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Abstract

The importance of human-agent negotiation, and the role of
emotion in such negotiations, have been emphasized in human-
agent interaction research. Thus far, studies have focused on
behavioral effects, rather than examining the neural underpin-
nings of different behaviors shown in human-agent interac-
tions. Here, we used a multi-round negotiation platform, in-
stead of the more common single-shot negotiation, and were
able to find distinct brain patterns in emotion-related regions
of the brain during different types of offers. Using multi-voxel
pattern analysis to analyze brain imaging data acquired during
functional MRI scanning, we show that it is possible to pre-
dict whether the negotiator concedes, does not change, or asks
for more during the negotiation. Most importantly, we demon-
strate that left dorsal anterior insula, which is known to be an
emotion-related brain region, shows a different pattern of ac-
tivity for each of the three offer types.
Keywords: Decision-making; Negotiation; fMRI

Introduction
We encounter artificial agents frequently in our daily lives.
From movie ticket vending machines to rescue robots in a
disaster, more and more artificial agents are interacting with
people. As interactions between humans and agents become
common, effort has been made to make these interactions
more effective. For example, relevant lines of research have
investigated how to make users more engaged in the inter-
actions with agents. Moreno, Mayer, Spires, and Lester
(2001) showed that interactive pedagogical agents who com-
municate with students via speech promote meaningful learn-
ing in multimedia lessons, and agent’s visual presence itself
does not provide any cognitive advantage for students’ learn-
ing. Castellano, Pereira, Leite, Paiva, and McOwan (2009)
demonstrated that social interaction-based features, such as
user behavior and contextual information, predict user en-
gagement with a robot companion better than non-verbal be-
havior features. There has also been research into physio-
logical responses to artificial agents, for example examin-
ing heart rate or stress detection during human-agent inter-
action. Nenonen et al. (2007) showed that a user’s gaming
experience was enhanced when the user’s heart rate was used
to control an interactive game. Zhai, Barreto, Chin, and Li
(2005) also reported that users’ physiological signals, such
as pupil diameters, could be used to detect changes in stress
level while interacting with a computer. The goal of these
studies is to achieve the most effective human-agent interac-
tion, and these approaches have expanded to various branches
of human-agent interaction research.

Human-agent negotiation is among the most studied bran-
ches of human-agent interaction. Several studies have at-
tempted to simulate human behavior in human-agent nego-
tiation. For example, Byde, Yearworth, Chen, and Bartolini

(2003) designed a system that automates price negotiation
between buyers and sellers, using a belief function that es-
timates the distribution of prices and is updated by prior ne-
gotiations. The system passed the limited version of the Tur-
ing test; human negotiators could not distinguish between a
software agent and a human negotiator. Lin, Kraus, Wilken-
feld, and Barry (2008) developed an agent that is capable
of negotiating with human counterparts under conditions of
incomplete information. Instead of a traditional quantitative
decision-making model, a new model that learns information
about the counterpart was used to build the agent so that it
can achieve better negotiation agreements than human coun-
terparts. These systems have shown the possibility of artifi-
cial agents that can reach better negotiation agreements with
humans than human negotiators.

In order to make human-agent negotiations more effective,
it is important to consider the role of emotions in human-
agent interaction. There is now considerable amount of re-
search showing that various emotions expressed by agents
can either enhance or hinder interactions (Beale & Creed,
2009; Kim, Dehghani, Kim, Carnevale, & Gratch, 2014).
One example of enhanced interactions is demonstrated by
Brave, Nass, and Hutchinson (2005), who showed that agents
showing emphatic emotion (e.g., showing a happy face when
the user won the game and showing a sad face when the user
lost the game) resulted in greater positive responses from
users compared to when agents showed self-oriented emo-
tion. Also, Van Kleef, De Dreu, and Manstead (2004) showed
that people tend to concede more to an angry counterpart than
to a happy counterpart.

The majority of previous research work has focused on
replicating human-human negotiation results, or achieving
better outcomes in human-agent negotiations. We believe
that by examining the neural factors underlying behavior, we
could advance our understanding about the cognitive pro-
cesses involved in human-agent negotiations. To examine
the neural underpinnings of human-agent negotiations, it is
important to understand the functional organization and neu-
rological processes in the human brain involved in such in-
teractions. The use of functional Magnetic Resonance Imag-
ing (fMRI) allows the investigation of the neural substrates of
these human-agent negotiations.

Previous fMRI studies have identified specific emotion-
related brain regions that play a significant role in social func-
tions: the insular cortex (Damasio et al., 2000; Ruiz et al.,
2013) and the amygdala (LeDoux, 2003). Increased insula
activation was reported when cooperators see their partner de-
fect (Rilling, Dagenais, Goldsmith, Glenn, & Pagnoni, 2008)
or when people are presented with unfair offers (Sanfey,

638



Rilling, Aronson, Nystrom, & Cohen, 2003). Haruno and
Frith (2010) showed that fairness of the negotiation outcome
can be predicted based on patterns of activity in amygdala.
Activity in these brain regions is believed to affect human
behaviors during various types of negotiations, as emotion
plays a key role in social interactions that are vital during
negotiations (Hess & Bourgeois, 2010). For example, it has
been shown that getting an unfair offer or rejecting an offer
in the Ultimatum game triggers negative emotions, such as
anger (Pillutla & Murnighan, 1996). However, these neuro-
logical studies were mostly limited to single-shot negotiations
such as the Ultimatum game (Sanfey et al., 2003).

In this study, we build on and extend this line of research by
studying the relationship between brain patterns and decision-
making during general multi-round human-agent negotia-
tions, which are more similar to real-world negotiations than
single-shot negotiations. Investigating brain activity during
general multi-round human-agent negotiation is vital to un-
derstanding how humans react in interactions with agents.
Moreover, investigating the neural systems that are active dur-
ing different types of interactions would allow us to better un-
derstand the underlying cognitive processes responsible for
the resultant behavior. As far as we know, our work is the
first study that uses brain imaging data to predict the course
of general multi-round human-agent negotiations.

We hypothesize that activity in emotion-related brain re-
gions plays a key role in decision-making paradigms dur-
ing human-agent negotiation. This is supported by previ-
ous studies showing that emotion plays an important role in
decision-making (Hegtvedt & Killian, 1999; Loewenstein,
Weber, Hsee, & Welch, 2001). We hypothesize that emo-
tions arising during human-agent interaction are an indicator
of what type of decision the person is going to make, poten-
tially predicting one’s negotiation behavior.

The paper is structured as follows: First, we introduce the
negotiation task we used in our fMRI experiment. Next, we
describe our experimental design and the procedure of the
experiment. Then, we explain the methods we used for anal-
yses. Finally, we discuss our results and future work.

Objects Negotiation Task
Dehghani, Carnevale, and Gratch (2014) introduced the Ob-
jects Negotiation Task, a web-based multi-round negotiation
task where a participant and a computer agent can make a
proposal in turn to negotiate about the distribution of different
types of items. Because this task was originally designed for
behavioral studies, some changes were made to optimize the
task for use in the fMRI scanner. The version of the Objects
Negotiation Task used in this fMRI experiment is composed
of six phases (figure 1).

1. The participant proposes an offer.
2. The participant waits for the computer agent to accept or

reject the offer.
3. If accepted, negotiation ends. If rejected, the participant

waits for the computer agent to propose an offer.

4. The participant reviews the computer agent’s offer for five
seconds.

5. The participant decides whether to accept or reject the
computer agent’s offer.

6. If accepted, negotiation ends. If rejected, the participant
waits for five seconds and then is redirected to the first
phase.

Each negotiation can be as long as six rounds. On the sixth
round, a message is displayed to the participant to indicate
that it is the last round. The participant then can either ac-
cept the computer agent’s offer or toss a coin. If a participant
chooses to toss a coin, he/she gets two of each item if the coin
lands on heads or nothing if the coin lands on tails.

Experiment
Participants
Ten participants (seven female), recruited from the online
campus bulletin board at the University of Southern Cali-
fornia, took part in the experiment. Participants’ mean age
was 27.5 years (± 4.93) and all participants had normal or
corrected to normal vision. Each participant was provided
with a written informed consent according to the guidelines
of the USC Institutional Review Board. All participants were
screened to rule out medication use, head trauma, history of
neurological disorders, and other serious medical conditions.

Procedure
Participants were instructed to read the hypothetical scenario
shown below.

You are a restaurant owner in a small town. There
has been a major fire in the market providing the neces-
sary fruits for your restaurant and as a result only a lim-
ited number of fruits are available. Because of this you
have to split the available fruits with another restaurant
owner. You and the other owner value each fruit differ-
ently. In order to run your restaurant you need to get as
many fruits as possible.

In the task that follows, you will negotiate about how
to distribute the fruits between you and the other restau-
rant owner.

Participants learned the rules of the Objects Negotiation
Task and performed a practice task. The practice negotiation
task had an identical interface to the task performed in the
scanner, but with a different set of negotiation items and pay-
offs. During the practice negotiation task, participants were
provided with a trackball mouse similar to the one used in the
scanner in order to get used to operating it and moving items
around the task interface. After completing the practice nego-
tiation task, participants were checked with a metal detector
to ensure that they were safe to go inside the fMRI scanner.

Participants then performed a total of six negotiations in
the scanner, each including up to six rounds. Different sets
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Figure 1: Timeline of the Objects Negotiation Task used in the fMRI experiment. Here, we show the timeline of an example in
which the computer agent rejected the participant’s offer (phase 3) and then the participant accepted the agent’s offer (phase 6).

of negotiation items were used in each negotiation. After the
fMRI scan, the participants received a short survey to acquire
background information including gender, age, and handed-
ness. All participants were paid $30 for their participation.

Participants were not told that they would be playing with
artificial agents. To simulate playing against other humans,
we added randomized delays when the computer agent pro-
posed an offer.

Analysis
In our analyses, we aimed to find the best predictor of par-
ticipants’ offer types based on their brain activities. To
achieve this goal, we labeled our data first, and then per-
formed general linear model (GLM) analysis. Lastly, we used
the GLM analysis results as input to multi-voxel pattern anal-
yses (MVPA) using two types of feature selection methods.

Data Labeling
All of the participants’ offers were labeled with one of three
categories based on their payoff changes from the previous
offer: (1) positively-changed offer, (2) not-changed offer, and
(3) negatively-changed offer. Participants’ offers on the first
rounds of each negotiation were labeled ‘not-changed offer,’
and their offers on all other rounds were compared with their
offer on the previous round based on payoffs and then la-
beled according to the comparison. For example, if the par-
ticipant’s payoff in the first round was 20, his/her payoff in
the second round was 23, and in the third round 21, the first
round would be labeled as a ‘not-changed offer,’ the second
round as a ‘positively-changed offer’ (because his/her pay-
off was increased by 3), and the third round as a ‘negatively-
changed offer’ (because his/her payoff was decreased by 2).
Here, ‘positively-changed offer’ means that the participant
concedes more to the other player, ‘not-changed offer’ means
that the participant holds, i.e., he/she retains the offer on the

previous round, and ‘negatively-changed offer’ means that
the participant asks for more.

Before analyzing the fMRI data, we had to exclude data
from three participants. The first exclusion was due to in-
complete fMRI scan data. In the second case the participant
made less than five offers in each offer category, leading to a
too small number of offers in each offer category. In the third
case we excluded the data because of the participant’s left-
handedness, since more than 70% of left-handed people have
different functional brain structure compared to right-handed
people such as for language processing (Warrington & Pratt,
1973).

General Linear Model Analysis

To compare brain activity between the offer-making period
and the non-offer-making period, we ran a general linear
model (GLM) analysis using tools from the FMRIB’s Soft-
ware Library (FSL) (Smith et al., 2004). Data pre-processing
for GLM analysis included following steps. First, all par-
ticipants’ fMRI data were motion-corrected using FSL’s
MCFLIRT tool to fix head motion artifacts during scans.
Then, non-brain such as a scalp was removed from the data
using FSL’s Brain Extraction Tool. Next, spatial smoothing
using a 5mm full width at half maximum Gaussian kernel was
applied to increase statistical power by improving the signal
to noise ratio. Also, slice timing correction for interleaved
acquisitions was used to compensate for timing difference
between slices of functional images. Finally, high-pass tem-
poral filtering was performed to let high frequencies (contain-
ing activities relevant to decision-making) pass and to remove
low frequencies such as signal drifts.

After completing data pre-processing, we modeled brain
activity during offer-making with a double gamma hemody-
namic response function. Brain activity during all other time
points were considered baseline.
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Multi-Voxel Pattern Analysis
To analyze brain patterns in decision-making during ne-
gotiations, we used multi-voxel pattern analysis (MVPA)
(Norman, Polyn, Detre, & Haxby, 2006), a machine learning
approach for investigating patterns of brain voxels. Instead of
analyzing each voxel separately, MVPA takes multiple voxels
into account together. This is useful because activity in one
voxel cannot be separated from neighboring voxels.

We used GLM analysis results as input to MVPA. As data
pre-processing steps for MVPA, we de-trended the data to
remove any bias resulting from scanner drift over the acquisi-
tion time. Then, we converted the data to z-scores to normal-
ize the range of each voxel. We used leave-one-participant-
out cross validation for MVPA, in which a classifier is trained
on six participants’ data and then tested with the last partici-
pant’s data. We repeated this seven times, leaving each par-
ticipant out once, then averaged the results to calculate pre-
diction accuracy. A balancer was also included to keep the
chance level the same (33%) throughout our analyses because
every participant has a different set of offers. Since a balancer
chooses a new set of offers in each category whenever it runs,
we ran MVPA five times and averaged the results.

Lastly, we applied feature selection methods for choosing
the voxels used in our analysis. Feature selection is a com-
mon approach to reduce the number of features (voxels) by
selecting only relevant features as input to a classifier. Clas-
sification performance improves with feature selection be-
cause it picks features that vary significantly between cate-
gories (Guyon & Elisseeff, 2003). To validate our hypothesis
that brain activities on emotion-related regions are closely re-
lated to decision-making during negotiations, we used two
different feature selection methods for MVPA. For both ap-
proaches, we used a linear Support Vector Machine (SVM)
classifier to perform classification. In the following sections,
we explain each the two feature selection method we used for
MVPA: Region of Interest and Searchlight analysis.

Region of Interest Analysis: Insular Cortex In the re-
gion of interest (ROI) analysis, we attempted to predict the
offer categories based only on the voxels in the insular cor-
tex, which is known as an emotion-related brain region. The
insular cortex on each side of the brain can be divided into
three subregions with distinct patterns of connectivity: dor-
sal anterior insula, connected with dorsal anterior cingulate
cortex; ventral anterior insula, connected with pregenual an-
terior cingulate cortex; and posterior insula, connected with
primary and secondary somatomotor cortices (Deen, Pitskel,
& Pelphrey, 2011).

We trained the classifier using voxels from each of the six
regions separately with feature selection. In our analyses, we
used GLM analysis results to compute F-score per each voxel,
and then used an analysis of variance measure to select the top
5% of features with the highest F-scores. Each participant’s
brain was first transformed into standard MNI space (Evans
et al., 1993) to minimize differences from individual brains.
After performing this process for all participants, individual-

level analyses were combined for a group-level analysis.

Searchlight as a Feature Selection Method In the search-
light analysis (Kriegeskorte, Goebel, & Bandettini, 2006), a
map of classification accuracies is generated by measuring
the information in small spheres (radius = 5 voxels) cen-
tered on every voxel in brain. As activities on one voxel
are inevitably influenced by activities on neighboring voxels,
searchlight analysis is a preferable approach to capture local
spatial areas that show significantly different activity patterns
on each experimental condition. To confirm the strong corre-
lation between brain activities on emotion-related regions and
negotiation offer types, and to find other brain regions that
show notable pattern differences on each offer type, we used
searchlight analysis as a feature selection method for MVPA.

Steps for using searchlight analysis as a feature selection
method are as follows. We first generated searchlight maps
from each participant’s brain. Then we transformed indi-
vidual searchlight maps into the standard MNI space, and
merged six of them to generate seven merged searchlight
maps in total. Next, we generated t-maps using t-tests across
six participants versus chance, and thresholded the top 5% of
the t-maps and binarized them. After that, we transformed
all participants’ functional images (EPIs) into individual EPI
space and ran MVPA using thresholded and binarized t-maps
as masks for each participant. Finally, we averaged MVPA
results to calculate overall prediction accuracy.

RESULTS
ROI MVPA: Left Dorsal Anterior Insula
We hypothesized that activity in the insular cortex would be
highly correlated with different types of offers. We performed
ROI MVPA with each of the six insula regions (left/ right
ventral anterior insula, left/right dorsal anterior insula, and
left/right posterior insula), and found that left dorsal ante-
rior insula to be the best predictor of offer types (positively-
changed offer, not-changed offer, or negatively-changed of-
fer). The prediction accuracy of ROI MVPA using voxels
from left dorsal anterior insula is 43.88%, with a standard er-
ror 1.30%. Interestingly, insular regions other than left dorsal
anterior insula show chance level performance.

A binomial test shows that the performance of ROI MVPA
with left dorsal anterior insula is significantly higher than
chance level (p = 0.0058), indicating that activity in left dor-
sal anterior insula predicts offer types in negotiations.

MVPA with Searchlight as a Feature Selection
Method
To map the spatial distribution of information, we performed
MVPA with searchlight as a feature selection method. Fig-
ure 2 shows the overlaid accuracy map for all seven partici-
pants. Before overlaying accuracy maps, we thresholded the
top 5% of seven t-maps each across six participants and bina-
rized them. Consistent with the finding from the ROI analy-
sis, we find that left dorsal anterior insula is included in six
t-maps.
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Figure 2: Combined t-maps that were used as masks for
MVPA with searchlight as a feature selection method. Each
of seven t-maps were generated across six participants’
searchlight results, and then thresholded and binarized. Ar-
eas marked with red indicate that the area is included for one
t-map, and areas with yellow indicate the area is included for
all t-maps. Left dorsal anterior insula is included in six t-maps
(green boxes).

The prediction accuracy for MVPA with searchlight as a
feature selection method is 47.45% with a standard error
0.017%. Compared to ROI MVPA, MVPA with searchlight
as a feature selection method has the prediction accuracy im-
proved by 3.57% and has much smaller standard error. Two
sample t-test results revealed that there is a significant differ-
ence in prediction accuracy between MVPA with searchlight
as a feature selection method and ROI MVPA with left dorsal
anterior insula, t(23.124) = 1.6272, p = 0.058.

DISCUSSION
In this experiment, we investigated the neural correlates of
decision-making during negotiations. We classified negotia-
tion offers into three categories: conceding, holding, or ask-
ing for more. We then analyzed brain imaging data by offer
category to see if we could predict the category of negotiation
based on the brain activation. We used functional MRI to cap-
ture participants’ brain activity during negotiations, and used
MVPA to analyze the fMRI data. ROI MVPA and MVPA
with searchlight as feature selection methods were used and
both methods resulted in significantly better prediction accu-
racies than the chance level of 33%. Most notably, MVPA
with searchlight as a feature selection method yielded the
higher prediction accuracy of 47.45%, indicating the impor-
tance of analyzing neighboring voxel clusters together.

Our results reveal that there are distinct brain patterns
across participants for each type of offer. More specifically,
activity in left dorsal anterior insula, which is a well-known
emotion-related brain region, was found to play a key role in
distinguishing offer types. This is in line with our hypothe-
sis that activations in emotion-related brain regions would be
closely related to decision-making. Emotions provoked while
the participant is interacting with the computer agent during
negotiations mediate the participant’s negotiation behaviors,
and these processes are captured in fMRI data as a form of
increased blood flow in emotion-related brain regions. Thus,
this confirms not only the importance of the role of emotion in
human-agent interaction, but also the possibility of interpret-

ing the underlying processes during negotiations with fMRI
data.

Furthermore, the results indicate that we can predict ne-
gotiation offers based on brain activities. Offer type predic-
tion results from MVPAs with two types of feature selection
methods support the feasibility of successful predictions of
negotiation behaviors. This has implications for human-agent
negotiation research, allowing us to perform more detailed
predictions of negotiation behavior based on fMRI data as
compared to predictions based on behavioral research. For
example, we can conduct an fMRI study on how engaged
participants are during negotiations under various conditions.
In addition to non-verbal features that were found to be re-
lated to user engagement by Castellano et al. (2009), intro-
ducing brain imaging data would give us extra information
on degree of user engagement. With these approaches, we
can come close to achieving the most effective human-agent
interaction.

Also, our results suggest that there are more brain re-
gions correlated with negotiation offer types. For instance,
right posterior supramarginal gyrus and right hippocampus
were included in all t-maps that were generated with search-
light maps. Generally, decision-making during negotiations
are affected by one’s empathy towards others (Loewenstein
& Lerner, 2003), which is related to brain activities on
right supramarginal gyrus, and remembering previous offers
to update one’s knowledge (Zeng & Sycara, 1998), which
is related to brain activities on right hippocampus. Thus,
these findings would allow us to track down more details of
decision-making during negotiations.

In this study, we looked at only one previous round of ne-
gotiation, but it is possible that negotiators actually take into
account the whole history of negotiation when proposing the
next offer. In that case, studying a longer history would result
in better prediction of negotiators’ offers. As a first approach
studying general multi-round human-agent negotiations, we
were able to show that we can do offer type prediction dur-
ing negotiations with one previous round using fMRI data. In
future studies, we plan to take longer history into considera-
tion. Also, we plan to replicate our results using larger sam-
ple sizes. Even though we had only seven participants in this
study, we expect to see the same results in a large number of
participants because we were able to do a significantly better
offer type prediction than the chance level with large effect
sizes. In addition, we would like to note that the probability
of replication is dependent not on the sample size but on the
p value (Killeen, 2005).

In conclusion, we examined the relationship between brain
patterns and types of negotiation offers. Unlike previous
fMRI studies that were limited to single-shot negotiations, we
studied general multi-round human-agent negotiations. Our
results demonstrate that we can predict behaviors from multi-
round negotiations using fMRI data. We believe this finding
could help enrich human-agent negotiation, and hope to find
more work on this topic.
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