
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

A Spin-Up Saved is Energy Earned: Achieving Power-Efficient, Erasure-Coded Storage

Permalink

https://escholarship.org/uc/item/5nb6d2fg

Authors

Long, Darrell
Greenan, Kevin M
Miller, Ethan L
et al.

Publication Date

2008-12-07

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5nb6d2fg
https://escholarship.org/uc/item/5nb6d2fg#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

A Spin-Up Saved is Energy Earned:
Achieving Power-Efficient, Erasure-Coded Storage

Kevin M. Greenan†

Univ. of California, Santa Cruz
kmgreen@cs.ucsc.edu

Darrell D.E. Long†

Univ. of California, Santa Cruz
darrell@cs.ucsc.edu

Ethan L. Miller†

Univ. of California, Santa Cruz
elm@cs.ucsc.edu

Thomas J. E. Schwarz, S.J.
Santa Clara University

tjschwarz@scu.edu

Jay J. Wylie
HP Labs

jay.wylie@hp.com

Abstract

Storage accounts for a significant amount of a data cen-
ter’s ever increasing power budget. As a consequence,
energy consumption has joined performance and reliabil-
ity as a dominant metric in storage system design. In this
paper, we show that the structure of an erasure code—
which is generally used to provide data reliability—can
be exploited to save power in a storage system. We define
a novel technique in power-aware systems calledpower-
aware codingand present generic techniques for reading,
writing and activating devices in a power-aware, erasure-
coded storage system. While our techniques have an ef-
fect on energy consumption, fault tolerance and perfor-
mance, we focus on a few examples that illustrate the
tradeoff between power efficiency and fault tolerance. Fi-
nally, we discuss open problems in the space of power-
aware coding.

1 Introduction

Traditionally, storage systems are measured in terms of
performance and reliability. Due to the increasing amount
of data stored in recent years and the significant amount
of power required to store such data, a great deal of work
has gone into measuring and minimizing the power con-
sumption of storage systems [2, 12, 14, 6, 15, 11]. Storage
accounts for roughly 27% of a data center’s power bud-
get [1]; thus, proactively activating and deactivating disks
can effectively lower the energy footprint of a data center.

Almost every storage system generates redundancy to
provide data reliability in the face of failures. In most
cases, an erasure code is defined across a group of disks to
provide reliability. When a disk fails within a group, other
disks in the group are used to recompute the contents of
the failed disk.

†Supported in part by the Petascale Data Storage Institute under
Dept. of Energy award FC02-06ER25768 and by the industrial sponsors
of the Storage Systems Research Center.

In addition to providing fault tolerance, erasure codes
may also be used to prevent disk activation. We call this
techniquepower-aware coding. Consider the case where
all disks are working correctly (no failures). If the system
can tolerate the failure of any single disk in the group,
then one disk can remain inactive for an extended period
of time and need not be activated if a read request is di-
rected to the inactive disk. Instead of activating the disk,
its contents can be reconstructed from the active disks.

The number of active disks required to reconstruct the
contents of one or more inactive disks is determined by the
erasure code. Givenk data disks, the class of codes, called
maximum distance separable (abbreviated MDS and ex-
plained in Section 2), require at leastk active devices to
reconstruct the contents of an inactive device. While any
erasure code may be used to save power, we believe that
another class of codes, called non-MDS, are best suited
for power-aware coding because less thank active devices
are generally required to rebuild the contents of an inac-
tive device.

To date, a handful of power-aware redundancy tech-
niques have been proposed. Pinheiroet al. place data
and parity on different disks; deactivating parity disks dur-
ing light loads and staging parity updates in non-volatile
RAM [6]. PARAID is a power-aware disk array architec-
ture that trades logical capacity for power efficiency by
replicating blocks from inactive disks onto spare regions
of active disks [12]. e-RAID introduced the idea oftrans-
formed readsfor RAID-1 and RAID-5, which allows the
system to rebuild the contents of an inactive disk from
cache, other active disks, or both [11].

Our work is similar to e-RAID, which prevents acti-
vation under RAID-1 and RAID-5. Both RAID-1 and
RAID-5 have trivial solutions with respect to servicing
read requests from inactive devices: redirect the request
to an active mirror or recompute from the active devices,
respectively. The RAID-1 technique trades a great deal
of space for power efficiency; the RAID-5 technique is

s 0s 1s 2s 3s 4
s 5s 6s 7(a)

d a t a p a r i t y
D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7

(b)
Figure 1: A flat XOR-based code with 5 data symbols and 3
parity symbols. Each symbol is mapped to a unique disk.

limited in utility, since all but one disk must be active
to service any read. Recent analysis suggests that stor-
age systems should have the ability to tolerate more than
one failure [3], indicating the need for codes that provide
more fault tolerance than RAID-5. The power-aware cod-
ing techniques we propose and the associated problems
we identify apply to any erasure code.

The contributions of this work are fourfold. First, we
present power-aware coding, which provides a way to
evaluate the tradeoff between fault tolerance and power
efficiency in storage systems. Second, we discuss chal-
lenges and initial work within the scope of power-aware
coding including writing, reading and activating disks in
an erasure-coded, power-aware storage system. Third, we
present an example to illustrate tradeoffs in power-aware,
erasure-coded storage systems. Finally, we discuss open
problems in the space of power-aware coding.

2 Background: Erasure Codes
An erasure code is made up of codewords that haven
symbols. Storage systems typically use systematic era-
sure codes, where each codeword containsk data sym-
bols andm = n− k parity (redundant) symbols. A code
symbol generally refers to a sector or set of sectors on a
single storage device. TheHamming distanceof a code
provides a compact representation of fault tolerance. Any
set of failures strictly less than the Hamming distance may
be tolerated. Traditionally, storage systems use maximum
distance separable (MDS) codes, which provide optimal
fault tolerance by having a Hamming distance ofm+ 1
(they can tolerate up tom failures out ofn symbols). In
this work we focus on so-calledflat-codes: codes that map
exactly one symbol per codeword to a device.

Any code that is not MDS is callednon-MDS. While
MDS codes can tolerate up to anym failures, the Ham-
ming distance of a non-MDS code is strictly less thanm,
but may tolerate some failures at or beyond the Hamming
distance. In this paper, we focus on a class of non-MDS
codes calledflat XOR-based codes[13]. An example of a
flat XOR-based code is shown in Figure 1-a. This code is
described by a bipartite graph, called a Tanner graph [10].
The data symbols form the left nodes in the graph, while
the parity symbols are the right nodes. A data symbol

contributes to a parity symbol if an edge connects the cor-
responding nodes in the graph. The parity equations are
derived by following the edges connected to each parity
node in the graph. For instance, the parity node for sym-
bols5 is adjacent tos0, s1 ands2, therefore, we computes5
ass0⊕s1⊕s2. From the graph, we see thats6 is computed
ass0⊕s1⊕s3 ands7 is computed ass0⊕s2⊕s3⊕s4.

Since we consider only systematic codes, ak×n gen-
erator matrix,G, is used to compute them= n−k parity
symbols fromk data symbols. The firstk columns of the
matrix form ak× k identity matrix. The lastm columns
are used to compute each of them parity symbols from
the data symbols. Thus, every systematic generator ma-
trix will have the formG = (Ik|P), where the elements
of the matrix are taken from a finite field. A codeword is
computed asd ·G= c, whered is a 1×k vector containing
thek data symbols.

The Tanner graph of the flat XOR-based code shown
in Figure 1-a is transformed into a generator matrix by
creating a column for each node in the graph . The nodes
s0, s1, s2, s3 ands4 form the first five columns, where the
column for symbolsi is the unit vector with a 1 in the
i-th element. A parity column (s5, s6 ands7) is a linear
combination of the columns that correspond to the data
symbols involved in the parity equation. For example, the
column corresponding to symbols5 is the sum of the 0th,
1st and 2nd columns of the matrix.

The generator matrix for an MDS code is typically cre-
ated by starting with a specific type of matrix (i.e. Van-
dermonde) and performing elementary matrix operations
to transform the matrix into one of the form(Ik|P), where
the entries of the matrix are in the finite field of 28, 216 or
232 elements.

While non-MDS codes are not as fault-tolerant as MDS
codes with the same number of data and parity symbols,
rebuild of a single symbol typically involves less thank
symbols. This is not the case for MDS codes, wherek
available symbols are required to reconstruct the contents
of 1 to m symbols. The suitability of non-MDS codes to
power-aware storage follows from this observation—data
symbols on inactive devices may be reconstructed from
fewer active devices compared to MDS codes.

3 Power Aware Coding

We definepower-aware codingin terms of a set of disks
and anerasure code instanceacross the disks. An erasure
code instance is a mapping of erasure-coded symbols—
data or parity—to disks. An example code instance is
shown in Figure 1-b. As shown, we assume that the num-
ber of symbols in a codeword is equal to the number of
disks and each symbol is mapped to a unique disk. In
this case, each code symbol,si , is mapped to diskDi . For
brevity, we assume that all disks have the same capacity
and characteristics; however, our techniques have the abil-
ity to support disks with different characteristics.

2

The crux of power-aware coding is to prevent spinning
up inactive disks when servicing read requests by treating
each inactive disk as an erasure. As an example, consider
the setup shown in Figure 1. Suppose disksD0, D5, D6
andD7 are currently active; all others are inactive. If the
system receives a read request for diskD4 we can service
the request asD0⊕D5⊕D6⊕D7 instead of activating disk
D4, sinces4 = s0⊕ s5⊕ s6⊕ s7. The comparable MDS
code with 5 data disks and 3 parity disks would require a
disk activation, since 4 active devices are not sufficient to
recover the contents of an inactive device.

Three conditions are necessary for an erasure-coded
system to be power-aware. First, the system must have
policies that service writes in a way that minimizes opera-
tional power consumption, while maintaining a sufficient
level of reliability. Second, a read policy will dictate if
data is accessed directly off a disk or reconstructed using
redundant information. Finally, when disk activation is
necessary to service a read request, a policy is needed to
determine how to efficiently schedule disk activations.

3.1 Servicing Writes

We assume the system has a total ofN disks; thus, there
are a total ofNn code instances. Writes into the system are
serviced by deterministic disk activations. Awrite group
is a list of disks that will be active within a single code
instance at the same time to perform this function. Every
disk in the system must be a member of at least one write
group and will most likely belong to several write groups.
When a write group is active, its disks are also active. Ex-
actlyonewrite group per code instance will be active at a
time. Each write group is identified by a tuple containing
a unique id, abegin timeand anend time. A power sched-
ule is a list of these tuples; thus, it temporally specifies
how disks are deterministically activated and deactivated
within a code instance.

Servicing writes via write groups assumes that the
storage system is write-anywhere or defers writes, since
writes are only handled by disks in the current write
group. Approaches such as Pergamum [9] and write off-
loading [5] also use these techniques to save power.

The total power consumed by the storage system is
heavily dependent on the power schedule. A write group
will likely be active for a number of hours and keep the
number of active disks to a minimum. In addition, the
number of active disks determine which data can be re-
constructed; thus, a proper balance is required to service
both writes and reads into the system.

3.2 Servicing Reads

Read requests are satisfied by either accessing an active
disk or reconstructing the appropriate content using the
active disks (via the erasure code). In some cases, the in-
formation provided on the active disks will be insufficient
for serving the request. Atransient disk activationoccurs
when a disk must be activated to service a read request.
A transient activation may be used to directly service the

request or as part of data reconstruction if the request in-
volves multiple disks. Since a transient activation involves
a disk that is not a member of the current write group, it
will be deactivated after some fixed period and will not
service writes. In addition to reads, transient activations
may also be used to perform background operations such
as disk scrubbing [8].

Choosing to perform reconstruction, transient activa-
tion or a combination of the two depends on the environ-
ment and workload. There may be cases where a transient
activation may be more power efficient than reconstruct-
ing the data from active disks. The system should opti-
mize for each read request based on the state of the system
and number of disks involved.

3.3 Scheduling Transient Activations

Most systems handle read requests to inactive disks using
the naive strategy, which simply activates the disks in-
volved in the request. A great deal of transient activations
can have a dramatic effect on system power consumption
and reliability. In addition, recent analysis shows that the
system reliability will decrease if disks are power cycled
too often [8]. In order to minimize power consumption
and maintain a reasonable level of reliability, the system
should minimize the number of transient disk activations.

4 Power-Aware Techniques
In this section we cover initial policies for servicing
writes, servicing reads and handling transient disk acti-
vations. These policies serve as a starting point for con-
structing erasure-coded, power-aware systems.

4.1 Power Schedule

Each of theN
n code instances in the system must have

a policy for generating its own write groups. Consider
a simple policy, calledsingle-data connected-parity, for
constructing write groups. Under this policy, write groups
are generated based on the parity equations for the code
instance. A write group is generated for each data disk.
We assign each data disk,Di , to a unique write group,
Wi . A parity diskD j is added to write groupWi if Di con-
tributes to the parity equation forD j . This policy is biased
towards writes because it allows all parity updates to im-
mediately complete, since a data disk and its associated
parity disks will be active at the same time. Under this
policy, the write groups for the code instance in Figure 1
would be{D0,D5,D6,D7}, {D1,D5,D6}, {D2,D5,D7},
{D3,D6,D7} and {D4,D7}. If every code instance im-
plements this policy, then data may be written in paral-
lel acrossN

n disks. Write groups may be defined by more
than one data disk in environments that must sustain heavy
write workloads.

The duration of a write group—calculated by subtract-
ing the end timeentry from thebegin timeentry in the
write group’s corresponding tuple—is a tunable param-
eter based on utilization, workload and frequency of in-

3

tegrity checks. For this reason, analyzing the appropriate
duration of a write group is left to future work.

4.2 Power-Aware Read Algorithm

At a high level, the power-aware read algorithm treats in-
active devices as erased and relies on matrix methods to
determine if partial or whole-stripe reconstruction is pos-
sible using disks that are already active [4]. If reconstruc-
tion of any erased data is possible, the matrix transfor-
mations result in appropriate recovery equations. Instead
of marking a disk as failed (or erased), we mark all inac-
tive devicestentatively lost. A tentatively lost device is
made available through activation. When a read request
involves data that is tentatively lost, we try to reconstruct
the elements in a way that minimizes the number of disk
activations.

Our read algorithm relies on a function that determines
if lost data is recoverable, and if so, the equations needed
to reconstruct. The recovery equations for tentatively lost
data are computed using the underlying generator matrix,
G. A matrix,G′, is constructed by zeroing out the columns
in G that correspond to the tentatively lost elements. In
order to determine the recovery equations we must find a
pseudo-inverse,R (as defined by Hafneret al. [4]), of G′.
Suppose the vectorc′ is the vectorc= d ·G with zeroes in
the positions corresponding to tentatively lost elements.
Thenc′ ·R = d′, where the non-zero elements ofd′ are
the corresponding recoverable elements ofd and the zero
elements are unrecoverable. In this case,R contains the
recovery equations andc′ contains the available data and
parity symbols.

The power-aware read algorithm is shown in Algo-
rithm 1. The algorithm takes the inactive disks involved
in the read request (I), the generator matrix for the un-
derlying code (G) and the set of currently inactive de-
vices (L) as input. The functionrecoverable uses
the aforementioned matrix methods to determine the disks
that are recoverable based on the underlying code and
the set of currently available (or recoverable) disks. The
recoverable function returns a list of recoverable
disks,L′, and the corresponding recovery equations. The
activate disk function, which is explained in Sec-
tion 4.3, determines the disk (or disks) to activate given
the read request and state of the system.

As an example, supposeI = {D2,D4} and L =
{D1,D2,D3,D4} in the code instance shown in Figure 1.
In the first iteration,recoverable returns({D4 = D0⊕
D5⊕D6⊕D7},{D4}). The second iteration begins with
I = {D2} andL = {D1,D2,D3} andrecoverable re-
turns (/0, /0), therefore, a disk must be activated. Since
D2 is the only disk left inI , activate disk returns
({D2 = D2},{D2}). The loop invariant evaluates to
false at the beginning of the third iteration and the al-
gorithm returns the corresponding recovery equations.

Algorithm 1 RecoverI usingG andL

1: while I 6= /0 do
2: (eqns,L′)← recoverable(G, L)
3: if L′ = /0 then
4: (eqns,L′)← activatedisk(L,G, I)
5: else
6: I ← I −L′

7: L← L−L′

8: end if
9: all eqns.append(eqns)

10: return all eqns
11: end while

4.3 Disk Activation Algorithm

Since our approach takes advantage of the underlying era-
sure code, there exist many cases where the naive activa-
tions can be avoided. If the read request contains a single
inactive disk that cannot be reconstructed, then we simply
activate that disk. If more than one inactive disk is in a
read request, we must determine the minimum number of
activations required to service the request.

Algorithm 2 performs a brute force search of potential
disks to activate by generating all possible combinations
of disk activations (i.e. powerset of inactive disks). The
powerset function,P , orders the combinations in ascend-
ing order by size. For each combination,s, the algorithm
determines if the request can be satisfied when the disks
listed insare activated (viais fully recoverable).
Once a satisfactory combination is chosen, the algorithm
returns the disks to activate and an updated list of inac-
tive devices. Since the combinations are ordered, this al-
gorithm will return the minimum number of activations
needed to service the request.

Algorithm 2 Determine the minimum number of disk ac-
tivations required to service requestI when disks inL are
inactive.

1: for s∈ P (L)− /0 do
2: try← L−s
3: if is fully recoverable(try,I ,G) then
4: L← L−s
5: return (s,L)
6: end if
7: end for

5 Example Usage
In this section, we clarify a few of the tradeoffs and illus-
trate the utility of non-MDS codes for power-efficiency in
a small system containing 8 disks. We have chosen three
erasure codes to illustrate the various tradeoffs in terms
of power consumption and fault tolerance: (5,3)-FLAT,
(4,4,2)-FLAT and (6,2)-MDS. The (5,3)-FLAT code is the
code shown in figure 1. The (6,2)-MDS is an MDS code
with 6 data symbols and 2 parity symbols. The (4,4,2)-

4

FLAT is a flat XOR-based code with data symbolss0, s1, s2
ands3, where each data symbol is connected to exactly 2
parity symbols. The parity equations of (4,4,2)-FLAT are:
s4 = s2⊕s3, s5 = s0⊕s3, s6 = s0⊕s1 ands7 = s1⊕s2. As
we will see later in this section, these codes were chosen
due to similar, but not identical, fault tolerance properties.

We assume all disks are identical andPr , Pa andPi is
the power (in watts) consumed by each disk when read-
ing, active but not reading and inactive, respectively. Fur-
thermoreNa andNi represent the number of active and in-
active disks in the system. A read request of sizeR (MB)
takes a disk with transfer rateDR (MB/s) and average ro-
tational latencyDL (s) approximatelyTTS= DL + R

DR
sec-

onds to service. Finally, each disk consumesPsp watts
during a transition from inactive mode to active mode,
which takesTsp seconds. We leave the energy calculation
for CPU, network, and so on to future work.

Our analysis utilizes the energy consumption values of
an IBM Ultrastar 36Z15. The values are:Pr = 13.5 W,
Pa = 10.2 W, Pi = 2.5 W, DR = 55 MB/s,Psp = 13.5 W,
Tsp = 10.9 s andDL = 2 ms.

We consider four possible system configurations. Sys-
tem A uses the (5,3)-FLAT code and the single-data
connected-parity write group policy. System B uses
the (6,2)-MDS code and the single-data connected-parity
write group policy. System C uses the (6,2)-MDS code and
a write group policy similar to e-RAID, where all but two
disks are active. Finally, system D uses the (4,4,2)-FLAT
and the single-data connected-parity write group policy.

5.1 Power Consumption due to Write Groups

We estimate the power consumption of each system con-
figuration due to a given write group policy and erasure
code. To simplify the analysis, we approximate the en-
ergy consumption without considering the workload. We
believe that our calculation, while inaccurate in an abso-
lute sense, is sufficient for comparison. We understand
that detailed simulation is required to obtain accurate en-
ergy consumption numbers.

Each system will haveNa active devices andNi inactive
devices. On average, each system will consume approx-
imately (Na ·Pa)+ (Ni ·Pi) watts. System A and D have,
on average, 3 devices active and each consume approxi-
mately 43.1 W. Systems B and C will have 3 and 6 de-
vices active at all times and consume 43.1 W and 66.2 W,
respectively. The logical (usable) capacity of each system
can be used to normalize to watts-per-data-disk. The nor-
malized energy consumption of each system is: system A
is 8.62 W, system B is 7.18 W, system C is 11.03 W and
system D is 10.78 W.

5.2 Reconstruction Ability of Each System

Each of the three systems have different capabilities in
terms of reconstructing data present on inactive devices.
System C has the ability to service any read request with-
out activating any disks, since 6 active disks is sufficient

to reconstruct the contents of any two inactive disks. Sim-
ilarly, system B needs at least 6 active devices to recon-
struct the contents of an inactive disk. Every write group
in system B contains 3 disks; thus, it is unlikely system B
will have the ability to service reads via reconstruction.

The reconstruction capability of system A sits some-
where between that of system B and C. For instance, while
the write group containingD0, D5, D6 andD7 is active,
any request toD4 can be serviced without activating any
disks, becauseD4 = D0⊕D5⊕D6⊕D7. As another ex-
ample, suppose a read request is directed atD2 andD3
under the same write group. While a similar request in
system B would require activating both disks, only a sin-
gle disk activation (D2) is required to service the request
in system A, sinceD3 = D2⊕D5⊕D6.

The reconstruction capability of system D highlights
the tradeoff between storage efficiency and prospective
power savings. For example, if the write group containing
D0, D5 andD6 is active, all but one data symbol can be re-
constructed:D1 = D6⊕D0 andD3 = D0⊕D5. The sym-
metric structure of this code makes this true for all write
groups. One could argue that the same reconstruction
ability is possible by simply activating three data disks,
but there would be no parity disks active to service writes
into the system. This code illustrates a nice balance when
optimizing power efficiency for both reads and writes.

5.3 Disk Activation vs. Data Reconstruction

In order to evaluate the efficacy of our read policies, we
calculate the approximate power consumption when a 50
MB read request is targeted at a single inactive disk. We
save more complicated cases, such as combining activa-
tion and reconstruction, for future work. System A, C
and D will service the read request by either activating the
disk or performing partial reconstruction. System B must
activate the disk to service the request. The approximate
power (in Joules) required when activating a disk to ser-
vice the request is

(Psp·Tsp)+ (TTS· (Na ·Pa +Ni ·Pi +Pr)) ,

where the first term in the summation represents the power
consumed to activate the disk and the second term is the
power consumed when servicing the request. The disk
activation power consumption of systems A, B and D is
198.71 J, since all systems have, on average, 3 disks acti-
vated at any given time. The power consumption of sys-
tem C is approximately 219.76 J. Note that these power
consumption numbers are highly dominated by the power
required to spin-up an inactive disk, thus avoiding such
activations is crucial.

If the contents of the inactive disk can be reconstructed
from the active disks, we can approximate the power con-
sumed as(TTS· (Na ·Pr +Ni ·Pi)). In this case, we assume
that all active disks participate in the rebuild operation.
To be fair, we assumeNa = 4 for system A, since 4 disks
must be active to perform reconstruction under the single-

5

data connected-parity policy. The reconstruction power
consumption of systems A, C and D are 58.30 J, 78.35 J
and 48.28 J, respectively. Since system B cannot recon-
struct the contents of any inactive disks, it must consume
198.71J.

5.4 Dependability and Power Efficiency

We chose the three codes in this example due to similar
fault tolerance properties. The (6,2)-MDS is space-optimal
and has the ability to tolerate any 2 disk failures. The
(5,3)-FLAT code can tolerate all but one 2 disk failure (the
failure of D4 andD7), thus it is not quite as fault tolerant
as the (6,2)-MDS code. Finally, the (4,4,2)-FLAT can tol-
erate any 2 disk failures, all but four 3 disk failures and
all but five 4 disk failures. In this case we see that a sys-
tem designer must trade both fault tolerance and space for
power efficiency.

It is important to point out the tradeoff between power
efficiency, fault tolerance and space efficiency. The (6,2)-
MDS code provides optimal fault tolerance for 6 data and
2 parity elements, but lacks flexibility in terms of poten-
tial power savings; at least 6 devices must be active in
order to reconstruct the contents of any inactive device.
The (5,3)-FLAT code is not as space efficient or fault tol-
erant as (6,2)-MDS, but provides more opportunities to
recover data off inactive devices. By trading even more
space, the (4,4,2)-FLAT code is more fault tolerant than
the other codes analyzed and provides many opportunities
to exploit redundancy for power savings. While we can-
not make any sweeping generalizations, we believe this
example motivates further analysis when trading power
consumption, fault tolerance and space efficiency.

6 Discussion
Introducing the power-aware coding technique, its termi-
nology and a few motivating examples is only a first step.
There are three forms of open problems in this area: de-
termining which environments will benefit from power-
aware coding, finding optimal policies and erasure codes
for a given environment and developing robust metrics for
evaluating the power-reliability-performance tradeoff.

The problem of finding optimal policies and erasure
codes is heavily dependent on workload and is very dif-
ficult to solve analytically; the optimization must trade
power consumption, reliability and performance. In ad-
dition, considering reconstruction in terms of both actual
failures and a read policy remains an open problem. To
gain insight in these areas, we hope to experiment with
standard algorithms in the area of constraint satisfaction
problems [7] and are currently building a simulation envi-
ronment to determine the utility of power-aware coding in
a variety of settings. Initial results show that power-aware
coding may be well suited for thewrite-once, read-maybe
workload of long-term archival storage systems.

The metrics used in this paper estimate power con-
sumption and only account for the power consumed by

disks. In addition to accounting for other energy con-
sumers, such as CPUs, finding accurate metrics for eval-
uating the power-reliability-performance tradeoff remains
an open problem.

References
[1] B. Battles, C. Belleville, S. Grabau and J. Maurier.

Reducing Data Center Power Consumption Through
Efficient Storage. NetApp Technical Report, WP-
7010-0207, 2007.

[2] D. Colarelli and D. Grunwald. Massive arrays of
idle disks for storage archives. InSupercomputing
’02, pages 1–11, 2002.

[3] J. G. Elerath and M. Pecht. Enhanced reliability
modeling of raid storage systems. InDSN 2007,
pages 175–184. IEEE, June 2007.

[4] J. L. Hafner, V. Deenadhayalan, K. Rao, and J. A.
Tomlin. Matrix methods for lost data reconstruc-
tion in erasure codes. InFAST 2005, pages 183–196,
Dec. 2005.

[5] D. Narayanan, A. Donnelly, and A. Rowstron. Write
off-loading: Practical power management for enter-
prise storage. InFAST 2008, Feb. 2008.

[6] E. Pinheiro, R. Bianchini, and C. Dubnicki. Exploit-
ing redundancy to conserve energy in storage sys-
tems. InSIGMETRICS 2006, pages 15–26, 2006.

[7] S. J. Russell and P. Norvig.Artificial intelligence: a
modern approach. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1995.

[8] T. J. E. Schwarz, Q. Xin, E. L. Miller, D. D. E. Long,
A. Hospodor, and S. Ng. Disk scrubbing in large
archival storage systems. InMASCOTS 2004, pages
409–418, 2004.

[9] M. W. Storer, K. M. Greenan, E. L. Miller, and
K. Voruganti. Pergamum: Replacing tape with en-
ergy efficient, reliable, disk-based archival storage.
In FAST 2008, Feb. 2008.

[10] R. Tanner. A Recursive Approach to Low Com-
plexity Codes.IEEE Trans. on Information Theory,
27(5):533–547, Sep 1981.

[11] J. Wang, H. Zhu, and D. Li. e-RAID: Conserving
energy in conventional disk-based RAID system. In
IEEE Transactions on Computers, 2008.

[12] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang,
P. Reiher, and G. Kuenning. Paraid: A gear-shifting
power-aware raid.Trans. Storage, 3(3):13, 2007.

[13] J. J. Wylie and R. Swaminathan. Determining fault
tolerance of XOR-based erasure codes efficiently. In
DSN 2007, pages 206–215. IEEE, June 2007.

[14] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and
J. Wilkes. Hibernator: helping disk arrays sleep
through the winter. InSOSP ’05, pp. 177–190, 2005.

[15] Q. Zhu, F. David, C. Devaraj, Z. Li, Y. Zhou,
and P. Cao. Reducing energy consumption of disk
storage using power-aware cache management. In
HPCA ’04, 2004.

6

