make quantitative diagnoses, such
as ejection fraction, lumen diameter, and tumor volume.

In this paper, we both mathematically proved and experimentally demonstrated that
MPI is linear and shift invariant, but only after the DC restoration algorithm recovers the
lost first-harmonic image information. The modified x-space image reconstruction requires
overlapping pFOVs, and full coverage of the entire FOV. These conditions enable a fast,
robust algorithm to restore the lost DC information in real-time without inverting a large
system matrix. Other imaging modalities also require boundary conditions. For example,
MRI pulse sequence designers must choose the minimum number of phase encodes based
on the FOV size to prevent spatial aliasing. In MPI, we need these conditions to ensure
an absolutely quantitative and linear, shift-invariant MPI scan.

It is likely that clinicians will prefer speed over absolute quantification for certain clin-
ical applications. For example, for cardiac imaging or coronary artery imaging, scanning
speed is crucial because of the speed of cardiac motion. Also, the heart itself spans only
a small fraction of the full patient FOV. Acquiring all the pFOVs out to the edge of the
chest would require far more scan time than simply covering the heart. Clearly, full FOV
acquisition may not be prudent for such clinical applications. Hence, one could modify
the proposed method by finding a region near the heart (e.g., pericardiac fat) containing
no contrast agent and use this region to provide the zero boundary condition. This would
also still permit true quantitative and LSI imaging. Indeed, physicians may abandon ab-
solute quantification for relative quantitation when imaging speed is paramount. Suppose
we quickly scan only a small FOV over the heart at high speed. Then one could recon-
struct a continuous image between pFOVs, using the continuity algorithm demonstrated
here. As a result, the entire image would have an arbitrary DC baseline; but physicians
may obviate this artifact with routine tools like window and level adjustment.

The second requirement, overlapping pFOVs, is somewhat similar to the requirement
of adequate sampling to prevent spatial aliasing in CT, PET or MRI. We have found
that, in practice, about 15% overlap is required during the scan (results not shown).
Of course, this implies a small loss of overall imaging speed. Note that increasing the
overlap region size can boost SNR, since we average independent noise sources across the
overlapping regions. Our experimental pulse sequences on the latest 3D MPI scanner in
Fig. 1.10(a) demonstrate that even with a 80% overlap, we can still achieve a reasonable
scan time of 141 seconds at a 3D volumetric coverage of 4.5 cm ◊ 4.5 cm ◊ 6.2 cm.
Clearly, optimizing the overlap region between pFOVs will require a delicate tradeo�
between SNR, scan time, and motion artifacts. Hence, the optimal overlap region is likely
to depend on the particular clinical application.
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1.7.2 Parallels Between the System Function Method and X-
space Image Reconstruction Methods

This analysis is the first time that the mathematical tools of x-space reconstruction
have been applied to the Fourier decomposition that inspired Philips’ excellent System
Function method [2]. This e�ort could begin the unification of the two MPI image recon-
struction methods. There remain significant di�erences between the complexity, speed
and robustness of the two methods. We hope that these parallels will help researchers
compare tradeo�s between the two dominant image reconstruction methods currently
used in MPI.

Indeed, in theory, an MPI image could be reconstructed by summing the Sn-weighted
Chebyshev-basis images in Eqn. 2.4, as proposed first by Rahmer et al. [2]. This im-
age reconstruction method would be slightly slower than x-space reconstruction method
(only due to the FFT operation), but faster than the system matrix inversion method.
Of course, this reconstruction method and system function reconstruction method both
fundamentally lack the first harmonic data, since high-pass filtering is essential for all
MPI methods. Hence, we recommend applying a continuity algorithm to restore the
lost DC o�set information for both methods. Indeed, the successful demonstration of
reconstruction using Chebyshev basis set would be a welcomed advancement to the field.

This analysis also confirms the Rayleigh limit of spatial resolution in MPI, given by
Rahmer et al. [2] and Goodwill et al. [4]. One might hope that an infinite number of Fourier
harmonic coe�cients could enable reconstruction of an MPI image at arbitrarily high
spatial resolution. However, this analysis confirms that even with an infinite number of
Fourier coe�cients, one can only perfectly reconstruct an MPI image that has already been
blurred by the derivative of the Langevin function, fl̂(x) , fl(x) ú L̇ (Gx/Hsat), as shown
by Eqn. 1.5. Exceeding this spatial resolution defined by the nanoparticle’s Langevin
function and the applied gradient field then must rely on some form of deconvolution.

1.7.3 Higher Harmonic Restoration
Here we focused exclusively on the loss of first harmonic information due to the high-

pass filter. However, the high-pass filter may not be sharp enough to leave the 2nd, or
even 3rd, harmonic information intact. It is straightforward to extend the analysis above
to include 2nd or 3rd harmonic restoration, which is precisely equivalent to restoring
the linear or quadratic terms of our reconstructed MPI scans. Fortunately, low spatial
frequency information can be robustly recovered provided there is adequate SNR and
adequate overlap. While our current high-pass filter only removes the first harmonic, this
may be an area of fruitful future investigation.
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1.7.4 Extension to MPI Fluoroscopy
To date, the Fourier analysis of MPI, whether employed for x-space or system function

methods, always assumes a periodic time domain received signal. This implies a discrete
Fourier spectrum. Physically, this is only true when we repeat the scan of the same y-
line in image space several times. However, the only clinically pertinent reason to scan
the same line repeatedly is to increase SNR through averaging. We expect that future
MPI scanners will scan faster, perhaps even a single period per y-line, with no repetition.
At that point our received spectrum can no longer be modeled as a discrete spectrum.
Fortunately, we believe that the modified x-space image reconstruction presented here
will remain e�ective and robust, since it does not directly rely on the Fourier coe�cients.

1.8 Conclusions
All MPI scanners employ high-pass filters to prevent direct feedthrough of the first

harmonic from the transmit coil to the receiver coil, which could easily drown the received
MPI signal. For a simple case of 1D sinusoidal excitation, we showed in theory, simulation,
and in experiment that this high-pass temporal filtering removes only a DC component of
an MPI scan. If left uncorrected, this loss of information destroys the shift invariance of x-
space MPI images and also produces severe image artifacts. We showed both theoretically
and experimentally that our proposed continuity algorithm restores the lost DC o�sets
accurately. We also showed that this restores linearity and shift invariance in x-space MPI.
Last, we demonstrated the experimental MPI scans reconstructed with this modified x-
space algorithm and measured near-perfect linearity and shift invariance with respect to
the concentrations of SPIO contrast agent. This e�ort represents a crucial step toward
making MPI a quantitative tracer imaging modality.
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Chapter 2

Unification of X-space and System
Function Views of MPI

As we mentioned in Chapter 1, there are two dominant worldviews of interpreting
MPI signals and reconstructing MPI images: the system function method and the x-space
method. The system function method was first proposed by Philips back in 2005 [23],
where they establish the relationship between the frequency response signature of the
magnetic particles to the spatial location of the tracer, and they reconstruct the particle
distribution from the received harmonic spectrum. The x-space method was introduced
later by Goodwill et al in 2009 [4] from our lab, where it took a linear systems approach
to analyze the MPI imaging principle, and establishes a straightforward conversion from
the temporal signal to the spatial distribution of the magnetic tracer.

There remain significant di�erences between the complexity, speed and robustness of
these two methods. Therefore, for a long time, researchers in this community had viewed
these two methods independently. There has been no unifying theory that bridges these
two worldviews and make connections between the three domains of the MPI signal: the
temporal domain, temporal frequency domain, and spatial imaging domain.

Almost all of the other mature medical imaging techniques have a well-established
imaging theory that can easily transforms the signal across di�erent domains. For exam-
ple, in MRI, one can easily translate the temporal FID (free induction decay) signal into
k-space, and with a simple Fourier transform, we can get the MRI image in real space.
The flexibility to look at MRI signal in both the sampling domain and the final image
domain is that we can analyze di�erent MRI pulse sequences to assess k-space coverage,
eddy current artifact, etc.

Similarly, in MPI, we would also like to have a unifying theory that can provide the
researchers a way to connect the MPI signals in di�erent domains. This would tremen-
dously help to translate the previous works done with one method to implications for
the other method, and help to foster communication and developement of the entire field
regardless of what MPI approach to take.

In this chapter, we unify the two worldviews through the use of the MPI harmonic
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image basis set discovered in Chapter 1. We establish that the transform that connects
the temporal frequency domain and x-space domain is a pair of Chebyshev transforms.

2.1 Review of System Function Method
Di�erent particle distributions yield signals with di�erent signature harmonic spec-

trums. For example, if we move an impulse particle distribution throughout the FOV,
the harmonic spectrum changes with the input location, and is independent of each other.
These impulse signature spectra thus form a basis set for decomposing any measured sig-
nal spectrum from a given particle distribution, and the decomposing coe�cients reflect
the amount of particle concentration at each input location. The system function method
seeks to understand this spatial dependence of each harmonic from an impulse input, to
construct a basis set matrix from the harmonic-spatial depencence, and to reconstruct
the particle distribution from any given harmonic spectrum by matrix inversion.

Here we present a brief description of the system function theory adapted from [2].
With a harmonic drive field Hs (t), the nth harmonic has the following dependence on
particle position x:

Sn (x) Ã Un≠1

(2x/W )
Ò

1 ≠ (2x/W )2, n = 1, 2, 3, ... (2.1)

where Un (x) represents Chebyshev polynomials of the second kind, and W represents the
width of the partial Field of View each FFP scan covers.
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Figure 2.1: System function Sn (x) is a sensitive map of the spatial dependence of each
harmonic. The Fourier coe�cients Vn is a sum total of the nth harmonic generated from
the tracer distribution at every spatial location, weighted by the system function Sn (x).

The Sn (x) represents the system function (see Fig. 2.1), which can be seen as a
sensitive map, describing the spatial sensitivity dependence of each frequency component
n on particle location x.

We could measure or calculate Sn (x) by measuring the magnetization response of a
point-like sample at a large number of spatial positions corresponding to the number of
image pixels or voxels, e.g., we could place an impulse input at a position x

0

within the
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FOV and measure the particle signal in its Fourier domain. The amplitude of the harmonic
frequencies gives us one sample of the system function: Sn (x

0

) , n = 1, 2, 3, ... By moving
the impulse throughout the entire FOV, we can fully sample the system function matrix,
Sn (x), for all location x. Therefore, assuming a given particle distribution fl (x), the tracer
at any particular location x

0

would contribute to the n-th harmonic by fl (x
0

) Sn (x
0

). The
received harmonic component Vn would thus be the following integral (see Fig. 2.1):

Vn =
ˆ

F OV

Sn (x) fl̂ (x) dx, n = 1, 2, 3, ... (2.2)

In the equation, fl̂ (x) —= fl (x) ú L̇ (Gx/Hsat), where L̇ (Gx/Hsat) is the 1D MPI system
point spread function. This equation shows that the amount of n-th harmonic from a
given tracer distribution fl (x) is a summation of the amount of n-th harmonic generated
by an impulse from all location x (Sn (x)) weighted by the blurred tracer concentration
at that location fl̂ (x).

Reconstructing the particle concentration fl̂ (x) involves inverting the system matrix
Sn (x). Analytically, the inverse transform is equivalent to:

fl̂ (x) Ã 1
Ò

1 ≠ (2x/W )2

Œÿ

n=1

VnSn (x) (2.3)

As seen in the derivation, the system function method establishes the relationship be-
tween the temporal frequency domain Vn and the spatial image domain fl̂ (x). The system
function Sn (x) functions as the foward and inverse mathematical transform between the
two domains.

2.2 Review of X-space Method
X-space method, on the contrary, does not require inverting a complex matrix enlisting

all the signature harmonic spectrums from all the impulse responses. It establishes the
direct relationship between the temporal signal to the native MPI image through gridding
the temporal signal onto the corresponding spatial location instantaneously. As a result,
this reconstruction method is linear, a lot faster computationally, and much better posed
than system function method.

The x-space reconstruction has been introduced in Eq. 1.5, Chapter 1 (illustrated in
Fig. 1.4). Here we restate the equation:

fl̂ (xs (t)) = s (t)
ẋs (t) (2.4)

Basically, in x-space reconstruction, we normalize the received signal by instantaneous
FFP velocity ẋs (t), and then grid the normalized signal onto the x-space following the FFP
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trajectory xs (t). The x-space method establishes the relationship between the temporal
signal domain s (t) and the spatial image domain fl̂ (x). The x-space is straightfoward,
and does not require one to invert an ill-posed harmonic system matrix, making the
reconstruction computational fast and well-conditioned.

2.3 X-space MPI Harmonic Image Basis Set
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Figure 2.2: Relationships between three signal domains in MPI: temporal domain, tem-
poral frequency domain and spatial image domain.

Though the two methods are very di�erent in their complexity and performance,
they are fundamentally unified as they compliment each other in providing information in
di�erent image domains. A combination of the understandings from both system function
method and x-space method can lead to a complete chart of relationships between the
three domains of interest in MPI: temporal, frequency and spatial domains. System
function method relates the spatial image to the resultant temporal frequency spectrum,
the x-space method relates the temporal signal domain to the spatial image domain, and
in between the temporal signal domain and the temporal signal domain, Fourier transform
bridges the two. As a summary, the connections between the three domains are shown in
Fig. 2.2.

One way to compare and bridge the two methods is through the x-space MPI harmonic
image basis set that were analyzed in the previous chapter. Since we can decompose the
temporal received signal s(t) into di�erent harmonic signals, consequently, we can also
decompose the spatial image fl̂ (x) into the harmonic images following linear approaches.
To do so, we can apply x-space reconstruction on each of the harmonic frequency of
the received signal s(t) independently, and the resultant images form the x-space MPI
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harmonic image basis set, which describes the individual image contribution from each
harmonic frequencies.

To recap the process, first, let us expand our temporal signal s(t) into its Fourier
series:

s(t) =
Œÿ

n=1

Vn sin (2nfif
0

t) (2.5)

where Vn is the Fourier coe�cients of the nth order harmonic signal. After applying
x-space reconstruction method to both sides of Eqn. 2.5, we arrive at an analytic decom-
position of the MPI image:

fl̂ (x) Ã
Œÿ

n=1

VnUn≠1

32x

W

4
(2.6)

This x-space decomposition unveils that any MPI image fl̂ (x) can be decomposed into a
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Figure 2.3: X-space MPI harmonic image basis set decomposition shows that for a tracer
distribution that has a Fourier spectrum of Vn after scanning, the tracer image could be
decomposed into a summation of Cheybshev polynomials of second kind (harmonic image
basis set), with Vn being the coe�cient of expansion onto the harmonic image basis set.

summation of Chebyshev polynomials of the second kind Un≠1

1
2x
W

2
(see Fig. 2.3). Each

polynomial of order n is the image contribution from the n-th harmonic frequency. As the
Chebyshev polynomials are orthogonal to each other, Un≠1

(x) forms the x-space harmonic
image basis set of MPI images.

When compare the system function reconstruction in Eq. 2.3 and the x-space harmonic
image basis set decomposition in Eq. 2.6, there are astounding mathematical similarities.
In the next section, we will explore the unity behind the two methods.
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2.4 Relationship between X-space and System Func-
tion Method

Table 2.1 compares the di�erences of expanding MPI image onto the system function
or the x-space harmonic image basis set in the same Vn and fl (x) domains. It could be
seen that in both methods, the image expansion only di�ers in the basis set. For system
function method, the basis set is the system function Sn (x), whereas, in x-space harmonic
image decomposition, the basis set is the Chebyshev polynomials of second kind Un≠1

(x).

System Function X-space MPI Image Basis Set

Vn =
´

F OV

Sn (x) fl̂ (x) dx Vn =
´ T

0

s (t) e≠inÊ0tdt

fl̂ (x) = 1Ô
1≠x2

Œq
n=1

Sn (x) Vn fl̂ (x) =
Œq

n=1

Un≠1

(x) Vn

Table 2.1: Relationship between System Function method and x-space method.
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Figure 2.4: System function method and x-space method can be unified fundamentally.
The system function Sn (x) is essentially the x-space MPI harmonic image basis set (which
is Chebyshev polynomial of second kind) Un≠1

(x) weighted by FFP velocity across the
FOV.

Fig. 2.4 illustrates the relationship between Sn (x) and Un≠1

(x), and we can see that

Sn (x) =
Ô

1 ≠ x2Un≠1

(x) (2.7)

These two basis sets are related by the ratio of
Ô

1 ≠ x2, which is essentially the shape of
FFP velocity in space.

Though the two basis sets have such similar expressions, the physical meaning of each
basis set is fundamentally di�erent.
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As for system function Sn (x), it is a sensitive map showing each harmonic’s spatial
dependence on the input locations. For example, in Fig. 2.4 (a), S

1

(x) shows the amount
of the first harmonic an impulse input would generate when moving the input within
the FOV along x. Likewise, S

2

(x) shows how much second harmonic a point-like source
generates when placed at di�erent locations, so on and so forth. Therefore, the system
function method builds a forward transform that transforms a tracer input fl (x) to the
amount of harmonic Vn generated by it through Eq. 2.2.

As for x-space harmonic image basis decomposition Un≠1

(x), it shows the harmonic
image shape regardless of the input tracer distribution. For example, U

0

(x) = 1 shows
that, no matter what the input is, when we sum the 1st harmonic from all of the tracer
locations and reconstruct the first harmonic into image space, it yields a constant o�set.
Likewise, U

1

(x) = 2x shows that any distribution of second harmonic contributes to a
slope in the image. Therefore, x-space harmonic image basis decomposition builds an
inverse transform that transforms from the harmonic coe�cients Vn to the reconstructed
image fl̂ (x) through Eq. 2.6.

Analogous to the forward and inverse transform in the Fourier transform, we could see
Eq. 2.2 as the forward transform, and Eq. 2.6 as the inverse transform for transforming
MPI image into or from the Fourier coe�cients of the time domain particle signal. It
could be proven that the inversion of the system function Sn (x) matrix is the Chebyhev
polynomial of second kind Un≠1

(x). As it can be proven:
ˆ

1

≠1

Un (x) Sm (x) dx =
ˆ

1

≠1

Un (x) Um (x)
Ô

1 ≠ x2dx =
Y
]

[
0 : n ”= m

fi/2 : n = m
(2.8)

The
Ô

1 ≠ x2 ratio term comes from the velocity term of the FFP. Intuitively, when the
FFP speed is fast, the induced signal is going to be proportionally stronger due to the
bigger dB/dt. The FFP scans each FOV in a sinusoudal way, which means, the FFP
speed is the highest in the center of the FOV, but very slow at the edge of the FOV.
Thus the induced signal (as well as harmonics) is much lower than the particle located
in the center of the FOV, causing this

Ô
1 ≠ x2 weighting. In x-space reconstruction, we

compensate for the signal di�erent due to velocity change in the FOV by normalizing the
signal by

Ô
1 ≠ x2, but in system function method, the signal is never normalized.

2.5 Conclusion
The x-space harmonic image basis set developed in Chapter 1 has further implications

than understanding the di�erent image contribution from each harmonic frequency. Using
this basis set, we proved that there is a simple Chebyshev transform that connects the
image (x-space) domain and the temporal frequency domain, which shows that the x-
space method and the theoretical form of the system functions method are indeed two
sides of the same coin.
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Until today, the field of MPI is divided into two worldviews in how to interpret MPI
signals and reconstruct the signal into images. Because of this di�erence in understand-
ing MPI signal and image process, di�erent groups have been developing their theory,
hardware and applications separately without much mutual understanding or transfer of
knowledge among the field. This chapter aims to provide a theoretical diagram of how
these two worldviews can fundamentally converge as they are analyzing MPI imaging
process in di�erent domains, and only when we take both perspective can we fully un-
derstand MPI signal and images. It is also crucial for the two worldviews to converge for
communication of knowledge and expertise within the field.
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Chapter 3

Multi-channel Acquisition for
Isotropic Resolution in Magnetic
Particle Imaging

As we discussed in chapter 1, like almost all the other clinical imaging techniques, such
as Computerized Tomography, Magnetic Resonance Imaging and Nuclear Medcine, MPI
can be modeled as a linear and shift-invariant system with a well-defined point spread
function capturing the system blur. The key di�erence, as we show, however, is that
MPI’s PSF is highly dependent on the scanning parameters, and is anisotropic using a
simple linear drive field, which leads to ambiguous and inaccurate diagnosis. Therefore,
anisotropic spatial resolution in MPI poses a major challenge for its clinical and preclinical
adoption. In this chapter, we generalized a tensor imaging theory for multidimensional
x-space MPI to explore the physical source of this anisotropy, presented a multichannel
scanning trajectory to remove anisotropy, and designed and constructed two orthogonal
excitation and detector coils to enable isotropic resolution. We experimentally verified
the resolution improvement with the new hardware and reconstruction, and showed that
isotropic resolution enabled quantitative measurement of lumen diameter with MPI.

3.1 Introduction
Magnetic particle imaging (MPI) is a promising tracer modality that has superb tracer

sensitivity [24–27] that can even exceed Nuclear Medicine under dose limit [26]. MPI
directly images the biodistribution of a magnetic and biocompatible tracer, superparam-
agnetic iron oxides (SPIOs) [28–30]. MPI images have positive contrast, unlimited depth
penentation and su�er no background tissue signal. Moreover, MPI is much safer than
nuclear medicine, as there is no ionizing radiation, and the magnetic tracer is biocompat-
ible and kidney-safe [30–32]. MPI is thus ideally suited for tracer imaging, and promising
for many biological and medical applications, such as safe angiography [26, 33–35], cell
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tracking [26], cancer detection, and inflammation imaging.

“Cal” phantom

(a) (b)

y collinear image 

(c)

z collinear image

(d)

Combined image

y
z

Figure 3.1: Combining multi-channel acquisition enables isotropic MPI native resolution.
Experimental MPI imaging data acquired on a 7 T/m x 3.5 T/m x 3.5 T/m MPI scanner.
(a) Photograph of a “Cal” shaped acrylic phantom injected with Micromod Nanomag-
MIP particles (10.6 µg/ml). (b) Collinear scan acquired with a single y channel, showing
anisotropic resolution. The horizontal haze is due to the slow signal decay perpendicular
to excitation direction, and this haze blurs image and reduces its contrast. (c) Collinear
scan acquired with single z channel. (d) Combining two orthogonal collinear scans from
(b) and (c) achieves planar isotropic resolution.

Since the first introduction of the technique by Gleich and Weizenecker [23], there
have been many significant technological advancements in instrumentation [20,22,36–42],
particle physics [12, 43–47], imaging theory and reconstruction [2, 3, 5, 26, 48–52], safety
[16,53,54] and developements in biomedical applications [25,26,33–35].

Notation Value Size
x̨ Spatial Location Vector Rn◊1

h(x̨) Point Spread Function Rn◊n

hij (x̨) i, jthComponent of h (x̨) R1

ET (x̨) Tangential Envelope (Good Resolution) R1

EN (x̨) Normal Envelope (Bad Resolution) R1

WT (x̨) Tangential Weighting Matrices Rn◊n

WN (x̨) Normal Weighting Matrices Rn◊n

� (x̨) Multidimensional Image Tensor Rn◊n

fl̂ij (x̨) i, jth Component of � (x̨) R1

ųa (t) , ųb (t) Excitation and detection vector Rn◊1

fl̂
ųa,ųb

(x̨, t) Image with Tx/Rx Vector ųa (t) and ųb (t) R1

fl̂ (x̨) Isotropic Summed Image R1

G Gradient Matrix Rn◊n

Table 3.1: Variable Definitions. n is the degree of freedom of the scanner system. For a
Field Free Point (FFP) scanner, n = 3, for a Field Free Line (FFL) scanner, n = 2.

However, MPI’s millimeter spatial resolution is not yet competitive enough for pre-
clinical imaging. There have been di�erent e�orts to improve MPI resolution and image
quality from di�erent aspects, including optimizing nanoparticles for resolution [43], sim-
ulating di�erent trajectories for better image quality [21], proposing and building scanners
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with stronger gradient field [2, 4, 55], and deconvolving signal with a tolerable tradeo� in
SNR loss [27].

Moreover, the MPI point spread function (PSF) is unique among all medical imaging
modalities as the image resolution changes depending on the scanning velocity vector and
is anisotropic with single channel excitation and detection. Fig. 3.1 (b,c) illustrates the
anisotropy shown in the native MPI images using only a single excitation/receive channel
(left-right and up-down, respectively), where there is intensity variations in di�erent parts
of the “Cal”, while the original phantom has approximately constant lumen diameter. The
variations are highly dependent on the scanning parameters. This sort of variation would
prevent the use of MPI to measure blood vessel diameter in a tortuous vessel.

In order to produce robust, high-quality images, the native MPI image should not
depend on scanning parameters. In this paper, we implement two orthogonal excitation
and detection coils, and demonstrate theoretically and experimentally that, with proper
choice of MPI scanning trajectory and image processing, we are able to make native
MPI images isotropic resolution independent of the scanning direction, thus enabling
quantitative measurement of lumen diameter.

SPIO

(a) FFP Scanning (b) Point Spread Function

SPIO

MFFP FFPFFPM

SPIO

M
FFP FFPFFP

MM

x-space

(c) Bulk SPIO Magnetization
Response to FFP Motion (d) Image Response

Image
Formation

x-space x-space

x-space

0

0

x

x

Figure 3.2: Illustration of MPI anisotropy with linear scanning. (a) An SPIO point
source scanned with linear FFP trajectory. (b) PSF as a result of the linear scanning
shows anisotropic resolution. (c) Two ways that the bulk magnetization responds to FFP
line scans, through either magnetization magnitude change following Langevin physics,
or merely rotation of the bulk magnetization. (d) Image response. In the red subfigure,
the bulk magnetization desaturates and saturates obeying the Langevin function as the
FFP swiftly scans right across the SPIOs, inducing a sharp image response. In the green
subfigure, the FFP does not scan across the particles, keeping the SPIOs saturated. The
SPIOs align with the external field through only changing the orientation of their magnetic
moments. This slow angular change also induces a signal in the detector coil, but with a
much lower and broader intensity.
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3.2 Theory
In this section, we will investigate the source of the anisotropy inherent to the MPI

PSF, and explore the necessary and su�cient condition to produce an isotropic PSF. To
best analyze the resolution dependence on trajectory, we propose a tensor formulation of
the MPI x-space imaging theory.

3.2.1 Physical Intuition of Anisotropy in MPI: Two Mechanisms
of SPIO Reponse Applied Field

Intuitively, the anisotropy in MPI is a result of two di�erent physical mechanisms
that the assemble particles undertake to respond to the external applied field. Fig. 3.2
illustrates a simple example of anisotropy assuming a single point source in the center of
the field of view (FOV), and a linear FFP trajectory. This scanning pattern produces a
dumbell shaped resolution (Fig. 3.2 (b)). The resolution is better along the FFP scan
direction, but worse along the perpendicular direction. The red line and green line shows
the two di�erent mechanisms individually.

The first mechanism is that the bulk magnetization changes magnitude to follow the
FFP motion (shown in red). As the FFP scans through the center, the bulk magnetization
desaturates to zero, flips 180¶, and resaturates. This fast magnitude change induces a
sharp image response.

The second mechanism is that the bulk magnetization rotates to align with the FFP
motion with the same magnitude (shown in green). When the FFP o�sets far enough from
the center (shown in green), the bulk magnetization stays saturated during the line scan,
and only rotates to realign with the external field instantaneously. The signal induced
is mostly contributed from the slow angular change, which is a much lower and broader
image response.

At any other point in the FOV, the image response is a mixture of these two di�erent
physical mechanisms. As the FFP scan o�sets further from the center of the FOV, the
angular change the assemble particles experience is smaller over the entire scan, thus the
induced signal is lower and broader as the FFP moves further away from the center. Thus
we observe a continous signal drop out and broadening from the center of the FOV to the
outer margin of the FOV, resulting in a dumbell shaped resolution.

3.2.2 MPI’s PSF: A Sum of Good and Bad Resolution En-
velopes

We have demonstrated both theoretically and experimentally that, with baseline re-
covery [52], MPI is a LSI system. Therefore, we can analyze MPI resolution by exploring
its PSF. We begin with the analytic PSF here [5]:
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h (x̨) =L̇

A
ÎGx̨Î
Hsat

B
Gx̨

ÎGx̨Î
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Gx̨

ÎGx̨Î

B
T

G

+ L (ÎGx̨Î /Hsat)
ÎGx̨Î /Hsat

Q

aI ≠ Gx̨
ÎGx̨Î

A
Gx̨

ÎGx̨Î

B
T

R

b G (3.1)

where x̨ is a location vector in the imaging system, L is the Langevin function that
describes the superparamagnetism behavior of the particles, Hsat is the saturation field

strength of the magnetic tracer, G is the gradient field matrix that has the form

S

WU
Gx 0 0
0 Gy 0
0 0 Gz

T

XV.

The system PSF can be decomposed into tangential and normal components [5]:
h (x̨) = ET (x̨) WT (x̨) + EN (x̨) WN (x̨) (3.2)

where the tangential component is comprised of a tangential envelope ET (x̨) weighted by
a spatially varying tangential weighting matrix WT (x̨):

ET (x̨) = L̇

A
ÎGx̨Î
Hsat

B

WT (x̨) = Gx̨
ÎGx̨Î

A
Gx̨

ÎGx̨Î

B
T

G (3.3)

and the normal component can also be expressed as the weighting of a normal envolope
EN (x̨) by a normal weighting matrix WN (x̨):

EN (x̨) = L (ÎGx̨Î /Hsat)
ÎGx̨Î /Hsat

WN (x̨) =
Q

aI ≠ Gx̨
ÎGx̨Î

A
Gx̨

ÎGx̨Î

B
T

R

b G (3.4)

To provide intuition to these equations, we note that in response to a time-varying
magnetic field, SPIO magnetization can change in both magnitude and orientation. Math-
ematically, it can be shown that the detected MPI signal is comprised from both com-
ponents (Eq. 7 in [5]). ET (x̨), the high-resolution PSF envelope, arises from the change
in the magnitude of the SPIO magnetization, which traverses the Langevin curve. Phys-
ically, this corresponds to the traversal of the FFP across a SPIO particle. This change
in magnetic saturation has the shape of the derivative of the Langevin curve [4]. The
low-resolution normal envelope, EN (x̨), arises from the rotation of the bulk magnetiza-
tion to align with the time-varying magnetic field direction. EN (x̨) has been shown to
have a 2.6◊ wider Full Width at Half Maximum (FWHM) than ET (x̨) [5]. We note that
it also has a slow and undesirable drop-o� as 1/ ÎGx̨Î, which manifests as image back-
ground haze and significantly reduces image contrast and resolution. Figure 3.3 displays
the relative shapes of ET (x̨) and EN (x̨).
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Figure 3.3: Dual-component decomposition of a collinear PSF (top), and a transverse
PSF (bottom). Both tangential component and normal component consist of a multi-
plication of a radially symmetric envelope (b,d,g,i) by a spatially asymmetric weighting
matrix (c,e,h,j). The tangential (b,g) and normal envelopes (d,i) are only dependent on
the static gradient configuration and the particle properties, thus remain the same for the
collinear/transverse scans. Normal envelope is the contour of the 2D Langevin distribu-
tion, whereas the tangential envelope is the contour of the 2D derivative of the Langevin
distribution, which has 2.6 x better resolution than the normal envelope. Thus, the tan-
gential component constitutes the better resolution component of the PSF. The weighting
maps are dependent on both the gradient configuration and the scan/reception directions,
and they are the source of anisotropy. For collinear scans, the tangential weighting matrix
has the maximum value along with the scan direction whereas the normal weighting ma-
trix is zero along the scan direction. The non-isotropic weighting maps cause the native
MPI resolution with single scanning/receiving direction to be non-isotropic (dumbbell
shaped PSF).
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3.2.3 Recasting Multidimensional X-space Theory as Tensor For-
mulation

A closer look at the MPI PSF shows that, while ET (x̨) and EN (x̨) are scalar fields,
WT (x̨) and WN (x̨) are 2nd order tensors. Hence h(x̨) is also a 2nd order tensor for
each position x̨. It is important to note that h (x̨) (Eq. 3.1) only depends on the tracer
magnetic property Hsat and the gradient field strength G, and is independent of scanning
direction.

For a Field Free Point (FFP) scanner, the tensor PSF h (x̨) œ R3◊3, and we can
enumerate elements of the PSF tensor as scalar images hij (x̨):

h (x̨) =

S

WU
h

11

(x̨) h
12

(x̨) h
13

(x̨)
h

21

(x̨) h
22

(x̨) h
23

(x̨)
h

31

(x̨) h
32

(x̨) h
33

(x̨)

T

XV (3.5)

The MPI tensor image is similar in concept to di�usion tensor imaging in MRI, where
the value at each spatial position is not a scalar intensity, but is instead a tensor comprised
of directional di�usion coe�cients and their covariances. We generalize the MPI imaging
equation in [5] (Eq. 12) to be the scalar nanoparticle density convolved with this tensor
PSF. The resulting multidimensional MPI image �(x̨) œ R3◊3 is also a tensor, and can
be expressed:

�(x̨) = fl (x̨) ú ú ú h (x̨) (3.6)

=

S

WU
fl̂

11

(x̨) fl̂
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(x̨) fl̂
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(x̨)
fl̂

21

(x̨) fl̂
22

(x̨) fl̂
23

(x̨)
fl̂

31

(x̨) fl̂
32

(x̨) fl̂
33

(x̨)

T

XV (3.7)

where fl (x̨) is the scalar nanoparticle distribution and fl̂ij (x̨) are the enumeration of each
element of the multidimensional image tensor � (x̨) and are individually scalar images.
We note that mathematically, fl̂ij (x̨) = fl (x̨) ú ú ú hij (x̨) and is merely the convolution of
the input nanoparticle distribution with the corresponding scalar element of the PSF.

3.2.4 Probing the Multidimensional Image Tensor with Scan-
ning

To produce an image, we probe the MPI system by scanning the FFP using a specific
drive field trajectory through the FOV and receiving the signal using a combination of
receiver coils [5]. Assuming an excitation field along an arbitrary excitation vector ųa, and
a receiver coil receiving along a detection vector ųb, the image produced is a projection
of the native tensor image � (x̨) onto the two respective vectors (Eq. 12 in [5]), which we
generalize here as:

fl̂
ųa,ųb

(x̨) = ųb
T�(x̨)ųa (3.8)
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where fl̂
ųa,ųb

(x̨) is the acquired image using this trajectory, and is a scalar image. The
concept of acquiring a scalar image by projecting an imaging tensor onto predefined axes
is analogous to di�usion weighted imaging (DWI) in MR, where the di�usion tensor is
projected onto a predetermined axis to form a scalar image of the directional di�usivity
of water only along that axis.

Current MPI instruments are built with a fixed set of drive and receiver coils along the
instrument’s cardinal axes (̨e

1

, ę
2

, and ę
3

). When we use one drive coil in direction ęj and
one receiver coil in direction ęi, the resulting MPI image selects the scalar element fl̂ij (x̨)
from the multidimensional tensor image � (x̨). For example, if we only use the x coil
sets to both excite and receive along ę

1

, we get the collinear image along the instrument
x-axis, which is also the 1st diagonal element fl̂

11

(x̨) of � (x̨). On the other hand, if we
use the y transmit coil to excite along ę

2

and use the x receive coil to receive along ę
1

, we
get the transverse image fl̂

12

(x̨), which is an o�-axial element of � (x̨). We show impulse
responses generated using these two example trajectories, h

11

(x̨) and h
12

(x̨), in Fig. 3.3a
and f.

In practice, however, the excitation and detection vectors can be time-varying and
along any arbitrary direction. Examples of time-varying excitation trajectories include
Lissajous or spiral FFP trajectories [2, 21, 23]. Notably, the detection vector can also
be time-varying, which is feasible through linearly combining time-varying signals from
orthogonal receiver coils. Assuming the instantaneous excitation and detection vectors are

ųa (t) and ųb (t), then we can recast Eq. 3.8, where the instantaneous image fl̂
ųa,ųb

(x̨ (t))
can be expressed as the following inner product:

fl̂
ųa,ųb

(x̨ (t)) = ųb (t) T�(x̨ (t))ųa (t) (3.9)

where x̨ (t) is the instantaneous FFP position. This equation shows that, as a result
of a time-varying scanning and detection trajectory, the instantaneous image intensity
obtained, fl̂

ųa,ųb
(x̨ (t)), is a linear combination of the scalar components of the tensor

image � (x̨ (t)) with respect to the instantaneous ųa (t) and ųb (t).
We note that each scalar image element fl̂ij (x̨) has di�erent properties (see Fig. 3.3).

Therefore, the property of the acquired image is dependent on how these scalar elements
fl̂ij (x̨) are combined through ųa (t) and ųb (t). It quickly becomes clear that the MPI
imaging trajectory can be chosen to optimize parameters such as resolution, SNR, mag-
netostimulation, and scan time. In this paper, we demonstrate a choice of trajectory to
improve resolution, where we use two simple linear scans to sample the elements fl̂

22

, fl̂
33

with no noise gain. However, this tensor imaging fomulation can be easily adapted to
analyze other trajectories with no mathematical di�erence.

3.2.5 Excitation / Reception Trajectory Dependent Anisotropy
Each scalar component of the image tensor, fl̂ij, has di�erent directional anisotropy.

This is visually apparent in Fig. 3.1b and c, which shows distinct di�erences between the
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two experimentally acquired “Cal” phantom images, fl̂
22

and fl̂
33

, imaged along the y and z
directions. The reason for this di�erence is that the projection of the PSF, h(x̃), onto the
cardinal instrument axes ęi, namely, hii (x̨), is itself directionally anisotropic (visualized
in Fig. 3.4a and b). To investigate the source of this anisotropy, we analyze hii (x̨) using
Eq. 3.2and Eq. 3.8:

hii (x̨) = ET (x̨) ęT

i WT (x̨) ęi + EN (x̨) ęT

i WN (x̨) ęi (3.10)

The envelopes ET (x̨) and EN (x̨) are isotropic regardless of the scanning pattern (Fig.
3.3). Thus, the directional anisotropy of hii (x̨) is due to the projection of the weighting
matrices WT (x̨) and WN (x̨) onto the excitation and detection vectors, i.e. ęT

i WT (x̨) ęi

and ęT

i WN (x̨) ęi (shown in Fig. 3.3c and e).

3.2.6 Achieving Isotropic Resolution with Multiple Orthogonal
Scans

In this section, we will attempt to demonstrate that a simple summation is su�cient to
eliminate MPI image anistropy for improved resolution. The technique presented here is
deterministic (e.g. does not require choice of any regularization parameters) and reduces
image noise through averaging.

We first normalize the orthogonal collinear images (i.e. fl̂ii) by the gradient strength
along each direction, then sum the resulting images together. With some e�ort (see
Appendix C), we can prove that such a summation produces isotropic resolution. These
normalization and summation operations can be succintly described:

fl̂(x̨) = trace[�(x̨)G≠1]

=
3ÿ

i=1

fl̂ii (x̨)
Gii

= fl (x̨) ú ú ú (ET (x̨) + 2EN (x̨)) (3.11)

wherefl̂ (x̨) is the summed image and Gii is the (i, i)-th element of the gradient matrix G.
The key to Eq. 3.11 is that fl̂(x̨) no longer has weighting matrix dependencies. Re-

moving the WT (x̨) and WN(x̨) dependence is powerful and produces an image that does
not depend on scanning direction. We can see the improvement in image quality as we
change from anisotropic to isotropic in Figure 3.4, where we show the yz cross-section
of two orthogonal collinear PSFs probed along y and z axes, as well as the sum of these
PSFs. We also see that this holds experimentally for experimental data in Figs. 3.1d and
Fig. 3.6d.

3.2.7 Projection MPI Improves Resolution over 3D
For a field free line (FFL) scanner, we only need to make some minor modifications

to Eq. 3.6 to make it a double convolution in addition to changing the dimensionality of
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Figure 3.4: [Top] Two orthogonal collinear scans are su�cient to cancel out the anisotropy
from the weighting factors to restore the averaged tangential and normal envelope in a
2D plane. (a-b) The xz cross-sectional image of the two collinear scans acquired along x
and z directions respectively. (c) The combined orthogonal collinear PSF yield isotropic
resolution. Similarly, three orthogonal collinear scans is su�cient for 3D isotropic resolu-
tion, if the gradient is isotropic in space. For Maxwell pair gradient configuration (where
the gradient strength is twice as big as the other two directions), the combined PSF has
a prolate spheroid shape. [Bottom] The line profile of the respected PSFs. It is shown
that the resolution of the averaged collinear PSF is in between the resolution of the two
envelopes.



39

the matricies to h, � œ R2◊2.
It is possible to extend Eq. 3.11 to FFL projection imaging with modest changes

to the sizes of matrices [20, 38]. Again, summing the collinear images (fl̂ii) gives us an
isotropic image

fl̂(x̨) =
2ÿ

i=1

fl̂ii (x̨)
Gii

= fl (x̨) ú ú (ET (x̨) + EN (x̨)) (3.12)

This result shows that, fundamentally, a combined image fl̂ from a FFL gradient will
have better resolution than a 3D FFP imager with the same gradient strength. This
occurs because the averaged PSF from a FFL would have one part of the good resolution
component ET and one part of the bad resolution component EN compared to two parts
of EN in a 3D scanner.

3.3 Hardware Realization
As shown above, in order to achieve isotropic resolution, we need to implement multiple

excitation and detection channels to be able to fully sample the trace of � (x̨). To achieve
a full 3D isotropic resolution, we need 3 orthogonal channels. However, due to bore size
and power limitations in our current system, we can only implement two orthogonal
transmit and receive channels to partially demonstrate the concept of this paper. We
have chosen to implement two full channels along the cardinal instrument axes, y and z
axis. The reason for this choice is that we want to take advantage of the natural resolution
benefit along x axis, as the gradient strength along x is 7 T/m, which is 2x better than
that of y and z. And also it is the easiest hardware configuration to make the direction
of the coils align with the instrument axes, since we can use conventional solenoidal coils
and saddle coils.

We also decide to drive each channel independently, forming a linear scanning tra-
jectory. It is because that this is the simplest way to drive the system to fully sample
the diagonal elements of � (x̨) separately with no noise gain. With additional decoupling
matrix in the hardware between y and z channels, we could potentially drive the two coils
simultaneously to form di�erent scanning trajectories, such as Lissajous or spiral, but
these trajectories need to be implemented with care, because they do not fully sample the
trace elements without noise gain.

3.4 Methods and Materials
3.4.1 Multichannel Hardware

All the experiments were performed on a FFP scanner [55] developed at UC Berkeley
(Fig. 3.5 (a)). To enable multichannel acquisition, we built two orthogonal excitation
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and receive channels. Fig. 3.5 (b) shows the two excitation coils. The transverse coil was
a double layered Golay coil pair (7 turns/layer, 12.7 cm long) made out of thin copper
sheet (2 mm) cut out by a programmed Dremel (Robert Bosch Tool Corp., Germany).
The two layers were separated and insulated by Kapton tape (Dupont, DE, USA, 1 mil),
jointed by soldering, and formed on a G-10 tubing (ID = 2.75”, OD = 3.15”). On top
of the transverse coil, we wound an axial coil wound with hollow magnet wire. The
transmit coil assembly was then potted together by heat conductive epoxy (company)
and integrated into the scanner. Two AE 7796 power amplifiers (AE Techron Inc., IN,
USA) were connected in series to power the transmit coils. Both the axial and transverse
coils can produce 40 mTpp field using 1.6 kW and 2.7 kW respectively. We also custom
built two orthogonal receive coils with homogeneous reception in the imaging volume.
Gradiometer configuration is implemented to cancel direct feedthrough (Fig. 3.5 (c)). The
coil body was designed with Solidworks (SolidWorks Corp., MA, USA) and 3d printed (3D
Systems, Inc., SC, USA), and wound with Litz wire (MWS Wire Industries, CA, USA).
The sensitivity of the axial and transverse coil is 860 µT/A and 420 µT/A respectively.

3.4.2 Phantom Construction
To validate the resolution improvement by this proposed method, we constructed three

di�erent imaging phantoms; all were laser engraved out of an acrylic plate.
First, we constructed a “Cal” phantom (Fig. 3.6 (a)), which has approximately 2

mm uniform channel width throughout the phantom. The channels were then injected
with undiluted Mircomod nanomeg Mip particles (micromod Partikeltechnologie GmbH,
Germany).

We also constructed a resolution phantom (Fig. 3.6 (a)), and we evenly distributed
6 groups of channels around the circumference of the phantom. Within each group, the
channels are separated by a well controled distance, from 3 mm to 0.5 mm. We then
injected the channels with 5x diluted Micromod Nanomeg MIP particles and seal the
channels with clear nail polish.

Lastly, we constructed a coronary artery phantom (Fig. 3.7 (a)). We placed a stenosis
model in one of the branching vessels, and we also injected the arterial channels with 5x
diluted Micromod nanoparticles.

3.4.3 Scanning Parameters
The experiments were performed with linear excitations. In each set of experiments,

we acquire two orthogonal collinear scans. In each scan, the FFP is excited sinusoidally
in either y or z axis with the corresponding RF coil to create a partial FOV (pFOV).
Both channels produced RF excitation fields with strength of 30 mTpp. The pFOV
is then rastered with a cartesian trajectory across the entire imaging FOV. Mechanical
movement of the sample occurs in the z axis with 67% pFOV overlap.
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For the “Cal” phantom, the imaging FOV for collinear y scan is 2 cm by 4.1 cm by 10
cm along x, y and z axis respectively. The scan time is 7.5 minutes. The imaging FOV
for collinear z scan is 2 cm by 4.5 cm by 9.9 cm, with a scan time of 2 minutes.

For the resolution phantom and the coronary artery phantom, the imaging FOVs for
both channels were 2 cm by 4.5 cm by 5 cm, with a y scan time of 3.75 minutes, and z
scan time of 1 minute.

3.4.4 Reconstruction / Post-Processing
To reconstruct and process the MPI imaging data, we first reconstruct each collinear

channel separately with x-space reconstruction in software (MATLAB, Mathworks, MA,
USA). The signal is normalized by the receive coil sensitivity, and interpolated onto the
same sampling density and averaged to form a composite image.

3.4.5 Equalization Filter
To reduce the haze in the MPI image from the normal envelope, we constructed an

equalization filter in k-space (a detailed explanation of this equalization filter, appears in
the next chapter). We analytically calculate the 3D Fourier transform of the tangential
and normal envelope, and take a ratio of the desirable tangential envelope over the sum-
mation of the tangential and normal envelope. This operation forms the 3D equalization
filter, and we apply this filter to the averaged MPI image of the coronary artery phantom.
This equalization operation dehazes the image, improves image contrast, and thus makes
the MPI signal truly quantitative to the lumen diameter.

3.5 Results
In Fig. 3.6 we see how multichannel acquisition achieves isotropic resolution in a

resolution phantom. The subfigures (b) and (c) show the two orthogonal collinear scans
in the horizontal and vertical directions respectively, both showing anisotropic resolution.
After processing the two scans and averaging, the result shown in Fig, 3.6 (d), shows
isotropic resolution.

Fig. 3.7 shows that multichannel acqusition with equalization enables quantitative
measurement of sub-millimeter lumen diameter. Fig. 3.7 (a) shows the MPI phantom,
Fig. 3.7 (b) shows a representative single channel MPI scan, and Fig. 3.7 (c) shows
the combined MPI image with equalization. We compare the MPI image with micro-CT
images of the same phantom in Figs. 3.7 (d,e,f), which show that MPI image intensity is
within 3% of the measured lumen diameter (Fig. 3.7 (g)).
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Figure 3.5: Photos of multi-channel MPI hardware. (a) Gertrude x-space FFR scanner
developed at UC Berkeley. (b) Customized transmit coil assembly with a water-cooled
solenoid coil for generating axial RF field and a double-layered Golay coil pair for generat-
ing transverse RF field. (c) Customized receive coil assembly with an axial and transverse
receive coil respectively. (d) One example of FFP trajectories used to acquire the collinear
z images.

Resolution phantom y collinear scan z collinear scan Combined Image

(a) (b) (c) (d)
y

z Tx/Rx Tx/Rx

Figure 3.6: Experimental data on a resolution phantom shows resolution and contrast
improvement with combining two orthogonal channels and equalization. (a) Photograph
of a resolution acrylic phantom injected with 5x diluted Micromod Nanomag-MIP parti-
cles. The laser-cut numbers represent the width and spacing of the channels within each
group, with the unit in [mm]. (b-c) Collinear scan acquired with a single y or z channel,
showing anisotropic resolution. (d) Combining two orthogonal collinear scans from (b)
and (c) achieves isotropic resolution.
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Figure 3.7: Combined vector acquisition and equalized MPI images can be used to quan-
tify lumen size. (a) Photograph of a coronary artery phantom injected with 5x diluted
Micromod Nanomag-MIP particles, with a built-in stenosis model in the right branch of
the arteries. (b) Collinear scan acquired along z. (c) Combined and equalized MPI image
of the two orthogonal collinear scans, the two arrows point out the intensity di�erences
for di�erent artery sizes. (d) µCT image of the same phantom with air-filled channels
as contrast mechanism. (e-f) µCT images of the two cross sections of the healthy and
stenosis artery channels pointed out by arrows in (d), and the lumen size was quantified
in the image. (g) The MPI image intensity is proportional to the lumen size quantified
by µCT images.
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3.6 Discussion
The implications of this paper are beyond multichannel acquisition for isotropic reso-

lution. In this paper we have also explored the mathematical properties of the MPI PSF,
and discovered the PSF is actually a tensor. The tensor formulation helps us understand
analytically how the particle interacts with the applied field, which lends understanding
into the physical sources of resolution anisotropy, SNR, trajectory-dependent LSI, etc.
Deep knowledge of the PSF leads to improving x-space resolution, optimizing scanning
trajectory design, and consequently, the ability to quantitatively measure lumen diameter.

3.6.1 Properties of the MPI PSF
The two competing mechanisms that produce signal in MPI are the nanoparticle pass-

ing through the Langevin curve (ET ) and the rotation of the magnetic moment to align
with the applied field (EN). The bad resolution component EN has a 2.6-fold broader
Full Width at Half Maximum (FWHM) than the good resolution component ET , and it
has a slow drop-o� as a 1/Gr tail, which introduces a lot of background haze to the image
undesirably. The two resolution envelopes are determined by the gradient field strength
and the physical properties of the particle tracer. With a stronger gradient field or better
nanoparticles, we could improve MPI resolution by have sharper ET and EN .

The best native resolution a specific scanner can achieve is ET . However, the received
signal will always be a mixture of those two physical mechanisms from ET and EN , and
will always be acquired simultaneously. This means no acquisition technique (e.g. scan-
ning pattern, analog filter, or time domain digital filter) can separate these two physical
processes from each other. This means, to tease out the good resolution component ET ,
we need to apply some more advanced image processing technique, and this will be the
topic of the next chapter.

3.6.2 Field Free Line Scanner Is More Advantageous Over Field
Free Point Scanner

It needs to be highlighted that, for a FFL scanner, we only need to implement two
orthogonal channels instead of three to achieve isotropic resolution. The need for one
fewer excitation and receive channel has a lot of hardware advantages: there would be
more imaging bore space freed up for larger subjects, less power consumption from a 3rd
channel, and less complex controls and decoupling circuitry.

Another advantage of FFL scanner over FFP scanner lies in resolution. First of all,
in FFL, we only need to average two orthogonal channels, which means the averaged
PSF is ET + EN , which has better resolution than the FFP averaged PSF ET + 2EN ,
making the images shaper and better quality. Secondly, FFL configuration guarantees
the resolution envelopes ET and EN are isotropic, whereas in FFP, the two envelopes
shape like oblate spheroids (looks like an M&M shape), which is not strictly isotropic in



45

all three directions. The reason for this is that MPI gradient uses the maxwell coil pair
configuration for both FFP and FFL scanners, to achieve an optimal linear gradient field.
If it is an FFL scanner, an examplary gradient field would be 6 T/m in both Y and Z axis,
and zero along Z axis, creating isotropic planar resolution in YZ plane. With projection
reconstruction, we can achieve the same resolution along the third X axis, ensuring 3D
isotropic resolution. On the contrary, for a FFP scanner, an examplary gradient field
would be 3.5 T/m along Y and Z axis, while the gradient is 7 T/m along the third X axis,
yielding an oblate spheroidal 3D resolution. Therefore, FFL has better resolution benefit
than FFP scanner.

Lastly, the FFL scanner is advantageous over the FFP scanner because it has higher
SNR as the FFL signal is an integral of the signal along its projection direction.

In summary, we see that the FFL is better than the FFP scanner because of the hard-
ware simplicity, lower power consumption, more bore size, better resolution and higher
SNR.

3.6.3 Tensor PSF has Implications for FFP Scanning Trajecoty
Design

The scope of this paper only focused on linear scans that is excited and detected along
the instrument coordinate axes. A natural question would be, what about other arbitrary
linear scans that do not follow the coordinate axes? Moreover, what about nonlinear
trajectories, such as Lissajous, rose, or spiral? As it turns out, these trajectories di�er
in how they probe and project the MPI tensor PSF onto di�erent scanning trajectories.
Therefore, we could analyze the tensor PSF to assess the e�ect of di�erent trajectories on
the MPI images.

For other o�-axis linear trajectories, it could be shown that the resultant image is just
a linear combination of the tensor PSF components, namely, it is a linear mixture of the 3
collinear images and the 6 transverse images acquired by 3 channels along the instrument
coordinate axis. It could be proven that 3 orthogonal on-axis scans are su�cient for
isotropic resolution – therefore, scans along any other linear direction will add no further
information.

Nonlinear trajectories might have advantage over linear trajectories in terms of SNR,
scan e�ciency, magnetostimulation/SAR limit and resolution. The SNR benefit might
come as a fact that nonlinear trajectories could potentially incorporate in the signal energy
from the transverse scans (the o�-diagonal components in the tensor PSF).

Currently, it is unclear how to design these pulse sequences, nor is there a good way
to assess the performance of these pulse sequences, or instruct optimal reconstruction
algorithms for each trajectory. In this chapter, we have proposed the generalized tensor
formulation of x-space theory. It is a powerful tool as the tensor PSF contains the complete
analytic information of the whole system – its resolution, anisotropy, and it describes how
di�erent trajectories project the PSF onto the real image space. It could be used to
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analyze di�erent nonlinear trajectories, to assess the performance of each case – whether
or not it is still LSI, whether or not it yields a better resolution, and it could instruct
the most optimal reconstruction algorithm for each specific case if we need to optimize or
ensure a certain property, such as SNR, resolution, or LSI.

3.6.4 Quantitative MPI Measurement of Lumen Diameter
Fig. 3.7 is a proof of concept experiment of lumen diameter measurement with MPI

imaging result. We demonstrate that with the improved resolution and image contrast,
MPI can be used to quantitatively measure small lumen sizes in a angiogram. Along with
other benefits of MPI as an angiographic imaging technique, for instance, the utility of
a much safer tracer, magnetic nanoparticles, than the iodine or gadolinium used in CTA
or MRA, and non-ionizing radiation, MPI has a great potential to be used as a safer
angiogram imaging modality.

3.7 Conclusion
We proved and experimentally demonstrated that we can reshape the MPI PSF to be

isotropic and well-behaved with multi-channel acquisition. This allows us to improve MPI
resolution. Finally, these improvements enable us to use MPI to quantitatively measure
the lumen diameter of small arteries in angiograms.
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Chapter 4

Dehazing with K-space Equalization
Filter for Improved Resolution and
Conspicuity in In Vivo Magnetic
Particle Imaging

The image quality of MPI is defined by the properties of the Point Spread Function
(PSF), which is defined as the image that is produced for a single point source [5]. In
the previous chapter, we have demonstrated that with multichannel acquisition, we can
reshape MPI resolution to be isotropic (see Fig. 4.1d) ; however, the native MPI images

y colinear image z colinear image Equalized imageCoronary artery phantom

(a) (b) (c) (d) (e)

Combined image

Figure 4.1: Equalization improves MPI native resolution and conspicuity. Experimental
MPI imaging data acquired on a 7 T/m x 3.5 T/m x 3.5 T/m MPI scanner. (a) Pho-
tograph of a coronary artery shaped acrylic phantom injected with undiluted Micromod
Nanomag-MIP particles. (b) Collinear scan acquired with a single y channel, showing
anisotropic resolution. The horizontal haze is due to the slow signal decay perpendicular
to excitation direction, and this haze blurs image and reduces its contrast. (c) Collinear
scan acquired with single z channel. (d) Combining two orthogonal collinear scans from
(b) and (c) achieves isotropic resolution. (e) Equalization filter in k-space dehazes the
combined multichannel acquisition image without amplifying noise.
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still have significant haze that reduces image contrast and conspicuity.
MPI’s signal haze is mathematically related to the haze seen in non-filtered backpro-

jection in Computed Tomography (CT). To illustrate the undesireability of the signal
haze, Fig. 4.2e shows an CT image reconstructed with nonfiltered backprojection. In
non-filtered CT, a bright signal from bone would obscure smaller signals from nearby
white matter and grey matter, and so unfiltered CT remains a mathmatical curiosity and
is never used clinically.

nonfiltered backprojection in k-space

object

projection in real space(a) (b) filtered backprojection in k-space(d)

(c) k-space ramp filter

image reconstructed with nonfiltered backprojection(e) image recon with filtered backprojection(f)

Figure 4.2: Background on CT reconstruction and the source of haze from nonfiltered
backprojection algorithm. (a) CT projection in the real space. (b) The k-space illustration
of a direct backprojection of each of the projection data g◊ (l) back onto the image space.
According to the central slice theorem, the 1D Fourier transform of each projection along a
specific angle is equivalent to a line in k-space at the same projection angle. For example,
the projection in (a) at angle ◊ corresponds to the anglular ◊ line in k-psace of the object
after Fourier transform. One thing to note is that without any filtering, the center of the
k-space is heavily oversampled, which leads to the 1/r haze seen in (e). (c) A k-space
ramp filter could be applied to dehaze the nonfiltered backprojected image. (d) After
applying the k-space ramp filter, the k-space sampling density is normalized, therefore
there is no over-emphasis on the center of the k-space (the low spatial frequency part).
(f) Filtered backprojection reconstruction dehazes and achieves a sharp resolution image.

Fortunately, we demonstrate here that the haze is mathematically well behaved and
is a result of over-emphasis of the center of the k-space and, with image equalization, it
is possible to reshape MPI’s PSF so that it produces no haze in images. This form of
equalization is already used in Filtered Back-projection (FBP) CT, which suppresses the
1/r haze from backprojection using a k-space ramp filter (see Fig. 4.2). A k-space ramp
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filter in MPI unnecessarily amplifies noise, and so instead we analytically derive a robust
k-space equalization filter that does not amplify noise and demonstrates the technique
experimentally.

We have demonstrated that multichannel acquisition and equalization, taken individ-
ually, improve image resolution and contrast only modestly. However, taken together,
these improvements dramatially increase image conspicuity and enable the first quantita-
tive measurements of lumen area in a sub-millimeter diameter blood vessel phantom.

4.1 Theory
In this section, we will investigate the source of the haze inherent to the MPI PSF,

and then explore, using an equalization filter to eliminate the signal haze, enabling higher
contrast and improved resolution without amplifying noise.

4.1.1 Review on Multichannel Acquisition
We have proven that a summation three orthogonal collinear MPI images produces

isotropic resolution. This can be succintly expressed

fl̂(x) = trace[�(x̨)G≠1] =
3ÿ

i=1

fl̂ii (x̨) /Gii

= fl (x̨) ú ú ú (ET (x̨) + 2EN (x̨)) (4.1)

where fl (x̨) is the input particle distribution, fl̂(x) is the combined image after summing
multichannel acquistion, �(x̨) is the multidimensional image matrix, G is the magnetic
field gradient, fl̂ii (x̨) is one of the three orthogonal collinear images, ET (x̨) and EN (x̨)
are the two PSF envelopes that have di�erent resolutions, governed by two di�erent
physical mechanisms of the particle response to the applied magnetic field. The key
accomplishment of this multichannel acquisition technique is that it removes the scanning
trajectory dependency of the image and thus produces an image that does not depend on
scanning direction. We can see the improvement in image quality as we change from
anisotropic to isotropic from experimental data in Figs. 4.1d and 4.7d.

We have also shown that it is possible to extend Eq. 4.1 to projection imaging with
modest changes to the sizes of matrices [20]. Again, summing the collinear images (fl̂ii)
gives us an isotropic image

fl̂(x̨) =
2ÿ

i=1

fl̂ii (x̨)
Gii

= fl (x̨) ú ú (ET (x̨) + EN (x̨)) (4.2)

Thus fundamentally, a combined image fl̂ from a field free line (FFL) gradient will have
better resolution than a 3D imager with the same gradient.
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4.1.2 Fourier Equalization for MPI Dehazing
As seen in Fig. 3.3 from the previous chapter, the normal envelope EN (x̨) has worse

resolution, namely, broader Full Width at Half Maximum (FWHM) than ET (x̨). The
normal envelope EN (x̨) also drops o� as a function of 1/r. This wider FWHM and slow
dropo� make this component far less desireable, and indeed the 1/r dropo� introduces
an image “haze” that reduces image contrast.

The signal haze resembles unfiltered CT back-projection, which also has a 1/r signal
dropo� and is not used clinically because of poor image quality. In this section, we
are inspired by the solution in CT to eliminate the background haze through k-space
ramp filtering, and we proposed a k-space equalization filter that is similar in concept,
but strategically chosen to only eliminate the EN component of the image but preserve
the ET component. We will explore the theory, implementation, robustness, and noise
performance of this simple equalization approach to eliminate the haze by decomposing
an MPI image into tangential and normal images.

We begin by transforming the summed image into the Fourier domain.

F
3D {fl̂ (x̨)} = F

3D {fl (x̨)}F
3D {ET (x̨) + 2EN (x̨)} (4.3)

Eq. 4.3 gives the summed image in the Fourier domain. Here, we see that the blur
arises from two di�erent envelopes, ET and EN . The source of the image haze (See Figs.
4.1d) is the bad envelope EN , which arises from the physical rotation of the magnetic
nanoparticle. Images produced by this rotation drop o� as 1/r, giving a signal haze.

The key insight to dehazing the image without noise gain is that this drop-o� is very
similar to the 1/r blur seen in unfiltered CT backprojection. In unfiltered backprojection,
the center of the k-space is oversample by the simple backprojection reconstruction, and
the over-emphasis in the low spatial frequency part of the k-space results in a 1/r blurry
kernel that introduces significant hazes in the image. To reduce the haze, namely, to
suppress the low spatial frequencies in the k-space, we use a k-space ramp filter, which
equalizes the k-space spectrum to compensate for higher sampling density at the center
of k-space. Similarily, in MPI the 1/r tail of the bad envelope EN overemphasizes low
spatial frequencies. This suggests that careful choice of a k-space filter could reshape the
PSF and eliminate the 1/r haze.

Constructing an equalization filter for MPI requires knowledge of the PSF as defined
by physics as well as the desired PSF (which is ET ). From the relationship between
the two PSF envelopes, we can derive a k-space filter that de-emphasizes the low spatial
frequencies. Through careful choice of this filter, we can ensure that there is no ringing
or noise gain.

Let us demonstrate this concept by deriving a k-space filter to isolate the ET and EN

components of the PSF. In Appendix D, we have provided a complete analytical derivation
and approximation of the x-space and k-space expression of each envelope components
and the analytic expression of the equalization filter. Here, we will just provide the final
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expression of this k-space filter

�
3D,T

1
k̨

2
= F

3D {ET (x̨)}
F

3D {ET (x̨) + 2EN (x̨)} (4.4)

t
|k|

|k| + G
0

(2fiHsat)≠1

(4.5)

�
3D,N(k̨) = 1 ≠ �

3D,T (k̨) (4.6)

where �
3D,T

1
k̨

2
is the k-space filter to only extract the tangential envleope ET , and it is

the desirable equalization filter to get the best spatial resolution in MPI given a specific
scanner. �

3D,N

1
k̨

2
is the compliment filter that extracts the undesirable normal envelope

EN . The shape of the first equalization filter can be seen in Fig. 4.3a.
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Figure 4.3: 1D profile of di�erent equalization filters in the magnetic-Fourier space for
a 20 nm nanoparticle in a 3.5 T/m gradient. (a) Equalization filters to extract the
tangential component (good resolution) in a 2D projection scanner or a 3D FFP scanner.
(b) Equalization filters to reshape the PSF into a Gaussian with the same FWHM as the
tangential component in 2D and 3D case.

In a 2D FFL projection scanner, with some modification, the equalization filter can
be expressed as below and visualized in Fig. 4.3a:

�
2D,T

1
k̨

2
= H

0

{ET (x̨)}
H

0

{ET (x̨) + EN (x̨)} (4.7)

¥ |k|
|k| + G

0

(5.5fiHsat)≠1

(4.8)

Applying the k-space equalization filter to the averaged PSF from multichannel acquisi-
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tions gives us the tangential component ET of the PSF:

fl̂T (x̨) = F≠1

3D {�
3D,T (k)F

3D {fl̂(x)}} (4.9)
¥ fl (x̨) ú ú ú ET (x̨) (4.10)

fl̂N(x̨) = F≠1

3D {�
3D,N(k)F

3D {fl̂(x)}} (4.11)
¥ fl (x̨) ú ú ú EN (x̨) (4.12)
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Figure 4.4: Demonstration of equalization technique to get rid of the haze. (a) Combined
multichannel acquisition PSF to be equalized. (b) 1D profile of the radially symmetric
k-space equalization filter. (c) Equalized PSF is e�ectively the tangential envelope (good
resolution component). (d) 1D profile describing the transfer function of the residual after
equalization operation in k-space. (e) The residual component is e�ectively the normal
envelope that contribute to bad resolution and contrast. (f) Combined isotropic MPI
“coronary artery” image from multichannel acquisition. (g) Equalized coronary artery
image containing the good resolution component. (h) The residual normal component
consititutes the blurry background haze.

For illustration, we show how this equalization filter works on the combined isotropic
PSF and MPI images in Fig. 4.1.2. We see that after applying the equalization filter, the
two filters handily separate the tangential component and the normal component of the
PSF and the image.

We should also note that the numerator of the filter in eq. 4.5 is not restricted to
EN and ET . We can choose any shape of a desired PSF and with the equalization filter
we can reshape the received image resolution into the aimed resolution. For example,
we can reshape the desired PSF into a gaussian, because a gaussian PSF is well-behaved
in both spatial and k-space domain, and it is convenient for SNR analysis for MPI. We
have adapted the equalization filter to reshape the PSF into a gaussian with the same
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FWHM as the tangential envelope, and the two filters for FFP and FFL cases are shown
in Fig. 4.3b. It is noted that the equalization filter for FFL case would increase noise
in a small k-space frequency range by 5-10%. While a minimal noise amplification for
a small frequency range is tolerable, we need to be careful in choosing a target PSF for
the equalization, because improper and aggressive choice of a target PSF can lead to
substantial noise gain, ringing, etc.

4.2 Performance of Equalization Filter
We have proposed this equalization filter to reshape the PSF from physical principles.

One advantage of this equalization filter is its well-behaved noise properties. In this
section, we will explore the noise performance as we run the equalization filter on a series
MPI images with di�erent SNRs, and compared the SNR and noise power before and
after equalizing.

However, another bigger concern would be the robustness of this equalization scheme.
When we use di�erent tracers with di�erent magnetic properties, the native MPI res-
olution di�ers, so as both the tangential and normal envelopes. Moreover, even with
the same particle, when it is in aqueous solutions as opposed to biological environments,
such as blood, intracellular matrix, or inside of cells, the local chemical environment and
viscocity di�erences would profoundly change how the nanoparticle relaxes and responds
to the applied field, thus introducing relaxation e�ect, which translates to broadening or
skewing of the PSF. This will also significantly change the shape of the tangential and
normal envelopes. In certain applications, we would like to ulitize the PSF change as an
indicator for targeting or biological contrast. Would the same equalization filter be able
to account for these changes, and still faithfully only suppresses the normal envelope and
preserves the tangential envelope in all circumstances? It is a very interesting area for
investigation, and we certainly would like to have an equalization filter that is robust and
una�ected by all of these parameters. This means the dehazed image would still repro-
duce the same resolution di�erences expected from two di�erent groups of tracers. In this
section, we will conduct a preliminary experiment to compare the resolution di�erences
before and after equalization between two well characterized particle groups, and assess
the robustness of the same equalization filter across two di�erent particles.

4.2.1 Noise properties of Fourier Equalization
Fourier equalization di�ers substantially from deconvolution. Equalization is a method

for reshaping the point spread function of a system, which was demonstrated in the early
1900s for telephonly [56], and later for audio equalization in acoustics [57]. Importantly,
we are able to demonstrate here that equalization does not rely on knowing the PSF
parameters to unreasonable accuracy or choices of regularization parameters, it does not
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amplify noise (Fig. 4.5), and is reliable across a wide range of nanoparticle sizes, condi-
tions, and SNRs (See Fig. 4.6).

Deconvolution, on the other hand, aims to reverse the e�ect of the system blur through
inversion. A typical imaging system, e.g., camera, medical imaging modalities, is a low
pass filter. When an input passes through the system, the high spatial frequency content
is inevitably filtered out. For the frequency content that was filtered below the noise
floor of the system, those frequencies are completely lost. Deconvolution is trying to
proportionally amplify these attenuated high frequencies according to the inverse of the
system filter, but in this process, not only the high frequencies are amplified, the noises
are amplified dramatically. The key limitation of any deconvolution technique is the
choice of the regularization parameter, which is an estimate of image SNR. Choice of
this regularization parameter can be unreliable, particularly in images that do not have
a consistent SNR throughout the image, e.g., images with high dynamic range with high
and low SNR regions adjacent to each other.

We can begin exploring the noise properties of equalization through simple inspection.
Fig. 4.3 shows that the filter gain of the equalization filter is never greater than unity,
indicating that the filter does not amplify noise. We have also solved for equalization
filters analytically, which confirm this result (See Table 4.1).
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Figure 4.5: Noise performance of the equalization filter. [Top] Simulated images of an
arterial phantom with combined multichannel acquistion on a Gertrude equivalent scan-
ner, adding the following levels of noise: (a) No additional noise. (b) Peak SNR = 50.
(c) Peak SNR = 10. [Bottom] Equalized images showing removed haze and the same
level of background noise to their corresponding input images. It is noted that in (f) the
background noise looks more grainy. However, it is not because the noise is amplified,
but because the noise was unmasked due to the removal of haze.

One of the big advantage of using this equalization filter to dehaze over other deconvo-
lution methods is that it does not amplify noise and is stable for low SNR or high dynamic
range images. To illustrate the noise performance of this filter, we perform the filter on a
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series of simulated image that are synthetically added white Gaussian noise with known
noise power.

Figure 4.5 shows an example of applying the equalization filter to a virtual arterial
phantom, and it demonstrated the filter’s performance regarding resolution and noise.
In all the three cases simulated here, first without noise, and then with peak SNR of
50 and 10, we can see that the result after equalization contains no haze from the the
normal envelope EN (x̨), and it is confirmed to have the same resolution to the tangential
component of the image.

With added noise, we confirm that the equalization filter does not amplify noise in
the equalized image. It is noteworthy that in the case of SNR = 10, the equalized image
Fig. 4.5f visually seems to be more noisy than Fig. 4.5c, as the noise background seems
to be more grainy, however, with a complete analysis of the noise power before and after
equalization, there is no ampfilication at all. The reason for this misleading visual noise
gain is that the equalization filter removes the haze. The haze has a lot of signal energy,
and e�ectively masks the noise in the original image, therefore with a peak SNR = 10, the
original image Fig. 4.5c visually looks a lot better than a typical SNR = 10 image. Now
with the equalization filter and removal of the haze in Fig. 4.5f, the noise is unmasked.
In practice, we can apply a hamming window in k-space in addition to the equalization
filter to improve image quality, by mitigating the higher frequency noises outside of the
image bandwidth.

Note that we can both increase resolution and yet do not amplify noise with this
equalization filter, because fundamentally, equalization technique is very di�erent from
deconvolution. In deconvolution, one is trying to make a guess of the already lost higher
k-space information, and this operation is very risky in amplifying noise and introducing
ringing. As we discussed earlier, with regularization, we can make a more educated guess
of the attenuated higher k-space information by the SNR in that frequency band; however,
regularization could arbitrarily suppress lower intensity regions in the image and lead to
misdiagnosis. The equalization filter, however, does not attempt to restore any of the
lost higher k-space information, but only tries to de-emphasize the over-accentuated low
k-space frequencies with a full understanding of the composition of these frequencies. The
shape of the equalization filter is completely determined from first principles physics, and
thus there is no need for regularization, no noise amplification, and no ringing e�ect.

4.2.2 Robustness of the Equalization Filter
Another concern for the universal application of this equalization filter is whether

it is robust to di�erent particles. When the tracer has di�erent sizes or structures, or
it experiences di�erent physiological microenvironment during a scan, the tracer would
exhit very di�erent PSFs with di�erent resolution and relaxation e�ect. However, it is
good news that the equalization filter is not very sensitive to all of these changes in the
tracer, and thus would not require additional calibrations before each study.

We run two tests on two groups of particles with di�erent sizes on the scanner, and
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applied multichannel aquisition, averaging and equalization filter on both data set. To
cross-verify the resolution obtained after the equalization filter, we run the same tracer
with a much higher concentration on relaxometor [11,12], which is essentially a 0-D imager
(see Fig. 4.6). The relaxometer is used to make an accurate measurement of the 1D profile
of the tangential envelope of the particles as well as relaxation, and specifically it is a tool
to characterize the relaxation e�ect from di�erent sizes or micro-enviroment. It serves as a
good cross-validation to compare with the resolution from the equalized scanner imaging
data.
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Figure 4.6: Illustration of robustness of the equalization filter to two di�erent sizes of
Azano nanoparticles. In both sets of experiments, we compared the 1D PSF profile from
1µL of undiluted Anazo particles after equalization to the 1D relaxometer data of 400 µL
of the same Azano particles. The equalized resolution is consistent with the relaxometer
resolution for both groups of particles, showing that this equalization filter works for
both particle sizes and is thus robust. (a) Azano particle of 21.6 nm, with mostly Neel
relaxation. (b) Azano particle of 25 nm, with a worse resolution and Brownian relaxation.

In the experiment, we acquired the PSFs from two Azano nanoparticles with 21.6 nm
and 25 nm core size respectively from the relaxometer. The experiments were run at 25
kHz, with a drive field amplitude of 40 mTpp, and the sample quantity is 400 µL undiluted
Azano tracers. The acquired PSF reflects only the 1D profile of the tangential envelope
ET (x̨) that is blurred by the relaxation e�ect. It could be shown that for 21.6 nm Azano
particles, the PSF is more symmetric and broader, meaning it has less Browian relaxation
e�ect and a bigger FWHM due to the smaller core size; for 25 nm Azano particle, the
PSF is more assymetric and narrower, meaning it has more Brownian relaxation e�ect
and a sharper FWHM, thus better resolution. We also made a point source with 5 µg
iron (1 µL) of each tracer and imaged them on the scanner, with a drive frequency of
20.5 kHz and a drive field amplitude of also 40 mTpp, followed by the reconstruction and
equalization proposed in this paper. After equalization, we plot the profile of the resultant
image, which should also be only the tangential component.
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Seen in Fig. 4.6, the equalized PSF has very similar resolution to the relaxometer data,
with a more suppressed relaxation e�ect (the right side of the PSF dies o� much faster
to zero) because the equalization filter could suppress some of the low k-space frequency
relaxation e�ect. Thus, the equalized PSF is closer in form to the desired tangential
envelope. It shows that the equalization filter works well with both particle sizes and
indeed is insensitive to the particle di�erences and can be applied universally.

4.3 Methods and Materials
4.3.1 Phantom Construction
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Figure 4.7: Experimental data on a resolution phantom show resolution and contrast im-
provement with combining two orthogonal channels and equalization. (a) Photograph of
a resolution acrylic phantom injected with 5x diluted Micromod Nanomag-MIP particles.
The laser-cut numbers represent the width and spacing of the channels within each group,
with the unit in [mm]. (b) Combining two orthogonal collinear scans achieves isotropic
resolution. (c) Equalization filter in k-space de-hazes the averaged image without ampli-
fying noise. (d) Intensity profile comparison of two lines across the averaged and dehazed
images. Top graph shows the intensity profile of the 1mm bars, and it shows that the
three bars are resolvable after dehazing. Bottom graph shows the intensity profile of the
1.5 mm bars. As both graphs show that dehazing significantly removes the background
haze and increases contrast.

To validate the resolution improvement by this proposed method, we constructed a
resolution phantom (Fig. 4.7a), and we evenly distributed 6 groups of channels around
the circumference of the phantom. Within each group, the channels are separated by a
well controlled distance, from 3 mm to 0.5 mm. We then injected the channels with 5x
diluted Micromod nanomeg Mip particles and seal the channels with clear nail polish.

We also constructed a “Cal” phantom (see Fig. 4.8a), which was 2 mm channels laser-
cutted out of an acrylic plate. The channels were then injected with undiluted Micromod
nanomag-MIP particles (micromod Partikeltechnologie GmbH, Germany).
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Lastly, we constructed a coronary artery phantom (Fig. 4.1a) designed using Illustra-
tor (Adobe Systems Inc.), and laser engraved out of an acrylic plate. We then injected the
arterial channels with 5x diluted Micromod nanoparticles and sealed the channels with
transparent tape and clear nail polish.

4.3.2 Rat Preparation
We injected 100 uL Resovist (Bayer AG) SPIO tracer, diluted ten-fold in PBS, through

the tail vein of a Fisher 344 female rat (7 weeks old, 140 g) under isofluorane anesthesia
at 1.5 L/min (4% isofluorane for induction, 2% to maintain anesthesia). Approximately
one hour post-injection, we sacrificed the animal via isofluorane overdose and imaged the
animal using a 7 T/m 3D MPI scanner, with 591 second scan time and FOV 4 cm (X)
by 3.75 cm (Y) by 9.5 cm (Z).

Subsequent to MPI imaging, we acquired CT anatomical images of the animal using
a RS9-80 Micro CT scanner (GE Healthcare) with 25 minutes acquisition time and 184
um isotropic resolution. MPI-CT image coregistration was performed in an OsiriX image
viewer (Pixmeo SARL).

4.3.3 Scanning Parameters
The experiments were performed with linear excitations. In each set of experiments,

we acquire two orthogonal colinear scans. In each scan, the FFP is excited sinusoidally
in one direction with the excitation coils, and the pFOV is then rastered with a cartesian
trajectory across the FOV. Mechanical movement of the sample occurs in the z axis with
67% partial field of view overlap.

For the “Cal” phantom, the imaging FOV for collinear y scan is 2 cm by 4.1 cm by 10
cm along x, y and z axis respectively. The scan time is 7.5 minutes. The imaging FOV
for collinear z scan is 2 cm by 4.5 cm by 9.9 cm, with a scan time of 2 minutes.

For the resolution phantom and the coronary artery phantom, the imaging FOVs for
both channels were 2 cm by 4.5 cm by 5 cm, with a y scan time of 3.75 minutes, and z
scan time of 1 minute.

4.3.4 Reconstruction / Post-Processing
To reconstruct and process the MPI imaging data, we first reconstruct each collinear

channel separately with x-space reconstruction in software (MATLAB, Mathworks, Natik,
MA). The signal is normalied by the receive coil sensitivity, and interpolated onto the
same sampling density and averaged to form a composite image. Then images were then
equalized in k-space to produce the final images.
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“Cal” phantom

(a) (b)

Combined image Equalized image

(c)

Figure 4.8: Experimental data on a “Cal” shaped phantom shows resolution and contrast
improvement with equalization filter. (a) Photograph of a “Cal” shaped acrylic phantom.
(b) Combined image from multichannel acquisition shows isotropic resolution and uni-
form channel width. (c) Equalization filter dehazes the image without amplifying noise,
improving resolution and image quality.

Coronal Sagittal Axial
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Figure 4.9: Equalization improves MPI native resolution and contrast in in vivo MPI
imaging. Experimental rat data was acquired with a 7 T/m x 3.5 T/m x 3.5 T/m
MPI scanner with only z RF channel. The rat was sacrificed and imaged 15 minutes
after injecting Resovist nanoparticles. (a,c,e) Coronal, sagittal and axial multiplanar
reconstruction (MPR) views of the rat liver image, exhibiting substantial background
haze. (b,d,f) Coronal, sagittal and axial MPR views of the equalized rat liver image, with
the background haze removed, and the spleen structure more resolvable.
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4.3.5 Robustness Testing (SNR, Di�erent Nanoparticles)
To test whether the equalization filter is robust for images with di�erent levels of noise,

we performed equalization on a series of synthetic images with known noise powers. We
analyzed the resolution, ringing and SNR after equalization. The noise performance of
the equalization filter across images with di�erent input SNR can be seen in Fig. 4.5.

We then experimentally tested the sensitivity of the equalization filter to nanoparticle
size against a set of nanoparticle. For validation, we also tested these particles on the
relaxometer, which gives ideal the 1D PSF. We compared the equalized PSF from these
particles with their corresponding relaxometer PSF, and the result is shown in Fig. 4.6.

4.4 Results
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Table 4.1: Elementary functions to approximate PSF envelopes as well as the analytic
expressions for 1D, 2D and 3D Fourier transforms of both envelopes, r = ÎGx̨Î

Hsat
.

Table 4.1 briefly summarizes the analytic expressions of the two envelopes as well as
their Fourier transforms of a 1D line profile, 2D plane and 3D volume of the envelopes.
The derivation of the equalization filter uses these analytic formulas.

In Fig. 4.7 we see how multidimensional acquisition and equalization improves res-
olution and conspicuity in a resolution phantom. After combining the multichannel ac-
quisitions, Fig, 4.7b shows isotropic resolution. The equalized image is shown in Fig.
4.7c, showing that the equalization filter removes the image haze. Fig. 4.7d compares
the image intensity before and after equalization, showing the equalization filter improves
both resolution and conspicuity of the MPI image.

In Fig. 4.8 we see equalization filter improving resolution and image contrast in a
“Cal” shaped phantom with no noise gain.

In Fig. 4.9 we show how multidimensional acquisition and equalization enable im-
proved images in an in vivo rat injected with Resovist. Fig 4.9a,c,e shows before equaliza-
tion, and Fig 4.9b,d,e shows the improvement after equalization. Especially to be noted
is the spleen structure in the image, which shows up a lot more obviously in the equal-
ized images, showing that the equalization filter could really resolve finer structures that
would’ve otherwise been lost in the original MPI scans.
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4.5 Conclusion
We proved and experimentally demonstrated that we can reshape the MPI PSF to be

isotropic and well-behaved with multichannel acquisition and equalization. This allows
us to improve MPI resolution and image contrast with no noise amplification. Finally,
these improvements enable us to use MPI to quantitatively measure the lumen diameter
of small arteries in angiograms and

Each of these improvements, multichannel excitation and equalization, taken individ-
ually improve image resolution contrast only modestly. However, taken together, these
improvements dramatially increase image contrast and enable the first quantitative mea-
surements of lumen area in a sub-millimeter diameter blood vessel phantom.
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Appendix A

Sum of Harmonic Components
Manifests Linearity and
Shift-Invariance

One apparent paradox uncovered in the analysis in Chapter 1 is the fact that each
harmonic image is shift variant, yet the sum of all basis images is shift invariant. Here we
resolve this paradox by summing all the harmonic basis functions, and showing that the
shift-variant term,

Ò
1 ≠ (2x/W )2, cancels out only after we add all the terms together.

Here, we rely on the Chebyshev polynomial identity [58]:
Œÿ

n=0

Un (x) Un (y) = fi

2
1

(1 ≠ x2)≠1/4 (1 ≠ y2)≠1/4

”(x ≠ y)

First, we adapted the analytic expression of Sn from [?] to our notations, which has
the form:
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/Hsat, is a constant dependent on scanning parameters and particle
properties; and fl̂(x), is the native MPI image reconstructed using the x-space method.

Let us substitute the Fourier coe�cient Sn into the image decomposition equation
(Eqn. 1.7). We have:
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We conclude that the sum of all the linear but shift-variant harmonic images does indeed
provide a linear and shift-invariant MPI image.
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Appendix B

Mathematical Proof of LSI
Restoration

Here we give a complete derivation of the DC recovery algorithm and prove that our
algorithm robustly restores all the lost image information, and the linearity and shift
invariance of MPI images.
First of all, let us denote the ideal native MPI image as fl̂(x), the center position of each
pFOV as xi, the noise in this pFOV image as ni(x). Let us also denote the lost DC
value from the ith pFOV scan as ”i, while the estimator of this lost DC value as ”̂i. Then
with an unmodified x-space reconstruction, the lossy pFOV image will have this form:

gi(x) = fl̂(x) + ni(x) ≠ ”i, for |x ≠ xi| < W/2 (B.1)

The lost DC value ”i can be estimated by maximizing the continuity between the ith

pFOV scan and its previous scans over the overlapping region. Let us denote Pi as the
dataset that includes all the points within the overlapping region between the ith and
(i ≠ 1)th pFOV scan, which is defined as Pi ,

Ë
xi ≠ W

2

, xi≠1

+ W
2

È
. Let’s further denote

g
0

(x) , 0 and n
0

(x) , 0, corresponding to a virtual 0th scan that incorporates the
boundary condition into the same mathematical framework. Thus, the process of
estimation for each DC o�set, ”̂i, can be expressed as

”̂i =
iÿ

k=1

mean
xœPk

{gk≠1

(x) ≠ gk(x)}

= ”i ≠
iÿ

k=1

mean
xœPk

{nk(x) ≠ nk≠1

(x)} (B.2)

As one would hope, ”̂i is an unbiased estimate of the actual DC loss to each pFOV,
provided that all the image noise, ni(x), is zero-mean, i.e.,

E
Ó
”̂i

Ô
= ”i (B.3)
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where E{X} denotes the expected value of a random variable X.
After restoring the DC values to each of the pFOVs, our final estimate of the true MPI
nanoparticle density can be computed as

ĝi(x) = gi(x) + ”̂i
≥= fl̂(x) + ni(x), for |x ≠ xi| < W/2 (B.4)

This analysis proves that restored image ĝi(x) is an unbiased estimation of the ideal
native MPI image fl̂(x) with no amplification of noise and within the same subregion,
which we already know to be linear and shift invariant from Eqn. 1.5. This algorithm
obtains (at least) two estimates of the native MPI image in the overlapping zone, and
we can average these to reduce image noise. To form our final MPI image, we simply
join all the pFOVs numerically on an interpolated uniform grid that spans the full FOV.
This algorithm is able to reconstruct an accurate rendition of the ideal MPI image fl̂(x),
with fully restored LSI properties. Fig. 1.7 and Fig. 1.8 illustrates the recovered images
from both simulation and experiment, demonstrating that the continuity algorithm does
recover the lost DC image information.
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Appendix C

Proof of 3 orthogonal colinear scans
for isotropic resolution

In this section, we will prove that by combining three orthogonal collinear scans, we can
achieve isotropic resolution. As shown in Eq. 4.1, the analytic expression of the
combined three orthogonal collinear scans is

fl̂ (x̨) = trace[�(x̨)G≠1]

=
3ÿ

i=1

êT

i

� (x̨) G≠1ê
i

(C.1)

= fl (x̨) ú ú ú
3ÿ

i=1

êT

i

h (x̨) G≠1ê
i

(C.2)

Let us denote the unit vector Gx̨

ÎGx̨Î as r̨ (x̨), thus WT (x̨) = r̨ (x̨) r̨ (x̨)T G, and
WN (x̨) = G ≠ WT (x̨). Thus

fl̂ (x̨) = fl (x̨) ú ú ú
A

ET (x̨)
3ÿ

i=1

êT

i

r̨ (x̨) r̨ (x̨)T ê
i

+EN (x̨)
C

3 ≠
3ÿ

i=1

êT

i

r̨ (x̨) r̨ (x̨)T ê
i

DB

(C.3)

As has been shown, the two envelopes ET (x̨) and EN (x̨) are isotropic. Therefore, for
the entire equation to remain isotropic, it hinges on the isotropy of

3q
i=1

êT

i

r̨ (x̨) r̨ (x̨)T ê
i

.
It can be proven that the sum is merely a constant value, thus is spatially invariant:

3ÿ

i=1

êT

i

r̨ (x̨) r̨ (x̨)T ê
i

=
3ÿ

i=1

r̨ (x̨)T ê
i

êT

i

r̨ (x̨)

= r̨ (x̨)T

A
3ÿ

i=1

ê
i

êT

i

B

r̨ (x̨)

= r̨ (x̨)T Įr (x̨) = 1 (C.4)
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where we make the substitution of
3q

i=1

1
êiêT

i

2
=

Ë
ê

1

ê
2

ê
3

È
S

WU
êT

1

êT

2

êT

3

T

XV, and apply the

orthogonal matrix identity AAT = I, as A =
Ë

ê
1

ê
2

ê
3

È
is chosen to be orthogonal

during scanning. If we plug Eq. C.4 into Eq. C.3, we arrive at the conclusion that

fl̂ (x̨) = fl (x̨) ú ú ú (ET (x̨) + 2EN (x̨)) (C.5)

It shows that the anisotropy from the weighting matrix WT (x̨) and WN (x̨) goes away
after weighted-summing three orthogonal scans.
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Appendix D

Analytic Derivation of Equalization
Filter

To find the correct form of the equalization filter, we will need to calculate the ratio
of the Fourier transforms of the desired tangential envelope and the summed image:

�
3D,T

1
k̨

2
= F

3D {ET (x̨)}
F

3D {ET (x̨) + 2EN (x̨)}
For reference, here is a table of all of the approximation to the envelopes and the

analytic expression of the Fourier transforms in 1D, 2D and 3D. The shape of the functions
are shown as well in each corresponding section.

One theorem we used is that for a radially symmetric function, the relationship be-
tween the 3D Fourier transform and its 1D fourier transform is:

F
3D {f (r)} = 1

2fik

d

dk
F

1D {f (r)}

And the derivative of the exponential integral is:
d

dx
Ei (x) = ex

x

Therefore, for the 3D scanner case the equalization would be:

�
3D,T

1
k̨

2
= F

3D {ET (x̨)}
F

3D {ET (x̨) + 2EN (x̨)}

¥

---k̨
---

---k̨
--- + G

0

/2fiHsat

It is noted that there is no analytic expression for the 2D Fourier transform of the
normal envelope EN , so we can only approximate the equalization by numerically tak-
ing the ratio of the 2D Fourier transform of the two envelopes. And the approximated
equalization filter for a 2D projection scanner is:
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�
2D,T

1
k̨

2
= F

2D {ET (x̨)}
F

2D {ET (x̨) + 2EN (x̨)}
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