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Concentrations by Reducing Angiopoietin-Like
Protein 4 Expression in Mice
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Jianhua Shao1

Diabetes 2020;69:1100–1109 | https://doi.org/10.2337/db19-1181

To ensure fetal lipid supply, maternal blood triglyceride
(TG) concentrations are robustly elevated during preg-
nancy. Interestingly, a lower increase in maternal blood
TG concentrations has been observed in some obese
mothers. We have shown that high-fat (HF) feeding dur-
ing pregnancy significantly reduces maternal blood TG
levels. Therefore, we performed this study to investigate
if and how obesity alters maternal blood TG levels. Ma-
ternal obesity was established by prepregnant HF (ppHF)
feeding, which avoided the dietary effect during preg-
nancy. We found not only that maternal blood TG con-
centrations in ppHF dams were remarkably lower than in
controldamsbutalso that theTGpeakoccurredearlierduring
gestation. Hepatic TG production and intestinal TG ab-
sorption were unchanged in ppHF dams, but systemic
lipoprotein lipase (LPL) activity was increased, suggesting
that increased blood TG clearance contributes to the
decreased blood TG concentrations in ppHF dams. Al-
though significantly higher levels of UCP1 protein
were observed in interscapular brown adipose tissue
(iBAT) of ppHF dams, Ucp1 gene deletion did not restore
blood TG concentrations in ppHF dams. Expression of
the angiopoietin-like protein 4 (ANGPTL4), a potent en-
dogenous LPL inhibitor, was significantly increased during
pregnancy. However, the pregnancy-induced elevation of
blood TG was almost abolished in Angptl42/2 dams.
Compared with control dams, Angptl4 mRNA levels were
significantly lower in iBAT, gonadal white adipose tissue,
and livers of ppHFdams. Importantly, ectopic overexpres-
sion of ANGPTL4 restored maternal blood TG concentra-
tions in ppHF dams. Together, these results indicate that
ANGPTL4 plays a vital role in increasing maternal blood
TG concentrations during pregnancy. Obesity impairs the

rise of maternal blood TG concentrations by reducing
ANGPTL4 expression in mice.

Due to an increase in hepatic triglyceride (TG) secretion
and reduction in plasma TG clearance, maternal blood TG
concentrations progressively increase during pregnancy
(1–3). Maternal blood TGs provide lipids not only for fetal
growth but also as energy substrates for placental metab-
olism. Maternal blood TG levels are positively associated
with birth weight in both healthy pregnancies (1,4,5) and
pregnancies complicated with obesity and gestational di-
abetes (5–9). After adjustment for maternal BMI and blood
glucose, maternal blood TG concentration has been iden-
tified as a strong independent predictor for birth weight
and infant adiposity (6–10). Therefore, maternal blood TG
level is essential in fetal growth and fat development.

A strong association of obesity and abnormal lipid
metabolism is well-documented from humans to animal
models. Maternal obesity, especially prepregnant obesity,
has been identified as a key risk factor for many adverse
pregnancy outcomes. However, our understanding of the
impact of obesity on maternal adaptation in lipid metab-
olism to pregnancy is limited. Although increased fasting
and postprandial blood TG concentrations have been ob-
served in obesity-complicated pregnancy (7,9), studies have
reported that obese women have a less pronounced rise in
blood TG concentration during pregnancy (5,11–14). More
interesting, our mouse study revealed that high-fat (HF)
feeding during pregnancy significantly reduced maternal
blood TG, despite the elevation of adiposity (15). Therefore,
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a systemic experiment was warranted to investigate the
effects of obesity on the increase of maternal blood TG
concentration during pregnancy, referred to as TG trajec-
tory hereafter, and the underlying mechanism.

Lipoprotein lipase (LPL) is the primary driver of blood
TG clearance. LPL activity is negatively regulated by several
angiopoietin-like proteins (ANGPTL) (16–19). ANGPTL4
is the most potent LPL inhibitor in the ANGPTL family
(17,20,21) and is highly expressed in white adipose tissue
(WAT) and brown adipose tissue (BAT) (20,22). After
secretion from cells, ANGPTL4 can be cleaved into an
N-terminal domain and a COOH-terminal fibrinogen-like
domain (23,24). The coiled-coil domain of the N-terminus
inhibits LPL activity (25). ANGPTL4 expression is signif-
icantly increased during pregnancy (26–28).

Using mouse models, our current studies demonstrate
that prepregnancy HF (ppHF) feeding induced maternal
obesity. Compared with control (Con) dams, maternal blood
TG concentrations were significantly lower in ppHF dams.
Although ppHF feeding increased UCP1 expression, results
from Ucp1 gene knockout (Ucp12/2) mice ruled out the
contribution of UCP1 in obesity-reduced maternal blood TG
trajectory. Our study further revealed that ppHF feeding
significantly increased postheparin blood LPL activity but
showed no significant effect on hepatic TG secretion or
postprandial intestinal TG absorption. Significantly, low
expression levels of Angptl4 were observed in the inter-
scapular BAT (iBAT), gonadal WAT (gWAT), and livers of
ppHF-fed dams. Pregnancy-induced increase of maternal
blood TG concentration was almost abolished in Angptl4
gene–deficient (Angptl42/2) dams. Importantly, overex-
pression of ANGPTL4 restored maternal blood TG con-
centrations of ppHF dams. Together, this study demonstrates
that ANGPTL4 plays a crucial role in increasing maternal
blood TG concentrations during pregnancy. Maternal obe-
sity impairs the rise of maternal blood TG trajectory by
reducing Angptl4 expression in mice.

RESEARCH DESIGN AND METHODS

Materials
Antibody against human ANGPTL4 antibody was from
R&D Systems (Minneapolis, MN). Anti-GAPDH and horse-
radish peroxidase–linked secondary antibodies were from
Santa Cruz Biotechnology (Santa Cruz, CA). Anti-UCP1
antibody was from Abcam (Cambridge, MA). TG assay kits
were purchased fromWakoDiagnostics (Richmond, VA). FBS,
NuPAGE gels, SuperScript III Reverse Transcriptase, and
oligo(dT)12-18 primer were from Invitrogen (Carlsbad, CA).
The LPL activity assay kit was from Cell Biolabs, Inc. (San
Diego, CA). Ad-hANGPTL4 adenovirus was from Vector
Biolabs (Malvern, PA). HF diet (60% kcal from fat, 20% kcal
from protein, and 20% kcal from carbohydrate; energy
density: 5.24 kcal/g) (catalog number D12492) and
ingredient-matched low-fat diet (10% kcal from fat, 20%
kcal from protein, and 70% kcal from carbohydrate;
energy density: 3.85 kcal/g) (catalog number D12450J)
were from Research Diets, Inc. (New Brunswick, NJ).

Regular chow (17% kcal from fat, 25% kcal from protein, and
58% kcal from carbohydrate; energy density: 3.1 kcal/g)
(catalog number 7912) was from Harlan Laboratories
(Madison, WI).

Experimental Animals
C57BL/6 and Ucp12/2 mice were from The Jackson Lab-
oratory (Bar Harbor, ME). Angptl42/2 mice were obtained
from the Mutant Mouse Resource and Research Center and
backcrossed for 10 generations into a C57BL/6 background
(29,30). Some female C57BL/6 and Ucp12/2 mice were fed
with HF or low-fat diet for 12 weeks and then regular chow
2 weeks before mating and during pregnancy. Sires were
fed with chow. To avoid any effects from fetuses, Ucp12/2

and Angptl42/2 mice were crossed with wild-type (WT)
mice to produce Ucp1/2 or Angptl41/2 offspring. Preg-
nancy was determined by the presence of a vaginal plug
and assigned the embryonic age (E)0.5. Maternal body
composition was monitored by EchoMRI. Maternal blood
samples were collected in the fed state at;9:00 to 10:00 A.M.

To ectopically overexpress ANGPTL4, 1 3 106 plaque-
forming units of purified adenoviral vectors encoding
human ANGPTL4 (Ad-hANGPTL4) or green fluorescent
protein (Ad-Gfp) were injected through the tail vein into
dams at E11.5, and samples were collected at E14.5 (31).
Experiments using mouse models were carried out under the
Association for Assessment and Accreditation of Laboratory
Animal Care guidelines with approval from the University of
California San Diego Animal Care and Use Committee.

Hepatic TG Release Rate Assay
Our previous study showed that maternal blood TG con-
centration peaks at E14.5 (31). Therefore, maternal he-
patic TG secretion rates were measured at E14.5 after
blocking endogenous LPL activity by intravenous injection
of Poloxamer 407 (1,000mg/kg) (BASF Corporation,Mount
Olive, NJ). Mice were fasted overnight before injection. A
series of blood samples were collected before and after
Poloxamer 407 injection. Blood TG concentrations were
measured using a Wako kit. The hepatic TG release rates
were calculated by the accumulation of blood TG concen-
trations as we previously described (32).

Lipid Load Test
Pregnant mice (E14.5) were fasted overnight and orally fed
with sunflower oil (0.4 mL). Blood samples were collected
from the tail vein before and at 1, 2, 3, 4, and 5 h after
gavage. To determine intestinal TG secretion in postpran-
dial conditions, mice were injected with LPL inhibitor Polox-
amer 407 10 min before gavage. Blood TG concentrations
were determined, and increase rates were calculated.

Postheparin Plasma LPL Activity Assay
To release endothelial cell–attached LPL into blood, hep-
arin (0.2 m/g body weight) was injected into mice via the
tail vein. Blood samples were collected 10 min after in-
jection, and plasma samples were prepared. Postheparin
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plasma LPL activity was determined using the fluorometric
assay kit as we previously described (15).

Western Blot and Real-time PCR Assays
Protein samples were extracted from iBAT or other tissues
and separated using NuPAGE gels. Proteins were blotted
with the indicated antibodies (see details in figure legends).
The bands fromWestern blots were quantified using Quan-
tity One software (Bio-Rad). Total RNA was prepared from
tissues using TRIzol. cDNA was synthesized using Super-
Script III Reverse Transcriptase and oligo(dT)12-18 primer.
Real-time PCR was performed using a QuantStudio 3 Real-
Time PCR System (Invitrogen) with specific primer pairs
(Table 1). Expression data were normalized to the amount
of b-actin.

Statistical Analysis
Data are expressed as a mean 6 SEM. Statistical analyses
were performed using the Student t test or ANOVA, fol-
lowed by Bonferroni posttests using GraphPad Prism soft-
ware. Differences were considered significant at P , 0.05.

Data and Resource Availability
The data sets and reagents generated during and/or an-
alyzed during the current study are available from the
corresponding author upon reasonable request.

RESULTS

ppHF Feeding Impaired the Rise of Maternal Blood TG
Concentrations During Pregnancy
During normal pregnancy, a significant elevation in ma-
ternal blood TG concentrations has been observed from
humans to rodents. Surprisingly, our previous study observed

that HF feeding during pregnancy significantly reduced ma-
ternal blood TG concentrations in C57BL/6 mice (15). To
further study the effect of maternal obesity on maternal lipid
metabolism, we fed C57BL/6 female mice with HF diet for
12 weeks prior to pregnancy. Mice were returned to regular
chow 2 weeks before mating and during pregnancy to avoid
any dietary effects during pregnancy. As expected, ppHF
feeding significantly increased maternal body weight and
fat mass through pregnancy (Fig. 1A and B). Significant
increases in blood glucose and insulin concentrations were
observed in ppHF mice before mating (Fig. 1C and D).
Therefore, prolonged ppHF feeding induces maternal obesity.

Despite obesity and insulin resistance, blood TG con-
centrations of ppHF mice were comparable to those of Con
dams before pregnancy (Fig. 1E, at E0.0). In Con dams,
maternal blood TG concentrations steadily elevated and
reached a peak at E14.5 in Fig. 1E. For ppHF dams, TG
concentrations were significantly increased at E7.5 but
were remarkably lower than those of Con dams at E14.5
and E18.5 (Fig. 1E). The areas under the blood TG con-
centration curve were also significantly less in ppHF dams
(Fig. 1F). These results indicate that ppHF feeding im-
paired the increase of maternal blood TG concentration
during pregnancy. Because all mice were fed with chow
during pregnancy, these data indicate that ppHF-induced
obesity, but not dietary fat, impairs the rise of maternal
blood TG trajectory. Consistent with most recent rodent
studies (33–40), a significant decrease in body weight was
observed in fetuses from ppHF dams after E16.5 (Supple-
mentary Fig. 1). Of note, maternal obesity usually increases
birth weight in humans (5–9). Despite the opposite effects
on fetal growth between rodents and humans, the parallel
reduction in maternal blood TG concentrations and fetal

Table 1—Sequences for real-time PCR primers

Gene Forward (59 to 39) Reverse (59 to 39)

b-Actin GGGGTGTTGAAGGTCTCAAA CTGAACCCTAAGGCCAACC

Angptl4 GGGACCTTAACTGTGCCAAG GAATGGCTACAGGTACCAAACC

Angptl3 GGAGCAGCTAACCAACTTAATTCT TGTTGTCTTGCTGTTCTACAAAACT

Angptl8 GCCACACAAGAATTTGAGAC GCCAGTGAGAGCCCATAAGA

Scd1 GTGGGCAGGATGAAGCAC AGCTGGTGATGTTCCAGAGG

Apob TTCTTCTCTGGAGGGGACTG GGCACTGTGGGTCTGGAT

Gpihbp1 TGTCCTCCTGATCTTGCTACTA TCTCCTCCTCTTCCTCTTCATC

Srebp1c CTGTCTCACCCCCAGCATAG GAACTGGACACAGCGGTTTT

Pparg1 CTGTGTCAACCATGGTAATTTCTT TGCTGTTATGGGTGAAACTCTG

Pparg2 ATGCACTGCCTATGAGCACT CAACTGTGGTAAAGGGCTTG

Fasn ACTCCACAGGTGGGAACAAG CCCTTGATGAAGAGGGATCA

Vldlr CCTATAACTAGGTCTTTGCAGATATGG GAGCCCCTGAAGGAATGCC

LPL GAAGTCTGACCAATAAGAAGGTCAA TGTGTGTAAGACATCTACAAAATCAGC

CD36 TTGAAAAGTCTCGGACATTGAG TCAGATCCGAACACAGCGTA

Mtp TGAGAGGCCAGTTGTGTGAC GGCAGTGCTTTTTCTCTGCT

Pepck TCGATGCCTTCCCAGTAAAC CTGGCACCTCAGTGAAGACA

Ucp1 TAAGCCGGCTGAGATCTTGT GGCCTCTACGACTCAGTCCA
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body weights of ppHF mice supports the notion that ma-
ternal TG plays an important role in fetal growth (6–10). A
separate project is studying how obesity-impaired ma-
ternal TG metabolism induces intrauterine growth re-
striction. The current study focuses on the mechanisms
underlying the obesity-impaired rise of maternal blood
TG trajectory.

ppHF Feeding Increased Systemic LPL Activity and
Exhibited No Significant Effect on Maternal Hepatic TG
Release or Postprandial Intestinal TG Secretion Rates
Blood TG concentration is mainly determined by the coun-
teraction of hepatic and intestinal TG secretion and TG
clearance at peripheral tissues. To study the effect of ppHF
on postprandial TG metabolism, we first performed an oil
load test. As previously reported for HF-fed nonpregnant
mice (41), significantly decreased blood TG concentrations
were observed during the oil load test in ppHF dams
compared with Con mice (Fig. 2A). Next, we measured
maternal hepatic TG secretion rate during fasting con-
ditions, a time period that excludes the contribution of
postprandial intestinal TG secretion. As showed in Fig.
2B, similar hepatic TG release rates were observed be-
tween ppHF and Con dams, indicating that ppHF feeding

did not alter maternal hepatic TG secretion during pregnancy.
Although we observed no differences in maternal liver
weight between ppHF and Con dams (Fig. 2C), there was
a significant increase in hepatic TG content in ppHF dams
(Fig. 2D). There were no differences between ppHF and
Con dams in the hepatic mRNA levels of Srebp1c, Fasn, and
Dgat1, but we observe a significant increase in Cd36 and
a reduction in Mtp in ppHF dams (Fig. 2E). These results
suggest that ppHF feeding significantly enhanced hepatic
TG accumulation during pregnancy. Further studies will be
required to determine whether de novo lipogenesis and/
or lipoprotein particle release contribute to the increased
hepatic TG accumulation in ppHF dams.

We then measured postprandial intestinal TG secretion
by an oil load test after inhibition of systemic LPL activity.
Interestingly, after blocking systemic LPL activity with
Poloxamer 407, the increase of blood TG concentrations
during an oil load test was similar between ppHF and Con
dams (Fig. 2F), indicating ppHF and Con dams had com-
parable postprandial intestinal TG secretion rates during
pregnancy. These results of oil load tests (with or without
LPL inhibition) and hepatic TG production assays suggest
that TG clearance is the primary contributor to ppHF-impaired
maternal blood TG trajectory.

Figure 1—ppHF induced maternal obesity and reduced maternal blood TG concentration. C57BL/6 female mice were fed with HF diet for
12 weeks and then returned to regular chow 2 weeks before mating and during pregnancy. Body weight (A) and fat tissue mass (B) were
monitored using EchoMRI. Increased blood glucose (C) and insulin (D) concentrations were observed in ppHF-fed mice before pregnancy in
the fed state. E: Blood TG concentrations were monitored during pregnancy. F: The area under the blood TG curve (AUC) (E) was calculated.
Data are presented as mean6 SEM; n5 8–12 or shown in the bar graph. *P, 0.05 vs. samples fromCon dams; #P, 0.05 vs. samples from
the same group at E0.0.
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LPL-catalyzed TG hydrolysis plays a predominant role
in blood TG clearance. We measured postheparin blood
LPL activity to assay the effect of ppHF feeding on maternal
systemic TG clearance. As shown in Fig. 2G, postheparin
blood LPL activity was significantly increased in ppHF dams,
indicating that maternal obesity increases blood TG clearance.
Together, these results indicate that ppHF feeding impairs
the increase of maternal blood TG concentrations during
pregnancy, mainly through increasing LPL activity and blood
TG clearance.

Maternal Obesity Increased UCP1 Expression, but the
Ucp1 Gene Knockout Did Not Attenuate the Inhibitory
Effects of ppHF on Maternal Blood TG Trajectory
It has been reported that BAT activation plays an impor-
tant role in blood TG clearance (42). UCP1 protein levels
were significantly increased in iBAT from ppHF dams (Fig.
3A). Our recent study showed that HF feeding increased
BAT activation and energy expenditure in pregnant mice
(43). These results prompted us to speculate that increased
UCP1 expression and BAT activation may contribute to
increased blood TG clearance and the reduction of mater-
nal blood TG concentrations in ppHF dams. To verify this
hypothesis, we fed Ucp12/2 female mice with HF diet
using the same regimen for the C57BL/6 mice. Like WT

Con mice, maternal blood TG concentrations of chow-fed
Ucp12/2 dams (Con[Ucp12/2]) increased significantly dur-
ing pregnancy (Fig. 3B). Interestingly, there was no sig-
nificant difference in blood TG concentrations between
Ucp12/2 and WT mice before or during pregnancy (Fig. 3B
and C). Most importantly, a similar reduction of maternal
blood TG trajectory was detected in ppHF-fed WT and
Ucp12/2 dams (Fig. 3B and C). These results refute the
hypothesis that increased UCP1 expression mediates
obesity-enhanced blood TG clearance and attenuated
increase of maternal blood TG.

ppHF Feeding Reduced Angptl4 Gene Expression, and
Overexpression of ANGPTL4 in ppHF Dams Restored
Maternal TG Concentration
During normal pregnancy, LPL gene expression was sig-
nificantly reduced in both gWAT and iBAT (Fig. 4A and B).
Despite the increased blood LPL activity of ppHF dams
(Fig. 2G), LPL expression levels were not significantly
altered in gWAT, iBAT (Fig. 4A and B), skeletal muscle,
and hearts (Supplementary Fig. 2A and B) compared
with controls. Similar to the study of HF feeding during
pregnancy (15), LPL mRNA levels were significantly in-
creased in the placentas of ppHF dams (Supplementary
Fig. 2C).

Figure 2—ppHF increased maternal blood LPL activity but showed no effect on hepatic and intestinal TG release rates. A: Blood TG
concentrations weremeasured after an oil gavage.B: Hepatic TG release rates were determined bymeasuring blood TG concentrations after
injection of LPL inhibitor Poloxamer 407 in fasted mice. C: The liver tissue weight was measured by a scale. D: Liver TG content was
determined by extracting TG from homogenized tissue. E: Levels of target mRNAs were measured by real-time PCR. F: Blood TG
concentrations were measured after oil load and LPL inhibition (E14.5). G: Postheparin blood (PHB) LPL activity was measured using
maternal samples at E14.5. Data are presented as mean 6 SEM; n 5 6–8 or shown in bar graph. *P , 0.05, **P , 0.001 vs. Con dams.
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LPL activity is negatively regulated by a group of
ANGPTL proteins, including ANGPTL3, ANGPTL4, and
ANGPTL8. ANGPTL4 is the most potent LPL inhibitor
and mainly expressed in WAT, BAT, and the liver (20,22).
In line with previous reports (26–28), Angptl4mRNA levels
were robustly increased in both gWAT (Fig. 4C) and iBAT
(Fig. 4D), but not livers (Supplementary Fig. 2D), during
pregnancy. Of note, due to the lack of a specific antibody
to mouse ANGPTL4, only ANGPTL mRNA levels were
measured. To determine if ANGPTL4 plays a role in
pregnancy-induced hypertriglyceridemia, we measured
the maternal blood TG trajectory of Angptl4 gene knock-
out (Angptl42/2) mice. Interestingly, although there was
no significant difference in blood TG concentrations
before pregnancy between Angptl42/2 and WT mice,
the increases in maternal blood TG levels were almost
abolished in Angptl42/2 dams (Fig. 4E and F). Together,
these results indicate that ANGPTL4 plays a critical role
in increasing maternal blood TG concentrations during
pregnancy.

Comparing mRNA levels for lipid metabolism genes in
fat and livers, we found a significant reduction of Angptl4
mRNA levels in gWAT, iBAT, and liver of ppHF dams (Figs.
2E and 4G and H and Supplementary Fig. 3A). To study the
role of decreased Angptl4 in ppHF feeding–reduced mater-
nal blood TG trajectory, an adenovirus-mediated in vivo
hepatic transduction approach was used to ectopically
express human ANGPTL4 protein in pregnant mice (31)

(Supplementary Fig. 3B). In line with studies of nonpregnant
mice (24), maternal blood TG concentrations were significantly
increased in Ad-hANGPTL4–treated pregnant mice (Fig.
4I). Most importantly, the reduction of maternal blood TG
concentrations in ppHF dams was attenuated by ANGPTL4
expression (Fig. 4I). Together, these results indicate that de-
creased Angptl4 expression underlies the obesity-impaired
rise of maternal blood TG trajectory during pregnancy.

DISCUSSION

TG-rich lipoprotein particles are essential vehicles for
transporting maternal lipids to the placenta and fetal
compartment. Through a series of coordinated maternal
metabolic adaptation, maternal blood TG concentration
steadily increases to a significantly high level to ensure
fetal lipid supply. Therefore, in addition to glucose and
amino acids, maintaining physiological hypertriglyceride-
mia in maternal circulation is vital for fetal development
and growth (1,6,10). Using genetic mouse models, our
study unveiled a critical role of ANGPTL4 in increasing
maternal blood TG trajectory during pregnancy. The re-
markable reduction in maternal blood TG concentrations
in ppHF dams indicated that obesity impairs the rise of
maternal blood TG trajectory during pregnancy in mice.
Our current studies further demonstrated that the re-
duction of ANGPTL4 expression serves as an underly-
ing mechanism of obesity-impaired maternal blood TG
trajectory.

Figure 3—ppHF increased UCP1 expression, but Ucp12/2 mice exhibited no significant change in blood TG concentrations during
pregnancy. Ucp12/2 and WT female mice were fed with HF diet for 12 weeks and then returned to regular chow 2 weeks before mating and
during pregnancy. A: UCP1 protein levels were measured by Western blotting using iBAT from Con and ppHF WT dams (E18.5; n 5 14). B:
Blood TG concentrations of both chow- or ppHF-fedWT and Ucp12/2 dams were monitored during pregnancy. C: The area under the curve
(AUC) of blood TG concentrations was compared between Con and ppHF dams. Data are presented as mean 6 SEM. *P , 0.05 vs. Con
dams (WT or Ucp12/2); #P , 0.05 vs. samples from the same group at E0.0. AU, arbitrary units.
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In addition to increasing hepatic and intestinal TG
production, reduction of LPL-mediated TG clearance at
peripheral tissues is a main driving force that increases
maternal blood TG concentrations, especially in late preg-
nancy. A significant reduction in postheparin plasma LPL
activity and decreased LPL expression were observed in

pregnant women and rats (2,44,45). Similarly, our data
indeed reveal a robust reduction in LPL expression in
maternal metabolically active tissues. In addition, the
expression of LPL inhibitor ANGPTL4 is also signifi-
cantly increased during pregnancy (26–28,46) (Fig. 4B
and C). These data promote a logical assumption that

Figure 4—Angptl4 gene deletion impaired the rise in maternal blood TG levels, and overexpression of ANGPTL4 restored maternal blood TG
concentrations in ppHF dams. A and B: LplmRNA levels were measured by real-time PCR using gWAT and iBAT samples from nonpregnant
C57BL/6 mice (Non-Preg), Con, and ppHF dams (E18.5). C and D: gWAT and iBAT tissue samples were collected from C57BL/6 dams at
indicated embryonic ages. mRNA levels of Angptl4 and Angptl8 were determined by real-time PCR. E and F: WT and Angptl42/2 mice were
crossed to produce Angptl42/1 fetuses, which ensured the same genotype of fetuses. E: Maternal blood TG concentrations were measured
during pregnancy. F: The area under the curve (AUC) of maternal blood TG was compared. G and H: mRNA levels of indicated genes were
measured by real-time PCR using gWAT and iBAT samples fromCon and ppHF dams. I: Three days after Ad-GFP or Ad-hANGPTL4 injection,
maternal blood TG concentrations were measured in Con and ppHF dams. Data are presented as mean6 SEM; n5 11–16 or shown in bar
graph. *P , 0.05 vs. E0.0, WT, or Con dams. AU, arbitrary units.
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decreased LPL expression and increased ANGPTL4 should
both contribute to the decrease of maternal blood TG
clearance and subsequent increase in blood TG concen-
trations during normal pregnancy. Surprisingly, almost
no increase in maternal blood TG concentration was ob-
served in Angptl42/2 dams (Fig. 4E and F). Such robust
effects of Angptl4 deficiency on maternal blood TG concen-
trations demonstrate a predominant role of ANGPTL4 in
raising maternal blood TG concentrations during preg-
nancy. ANGPTL3 and ANGPTL8 are two other members
of the ANGPTL family. ANGPTL3 is mainly expressed in
the livers (47), while ANGPTL8 is expressed in the liver
and fat of mice but exclusively in the livers of humans
(48–50). In contrast to the increased Angptl4 expression
during pregnancy, Angptl8 mRNA levels were signifi-
cantly reduced in gWAT (Fig. 4C) and trend to decrease
in livers of healthy dams (Supplementary Fig. 2D). No
change in Angptl3 expression was detected in dams’ livers
(Supplementary Fig. 2D). Although our studies cannot
completely rule out the involvement of ANGPTL3 and
ANGPTL8, these gene expression data suggest a minor
role of ANGPTL3 and ANGPTL8 in regulating maternal
TG trajectory during pregnancy. Together, our data in-
dicate that ANGPTL4 is a key player in controlling ma-
ternal blood TG metabolism during pregnancy.

ANGPTL4 is the most potent LPL inhibitor among the
ANGPTL family (16–22). ANGPTL4 gene mutation or
knockout induced hypotriglyceridemia (17,51). Although
we did not measure blood ANGPTL4 protein levels due to
the lack of a specific antibody, the significant reduction in
Angptl4 expression and maternal blood TG concentra-
tions of ppHD-fed dams confirms the inhibitory effect of
ANGPTL4 on LPL. The restoration of maternal blood TG
concentrations of ppHF dams by ectopic ANGPTL4 over-
expression further confirms the causal role of decreased
Angptl4 expression in obesity-reduced maternal blood TG
concentrations. Although ANGPTL4 can act as an endo-
crine factor, a study has reported that ANGPTL4 inhibits
LPL activities also through a paracrine manner (19). Our
overexpression approach used the endocrine feature of
this protein. Future studies are required to investigate if
ANGPTL4 acts in a paracrine or a systemic manner to
increase maternal TG concentrations. For example, both
ppHF and HF feeding during pregnancy increase LPL
gene expression in placentas (15) (Supplementary Fig.
2C). It will be interesting to know if decreased maternal
ANGPTL4 also contributes to increased LPL activity at
the placenta through an endocrine effect.

Obesity, insulin resistance, and hyperlipidemia are closely
associated components of the metabolic syndrome. Although
few studies have reported that maternal obesity is associated
with a low magnitude of pregnancy-induced increase in
maternal blood TG concentrations (5,11–14), most clin-
ical data suggest a positive correlation between maternal
adiposity and blood TG levels (1,4–6,8–10). These human
studies support the notion that obesity increases mater-
nal blood TG concentrations. However, there is no direct

experimental evidence indicating the causal relationship
between obesity and hypertriglyceridemia. In contrast,
despite obesity, a significant reduction in blood TG con-
centrations was observed in pregnant mice (15) (Fig. 1E
and F). By avoiding dietary effects during pregnancy, the
current study further demonstrated that prepregnant
obesity impairs the rise of maternal blood TG trajectory
in mice. Together, these data indicate that maternal obesity
reduces the increase ofmaternal blood TG concentrations in
mice. Unfortunately, our study does not provide any evi-
dence to explain these opposite metabolic phenotypes be-
tween humans and mice. However, similar to most rodent
studies (33–40), a significant reduction in body weight was
observed in fetuses from ppHF dams, indicating a parallel
change inmaternal blood TG concentration and fetal growth.
In humans, maternal blood TG concentrations were also
associated with birth weight (1,6,10). In other words, the
positive association between maternal blood TG concentra-
tions and fetal growth is conserved from mice to humans.
Therefore, obese pregnant mice are still valuable models that
will help us to understand how obesity alters maternal lipid
metabolism. As with most animal studies, caution should be
taken when applying the mechanistic information from
animal work to humans. As with humans, maternal obesity
induces insulin resistance in mice (Fig. 1C and D). Sur-
prisingly, the apparent insulin resistance in ppHF dams
accompanied a reduction in blood TG levels. Therefore,
studies are required to determine the role of insulin
resistance and its relationship with ANGPTL4 in obesity-
impaired maternal TG metabolism.

In summary, this study demonstrates that obesity impairs
the rise of maternal blood TG concentration during mouse
pregnancy. ANGPTL4 plays a crucial role in increasing ma-
ternal blood TG concentrations. Obesity reduces ANGPTL4
expression, leading to the reduction of maternal blood TG
trajectory in obese mice.
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